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Abstract 

 

Driving asymmetric catalysis with visible light or electricity is of significant value because they 

represent ‘green’ and sustainable methods to synthesize non-racemic chiral molecules and in addition 

offer ample opportunities for chemists to discover new mechanistic scenarios and invent previously 

unknown transformations. However, steering the reaction course of photo- and/or electrochemically 

generated reactive intermediates in a stereocontrolled and catalytic fashion is very challenging. This 

thesis presents novel applications of previously in the Meggers group developed chiral-at-metal 

rhodium complexes to the areas of asymmetric photocatalysis and asymmetric electrosynthesis. 

1) A bis-cyclometalated chiral-at-metal rhodium complex (designated as RhS) in combination 

with the photoredox catalyst [Ru(bpy)3](PF6)2 enables visible-light-activated asymmetric α-amination 

and α-alkylation of 2-acyl imidazoles with aryl azides or α-diazo carboxylic esters as radical 

precursors, respectively (Chapter 3.1). As the first utilization of these reagents for photoinduced 

asymmetric catalysis, this novel proton- and redox-neutral transformations feature the advantage of 

leaving molecular N2 as the sole by-product and provide yields of up to 99% as well as excellent 

enantioselectivities of up to >99% ee with broad functional group compatibility. 

2) A bis-cyclometalated chiral-at-metal rhodium complex (designated as RhO) is demonstrated to 

catalyze stereocontrolled chemistry of photo-generated radicals and at the same time an 

enantioselective sulfonyl radical addition to alkenes (Chapter 3.2). Specifically, employing Hantzsch 

ester as photoredox mediator, rhodium bound β-enolate carbon-centered radicals are generated by a 

selective photoinduced single electron reduction and then trapped by allyl sulfones in a highly 

stereocontrolled fashion, providing radical allylation products with up to 97% ee. The hereby formed 

sulfonyl radicals are utilized through an enantioselective radical addition to form enantioenriched 

sulfones, which minimizes waste generation. 

3) A simple and robust catalysis scheme that only relies on a single bis-cyclometalated rhodium 

catalyst (RhS) is introduced to achieve the stereocontrol of bond forming reactions directly from an 

electronically excited state. This is showcased by an intermolecular [2+2] photocycloaddition of 

enones with alkenes, which provides a wide range of cyclobutanes with up to >99% ee and up 

to >20:1 d.r. (Chapter 3.3). The catalyst/substrate complexation enhances visible-light-absorption, 
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achieves selective direct photoexcitation, and enables stereocontrolled direct bond formation from the 

photoexcited state. All reactive intermediates remain bound to the chiral catalyst thereby providing a 

robust catalytic scheme (no exclusion of air necessary) with excellent stereoinduction. This strategy is 

further applied to a previously elusive visible-light-induced [2+3] photocycloaddition of 

acceptor-substituted alkenes with vinyl azides (Chapter 3.4). A wide range of complex 1-pyrrolines are 

obtained as single diastereoisomers and with up to >99% ee using a simple reaction setup and mild 

reaction conditions. This work expands the scope of stereocontrolled direct bond formation from 

photoexcited states which was previously limited to [2+2] photocycloadditions. 

4) The chiral-at-metal complex RhS is shown to catalyze visible-light-activated catalytic 

asymmetric [3+2] photocycloadditions between acyl cyclopropanes and alkenes or alkynes, which 

provide access to cyclopentanes and cyclopentenes, respectively, in 63-99% yields and with excellent 

enantioselectivities of up to >99% ee (Chapter 3.5). Coordination of the cyclopropane with the chiral 

catalyst generates the visible-light-absorbing complex, lowers the reduction potential of the 

cyclopropane, and provides the asymmetric induction and overall stereocontrol. Enabled by a mild 

single electron transfer reduction of directly photoexcited catalyst/substrate complexes, the scope of 

asymmetric photocycloadditions is extended to simple mono-acceptor-substituted cyclopropanes with 

the synthesis of previously inaccessible enantioenhanced cyclopentane and cyclopentene derivatives. 

5) A versatile electricity driven chiral-at-rhodium Lewis acid catalysis is disclosed (Chapter 3.6). 

Powered by an electric current, the oxidative cross coupling of 2-acyl imidazoles with silyl enol ethers 

provides a sustainable avenue to synthetically useful non-racemic 1,4-dicarbonyls, including products 

bearing all-carbon quaternary stereocenters. A chiral-at-rhodium complex (RhS or a sterically more 

demanding derivative) activates a substrate towards facile anodic oxidation by raising the highest 

occupied molecular orbital upon enolate formation, which enables mild redox conditions, high chemo- 

and enantioselectivities (up to >99% ee), and a broad substrate scope. 

This thesis demonstrates the robustness and versatility of bis-cyclometalated rhodium-based 

Lewis acids by developing several mechanistically diverse and synthetically attractive asymmetric 

catalysis schemes. These chiral-at-rhodium Lewis acids are among the most powerful catalysts to 

address the long-standing challenge of stereocontrol in photochemical and electrochemical reactions. 
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Zusammenfassung 

 

Asymmetrische Katalyse mit sichtbarem Licht oder mit elektrischer Energie zu betreiben, ist von 

erheblichem Wert, da dies eine „grüne“ und nachhaltige Methode zur Synthese von chiralen 

Molekülen darstellt. Darüber hinaus bietet sie Chemikern die Gelegenheit, neue mechanistische 

Szenarien zu entdecken und bisher unbekannte Transformationen zu entwickeln. Es ist jedoch eine 

große Herausforderung, den Reaktionsverlauf von photo- und/ oder elektrochemisch erzeugten 

reaktiven Zwischenstufen stereokontrolliert und katalytisch zu steuern. Diese Arbeit präsentiert 

neuartige Anwendungen von zuvor in der Meggers-Gruppe entwickelten chiral-at-metal 

Rhodium-Komplexen auf den Gebieten der asymmetrischen Photokatalyse und der asymmetrischen 

Elektrosynthese. 

1) Ein biscyclometallierter chiral-at-metal Rhodium-Komplex (als RhS bezeichnet) in 

Kombination mit dem Photoredoxkatalysator [Ru(bpy)3](PF6)2 ermöglicht eine durch sichtbares Licht 

aktivierte asymmetrische α-Aminierung und α-Alkylierung von 2-Acylimidazolen mit Arylaziden bzw. 

von α-Diazocarbonsäureestern als Radikalvorläufer (Kapitel 3.1). Als erste Verwendung dieser 

Reagenzien für die photoinduzierte asymmetrische Katalyse weisen diese neuen protonen- und 

redoxneutralen Umwandlungen den Vorteil auf, dass molekularer Stickstoff als einziges Nebenprodukt 

entsteht und Ausbeuten von bis zu 99% sowie ausgezeichnete Enantioselektivitäten von bis zu > 99% 

ee erreicht werden können. Darüber hinaus wird eine breite funktionelle Gruppenkompatibilität 

gewährleistet. 

2) Es konnte zudem gezeigt werden, dass ein biscyclometallierter chiral-at-metal 

Rhodium-Komplex (als RhO bezeichnet) zugleich eine stereokontrollierte Chemie von 

photo-generierten Radikalen als auch eine enantioselektive Sulfonyl-Radikaladdition an Alkene 

ermöglichen kann (Kapitel 3.2). Insbesondere unter Verwendung von Hantzsch-Estern als 

Photoredox-Mediatoren werden Rh-gebundene β-Enolat Radikale durch eine selektive photoinduzierte 

Einelektronenreduktion erzeugt und dann durch Allylsulfone hochstereokontrolliert abgefangen, 

wodurch radikalische Allylierungsprodukte mit bis zu 97% ee erhalten werden. Die dabei gebildeten 

Sulfonylradikale werden durch eine enantioselektive Radikaladdition zur Bildung enantiomerenreine 

Sulfone verwendet, wodurch die Abfallerzeugung minimiert wird. 
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3) Ein einfaches und robustes Katalyseverfahren, das nur einen einzigen biscyclometallierten 

Rhodiumkatalysator (RhS) verwendet, wird eingeführt, um die Stereokontrolle von 

Bindungsbildungsreaktionen direkt aus einem elektronisch angeregten Zustand zu erreichen. Dies 

zeigt eine intermolekulare [2+2]-Photocycloaddition von Enonen mit Alkenen, die ein breites 

Spektrum an Cyclobutanen mit bis zu 99% ee und bis zu >20:1 d.r. liefert (Kapitel 3.3). Die 

Katalysator/ Substrat-Komplexierung verbessert die Absorption von sichtbarem Licht, erreicht eine 

selektive direkte Photoanregung und ermöglicht die stereokontrollierte direkte Bindungsbildung aus 

dem photoangeregten Zustand. Alle reaktiven Zwischenprodukte bleiben an den chiralen Katalysator 

gebunden, wodurch ein robustes katalytisches System (kein Luftausschluss erforderlich) mit 

hervorragender Stereoinduktion bereitgestellt wird. Diese Strategie wird auch auf eine bisher schwer 

umsetzbare, durch sichtbares Licht induzierte [2+3]-Photocycloaddition von Akzeptor-substituierten 

Alkenen mit Vinylaziden angewendet (Kapitel 3.4). Eine Vielzahl an komplexen 1-Pyrrolinen kann 

jeweils als einfache Diastereoisomere mit bis zu >99% ee erhalten werden, unter Verwendung eines 

einfachen Reaktionsaufbaus und unter milden Reaktionsbedingungen. Diese Arbeit erweitert den 

Bereich der stereokontrollierten direkten Bindungsbildung aus photoangeregten Zuständen, der zuvor 

auf [2+2]-Photocycloadditionen beschränkt war. 

4) Der chiral-at-metal-Komplex RhS ermöglicht eine durch sichtbares Licht aktivierte 

katalytische asymmetrische [3+2]-Photocycloaddition zwischen Acylcyclopropanen und Alkenen bzw. 

Alkinen, wodurch Cyclopentane bzw. Cyclopentene zugänglich sind. Hierbei werden Ausbeuten von 

63-99% sowie ausgezeichnete Enantioselektivitäten von bis zu >99% ee (Kapitel 3.5) erreicht. Die 

Koordination des Cyclopropans an den chiralen Katalysator erzeugt den sichtbares Licht 

absorbierenden Komplex, senkt das Reduktionspotential des Cyclopropans und sorgt für die 

asymmetrische Induktion und die gesamte Stereokontrolle. Mittels einer milden 

Einelektronentransfer-Reduktion der direkt photoangeregten Katalysator-/ Substrat-Komplexe kann 

der Anwendungsbereich asymmetrischer Photocycloadditionen auf einfache 

Monoakzeptor-substituierte Cyclopropane ausgeweitet werden, wodurch bisher nicht zugängliche 

enantiomerenreine Cyclopentan- und Cyclopentenderivate synthetisiert werden können. 

5) Eine vielseitige, durch Elektrizität betriebene chiral-at-Rhodium Lewis-Säure-Katalyse wird 

beschrieben (Kapitel 3.6). Durch elektrischen Strom angetrieben, bietet die oxidative Kreuzkupplung 

von 2-Acylimidazolen mit Silylenolethern einen nachhaltigen Weg zu synthetisch nützlichen 
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nicht-racemischen 1,4-Dicarbonylen, einschließlich Produkten, die quartäre Stereozentren enthalten. 

Ein chiral-at-Rhodiumkomplex (RhS oder ein sterisch anspruchsvolleres Derivat) aktiviert ein 

Substrat in Bezug auf eine einfachen leichten anodische Oxidation, indem das höchstes besetztes 

Molekülorbital bei der Enolatbildung angehoben wird. Dies ermöglicht milde Redoxbedingungen, 

hohe Chemo- und Enantioselektivitäten (bis zu >99% ee) und ein breites Substratspektrum. 

Diese Arbeit demonstriert die Robustheit und Vielseitigkeit von biscyclometallierten auf  

Rhodium-basierenden Lewis-Säuren, indem sie mehrere mechanistisch unterschiedliche und 

synthetisch attraktive asymmetrische Katalyseverfahren entwickelt. Diese chiral-at-Rhodium 

Lewis-Säuren gehören zu den leistungsfähigsten Katalysatoren, welche die langjährige 

Herausforderung der Stereokontrolle in photochemischen und elektrochemischen Reaktionen in 

Angriff nehmen können. 
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Chapter 1. Theoretical Part 

 

1.1 Introduction  

 

As the fundamental feature of organic compounds, chirality greatly influences the properties of 

molecules, and its implications are enormous in many areas including biology, medicine and material 

science.1 For example, the diverse stereochemistry of organic molecules not only significantly 

enhances the richness of biological world, but also plays a profound role in many biological activities 

such as molecular communication. As for medicinal chemistry, the pharmaceutical effects of a drug 

can differ completely between enantiomers and/or diastereomers. In addition, many properties of 

materials derive from their chirality, and very often, reinforced properties are obtained from 

stereodefined polymers rather than the stereorandom ones.  

Considering this importance, the synthesis of homochiral molecules is a long-standing goal in 

organic chemistry. To meet the growing need of chiral molecules, many methods have been developed, 

among which asymmetric catalysis is among the most economic and sustainable strategies. Recently, 

the invention of new techniques as well as the renaissance of traditional ones stimulate the 

development of asymmetric catalysis, which provides new opportunities, but also challenges for the 

generation of novel enantioenriched compounds. 

Visible-light-activated catalysis has emerged as a powerful and green tool for synthetic chemistry 

during the last decade.2 On one hand, photoredox catalysis provides accesses to a variety of reactive 

radicals and/or radical icons under mild and catalytic conditions.3  Taking the commonly used 

ruthenium-based polypyridyl photocatalyst [Ru(bpy)3]2+as an example (Figure 1, left), driven by 

visible light, an electron in one of the Ru-centered t2g orbitals (HOMO) can be excited to a 

bpy-centered π* orbital (LUMO), which is defined as metal to ligand charge transfer (MLCT). After 

intersystem crossing (ISC), the long-lived excited triplet photocatalyst, which consists of a RuIII 

oxidizing center and a highly reducing ligand framework, is a remarkably better oxidant and at the 

same time a stronger reductant compared with the ground state. As a result, this excited species is able 

to initiate single electron transfer (SET) via oxidative quenching or reductive quenching pathways, 

generating highly reactive open-shell radicals and/or radical ions for follow-up bond formations. On 
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the other hand, electronically excited states of organic molecules can be accessed via photochemical 

activation which is hardly achieved by thermal activation, and possess distinctive reactivity, such as 

direct photocycloaddition and energy transfer process (EnT).4  

In addition to photochemistry, the organic electrosynthesis is extremely attractive from the 

viewpoint of green chemistry and sustainable development (Figure 1, right).5 Since only the electrons 

serve as reagents, the electrochemistry avoids the use of stoichiometric amount of redox reagents 

(usually environmentally unfriendly), reduces the amount of waste generation, and allows simple and 

mild ways to access reactive open-shell radicals and radical ions. Thus it provides a robust and 

economic fashion to create diverse structurally different compounds. Recently, the combination of 

novel concepts in modern organic synthesis promotes a renaissance of synthetic electrochemistry. 

However, catalytic asymmetric electrosynthesis remains underdeveloped with limited number of 

general and highly stereoselective examples reported. 

 

 

Figure 1.  Visible light and electricity driven chemistry providing new opportunities for asymmetric 

catalysis. Potentials refer to SCE in MeCN. 

 

To combine these appealing techniques with asymmetric catalysis, several challenges should be 

addressed (Figure 2). Fundamentally, the binding of a chiral catalyst to a substrate could decrease the 

activation barrier, thus achieving an enantioselective reaction. Indeed, many thermal reactions can not 

proceed without a suitable catalyst owing to the high energy barrier. However, the highly reactive 
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nature of the excited state renders the uncatalyzed background feasible. In addition, the photoinduced 

or electrochemically-generated intermediate radicals, radical ions, and/or ions are also high-energy, 

which makes it difficult to suppress the non-catalyzed side reactions that could affect asymmetric 

induction and overall yields. Besides, stabilities of the chiral catalysts under a photoreaction set-up or 

an electrochemical cell need to be considered.  

 

 

Figure 2.  Enthalpy diagrams of a thermal, a photo-activated, and an electricity-driven reaction. 

 

Novel strategies have been developed to solve these challenges and prompt the booming of 

asymmetric catalysis.6 This chapter summarizes the representative advances in these areas. According 

to the difference in mechanisms, it is divided into asymmetric catalysis with photoinduced SET, with 

direct bond formations from excited states, and driven by electricity. At the end of this chapter, the 

emerging concept of chiral-at-metal catalysis will be highlighted. 
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1.2 Asymmetric Catalysis via Photoinduced SET 

 

Photoinduced single electron transfer (SET) has recently attracted much attention not only 

because of the mild and simple conditions provided by photoredox catalysis, but also owing to the 

versatile and useful reactivity of radicals and radical ions generated via SET processes.7 These 

reactive species offer a fertile test ground for chemists to develop new mechanistic pathways and to 

discover novel transformations, especially in stereocontrolled fashions. 

 

1.2.1 α-Functionalization of Carbonyls by Radical Addition to Enamines  

 

In 2008, for the first time, Nicewicz and MacMillan merged photoredox catalysis with chiral 

enamine catalysis achieving the direct asymmetric alkylation of aldehyde (Figure 3).8  By the 

employment of acceptor-substituted alkyl bromides as radical precursors, [Ru(bpy)3]2+ as photoredox 

catalyst and a chiral imidazolidinone as enamine catalyst, the challenging stereoselective C-C bond 

formation could be achieved under the illumination with a household compact fluorescent lamp (CFL) 

at room temperature, which is otherwise hard to make by ionic SN2 pathway.  

Mechanistically, the photoredox cycle produces alkyl radical via SET reduction of the alkyl 

bromide by the reduced PC.– species, which is initially generated by the reductive quenching of 

photoexcited PC* by a sacrificial amount of enamine species. And at the same time, in the 

organocatalysis cycle, an enamine intermediate is formed by the condensation of the chiral 

imidazolidinone with an aldehyde. Then, the electron deficient alkyl radical stereoselectively adds to 

the electron rich enamine generating an α-amino radical intermediate. In the seminal report, it was 

proposed that the highly reducing α-amino radical transfers an electron to the excited photocatalyst 

(PC*), thereby closing the photoredox cycle and generating iminium cation intermediate. Finally, 

hydrolysis of the iminium ion regenerates the chiral amine with the release of α-alkylated aldehyde. 

Notably, further mechanistic studies including the determination of quantum yield, elucidate that a 

radical chain manifold is the main reaction pathway.9 That is, SET from the intermediate α-amino 

radical to the alkyl bromide could directly furnish alkyl radical, hence enabling a self-propagating 

radical chain process.  
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Figure 3.  Merging photoredox and enamine catalysis for α-functionalization of aldehydes reported 

by MacMillan. Radical chain mechanism revised by Yoon. 

 

This pioneering work has had many profound implications. The dual-catalyst system has been 

expanded to yield a variety of methodologies, such as asymmetric α-trifluoromethylation 10 a, 

α-benzylation10b, and α-cyanoalkylation10c. Moreover, using N-2,4-dinitrophenylsulfonyloxy 

functionalized carbamates as nitrogen radical source, an enantioselective α-amidation of aldehydes 

was accomplished with a single enamine catalyst without the need for any external photoredox catalyst, 

in which a radical chain mechanism plays a vital role.10d Besides, organic dyes, inorganic 

semiconductor, and other metal-based octahedral complexes were demonstrated to be suitable 
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photoredox catalysts intertwining with asymmetric enamine catalysis.11 But the most important 

impact of this work was the showcase of the integration of radical reactivity provided by photoredox 

catalysis with asymmetric organocatalysis, which laid a solid foundation for the development of 

modern photoredox catalysis. 

As a very related example, Luo’s group reported an enantioselective α-alkylation of 

1,3-dicarbonyls using dual photoredox and chiral primary amine catalysis for the construction of a 

series of all-carbon quaternary stereocenters which are otherwise difficult to build by thermal 

activation (Figure 4a).12 Hydrogen bonding between the intermediate enamine and the phenacyl 

radical species is proposed to explain the high asymmetric induction.  

 

Figure 4.  Selected other strategies for asymmetric photoredox α-functionalization of aldehydes. 
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While the dual-catalyst strategy relies on an additional photoredox catalyst together with a chiral 

catalyst to separate the photochemical process from stereodetermining bond formation, an attractive 

alternative is to combine stereoinduction and photoactivation in a single chiral catalyst. In this context, 

Melchiorre and co-workers disclosed a unique reaction scheme that a single chiral amine catalyst 

triggers the photochemical generation of alkyl radicals without usage of any external photoredox 

catalyst (Figure 4b).13 Two different pathways for the radical initiation are demonstrated depending 

on the substrate. Electron deficient benzyl bromides, which upon association with the electron-rich 

enamine species, can form colored electron donor-acceptor (EDA) complexes.13a The EDA complex is 

capable of absorbing visible light and inducing SET event, thereby leading to the generation of a 

benzyl radical. A second radical formation pathway involves the direct photoexcitation of an enamine 

intermediate by near-UV light and the following SET between excited state enamine with 

bromomalonate, enabling access to an alkyl radical.13b In analogy to the reaction scheme described in 

Figure 3, these radicals later engage in the enamine catalysis proceeding with a self-propagating 

radical chain mechanism. It is noteworthy that a related EDA complex which is formed with 

deprotonated cyclic β-ketoester and cinchonine-based phase-transfer catalyst has also been proved to 

participate in a similar asymmetric photoreaction.13c 

Another interesting strategy is to use a bifunctional photoaminocatalyst that constitutes of a 

photoactive thioxanthone group and an imidazolidinone moiety, as developed by Alemán et al. 

(Figure 4c).14 Excellent enantioselectivities and yields could be obtained for the alkylations of 

aldehydes by using this newly-developed photocatalyst, while the combination of enamine cat and 

thioxanthone gaves similar results. Detailed mechanistic investigations were presented as well.  

 

1.2.2 α-Functionalization of Carbonyls through α-Iminyl/Carbonyl Radicals 

 

In 2017, the MacMillan group reported an elegant reaction which was interpreted as a 

combination of triple catalytic activation–photoredox catalysis, singly-occupied molecular orbital 

(SOMO) activation, and hydrogen atom transfer (HAT)–for the direct enantioselective α-alkylation of 

aldehydes (Figure 5).15 The combination of a bis-cyclometalated iridium-based photocatalyst, a chiral 

imidazolidinone or prolinol, and a thiophenol successfully enables both intra- and intermolecular 

coupling of aldehyde α-methylene with simple olefins. The reaction is proposed to proceed through an 
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interesting hydrogen and electron-borrowing mechanism. Accordingly, the enamine cycle starts with 

the condensation of the chiral amine with an aldehyde, generating an enamine intermediate. 

Concurrently, excited photocatalyst forms upon the irradiation by visible light. Then, SET between 

enamine and excited iridium species generates a reduced Ir(II) species and the key 3πe– enaminyl 

radical (also called α-iminyl radical cation). The radical species can be trapped reversibly by an olefin 

to generate a secondary nucleophilic radical intermediate. Subsequent HAT with a thiol catalyst leads 

to the iminium ion, the hydrolysis of which furnishes the enantioenriched product with the 

regeneration of the chiral amine catalyst. Finally, reduction of the thiyl radical by the reduced Ir(II) 

species regenerates the Ir(III) catalyst and thiol catalyst, thereby completing the photoredox and HAT 

catalysis.  

 

Figure 5.  Enantioselective α-alkylation of aldehydes with olefins via triple catalytic activation. 



Chapter 1. Theoretic Part 

9 
 

This reaction avoids the use of stoichiometric oxidant and organic halides, allowing the 

construction of high-value molecules in an atom- and step-economic way. Noteworthy is that this 

work illustrates how the merger of photoredox catalysis with established activation modes could result 

in an unconventional transformation. Interestingly, this α-iminyl radical cation could also undergo a 

β-deprotonation to generate a β-enaminyl radical intermediate, thereby enabling the direct β-arylation 

of carbonyl compounds.16  

On the other hand, the related α-carbonyl carbon-centered radicals could be formed reductively 

(Figure 6). In 2016, the Hyster group reported a nicotinamide-dependent enzyme-catalyzed 

enantioselective radical dehalogenation of α-bromolactones (Figure 6a).17a Under irradiation with 

visible light, the photoexcited cofactor NADH (the reduced form of nicotinamide adenine nucleotide) 

or NADPH (the reduced form of nicotinamide adenine dinucleotide phosphate) acts as a reductant to 

induce SET reduction of the enzyme bound lactone bromide, generating the key α-carbonyl radical 

intermediate. Subsequently, HAT between the radical intermediate and NAD(P)H radical cation 

produces the enantioenriched product with the stereochemistry controlled by the enzyme. Later, the 

same group expanded the scope to an enantioselective deacetoxylation by the integration of 

xanthene-based photocatalysis with enzyme catalysis.17b These reports highlight the great potential of 

applying photoredox catalysis for the access of non-natural reactivity of enzymes.18  

Very recently, Jiang and co-workers demonstrated an asymmetric radical cross coupling of a 

prochiral α-acyl carbon-centered radical, generated by SET reductive debromination of racemic 

α-bromoketone, with an α-amino radical derived from oxidative decarboxylation of N-aryl amino acid 

(Figure 6b). 19  A chiral phosphoric acid catalyst provides good asymmetric induction and 

chemoselectivity, while the dicyanopyrazine-derived chromophore (DPZ) enables the photoredox 

process. Notably, various fluoro-hetero-quaternary and all-carbon quaternary stereocenters could be 

successfully constructed, which is otherwise difficult to achieve. 
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Figure 6.  Reductive generations of α-carbonyl carbon-centered radicals and their asymmetric 

transformations. 

 

1.2.3 Radical (Conjugate) Addition to Electron Deficient C=X Bonds 

 

Catalytic enantioselective conjugate addition of electron rich radicals to electron deficient C=C 

bonds is more challenging owing to the uncatalyzed background reaction. With respect to the area of 

stereocontrolled reactions initiated by photoinduced photoreactions, in 2005 Bach’s group presented 

an asymmetric hydrogen-bonding photocatalysis, in which an intramolecular addition of α-amino alkyl 

radical to a quinolone scaffold mechanism is proposed (Figure 7a).20 Significant enantiomeric excess 

of up to 70% could be obtained under irradiation of UV-light at low temperature. 

Later in 2015, Yoon and co-workers demonstrated a more general and highly enantioselective 

intermolecular addition of α-amino radicals to Michael acceptors by using the dual photoredox/chiral 

Lewis acid strategy (Figure 7b). 21  [Ru(bpy)3]2+ photoredox catalyst is used for the oxidative 

generation of electron rich radical species from α-silylalkyl amine, which then adds to the chiral Lewis 

acid bound α,β-unsaturated carbonyl substrate in a stereoselective fashion to produce a secondary 
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α-carbonyl radical. SET reduction of this electrophilic radical species by the reduced [Ru].– species 

furnishes an enolate intermediate which undergoes sequential protonation and ligand exchange to 

generate β-functionalized product and complete the Lewis acid cycle. Alternatively, SET between 

α-silylalkyl amine and α-carbonyl radical results in a radical chain mechanism. The 

scandium(III)/chiral PyBOX ligand based Lewis acid catalysis is independent of the photoinduced 

SET and more importantly, it can accelerate the rate of radical addition so significantly that the 

racemic background reaction is suppressed. To be mentioned, the ability of chiral Lewis acid to control 

the stereochemistry of radical conjugate addition can be traced back to Sibi’s report on magnesium 

bisoxazoline complex catalyzed enantioselective radical conjugate additions.22 

 

 

Figure 7.  Enantioselective conjugate addition of α-amino radicals. 
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A related photoinduced radical conjugate addition was achieved by a unique single nickel/chiral 

DBFOX based catalysis, as reported by Gong et al. in 2018 (Figure 8a).23a It is noteworthy that the 

base metal complex described in this work is proposed to absorb visible light, initiate SET for the 

generation of the nucleophilic radical, and at the same time activatie substrate by two-point 

coordination which ensures excellent asymmetric induction. Very recently, the Gong group expanded 

this visible-light-induced asymmetric base metal catalysis by a copper(II)-bisoxazoline enabled 

enantioselective alkylation of imines.23b  

 

 

Figure 8.  Other strategies for enantioselective radical conjugate additions. 
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The Jiang group disclosed a cooperative photoredox and chiral phosphoric acid catalysis scenario 

for the visible-light-induced asymmetric conjugate addition of N-aryl glycine derived radicals to 

α-branched 2-vinylazaarenes (Figure 8b).24 

Another elegant strategy revealed by Melchiorre and co-workers is the merger of a well-designed 

chiral organic amine catalyst with photoredox catalysts, which was applied to the enantioselective 

radical conjugate addition to β,β-disubstituted cyclic enones leading to the building of quaternary 

stereocenters with high fidelity (Figure 8c).25a Particularly, the chiral amine catalyst contains a 

redox-active carbazole motif at a strategic position that is crucial to facilitate a rapid intramolecular 

SET reduction of the unstable α-iminyl radical cation. This SET event and the subsequent 

tautomerization prevent the potential back-electron transfer and trigger the reversible radical 

addition/β-scission processes toward the desirable iminium ion trapping direction, resulting in a more 

stable imine intermediate. Finally, the SET reduction of the carbazole motif and the following 

hydrolysis afford the product. Overall, by this way of electron-relay mechanism, previously limited 

construction of quaternary carbon sterecenter was successfully accomplished. 

Besides acceptor-substituted C=C bonds, C=N bonds could also be used as acceptors for 

photoinduced asymmetric radical additions (Figure 9). In 2013, the Knowles group disclosed a dual 

photoredox/Brønsted acid catalysis to enable an asymmetric aza-pinacol cyclization (Figure 9a).26 A 

concerted proton-coupled electron transfer (PCET) process collectively mediated by an iridium-based 

photoredox catalyst and a chiral phosphoric acid is proposed to produce the key neutral ketyl radical 

intermediate. The following intramolecular radical addition generates a new C-C bond and after 

follow-up SET forms an enantioenriched syn-1,2-amino alcohol derivative with excellent 

stereoselectivity. During the stereodetermining radical addition step the ketyl radical remains hydrogen 

bonded with the conjugate base of the chiral Brønsted acid.  

In 2018, Huang’s group reported an elegant intermolecular reductive coupling of aldehydes with 

nitrones catalyzed by dual photoredox/Lewis acid catalysis with a chiral N,N′-dioxide ligand (Figure 

9b).27 The proposed key radical addition step goes through a radical-type Zimmerman-Traxler 

transition state, thus providing excellent stereoselectivity for the synthesis of enantioenriched vicinal 

amino alcohols. Further applications of this protocol for the concise synthesis of pharmaceutically 

related molecules were demonstrated.  
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Figure 9.  Dual photoredox/acid catalysis enabled enantioselective radical additions. 

 

Very recently, Phipps and co-workers expanded the dual-catalyst system to a photoinduced 

enantioselective Minisci-type radical addition to heteroarenes (Figure 9c).28 Amino acid derived 

redox active ester was used as the precursor of nucleophilic N-acyl α-amino radical. Noteworthy is the 

multiple-role of the chiral phosphoric acid, the conjugate anion of which is supposed to not only 

engage in the H-bonding with both N-acyl α-amino radical and protonated N-heteroarene, but also 

facilitate the key intra- and/or intermolecular deprotonation step which is supposed to be the 
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irreversible product-determining step. Under the CPA provided chiral environment, sequence 

reversible radical addition and irreversible deprotonation steps could lead to the differentiation of 

diastereomers, thus explaining the asymmetric induction of this reaction.  

 

1.2.4 Radical-Radical Cross Coupling 

 

 
Figure 10.  Ooi’s work on synergistic catalysis of photoredox catalyst and chiral 

arylaminophosphonium barfate for a photoinduced asymmetric radical-radical cross coupling. 

 

In some cases, radical-radical recombination mechanism rather than radical conjugate addition is 

proposed for the cross coupling of nucleophilic radicals with electrophilic unsaturated C=X bonds. For 

instance, Ooi’s group reported an asymmetric radical-radical cross coupling event enabled by 

synergistic catalysis of iridium-based photoredox catalyst and chiral arylaminophosphonium barfate 

(Figure 10).29a In the proposed mechanism, reductive quenching of photoexcited iridium species 

generates an amino radical cation, which after deprotonation gives an α-amino carbon-centered radical. 

And the resulting reduced iridium species can transfer a single electron to the imine, generating the 

corresponding prochiral radical anion intermediate. The interaction of this radical anion with the chiral 

aminophosphonium ion affords the key chiral ion pair. Finally, radical coupling of two radical species 

furnishes the 1,2-diamine product with the stereochemistry being controlled by the chiral ionic 
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Brønsted acid. Later, they expanded the scope of amino radical precursors to silylamines, where an 

oxidative quenching pathway of the photoexcited *Ir(ppy)3 might be operative.29b These reports show 

the insensitivity of the redox-neutral bond formation to the sequence of the photoredox events, and 

more importantly, this radical-radical cross coupling mechanism shed light on new reaction pathways 

of photogenerated radicals.30 

 

 

Figure 11.  Melchiorre’s work on stereocontrolled β-alkylation of enals enabled by direct 

photoexcitation of iminium ion and radical-radical recombination. 

 

As for β-functionalization of enones, a radical-radical recombination pathway is also feasible. As 

an elegant demonstration, Melchiorre and co-workers developed a single chiral amine catalyzed 

enantioselective β-alkylation of enals with benzylic silanes (Figure 11).31a Accordingly, selective 

photoexcitation of colored iminium ion intermediate forms an electronically excited state, which acts 

as a strong oxidant to oxidize silane to generate the key β-enaminyl radical intermediate and 
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concurrently gives a benzyl radical upon irreversible desilylation. Recombination of these two radicals 

in a stereocontrolled way furnishes the β-functionalized product. This radical-radical cross coupling 

mechanism is supported by several observations. The poor nucleophilicity of benzyl radical and low 

tendency of radical trapping using iminium ion render a radical conjugate addition unlikely, which is 

in consistent with a determined quantum yield of 0.05. Importantly, redox potentials indicate that SET 

oxidation of the benzyl silane by the α-iminyl radical cation is endergonic, which suggests the radical 

conjugate addition/chain propagation mechanism is unfavorable.  

It is worth noting that back in 1980th, Mariano has reported transformations of iminium salts with 

UV-light excitations.32 Melchiorre’s work inspires chemists to unlock untraditional transformations by 

exploiting the reactivity of visible-light-excited iminium ions. Later, they further applied this strategy 

to achieve the expansion of radical precursors to readily available 4-alkyl-1,4-dihydropyridine31b, 

unactivated olefin31c, and even toluene derivatives31d. Furthermore, a radical-polar cascade through 

excited iminium ion and ground state enamine sequence allowed the stereoselective cyclization of enal 

with racemic cyclopropanol, affording stereochemically dense cyclopentanols.31e 

 

1.2.5 Transition Metal Catalyzed Cross Coupling  

 

Merger of photoredox catalysis with nickel chemistry opens a conceptually new single-electron 

transmetalation framework to overcome the otherwise challenging Csp3-Csp2/sp3 cross coupling, and 

provides ample opportunities for developing novel asymmetric catalytic photoreactions. Pioneering 

work in dual photoredox/nickel catalysis was reported in 2014 by Molander33, Doyle and MacMillan,34 

respectively. The first enantioselective example was presented in Molander’s paper, where 50% ee was 

obtained for the cross coupling of an aryl bromide with a benzyl trifluoroborate employing a chiral 

bisoxazoline ligand (Figure 12a). The initially proposed mechanistic scheme starts with the oxidative 

addition of the aryl bromide to the Ni(0) catalyst with the formation of arylnickel(II) complex (Figure 

12b, blue solid). Concurrently, SET oxidation of trifluoroborate by photoexcited [Ir]* forms a 

C-centered benzylic radical, which is trapped by the arylnickel(II) complex delivering a Ni(III) species. 

Reductive elimination of this Ni(III) intermediate furnishes the cross coupling product and Ni(I) 

complex, the latter of which is reduced by the iridium-based reducing species to regenerate the Ni(0) 

complex, thus closing the nickel catalysis and photoredox catalysis. Later, computational studies by 
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Molander and Kozlowski et al. revealed an alternative pathway, in which the alkyl radical first 

engages in addition to Ni(0) complex and then, the resultant alkynickel(I) species participates in the 

oxidative addition with aryl bromide (Figure 12b, red dashed).35 Key finding of this work is that the 

asymmetric induction was suggested to occur through dynamic kinetic resolution (DKR) of the Ni(III) 

complex and the reductive elimination is the stereodetermining step, which is considered to be 

operative in other similar stereoconvergent Ni-catalyzed reactions. 

 

 

Figure 12.  Dual photoredox/nickel catalysis. 
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Based on this work, highly enantioselective photoinduced nickel catalyzed cross couplings were 

developed. In 2016, Fu and MacMillan achieved an enantioselective decarboxylative arylation of 

naturally abundant α-amino acids, approaching to valuable chiral benzylic amines in up to 93% ee 

(Figure 12c).36 More recently, Rovis and Doyle reported an enantioselective desymmetrization of 

cyclic meso-anhydrides with benzyl trifluoroborates as radical precursor, which provides access to  

trans keto-acids with high stereoselectivity (up to >20:1 d.r., up to 94% ee, Figure 12d). 37 

Interestingly, based on a UV/Vis study, the authors proposed that a Ni0/II/III cycle is more likely for this 

desymmetrization reaction.  

With respect to photoinduced asymmetric copper catalysis, Fu pioneered this area. In 2016, the Fu 

group disclosed a single Cu-based photocatalytic scheme for the enantioconvergent C-N cross 

coupling of amines with racemic tertiary alkyl chlorides to yield fully substituted stereocenters with 

good yields and excellent enantioselectivities (up to 99% ee) (Figure 13a).38 Notably, a single and 

earth-abundant copper based complex not only provides asymmetric induction but also serves as 

photoredox catalyst initiating an electron transfer process. A possible catalytic cycle initiates with the 

irradiation of a Cu-nucleophile complex, which leads to the excited state copper complex. Then, 

electron transfer with alkyl chloride forms an electrophilic alkyl radical and a Cu(II) complex. 

Subsequently, bond forming coupling could occur through an outer- or inner-sphere mechanism, 

generating Cu(I) species with the formation of product. A copper(I) complex that contains two chiral 

phosphine and a carbazolide motif was characterized and proved to be a plausible intermediate for this 

catalysis. Significance of this work is that it represents the seminal advance in the field of based metal 

catalyzed asymmetric cross coupling of alkyl halides driven by visible light.  

Based on their earlier work on copper catalyzed radical C-H cyanation,39a the Liu group 

integrated asymmetric copper catalysis with photoinduced radical generation, achieving an 

enantioselective decarboxylative cyanation of N-hydroxy-phthalimide ester (Figure 13b).39b An 

oxidative quenching cycle of fac-Ir(ppy)3 generates benzylic radical and concurrently forms the 

oxidizing PC.+, the latter of which can oxidize LCu(I)-CN species to generate a Cu(II) intermediate. 

Further reaction with the nucleophile TMSCN, followed by combining with the prochiral benzylic 

radical furnishes the coupling product and regenerates a Cu(I) complex. Notably, both of the alkyl 

radical intermediate and the active Cu(II) species are generated through mild photoredox catalysis. 

This is distinctive from their previous non-photo catalysis39a where a strong F+ oxidant is needed.  
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Figure 13.  Photoinduced asymmetric copper catalysis. 
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Very recently, an enantioselective three-component radical cyanoalkylation of alkenes was 

reported by Mei, Han and co-workers by the employment of a dual chiral copper/photocatalyst 

strategy (Figure 13c).40 A photogenerated alkyl radical adds to a styrene to afford the benzylic radical, 

the trapping of which by the active Cu(II) intermediate furnishes the radical difunctionalization 

product in up to 94% ee. It is impressive that in all these three reactions the loading of chiral catalyst 

could be as low as 1 mol%, showcasing the high catalytic efficiency of the copper catalyst. 

 

1.2.6 Asymmetric Photocycloaddition Initiated by SET 

 

Photocycloaddition is undoubtedly among the most efficient methods to construct cyclic 

structural motifs. However, because of the uncatalyzed background reaction, achieving catalytic 

asymmetric photocycloaddition is extremely difficult. In 2014, Yoon developed a dual-catalyst system 

for the intermolecular asymmetric [2+2] photocycloaddition of enones yielding a series of 

enantioenriched cyclobutanes (Figure 14a) 41 a This system includes a visible light absorbing 

ruthenium-based photoredox catalyst and a chiral Lewis acid co-catalyst, the latter of which is capable 

of both controlling stereochemistry and activating one of the substrates toward facile SET reduction. 

Specifically, the photoexcited [Ru]* accepts an electron to form the highly reducing [Ru].–. Selectively 

reduction of the Lewis acid bound substrate, rather than the free substrate, results in the key metallo 

enolate radical intermediate which is then trapped by another electron deficient enone, thus producing 

a secondary electrophilic radical intermediate. Subsequently, intramolecular radical cyclization forms 

the ketyl radical. Finally, the release of a single electron generates final cyclobutanes product.  

The key to the success of this reaction is that only the chiral Lewis acid coordinated substrate 

could undergo the selective SET event while the resultant reactive radical intermediates remain bound 

to the chiral catalyst, therefore avoiding the complications arising from uncatalyzed racemic 

background reaction and ensuring high asymmetric induction. Interestingly, altering the chiral Schiff 

base ligand to the corresponding reduced secondary amine ligand leads to the complementary 

diastereoselectivity, highlighting the flexibility of this dual-catalyst system.  
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Figure 14.  Yoon’s reports on dual photoredox/chiral Lewis acid catalysis enabled asymmetric 

photocycloadditions which involve SET processes. 

 

Later, they extended the scope of asymmetric photocycloaddition to a previously unfeasible [3+2] 

photocycloaddition of aryl cyclopropyl ketones with alkenes (Figure 14b).41b Accordingly, sequential 

SET reduction and ring opening of the Lewis acid coordinated cyclopropane gives the key remote 

enolate radical intermediate, which engages in stepwise radical cycloaddition with an alkene to give 

the cyclopentane product. Again, this work demonstrates the robustness of dual photoredox/Lewis acid 

catalyst strategy and is anticipated to promote the development of stereocontrolled photochemical 

transformations. 
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1.3 Asymmetric Photocatalysis via Direct Bond Formation from Excited State 

 

Direct bond formation from electronically excited state, without any charge separation, is an 

appealing alternative to photoinduced SET. While an excited state can be uniquely accessed by 

photochemical techniques, its reactivity toward [2+2] photocycloaddition is the most frequently used 

photochemical reaction.42 Typically, the stereodetermining step of this photocycloaddition occurs 

directly on the excited states without the involvement of free radicals or radical ions, which is 

mechanistically distinguish from the above-mentioned SET induced cycloadditions (Figure 14). 

Consequently, the problems arising from free radical intermediates, such as undesirable side reactions 

and limited substrate scope, could be avoided. However, performing such reaction in a catalytic 

asymmetric way remains underexplored, which is mainly due to the difficulty in suppressing the 

background racemic reaction of the excited substrate that is not associated with a chiral catalyst.  

 

1.3.1 Lewis/Brønsted Acid Mediated Bathochromic Shift 

 

One of the strategies to address this challenge is based on the bathochromic shift provided by 

Lewis/Brønsted acid catalysis. As illustrated in Figure 15a, upon coordination of a Lewis acid, the 

ππ* absorption of a α,β-unsaturated carbonyl compound significantly shifts to the longer wavelength. 

Hence, selective photoexcitation of the chiral Lewis acid bound substrate over the free substrate can be 

achieved by using a light source with the selected emission wavelength.  

The application of this effect in catalytic asymmetric photoreaction can be traced back to 2010, 

when Bach’s group 43  reported the first example of enantioselective intramolecular [2+2] 

photocycloaddition of coumarins43a,b (Figure 15b). A chiral oxazaborolidine was identified as the ideal 

catalyst to facilitate the reaction, providing the cycloadduct in 82% ee. Later, dihydropyridones43c and 

3-alkenyloxy-2-cycloalkenones43d were successfully applied to the asymmetric intramolecular 

photocycloadditions. Furthermore, chiral Lewis acid catalyzed intermolecular [2+2] 

photocycloadditions of cyclic enones43f and phenanthrene-9-carboxaldehydes43g have been achieved. 

Although these reactions often require high catalyst loading, UV-light irradiation, and low temperature, 

the concept of bathochromic shift paves a way for the development of novel enantioselective 

photochemical reactions.  
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Figure 15.  Asymmetric [2+2] photocycloadditions enabled by chromophore activation and direct 

excitation. 

 

In 2014, a chiral thiourea based Brønsted acid was introduced to catalyze an enantioselective [2+2] 

photocycloaddition of coumarins (Figure 15c).44 Sibi, Sivaguru et al. proposed a three-point bonding 

mode between the chiral thiourea and coumarin substrate, which explains the bathochromic shift, 

prolonged lifetime of the excited state, and also increased ISC rate. All of these effects contribute to 

the catalytic efficiency and asymmetric induction of the overall photocycloaddition. 
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1.3.2 H-Bonding Catalyst Mediated Intramolecular Energy Transfer 

 

 

Figure 16.  Asymmetric [2+2] photocycloadditions enabled by H-bonding catalysis through 

intramolecular energy transfer (EnT). 

 

As pioneering work, in 2009, Bach developed a chiral xanthone photosensitizer for the 

enantioselective intramolecular [2+2] photocycloaddition of 2(1H)-quinolones under the irradiation of 

UV-light (Figure 16a).45a Later, they expanded to intermolecular cycloaddition of 2-pyridone with 

acetylenedicarboxylate.45c By using a related thioxanthone catalyst, visible light activation could be 

achieved.45d,e This type of catalyst consists of a (thio)xanthone moiety that after photoexcitation is 

responsible for energy transfer (EnT), and an amide group at the chiral backbone which is supposed to 

engage in H-bonding interactions with the substrate. The formed H-bonding complex not only 

provides enantioface differentiation but also allows a selective intramolecular EnT, both of which play 

vital roles for obtaining high asymmetric induction.  

Inspired by this work and the chiral-at-metal H-bonding catalyst developed by Meggers46, Baik 

and Yoon recently developed an interesting chiral-at-metal iridium-based photosensitizer for a related 
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enantioselective [2+2] photocycloaddition (Figure 16b).47 Mechanistic studies elucidate that a series 

of H-bonding between the coordinated pyrazole ligand and substrate quinolone, as well as π-π 

interactions organize this prochiral substrate in an appropriate position within the metal-centered chiral 

environment. Only the intermediate that is competent for the effective (intramolecular) Dexter type 

energy transfer event can participate in the photocycloaddition, which is supposed to guarantee the 

effective asymmetric induction. 

 

1.3.3 Dual-Catalyst for Selective Intermolecular Energy Transfer 

 

 

Figure 17.  Enantioselective [2+2] photocycloadditions via triplet chromophore activation. 
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In 2016, Yoon et al. for the first time applied triplet chromophore activation for the dual Lewis 

acid/photosensitizer catalyzed asymmetric [2+2] photocycloaddition of 2’-hydroxychalcone with diene 

(Figure 17a).48a They discovered that Lewis acid coordination can significantly decrease the triplet 

energy of the chalcone substrate, thereby enabling the selective intermolecular EnT from an additional 

excited photosensitizer to the chiral catalyst bound substrate rather than the free substrate. As the result, 

stereocontrolled cycloadditions occur on the electronically excited states to yield enantioenriched 

cyclobutanes in good yields and enantioselectivities, albeit with unsatisfactory d.r. values. Later, they 

utilized this strategy to expand the scope of alkene to different styrene generating 1,2-diary 

cyclobutanes in high level of enantioselectivities.48b And a natural product was synthesized from one 

of the cycloadducts, demonstrating the utility of this reaction.  

Recently, Bach’s group showed that iminium ion formation can also lower the triplet energy of 

the corresponding α,β-unsaturated carbonyl compound (Figure 17b).49 As a proof of the principle 

study, the photocycloaddition of a chiral iminium ion with a diene catalyzed by the triplet sensitizer 

[Ru(bpy)3]2+ furnished the cyclobutane upon hydrolysis in 88% ee with an excellent d.r. value of 16:1. 

 

1.3.4 Photooxygenation with Singlet Oxygen  

 

As the lowest excited state of the dioxygen molecule, singlet oxygen is easily accessible through 

visible light sensitization and its reaction toward aerobic oxidation has been well established.50 It is 

worth mentioning that in 2017 the Xiao group devised a novel bifunctional chiral photocatalyst for the 

enantioselective hydroxylation of β-ketoesters with singlet oxygen under visible light conditions 

(Figure 18).50c The in situ formed photocatalyst is a nickel based enolate complex with a newly 

designed chiral bisoxazoline ligand containing a thioxanthone chromophore. Upon visible light 

excitation, this complex enables the formation singlet oxygen via triplet energy transfer. The following 

oxygenation with enolate furnishes the α-hydroxy-β-dicarbonyl compounds in good to excellent 

enantiopurities. Notably, besides serving as visible-light-absorbing antenna, the 

thioxanthone-containing sidearm benefits the asymmetric induction and efficiency of the 

photoreaction through the dynamic steric effect. 51  Both yield and ee of the product dropped 

significantly when the combination of a chiral BOX ligand and an additional photosensitizer was used 

instead. This elegant design is anticipated to inspire the development of new photocatalyst for 
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asymmetric photoreactions. 

 

 

Figure 18.  Xiao’s work on enantioselective hydroxylation catalyzed by a bifunctional photocatalyst. 
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1.4 Catalytic Asymmetric Electrosynthesis 

 

Although organic electrosynthesis is currently experiencing a renaissance with plenty of new 

electrochemical methodologies established recently,52 catalytic asymmetric electrochemistry is still in 

its infancy. Owing to the above-mentioned challenges (Figure 2), only limited examples of 

electrochemical asymmetric catalysis were reported, which usually suffer with modest 

enantioselectivity. According to different roles of the chiral catalyst in electrochemical processes, the 

examples can be classified into three strategies (Figure 19): a) the asymmetric catalysis is separated 

from the electrochemical process, where the substrate is converted electrochemically into a reactive 

intermediate which is then interfaced with asymmetric catalysis; b) the active chiral catalyst is 

generated electrochemically–either by direct electrolysis or through indirect electrolysis with a redox 

mediator; c) Redox activation upon catalyst/substrate complex formation, in which a single chiral 

catalyst is typically enough to facilitate the electrochemical process and at the same time provide 

stereochemical control. 

 

 

Figure 19.  Strategies for catalytic asymmetric organic electrosynthesis (taking anodic oxidations as 

examples). 

 

1.4.1 Separated Electrochemical Process and Asymmetric Catalysis 

 

The combination of anodic oxidation with chiral enamine catalysis leads to two examples of 

highly enantioselective electrochemical transformations (Figure 20). 53  In 2010, Jørgensen and 

co-workers demonstrated a regio- and stereoselective anodic oxidation/organocatalysis sequence for 

the α-arylation of aldehydes with electron-rich aminophenols (Figure 20a).53a The reaction works 

smoothly under simple conditions with an undivided cell and provides meta-alkylated aniline in good 
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to excellent enantioselectivities (up to 96% ee) which is impossible by Friedel-Crafts reaction of 

aniline. Mechanistically, the electrochemical oxidation of aminophenol delivers the electrophilic 

intermediate, which is subsequently trapped by the electron rich chiral enamine to form the iminium 

ion intermediate. The following hydrolysis, several proton transfers and work-up procedure finally 

give the product formation. This work represents a new concept merging asymmetric organocatalysis 

with organic electrosynthesis. 

 

 

Figure 20.  Separating asymmetric enamine catalysis from anodic oxidation. 

 



Chapter 1. Theoretic Part 

31 
 

In 2017, Luo’s group reported an asymmetric oxidative coupling of simple ketones with 

tetrahydroisoquinolines by the combination of anodic oxidation and chiral primary amine catalysis 

(Figure 20b).53b. Within an undivided cell, diverse C1-alkylated tetrahydroisoquinolines could be 

formed in good yields with high stereoselectivities (up to 10:1 d.r. and up to 95% ee). Electrochemical 

analysis suggests that the tertiary amine is the species to be oxidized forming the corresponding 

iminium ion intermediate, the interception of which by the catalytic amount of chiral enamine results 

in the stereoselective C-C bond formation. 

In general, these reactions employ easily oxidizable substrates to generate the reactive 

electrophiles which are then involved in the independent asymmetric catalysis. In principle, these 

anodic processes could be replaced by other oxidation methods, but electrosynthesis is featured as the 

more economic and environmentally friendly protocol. In related to the dual-catalyst strategy in 

asymmetric photocatalysis, the separation of electrochemical process from stereodetermining bond 

formation step avoids the interference of electrolysis on asymmetric catalysis and improves the 

compatibility of chiral catalyst in the electrochemical cell, thereby ensuring high asymmetric 

induction.  

 

1.4.2 Generation of Active Chiral Catalyst by Electrochemistry 

 

For asymmetric redox catalysis, electrochemistry offers a sustainable tool for the generation of 

active catalyst by direct electrolysis or facilitated by a substoichiometric amount of redox mediator. 

Selected examples in Figure 21 show how the direct electrolysis can interact with asymmetric 

catalysis. In 1999, the Kashiwagi group demonstrated an asymmetric electrocatalytic kinetic resolution 

of amines by a chiral 1-azaspiro[5.5]undecane N-oxyl radical (Figure 21a).54a This TEMPO analogue 

can be easily oxidized to the corresponding chiral oxoammonium ion (E1/2 = +0.62 V vs Ag/AgCl) 

which then enables the selective oxidation of amine. And the thereby remaining amine is found to be 

enantioenhanced in the (R)-enantiomer with S factors ranging from 4.7 to 5.8. Later, the same group 

modified a graphite felt electrode with this type of chiral N-oxyl radical, achieving one elegant 

example of desymmetric oxidation of a diol, yielding a chiral lactone in 98% ee with the a TON 

number of 459.54b  
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Figure 21.  Selected examples of asymmetric catalysis with direct electrochemical generation of 

active catalyst. 

 

With respect to cathodic reduction, an electricity driven rhodium catalysis was developed by 

Moutet et al. in 1999 for the enantioselective hydrogenation of aromatic ketones (Figure 21b).55a,b The 

rhodium complex containing a pyrrole-substituted chiral bipyridyl ligand was immobilized to a carbon 
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electrode by oxidative electropolymerization. The resultant active material served as the cathode in a 

divided cell for the heterogeneous electroreduction of ketone. From the viewpoint of mechanism, it 

was proposed that the key rhodium hydride intermediate is formed from the electrochemically 

generated Rh(I) species. However, the enantiomeric excess remained low (up to 20% ee) in these 

studies. In 2016, Wang and Lu introduced another heterogeneous chiral electrode that enables 

electrocatalytic ketone reduction in up to 71% ee (Figure 21c).55c The entrapment of a chiral alkaloid 

CD within metallic copper nanoparticles afforded a copper encapsulated alkaloid composite, which 

was compacted into a coin and used as the cathode directly. Interestingly, the enantioselectivity 

dramatically decreased when using the non-entrapped CD system that consists of a metallic Cu 

cathode and the chiral alkaloid solution. Furthermore, the CD@Cu electrode could be reused for 10 

times without a significant deactivation, highlighting the potential for practical applications.  

On the other hand, indirect electrolysis using a mediator, where a homogenous redox process 

instead of the heterogeneous electron transfer is in charge of the generation of active catalyst, allows 

lower potential and offers higher chemoselectivity, thereby circumventing the issue of poor tolerance 

of catalyst in a direct electrolysis (Figure 22a).56  By this strategy, many elegant asymmetric 

electrocatalysis have been reported. 57  In 1996, Torii et al. developed an electricity-driven 

iodine-assisted Sharpless asymmetric dihydroxylation of various alkenes, affording diols in high yields 

with excellent enantioselectivities (up to >99% ee, Figure 22b).57a It was proposed that an 

electrochemically generated active iodine-oxidizing species is responsible for the two-electron 

oxidation of the initial Os-catalyst Os(VI)O2(OH)4
2– to form the active Os(VIII)O6(OH)2

2– species 

which then enables the follow-up oxidative process. Besides, Tanaka and co-workers successfully 

employed an optically active Mn-salen complex and a CH2Cl2/aqueous NaCl two-phase system for the 

asymmetric epoxidation of olefins (Figure 22c).57c In an undivided cell, the electrochemically formed 

active chlorine species [Cl+], moves from aqueous phase to the organic phase and assists the oxidation 

of Mn(III)-salen precatalyst, thereby furnishing the catalytic active chiral Mn-oxo intermediate. 

Furthermore, enzyme catalysis has been proved to be compatible with indirect electrolysis.57b,d,e For 

example, Schmid’s group developed a monooxygenase catalyzed electrochemical epoxidation of 

alkenes, delivering chiral epoxides in excellent enantioselectivities (97 to >99% ee). Cathodic 

reductive regeneration of co-factor FADH2 replaces the native regeneration cycle which involves 

enzyme StyB and requires the usage of stoichiometric amount of NADH (Figure 22d).57d  
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Figure 22.  Generation of chiral catalyst through indirect electrolysis with a redox mediator. 
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1.4.3 Redox Activation upon Catalyst/Substrate Complexation 

 

 

Figure 23.  Enamine formation facilitated anodic oxidation, as reported by Jang. 

 

Another simple but appealing strategy is to utilize the change of redox potential upon catalyst 

substrate complexation. If the chiral catalyst bound substrate features decreased oxidation/reduction 

potentials compared with the free substrate, selective electrochemical oxidation/reduction under 

relatively milder conditions would be possible, thus paving way to interesting catalytic asymmetric 

electrosynthesis. For instance, enamines are well-known to be easier oxidized than the parent amines 

and carbonyl compounds, and combining this property with anodic oxidation, the Jang group 

demonstrated the elegant enantioselective α-oxyamination58a and α-alkylation58b of aldehydes with 

TEMPO or xanthene, respectively (Figure 23). Mechanistic investigations suggest that rather than the 

formation of TEMPO/xanthene-derived electrophilic cation intermediate, the selective anodic 

oxidation of chiral enamine species is operative under the electrochemical conditions. The resultant 

3πe– enaminyl radical can be trapped by the free radical TEMPO, or the electrochemically generated 
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benzylic carbon center radical, thereby furnishing α-functionalizations of aldehydes. Although these 

transformations are limited with respect to substrate scope and enantioselectivity, they showcase 

different reactivity of an enamine species under electrochemical conditions (compared with examples 

in Figure 20) and this redox activation strategy is believed to inspire further development of 

synthetically valuable asymmetric electrocatalysis.  
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1.5 Asymmetric Photoredox Catalysis with Chiral-at-Metal Lewis Acids 

 

Figure 24.  Overview of the chiral-at-metal Lewis acid catalysts developed by Meggers. 

 

Before the author of this thesis started PhD research, the Meggers group had already developed a 

class of chiral-at-metal iridium and rhodium based Lewis acid catalysts (Figure 24).59 This type of 

catalyst is based on an octahedral iridium(III) or rhodium(III) center that is cyclometalated by two 

5-(tert-butyl)-2-phenylbenzo[d]oxazole or 5-(tert-butyl)-2-phenylbenzo[d] thiazole ligands together 

with two labile acetonitriles and one hexafluorophosphate counter anion. The assembly of achiral 

ligands leads to the exclusive metal-centered chirality. These compounds feature inert octahedral 

configuration, fast ligand (acetonitriles) exchange kinetics, intimate contact between bound substrates 

and the stereogenic metal center, as well as unique photophysical and redox properties. All of these 

characteristics together render the chiral-at-metal complexes robust and promising chiral catalysts, 

especially for catalyzing visible-light-activated asymmetric reactions.60 The beautiful photochemistry 

enabled by these catalysts are highlighted in this part, which are the foundation stones of this thesis. 

 

1.5.1 α-Functionalization of Carbonyls through Enolate Intermediate 

 

In 2014, Haohua Huo for the first time demonstrated the photoreactivity of the chiral-at-iridium 

catalyst by developing a visible-light-induced enantioselective alkylation of 2-acyl imidazole.61a As 

illustrated in Figure 25, a key iridium enolate intermediate that is formed upon 

coordination/deprotonation sequence, acts as a photoactivated reductant for the generation of a radical 
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intermediate from an electron deficient alkyl halide. At the same time this enolate species could trap 

the electrophilic radical in a highly stereocontrolled fashion, leading to the C-C bond formation 

product in excellent yield and enantioselectivity. This unique catalysis only relies on a single 

chiral-at-iridium catalyst that features a combination of exclusive metal-centered-chirality, the 

catalytically active Lewis acidity, and simultaneously the ability to initiate a photoredox process after 

visible-light-excitation. This work opened a new world for the synthesis of chiral compounds by 

inducing versatile chiral-at-metal catalysis with visible light as renewable energy source.  

Based on the mechanistic scheme, Haohua Huo later expanded the scope of radical precursors, 

achieving enantioselective α-trichloromethylation61b and α-perfluoroalkylation61c with a single 

chiral-at-iridium catalyst. Furthermore, a chiral-at-rhodium complex was demonstrated by Xiaodong 

Shen to be capable of catalyzing a visible-light-activated asymmetric amidation with 

(ODN)-N-functionalized carbamates as amino radical source, whereas the iridium catalysts failed to 

enable this transformation.61d This difference can be rationalized by the much faster ligand-exchange 

kinetics of the rhodium complex, which makes it match the high reactivity of the short-lived 

nitrogen-centered radical intermediate. Notably, the benzothiazole derived complexes (RhS or IrS) 

gave better stereocontrol, and in some cases higher yields, than the corresponding benzoxazole based 

congeners (RhO or IrO), which can be attributed to a higher steric congestion around the coordination 

sites of the RhS/IrS complexes.  

Besides the above-mentioned redox neutral catalysis, Chuanyong Wang discovered that a single 

chiral-at-iridium complex IrO was able to catalyze the asymmetric photoinduced oxidative coupling 

of 2-acyl imidazole with N,N-diaryl-N-(trimethylsilyl)methylamine using air as terminal oxidant.61e 

Mechanistically, a visible-light-activated substrate bound iridium complex is supposed to facilitate the 

aerobic oxidative generation of an iminium ion intermediate. Subsequent nucleophilic trapping by the 

iridium enolate species furnishes the aminomethylation product. Interestingly, a rhodium analogue 

RhO alone can hardly give any product indicating poor photoactivity of the Rh-based complex, but 

this could be overcome by the combination with an additional photoredox catalyst. Later, the 

synthetically more attractive N-methyl aniline was introduced for the similar Mannich-type reaction by 

Yuqi Tan and Wei Yuan.61f In this study, IrO failed to catalyze the photoinduced alkylation with 

N,N-dialkyl aryl amine, while the related RhO showed excellent efficiency.  
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Figure 25.  Enantioselective α-functionalization of carbonyls by a single chiral-at-metal catalyst. 

 

1.5.2 β-Functionalization of Enones by Radical Conjugate Addition 

 

As mentioned above, performing conjugate addition of nucleophilic radicals to electron-deficient 

alkenes in a catalytic and asymmetric way is a formidable challenge caused by the uncatalyzed 

racemic background reaction. Remarkably, the unique properties of the chiral-at-rhodium complex 
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pave new way to circumvent this issue (Figure 26). In 2016, Haohua Huo for the first time 

demonstrated that the combination of 4 mol% of Λ-RhS with a photoredox catalyst (2.0 mol%) 

enabled the enantioselective alkyl radical addition to acceptor-substituted alkene, providing 

β-alkylated carbonyl compounds with excellent enantioselectivity (up to 99% ee).62a The additional 

photoredox catalyst is responsible for the SET oxidation of the organotrifluoroborate to generate the 

nucleophilic alkyl radical, which is then trapped by the rhodium bound enone to form the C-C bond 

with the stereochemistry controlled by the rhodium-centered chirality. Noteworthy is the high 

enantioselectivities achieved by usage of only 4 mol% Λ-RhS, especially considering the uncatalyzed 

background competition could erode the enantiopurities of products. 

 

 

Figure 26.  Enantioselective radical conjugate addition by dual chiral-at-Rh/photoredox catalysis. 

 

Inspired by this pioneering work, Chuanyong Wang creatively combined radical translocation 

(1,5-HAT) with dual chiral rhodium/photoredox catalysis to achieve an catalytic asymmetric Csp3-H 

bond alkylation.62b Specifically, oxygen-centered radicals are initially generated through fac-Ir(ppy)3 
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mediated photoredox SET reduction of N-alkoxyphthalimides with Hantzsch ester as terminal 

reductant. Subsequent 1,5-HAT of the oxygen-centered radicals afford nucleophilic C-centered 

radicals, which engage in the following stereocontrolled radical conjugate addition. Interestingly, a 

significant amount of product (33% yield, 92% ee for the standard compound) could form when only a 

single chiral RhS was employed in the absence any additional photoredox catalyst.63 

Later, Jiajia Ma expanded the scope of this chemistry by developing a visible-light-activated 

asymmetric three-component fluoroalkylation with perfluoroalkyl sulfinate, electron-rich vinyl ether, 

and α,β-unsaturated N-acyl pyrazole.62c The visible-light-excited organic photoredox mediator, 

4,4’-difluorobenzil, induces SET oxidation for the generation of an electrophilic perfluoroalkyl radical, 

which is then trapped by a vinyl ether to form a nucleophilic α-oxy carbon-centered radical. Finally, 

stereocontrolled radical addition delivers dual C-C bond formation products with good to excellent 

enantioselectivity (up to 98% ee). 

Indeed, the racemic background reaction also works. For example, full conversion with the 

formation of racemic product in 75% yield was observed when the Csp3-H bond alkylation reaction 

was performed under the same conditions without chiral RhS.62b On sharp contrast, 70% yield with 

92% ee could be obtained by adding 8.0 mol% Δ-RhS. This surprising effect is mainly attributed to 

the strong acceleration of the radical conjugate addition reaction by the chiral-at-rhodium Lewis acid. 

Alternatively, the competitive visible-light-absorption of Rh-based species (inner filter effect) could 

also slow down the rate of the photoredox catalyst mediated radical generation step. 

 

1.5.3 Radical-Radical Recombination of Ketones 

 

With respect to a radical-radical recombination pathway, chiral-at-metal complexes have also 

shown great potential to steering the reaction course in a stereocontrolled fashion. In 2016, Chuanyong 

Wang demonstrated that a single chiral iridium complex could catalyze the cross coupling of 

trifluoromethyl ketones with tertiary amines, generating chiral 1,2-amino alcohols with excellent 

stereoselectivity (up to 10:1 d.r. and 99% ee).64a In this mechanistic scenario, IrS serves as both a 

photoredox catalyst and as Lewis acid, which induces SET between photoexcited iridium bound 

carbonyl complex and electron donor amine, while at the same time controlling the stereochemistry of 

the subsequent radical-radical recombination. This method provides an efficient, sustainable and 
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atom-economic method to synthesize enantiopure trifluoromethyl-containing compounds with one or 

two stereocenters constructed. This elegant example expands the reactivity of the chiral-at-metal 

catalysts and provides an attractive mechanistic alternative for developing novel synthetic 

transformations. 

Short after that, Jiajia Ma extended the scope of ketones to more general 2-acyl imidazoles by 

employing dual photoredox/chiral-at-rhodium catalysis.64b In this case, an electron exchange between 

the rhodium bound ketone and α-silyl amine was mediated by an additional [Ru(bpy)3]2+ based 

photoredox catalysis, which was important to compensate for the apparent lack of photoredox activity 

of the rhodium catalyst in this context. Interestingly, substituting the chiral RhS with the iridium 

congener IrO resulted in the formation of almost racemic product (<5% ee), both in the absence and 

presence of the [Ru(bpy)3]2+ catalyst, which could be ascribed to the significant differences in 

ligand-exchange kinetic between the Rh- and Ir- complexes.  

 

 

Figure 27.  Enantioselective radical-radical recombination catalyzed by chiral-at-metal complexes. 
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1.6 Conclusions 

 

Catalytic, asymmetric synthesis of enantiomerically pure molecules using visible light and/or 

electricity as energy source is of high significance both from an economical and sustainable 

perspective. High reactivity of the photo- and electrochemically formed intermediates provides fertile 

testing ground for chemists to discover new mechanistic scenarios and invent previously unknown 

transformations, although with formidable challenges in achieving stereocontrol. During the past 

decades, powered by the combination with photoredox catalysis, the synthetic potentials of many 

traditional and newly-developed asymmetric catalysts, such as chiral amines, Lewis/Brønsted acids, 

transition metals (Ni/Cu), and H-bonding catalysts, have been greatly expanded. Besides photoinduced 

SET catalysis, elegant strategies have been developed to control the stereochemistry of direct bond 

formation from the electronically excited state, including chiral catalyst induced bathochromic shift 

and triplet chromophore activation. However, stereocontrolled direct bond formation of an 

electronically excited state is mainly limited to [2+2] photocycloadditions. With respect to 

electrochemistry, catalytic asymmetric electrosynthesis has been studied for decades. But given the 

recently booming of organic electrosynthesis, it is notable to consider that its implication in 

asymmetric catalysis remains largely underexplored.  

Very recently, Meggers and co-workers discovered a class of unique bis-cyclometalated 

chiral-at-metal iridium and rhodium based Lewis acids. The chirality of these catalysts exclusively 

originate from the stereogenic metal centers, which at the same time act as catalytically active Lewis 

acid center, and part of visible-light-absorbing chromophore. This novel structural architecture 

exhibits attractive potential as asymmetric catalyst across mechanistically distinct photoinduced 

reactions and is anticipated to provide ample opportunities for achieving stereocontrol in 

photochemical and even electrochemical synthesis. 
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Chapter 2. Aim of the Work 

 

Chiral-at-metal complexes developed previously in the Meggers group show attractive potential 

to realize diverse asymmetric photocatalysis for the synthesis of enantioenriched compounds. The 

former members Haohua Huo, Xiaodong Shen, Chuanyong Wang, and Jiajia Ma have demonstrated 

three types of appealing photoreactions based on intermediate Ir/Rh-bound enolates (Int. A), 

Ir/Rh-bound ketyl radicals (Int. B), and Rh-bound enones (Int. C), whereas other intermediates (Int. 

D-G) remain to be explored and the applications of these catalysts in electronically excited state 

chemistry or modern electrosynthesis were still untouched (Figure 28). 

 

 

Figure 28.  Diverse reactive intermediates based on the chiral-at-metal complexes. 

 

Aim of this work is to exploit new reactivity of this type of chiral-at-metal catalysts in order to 

develop and discover novel catalytic asymmetric transformations which are interfaced either with 

photochemistry or electrochemistry. In particular, this thesis will concentrate on chiral-at-rhodium 

catalysts, as opposed to the more investigated chiral-at-iridium congeners, considering its apparently 

superior properties for chiral Lewis acid catalysis involving highly reactive intermediates such as free 

radicals. Built on the fantastic contributions by former group members, rhodium-bound carbonyl α-, β-, 
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γ-carbon-centered radical intermediates (Int. D-F) are expected to be generated by photoinduced 

and/or electricity-driven SET processes and engaged in further stereocontrolled transformations. 

Besides photoinduced redox catalysis, previously unexplored direct bond formation from the 

photoexcited chiral-at-rhodium complex (Int. G) will be another focus of this thesis. Furthermore, this 

thesis will apply this unique catalyst to electrochemistry with the aim of spurring the development of 

catalytic asymmetric electrosynthesis. 

In details, this thesis will focus on the following aims: 

 

1) Driving chiral-at-rhodium catalysis by photoinduced SET 

As for electron-deficient radical addition to rhodium enolates (Int. A), there was only one 

example achieved by a single chiral-at-rhodium catalyst, which is the enantioselective amidation as 

reported by Xiaodong Shen (Figure 25). This could be explained by the inferior photoredox ability of 

the chiral-at-rhodium enolate intermediate. As firstly discovered by Chuanyong Wang, the 

combination of an additional photoredox catalyst could address this problem. Although achieving 

asymmetric photoreaction by a single catalyst is more attractive from the viewpoint of green chemistry, 

dual-catalyst strategy has the benefit of an easier optimization with separated photochemical process 

and stereodetermining bond formation. Therefore, the starting point of this thesis is to merger the 

advantage of a photoredox catalyst in generating radical species with the super asymmetric induction 

and ligand-exchange kinetics of the chiral RhS catalyst for the development of more general and 

broad asymmetric radical enolate chemistry.  

In addition, photoinduced SET reduction of Int. C, which was previously used to intercept 

electron-rich radical species in Giese-type radical conjugate additions (Figure 26), would generate a 

new radical species Int. E. The trapping of Int. E in a stereocontrolled way could lead to an 

alternative access to asymmetric β-functionalized carbonyls. More importantly, a new mechanistic 

scheme with the stereocontrol of photogenerated prochiral radical species would be added to the 

reservoir of asymmetric chiral-at-metal catalysis.  

Furthermore, the remote radical rhodium enolate intermediate (Int. F) is supposed to be created 

upon the SET reduction/ring expansion sequence of a photoexcited rhodium bound cyclopropyl ketone, 

thereby providing more possibilities for developing novel asymmetric photocatalysis and expanding 

the scope of substrate that could be activated by the chiral-at-rhodium complex.  
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2) Unprecedented chiral-at-rhodium catalysis with direct bond formation on excited state  

The direct bond formation of visible-light-excited states is an appealing complimentary to 

photoredox catalysis and cannot be achieved by non-photochemical methods. While the direct reaction 

of the excited chiral-at-metal complex had never been accomplished before, the author of this thesis 

envisioned that upon direct visible-light-excitation of the rhodium bound enone (Int. C), the triplet 

state rhodium complex (Int. G) could be able to participate in a stereocontrolled [2+2] 

photocycloaddition with an alkene. If so, a really robust reaction scheme that only relies on a single 

chiral catalyst would be developed, in which, since no charge separation is involved, simple and mild 

conditions with broad substrate scope as well as excellent asymmetric induction could be anticipated. 

This chiral-at-rhodium catalysis features direct visible-light-excitation, efficient intersystem crossing 

(ISC) and intimate contact with prochiral diradical species. Hence, it is supposed to surpass those 

previously developed catalytic systems for asymmetric photocycloadditions (see Chapter 1.3). And 

based on these advantages, this thesis also aims to broaden the direct bond formation of excited states 

from [2+2] photocycloaddition to some other unprecedented asymmetric photo transformations. 

 

3) Driving chiral-at-rhodium catalysis by electricity 

 Relatively limited examples of asymmetric electrosynthesis have been reported which is probably 

mainly caused by poor compatibility of the chiral catalysts with electrochemical conditions. In 

consideration of the robustness of this chiral-at-metal rhodium complex, this thesis targets to develop 

an electricity driven asymmetric chiral-at-rhodium catalysis. Through a redox activation strategy, a 

single chiral rhodium catalyst should facilitate the selective anodic SET oxidation upon enolization 

(Int. A  Int. D), thereby providing mild conditions and good tolerance. Although chiral acid/base 

catalysts are well-demonstrated to activate the frontier molecular orbitals of substrates, their 

applications in asymmetric electrochemistry remains largely unexplored. If this hypothesis works, it is 

anticipated to inspire further applications of asymmetric catalytic strategies in modern organic 

electrosynthesis. 
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Chapter 3. Results and Discussion 
 

3.1 Photoinduced Asymmetric Amination with Organic Azides and Alkylation with 

Diazo Coumpounds 

 

3.1.1 Research Background and Reaction Design 

Construction of C-N bond in a catalytic and enantioselective way is a constant demand in organic 

synthesis. Chemists have developed a variety of elegant amination reactions for the synthesis of chiral 

α-amino carbonyl compounds, considering their wide distribution in natural products and biologically 

active molecules.1 Among these strategies, visible-light-induced electron transfer provides a mild and 

powerful tool to generate highly reactive radicals and radical ions, and therefore enables efficient C-N 

bond formations.2 However, controlling the stereochemistry with such reactive intermediates,3,4 along 

with the need to prevent postreaction racemization of products, makes visible-light activated 

asymmetric -amination of ketones a considerable challenge.  

As a result, only two examples of visible-light-induced catalytic asymmetric -amination of 

carbonyls are reported by MacMillan group5 and Meggers group6, respectively (Figure 29a). But 

these two reactions need the usage of N-2,4-dinitrophenylsulfonyloxy functionalized carbamates as 

nitrogen radical source with the addition of equivalent amounts of base and the release of a sulfonate 

anion as by-product. Mechanistically, the key amino radicals are formed through the photoinduced 

single electron reduction, and then engage in the enantioselective bond formations with enamines or 

enolates. Despite this significant progress, the effective asymmetric building of C-N bonds with higher 

atom economy and milder conditions is highly desirable, which could be achieved by exploration of 

new amination reagents. 

Organic azides are unique and versatile building blocks that feature the advantage of N2 as 

leaving group and sole by-product.7 In 2011, Liu and co-workers reported a visible-light-induced 

azide reduction, which was proposed to occur through amino radical intermediates formed via a 

sequential reduction/protonation/N2 exclusion process (Figure 29b).8 Inspired by this elegant work 

and combined with previous work on asymmetric α-functionalization of ketones,9 the author of this 

thesis envisioned that organic azides might be applied to a redox- and proton-neutral environmentally 
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benign -amination reaction (Figure 29c). However, the manipulation of these high-energy synthons 

under visible light conditions in an enantioselective manner has not been accomplished before this 

work. Two main reasons might be responsible for this: First, azides typically generate nitrene 

intermediates under photochemical activation resulting in potential side reactions and narrow 

functional group compatibility,10 and second, the highly negative reduction potentials of organic azido 

compounds render them difficult to be reduced under mild conditions. 

This chapter presents how to address these challenges to achieve a mild and efficient -amination 

of 2-acyl imidazoles using acceptor-substituted aryl azides. In addition, a further application of this 

strategy to asymmetric alkylations with diazo compounds is also demonstrated. 

 

 
Figure 29.  Previous reports and this design for visible-light-induced enantioselective α-amination.  

 

3.1.2 Reaction Development of α-Amination  

 

To verify the hypothesis of using azides as amination reagents, pentafluorophenyl azide 2a was 

chosen as the model substrate. This is because electron-acceptor-substituted phenyl azides are easier to 

be reduced, and the thereby formed amino radical is regarded as an electron deficient radical species 

which can add to an electron rich enolate.9 Based on previous work on a chiral-at-metal iridium 

complex catalyzed perfluoroalkylation,11 the author of this thesis commenced this investigation with 
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the reaction of 2-acyl imidazole 1a and 2a using Δ-IrS as a single dual functional catalyst in the 

presence of catalytic amounts of diisopropylethylamine (DIPEA) (Table 1, entry 1). Unfortunately, the 

catalyst Δ-IrS did not show any reactivity (entries 1,2). Inspired by Chuanyong Wang’s and Haohua 

Huo’s work on dual-catalyst strategy,12 the author tested the reaction employing a chiral Lewis acid 

Δ-RhO13 (4.0 mol%) together with a photoredox catalyst [Ru(bpy)3](PF6)2 (2.5 mol%). Encouragingly, 

the desired amination product 3aa was obtained in a yield of 24% but with 86% ee (entry 3). 

Revealingly, the related catalyst -RhS, 14  in which the benzoxazole ligands are replaced by 

benzothiazoles, provided 3aa in 70% yield and 98% ee (entry 4).  

 

Table 1. The development of dual-catalyst system for α-amination.[a] 

 

Entry Chiral catalyst Photocatalyst Yield [%] Ee [%] 

1 Δ-IrS none  0 n.a. 

2 Δ-IrS [Ru(bpy)3](PF6)2 0 n.a. 

3 -RhO [Ru(bpy)3](PF6)2 24 86 

4 -RhS [Ru(bpy)3](PF6)2 70 98 

5 -RhS [Ir(ppy)2(dtbbpy)](PF6) 62 98 

6 -RhS fac-Ir(ppy)3 37 89 

7[b] -RhS none 0 n.a. 

8[b] none [Ru(bpy)3](PF6)2 0 n.a. 

9[b,c] -RhS [Ru(bpy)3](PF6)2 0 n.a. 

[a] Reaction conditions: 1a (0.10 mmol), 2a (0.30 mmol), chiral catalyst (4.0 mol%), 

photocatalyst (2.5 mol%), DIPEA (20 mol%) and H2O (20 equiv) in acetone/DMSO 

(4:1, 0.2 M) were stirred at room temperature for 14-24 h irradiated with a 21 W CFL; 

isolated yield; ee was determined by HPLC on a chiral stationary phase. [b] Na2HPO4 

instead of DIPEA in acetone/DMSO (9:1, 0.2 M). [c] Under dark conditions. 
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Other photoredox catalysts, such as [Ir(ppy)2(dtbbpy)](PF6) and fac-Ir(ppy)3, showed lower 

efficiency (entries 4-6). Control experiments confirmed that the chiral Lewis acid, the photoredox 

catalyst, and visible light are all indispensable in this process (entries 7-9). The solvent effect was 

evaluated by the reaction of N-o-tolyl substituted 2-acyl imidazole 1b with 2a (Table 2). A series of 

strong polar organic solvents could deliver target product, albeit in low yields (23-27%, entries 1-3). 

Solvents, including CH2Cl2, THF, and MeOH, could hardly give any product (entry 6), which is 

attributed to the poor solubility of the ruthenium-based photocatalyst in these solvents. Interestingly, 

the reaction in the strong coordinative solvent (MeCN) could form 3ba with excellent 

enantioselectivity of 92% ee (entry 4). Overall, acetone was identified as a good solvent (entry 5) and 

the conditions with mixed solvents of acetone/DMSO (4:1) in the concentration of 0.2 M gave the best 

results in this round of screening (entry 10). 

 

Table 2. Solvent effect on α-amination.[a] 

 

Entry -RhS [mol%] Solvent Yield [%] Ee [%] 

1 2.0 DMSO (0.4 M) 27 95 

2 2.0 DMF (0.4 M) 25 92 

3 2.0 NMP (0.4 M) 23 95 

4 2.0 MeCN (0.4 M) 30 92 

5 2.0 Acetone (0.4 M) 38 96 

6 2.0 MeOH and the others[b]. <5 n.a. 

7 2.0 Acetone (0.2 M) 49 n.d. 

8 2.0 Acetone (0.1 M) 42 n.d. 

9 4.0 Acetone (0.2 M) 58 98 

10 4.0 Acetone/DMSO (4:1, 0.2 M) 64 98 

[a] Reaction conditions: 1b (0.10 mmol), 2a (0.30 mmol), -RhS (x mol%), 

[Ru(bpy)3](PF6)2 (2.5 mol%), DIPEA (20 mol%) in solvent were stirred at 

room temperature for 14-32 h irradiated with a 21 W CFL; isolated yield; ee 

was determined by HPLC on a chiral stationary phase. [b] Including CH2Cl2, 

PhCH3, THF, and 1,4-dioxane. 
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Table 3. Effect of water and solvent ratio on α-amination.[a] 

 

Entry Acetone/DMSO H2O [x equiv] Yield [%] Ee [%] 

1 4:1 0 61 97 

2 4:1 5 64 98 

3 4:1 20 70 98 

4 4:1 50 68 98 

5 9:1 20 77 98 

6 1:1 20 71 98 

[a] Reaction conditions: 1a (0.10 mmol), 2a (0.30 mmol), -RhS (4.0 mol%), 

[Ru(bpy)3](PF6)2 (2.5 mol%), DIPEA (20 mol%), and H2O (x equiv) in 

solvent were stirred at room temperature for 14-32 h irradiated with a 21 W 

CFL; isolated yield; ee was determined by HPLC on a chiral stationary phase. 

 

Table 4. Base effect on α-amination.[a] 

 

Entry Base Conversion Yield [%] Ee [%] 

1 DIPEA Full 77 98 

2 2,6-lutidine  Full 73 98 

3 Na2HPO4 Full 82 98 

4 NaOAc Low <10 n.d. 

5 Na2CO3 Full <5 n.d. 

6 K3PO4 Full 0 n.a. 

7 None Low 0 n.a. 

[a] Reaction conditions: 1a (0.10 mmol), 2a (0.30 mmol), -RhS (4.0 mol%), 

[Ru(bpy)3](PF6)2 (2.5 mol%), Base (20 mol%) and H2O (20 equiv) in 

acetone/DMSO (9:1, 0.2 M) were stirred at room temperature for 14-24 h 

irradiated with a 21 W CFL; isolated yield; ee was determined by HPLC on a 

chiral stationary phase.  
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Considering that an additional proton source might be beneficial for the proton transfer process, 

20 equiv of water was added. And indeed, an increased yield of 3aa by 10% was observed (Table 3, 

entries 1-4). Besides, a slight modification in the ratio of the mixed solvent (acetone/DMSO = 9:1) 

gave an improved yield of 77% for the formation of 3aa (entry 5). 

Further optimization of the reaction conditions resulted in the identification of Na2HPO4 as the 

preferred base, providing 82% yield and 98% ee for the reaction 1a + 2a  3aa (Table 4, entry 3). 

While a base is required (entry 7), sodium acetate gave very low conversion which was attributed to 

the competitive coordination of acetate with the chiral Lewis acid (entry 4). It is noteworthy that 

strong bases, such as Na2CO3 and K3PO4, led to product decomposition (entry 5, 6), indicating that 

3aa is very sensitive to strong basic conditions.  

In summary, a mild dual-catalyst system that consists of a chiral Lewis acid, a photoredox catalyst, 

and catalytic amount of weak base was identified as the optimal conditions for the present -amination 

(Table 4, entry 3). 

 

3.1.3 Further Extension to α-Alkylation 

 

A few examples of visible-light-induced catalytic asymmetric -alkylation of ketones had been 

reported, which employed organic bromides/iodides15 or α-silylalkylamines12a as alkylation reagents 

with stoichiometric amount of base or oxidant, respectively. At that time, a racemic photoredox 

α-alkylation of aldehydes using diazoacetates as alkylation reagents was reported by Gryko et al.16 

Encouraged by the above-mentioned positive amination results and the literature reports, the author of 

this thesis became interested in investigating the dual-catalyst system with related diazo compounds. 

Luckily, the alkylation product 5aa was obtained in excellent yield of 93% with 92% ee when ethyl 

diazo acetate (EDA) 4a was used instead of azide 2a under the same reaction conditions (Table 5, 

entry 1), thus demonstrating the versatility of this newly developed catalytic system in enolate 

chemistry. Lowering the loading of [Ru(bpy)3](PF6)2 to 1.5 mol% did not affect the reaction efficiency 

(entry 4). A quantitative yield with an improve ee of 97% ee was obtained by using a more bulky 

o-tolyl group as the N-substituent of imidazole (entry 5). The Ru photocatalyst and visible light are 

necessary for this reaction (entries 2,3). Other Lewis acids including Sc(OTf)3, Cu(OAc)2, and FeCl3 

could not catalyzed the racemic reaction, highlighting the unique reactivity of the chiral-at-metal RhS 
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in this transformation (entries 7-9). Furthermore, the reaction employing α-bromo ethyl acetate in 

place of EDA in the present of stoichiometric amounts of base resulted in a low conversion with the 

formation of 5ba in 33% yield (entry 10), which showed the advantage of using EDA as alkylation 

reagent. 

 

Table 5. Asymmetric α-alkylation with EDA.[a] 

 

Entry Substrate Variation Yield [%] Ee [%] 

1 1a None 5aa, 93  92 

2 1a  Without [Ru] 5aa, 0 n.a. 

3 1a Without 21 W CFL 5aa, 0 n.a. 

4 1a 1.5 mol% of [Ru] 5aa, 94 92 

5 1b 1.5 mol% of [Ru] 5ba, 99 97 

6[b] 1b   Zn(OTf)2 instead of -RhS 5ba, 20 0 

7[b] 1b   Sc(OTf)3 instead of -RhS 5ba, 0 0 

8[b] 1b   Cu(OAc)2 instead of -RhS 5ba, 0 0 

9[b] 1b   FeCl3 instead of -RhS 5ba, 0 0 

10[c] 1b   α-Bromo ethyl acetate instead 

of 4a, 2.0 equiv of Na2HPO4 

5ba, 33 n.d. 

[a] Reaction conditions: 1a or 1b (0.10 mmol), 4a (0.30 mmol), -RhS (4.0 

mol%), [Ru(bpy)3](PF6)2 (2.5 mol%), Na2HPO4 (20 mol%) and H2O (20 

equiv) in acetone/DMSO (9:1, 0.2 M) were stirred at room temperature for 

6-18 h irradiated with a 21 W CFL; isolated yield; ee was determined by 

HPLC on a chiral stationary phase. [b] 20 mol% of Lewis acid and 1.5 

mol% of [Ru(bpy)3](PF6)2. [c] 1.5 mol% of [Ru(bpy)3](PF6)2. 

 

Figure 30.  Removal of the imidazolyl group of compound 5ba. 
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In addition, the removal of the imidazole moiety of 5ba worked smoothly, giving 1,4-diester 6 in 

81% yield with little loss in enantiomeric excess (95% ee, Figure 30). Unfortunately, the amination 

product 3aa is more sensitive and apparently not incompatible under these conditions. 

 

3.1.4 Substrate Scope  

 

The substrate scope of amination with aryl azides under optimal conditions is shown in Figure 31. 

Good yields and excellent enantioselectivities were obtained in the amination of 2-acyl imidazoles 

with different substituents at the N-atom of imidazole (3aa-da) or different electron-rich aromatic 

groups at the stereogenic carbon (3ea-ga, 3ja). Other functional groups, such as naphthyl (3ha), 

2-thienyl (3ia), and chloride (3ka), were well tolerated giving moderate yields and satisfying 

enantioselectivities. On the other hand, a wide range of electron-deficient aromatic azides performed 

well both in yields and enantioselectivities (3bb-bg). Remarkably, bromo (3bb) and cyano groups 

(3bf-bg), which are vulnerable to reducing conditions, are compatible under the present mild protocol, 

providing the potential for further transformations. Intriguingly, chemoselective amination with an aryl 

azido group over an aliphatic azido group was observed (3bh). And the structure of 3bh was 

confirmed by selective 1H-{19F} decoupling NMR experiments with the assistant of Dr. Xiulan Xie 

(Figure 32). Notably, 8 examples of these amination products were formed with an enantioselectivity 

of 99% ee or even higher without any postreaction racemization. 

The substrate scope with respect to enantioselective alkylation with α-diazo carboxylic esters 

under photoredox conditions was evaluated as well (Figure 33). Accordingly, the alkylation of a 

variety of 2-acyl imidazoles worked well, providing asymmetric 1,4-diketones in good to excellent 

yields (81-99%) with excellent enantioselectivities (95-98% ee), regardless of the electronic nature or 

position of substituents (5ba-qa). C=C double and C≡C triple bonds were found to be well tolerated 

(5bc-be, 5bh), indicating a mechanism without the involvement of carbene intermediates. Notably, the 

present asymmetric alkylation was compatible with various natural alcohol derivatives (5be-bh), 

highlighting the potential utility of this protocol in further late-stage functionalization. 
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Figure 31.  Substrate scope of the enantioselective α-amination with aryl azides.  

     

 

  

Figure 32.  Selective 1H-{19F} decoupling NMR experiments of compound 3bh. The splitting 

disappeared only when selective decoupling on 19F = –157.8 ppm. Mixture of two roamers. 
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Figure 33.  Substrate scope of the enantioselective α-alkylation with diazo compounds. The structure 

of 5oa was determined by X-ray crystallography and all other compounds were assigned accordingly. 

 

Although the functional group tolerance of this reaction is quite good, there are some limitations 

with respect to the scope (Figure 34). An aromatic substituent at the stereogenic carbon is needed for 

both amination and alkylation. Other auxiliaries, such as N-pyrazole, or N-pyridinyl indolinone failed 

to give any product. A 2-acyl pyridine underwent the amination with pentafluorophenyl azide 2a, but 

gave low enantioselectivity (33% ee). Besides, only aryl azides bearing more than two electron 

deficient groups can work smoothly, as para-cyano phenyl azide, acyl azides and a tosyl azide were 

demonstrated to be unsuitable as amination reagents. In addition, diazo compound is limited to the 

ester-type. 
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Figure 34.  Limitations of the present asymmetric α-functionalization.  

 

3.1.5 Mechanistic Studies 

 

1) Identification of Rh-enolate1 intermediate  

Based on previous studies and the requirement for a base, it is expected that the reaction proceeds 

through a rhodium bound enolate intermediate. To support this assumption, the Rh-enolate1 was 

synthesized independently by the reaction of rac-RhS (0.1 mmol), imidazole 1b (1.2 equiv), and 

NaOMe (1.5 equiv) in MeOH/CH2Cl2 (1/4, 0.05 M) at room temperature (Figure 35). This 

intermediate is stable and could be purified by column chromatography (silica gel, n-Hexane/EtOAc) 

followed by recrystallization (CH2Cl2/Et2O). The structure was further confirmed by X-ray diffraction.  

 

Figure 35.  Synthesis and X-ray diffraction structure of the key Rh-enolate1 intermediate. 
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Its competence as catalyst in the amination and alkylation reactions was demonstrated (Table 6). 

Indeed, comparable yields were obtained with Rh-enolate1 as the catalyst in the absence of any base, 

thus providing alternative base-free conditions for these transformations. These results support that the 

in situ formed rhodium bound enolate serves as a key intermediate in the present transformations.  

 

Table 6. Catalytic behavior of Rh-enolate1. 

 

Entry Substrate Conditions[a] [Rh] Variation Yield [%] 

1 2a Table 4, entry 3 RhS None 4ba, 79 

2 2a  Table 4, entry 3 Rh-enolate1 No base 4ba, 74 

3 3a Table 5, entry 5 RhS None 5ba, 99 

4 3a Table 5, entry 5 Rh-enolate1 No base 5ba, 99 

[a] For entries 1 and 2, 1b (0.10 mmol); entries 3 and 4, 1b (0.96 mmol). 

 

2) Demonstration of a radical pathway rather than a nitrene/carbene mechanism 

Five sets of experiments support that the reaction proceeds through a radical pathway rather than 

a nitrene/carbene process (Figure 36). First, both amination and alkylation were completely inhibited 

by air together with the generation of the oxygenation product 7, which implies that α-carbonyl carbon 

radicals derived from imidazole substrate might form (Figure 36a). Second, when silyl enol ether 8a 

was added to the reaction mixture of 1b and 2a, the C-C and C-N bond formation products 9ba (42% 

yield) and 10 (22% yield) were isolated, respectively (Figure 36b), indicating the intermediate 

formation of α-carbonyl carbon radicals and aminyl radicals. Third, when TEMPO was added to the 

reaction mixture of 1b and 4a, the TEMPO adducts 11 (84% yield) and 12 (6% yield) were isolated 

(Figure 36c), being indicative for two types of intermediate α-carbonyl carbon radicals. Fourth, the 

isolation of the radical addition product 13 instead of the cyclopropanation product 14 in the reaction 

with ethyl diazo acetate 4a renders a mechanism through carbene intermediates unlikely (Figure 36d). 

The intermediate formation of the cyclopropanation compound was ruled out by the independent 

synthesis of 14 and re-subjection to the standard photoredox conditions under which no conversion to 

13 was detected. Besides, the radical trapping product 16 was detected, together with the formation of 
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alkylation product 5ba, when the alkene 15 was added to the reaction mixture of 1b with 4a under 

standard conditions, which supports the generation of EDA derived carbon centered radical. Fifth, if 

the styrene was added to the reaction mixture of 1b with 2a, the amination product 3ba was detected 

in 80% yield, while aziridination product was not observed at all (Figure 36e). This implies nitrene 

intermediate might not be involved in this transformation, which is different from Yoon’s recent 

report.17 

 

 

Figure 36.  Control experiments supporting a radical mechanism involved in dual-catalytic system.  
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3) EPR experiments 

In order to further confirm a radical pathway under the optimal conditions, the alkylation reaction 

was monitored by electron paramagnetic resonance (EPR) spectroscopy. With the addition of DMPO 

as free radical spin-trapping agent, signals with 6 lines (g = 2.006, αN = 15.9 G, αβ
H = 22.5 G) were 

observed and identified as EPR signals of DMPO-adduct, which is in good agreement with the 

literature (Figure 37).18  

All these results support the formation of an ethyl acetate α-carbon radical through single electron 

reduction of the diazo compound 4a, suggesting that the mechanism is distinct from recent work16 by 

Gryko and coworkers in which a direct reaction between an intermediate iminyl cation radical and a 

diazo compound was proposed without the involvement of the carbon radical derived from the diazo 

compound (see below for further discussion). 

 

 

Figure 37.  EPR experiments that demonstrate the involvement of the carbon centered radical 

derived from EDA. EPR spectra (X band, 9.7 GHz, r.t.) of the DMPO-adduct generated under 

conditions: 1b (0.10 mmol), 4a (0.30 mmol), rac-RhS (4.0 mol%), [Ru(bpy)3](PF6)2 (1.5 mol%), 

Na2HPO4 (20 mol%) and H2O (20 equiv) in acetone/DMSO (9:1, 0.2 M) stirring at room temperature 

under visible light. After 60 min stirring, DMPO solution was added and then analyzed by EPR. 

 

5) UV/Vis absorption and Stern-Volmer quenching experiments 

The current dual-catalyst system relies on [Ru(bpy)3](PF6)2 as photocatalyst, which indicates that 

the Ru species is responsible for photoredox catalysis. To confirm this, the UV/Vis absorption spectra 
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were measured. As shown in Figure 38, the Ru species is a much better visible light absorbing antenna 

compared with the Rh-enolate1, although both of them could be photoexcited under the irradiation of 

the 21 W CFL. Besides, the emission of [Ru] could be detected when irradiating the reaction mixture.  

 

 

Figure 38.  UV/Vis absorption spectra of [Ru] and Rh-enolate1 and luminescence emission spectrum 

of [Ru]. Concentrations in solution of acetone/DMSO/H2O (9:1:0.72): [Ru] = 0.05 mM, Rh-enolate1 = 

0.05 mM, Em of [Ru] = 0.10 mM. [Ru] = [Ru(bpy)3](PF6)2. 

 

Then, a series of Stern-Volmer quenching experiments were performed to verify the initial 

electron transfer step of the photoredox process. To avoid the influence of the competitive absorption 

of the Rh-enolate1 (with wavelength <470 nm), quenching experiments were carried out under 

different conditions. First, the solutions of [Ru] were excited at  = 470 nm and the emission was 

measured at 610 nm (emission maximum). As the results, imidazole 1b, azide 2a, diazo compound 4a, 

silyl enol ether 8a and rac-RhS could not quench the luminescence. Only Rh-enolate1 was capable of 

quenching the excited state of [Ru]. Second, the solutions of [Ru] with different concentration of 

quencher (0, 0.5, 1.0, 2.0, 4.0 mM) were excited at  = 470 nm, 510 nm, and 530 nm, respectively. At 

the same time, the absorbance of the mixture was measured too. As shown in Figure 39, the 

absorption of the mixture kept a constant with the increment of Rh-enolate1, indicating there is no 

competitive absorption by Rh-enolate1 in 530 nm. And only the intermediate Rh-enolate1 but not the 

pre-catalyst RhS nor the silyl enol ether, can quench the excited [Ru] species. In addition, the 

quenching effect of Rh-enolate1 is similar using exciting light with different wavelengths (Figure 40). 

Third, the solutions of a mixture of [Ru] and Rh-enolate1 (0.1 mM and 0.27 mM, respectively) were 

excited at  = 470 nm and the emission was measured at 610 nm. In these cases, imidazole 1b, azide 

Rh-enolate1 
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2a, diazo compound 4a, and silyl enol ether 8a could not quench the luminescence. In conclusion, all 

these results support that [Ru] is responsive for the photoinduced redox process and Rh-enolate1 is 

the key species to quench the photoexcited [Ru]* species. 

 

Figure 39.  Stern-Volmer quenching experiments with photoexcited [Ru(bpy)3](PF6)2 (0.5 mM, λex = 

530 nm, λem = 610 nm). I0 and I are respective luminescence intensities in the absence and presence of 

the indicated concentrations of the corresponding quencher. Absorption refer to the absorbance of the 

solutions of [Ru] with different concentration of Rh-enolate1. 

 

 

Figure 40.  Quenching effect of Rh-enolate1 on the solution of [Ru] excited by light with different 

wavelengths. 

Rh-enolate1 

Rh-enolate1 

8a 
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6) Cyclic voltammetry  

Cyclic voltammetry was conducted to identify the quenching mechanism of Rh-enolate1 on 

photoexcited [Ru]* (Figure 41). Surprisingly, Rh-enolate1 (Ep
[Rh-enolate1].+/Rh-enolate1 = +0.08 V, vs 

Fc/Fc+ in MeCN (the same reference and solvent below)) has a significantly lower oxidation peak 

potential than RhS (Ep
[RhS].+/RhS = +1.25 V). Therefore, in consistent with the quenching experiments, 

the Rh-enolate1 is able to transfer a single electron to the excited [Ru] (E1/2
[Ru]*/[Ru].- = +0.37 V) 

initiating a reductive quenching cycle. Furthermore, a SET reduction of 2a (Ep
2a/2a.- = –1.82 V) or 4a 

(Ep
4a/4a.- = –1.97 V) by the reduced [Ru].– species (E1/2

[Ru]/ [Ru].- ≈ –1.73 V) appears also feasible to 

regenerate the ground state [Ru] and radical species when considering that the subsequent protonation 

and N2 exclusion might facilitate the SET step. On the other hand, the reduction peak potential of 2a 

or 4a is too negative so that 2a or 4a cannot quench the excited state of [Ru] (E1/2
[Ru].+/ [Ru]* ≈ –1.21 V) 

by an oxidative quenching cycle.  

All these results, together with the quenching experiments, strongly suggest that SET between the 

rhodium enolate and the excited [Ru] is a key step for the initial reductive quenching of photoredox 

cycle.  

 

 

Figure 41.  Cyclic voltammograms of RhS, Rh-enolate1, 2a, 4a and quenching mechanism for 

photoexcited [Ru]. CV were recorded in CH3CN containing 0.1 M nBu4NPF6 at 22 ± 2 oC with a 1 mm 

diameter glass carbon electrode. (–) Scan rate = 0.1 V s–1, and (.....) scan rate = 1 V s–1. The current data 

were normalised by dividing by the square root of the scan rate. All potentials refer to Fc+/Fc. 
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7) Quantum yield measurement 

To evaluate the possibility of a radical chain mechanism, the quantum yield of the reaction 1a + 

4a  5a was determined. Photo flux of the spectrophotometer was measured by standard ferrioxalate 

actinometry.19 A 150 W xenon lamp (50% of light intensity, 420  5 nm bandpass filter) was used as 

the light source. As a result, a quantum yield of 0.1 was obtained. However, the photoredox catalyst 

[Ru] absorbs only a fraction of the overall light at 420 nm due to the competitive light absorption from 

the present rhodium bound enolate intermediates (inner filter effect, see Figure 38). Thus, this value 

represents an overall quantum yield and does not take into account that there is no chain process in this 

system. Nevertheless, considering competing light absorption, quenching effects, and other 

deactivation pathways, the contribution of a chain process is likely. 

 

8) Mechanistic picture 

 

 

Figure 42.  Proposed mechanism of dual-catalyst enabled α-functionalization. 

 

Based on the above results, a mechanism consisting of the cooperation between a photoredox and 

an asymmetric catalysis cycle is given in Figure 42. Substrate coordination to RhS (intermediate A) 

and base-induced deprotonation generates the electron-rich rhodium enolate B, which initially serves 
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as the single electron donor for photoexcited [Ru]* (B  Box + e-), thereby generating strongly 

reducing [Ru].– which in turn transfers a single electron to the organic azide or diazo substrate. 

Sequential N2 extrusion and protonation produces nitrogen- or carbon-centered radicals, respectively. 

The subsequent stereoselective addition of these electron-deficient radicals to the electron-rich double 

bond of the rhodium enolate B constitutes the chirality generating step and provides the 

Rh-coordinated ketyl radical C. The ketyl C is a strong reducing agent and either directly reduces the 

azide/diazo reagent to afford chain propagation or quenches photoexcited [Ru]* to produce the 

reduced species [Ru].– The oxidation of ketyl C leads to Rh-coordinated product (intermediate D), 

which after product release and re-coordination of new substrate engages in a new catalytic cycle. 

 

9) Origins of asymmetric induction: computational and experimental studies 

 

 

Figure 43.  Steric model for the reaction and geometries of Λ-Rh-enolate1 and transition states 

(picture from ACS publications20).  

 

The tert-butyl groups in the catalyst and N-substituent of imidazoles play a vital role for the 

asymmetric induction. The enantiodetermining step of the current reaction is the radical addition to 

rhodium bound enolate intermediate. As observed from the crystal structure of the key Rh-enolate 
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species, the prochiral sp2 enolate carbon is sterically shielded from one side by the tert-butyl group of 

the benzothiazole ligand (Figure 43a). Since the catalyst is C2 symmetric, only the Si face (or Re face) 

is selectively blocked by the Λ-RhS (or Δ-RhS). This steric model can reasonably explain the 

asymmetric induction obtained and is in perfect agreement with the stereochemistry of products.  

Indeed, a computational study by Dr. Shuming Chen and Prof. K. N. Houk supports this model.20 

They demonstrated that distortion of the rhodium bound enolate and benzothiazole ligand framework 

is the dominating factor in enforcing enantioselectivity (Figure 43b-d). In particular, the N-substituent 

of imidazoles contributes to stereodiscrimination by interacting sterically with the tert-butyl group. 

This interaction induces more severe distortion of the benzothiazole ligands when the radical adds to 

the unfavorable face (Si face for a Λ-catalyst, Figure 43d). These calculations well account for the 

observation that higher enantioselectivities are obtained when using N-o-tolyl substituted imidazoles 

as substrates (For example, see entries 4,5 in Table 5). 

 

Table 7. Effect of imidazole N-substituents and steric groups on catalyst.[a] 

 

Entry R1 R2 Experimental ee Calculated ΔΔG‡[b]  

1 Me (1r) tBu  5ra, 87%  3.1 

2 iPr (1s) tBu  5sa, 89% 2.8 

3 Ph (1a) tBu  5aa, 92% 2.9 

4 oTol (1b) tBu  5ba, 97% 5.6 

5 Ph (1a) Me 5aa, 88% 1.0 (68% ee)[c] 

[a] Reaction conditions: see Table 5 entry 4. [b] values are denoted in kcal/mol 

calculated by Shuming. [c] The computed 1.0 kcal/mol ΔΔG‡ predicts 68% ee. 
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To further study the effect of catalyst and imidazole N-substituent, Shuming Chen calculated a 

series of transition state structures and energies for the additions of carbon centered radical to rhodium 

bound enolates. And the author of this thesis tested a set of 2-acyl imidazoles with different 

N-substituent, synthesized a new chiral-at-metal rhodium catalyst Λ-RhS(Me) bearing methyl groups 

on the cyclometalating ligands, and examined its reactivity. As summarized in Table 7, with the 

enlargement of the imidazole N-substituent from methyl to o-tolyl, the experimental ee values increase 

regularly from 87% ee to 97% ee (entries 1-4). N-o-Tolyl substituted substrate provided by far the 

greatest ΔΔG‡ (5.6 kcal/mol) in good consistency with the experimental results (entry 4). Besides, the 

catalyst Λ-RhS(Me) yielded the product 5aa in 88% ee which is somehow higher than the calculated 

prediction (68% ee, entry 5). 

 

10) Discussion of other pathways 

There are two other possible pathways needed to be discussed. First is the cross coupling of 

rhodium bound α-carbonyl carbon centered radicals (Box in Figure 42) with amino/α-ester carbon 

radicals. Only the initial quenching cycles generate Box. After initiation, the ketyl radical intermediate 

(C, Figure 42) or a chain process can enable the follow-up SET events generating amino/α-ester 

carbon radicals but without the generation of Box intermediate. Considering that the concentration of 

[Ru] is quiet low, the amount of Box should be much lower than the ground state Rh bound enolate 

intermediate (B, Figure 42). Once the amino/α-ester carbon radicals form, they will not recombine 

with intermediate Box, but rather add to intermediate B. In addition, amino/α-ester carbon radicals are 

electrophilic and therefore prone to react with electron rich enolate B instead of electron deficient 

α-carbonyl radical Box. Overall, the radical-radical recombination pathway is very unlikely. 

The second possible pathway constitutes the addition of radical intermediate Box to triplet 

carbenes/nitrenes, which is similar to the mechanism proposed by Gryko et al. for the related racemic 

α-alkylation of carbonyls catalyzed by a secondary amine in combination with a [Ru(bpy)3](PF6)2 or a 

porphyrin photocatalyst.16,21 As displayed in Figure 44, they proposed that oxidation of enamine by 

the excited photocatalyst generates a radical cation intermediate, which could react with EDA or the 

EDA derived triplet carbene, following electron transfer and substrate/product exchange form the final 

product. But this is apparently not the case under the presented reaction conditions, considering 1) that 

the α-ester carbon radical generated from EDA is trapped by control experiments (Figure 36d) as well 
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as EPR experiments (Figure 37); 2) that cyclopropanation/aziridination products have never been 

observed either under the conditions with additional alkenes (Figure 36d,e) or in the reactions that 

start with substrates containing C=C double bonds (Figure 33); 3) as discussed above, the 

concentration of intermediate Box is much lower compared with rhodium bound enolate in the current 

catalytic system; 4) more importantly, the acceptor-substituted nitrenes and α-ester triplet cabenens17 

are electrophilic and known to react with electron rich alkenes.17 In stark contrast, the coupling of 

these electrophilic species with another electron deficient radical (in this case, intermediate Box) is 

unreasonable.  

In summary, the mechanism described in Figure 42 is reliable and in good accord with all 

experimental and computational results.  

 

 

Figure 44.  A radical addition to carbene mechanism proposed by Gryko et al.  

 

3.1.6 Conclusions 

 

This chapter demonstrated that acceptor-substituted aryl azides and α-diazo carboxylic esters are 

suitable reagents for generating intermediate radicals for asymmetric photoredox reactions.22 These 

were exploited for the efficient visible-light-activated enantioselective -alkylation and amination of 

2-acyl imidazoles using a combination of a chiral rhodium-based Lewis acid catalyst and a photoredox 

catalyst. Yields of up to 99% and enantioselectivities of up to >99% ee were achieved. Molecular 

nitrogen as the sole by-product, redox and proton neutral reaction conditions, as well as a broad 

compatibility with other functional groups render this transformation attractive. Detailed mechanistic 
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investigations suggest that an intermediate rhodium enolate complex acts as a reductive quencher to 

initiate a radical process with the aryl azides and α-diazo carboxylic esters serving as precursors for 

nitrogen and carbon-centered radicals, respectively. In collaboration with the Houk group, a 

computational study revealed the origins of the asymmetric induction, which provides new insights 

and directions for catalyst modifications and condition optimizations. Mechanism-inspired new 

reaction development is presented in the following chapters. 
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3.2 Combining the Catalytic Enantioselective Reaction of Visible-Light-Generated 

Radicals with a By-Product Utilization System 

 

3.2.1 Research Background and Reaction Design 

 

The recently by the Meggers group introduced bis-cyclometalated chiral-at-metal iridium- or 

rhodium-based Lewis acids (LA) can activate a variety of substrates through two-point binding 

towards many novel reactions (Figure 45a).1 Upon coordination with the chiral LA and deprotonation. 

α-mono-substituted carbonyls with a suitable auxiliary, such as 2-imidazolyl, N-pyrazolyl, or 

2-pyridinyl, will form the LA bound enolates that are highly nucleophilic and have been demonstrated 

to undergo a series of electrophilic additions (optionally radical addition) in a highly enantioselective 

fashion. For example, chapter 3.1 of this thesis showcases the reactivity of the chiral-at-rhodium 

complex, which in combination with a photoredox catalyst, enabling asymmetric α-amination and 

α-alkylation of 2-acyl imidazoles. In this case, the rhodium bound enolate not only serves as radical 

acceptor but also facilitates the initial reductive quenching of photoredox catalysis (Figure 45a, left). 

 

 

Figure 45.  Reaction design to expand the reactivity of the Meggers catalysts by trapping the 

β-enolate radical. 

 

On the other hand, LUMO activation of α,β-unsaturated carbonyls by the chiral-at-metal 

complexes have also been well investigated (Figure 45a, right). The β-positions of carbonyl 

compounds become more electrophilic after coordination, thus enabling highly stereoselective 
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conjugate additions of nucleophiles or nucleophilic radicals. In these cases, the prochiral carbon 

centers are in the neutral ground states during the key stereodetermining steps. However, the selective 

SET reduction of LA bound α,β-unsaturated substrates and following manipulation of the rhodium 

bound radicals remains elusive. The author of this thesis envisioned that the merger of LUMO 

activation by chiral-at-metal catalysts with photoinduced mild SET reduction might offer new 

opportunities for the enantioselective transformations of prochiral radicals, which would pave paths to 

new chemistry and expand the reactivity of the Meggers catalysts (Figure 45b). 

 

 

Figure 46.  Previous reports on visible-light-activated asymmetric transformations with allylic C(sp2) 

radical intermediates. 

 

The conversion of prochiral carbon-centered radicals into stereocenters in a catalytic and 

enantioselective fashion is extremely challenging owing to the inherent high reactivity and 

conformational flexibility of such radical species.2 Over the past few years, photoinduced electron 

transfer (PET) has emerged as a powerful tool to access radical species in a mild and economic way,3 

thus spurring the discovery of novel asymmetric catalytic systems involving radical processes.4 

However, catalytic asymmetric PET-processes developed to date mainly deal with achiral radicals 

reacting with a prochiral C(sp2)-center bound to a chiral catalyst. In contrast, strategies for the direct 
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stereocontrol of photo-generated carbon radical centers are underdeveloped.5 In this respect, some 

elegant protocols have been disclosed in enantioselective transformations of photo-generated allylic 

carbon radicals. In 2013, MacMillan and co-workers introduced a radical-radical recombination 

process by combination of a chiral amine and photoredox catalyst in which only one example with 

moderate enantioselectivity was reported showing the challenge of stereocontrol over such radical 

intermediates (Figure 46a).6 After that, Yoon and co-workers described a dual Lewis acid and 

photoredox catalysis for the enantioselective radical [2+2] cycloadditions (Figure 46b).7 Later, 

Melchiorre and co-workers reported that a single chiral iminium ion enabled the enantioselective 

coupling of β-enaminyl radicals with alkyl radicals (Figure 46c).8 Despite these significant processes, 

novel transformations with new mechanisms are still highly desirable. 

This chapter demonstrates that a rhodium-based Lewis acid bearing exclusive metal-centered 

chirality can effectively control the stereochemistry of visible-light-generated prochiral radicals for the 

asymmetric radical allylation reaction with allyl sulfones as radical traps. Notably, the leaving sulfonyl 

radicals can be utilized providing enantioenhanced β-sulfonyl carbonyl compounds, thus minimizing 

waste generation. 

 

3.2.2 Reaction Development 

 

To begin with, the bis-cyclometalated rhodium based complex RhS was chosen as Lewis acid 

considering its superior kinetic properties together with fac-Ir(ppy)3 as photoredox catalyst and DIPEA 

or Hantzsch ester (HE) as reducing agent (Figure 47). Since the rhodium bound allylic radical is 

considered as an electron rich radical, Michael acceptors, allyl sulfone, and isoquinoline were selected 

as radical traps. However, when an α,β-unsaturated 2-acyl imidazole was employed as substrate, the 

desired molecule could never be detected (Figure 47a). Interestingly, the [2+2] homo-coupling 

product, a cyclobutane 17, was isolated in some cases, which was a key inspiration for the 

development of the previous elusive excited state chemistry described in the following chapters.  

Then, an α,β-unsaturated N-acyl pyrazole was used as model substrate (Figure 47b). A lot of 

radical acceptors were tested, including acrylonitrile, benzophenone, isoquinoline, DEAD, a silyl 

acrylate, and tosyl azides, but all failed to give the target product. Finally, a sulfonyl reagent, namely 

ethyl 2-((phenylsulfonyl)methyl)acrylate, gave the desired β-allylation product in 92% yield with 
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moderate ee of 78%, together with the formation of the C-S formation product in around 80% yield 

with 80% ee. This unexpected but unavoidable product is assumed to form via the conjugate addition 

of leaving sulfonyl radical to the rhodium bound substrate. Notably, the additional photoredox catalyst 

fac-Ir(ppy)3 was found to be not essential which is ascribed to the ability of Hantzsch ester serving as 

photoredox mediator for the generation of radical species under mild conditions.9  

 

 

Figure 47.  Initial attempts to trap the rhodium bound β-enolate radical intermediates. 

 

These results imply that the rhodium bound allylic radical species is relatively unreactive and if 

the follow-up chemistry is not efficient enough, the back electron transfer toward the rhodium bound 

substrate could be dominated. When the sulfone reagent was used, the radical trapping and especially 

the subsequent fragmentation process shifted the equilibrium of electron transfer toward the desired 

product generation. And the formation of β-sulfonyl carbonyls is beneficial for shifting the equilibrium 

of a potentially reversible radical fragmentation. Furthermore, the utilization of the leaving sulfonyl 

radicals providing β-sulfonyl carbonyl compounds is also very attractive from the perspective of green 
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and sustainable chemistry, which is without precedence in the chemistry of these well-developed 

sulfone-based radical trapping reagents.10 Therefore, the author of this thesis decided to optimize this 

unusual transformation with both two products.  

The cyano substituted allyl sulfone 19a was chosen as the model radical trap for the further 

optimization considering the better nucleophilicity of 19a compared with the ester analogue. Indeed, 

the rhodium catalyst Δ-RhS enabled the reaction affording the expected allylation product 20a and 

C-S formation product 21a in excellent yields with moderate enantioselectivities (Table 8, entry 2). 

Interestingly, the related Δ-RhO provided 20a with much higher ee (96% ee, entry 3) indicating the 

mechanism differs from the previous reports11 on Giese-type radical reactions in which RhS featuring 

a higher steric congestion, worked better than RhO. Inspired by the resolution method of RhS 

developed by Jiajia Ma,12 the resolution process of RhO was modified by using a fluorinated chiral 

auxiliary, namely (R)-3-fluoro-2-(4-phenyl-4,5-dihydrooxazol-2-yl)phenol, instead of the chiral 

proline that was originally exploited by Chuanyong Wang.13 Both of the corresponding fluorinated 

auxiliary coordinated rhodium complexes are stable and can be separated by flash chromatography, 

thus improving the atom economy of catalyst synthesis (see experimental part).  

Other types of Lewis acids were investigated as well. The well-established iridium catalyst Δ-IrS 

could not give any detectable product (entry 1). Besides, the chiral rhodium complex Δ-RhPP recently 

developed by Yu Zheng,14 which contains pinene-derived cyclometalating ligands and is supposed to 

be sterically more demanding, gave modest yields for both products but with low enantioselectivities 

(entry 4). Other none-chiral Lewis acid such as Sc(OTf)3 gave very low efficiency while LiBF4 could 

even not catalyze the process (entries 5,6) and no conversion was observed without Lewis acid (entry 

7). Overall, the Meggers’ chiral-at-rhodium complexes show a unique reactivity for this reaction. 

HE with different substituents at 2- or 3-position also worked very well (entries 8,9) while 

4-methyl substituted HE-4, which is a white solid, failed to facilitate the reaction. And DIPEA could 

not accomplish the transformation (entry 11). To be mentioned, all reactions were performed under N2 

atmosphere with regular Schlenk technique instead of the tedious freeze-pump-thaw degassing cycles, 

because the trace amount of dioxygen dissolved in the solvent could be consumed by the highly 

reducing Hantzsch ester. All these aspects highlight the multiple functions of HE in the current system 

acting as photoredox mediator as well as electron donor and proton source.9 
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Table 8. Effect of Lewis acid catalyst and Hantzsch ester on the β-functionalization.[a] 

 

Entry Lewis acid Hantzsch ester 20a, Yield (ee) 21a, Yield (ee) 

1 -IrS HE-1 <5% <5% 

2 -RhS HE-1 92% (83% ee) 95% (84% ee) 

3 -RhO  HE-1 85% (96% ee) 92% (85% ee) 

4 -RhPP HE-1 74% (40% ee) 77% (10% ee) 

5[b] Sc(OTf)3 HE-1 10% 10% 

6[c] LiBF4 HE-1 0% 0% 

7 None HE-1 0% 0% 

8 -RhO HE-2 78% (96% ee) 82% (80% ee) 

9 -RhO HE-3 80% (94% ee) 85% (85% ee) 

10 -RhO HE-4 0% 85% 

11[d] -RhO None 0% 0% 

[a] Reaction conditions: 18a (0.20 mmol), 19a (0.10 mmol), Lewis acid (8.0 mol%) and 

HE (0.15 mmol) in 1,4-dioxane (0.1 M) were stirred at room temperature for 24 h with a 

21 W CFL; isolated yield; ee was determined by HPLC on a chiral stationary phase. [b] 

20 mol% of Sc(OTf)3. [c] 200 mol% of LiBF4. [d] 0.15 mmol DIPEA was added. 

 

Next, the effect of solvent was investigated (Table 9). Increasing the temperature to 35 oC could 

accelerate the reaction without significant erosion on yields or enantioselectivities (entries 1,2). 

Acetone gave a little worse ee for the product 20a while similar results could be obtained by using 

solvents like CH2Cl2 or THF (entries 3-5). Notably, the undesired hydrogenation of 1a is negligible. 

Specifically, in the reaction using CH2Cl2 as solvent, 1-(3,5-dimethyl-1H-pyrazol-1-yl)butan-1-one 

could only be isolated in less than 5% yield (entry 4). 
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Table 9. Effect of solvent and light source on the β-functionalization.[a] 

 

Entry Solvent Temp. Light 20a, Yield (ee) 21a, Yield (ee) 

1 1,4-Dioxane r.t. 21 W CFL 85% (96% ee) 92% (85% ee) 

2 1,4-Dioxane 35 oC 21 W CFL 82% (95% ee) 90% (86% ee) 

3 Acetone 35 oC 21 W CFL 81% (89% ee) 85% (87% ee) 

4[b] CH2Cl2 35 oC 21 W CFL 81% (92% ee) 86% (87% ee) 

5 THF 35 oC 21 W CFL 82% (94% ee) 90% (86% ee) 

6 1,4-Dioxane r.t. 24 W Blue LEDs 77% (92% ee) 80% (80% ee) 

7 1,4-Dioxane r.t. Under dark 0% 0% 

[a] Reaction conditions: 18a (0.10 mmol), 19a (0.05 mmol), -RhO (8.0 mol%) and 

HE-1 (0.075 mmol) in solvent (0.1 M) were stirred at room temperature for 24 h or 35 
oC for 15 h with a 21 W CFL; isolated yield; ee was determined by HPLC on a chiral 

stationary phase. [b] 1-(3,5-Dimethyl-1H-pyrazol-1-yl)butan-1-one was detected in less 

than 5% yield. 

 

Furthermore, illumination with blue LEDs, which do not emit any UV light, provided comparable 

results (entry 6). Together with the control experiments under dark (entry 7), this confirms that the 

reaction is activated by visible light. 

In summary, a mild and selective reduction system, which consists of the chiral-at-rhodium 

complex RhO and the readily available Hantzsch ester as photoredox mediator and reductant, was 

established for the stereocontrolled chemistry of visible-light-generated radicals and at the same time 

for the enantioselective sulfonyl radical conjugate addition (Table 8, entry 3). 

 

3.2.3 Substrate Scope and Conversions of Products 

 

With the optimized conditions in hand, the substrate scope with respect to radical acceptors was 

investigated (Table 10). A wide range of allyl sulfones 19 with different leaving groups worked well 

delivering radical allylation product 20a in good yields and excellent ee (up to 97% ee) along with the 

recycled C-S formation products 21a-h in good yields and acceptable ee (up to 89% ee) (entries 1-8). 

Electronic property of the substituent on the sulfonyl moiety has little influence on the reaction 
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efficiency, while a bulky mesityl sulfonyl trap gave the best ee for the sulfonyl radical addition product 

21f, albeit in lower conversion (entry 6). As expected, lower yields and slightly lower ee were 

observed for radical functionalization product 20b when allyl sulfone bearing a less electron deficient 

ester group was employed (compare entries 9 with 1). It is noteworthy that functional groups including 

a C≡C triple bond, a C=C double bond and an imide are well tolerated under these mild conditions 

(entries 11-13).  

 

Table 10. Substrate scope of the β-functionalization with respect to allyl sulfones.[a] 

 

Entry EWG R 20, Yield (ee) 21, Yield (ee) 

1 CN C6H5 20a, 85% (96% ee) 21a, 92% (85% ee) 

2 CN 4-MeC6H4 20a, 68% (96% ee) 21b, 70% (79% ee) 

3 CN 4-BrC6H4 20a, 81% (97% ee) 21c, 88% (80% ee) 

4 CN 4-CF3C6H4 20a, 78% (95% ee) 21d, 78% (76% ee) 

5 CN 2-MeC6H4 20a, 71% (95% ee) 21e, 72% (86% ee) 

6[b] CN 2,4,6-Me3C6H2 20a, 57% (94% ee) 21f, 60% (89% ee) 

7[b] CN 2-Naphthyl 20a, 82% (94% ee) 21g, 88% (83% ee) 

8[b] CN 1-Naphthyl 20a, 78% (91% ee) 21h, 84% (80% ee) 

9 COOEt C6H5 20b, 65% (94% ee) 21a, 68% (84% ee) 

10[b] COOEt 4-MeOC6H4 20b, 65% (92% ee) 21i, 63% (81% ee) 

11[b] 

 

C6H5 20c, 60% (92% ee) 21a, 69% (82% ee) 

12[b] 

 

C6H5 20d, 62% (92% ee) 21a, 72% (83% ee) 

13[b] 

 

C6H5 20e, 73% (92% ee) 21a, 78% (82% ee) 

14 CN CF3 20a, <5% <5% 

15 CN 1-nHex 20a, <5% <5% 

[a] Reaction conditions: see Table 8 entry 3; isolated yield; ee was determined by 

HPLC on a chiral stationary phase. [b] 35 oC. 
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As a major limitation, the enantioselectivities of the β-sulfonyl N-pyrazole 21 never reached above 

90% ee. Besides, sulfonyl reagents without an aromatic ring, such as traps with a trifluoromethanesulfonyl 

or a hexane-1-sulfonyl group (entries 14,15), were not competent. 

Next, variations on the N-acyl pyrazoles were studied. As shown in Figure 48a, pyrazoles with a 

long chain at the β-position (18b-d) produced the radical allylation product 20f-h with decreased ee 

and β-aryl α,β-unsaturated N-acyl pyrazole could not afford any desired product. Furthermore, alkenyl 

sulfone 22 was proved to be competent providing radical alkenylation product 23 in 54% yield with 

93% ee and the corresponding C-S formation product 21a in 59% yield with 81% ee (Figure 48b). 

 

 

Figure 48.  Reactions with different pyrazoles and an alkenyl sulfone. 

 

 

Figure 49.  Transformations of the β-functionalized products. 
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N-acyl pyrazoles are recognized as a useful and reactive synthetic building block. Indeed, 

enantioenriched β-functionalized N-acyl pyrazoles obtained by this newly-developed protocol, could 

be easily converted into other none-racemic chiral compounds, such as an alcohol 24 (Figure 49a) or 

an amide 25 (Figure 49b), the latter of which could give single crystals for the determination of the 

absolute structure of product. 

 

3.2.4 Robustness Screening 

 

 

Figure 50.  Robustness screening in the presence of additives. Isolated yields. 

 

To further evaluate the functional group tolerance and robustness of this catalytic system,15 a 

series of common chemical functionality was added to the reaction mixture of 18a + 19a  20a + 21a 

(Figure 50). Gratifyingly, this net reduction reaction showed high chemoselectivity towards Lewis 

acid coordinated N-acyl pyrazoles, as additives containing azido, cyano, and carbonyl groups that are 

vulnerable to reductive conditions could be recovered in high yields. Importantly, heterocycles which 
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might competitively coordinate to the catalyst did not erode the enantiomeric excess of products. 

Several natural products, including coumarin, caffeine, and (–)-citronellol, could be recovered in 

quantitative yields with little influence on the reaction outcomes. Overall, these results highlight the 

potential of this protocol for further applications in the synthesis of complex molecules. 

 

3.2.5 Mechanistic Studies 

 

1) Proposed mechanism 

 

 

Figure 51.  Proposed reaction mechanism of the β-functionalization.  

 

Based on previous studies1 and the above results, a detailed mechanism is proposed in Figure 51. 

Initially, the bidentate coordination of substrate 18 with the octahedral chiral-at-metal rhodium-based 
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Lewis acid forms the LA/substrate complex A, which is a much better electron acceptor than free 

substrate 18. Therefore, the selective SET reduction of A by visible-light-excited HE ([HE]*)9 

generates the key Rh-coordinated radical intermediate B. The trapping of intermediate B by an 

electron-deficient allyl sulfone 19 delivers secondary radical intermediate C. The subsequent 

fragmentation10 of C provides the sulfonyl radical E and enolate intermediate D, the latter of which 

yields C-C bond formation product 20 upon protonation. Meanwhile, the sulfonyl radical E undergoes 

a stereocontrolled radical addition16 to A in a reversible fashion and a subsequent HAT followed by 

ligand exchange provides the C-S bond formation product 21. 

This reaction scheme has five key features. 1) The cheap and readily available Hantzsch ester 

serves as photoredox mediator as well as electron donor and proton source. 2) LUMO activation of 

carbonyls by the powerful bis-cyclometalated Lewis acid ensures a highly chemoselective reduction. 3) 

Metal-centered chirality provides the effective asymmetric induction for the reaction of prochiral 

radicals. 4) Ally sulfone acts as dual-functional reagent that not only traps the stabilized rhodium 

bound radical species but also produces enantioenriched β-sulfonyl carbonyl compounds minimizing 

the waste generation. 5) Overall, it is a rare example in which a single chiral catalyst facilitates two 

mechanistically distinct processes.  

 

2) Identification of the intermediate rhodium bound substrate 

 

Figure 52.  Preparation and identification of the key RhO-Pz intermediate. The couter anion (PF6
-) is 

omitted. 

 

The key rhodium bound α,β-unsaturated N-acyl pyrazole RhO-Pz (Figure 51, intermediate A) 

could be easily synthesized. The acetonitriles of RhO are very labile and could be quickly exchanged 

by the substrate.11 Accordingly, the mixture of rac-RhO (83.1 mg, 0.1 mmol) and 18a (16.4 mg, 0.1 

RhO-Pz 

18a 
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mmol) was dissolved in CH2Cl2 (2 mL) in a flask. The solvent was removed by rotary evaporation 

after stirring for one minute. This dissolution/evaporation cycle was repeated for five times. Then, the 

resulting solid was recrystallized from CH2Cl2/Et2O to give pure RhO-Pz, which could be 

characterized by single crystal X-ray diffraction (Figure 52). 

 

3) UV/Vis absorption and luminescence spectra 

To confirm the role of HE as photoactive mediator, UV/Vis absorption spectra of RhO, RhO-Pz 

and HE-1 were measured (Figure 53). Upon coordination (RhO  RhO-Pz, the absorption spectrum 

of the rhodium species barely changed with little shift to the blue region. Although both HE-1 and 

RhO-1a absorb visible light with wavelength <425 nm, considering the much higher concentration of 

HE-1 (at the beginning of the reaction ~19 times over [Rh]), it is supposed that HE acts a visible light 

harvesting antenna being consistent with recent reports.9 In addition, the emission of HE-1 was 

observed with maximum wavelength at 455 nm, while RhO-Pz is non-luminescent at room 

temperature, indicating a much longer life time of the photoexcited HE.  

 

 

Figure 53.  UV/Vis absorption and luminescence spectra measured for the β-functionalization reation. 

Concentrations for absorption spectra in 1,4-dioxane: HE-1 = 0.05 mM, RhO = 0.05 mM, RhO-Pz = 

0.05 mM. Concentration for emission spectrum of HE-1 in 1,4-dioxane = 0.5 mM. 

 

4) Cyclic Voltammetry 

 The LUMO activation of α,β-unsaturated N-acyl pyrazole by bidentate coordination is supported 

by the cyclic voltammetry studies. As clearly shown in Figure 54, the free substrate 18a showed one 

chemically irreversible reduction process with the cathodic peak potential Ep = –2.59 V vs Fc/Fc+. In 
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stark contrast, RhO-Pz could be reduced with a potential at approximately –1.62 V vs. Fc/Fc+ and 

oxidized at approximately +1.32 V vs Fc/Fc+, both in chemically irreversible processes. A large 

difference in reduction potential by almost 1 V reflects the strong LUMO-lowering activation provided 

by the bis-cyclometalated Lewis acid.  

 Furthermore, HE-1 could be oxidised in a chemically irreversible process with an anodic peak 

potential (Ep
(HE-1).+/HE-1) at approximately 0.50 V vs Fc/Fc+ According to luminescence emission 

(Figure 53, maximum wavelength = 455 nm, corresponding to 2.73 eV), the redox potential of 

photoexcited HE-1 Ep
(HE-1).+/(HE-1)* is estimated as –2.23 V vs Fc/Fc+, which is feasible to reduce 

RhO-Pz but not free 18a. These results reasonably explain the origin of the excellent chemoselectivity 

of the present transformation. 

 

Figure 54.  CV spectra of compounds 18a, RhO-Pz, and HE-1. 

 

6) Stern-Volmer quenching experiments 

To further support the selective SET process between photoexcited HE* and intermediate A, two 

sets of Stern-Volmer quenching experiments were performed, with the photoredox mediator Hantzsch 

ester alone and with the mixture of Hantzsch ester and RhO (2:1), respectively. Firstly, the solutions of 

HE-1 (0.5 mM in 1,4-dioxane) containing different amount of quencher were excited at  = 360 nm 

and the emission were measured at 455 nm. As shown in Figure 55, RhO-Pz and RhO can quench the 

luminescence while substrate 18a or substrate 19a is not capable of quenching the excited HE-1. Since 

the [Rh] complexes could also absorb the excitation light competitively, an inner filter effect by 

RhO-Pz and RhO needs to be considered.  
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Figure 55.  Stern-Volmer plots of the quenching on HE-1. I0 and I are respective luminescence 

intensities of the solution of HE-1 in the absence and presence of the indicated concentrations of the 

corresponding quencher. [HE-1] = 0.5 mM, Ex = 360 nm, Em = 455 nm. 

 

 

Figure 56.  Stern-Volmer plots of the quenching experiments by 18a. I0 and I are respective 

luminescence intensities of the solution of HE-1 (black one) or the mixture of HE-1 and RhO (red 

one) in the absence and presence of the indicated concentrations of the quencher 18a. Ex = 360 nm, 

Em = 455 nm. 

 

Considering the similar absorption of RhO-Pz and RhO (Figure 53), pathways other than inner 

filter of Rh-species might contribute to the slightly stronger quenching effect of RhO-Pz compared 

with the effect by RhO (Figure 55). With this in mind, a second set of quenching experiments were 

conducted. Accordingly, free 18a was used to quench the mixture of HE-1 (0.5 mM) and RhO (0.25 

mM). As a result, 18a can quench the luminescence of the mixture of HE-1 and RhO slightly while 

Concentrations of 18a (0.05 mM) 
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almost no quenching effect was observed toward the solution of HE-1 alone (Figure 56). Since the 

ligand exchange rate of chiral-at-rhodium complex is very fast, the in situ generated RhO-Pz is 

supposed to form immediately, and then to undergo single electron transfer with photoexcited HE-1, 

which has been demonstrated to be thermodynamically favorable by CV studies (Figure 54).  

In summary, quenching experiments indicate that RhO bound substrate, the major existing 

species of rhodium complexes, is most likely responsible for the oxidative quenching of excited HE*. 

 

7) Evidences for a radical pathway 

 

 
Figure 57.  EPR experiments on the β-functionalization reaction with the addition of DMPO (X band, 

r.t.). A: experimental signals; B: simulated signal 1 (g = 2.006, αN = 9.5 G, αβ
H = 12.9 G); C: residual 

of signals (A–B); D: simulated signals 2 (g = 2.006, αN = 12.0 G, αβ
H = 12.8 G); E: residual of signals 

(C–D). 

 

Several experiments support the proposed radical pathway. First, the title reaction 18a + 19a  

20a + 21a was greatly inhibited upon adding 2,2,6,6-tetramethyl-piperidinooxy (TEMPO) or 

18a + 19a + 

A 

B 

C 

D 

E 

 3240           3260           3280           3300 

   Magnetic field (G) 
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2,6-di-tert-4-methylphenol (BHT) as radical scavengers. Second, when the reaction was monitored by 

electron paramagnetic resonance (EPR) using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as free 

radical spin-trapping agent, mixed signals containing two radical species were observed, one of which 

was proposed to be phenyl sulfonyl radical (Figure 57, g = 2.006, αN = 9.5 G, αβ
H

 = 12.9 G).16 Third, a 

quantum yield of 0.09 was determined for the title reaction, which is consistent with the proposed 

mechanism being devoid of any chain process. 

 

3.2.6 Conclusions 

 

In conclusion, this chapter introduced an unusual reaction scheme in which a chiral rhodium 

complex enables the catalytic enantioselective functionalization of a photo-generated carbon radical 

employing cheap and readily available Hantzsch ester as photoredox mediator and reductant. 

Intriguingly, in this radical allylation reaction using allyl sulfones as reagents, the leaving sulfonyl 

radicals could be trapped by electron deficient alkenes and transformed into valuable enantioenriched 

S-containing building blocks, thereby minimizing waste generation. The simple reaction setup and the 

mild reaction conditions as well as the demonstrated compatibility with a wide range of functionality 

render this robust catalytic system an appealing process.  

For the first time in the Meggers group, the rhodium bound allyl radical species (also called 

rhodium bound β-enolate radical) was generated and applied to an enantioselective conversion.17 This 

opened a new testing ground to develop novel chemistry of chiral-at-rhodium catalysts. Almost at the 

same time, Zijun Zhou in Meggers/Gong group at Xiamen University discovered an interesting PECT 

induced radical-radical recombination mechanism for a redox neutral β-amination of α,β-unsaturated 

2-acyl imidazoles, which is proposed to proceed through a similar rhodium bound allyl radical 

intermediate.18 After that, Wei Yuan from Meggers/Gong group at Xiamen University expanded the 

PECT system to a β-alkylation by the merger with a 1,5-HAT process.19 Notably, this kind of radical 

species could also be generated oxidatively and applied to a radical-radical recombination, achieving 

an elegant asymmetric β-C-H functionalization as developed by Jiajia Ma.20 On the other hand, based 

on the unique properties of HE, 4-substituted Hantzsch esters were employed as radical reservoirs for 

a catalytic asymmetric radical conjugate addition by Francisco F. de Assis.21 

To be highlighted, Dr. Shipeng Luo and the author of this thesis contributed equally to this work. 
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Under the direction of Prof. E. Meggers, the author of this thesis conceived the design, found the 

reaction, optimized the conditions and did a part of scope investigation. Shipeng Luo finished the 

scope and transformations of products, got the single crystals for the assignment of product 

configurations, did robustness screening and conducted the mechanistic studies.  

 

References 

 

1 L. Zhang, E. Meggers, Acc. Chem. Res. 2017, 50, 320-330. 

2 L. Zhang, E. Meggers, Acc. Chem. Res. 2017, 50, 320-330. 

107-162; b) A. Studer, D. P. Curran, Angew. Chem. Int. Ed. 2016, 55, 58-102. 

3 a) G. Pandey, Top. Curr. Chem. 1993, 168, 175; b) J. Twilton, C. Le, P. Zhang, M. H. Shaw, R. W. 

Evans, D. W. C. MacMillan, Nat. Rev. Chem. 2017, 1, 0052. 

4 R. Brimioulle, D. Lenhart, M. M. Maturi, T. Bach, Angew. Chem. Int. Ed. 2015, 54, 3872-3890. 

5 For selected examples, see: a) L. J. Rono, H. G. Yayla, D. Y. Wang, M. F. Armstrong, R. R. Knowles, 

J. Am. Chem. Soc. 2013, 135, 17735-17738; b) O. Gutierrez, J. C. Tellis, D. N. Primer, G. A. 

Molander, M. C. Kozlowski, J. Am. Chem. Soc. 2015, 137, 4896-4899; c) D. Uraguchi, N. 

Kinoshita, T. Kizu, T. Ooi, J. Am. Chem. Soc. 2015, 137, 13768-13771; d) C. Wang, J. Qin, X. Shen, 

R. Riedel, K. Harms, E. Meggers, Angew. Chem. Int. Ed. 2016, 55, 685-688; e) Q. M. Kainz, C. D. 

Matier, A. Bartoszewicz, S. L. Zultanski, J. C. Peters, G. C. Fu, Science 2016, 351, 681-684. 

6 M. T. Pirnot, D. A. Rankic, D. B. C. Martin, D. W. C. MacMillan, Science 2013, 339, 1593-1596. 

7 J. Du, K. L. Skubi, D. M. Schultz, T. P. Yoon, Science 2014, 344, 392-396. 

8 M. Silvi, C. Verrier, Y. P. Rey, L. Buzzetti, P. Melchiorre, Nat. Chem. 2017, 9, 868-873. 

9 a) X.-Q. Zhu, Y.-C. Liu, J.-P. Cheng, J. Org. Chem. 1999, 64, 8980-8981; b) J. Jung, J. Kim, G. Park, 

Y. You, E. J. Cho, Adv. Synth. Catal. 2016, 358, 74-80; c) W. Chen, H. Tao, W. Huang, G. Wang, S. 

Li, X. Cheng, G. Li, Chem. Eur. J. 2016, 22, 9546-9550. 

10 For a review on the reaction of sulfonyl radicals, see: a) M. P. Bertrand, Org. Prep. Proced. Int. 

1994, 26, 257; for selected examples on sulfone-based radical traps, see: b) A.-P. Schaffner, P. 

Renaud, Angew. Chem. Int. Ed. 2003, 42, 2658-2660; c) J. Zhang, Y. Li, F. Zhang, C. Hu, Y. Chen, 

Angew. Chem. Int. Ed. 2016, 55, 1872-1875; d) Y. Zhu, X. Wen, S. Song, N. Jiao, ACS Catal. 2016, 



Chapter 3. Results and Discussion 

95 
 

 

6465-6472. 

11 a) H. Huo, K. Harms, E. Meggers, J. Am. Chem. Soc. 2016, 138, 6936-6939; b) C. Wang, K. 

Harms, E. Meggers, Angew. Chem. Int. Ed. 2016, 55, 13495-13498. 

12 J. Ma, X. Shen, K. Harms, E. Meggers, Dalton Trans. 2016, 45, 8320-8323. 

13 C. Wang, L.-A. Chen, H. Huo, X. Shen, K. Harms, L. Gong, E. Meggers, Chem. Sci. 2015, 6, 

1094-1100. 

14 Y. Zheng, K. Harms, L. Zhang, E. Meggers, Chem. Eur. J. 2016, 22, 11977-11981. 

15 For a selected application of robustness screening, see: K. D. Collins, A. Rühling, F. Glorius, Nat. 

Protoc. 2014, 9, 1348-1353. 

16 V. Cholvad, K. Szaboova, A. Staško, O. Nuyken, B. Voit, Magn. Reson. Chem. 1991, 29, 402-404. 

17 X. Huang, S. Luo, O. Burghaus, R. D. Webster, K. Harms, E. Meggers, Chem. Sci. 2017, 8, 

7126-7131. 

18 Z. Zhou, Y. Li, B. Han, L. Gong, E. Meggers, Chem. Sci. 2017, 8, 5757-5763. 

19 W. Yuan, Z. Zhou, L. Gong, E. Meggers, Chem. Commun. 2017, 53, 8964-8967. 

20 J. Ma, A. R. Rosales, X. Huang, K. Harms, R. Riedel, O. Wiest, E. Meggers, J. Am. Chem. Soc. 

2017, 139, 17245-17248. 

21 F. F. de Assis, X. Huang, M. Akiyama, R. A. Pilli, E. Meggers, J. Org. Chem. 2018, 83, 

10922-10932. 

 





Chapter 3. Results and Discussion 

97 
 

3.3 Direct Visible-Light-Excited Asymmetric Lewis Acid Catalysis of Intermolecular 

[2+2] Photocycloaddition 

 

3.3.1 Side Product Inspired Reaction Design and Research Background 

 

As mentioned in Chapter 3.2, a cyclobutane side product 17 was obtained as major product in 

some cases using β-phenyl α,β-unsaturated 2-acyl imidazole 26a as substrate. For example, the 

photoredox conditions designed for the Minisci reaction gave the cyclobutane 17 without the 

formation of any desired β-arylation product (Figure 58a). Initially, a radical mechanism consisting of 

sequential photoinduced electron transfer/Giese-type radical conjugate addition/intramolecular radical 

cyclization was proposed to explain the undesired homo-[2+2] photodimerization (Figure 58c).1 But 

later, the cyclobutane 17 could also be observed under conditions using benzil as 

visible-light-activated HAT mediator (Figure 58b). Since the well-known triplet sensitizer benzil is 

unable to reduce the rhodium bound substrate, a triplet energy transfer mechanism might be operative 

(Figure 58d). 2  The excited triplet rhodium bound substrate, which could be formed via a 

photosensitizer mediated energy transfer, undergoes a head-to-head photocycloaddition, thereby 

delivering the cyclobutane product. This implied an unprecedented catalysis scheme, in which direct 

bond formations occur at the electronically excited states being devoid of any charge separation, might 

be accessible by chiral-at-metal catalysts. 

Electronically excited states feature distinctive reactivity that is often impossible to achieve by 

non-photochemical methods. On the other hand, visible-light-induced asymmetric catalysis is among 

the most economic and sustainable strategies for the synthesis of enantioenriched molecules.3 Most 

photochemistry reported to date involves photoinduced electron transfer,4 often called photoredox 

catalysis, to generate intermediate radical ions and free radicals. But steering the reaction course of 

such highly reactive intermediates in a stereocontrolled and catalytic fashion is very difficult and 

therefore often leads to a narrow scope.5 This renders visible-light-activated reactions that occur 

directly from an electronically excited state, without any charge separation, an appealing alternative.6 

Controlling stereoselective reactions of such excited states in a catalytic and asymmetric fashion is 

therefore of high interest but largely unexplored.7 
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Figure 58.  Analysis of the dimerization cyclobutane side product. HAT, hydrogen atom transfer; PC, 

photocatalyst; PS, photosensitizer; ISC, intersystem crossing. 

  

In pioneering work, Bach introduced strategies to control the absolute stereochemistry of 

photoexcited states by exploiting Lewis acid8 and H-bond9 activation. With respect to chiral Lewis 

acid catalysis, a chiral oxazaborolidine promoted an enantioselective [2+2] photocycloaddition10 by 

red-shifting the UV-absorption of the substrate (Figure 59a).8b As a limitation, the method relies on 

less desirable UV-light, low temperatures, and high catalyst loadings. Later, they achieved a 

visible-light-induced intermolecular [2+2] by using a chiral thioxanthone, which not only enables 

enantioface differentiation by hydrogen bonding, but also absorbs visible-light and then transfers 

energy selectively to the bound substrate in an intramolecular fashion (Figure 59b).9b More recently, 

Yoon reported a visible-light-activated asymmetric [2+2] cycloaddition by using a combination of a 

chiral Lewis acid and an additional photosensitizer, the latter of which is responsible for absorbing the 

visible light and lowering the triplet energy of catalyst/Lewis acid complex for a selective 

intermolecular energy transfer (Figure 59c).11 However, the requirement for two catalysts12 and a 
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limited substrate scope might restrict its applications. 

 

 

Figure 59.  Previous strategies for stereocontrolled reactions from electronically excited states.  

 

These facts spurred the author of this thesis to develop more general and highly stereocontrolled 

reactions directly from the visible-light-excited states. This chapter introduces how the author 

discloses a previously elusive simplified catalytic system that only relies on a single chiral-at-metal 

Lewis acid, to achieve asymmetric intermolecular [2+2] photocycloadditions providing a wide range 

of cyclobutanes with up to >99% ee and up to >20:1 d.r.  

 

3.3.2 Reaction Development 

 

Based on the analysis of the homo-[2+2] photocycloaddition and inspired by Yoon’s dual-catalyst 

conditions, the diene 27a was chosen to trap the triplet state of a chiral-at-rhodium catalyst bound 

α,β-unsaturated 2-acyl imidazole 26a, in combination with the employment of benzil as 
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photosensitizer. Encouragingly, the desired cyclobutane 28a could be obtained in excellent yield with 

13:1 d.r. and 94% ee after the photolysis with blue LEDs in the presence of 4.0 mol% of -RhS and 

one equivalent of benzil (Table 11, entry 1). To simplify conditions by moving away from dual 

catalysis, the chiral-at-iridium complex -IrS was tested as a single catalyst (entry 2). Unfortunately, 

although the [2+2] photocycloaddition product 28a was generated in 75% yield and with 5:1 d.r., the 

product was formed as a racemic mixture. Surprisingly, using the single rhodium analogue -RhS 

instead, the reaction proceeded smoothly spot-to-spot to provide the cycloaddition product 28a in 

almost quantitative yield with high stereoselectivity (entry 3, 99% NMR yield, 14:1 d.r., 99.5% ee). In 

addition, a more powerful 24 W blue LEDs lamp performed better than a 21 W CFL (entry 4).  

 

Table 11. Initial experiments leading to a single chiral-at-rhodium catalyst system.[a] 

 

Entry LA PS [mol%] Light Yield [%] D.r. Ee [%] 

1 -RhS Benzil (100) 24 W Blue LEDs 93 13:1 94 

2 -IrS None 24 W Blue LEDs 75 5:1 0 

3 -RhS None 24 W Blue LEDs 99 14:1 99.5 

4[b] -RhS None 21 W CFL  86 13:1 98 

[a] Reaction conditions: 26a (0.10 mmol), 27a (1.0 mmol), Lewis acid (4.0 mol%), 

photosensitizer in acetone (0.2 M, 0.5 mL) were stirred at room temperature for 16 h; 

NMR yield; ee was determined by HPLC on a chiral stationary phase. [b] 40 h. 

 

This single catalyst system turned out to be very robust (Table 12). Reducing catalyst loading to 

2.0 mol% and the amount of diene to 3.0 equiv did not influence the reaction efficiency (entries 1-3). 

Even with a reduced Rh-catalyst loading of just 0.5 mol%, an excellent enantioselectivity of 96% ee 

was observed (entry 5). Interestingly, the reaction can be executed under “open-flask” conditions — 

under air and in the presence of residual water — without significantly affecting the reaction outcome 
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(entries 7,8). The transformation is insensitive to the polarity of the solvent as acetone could be 

replaced by DMF or CH2Cl2 (entries 9,10), indicating that free radical and/or radical ion intermediates 

might not be involved. Control experiments confirm that both visible light (entry 11) and catalyst 

(entry 12) are indispensable. Without catalyst, asymmetric induction is obviously not feasible but 

small amounts of racemic product are formed. 

 

Table 12. Robustness of the [2+2] photocycloaddition.[a] 

 

Entry [Rh] Loading 27a Variation Yield [%] D.r. Ee [%] 

1 4.0 mol% 10 equiv None 99 14:1 99.5 

2 2.0 mol% 10 equiv None 99 14:1 99 

3 2.0 mol% 3 equiv None 99 (97) 14:1 99 

4 1.0 mol% 3 equiv None 96 13:1 98 

5 0.5 mol% 3 equiv 24 h 98 12:1 96 

6 0.2 mol% 3 equiv 40 h 84 11:1 87 

7 2.0 mol% 3 equiv Air 97 14:1 99 

8 2.0 mol% 3 equiv Air, 1% H2O 96 13:1 99 

9 2.0 mol% 3 equiv DMF as solv. 95 13:1 98 

10 2.0 mol% 3 equiv CH2Cl2 as solv. 99 14:1 99 

11 2.0 mol% 3 equiv Dark 0 n.a. n.a. 

12 0 mol% 3 equiv None 19 6:1 0 

[a] Reaction conditions: 26a (0.10 mmol), 27a, -RhS, in acetone (0.2 M, 0.5 mL) 

were stirred at room temperature for 16 h; NMR yield, isolated yield is provided in 

parentheses; ee was determined by HPLC on a chiral stationary phase. 

 

Overall, a simple and robust reaction scheme that only relies on a single chiral-at-rhodium 

catalyst is developed for a highly asymmetric [2+2] photocycloaddition. The conditions based on 

using 2.0 mol% of Δ-RhS are selected for the further scope investigations (Table 12, entry 3). 
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3.3.3 Substrate Scope  

 

As displayed in Figure 60, a variety of α,β-unsaturated imidazoles bearing different substituents 

at the β-aryl moiety provided the [2+2] addition products in good to excellent yields (up to 97%), high 

diastereoselectivities (up to 16:1 d.r.), and essentially complete enantioselectivities (up to >99% ee) 

independent of the electronic nature or position of the substituents (28a-j). Importantly, the imidazole 

moiety can be replaced by other coordinating groups, such as pyridine (28k) and the synthetically very 

useful pyrazole (28l-q), providing the potential for further transformations. Interestingly, a conjugate 

extended enone undergoes the [2+2] photocycloaddition in high stereo- and chemoselectivity with the 

exclusive bond formation on the double bond adjacent to carbonyl group (28j).  

 

Figure 60.  Scope of the [2+2] photocycloaddition with respect to ,-unsaturated carbonyl 

compounds. Reaction conditions: see Table 12 entry 3. [a] 4.0 mol% of -RhS and 10 equiv of 27a. 

[b] MeCN/acetone 1:1 instead of acetone. Configurations were assigned with crystal structures of 28e 

and a derivative of 28p. 
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Next the scope was expanded to more general alkenes (Figure 61). Although the reaction of 

styrene with the standard imidazole substrate 26a gave cyclobutane 28r only in 1:1 d.r. value, an 

β,β-di-substituted α,β-unsaturated N-acyl pyrazole substrate delivered excellent stereochemical control, 

producing the cycloaddition product 28s in 16:1 d.r. with 99% ee. Besides the diene and styrene, a 

wide range of alkenes were well accommodated in this transformation, including a vinyl ether (28t), 

an enyne (28u), and substituted styrenes (28s, 28v-z). Furthermore, this transformation tolerates 

heterocycles like furan (28h-i, 28l) and thiophene (28w) and can be applied to the late-stage 

modification of complex biomolecule (28z). Notably, an example of intramolecular reaction worked as 

well, generating complex bicyclic compound 28aa in a highly effective and asymmetric way.  

 

 

Figure 61.  Scope of the [2+2] photocycloaddition with respect to alkenes. Reaction conditions: see 

Table 12 entry 3. [a] with rac-RhS, NMR yield, ee not determined. [b] Performed with 3.0 equiv of 

estrone derived alkene in CH2Cl2 (0.2 M, 0.5 mL). [c] Intramolecular reaction: substrate (0.10 mmol) 

and Δ-RhS (4.0 mol%) in acetone (0.2 M, 0.5 mL). 
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It is worth noting that cyclobutanes with three contiguous stereogenic centers and vicinal 

all-carbon quaternary stereocenters can be constructed in a single step using this new methodology in 

high yields, with excellent d.r. and ee (28p-q, 28u-y), highlighting the versatility of this protocol in 

building molecular complexity in a catalytic, asymmetric fashion.13 

More challenging simple aliphatic alkenes and internal alkenes did not provide any desired 

products when the typical coordinative substrates were used (Figure 62, 28ab-ae). Interestingly, by 

using 3-mono-sustituted pyrazole as auxiliary, the photocycloadditions with cyclohexene did occur in 

moderate yields with moderate diastereoselectivities (28af-ah). The reaction efficiency and d.r. value 

could be higher (28ai, 98% yield, with 13:1 d.r., 99% ee) in the reaction with cycloheptene and using 

3-para-methoxyphenyl pyrazole as auxiliary. Further investigation with respect to the scope of 

aliphatic (internal) alkenes and mechanistic studies to understand the effect of auxiliary is ongoing. 

 

 

Figure 62.  Auxiliary enabled [2+2] photocycloaddition with aliphatic (internal) alkenes. 

 

There are some limitations as shown in Figure 63. An conjugated π ground at β-position is 

necessary for the reaction (for failed examples, see 28aj,ak) and α,α-di-substituted carbonyl 

compounds failed to undergo the photocycloaddition (28al). Besides, a thiazole containing alkene and 

a phenylglycine derived alkene are not compatible (28am,an). In addition, a vinyl ether designed for 

the intramolecular photocycloaddition is not tolerated either (28ao). 
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Figure 63.  Limitations of the scope of the [2+2] photocycloaddition. 

 

In summary, this novel methodology provides a very simple protocol to access structurally 

complex cyclobutanes in a catalytic and highly stereoselective fashion and therefore constitutes a 

valuable complement to existing protocols. Useful catalytic asymmetric photoinduced10 and thermal14 

[2+2] cycloadditions have been reported before. However, the here introduced methodology is unique 

in its ability to install two adjacent all-carbon quaternary stereocenters (optionally spiro centers) in an 

intermolecular and highly stereocontrolled fashion. Furthermore, by tuning the auxiliary of enone 

substrate, the extension to aliphatic (internal) olefins, which can hardly be achieved by other reaction 

systems, highlights the versatility of this chiral-at-rhodium catalyst based method. 

 

3.3.4 Mechanistic Studies 

 

1) Identification of the key rhodium/substrate complex as visible-light-absorbing antenna 

Firstly, the substrate coordinated rhodium complex RhS-Im formed immediately in quantitative 

yield once the bis-acetonitrile catalyst RhS was mixed with the 2-acyl imidazole 26a (Figure 64). 

This indicates that the rhodium/substrate complex is the active catalytic species in the reaction solution. 

Then, two representative rhodium/substrate complexes RhS-Im and RhS-Pz, which were firstly 

characterized by Haohua Huo,15 were synthesized separately (Figure 65) and subjected to the further 

mechanistic investigations. 
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Figure 64.  1H NMR experiments (300 M, CD2Cl2) demonstrating the fast generation of RhS-Im 

complex. Ratio of rac-RhS/26a = 1:1.  

 

 

Figure 65.  Two key rhodium/substrate complexes synthesized for mechanistic studies of the [2+2] 

photocycloaddition.  

 

Secondly, UV/Vis absorption spectra show greatly enhanced absorption of catalyst bound 

substrates compared with the free substrates (Figure 66). Notably, free substrate 26a has a very weak 

absorption in visible light region, thus explaining the background racemic reaction without catalyst 

(Table 12 entry 12). Additionally, the imidazole bound complex RhS-Im shows much higher 

absorbance than the pyrazole bound congener RhS-Pz in near UV/visible light region, Interestingly, 

rac-RhS: 

 

 

 
 

Mix rac-RhS + 26a 

in CD2Cl2 for 5 min 

 

 

 

RhS-Im: 

 

Coordinated acetonitrile 

Free acetonitrile 

Two sets of singlet peaks corresponding to [tBu] 

One set of singlet peak corresponding to [tBu] 
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the β-methyl α,β-unsaturated N-acyl pyrzaole coordinated analogue RhO-Pz has almost the identical 

absorption spectrum compared with RhO (Figure 53).  

Thirdly, according to Beer-Lambert Law, molar extinction coefficients at 400 nm were 

determined on a Spectra Max M5 microplate reader. Significantly, RhS-Pz (400 = 34950 M-1cm-1) has 

a molar extinction coefficient that is 169 times higher than the free substrate 26a (400 = 207 M-1cm-1). 

Therefore, the rhodium/substrate complex was demonstrated to serve as a light harvesting antenna 

and suppress most of the background reaction, thereby providing up to almost complete 

enantioselectivities of >99% ee. 

 

 

Figure 66.  UV/Vis absorption spectra measured in the [2+2] photocycloaddition. Recorded in CH2Cl2 

with the concentration of 0.05 mM. 

 

2) Cyclic voltammetry studies excluding out the possibility of a redox mechanism 

With the help of Prof. Dr. Webster, the voltammetry analysis of Rh-Im solution was performed. 

As shown in Figure 67a, RhS-Im could be reduced in a chemically reversible process at 

approximately –1.13 V vs Fc/Fc+ and oxidized in a chemically irreversible process at approximately 

1.23 V vs Fc/Fc+. Based on these results and the calculated S0-T1 gap (2.01 eV, see below), the redox 

potentials of the excited state RhS-Im can be estimated as E[RhS-Im]*/[RhS-Im].- = +0.88 V and 

E[RhS-Im].⁺/[RhS-Im]* = –0.78 V vs Fc/Fc+ (Figure 67b). Based on these redox potentials, the excited 

RhS-Im is unable to oxidize or reduce the alkene substrate, such as styrene (Figure 67c). Furthermore, 

the reduced or oxidized rhodium/substrate complexes (RhS-Im.- or RhS-Im.+) are not capable of 

facilitating the electron transfer with styrene either. Hence, a photoredox process is very unlikely. 
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Figure 67.  Cyclic voltammetry disapproving of a redox mechanism for the [2+2] photocycloaddition. 

All potentials refer to Fc/Fc+. Redox potentials of styrene, see reference 16.  

 

3) Evidences for the excited triplet versus singlet state chemistry 

 Most of the established visible-light-activated [2+2] cycloadditions were reported to proceed 

through the triplet state of one of the involved alkenes.10 In the current reaction, the direct 

stereocontrolled reaction of the intermediate rhodium/substrate complex occurs in its first excited 

triplet state (T1 state). This is supported by a number of experiments: 

 

Table 13. Effect of sensitizers on the [2+2] photocycloaddition.[a] 

 

Entry Catalyst [mol%] Yield [%] D.r. Ee [%] 

1 -RhS (2.0) 99 14:1 99 

2 -IrS (2.0) 63 5:1 0 

3 Benzil (40) 68 5:1 0 

4 [Ir(ppy)2(dtbbpy)](PF6) (2.0) 60 5:1 0 

5 [Ir(dFCF3ppy)2(bpy)](PF6) (2.0) 65 5:1 0 

[a] Reaction conditions: see Table 12 entry 3. 

 

(a) Control experiments employing triplet sensitizer: The racemic [2+2] cycloaddition 26a + 

27a  28a can be catalyzed by well-known triplet sensitizers, such as benzil and iridium based 

photosensitizers (Table 13, entries 3-5). In addition, the relatively lower yields obtained in entries 2-5 
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is owing to the homo-[2+2] of 26a. The formation of cyclobutane 17 also indicates the involvement of 

excited free substrate in these cases. Interestingly, the iridium based chiral-at-metal complex -IrS 

provided a similar reaction outcome with these racemic photosensitizers (entry 2). Further studies to 

explain the performance of IrS are described in chapter 3.4.  

(b) Control experiments employing triplet quencher: The reaction 26a + 27a  28a is 

significantly inhibited by the triplet quencher 2,5-dimethylhexa-2,4-diene, supporting the involvement 

of excited triplet state intermediates (Figure 68a). 

 

 

Figure 68.  Control experiments supporting a triplet mechanism for the [2+2] photocycloaddition. 

 

(c) Photocycloadditions with diastereomeric substrates: For [2+2] photocycloadditions 

through the first excited singlet state (S1 state), the addition is expected to be stereospecific in contrast 

to [2+2] photocycloadditions through the T1 state which form an intermediate 1,4-diradical leading to 

the loss of the substrate’s configuration information. To probe this stereochemical aspect, the 

diastereomers (E)-26p and (Z)-26p were subjected to the standard conditions, respectively (Figure 

68b). As the result, both diastereomers provided a product with identical stereochemistry as 

determined by 1H NMR and HPLC analysis. Furthermore, photolysis of (E)-26p or (Z)-26p under blue 

LEDs with RhS led to the E/Z isomerization (with a same ratio of 1.9:1, Figure 68c). This observation 
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is in consistent with the recent publications reported by Gilmour,17 which demonstrate E  Z 

isomerization of cinnamic esters proceeds through a triplet energy transfer mechanism.  

Since the diastereomeric substrates are in equilibrium under the reaction conditions, the [2+2] 

photocycloaddition experiments with (E)- and (Z)-26p are not conclusive. However, the observed 

E/Z-isomerization suggests the involvement of a triplet rhodium/substrate intermediate from which the 

isomerization occurs. 

(d) Detection of single oxygen generation in the presence of molecular oxygen: Quenching of 

excited triplet states by molecular oxygen leads to the formation of singlet oxygen. To verify the 

involvement of a rhodium/substrate complex in its triplet state upon irradiation, 

9,10-dimethylanthracene, known as a singlet oxygen trap,18 was added to the model reaction 26a + 

27a  28a. As expected, singlet oxygen trapping product 29 was isolated in 51% yield along with the 

formation of 28a in 15% NMR yield, after 2 h irradiation in O2-saturated acetone (Figure 69a).  

 

 

Figure 69.  Experiments probing the formation of singlet oxygen in the presence of dioxygen. EPR 

(X band) experiments were conducted at room temperature. 
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According to well-developed methods, the reaction of singlet oxygen with 

2,2,6,6-tetramethylpiperidine (TEMP) can generate the stable nitroxide radical TEMPO.19 Indeed, 

when adding TEMP to the reaction of 26a + 27a  28a under oxygenated conditions, EPR signals 

with three lines corresponding to TEMPO were observed (Figure 69b). In additional, no signal was 

recorded without RhS or under dark conditions. 

These results clearly verify the formation of singlet oxygen with the current catalytic system in 

the presence of molecular oxygen, and strongly supports the involvement of the excited triplet state 

rhodium/substrate complex. 

 

4) Effect of molecular oxygen on the rhodium catalyzed [2+2] photocycloadditions 

As mentioned in Table 12, the model photocycloaddition reaction 26a + 27a  28a can be 

executed in the presence of air without compromising the outcome of the reaction. It is very 

interesting to further investigate the effect of dioxygen on this newly developed catalytic system. In 

order to bias the expected competition between oxygen quenching and alkene reaction, a more bulky 

substrate 26p was chosen because it is expected to react somewhat more slowly with alkenes. 

Specifically, reactions of 26p with two alkenes were performed under nitrogen and oxygen atmosphere, 

and monitored after 5 and 16 hours of irradiation, respectively (Figure 70a,b). As the result, the 

oxygen-saturated reactions proceed a little bit more slowly, showing moderate interference of 

molecular oxygen by quenching the excited triplet state of the rhodium/substrate complex.  

In order to assess if this is consistent with a triplet mechanism, the following aspects need to be 

considered: (1) Quenching rate constants: Molecular oxygen has been determined to quench the 

excited triplet state of enones with ca. 5  109 M-1s-1 (diffusion controlled).20 On the other hand, 

alkenes have been determined to quench triplet excited states of enones also very rapidly with rate 

constants in the range of 107 to >109 M-1s-1, thus reaching diffusion control depending on the particular 

substrates.20,21  (2) Concentrations: An air-saturated solution contains around 2.4 mM dissolved O2.22 

In comparison, the concentration of the alkene 27a under the standard experimental conditions is 600 

mM, being 250-fold higher.  

Thus, considering the substrate concentrations and the triplet quenching rate constants of triplet 

state enones by molecular oxygen, the ability to perform the photocycloaddition in the presence of air 

can be rationalized and is not contradictory to a mechanism of the rhodium/substrate excited triplet 
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state.  

In addition, there are several precedents in the literature in which the reactions via triplet energy 

transfer can be performed under air conditions.17 As for the current transformation, the racemic 

reaction 26a + 27a → 28a catalyzed by a well-known triplet sensitizer [Ir(dFCF3ppy)2(bpy)](PF6) can 

be performed with O2 too (Figure 70c). Furthermore, the RhS catalyzed E  Z isomerization of 26p, 

which is supposed to go through a triplet mechanism, is not sensitive to O2 either (Figure 70d).  

 

 

Figure 70.  Effect of O2 on the [2+2] photocycloaddition. 

 

5) Computational studies 

To further investigate the properties of the excited states, computational studies were conducted 

by the collaboration with T. R. Quinn and Prof. O. Wiest. The calculations reveals that in the T1 state 

of the rhodium/substrate complex RhS-Im, the spin density is localized at the alkene carbons (Figure 

71), consistent with the observed reactivity towards [2+2] cycloadditions. This should also lead to 

configurational lability of the alkene, which accounting for the observed E  Z isomerization (Figure 
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68c). Besides, the triplet energy of coordinated substrate is not significantly lower than the free 

substrate, which is different from Yoon’s report11 in which a great decrease of triplet energy after 

Lewis acid binding (lowering by 88 kJ/mol) is the key for high stereochemical induction. 

 

Figure 71.  Calculated spin density distribution and triplet energy of the excited 26a and RhS-Im. 

 

6) Quantum yield measurement 

It has long been known that Lewis acids can alter the course of photocycloaddition reactions, and 

in particular increase the quantum yield by more than 10 folds.8d To examine the effect of 

chiral-at-rhodium catalyst, the model reaction 26a + 27a  28a was chosen to determine the quantum 

yield under open air conditions. As a result, a quantum yield of 0.27 was observed, highlighting the 

high efficiency of this photoreaction enabled by the chiral-at-rhodium Lewis acid. 

 

7) Proposed mechanism 

Supported by the above experiments, a proposed mechanism is depicted in Figure 72. Initially, 

α,β-unsaturated carbonyl compound coordinates to the rhodium catalyst via an established N,O-chelate 

(intermediate I) and then is excited by visible light to its lowest singlet state (S1, intermediate II). After 

intersystem crossing (ISC), the excited triplet state (T1, intermediate III) reacts directly with alkene 

co-substrate under control of the stereochemistry by the metal-centered chirality, generating the 

rhodium-bound 1,4-diradical intermediate IV. After ISC and cyclization, the Rh-coordinated [2+2] 

cycloaddition product (intermediate V) is formed. A subsequent release of product and re-coordination 

of unreacted substrate then closes the catalytic cycle. It is worth pointing out that this mechanism 

scheme is distinctive from previous reports on the photocycloadditions of electronically excited states 

(Figure 59). A single chiral-at-metal rhodium catalyst bound substrate enables the direct 
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visible-light-excitation with greatly enhanced absorption, and the bond formation occurs directly at the 

excited states. As the result, this mild and simple reaction system provides a robust [2+2] 

photocycloaddition with broad substrate scope and excellent asymmetric induction. 

 

 

Figure 72.  Proposed mechanism of the [2+2] photocycloaddition. 

 

3.3.5 Conclusions 

 

In conclusion, this chapter introduced the development of a previously elusive reaction scheme 

where a substrate-coordinated chiral Lewis acid is activated by visible light to catalyze a highly 

stereoselective [2+2] cycloaddition reaction, thus acting both as the visible light harvesting antenna to 

convert a coordinated substrate into its excited triplet state and, at the same time, serving as the chiral 

entity to achieve an excellent asymmetric induction.23 The enhancement of the intrinsic blue light 

absorption by Lewis acid coordination ensures the selective direct visible-light-excitation, thereby 

accounting for the extremely high asymmetric induction. 

From a synthetic perspective, the rhodium-catalyzed visible-light activated [2+2] cycloaddition is 

synthetically highly attractive. Based on a simple reaction setup and a single chiral catalyst with low 

loading (down to 0.5 mol%), complex cyclobutanes can be accessed with excellent diastereo- und 

enantioselectivities, including cyclobutanes with vicinal all-carbon quaternary stereocenters. The 

reaction is very robust, tolerating air and water, and displays little solvent dependence, thus providing 

a large flexibility in adjusting reaction conditions.  
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This work was highlighted in Science 2017, 357, 265 and Synfacts, 2017, 1061, respectively. 

Further investigations on photophysical properties of the key rhodium/substrate complexes and 

computational studies to understand the mechanism are ongoing. It is anticipated that this reaction 

design will spur more asymmetric photochemistry through stereocontrolled reactions of photoexcited 

substrate/catalyst complexes.  
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3.4 Catalytic Asymmetric Synthesis of 1-Pyrroline through Stereocontrolled Direct [2+3] 

Photocycloaddition from Excited State 

 

3.4.1 Research Background and Reaction Design 

 

The induction or activation of chemical reactions by visible light is an extremely valuable tool for 

synthetic organic chemistry.1 Typically, photochemically excited species engage in single electron 

transfer with a substrate or reagent to generate radical ions and/or free radicals which then participate 

in a multitude of reaction schemes (Figure 73a).2 However, reactions through radical ions and free 

radicals have severe drawbacks. For example, radical ions are extremely sensitive to solvent effects 

placing restriction to the reaction parameters, whereas the high reactivity of free radicals renders a 

control of their reaction pathway challenging, especially with respect to stereocontrol, and often leads 

to a narrow substrate scope.3 A highly attractive alternative constitute therefore bond forming 

reactions that occur directly from a photoexcited state without prior charge transfer to circumvent the 

mentioned disadvantages arising from intermediate free radicals and radical ions (Figure 73a).4 Due 

to the demand of optically pure compounds in the chemical and pharmaceutical industry, catalytic 

stereocontrolled reactions are of particular interest. Unfortunately, currently available methods for 

catalytic asymmetric reactions that occur from a photochemically excited state without any 

intermediate charge separation are limited to [2+2] photocycloadditions.5,6 This is probably owing to 

the lack of suitable, robust catalysts to enable new reaction patterns to intercept short-lived excited 

states and at the same time to provide efficient stereochemical induction.  

Chapter 3.3 discloses a single rhodium catalyst based unique and versatile reaction system that 

enables the direct bond formation of the electronically excited state of catalyst/substrate complex, 

providing a practical synthetic route to enantioenriched cyclobutanes.7 However, this work and related 

reports from other groups6 did not address the prevalent restriction to cyclobutanes as structural motifs 

for such stereocontrolled bond forming reactions out of a photoexcited state. Although cyclobutanes 

built through [2+2] photocycloadditions are present in natural products, a direct access to other 

attractive structural motifs, by direct stereocontrolled reactions from photoexcited states would be 

highly desirable and furnish new powerful synthetic methodology.  
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Figure 73.  Chemistry of the photochemically excited states and effort to access new structural 

motifs by interference with the excited rhodium/substrate complex. 

 

To explore new reaction manifolds of photoexcited molecules, several aspects need to be 

considered: 1) Since the first bond forming step might be reversible, a fast follow-up transformation or 

a stabilized 1,4-diradical species is required. 2) To avoid the ring closing of 1,4-diradical that would 

lead to the formation of previously reported cyclobutanes, a driving force is needed for the radical 

translocation process generating 1,n-diradical, which could result in new cyclic compound (Figure 

73b). With these aspects in mind, several triplet-state-philes (T1-philes) were tested. For example, a 

cyclopropyl olefin could participate in the photocycloadditions, but a mixture of unidentified isomers 

including the desired 7-membered cyclic molecule was obtained. And a 1,6-diene, which was designed 

to undergo a 5-exo radical cyclization to give a bicyclic product, preferred [2+2] photocycloaddition 

delivering cyclobutane as major product. Finally, driven by the release of N2, a vinyl azide succeeded 

in trapping the triplet state as well as the subsequent rearrangement and ring closure processes, leading 

to a previously elusive structural motif, 1-pyrroline.  
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1-Pyrrolines are widely found in biologically active molecules such as natural products and drugs, 

and constitute versatile synthetic intermediates by conversion to functionalized pyrrolidines. 8 

Catalytic asymmetric methods to directly access this important heterocycle are little developed and 

limited to a few reports including the partial hydrogenation of pyrroles9, 1,3-cycloadditions of 

azlactones10  or -isocyano esters11  with acceptor-substituted alkenes, and some other addition/ 

cyclization protocols.12  

On the other hand, vinyl azides are well-known to act as nucleophiles,13 radical acceptors14 or 

triplet energy acceptors,15 but their ability to directly undergo cycloaddition with photoexcited alkenes 

has not been reported. In contrast, the reported photochemical reactivity of vinyl azide might do harm 

to the desired transformation. As reported by Padwa et al. in pioneering work,16 the photolysis of 

vinyl azides led to aryl azirines could form nitrile ylides and be subsequently trapped by ground state 

electron-deficient alkenes to afford racemic 1-pyrrolines with a constitution that differs from desired 

product from excited state chemistry (Figure 74a).  

This chapter reports a direct [2+3] photocycloaddition of photoexcited acceptor substituted 

alkenes with vinyl azides in a catalytic and asymmetric fashion toward the synthesis of non-racemic 

chiral 1-pyrrolines with virtually perfect diastereoselectivity and enantioselectivities of up >99% ee. 

(Figure 74b). This novel reaction discloses new reactivity of vinyl azide towards the direct bond 

formation reaction with excited states, and expands the scope of the electronically excited state 

chemistry by constructing previously inaccessible enantioenriched 1-pyrrolines. 

 

 

Figure 74.  New chemistry of photochemically excited state and new access to chiral 

N-hetereocycles provided by exploring unprecedented reactivity of vinyl azides. 
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3.4.2 Reaction Development 

 

Table 14. [2+3] Photocycloaddition with an α,β-unsaturated 2-acyl imidazole.[a] 

 

Entry Catalyst 31a [equiv] Variations Yield [%] Ee [%] 

1 Λ-RhS 3.0 None 41 49 

2 Λ-IrS 3.0 None 76 0 

3 None 3.0 None 60 0 

4 Λ-RhS 3.0 Dark 0 n.a. 

5 Λ-RhS 3.0 CH2Cl2 instead of acetone 30 64 

6 Λ-RhS 1.5 CH2Cl2 instead of acetone 26 72 

7 Λ-RhS 1.25 CH2Cl2 instead of acetone 24 74 

[a] Reaction conditions: 30a’ (0.10 mmol), 31a, and chiral catalyst (4.0 mol%) in 

acetone (0.2 M, 0.5 mL) were stirred at room temperature under N2 atmosphere 

with irradiation of blue LEDs (24 W) for 16 h; NMR yield; ee was determined by 

HPLC on a chiral stationary phase. 

 

Based on the previously introduced [2+2] photocycloadditions,7 this work commenced with the 

reaction of β-phenyl α,β-unsaturated 2-acyl imidazole 30a’ with vinyl azide 31a catalyzed by a single 

chiral bis-cyclometalated rhodium complex -RhS. Gratifyingly, the expected 1-pyrroline 32a’ 

formed as a single diastereoisomer, albeit in only 41% yield with an unsatisfactory enantioselectivity 

of 49% ee (Table 14, entry 1). Similar to the reported [2+2] photocycloaddition, the iridium congener 

-IrS could not give any enantioselectivity and light excitation is essential for the transformation 

(entries 2,4). Surprisingly, a significant uncatalyzed background reaction is observed with the 

formation of racemic product in 60% yield (entry 3), which might contribute to the low ee obtained for 

32a’. In addition, preliminary screening indicated that the amount of vinyl azide and the solvent have 

important effect on the reaction outcome (entries 5-7). 
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Table 15. [2+3] Photocycloaddition with an α,β-unsaturated N-acyl pyrazole.[a] 

 

Entry Λ-RhS 31a [equiv] Variations Yield [%] Ee [%] 

1 4 mol% 3.0 None 63 49 

2 None 3.0 None <5 n.a. 

3 4 mol% 3.0 MeCN instead of acetone 80 6 

4 4 mol% 3.0 THF, DMSO or PhCl as sol. <50 <44 

5 4 mol% 3.0 CH2Cl2 instead of acetone 28 73 

6 4 mol% 1.5 CH2Cl2 instead of acetone 27 91 

7 8 mol% 1.25 CH2Cl2 instead of acetone 34 93 

8 8 mol% 1.25 None 54 86 

[a] Reaction conditions: 30a (0.10 mmol), 31a, and Λ-RhS in acetone (0.2 M, 0.5 

mL) were stirred at room temperature under N2 atmosphere with irradiation of blue 

LEDs (24 W) for 16 h; NMR yield; ee was determined by HPLC on a chiral 

stationary phase. 

 

Next, a N-acyl pyrazole 30a was chosen for further optimization because it has almost no 

background reaction due to its much weaker absorption in near UV/Visible light region (Figure 66). 

As listed in Table 15, screening of various solvents led to a higher ee of 73% when CH2Cl2 was used 

(entry 5). While MeCN was employed, the reaction proceeded in 80% yield but only with 6% ee (entry 

3). Importantly, decreasing the equivalence of vinyl azide 31a to 1.25 equiv resulted in the formation 

of 1-pyrroline 32a in 93% ee, albeit with 34% yield (entry 7). This implied that this new 

visible-light-activated [2+3] cycloaddition is more complicated than the previously developed [2+2] 

photocycloaddition which is very insensitive to reaction conditions. In addition, a higher yield of 54% 

could be obtained for 32a by using acetone as solvent, however, with the compromise of 

enantioselectivity (86% ee, entry 8). All these results indicated that ligand exchange might be a 

limiting step, especially considering the potential product inhibition on catalyst. 
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Table 16. Effect of auxiliary and solvent on the [2+3] photocycloaddition.[a] 

 

Entry Cat. [mol%] 30 Variations Yield [%] Ee [%] 

1 Λ-RhS (8) 30a None 32a, 54 86 

2 Λ-RhS (8) 30b None 32b, 75 72 

3 Λ-RhS (8) 30c None 32c, 83 87 

4 Λ-RhS (8) 30c CH2Cl2 (0.2 M) as solvent 32c, 55 84 

5 Λ-RhS (8) 30c CDCl3 (0.2 M) as sol. 32c, 93 92 

6 Λ-RhS (8) 30c CDCl3 (0.1 M) as sol. 32c, 98 95 

7 Λ-RhS (4) 30c CDCl3 (0.1 M) as sol. 32c, 80 92 

8 Λ-RhS (4) 30d CDCl3 (0.1 M) as sol. 32d, 82 92 

9 Λ-RhS (4) 30e CDCl3 (0.1 M) as sol. 32e,80 92 

10 Λ-RhS (4) 30f CDCl3 (0.1 M) as sol. 32f, 92 (90) 94 

11 Λ-RhS (4) 30f CHCl3 (0.1 M) as sol. 32f,90 94 

12 Λ-RhS (4) 30f CDCl3 (0.1 M) as sol., open air 32f, 90 94 

13 Λ-IrS (4) 30f CDCl3 (0.1 M) as sol., open air 32f, 50  0 

14 None 30f CDCl3 (0.1 M) as sol., open air 32f, 7 n.a. 

15 Λ-RhS (4) 30f CDCl3 (0.1 M), air, dark 32f, 0 n.a. 

[a] Reaction conditions: 30 (0.10 mmol), 31a (0.125 mmol), and chiral catalyst in 

acetone (0.2 M, 0.5 mL) were stirred at room temperature under N2 atmosphere with 

irradiation of blue LEDs (24 W) for 16 h; NMR yield, isolated yield is provided in 

parentheses; ee was determined by HPLC on a chiral stationary phase. 

 

Based on these results, pyrazoles with different substitution patterns were tested (Table 16). 

While a methyl group at the 5-position (R2) was not good for the yield (entry 1), a single phenyl 

substituent at the 3-position (R1) of the pyrazole produced 1-pyrroline 32c with an increased yield of 

83% with 87% ee (entry 3). Optimization of solvent and concentration led to an improved outcome of 

32c with 98% yield and 95% ee in CDCl3 under more diluted conditions (entries 3-6). In order to 

reduce the catalyst loading, the effect of other auxiliary was evaluated (entries 7-10). As a result, 

3-(4-methoxyphenyl) pyrazole provided the best choice for the present [2+3] photocycloaddition, 
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allowing to reduce the catalyst loading to 4 mol%, and delivering desired product 32f in 92% yield 

with 94% ee (entry 10). No differences were found between CDCl3, which was used to conveniently 

determine NMR yields, and CHCl3 (entry 11). Importantly, this simple and mild protocol could be 

conducted under air without the need for inert conditions, which renders it very practical (entry 12). It 

is noteworthy that the iridium analogue Λ-IrS also provided the 1-pyrroline 3f (50% yield) albeit 

without any enantioselectivity (entry 13). Control experiments demonstrated that the current 

transformation relies both on rhodium catalyst (entry 14) and visible light (entry 15). 

Overall, optimal results for the asymmetric [2+3] photocycloaddition with vinyl azide were 

obtained by using a single chiral-at-rhodium catalyst (4.0 mol%) and 3-PMP pyrazole as auxiliary 

under simple open air conditions (Table 16, entry 12). 

 

3.4.3 Mechanistic Studies  

 

1) Proposed catalytic cycle 

The proposed mechanism for this [2+3] photocycloaddition is shown in Figure 75. The 

coordination of substrate 30 to the chiral rhodium catalyst generates the substrate/catalyst complex I, 

which upon visible light excitation generates the excited state I*, most likely in its triplet excited state. 

The following direct reaction of the excited state I* with the vinyl azide co-substrate 31 affords the 

catalyst bound diradical intermediate II under generation of a new C-C bond. The stereochemistry of 

this bond formation is controlled by the metal-centered chirality of the rhodium complex. Subsequent 

extrusion of dinitrogen delivers the catalyst bound iminyl radical intermediate III,17 which then 

undergoes a stereospecific cyclization generating the product coordinated complex IV. Release of 

product from the rhodium catalyst and coordination of new substrate 30 then initiates a new catalytic 

cycle. Since the reaction is insensitive to air, it can be assumed that the diradical intermediates II and 

III are very short-lived and thus cannot engage in other side reactions. This reveals the advantages of 

such direct bond forming reactions from a photoexcited state over processes that occur through initial 

electron transfer. This mechanism is based on previous [2+2] photocycloaddition and further 

supported by a series of experiments shown below. 
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Figure 75.  Proposed mechanism of the [2+3] photocycloaddition. 

 

2) Identification of the key catalyst/substrate intermediate 

The proposed formation of intermediate I in Figure 75 is confirmed by a crystal structure of the 

pyrazole substrate 30f bound racemic catalyst RhS complex (RhS-PPz), as shown in Figure 76. 

Interestingly, it further reveals a π-π stacking between the cyclometalating benzothiazole moiety of the 

rhodium catalyst and the p-methoxyphenyl moiety of the pyrazole auxiliary which might explain the 

superiority of this auxiliary by modulating binding constant, steric and/or electronic effects.18 

 

 

Figure 76.  Synthesis and a crystal structure of the key rhodium/substrate intermediate RhS-PPz. 

 

3) UV/Vis absorption spectra 

UV-Vis absorption spectra in Figure 77 show that free substrate 30f has a weak absorption in the 

visible light region, thereby accounting for the background racemic reaction without catalyst (Table 

16, entry 14). Notably, the visible light absorption of substrate 30f is greatly enhanced upon binding to 
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the rhodium catalyst (RhS-PPz). Therefore, in the reaction mixture the intermediate I is selectively 

photoexcited to generate the photoexcited intermediate I* from which the direct bond formation with 

vinyl azide occurs. This is crucial in order to suppress any background reaction resulting from the 

photoactivation of the free ,-unsaturated N-acyl pyrazole substrate, which would otherwise 

deteriorate the overall enantioselectivity.  

 

 
Figure 77.  UV/Vis absorption spectra obtained in the study of the [2+3] photocycloaddition. 

 

Interestingly, although appearing as a yellow liquid, vinyl azide 31a does not absorb visible light 

significantly. But according to literature report, vinyl azide is supposed to be activated through energy 

transfer, which would lead to the generation of 2H-azirine 33, a side product that was observed during 

the condition optimization process. But under optimal conditions, no undesired photoinduced 

rearrangement to 2H-azirine 33 was detected, which means that the excited intermediate I* bearing the 

optimized auxiliary apparently undergoes a direct cycloaddition instead of triplet energy transfer to the 

vinyl azide co-substrate. 

In addition, the possibility of such azirines acting as viable intermediates in this catalytic cycle is 

ruled out since independently synthesized 2H-azirine 33 was demonstrated to not react with 30f in the 

presence of RhS and visible light (Figure 78a). Furthermore, the quantum yield for the reaction 30f + 

31a  32f was determined as  = 0.19, supporting the proposal that the photoreaction does not 

involve a chain process and instead at least one single photon is required for each formed product 

molecule (Figure 78b).  
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Figure 78.  Control experiment with 2H-azirine and quantum yield measurement. 

 

4) A computational study to interpret the results obtained with IrS as the catalyst 

A remaining problem was why the iridium congener IrS could not provide any enantioselectivity 

in both [2+2] and [2+3] photocycloadditions. In sharp contrast to the chiral-at-rhodium complex, the 

analogue chiral IrS performed like a racemic photosensitizer, such as benzil, in the aspects of yield, 

diastereoselectivities and enantioselectivity (Table 13). Although, IrS is known to have slower ligand 

exchange kinetics than RhS,19 which is further supported by calculations (Figure 79), this should give 

products in lower ee rather than racemic product. 

 

 

Figure 79.  Calculated energy profiles for ligand exchanges with RhS and IrS. 

 

To address this issue, a computational study on triplet energy and spin distribution of excited 

RhS-PPz and IrS-PPz was conducted. As a result, these two excited complexes have an identical 

triplet energy, but differ significantly in spin density distribution. As shown in Figure 80, most of the 

spin density in the triplet state of RhS-PPz is mainly localized at the alkene carbons of the coordinated 

substrate, at which position the chemoselective cycloaddition occurs, whereas in the triplet state of 
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IrS-PPz the iridium center possesses the majority of the spin density. This distinct difference in the 

nature of the excited state might account for the reactivity differences. Photoexcited IrS-PPz is not 

capable of undergoing a direct reaction with vinyl azides but instead serves as a photosensitizer to 

transfer its triplet energy to free substrate, and thereby leading to the formation of racemic 

photocycloaddition products.  

It is noteworthy that these calculations were done by Xinyao from Peking University. Further 

investigations on photophysical properties and excited state properties of catalyst/substrate complexes 

are ongoing in collaboration with the Paola Ceroni group and Mu-Hyun Baik’s group. 

 

 

Figure 80.  Calculated spin distribution and energy of the excited triplet states of 30f, RhS-PPz, and 

IrS-PPz. 

 

5) Interceptions for some of the reaction outcomes 

The current [2+3] photocycloaddition is more sensitive to reaction conditions, such as solvent, the 

amount of vinyl azide, and different auxiliaries, when compared with the [2+2] photocycloaddition 

introduced in chapter 3.3. An additional N2 exclusion/radical translocation is involved in this [2+3] 

cycloaddition. If this additional step is not effective enough, the initial C-C bond is just cleaved and 

the starting materials form back fast, which could lead to low yield. Furthermore, other pathways 

might influence the stereoselectivity of the target reaction. (Figure 81). For example, the excited 

rhodium complexes could transfer energy to free substrate, leading to formation of racemic product. 

This could explain the obtained low ee for the reaction of dimethyl pyrazole substrate 30a. Although 

30a has no uncatalyzed background reaction (Table 15), the methyl group at the 5-position of the 

pyrazole provides steric hindrance, which might slow down the first bond forming thus accounting for 

the low yield and ee. Besides, in the presence of excess amount of vinyl azide, the reaction with 
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excited free substrate competes with the Lewis acid accelerated desired pathway, thus resulting in 

inferior enantioselectivity. Furthermore, product bound rhodium complex could also act as sensitizer, 

transferring energy to the free substrate and inhibit the desired transformation. Therefore, careful 

optimization of reaction conditions with the choice of a suitable auxiliary is very important for this 

[2+3] photocycloaddition. 

 

 

Figure 81.  Hypothesis to explain the factors that affect the outcome of the [2+3] photocycloaddition. 

 

3.4.4 Substrate Scope and Synthetic Applications 

 

With the mechanistic picture in mind, the generality of the single chiral rhodium catalyst enabled 

[2+3] photocycloaddition was evaluated using 3-(4-methoxyphenyl)pyrazole as the auxiliary. As 

shown in Figure 82, different patterns of substitution at the β-aryl moiety of N-acyl pyrazoles 30 were 

well tolerated, regardless of electronic nature (32g-l) or position (32g, 32m-n) of the substituents. 

Heteroaryl frameworks were proved to be compatible as demonstrated by the effective formation of 

thienyl- and indolyl- substituted 1-pyrrolines (32o-p). Notably, this protocol is amenable to the 

construction of complex 1-pyrrolines bearing a quaternary stereocenter (32q-s) reflecting the 

robustness of this single rhodium catalysis. In particular, enantioenriched 1-pyrroline 32s containing a 

spiro center could be built in excellent yield (94%) with almost complete enantioselectivity of >99% 

ee. Additionally, ,-unsaturated N-acyl pyrazoles (E)-30q and (Z)-30q gave the product 32q in 

similar yields with identical stereochemistry as an indicator for the involvement of the diradical 

intermediates II/III, which also makes the protocol more practical since the preparation of starting 

materials could be easier without the concern of E/Z isomers. To be mentioned, electron rich aryl 
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substituted N-acyl pyrazole work better than electron deficient one as indicated by the comparison 

between 32q and 32r. 

 

 

Figure 82.  Substrate scope of the [2+3] photocycloaddition with respect to N-acyl pyrazole. 

Reaction conditions: see Table 16 entry 12. [a] 8.0 mol% of Λ-RhS under nitrogen atmosphere. [b] 

CDCl3 (2.0 mL). The relative and absolute configuration of 1-pyrrolines was unambiguously assigned 

by the crystal structure of 32k. 

 

Gratifyingly, various functionalized vinyl azides were readily accommodated (Figure 83), 

including not only aryl vinyl azides (32ft-x) but also more challenging alkyl vinyl azides (32z-ab). 

Although vinyl azides bearing an electron rich substitution at the phenyl group gave a decreased ee 

value (32t, 90% ee), the reaction outcome was not influenced by steric hindrance (32v-x). Furthermore, 

a free hydroxyl group (32aa) as well as C=C double bonds (32ab) were tolerated, thereby highlighting 

the good functional group compatibility of the current protocol. To be mentioned, for some cases, 

performing the reaction under nitrogen atmosphere with an increased catalyst loading (8.0 mol%) is 
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beneficial for reaction efficiency (for examples, see 32p, 32t, and 32ab). 

 

 

Figure 83.  Substrate scope of the [2+3] photocycloaddition with respect to vinyl azide. Reaction 

conditions: see Table 16 entry 12. [a] 8.0 mol% of Λ-RhS under nitrogen atmosphere. 

 

 

Figure 84.  Scope limitations of the present [2+3] photocycloaddition. 

 

Limitations of this reaction are shown in Figure 84. A δ-phenyl α,β/γ,δ-unsaturated substrate 

furnished the 1-pyrroline 32ac in moderate yield with excellent chemoselectivity, however the 

enantioselectivity of 32ac was only 88% ee. An aromatic group at the β-position is required for this 

type of direct bond formation from the photoexcited state, as a β-ethyoxyl N-acyl pyrazole failed to 

give the target product 32ad. In addition, two vinyl azides containing different N-moieties were not 

competent for the photocycloaddition for unknown reasons.  
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Figure 85.  Synthetic applications of the [2+3] photocycloaddition. c) Reaction conditions for (i) 

L-Leucin-tert-butylester hydrochloride, Et3N, HOBt, toluene, 50 oC; (ii) 2-Methoxyacetyl chloride, 

Et3N, CH2Cl2, 50 oC; (iii) LiCl, Et3N, EtOH/THF (4:1), r.t.; (iv) Pd/C, H2, EA, r.t.  

 

 
Figure 86.  Simple reaction set-up for large-scale [2+3] photocycloaddition. 
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Encouraged by the mild conditions and broad substrate scope, the synthetic potential of this 

protocol was examined (Figure 85). First of all, a structurally complicated steroid substituted 

1-pyrroline 35 could be obtained by the [2+3] photocycloaddition with ethisterone derived vinyl azide 

34 in 86% yield obtaining almost a single stereoisomer (Figure 85a). Besides, this transformation was 

demonstrated to be applicable to a gram scale synthesis without loss of efficiency (Figure 85b). A 

simple set-up under air condition highlights its practicability (Figure 86). Although the present 

methodology relies on a bidentate coordination mode of the substrate, N-acyl pyrazoles constitute very 

desirable synthons which can easily be transformed into other functionalities, as shown in Figure 85c, 

for a clean and mild conversion to the amide 36 and ester 38. Importantly, the auxiliary 

3-(4-methoxyphenyl)pyrazole 40 was fully recovered in these conversions. Furthermore, 1-pyrroline 

with a prochiral cyclic imine group is applicable for further stereoselective synthetic manipulation as 

highlighted by the synthesis of a carbapenem analogue 37 and a pyrrolidine 39. 

 

3.4.5 Conclusions 

 

In conclusion, this chapter demonstrates an important expansion of catalytic asymmetric reactions 

occurring via direct stereocontrolled bond forming reactions of photoexcited states.20 Previously 

restricted to the class of cyclobutanes, an unprecedented economical access to the prevalent 

enantioenriched 1-pyrrolines was developed based on a visible-light-activated [2+3] 

photocycloaddition of alkenes with vinyl azides. The employed robust rhodium-based chiral-at-metal 

Lewis acid catalyst is key to the successful implementation of this methodology. Upon binding to the 

alkene substrate, it provides a unique handle for selective visible light excitation. Triplet spin of the 

corresponding excited substrate/catalyst complex is mainly localized at the alkene carbons so that an 

efficient reaction with the vinyl azide co-substrate can occur. All reactive intermediates remain bound 

to the catalysts, thus leading to a robust catalytic scheme (no exclusion of air necessary) with excellent 

stereocontrol. 

In addition to the conceptual appeal, the synthetic usefulness of this protocol is indicated by the 

simple reaction setup with a single catalyst and no necessity for inert reaction conditions, exceptional 

stereoselectivity with virtual perfect diastereoselectivity and up to >99% ee, a broad substrate scope 

that gives access to a large variety of chiral 1-pyrrolines including quaternary stereocenters, and the 
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ability to use these 1-pyrrolines as building blocks for conversions into biologically relevant chiral 

pyrrolidines. Further discovery of new types of stereocontrolled reactions with electronically excited 

molecules could be anticipated. 
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3.5 Asymmetric [3+2] Photocycloaddition Enabled by Visible Light Excitation of 

Catalyst Bound Cyclopropanes 

  

3.5.1 Research Background and Reaction Design 

 

This thesis has illustrated a simplified catalytic system in which only a single rhodium-based 

chiral Lewis acid is required for a visible-light-activated asymmetric [2+2] photocycloaddition with 

alkenes (Chapter 3.3)1 and a [2+3] photocycloaddition with vinyl azides (Chapter 3.4)2 (Figure 87a). 

These transformations show unique advantages of photocycloadditions as a powerful synthetic tool 

that allow to construct carbo- and heterocycles with the formation of several new bonds and one or 

more stereocenters in a step- and atom-economic fashion.3 However, performing photocycloadditions 

in a catalytic asymmetric fashion is still a formidable challenge because of difficulties to suppress the 

uncatalyzed background photoreaction from the reactive photoexcited state of a substrate that is not 

associated with the chiral catalyst.4 Only a few examples of catalytic asymmetric photocycloadditions 

have been reported and they typically deal with [2+2] photocycloadditions of α,β-unsaturated 

carbonyls as the most frequently used substrates.5 Besides the previously described examples in this 

thesis, Bach introduced chiral Lewis-acid-catalyzed [2+2] photocycloadditions with UV-light.6 With 

respect to visible light, Bach 7  and recently also Yoon 8  reported catalytic asymmetric [2+2] 

photocycloadditions mediated through hydrogen-bonding interactions. Furthermore, Yoon developed 

some elegant asymmetric [2+2] photocycloadditions using a combination out of chiral Lewis acid 

catalyst and photocatalyst.9 New methodology activating other types of molecules to access prevalent 

new chiral cyclic scaffolds is highly desirable. 

Cyclopropanes are very versatile synthetic building blocks due to ring opening induced by the 

inherent ring strain.10 Most of the cyclopropanes used for cycloadditions are highly activated bearing 

donor-acceptor substituents that predispose toward ring opening.11 On the other hand, ring opening of 

cyclopropanes initiated by radical processes has been reported for decades and their applications for 

intramolecular cyclization were well studied. 12  However, only a single catalytic asymmetric 

photocycloaddition based on cyclopropanes has been reported. In 2016, the Yoon group13 introduced 

an elegant enantioselective [3+2] photocycloaddition between aryl cyclopropyl ketones and alkenes 

catalyzed by a combination out of gadolinium PyBOX chiral Lewis acid and [Ru(bpy)3](PF6)2 as 
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photoredox catalyst (Figure 87b). Mechanistically, this cycloaddition is initiated by a photoredox 

catalyst mediated single electron reduction of the cyclopropyl ketones bound to the Lewis acid in the 

ground state. Besides photoinduced electron transfer, 14  Alemán recently demonstrated that 

cyclopropanes can also undergo stereocontrolled direct reactions from the electronically excited state 

as revealed with an iridium-sensitized stereocontrolled ring expansion of chiral nitro cyclopropanes 

(Figure 87c).15 Despite their limitations with respect to scope, these two studies demonstrate that 

acceptor-substituted cyclopropanes are promising building blocks for photoinduced ring opening that 

occurs either directly from the excited state or by photoinduced electron transfer.  

 

 

Figure 87.  Strategies to broaden the scope of photocycloadditions from α,β-unsaturated carbonyls to 

acceptor-substituted cyclopropanes. 
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Inspired by these studies and based on the previous [2+2] and [2+3] photocycloadditions, the 

author of this thesis envisioned that if a cyclopropyl ketone could bind to the chiral-at-rhodium 

catalyst and be excited by visible light, the thereby formed excited cyclopropane/catalyst complex 

would undergo a facile single electron reduction followed by ring opening, generating γ-radical 

enolate, or a direct ring opening of the excited state giving 1,3-diradical species (Figure 87d). 

Trapping these highly reactive radical intermediates with the stereochemistry controlled by metal 

centered chirality would enable new catalytic asymmetric photocycloadditions. Herein, this chapter 

describes how the author accomplished this hypothesis and expanded the scope of rhodium catalyzed 

asymmetric photocycloadditions to simple mono-acceptor-substituted cyclopropanes affording 

previously inaccessible chiral cyclopentane and cyclopentene derivatives. 

 

3.5.2 Development of [3+2] Photocycloaddition with Alkenes 

 

To accomplish the hypothesis, two main challenges needed to be addressed: first, to identify an 

efficient way to generate the photoexcited state of the cyclopropane substrates, and second to cope 

with the highly negative reduction potential of typical cyclopropanes, which is reported to be more 

negative than –2 V vs Ag/AgCl.12  

Geminal β,β-dimethyl cyclopropane 41a was selected to start the experimental study, considering 

that it produces less number of possible diastereomers. Gratifyingly, upon coordination of 41a to the 

bis-cyclometalated Rh-based Lewis acid catalyst RhS, a new species forms immediately that is 

assigned to be rhodium bound cyclopropane, RhS-CyP (Figure 88a). Cyclic voltammetry reveals that 

the complex RhS-CyP (E[RhS-CyP]/[RhS-CyP].- = –1.2 V vs Ag/AgCl) has a greatly decreased reduction 

potential by E = 1.3 V compared with the noncoordinated cyclopropane 41a (E1a/1a.- = –2.5 V vs 

Ag/AgCl), thereby rendering it accessible for reduction under mild conditions (Figure 88b). 

Furthermore, in contrast to the free cyclopropane 41a, the RhS-CyP complex absorbs visible light 

with a broad absorption band around 400 nm (Figure 88c). In collaboration with Dr. Marianna 

Marchini and Prof. Paola Ceroni from the University of Bologna, Italy, the emission spectrum of 

RhS-CyP was recorded at low temperature (77 K). According to the emission maximum at 507 nm 

(with a lifetime of 0.12 ms), a triplet state energy of 2.5 eV can be calculated which corresponds to a 

roughly estimated reduction potential of +1.3 V vs Ag/AgCl for the excited state RhS-CyP.  
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Figure 88.  Changes of the photophysical and redox properties of cyclopropyl ketone 41a upon RhS 

coordination. b) Cyclic voltammetry recorded in CH2Cl2 containing 0.1 M nBu4NPF6 at 22 ± 2 °C. 

Scan rate = 0.1 V/s. The current was normalized. c) Absorption spectra measured at room temperature 

in CH2Cl2 (41a, 0.2 mM; RhS-CyP, 0.02 mM). Emission spectra recorded at 77 K with excitation at 

400 nm.  
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These results indicate that the photoexcited RhS-CyP complex should be accessible to single 

electron reduction by a weak reductant, such as diisopropylethylamine (DIPEA, EDIPEA.+/DIPEA = +1.0 

V vs Ag/AgCl). Indeed, irradiating a mixture of 41a, acrylonitrile 42a, and 2.0 mol% of Δ-RhS with 

substoichiometric amount of DIPEA afforded the desired cycloaddition product cyclopentane 43a in 

quantitative yield with perfect enantioselectivity (99% ee) and as a single diastereomer (Table 17, 

entry 1). Control experiments clearly demonstrated that RhS, reducing agent, visible light, and inert 

atmosphere with the exclusion of dioxygen are all indispensable for this highly efficient 

transformation (entries 2, 5-7). Inorganic base without reducing ability, like Na2HPO4, did not 

facilitate the desired ring opening (entry 3). And the iridium analogue IrS could hardly give detectable 

amount of product (entry 4). 

 

Table 17. [3+2] Photocycloaddition of a simple cyclopropane with acrylonitrile.[a] 

 

Entry Catalyst Variations Yield [%] D.r. Ee [%] 

1 Δ-RhS None 98 >20:1 99 

2 RhS Without DIPEA 0 n.a. n.a. 

3[b] RhS Na2HPO4 instead of DIPEA 0 n.a. n.a. 

4[b] IrS None   <10 n.d. n.d. 

5 None None 0 n.a. n.a. 

6 RhS Dark 0 n.a. n.a. 

7 RhS Under air 0 n.a. n.a. 

[a] Reaction conditions: 41a (0.1 mmol), 42a (2.5 equiv), DIPEA (50 mol%) and 

catalyst (2.0 mol%) in acetone (0.1 M) were stirred at room temperature under N2 

atmosphere with irradiation of blue LEDs (24 W) for 16 h; NMR yield; ee was 

determined by HPLC on a chiral stationary phase. [b] 4.0 mol% of catalyst with 10 

equiv of 42a and 2.0 equiv of base in 0.05 mmol scale. 
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Next, the 2-phenyl cyclopropane 44a was subjected to the newly developed reaction system 

(Figure 89). In the presence of DIPEA, the desired cyclopentane 45a was obtained in perfect yield and 

enantioselectivity, but with a low diastereoselectivity of 2.1:1. Interestingly, without any reducing 

agent, the reaction also worked smoothly, although the ee was a little bit lower. This implies that, 

instead of photoinduced SET reductive ring opening, the cycloaddition of cyclopropane bearing an 

aromatic substituent might proceed through direct ring expansion at the level of the excited state. 

Further attempts to improve the diastereoselectivity were made by modification of catalyst in the 

absence of DIPEA. As shown in Figure 89, catalysts that are more bulky in the coordination pocket 

gave slightly higher d.r. values, while introducing substituents at cyclometalating phenyl moiety was 

not helpful. Additionally, the related RhO, which features a less steric congestion than RhS congener, 

delivered much lower d.r. and ee values. 

 

Figure 89.  Effort to improve the diastereoselectivity of 45a by catalyst modification. NMR yield.  
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Furthermore, synthetically more useful acyl cyclopropanes with pyrazole as auxiliary were tested 

(Figure 90). Unfortunately, under optimal conditions (Table 17, entry 1), no reaction occurred for the 

cyclopropane bearing 3,5-dimethyl pyrazole (41b), which is ascribed to the difficulty in reduction of 

an amide and the instability of the corresponding enolate. Actually, for a substrate with two electron 

withdrawing groups at the cyclopropyl ring (41d), full conversion was obtained. However, two 

unidentified isomers were formed in 3.7:1 ratio and with disappointing 15% ee for the major isomer. 

Finally, extensive screening led to the generation of a 3-PMP pyrazole substituted cyclopentane in 

moderate yield (50% NMR yield, starting from 41c) under conditions with a modified 

bis-cyclometalated rhodium complex (RhS(OMe)) using N,N-dimethylaniline as reducing agent that 

is known to be easier oxidized (Eamine.+/amine = 0.71 V vs SCE,16 in MeCN).  

 

 

Figure 90.  Effort to extend the scope of the [3+2] photocycloaddition to synthetically useful 

substrates with N-pyrazole as auxiliary. 

 

In summary, mono-acceptor-substituted cyclopropanes were designed to undergo a [3+2] 

photocycloaddition with alkenes via photoinduced SET or direct ring opening at the excited state. 

Employing an imidazolyl group as auxiliary, good yields and enantioselectivities could be obtained 

with a single chiral-at-rhodium catalyst, but the attempts to apply synthetically more desirable 

pyrazoles as auxiliaries gave inferior results. 
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3.5.3 Extension to [3+2] Photocycloaddition with Alkynes 

 

Table 18. Conditions optimization for [3+2] photocycloaddition with alkyne. [a] 

 

Entry Catalyst [mol%] Base Solvent Yield [%] Ee [%] 

1 Δ-RhS (4.0) DIPEA Acetone 47a, 57 87 

2 Δ-RhS (4.0) Et3N Acetone 47a, 75 88 

3 Δ-RhS (4.0) 2,6-lutidine Acetone 47a, 0 n.a. 

4 Δ-RhS (4.0) K2CO3 Acetone 47a, 0 n.a. 

5 Δ-RhS (4.0) Et3N CH2Cl2 47a, 82 81 

6 Δ-RhS (4.0) Et3N MeCN 47a, 57 77 

7 Δ-RhS (4.0) Et3N DMF 47a, 55 88 

8 Δ-RhS (4.0) Et3N PhCl 47a, 97 88 

9 Δ-RhS (4.0) Et3N THF 47a, 95 (92) 89 

10 Δ-RhS (4.0) Et3N 1,4-dioxane 47a, 54 91 

11 Δ-RhS (8.0) Et3N THF 47a, 91 91 

12 Δ-RhS (8.0) Et3N 1,4-dioxane 47a, 80 92 

13 Δ-RhO (4.0) Et3N THF 47a, 97 63 

14 Δ-RhS(Adm) (4.0) Et3N THF 47a, 75 93 

15 Δ-IrS (4.0) Et3N THF 47a, <10 81 

16[b] Δ-RhS (4.0) Et3N THF 47b, 99 (95) 98 

[a] Reaction conditions: 41 (0.05 mmol), 46a (5 equiv), base (2.0 equiv), and 

catalyst in the indicated solvent (0.1 M) were stirred at room temperature under N2 

atmosphere with irradiation of blue LEDs (24 W) for 16 h; NMR yield; ee was 

determined by HPLC on a chiral stationary phase. Isolated yields are provided in 

parenthesis. [b] 41e was employed as substrate.  

 

Based on these results, the author of this thesis tried to apply the strategy to the cycloaddition of 

cyclopropane with alkyne (Table 18). This is more challenging due to the relatively low reactivity of 

alkynes toward radical addition.17 Encouragingly, by using 4.0 mol% of catalyst in combination with 

2.0 equiv of DIPEA, the desired cyclopentene 47a was formed in moderate yield (57% NMR yield) 
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and with 87% ee for the reaction of 41a with phenylacetylene 46a (entry 1). Again, other bases, such 

as 2,6-lutidine and K2CO3 without reducing ability, could not facilitate the reaction (entries, 3,4). Et3N 

was proved to be better for the photocycloaddition with alkyne, giving 75% yield with 88% ee (entry 

2). Solvent screening revealed that PhCl and THF provided excellent yields (97% and 95%, 

respectively) with good enantioselectivities (88%-89% ee, entries 5-10). Besides, 1,4-dioxane 

delivered the highest ee of 91% among the solvents tested, albeit in a moderate yield of 54% (entry 

10). Increasing the catalytic loading to 8.0 mol% led to improved results with the formation of 47a in 

yield ≥80% with enantioselectivities ≥91% ee (entries 11,12). Other catalysts were evaluated as well 

(entries 13-15). Consistent with previous observations, a sterically highly demanding complex 

Δ-RhS(Adm) 18  gave the best enantioselectivities among these catalysts (93% ee, entry 14). 

Furthermore, the reaction catalyzed by the iridium congener Δ-IrS was very sluggish, which was 

presumably caused by the slow ligand exchange kinetics (entry 15). Guided by the previous 

investigations on the origins of asymmetric induction in Lewis acid catalyzed enolate chemistry 

(Chapter 3.1),19 a more bulky mesityl group was introduced as the N-substituent of the imidazolyl 

moiety. As expected, cyclopentene 47b was formed in 99% NMR yield, 95% isolated yield with 

excellent 98% ee with 4.0 mol% of Δ-RhS and 2.0 equiv of Et3N using THF as solvent (entry 16). 

Therefore, these conditions were used for the further substrate scope studies with respect to the 

synthesis of cyclopentenes. 

 

3.5.4 Substrate Scope 

 

Firstly, the scope of [3+2] photocycloadditions with respect to alkenes was investigated under the 

mild conditions (Figure 91). A wide range of Michael acceptors (43a-g), styrenes (43h-q) and an 

enyne (43r) were able to participate in the cycloadditions generating cyclopentanes in 63% to 99% 

yields, with diastereoselectivities of 8:1 to >20:1 d.r. value, and up to complete enantioselectivities 

(>99% ee for 43p and 43r). In general, electron deficient olefins worked better, which is in accord 

with the electron rich nature of the γ-radical enolate intermediate (see Figure 87d), while a 

para-methoxy styrene could only work at the elevated temperature of 50 °C delivering compound 43i 

in 70% yield with only 90% ee. Heterocycles like pyridines (43n-o) and functional groups that are 

vulnerable to highly reducing conditions, including carbonyls (43c, 43u), sulfonyl (43f), cyano (43l), 
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C(sp2)-F bond (43j) and trifluoromethyl (43p-q), were compatible highlighting the mildness and 

versatility of the current catalytic system. It is noteworthy that cyclopentanes bearing an all-carbon 

quaternary center could be synthesized with excellent stereoselectivities (43g and 43p-r, >20:1 d.r., 

99% ee). Furthermore, biologically relevant structures derived from glucofuranose (43s), aspartame 

(43t), and fenofibrate (43u) could be constructed effectively. 

 

 

Figure 91.  Substrate scope of the [3+2] photocycloaddition with respect to alkenes. Reaction 

conditions: see Table 17 entry 1. [a][b][c] DIPEA (2.0 equiv) and Δ-RhS (4.0 mol%) were employed. 

[b] 50 oC. [c] Optically pure alkenes (1.25 equiv) were employed. [d] Λ-RhS was employed. Structure 

of 43k was determined by X-ray crystallography and all other compounds were assigned accordingly. 
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Figure 92.  Substrate scope of the [3+2] photocycloaddition with respect to acceptor-substituted 

cyclopropanes. Reaction conditions: see Table 17 entry 1. [a] DIPEA (2.0 equiv) and Δ-RhS (4.0 

mol%). [b] DIPEA (2.0 equiv) and Δ-RhS (8.0 mol%) in acetone/MeCN (1:1). 

 

Next, acyl cyclopropanes with imidazolyl auxiliary were subjected to the single chiral rhodium 

catalytic system (Figure 92). Alkyl (43v-w) or aryl (45a-e) substituents at the cyclopropyl ring were 

well accommodated furnishing desired cyclic products in 65-99% yield with up to 99% 

enantioselectivities. Notably, spirocyclic compounds could be obtained with good results in the cases 

of 43v-w. However, cyclopropanes with two different substituents at the 2-position of the cyclopropyl 

ring led to the formation of products with poor d.r. values (45a-e). This can be rationalized with the 

flexibility of the corresponding γ-radical enolate intermediate which makes enantioface differentiation 

of the pro-chiral radical Csp2 very challenging. In addition, a pyridyl group could also be employed as 

the coordinating group with synthetically acceptable efficiency (45f). 

Figure 93 shows the limitation of this method. A very electron rich vinyl ether and two internal 

alkenes failed to undergo the photocycloadditions (45g-i), which can be attributed to the mismatched 

reactivity with the key radical enolate intermediate. The 4-vinylpyridine, which could competitively 

coordinate to the catalyst, is not tolerated (45j). In addition, a mono-methyl substituted acyl 

cyclopropane is somehow unable to react with acrylonitrile (45k).  
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Figure 93.  Limitations of the [3+2] photocycloaddition of cyclopropanes with alkenes. 

 

 

Figure 94.  Substrate scope of the [3+2] photocycloaddition with respect to alkynes. Reaction 

condition: see Table 18 entry 16 but with 2.5 equiv of alkyne. [a] Acetone instead of THF. [b] Alkyne 

(5.0 equiv) and Δ-RhS (8.0 mol%) in PhCl. [c] Alkyne (5.0 equiv) and Δ-RhS (4.0 mol%) in PhCl. [d] 

Optically pure alkyne (1.25 equiv) and Δ-RhS (8.0 mol%) in PhCl. 

 

Finally, the scope of [3+2] photocycloadditions with alkynes is summarized in Figure 94. This 

transformation tolerated large electronic perturbation (47a-f) and different substituted pattern (47f-h) 

on the aromatic moiety of alkynes. Different from the scope of alkenes, an aryl alkyne with 4-methoxy 

group worked smoothly, forming 47c in 95% yield with 97% ee. A thiophene (47i), an enyne (47j), 

and an estrone derivative (47k) were well accommodated, highlighting the functional group tolerance 

of this protocol. But aliphatic alkynes are not feasible for the desired cycloaddition (47n). Finally, two 
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represented cyclopropyl ketones were proved to be competent (47l-m). 

 

3.5.5 Mechanistic Studies 

 

1) Proposed mechanism 

 

 

Figure 95.  Proposed mechanism of the [3+2] photocycloadditions and quantum yield determination. 

 

Based on the investigation of the photophysical and redox properties of the rhodium-coordinated 

cyclopropane (Figure 88), a proposed mechanism is depicted in Figure 95. Initially, the 

catalyst/substrate complex (intermediate I) forms upon bidentate coordination of the cyclopropane 

substrate to the rhodium complex RhS. After photoexcitation, intermediate II serves as a strong 

oxidant to become reduced by a tertiary amine generating the intermediate III which subsequently 

ring-opens12 to form a rhodium-coordinated enolate radical intermediate IV. Subsequent radical 

cycloaddition with an alkene or an alkyne affords the corresponding ketyl radical intermediate V. This 

highly reducing ketyl radical V can either donate an electron to the oxidized amine radical cation for 

the regeneration of tertiary amine or to the photoexcited intermediate II propagating a chain process. 
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Finally, ligand exchange regenerates the catalyst/substrate complex I completing the catalytic cycle 

with the release of the cycloaddition products.  

 

2) Discussion of the key SET step 

As an example, the redox potential of excited RhS-CyP is calculated as +1.3 V vs Ag/AgCl based 

on the ground state potential and excited triplet energy (Figure 88), while the peak potential to oxidize 

DIPEA is +1.0 V vs Ag/AgCl (Figure 96). This supports a feasible SET transfer between a mild 

reducing agent and the photoexcited RhS/substrate complex (intermediate II), rather than any other 

ground state intermediates or non-coordinated substrate, which highlights this unique design of the 

direct photoexcitation of catalyst bound substrate. This system only relies on catalytic amounts of a 

mild reducing initiator, thus ensuring high chemoselectivity and excellent functional group tolerance. 

Furthermore, electron transfer is expected to happen with the excited triplet state instead of the singlet 

state, considering the longer life-time of the triplet state of Rh complexes because of the efficient inter 

system crossing in the presence of the heavy rhodium atom.20 In addition, based on photophysical 

studies and cyclic voltammetry, the SET reduction of the RhS-CyP complex is supposed to be ligand 

centered, thus leading to the observed reactivity. 

 

 

Figure 96.  Cyclic voltammogram of DIPEA. Recorded in CH2Cl2 containing 0.1 M nBu4NPF6 at a 

scan rate = 0.1 V/s. 

 

3) Quantum yield measurement 

According to the proposed mechanism, at least one photon is required for the generation of a 

molecule of product, even if a chain mechanism is involved. Indeed, the quantum yield of the reaction 

41a + 42a  43a was determined as 0.11 (Figure 95b), by a simplified procedure using a Powermeter 
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as the detector (see experimental part for details). This value disfavors the chain propagation through 

the electron transfer from ketyl radical intermediate V to the ground state intermediate I. But the chain 

process involving single electron transfer from ketyl radical intermediate V to the excited 

catalyst/substrate (intermediate II) could not be excluded out. 

 

4) An alternative mechanism via direct ring opening at the excited state 

For cyclopropanes with an aromatic substituent, a direct ring opening upon photoexcitation could 

happen. Such substrate undergoes [3+2] photocycloaddition without additional amine although the 

reaction is a little more sluggish (Figure 89). Furthermore, the cis-configured cyclopropane cis-44a 

converts to the trans-diastereomer trans-44a upon photolysis in the presence or absence of an amine, 

indicating a reversible ring opening/closure upon excitation (Table 19).  

 

Table 19. Cis- to trans-isomerization of aryl cyclopropane 44a.[a] 

 

Entry Starting cyclopropane DIPEA Recovered cyclopropane 
[trans/cis] 

1 trans-44a none >25:1 

2 trans-44a 50 mol% >25:1 

3 cis-44a none >25:1 

4 cis-44a 50 mol% >25:1 

[a] Reaction conditions: aryl cyclopropane 44a (0.05 mmol), rac-RhS (4.0 

mol%), DIPEA (0 or 50 mol%) in acetone (0.1 M) were stirred at room 

temperature under N2 atmosphere with irradiation of blue LEDs (24 W) for 16 

h; Trans/cis ratio was determined by crude 1H NMR. In all entries, >90% of 

cyclopropane was recovered. 

 

5) Competitive coordination of substrate and product to RhS  

As indicated by in situ NMR experiments, both 41a and 43a could bind to RhS quickly, which 

again shows that the bis-cyclometalated rhodium catalyst is coordinatively very labile. In order to 

differ the coordination affinity of substrate and product with RhS, a competing experiment was 

conducted. To a solution of 41a/43a (1:0.8), rac-RhS (1.0 equiv refers to 41a) was added. After 
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mixing for 30 minutes, the crude 1H NMR spectrum clearly showed that only the substrate coordinated 

Rh complex (RhS-CyP) was formed while all 43a remained free without the formation of 

catalyst/product complex (Figure 97). 

These results imply that compared with the product, the substrate has a much higher coordination 

constant with RhS. Besides, only the substrate-coordinated Rh complexes would undergo the 

following transformation leading to continuous consumption of substrate. Therefore, good conversions 

without significant catalyst inhibition by the product are reasonable in the current system. 

 

 

Figure 97.  Competitive coordination of 41a and 43a to RhS as demonstrated by 1H NMR 

experiments (300 or 500 M in CD2Cl2). The third spectrum: mix rac-RhS (0.02 mmol), 41a (0.02 

mmol) and 43a (ratio of 41a/43a = 1:0.8 as indicated in the first spectrum), 1,3,5-trimethoxybenzene 

(0.02 mmol, internal standard), and CD2Cl2 in a NMR tube for 30 minutes. 
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6) Triple role of RhS  

Noteworthy are the essential multiple roles of the chiral rhodium Lewis acid catalyst RhS. 

Substrate coordination lowers the reduction potential of the rhodium-bound cyclopropyl ketone and 

enables a direct photochemical excitation using visible light, thereby creating a strongly oxidizing 

excited state which can be reduced by a mild reducing agent. This explains the high functional group 

tolerance and the absence of any background reaction which is a prerequisite for obtaining very high 

enantioselectivities. Importantly, all reactive intermediates, including excited states and radical species, 

remain bound to the single chiral catalyst throughout the catalytic cycle and thereby providing a very 

robust catalytic system with a selective photoexcitation and photoreactivity of the catalyst-bound 

substrate and high stereocontrol in the following radical chemistry. This is distinct from Yoon’s work13 

which employed two catalysts to separate the stereodetermining bond formation from the 

photochemical transformation, in which a highly reducing species derived from a reduced additional 

photocatalyst is required to activate the ground state Lewis acid bound cyclopropane (typically with 

two electron withdrawing groups). 

 

3.5.6 Conclusions 

 

In conclusion, this chapter disclosed a conceptually straightforward and effective method for the 

catalytic asymmetric [3+2] photocycloaddition of cyclopropanes by employing a single rhodium-based 

chiral Lewis acid catalyst.21 The cyclopropane/catalyst complex serves as the visible-light-absorbing 

intermediate and its photoexcited state constitutes a strong oxidant to facilitate a reductive ring 

opening of the cyclopropane under mild conditions in an overall photoinduced electron transfer 

catalysis. Notably, not only a wide range of alkenes but also phenylacetylenes, which have not been 

utilized for intermolecular catalytic asymmetric photocycloadditions before,22 are capable of trapping 

the catalyst-bound radical intermediate. Different from previous studies on direct bond formation of 

excited enones, a mild SET reduction of the photoexcited states enables these asymmetric [3+2] 

photocycloadditions providing new approaches to chiral cyclopentanes and cyclopentenes that 

complement the previously reported access to cyclobutanes1 and 1-pyrrolines2. 

Chapters 3.3, 3.4, and 3.5 showed the versatility of the chiral-at-rhodium Lewis acid catalyst for 

catalyzing a set of highly asymmetric photocycloadditions that only rely on a single chiral catalyst 
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with loadings of 0.5-8 mol%, feature simple and mild reaction conditions, provide high yields (up to 

99%) with excellent enantioselectivities (up to >99% ee), and display broad substrate scopes with high 

functional group tolerance.  

The key to the success of this reaction is the utilization of the photoexcited rhodium bound 

cyclopropyl ketone as strong oxidant to trigger the SET process. On the other hand, the Kang group 

demonstrated that a rhodium bound enone could also directly undergo visible-light-excitation and then 

initial follow-up SET oxidation of a suitable substrate.23 Specifically, tetrahydroisoquinoline derived 

α-amino alkyl radical formation and its stereoselective addition to an α,β-unsaturated 2-acyl imidazole 

were successfully achieved by using a single chiral-at-rhodium catalyst. On the contrast, the related 

Giese type radical additions previously developed by Meggers group require two catalysts. Shortly 

after that, Jiajia Ma from the Meggers group disclosed a single chiral-at-rhodium complex catalyzed 

reductive coupling of N-(acyloxy)phthalimide and α,β-unsaturated N-acyl pyrazole in the presence of 

Hantzsch ester as terminal reductant and proton source.24 This robust protocol provided an efficient 

approach to enantioenriched -substituted -aminobutyric acid derivatives, optionally containing 

fluorinated quaternary stereocenters. New asymmetric transformations based on the photoexcited 

chiral-at-rhodium catalyst/substrate complex are anticipated. 
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3.6 Electricity Driven Asymmetric Lewis Acid Catalysis 

 

3.6.1 Reaction Design and Research Background  

  

Bis-cyclometalated chiral-at-metal rhodium complexes have been demonstrated to be a versatile, 

novel class of chiral Lewis acids.1 Among their diverse reactivity, HOMO activation of carbonyl 

compounds through bidentate coordination and deprotonation will form well-defined catalyst bound 

enolate intermediates (Figure 98a). These enolate species have been used not only as nucleophiles in 

the ground states toward a variety of asymmetric electrophilic additions, 2  but also as 

visible-light-absorbing antennas which after photoexcitation become highly reducing initiators for 

redox processes.3 In addition, chapter 3.1 clearly discloses a significantly lower redox potential by 

~1.0 V of rhodium bound enolate compared with the parent carbonyl substrate.4 As a result, this 

enolate species could also be a reductive quencher (in the ground state) participating in an additional 

photoredox catalysis, thereby forming a rhodium bound α-carbonyl radical that is well-demonstrated 

in chapter 3.1. However, systematic studies and effective functionalization of this kind of radical 

species remain unexplored. 

The author of this thesis envisioned that substrate binding to the catalyst and deprotonation would 

raise the HOMO and trigger a mild and selective SET oxidation to provide electron deficient rhodium 

bound radicals, which might be trapped by electron-rich silyl enol ethers in a stereocontrolled fashion 

generating non-racemic chiral 1,4-dicarbonyls (Figure 98b). Selective oxidative cross coupling of two 

enolates is a direct and attractive way for the construction of synthetically valuable unsymmetrical 

1,4-dicarbonyls and much progress has been made over the last few decades.5 However, owing to the 

difficulty in suppressing the concomitant homo-coupling6 and also the lack of efficient catalytic 

asymmetric systems, only few enantioselective versions that rely on SOMO activation of aldehydes by 

chiral amines were reported. 7  This SOMO catalysis employs stoichiometric amount of ceric 

ammonium nitrate (CAN) as oxidant, which is not attractive from the perspective of green chemistry. 

Hence, a robust catalytic asymmetric scheme to enable the effective and sustainable oxidative enolates 

cross coupling is highly desirable. 

 During the mechanistic investigations of the asymmetric amination described in chapter 3.1, a 

1,4-dicarbonyl compound 9ba was isolated in 42% yield when a silyl enol ether 8a was added to the 
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photoredox reaction mixture (Figure 98c). Inspired by this result, an electricity driven asymmetric 

Lewis acid catalysis for the highly selective enolates cross coupling was developed which is described 

in this chapter. Notably, compared with the visible-light-driven system that requires two catalysts and 

uses an acceptor-substituted azide as sacrificed oxidant with the formation of the side product derived 

from chemical oxidation, this newly developed electrosynthesis features unique advantages, including 

simple and mild conditions, less waste generation and higher functional group tolerance. 

 

 

Figure 98.  Rational design leading to an electricity driven asymmetric Lewis acid catalysis for 

highly selective cross coupling of enolates. 
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Organic electrosynthesis employs electrons as reagents which avoids the use of stoichiometric 

amounts of chemical oxidants or reductants and has therefore long been recognized as a sustainable 

synthetic platform for redox reactions.8 Likewise, asymmetric catalysis is considered an economic and 

efficient strategy to provide homochiral compounds for the production of drugs, agricultural chemicals, 

flavors, fragrances, and materials.9 Merging organic electrosynthesis with asymmetric catalysis is 

therefore an area of great significance. However, key challenges have hampered the development of 

electricity driven asymmetric catalysis. First, the oxidatively or reductively generated intermediate 

radical ions, radicals, or ions must be interfaced with a catalytic cycle but their high reactivity often 

provides ample opportunities for non-catalyzed side reactions which affect overall yields and 

enantioselectivities. Second, many catalysts display a limited compatibility with the conditions in an 

electrochemical cell due to redox instability and interactions with the electrolyte. This might explain 

why catalytic asymmetric electrochemistry is still in its infancy with a limited number of different 

concepts and usually modest enantioselectivities.10 

 

 

Figure 99.  Two highly asymmetric electrochemical transformations that separate the asymmetric 

catalysis from electrochemical oxidation. 

 

There are two highly asymmetric examples of electrochemical transformations, which benefit 

from the separation of electrochemical oxidation and asymmetric catalysis (Figure 99).11 Generally 

speaking, an electrophile is generated by anodic oxidation of a suitable, easily oxidizable precursor, 

and this electrochemical step is subsequently followed up with enantioselective enamine catalysis. For 

example, Jørgensen demonstrated that the anodic oxidation of electron-rich aminophenols is 

compatible with enantioselective enamine catalysis (Figure 99a),11a whereas Luo reported a 
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combination of an anodic oxidation of tetrahydroisoquinolines with enantioselective enamine catalysis 

for enabling an asymmetric α-functionalization of simple ketones (Figure 99b).11b Although notable 

enantioselectivities of up to 96% ee were obtained, this method suffers from the oxidative sensitivity 

of the chiral amine catalyst and enamine intermediate which therefore strongly limits the choice of 

electrophile precursors. And in principle, these anodic oxidations could be replaced by other oxidation 

methods. 

In a different electrochemical activation strategy, the active asymmetric catalyst was generated 

electrochemically. For example, a chiral N-oxyl radical achieved a kinetic resolution of amines and 

alcohols as reported by Kashiwagi and co-workers.12  However, the direct interaction with the 

electrode requires a redox active and stable chiral catalyst and is typically plagued with low 

enantioselectivities.13 Therefore, often an additional redox mediator is employed which allows lower 

potentials and offers higher chemoselectivity.14 Some elegant catalytic systems have been successfully 

applied to indirect electrolysis with mediators, such as iodine-assisted osmium/chiral ligand systems,15 

chiral metal salen complexes,16 and some enzymatic systems17. 

A simplified appealing strategy uses only a single catalyst which not only provides the 

asymmetric induction but also facilitates the electrochemical process through an activation of one 

substrate. Although acid/base catalysts are well-known to activate the frontier molecular orbitals of 

substrates, their applications in asymmetric electrochemistry are underexplored. Few examples that 

use enamine activation toward facile anodic oxidation have been reported but with limited scopes and 

inferior stereoselectivities.18 For the first time, this chapter presents a unique electricity driven 

asymmetric Lewis acid catalysis for intermolecular cross coupling of enolates. Notably, the chiral 

Lewis acid is both involved in the electrochemical step and the asymmetric induction. At the end of 

this chapter, other electrochemical reactions catalyzed by the chiral-at-metal Lewis acid are described. 

 

3.6.2 Reaction Development  

 

Recently, organic electrosynthesis has experienced a renaissance promoted not only by the 

employment of novel or reanimated concepts, but also the invention of general and standard 

electrochemical devices for organic synthesis.19 Actually, this study commenced with a commercially 

available ElectraSyn 2.0 that was recently devised by Baran in collaboration with the company IKA 
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Inc.20  After extensive attempts, an undivided electrochemical cell consisting of a boron-doped 

diamond (BDD) anode and a platinum (Pt) cathode under a relative low potential with TBAPF6 as 

electrolyte was found to be compatible with the chiral-at-rhodium catalysis. Based on previous 

conclusions on the origin of asymmetric induction in chiral-at-rhodium catalyzed enolate chemistry, a 

bulky N-mesityl 2-acyl imidazole 48a was chosen as substrate for initial experiments. To test the 

hypothesis, the solution of 48a, silyl enol ether 8a, 2,6-lutidine (50 mol%), and TBAPF6 in 

THF/MeOH (1:2) was electrolyzed under a constant current of 0.6 mA. Encouragingly, the desired 

1,4-dicarbonyl 49a was obtained with an excellent enantioselectivity of 99% ee catalyzed by 5.0 mol% 

of Δ-RhS, albeit with a moderate yield (Table 20, entry 1). Extensive screening of solvents (entries 

1-5) and bases (entries 6-9) led to the result that using a mixture of THF/MeOH as solvent and 

2,6-lutidine as the soluble organic base was the most suitable condition for the current electrolysis. 

The addition of HFIP, a widely-used additive in electrochemical reactions, was not helpful (entry 5). 

The yield of 49a could not be improved further (50-60%), which might be due to the lower reactivity 

of the highly congested rhodium bound radical intermediate bearing a N-mesityl imidazolyl auxiliary. 

Hence, 2-acyl imidazole 48b with a smaller phenyl as the N-substituent was selected for further 

optimization. Table 21 shows the effects of different parameters on the reaction 48b + 8a  49b. 

Firstly, the bis-cyclometalated iridium based catalyst Δ-IrS could give the formation of desired 

1,4-dicarbonyl 49b in 27% yield with an excellent enantioselectivity of 98% ee (entry 1). Interestingly, 

a newly synthesized rhodium complex -RhS(TMS), bearing more bulky trimethylsilyl (TMS) 

instead of tert-butyl groups, improved the yield of 49b to 82% without affecting the enantioselectivity 

(entry 3). The possible reason for this might be less product decomposition when a more steric 

demanding catalyst is used.  

Other electrodes were evaluated as well. While platinum as anodic material resulted in great 

inhibition of product formation, a graphite or a reticulated vitreous carbon (RVC) anode had little 

influence on reaction efficiency compared with the BDD anode (entries 3-6). For further investigations, 

the cheaper graphite anode was chosen as the standard anode material which delivered optimal 

conditions for 49b (82% NMR yield, 79% isolated yield, 97% ee, entry 6). As shown in entry 7, a 

cheaper electrolyte LiClO4 could be an alternative which gave satisfactory results. But a BF4
- salt 

resulted in a less clean reaction with a decreased yield of 44% (entry 8). Electrolysis under a constant 

current of 1.5 mA could also generate 49b in good yield with excellent ee (entry 9), thereby shortening 
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the reaction time. Besides, the reaction could take place under a quite low potential of 0.8 V vs 

Ag/AgCl indicating a mild and selective electron transfer process (entry 10). Furthermore, two control 

experiments were performed. In the absence of any catalyst, the undesirable homo-coupling of 8a was 

observed as the major reaction without any formation of the hetero-coupling product 49b (entry 11). In 

the presence of catalyst but absence of an external base, the product 49b was generated in a 

significantly lower yield of just 46%, which could be attributed to in situ generated base from cathode 

reduction (entry 12). 

 

Table 20. Initial experiments for electricity driven enolates cross coupling.[a] 

 

Entry Base Solvent Yield [%] Ee [%] 

1 2,6-lutidine THF/MeOH (1:2) 50-60[b] 99 

2 2,6-lutidine MeOH (1:2) 50-60[b] 99 

3 2,6-lutidine Acetone/MeOH (1:2) 50-60[b] 99 

4 2,6-lutidine MeCN/MeOH (1:2) Mess n.d. 

5 2,6-lutidine THF/MeOH/HFIP (1:2, 2.0 equiv) 50-60[b] n.d. 

6 Na2HPO4 THF/MeOH (1:2) 36[c] n.d. 

7 NaOAc THF/MeOH (1:2) 31[c] n.d. 

8 DABCO THF/MeOH (1:2) 31[c] n.d. 

9 NaOMe THF/MeOH (1:2) 43[c] n.d. 

[a] Reaction conditions: in an ElectraSyn 2.0 cell, 48a (0.10 mmol), 8a (0.60 mmol), 

Δ-RhS (5.0 mol%), base (50 mol%), and TBAPF6 (0.30 mmol) in solvent (3.0 mL) 

were electrolyzed under a constant current of 0.6 mA with the electricity consumption 

of 2.4-2.8 F/mol. Ee was determined by HPLC on a chiral stationary phase. [b] 

Approximate yield since the product was isolated as a mixture. [c] NMR yield. 
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Table 21. Optimizations of the electricity driven asymmetric enolates cross coupling.[a] 

 

Entry Catalyst Electrodes Derivations from S.C. Yield [%] Ee [%] 

1 Δ-IrS BDD-Pt None 27 98 

2 Δ-RhS BDD-Pt None 45 97 

3 Δ-RhS(TMS) BDD-Pt None 82 97 

4 Δ-RhS(TMS) Pt-Pt None <10 n.d. 

5 Δ-RhS(TMS) RVC-Pt None 80 93 

6 Δ-RhS(TMS) Graphite-Pt None 82 (79) 97 

7 Δ-RhS(TMS) Graphite-Pt LiClO4 instead of TBAPF6 79 95 

8 Δ-RhS(TMS) Graphite-Pt TBABF4 instead of TBAPF6 44 95 

9 Δ-RhS(TMS) Graphite-Pt Const. 1.5 mA instead 80 96 

10 Δ-RhS(TMS) Graphite-Pt Const. 0.8 V vs Ag/AgCl 72 97 

11[b] None Graphite-Pt None 0 n.a. 

12 Δ-RhS(TMS) Graphite-Pt Without 2,6-lutidine 46 96 

[a] Reaction conditions: in an ElectraSyn 2.0 cell, 48b (0.10 mmol), 8a (0.60 mmol), 

catalyst (5.0 mol%), 2,6-lutidine (200 mol%), and TBAPF6 (0.30 mmol) in THF/MeOH 

(1:2, 3.0 mL) were electrolyzed under a constant current of 0.6 mA with the electricity 

consumption of 2.4-2.8 F/mol. NMR yield, isolated yield is provided in parentheses; ee 

was determined by HPLC on a chiral stationary phase. [b] Homo-coupling of 8a was the 

major side reaction. 

 

Overall, a practical set-up based on the ElectraSyn 2.0 and the optimal conditions that rely on a 

new RhS(TMS) catalyst have been disclosed for the asymmetric electrochemical cross coupling of 

two enolates providing a previously elusive approach to chiral 1,4-dicarbonyls (Table 21, entry 6). 
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3.6.3 Substrate Scope 

 

 

Figure 100.  Substrate scope of the electrosynthesis with the generation of tertiary carbon 

stereocenters. Reaction conditions: see Table 21 entry 6. The structure of 49k was determined by 

X-ray crystallography and all other compounds were assigned accordingly.  

 

The investigation on the substrate scope started with variations of the 2-acyl imidazole substrate. 

As shown in Figure 100, different groups at the N-atom of the imidazole auxiliary showed different 

efficiencies (49a-e). A bulky mesityl group resulted in the highest ee (49a, >99% ee) while a low yield 

of the 1,4-diketone was obtained using a methyl group (49e, <10% yield). This reaction exhibited 

broad tolerance with respect to the electronic property and substitution pattern of substituents on the 
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aromatic ring at the stereogenic carbon (49f-l, 67-88% yields with 94-97% ee). Additionally, 

1,4-dicarbonyl products containing a 2-naphthyl (49m) and a 2-thienyl (49n) moiety could be 

produced in acceptable yields with excellent enantioselectivities, respectively. 

On the other hand, a wide range of aryl substituted silyl enol ethers 8 underwent the cross 

coupling smoothly, delivering 49o-u in yields of 47-91% with up to 99% ee. The compatibility of this 

protocol was further showcased with a benzofuran 49u, and by the effective generation of two 

complicated natural product derivatives (a β-ionone derivative 49x and an estrone derivative 49y). It is 

noteworthy that all silyl enol ethers used were prepared and subjected to the electrochemical 

conditions described herein through simple extraction without tedious distillation. 

 

 

Figure 101.  Substrate scope of the electrosynthesis with the generation of all-carbon quaternary 

centers. Reaction conditions: see Table 21 entry 6. The structure of 51n was determined by X-ray 

crystallography and all other compounds were assigned accordingly. [a] Δ-RhS (5.0 mol%) instead. 
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After many efforts (see failed examples in Figure 102), the substrate scope was expanded to more 

challenging racemic tertiary acyl imidazoles (Figure 101). Various enantioenriched carbonyl 

compounds bearing an all-carbon quaternary stereocenter were successfully constructed by the 

electrochemical method, which otherwise would be difficult to accomplish by traditional methods. 

Satisfactory yields and ee could be obtained by tuning the substituents on the imidazole and/or catalyst 

addressing the challenge of low reactivity of the tertiary carbon radicals. For example, the reaction of 

50d bearing a smaller methyl group at the N-atom of the imidazolyl auxiliary, catalyzed by the Δ-RhS 

provided 51d with much higher yield and ee (91% yield, 96% ee), compared with the reaction 

catalyzed by Δ-RhS(TMS) (46% yield, 87% ee). Interestingly, the stereogenic carbons with two 

similar phenacyl substituents were formed with excellent enantioselectivities (51d-g, 93-96% ee). 

Remarkably, this transformation is extremely mild and effective as highlighted by the tolerance of 

many sensitive functional groups, including a free hydroxyl (51i), terminal C=C double bond (51j) and 

C≡C triplet bond (51k), and a glucofuranose (51m). 

 

 

Figure 102.  Limitations of the present electrosynthesis.  



Chapter 3. Results and Discussion 

164 
 

Some unsuccessful examples are listed in Figure 102. First, this catalysis heavily relies on the 

N,O-bidentate coordination of 2-acyl imidazole substrates. N-Acyl pyrazole failed to undergo the 

anodic oxidation while homo-coupling of silyl enol ether was observed in this case (52a). Besides, 

2-pyridinyl auxiliary gave inferior results (52b), while a O,O-coordinating substrate could not give 

any enantioselectivity (52c). Second, a conjugated terminal enol ether is required for effective trapping 

of the radical intermediate as indicated by the failed attempts to generate products 52d and 52g. Third, 

an aromatic or an ester group at the stereogenic carbon is necessary for the formation of rhodium 

bound enolate intermediate (as suggested by the case of 52i), which is in accord with previous 

observations.1 Unfortunately, some complicated molecules could not be obtained with satisfactory 

results (52e-f, 52j). In addition, other kind of quaternary carbons are not accessible by the current 

method (52k-m). 

To highlight the advantages of this electrochemical protocol, the efficiency of different oxidative 

systems was compared (Figure 103a). Firstly, a chemical oxidation method was explored. Ceric 

ammonium nitrate (CAN) is a commonly used oxidant in SOMO catalysis,7 but proved unsuitable for 

this coupling since 49b was only generated in 8% yield and with 81% ee (Figure 103a, entry 2). 

Besides, Fe(acac)3, which was demonstrated as effective SET oxidant in a reported enolates cross 

coupling reaction,5 failed to fulfill this transformation (Figure 103a, entry 3). Photoredox catalysis 

that is recognized as a powerful method for performing redox reactions under mild conditions21 was 

able to facilitate the transformation. However, when the mixture was irradiated with a compact 

fluorescent lamp (CFL) using molecular oxygen as the terminal oxidant,22 the coupling product 49b 

was only formed in 11% yield together with an unavoidable oxygenated diketone side product (Figure 

103a, entry 4). In addition, when the previously developed dual-catalyst system was used together 

with an aryl azide as oxidant, 35% yield of 49b could be obtained, albeit with 63% ee, whereas the 

amination product was found to be the major product (64% yield) (Figure 103a, entry 5). These 

results highlight the unique advantages of electrochemistry for the here reported catalytic asymmetric 

hetero-coupling in terms of cleanliness of conversion, yield, and enantioselectivity. The controlled 

electrochemical delivery of electrons ensures a clean transformation under mild redox conditions 

without the formation of undesirable side products which are observed under photoredox conditions or 

with chemical oxidants. 

Also, a two-step one-pot procedure, which directly started from the acetophenone 8a’, furnished 
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49b in a reasonable yield of 56% with 95% ee even in the absence of additional electrolyte (Figure 

103b). But the attempt utilizing in situ formed catalytic amount of enamine instead of excess of silyl 

enol ester failed to produce the desired product. 

 

 

Figure 103.  Comparisons of different synthetic methodologies and scope for synthetic applications 

of the electrosynthesis. [a] Table 21, entry 6. [b] As shown but without the electrochemical set-up and 

TBAPF6. 
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In addition, the cleavage of the imidazolyl group in 1,4-dicarbonyl compound 49b was 

demonstrated, which led to ester 53 in 80% yield without a significant decrease of optical purity 

(Figure 103c). Unfortunately, product 51d with a quaternary stereocenter is not compatible under 

these conditions, which might be due to the sluggish ethanol addition to the ionic intermediate caused 

by the high steric hindrance. 

 

3.6.4 Mechanistic Studies 

 

 

Figure 104.  Mechanistic studies on the present electrosynthesis. Voltammetric experiments were 

conducted in MeCN containing 0.1 M TBAPF6 at 22 ± 2 oC with a scan rate of 0.1 V s-1. The current 

was normalized. 

 

Mechanistic experiments were performed to understand the mechanism, the origin of the mild 

coupling conditions, and the observed high stereoselectivities (Figure 104). First, the key rhodium 
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bound enolate intermediate Rh-enolate2 was synthesized and characterized. A crystal structural 

reveals a strong shielding of the Re face of the -configured rhodium coordinated enolate by a very 

bulky trimethylsilyl group, which guarantees a high asymmetric induction (Figure 104a). Furthermore, 

the enolate complex Rh-enolate2 also displays a very low oxidation potential of +0.52 V vs Ag/AgCl 

(Figure 104b). For comparison, voltammetry showed that the free acyl imidazole 48b is unlikely to 

oxidize at a potential lower than 2 V vs Ag/AgCl (under conditions with 2,6-lutidine) and silyl enol 

ether 8a is oxidized irreversibly at the potential of +1.72 vs Ag/AgCl. Thus, cyclic voltammetry 

clearly elucidates that it is not the silyl enol ether which is getting oxidized electrochemically but 

instead the intermediate rhodium enolate complex. Catalyst bound enolate formation effectively 

reduces the oxidation potential by around 1.5 V (HOMO activation) and thereby permits the selective 

SET oxidation for the generation of a catalyst bound reactive radical intermediate. To support this 

scenario, (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) was used to trap this radical cation 

intermediate Rh-enolate2.+
. Indeed, a standard electrolysis with 1.0 F/mol of electricity in the presence 

of TEMPO provided the TEMPO-trapping product 54 in high yield with high current efficiency (both 

in 92%) without any formation of 8a derived TEMPO-adduct 55 (Figure 104c), which is indicative of 

intermediate Rh-enolate2.+
. All these results strongly support that the formation of the chiral rhodium 

based enolate intermediate promotes the anodic oxidation and accounts for the mild conditions with 

high selectivity.  

 

 

Figure 105.  Proposed catalytic cycle for the present electrosynthesis. 
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Based on these experiments, a mechanism is shown in Figure 105. The catalysis initiates with the 

formation of rhodium bound substrate (int. I). A deprotonation generates the key enolate intermediate 

II. Subsequent single electron anodic oxidation selectively delivers rhodium bound radical 

intermediate III, which is trapped by electron rich silyl enol ethers, affording a secondary ketyl radical 

species (int. IV). Then, a second anodic single electron oxidation furnishes intermediate V. Finally, 

desilylation and substrate/product exchange complete the catalytic cycle. On the other hand, reduction 

of proton releases hydrogen gas at the cathode, thereby achieving proton and electron conservation. 

 

3.6.5 Extensions to Other Transformations 

 

1) α-Oxygenation with TEMPO 

 

Figure 106.  Electricity driven chiral Lewis acid catalyzed α-oxygenation with TEMPO. 

 

Based on this newly-developed electricity driven chiral Lewis acid catalysis, a lot of 

transformations could be achieved. First of all, as mentioned above, the TEMPO adduct 11 was 

formed in excellent yield by electrolysis and a preliminary test reaction gave an enantioselectivity of 

36% ee (Figure 106). Mechanistically, recombination of rhodium bound carbon centered radical with 
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free TEMPO radical might be operative (pathway A). But the anodic oxidation of TEMPO to TEMPO+ 

(E1/2 = +0.24 V vs Fc/Fc+)23 followed by nucleophilic addition of rhodium bound enolate could not be 

completely excluded (pathway A). Considering that the redox potential of this key Rh-enolate species 

(Ep
[Rh-enolate].+/ [Rh-enolate] = +0.08 V vs Fc/Fc+, see Chapter 3.1)4 is slightly lower than TEMPO radical, 

pathway A is more favourable.  

 

2) C-S Bond formation 

Secondly, asymmetric dehydrogenative C-S bond formation was accomplished by this 

chiral-at-rhodium based electrochemical method. Preliminary experiments show that an α-thiolated 

carbonyl compound 56 could be generated in moderate yield with an encouraging enantioselectivity of 

85% ee (Figure 107). During the reaction, disulfide was generated firstly, indicating the formation of 

intermediate sulfur radicals. This electron deficient pentafluoro sulphur-centered radical could add to 

the rhodium bound enolate intermediate (pathway A). Alternatively, the coupling of rhodium bound 

radical cation intermediate with disulfide or a sulfur centered radical is also possible (pathway B).24 

Further investigations are needed to clarify the reaction mechanism.  

 

 

Figure 107.  Electricity driven chiral Lewis acid catalyzed C-S formation. 
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3) α-Amination with 10H-phenothiazine 

Thirdly, the enantioselective electrochemical α-amination was catalyzed by the chiral-at-rhodium 

complexes using 10H-phenothiazine, which is vulnerable to oxidation, as amino source (Figure 108). 

After extensive optimization, 91% yield with 98% ee for the generation of the α-amino 2-acyl 

imidazole product 57a could be achieved. A radical-radical cross coupling mechanism is proposed,25 

based on cyclic voltammetry studies that reveal very close redox potentials between rhodium bound 

enolate (Ep
ox

 = 0.52 V vs Ag/AgCl, see Figure 104a) and 10H-phenothiazine (for the first SET 

oxidation process, E1/2 = 0.64 V vs Ag/AgCl, see Figure 108).  

 

 

Figure 108.  Electricity driven chiral Lewis acid catalyzed α-amination with 10H-phenothiazine. 
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Notably, an N-acyl pyrazolyl group was successfully applied as the auxiliary, delivering the 

amination product 57b in around 70% yield with 95% ee with Δ-RhS(TMS) as catalyst. Since the 

oxidation of the corresponding rhodium bound enolate is more difficult, a nucleophilic addition to the 

nitrogen cation is proposed. To be noted, these products are easily racemized. Further investigations on 

substrate scope and mechanism were performed by Jiahui Lin, a M.Sc. student in the Meggers group. 

 

4) Three-component carbo-oxygenation of alkene 

Fourthly, a highly enantioselective three-component reaction of 2-acyl imidazole, 1,1-diphenyl 

ethylene and methanol was enabled by the electricity driven chiral Lewis acid catalysis, providing dual 

C-C/C-O bonds formation product 58 in 51% yield with excellent 99% ee (Figure 109). Obviously, 

the facile anodic oxidation of rhodium bound enolate generates a radical cation intermediate, which is 

trapped by the alkene forming secondary stabilized benzylic radical species. Subsequently, further 

SET oxidation of this benzylic radical gives a carbocation that is attacked by solvent methanol 

producing the final product. Noteworthy is the almost complete asymmetric induction, which again 

highlights the power and robustness of the Meggers’ chiral-at-metal catalysts.  

  

 

Figure 109.  Electricity driven chiral Lewis acid catalyzed three-component reaction. 

 

5) Cascade anodic dehydrogenation and [2+2] photocycloaddition 

An interesting cascade reaction combining electro oxidative dehydrogenation and 

visible-light-activated [2+2] photocycloaddition is illustrated in Figure 110. Powered by electricity 

and visible light, a single chiral-at-metal rhodium catalyzed reaction of α,β-saturated 2-acyl imidazole 
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with diene afforded the corresponding cyclobutane 59 in 77% yield with excellent stereocontrol (13:1 

d.r., >99% ee). Interestingly, alternating the polarity between two electrodes in every 3 minutes is very 

important for getting a good yield.  

From a mechanistic aspect, the rhodium catalyst is involved in both the dehydrogenation and the 

[2+2] cycloaddition steps. Initially, a rhodium bound enolate forms in the presence of DABCO as base. 

Then, the dual activated allylic/benzylic C-H bond is abstracted by the anodically oxidized DABCO.+, 

thereby forming the key rhodium bound β-enolate radical. Further anodic SET oxidation of this 

enolate radical gives the rhodium coordinated α,β-unsaturated 2-acyl imidazole. Finally, a subsequent 

visible-light-activated [2+2] photocycloaddition (see Chapter 3.3)26 furnishes the cyclobutane product. 

Activation of the C-H bond upon rhodium enolate formation and the subsequent generation of 

β-enolate radical species have been demonstrated by Jiajia Ma.3b Besides, as a proof to the mechanism, 

the corresponding α,β-unsaturated 2-acyl imidazole could be observed and isolated during the 

reaction.  

Unfortunately, the scope of this very appealing combination of electro- and photochemistry 

appears to be quiet limited. For example, changing the substituent in the aryl moiety provided poor 

yields (28a). The reasons for this sensitivity are unclear and need to be investigated further. 

 

 

Figure 110.  Electricity driven chiral Lewis acid catalyzed oxidative [2+2] photocycloaddition. 
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6) Anodic oxidative cyclization 

Finally, an electrochemical oxidative cyclization of an enone with 1-phenylpyrrolidine was 

discovered (Figure 111). Although no enantioselectivity was obtained, a potentially useful cyclic motif 

60, namely 1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinolone, could be constructed in 42% NMR yield. 

A possible mechanism starts with SET oxidation and deprotonation to generate electron-rich α-amino 

carbon centered radical. The subsequent Giese type radical conjugate addition forms the first C-C 

bond with the generation of an electron-deficient α-carbonyl carbon centered radical. Then, a 

subsequent intramolecular radical addition to the N-phenyl moiety and oxidative aromatization 

produce the final product. 

 

 

Figure 111.  Electricity driven oxidative cyclization. 

 

3.6.6 Conclusions 

 

In conclusion, this chapter introduced an unprecedented versatile electricity driven chiral Lewis 

acid catalysis.27 By intertwining electrochemical oxidation with chiral Lewis acid catalysis, a simple, 

sustainable, and highly enantioselective oxidative cross coupling of 2-acyl imidazoles with silyl enol 

ethers was achieved. This method provides a new avenue to synthetically useful chiral 1,4-dicarbonyls, 

including products bearing all-carbon quaternary stereocenters that are challenging to be accessed by 

conventional methods. The mild reaction conditions with high chemoselectivity and high functional 
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group tolerance can be traced back to the ability of the rhodium catalyst to strongly reduce the 

oxidation potential by the formation of a catalyst bound enolate intermediate. Thus the chiral Lewis 

acid catalyst fulfills several important functions by facilitating oxidation via complexation of the 

substrate, by staying bound to the oxidatively formed radical intermediate and thereby preventing 

unwanted side reactions such as homo-coupling, and by providing a high asymmetric induction in the 

course of the C-C bond formation 

Furthermore, a series of interesting catalytic asymmetric electrochemical reactions were 

developed based on this newly-devised electricity driven chiral Lewis acid catalysis, including an 

α-amination, an electro- and photochemistry relay [2+2] cycloaddition, and an alkene three-component 

difunctionalization. As proof of principle studies, these results demonstrate the versatility and potential 

of combining asymmetric Lewis acid catalysis with electrochemistry. It is anticipated that the design 

and achievements described in this chapter will spur the development of novel activation strategies in 

the area of catalytic asymmetric electrosynthesis.  
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Chapter 4. Summary and Outlook 

 

4.1 Summary 

 

 

Figure 112.  Overview of the discoveries of this thesis: visible light or electricity driven asymmetric 

chiral-at-rhodium catalysis for various novel transformations. (Unified with Λ-configured 

intermediates) 

 

With the goal of developing efficient and sustainable methodologies to synthesize 

enantioenhanced molecules, this thesis focused on exploring novel asymmetric chiral-at-rhodium 

catalysis using visible light or electricity as activation energy. In all newly developed synthetic 

strategies, chiral catalyst/substrate complexes form in situ and are transformed into a series of reactive 

intermediates, among which β-enolate radicals, excited triplet states, γ-enolate radicals, and α-carbonyl 

radicals are demonstrated for the first time (Figure 112). The reaction courses of these reactive 
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intermediates are controlled by the metal-centered chirality, leading to several highly stereoselective 

visible light or electricity induced catalysis: 

 

1. Dual-catalyst for α-amination/alkylation with azides/diazo esters 

Chapter 3.1 presented a visible-light-activated asymmetric α-amination/alkylation of 2-acyl 

imidazoles catalyzed by the combination of chiral-at-metal RhS and a photoredox catalyst 

[Ru(bpy)3](PF6)2 (Figure 113). Enabled by a dual-catalyst strategy, this novel proton- and 

redox-neutral method provided yields of up to 99% and excellent enantioselectivities of up to >99% ee 

with broad functional group tolerance. Mechanistic investigations suggest that an intermediate 

rhodium enolate complex acts as a reductive quencher to initiate a radical process with the aryl azides 

and α-diazo carboxylic esters serving as precursors for nitrogen and carbon-centered radicals, 

respectively. This marks the first report on using aryl azides and α-diazo carboxylic esters as substrates 

for asymmetric catalysis under photoredox conditions. These reagents have the advantage that 

molecular nitrogen is the leaving group and sole by-product in these reactions. The detailed 

mechanistic studies in this work are expected to provide useful direction and inspiration for the design 

of new visible-light-activated asymmetric reactions. 

 

 

Figure 113.  Summary of α-amination/alkylation with dual-catalyst. JACS, 2016, 138, 12636. 
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2. Combining the catalytic enantioselective reaction of visible-light-generated radicals with 

a by-product utilization system 

Chapter 3.2 introduced a unique visible-light-induced asymmetric scheme that utilizes a single 

chiral catalyst for two distinct processes. The chiral bis-cyclometalated rhodium complex RhO 

enabled the stereocontrolled chemistry of photo-generated carbon-centered radicals and at the same 

time catalyzed an enantioselective sulfonyl radical addition to an alkene (Figure 114). Specifically, the 

Rh-coordinated prochiral radicals, which were generated through selective SET reduction by 

photoexcited Hantzsch esters, were trapped by allyl sulfones in a highly stereocontrolled fashion, 

providing radical allylation products with up to 97% ee. The hereby formed fragmented sulfonyl 

radicals were utilized via an enantioselective radical addition to form chiral sulfones, which minimizes 

waste generation. The robustness and FG compatibilities of this system was demonstrated by additions 

of a series of common chemical functionalities. For the first time, the rhodium bound β-enolate radical 

species was generated and applied for an enantioselective conversion, which paves a new way to 

develop novel chemistry based on chiral-at-rhodium catalysts. 

 

 

Figure 114.  Summary of a single RhO enabled two distinct processes. Chem. Sci. 2017, 8, 7126. 
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3. Stereocontrolled direct bond formations upon directly visible-light-excited state  

 

 

Figure 115.  Summary of a single RhS enabled [2+2] and [2+3] photocycloadditions via direct 

visible-light-excitation and direct bond formation on electronically excited state. 

 

Chapters 3.3 and 3.4 showed a simple and robust catalysis scheme to control the stereochemistry 

of photo-excited states that only relies on a single chiral-at-metal Lewis acid catalyst RhS (Figure 

115). The substrate/catalyst complex absorbs visible light and generates the excited state that directly 

reacts with a co-substrate in a highly stereocontrolled fashion. Starting from simple cinnamic 

derivatives, a wide range of cyclobutanes via [2+2] photocycloadditions with alkenes, and various 

1-pyrrolines through previously elusive [2+3] photocycloadditions with vinyl azides were successfully 



Chapter 4. Summary and Outlook 

181 
 

constructed. These asymmetric photoreactions only require a single chiral catalyst with loading of 

0.5-8 mol%, feature simple and mild reaction conditions, provide high yields (up to 99%) with 

excellent enantioselectivities (up to >99% ee), and display broad substrate scopes with high functional 

group tolerance. The key to the success is that upon substrate/catalyst complexation, greatly enhanced 

absorption is achieved, thus achieving selective visible-light-excitation and inhibiting the background 

racemic reactions. All reactive intermediates remain bound to the single catalyst thereby providing a 

robust catalytic scheme with excellent stereocontrol.  

This strategy is very attractive because it not only provides a simpler and more efficient solution 

to stereocontrolled [2+2] photocycloadditions, but also expands the scope of stereocontrolled bond 

forming reactions of photoexcited intermediates to an unprecedented [2+3] photocycloaddition. And 

this newly-developed concept for stereocontrolled direct bond formation of directly 

visible-light-excited state is anticipated to be applied for more asymmetric catalysis. 

 

4. Asymmetric [3+2] photocycloadditions enabled by selected SET reduction of directly 

visible-light-excited catalyst bound cyclopropanes 

Chapter 3.5 introduced a single chiral-at-rhodium catalyst enabled visible-light-activated 

asymmetric [3+2] photocycloadditions between cyclopropanes and alkenes or alkynes to provide 

access to enantioenriched cyclopentanes and cyclopentenes, respectively, in 63-99% yields and with 

excellent enantioselectivities of up to >99% ee (Figure 116). A single RhS (2-8 mol%) which after 

coordination to the cyclopropane generates the visible-light-absorbing complex, lowers the reduction 

potential of the cyclopropane, and provides the asymmetric induction and overall stereocontrol. 

Complimentary to the above mentioned direct bond formation of excited catalyst/substrate complex, a 

mild single electron transfer reduction of the excited state induces the ring opening of cyclopropane, 

which leads to a previously elusive rhodium bound γ-enolate radical intermediate and ultimately 

delivers the new non-racemic chiral cyclic scaffolds. This method enriches the reactivity of 

chiral-at-metal rhodium-based Lewis acid by expanding the substrate of catalytic asymmetric 

photocycloadditions to simple mono-acceptor-substituted cyclopropanes affording previously 

inaccessible chiral cyclopentane and cyclopentene derivatives.  
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Figure 116.  Summary of a single RhS enabled [3+2] photocycloaddition. ACIE 2018, 57, 5454.  

 

5. Electricity driven asymmetric Lewis acid catalysis 

Chapter 3.6 showed the first example of electrochemical chiral-at-rhodium catalysis (Figure 117). 

Driven by electricity, the oxidative cross coupling of 2-acyl imidazoles with silyl enol ethers provides 

a sustainable avenue to synthetically useful enantioenriched 1,4-dicarbonyls, including products 

bearing all-carbon quaternary stereocenters which are difficult to obtain by conventional methods. A 

chiral-at-metal rhodium catalyst activates a substrate towards anodic oxidation by raising the HOMO 

upon enolate formation, which enables mild and selective anodic conditions, high chemo- and 

enantioselectivities (up to >99% ee), and a broad substrate scope. Thus the chiral RhS fulfills several 

important functions by facilitating oxidation via complexation of the substrate, by staying bound to the 

highly reactive electrochemically formed radical intermediate and thereby preventing unwanted side 

reactions, and by providing a high asymmetric induction in the course of follow-up bond formation. 

This work demonstrates the potential of combining asymmetric Lewis acid catalysis with 
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electrochemistry and it is expected to inspire further development of catalytic asymmetric 

electrosynthesis. 

 

 

Figure 117.  Summary of the electricity driven asymmetric chiral-at-rhodium catalysis. Nat. Catal. 

2019, 2, 34-40. 

 

Overall, this thesis greatly expands the reactivity of the chiral-at-metal rhodium catalysts recently 

developed in the Meggers group. Several previously unknown rhodium bound radical-type 

intermediates were generated upon visible light irradiation or using electricity as environmentally 

friendly energy source. For the first time, highly efficient and stereocontrolled [2+2]/[2+3] 

photocycloadditions directly from the electronically excited state were achieved, which are superior 

over the previously developed catalytic photosystems. Notably, an elegant electricity driven chiral 
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Lewis acid catalysis has been disclosed and shed new light on catalytic asymmetric electrosynthesis. 

From the viewpoint of synthetic applications, novel and efficient methodologies for the synthesis of a 

wide range of enantioenriched structural units were developed. Enantioenriched α-aminated/alkylated 

carbonyls, β-functionalized carbonyls, cyclobutanes, cyclopentanes and cyclopentenes were 

synthesized, most of which are reported for the first time. This is in line with the growing demand of 

generating non-racemic chiral molecules. The generality and versatility of the privileged 

chiral-at-metal catalysts used in this thesis may indicate the potential of these complexes to be a 

general solution to the central challenge of stereoinduction in photochemical and/or electrochemical 

asymmetric catalysis. 
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4.2 Outlook 

 

The recent work by the Meggers group clearly shows the versatility and robust reactivity of 

bis-cyclometalated chiral-at-metal rhodium(III) complexes. Therefore, it is very promising to explore other 

new reactions for the catalytic asymmetric synthesis of non-racemic chiral molecules based on the 

developed catalysts by taking into account the reaction modes of photochemically or electrochemically 

activated catalyst/substrate complexes. 

 

1) Achieve asymmetric electrochemical reduction by LUMO activation 

Catalytic asymmetric electrosynthesis remains underexplored. Chapter 3.6 demonstrates the ability of 

the chiral RhS catalyst for facilitating enantioselective electrochemical oxidations through HOMO 

activation of ketones. On the contrast, LUMO activation of a suitable substrate is known to be achieved by 

the Lewis acid coordination, which should make a selective SET reduction of catalyst bound substrate 

possible. In consideration of the inherent advantage of electrochemistry which provides electrons as clean 

and sustainable reductant, it is of significant interest to explore electricity driven asymmetric reduction 

reactions. 

 

2) Explore new reactivity of photoexcited catalyst/substrate complex 

As revealed in this thesis, one of the unique properties of the chiral-at-metal catalysis is that the in situ 

formed catalyst/substrate complex can be directly excited by visible light while at the same time provides 

excellent asymmetric induction. Hence, a simple single chiral-at-metal catalytic scheme is effective for 

SET processes and direct bond formations. Considering that the visible-light-excited state of IrS bound 

enone is defined as MLCT, investigations on previously untouched MLCT catalysis are highly desirable. 

While the corresponding [Rh]-intermediate is proved to be ligand centered, HAT chemistry using RhS 

could be anticipated. Besides, it is very attractive to test the asymmetric Paternò–Büchi reaction which has 

not been reported. But this is possibly accomplished using chiral-at-metal catalyst based on the assumption 

that the spin of the excited catalyst bound carbonyl complex might localize at the carbonyl group.  
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3) Extension to other classes of substrates 

As a major shortage, these chiral-at-metal catalysis heavily rely on a N,O-bidentate coordination. 

Enantioselective hydrogenation and alkynylation of simple acetophenones have been successfully achieved 

where metal hydride or metal acetylide intermediates are proposed, respectively. Based on these results, it 

is interesting to test the reactivity of related species, which feature σ-bond connection between the metal 

and a substrate, under redox conditions provided by photochemistry and/or electrochemistry. Once this new 

coordination mode is feasible, approaches to new type of non-racemic chiral products could be achieved. 

Furthermore, if N-acylhydrazone could be applied as substrate, chiral amines would be obtained, rather 

than the currently formed carbonyl compounds. 

 

On the other hand, design and modification of the octahedral chiral-at-metal structure might lead to 

new generations of catalysts with the potential of discovering unprecedented asymmetric catalysis. In this 

context, two directions could be envisioned: 

 

4) Modify the cyclometalating ligands 

Modification of the ligands could be built on several aspects. Introducing electron-rich(poor) groups in 

the phenyl moiety of the benzothiazoles could alter the Lewis acidity and redox potential of the catalyst, 

which provides the possibility of activating new substrates. A systematic investigation on the effect of 

substitution on the cyclometalating ligands is desirable. In addition, although difficult to synthesize, a kind 

of completely new complex with two different achiral ligands is expected to activate mono-coordinated 

substrates if the two free coordinating sites differ enough.  

 

5) Change the central metal 

Applying earth-abundant base metal complex for catalysis is an important trend in organic chemistry. 

The correct combination of metal with ligand could unlock new types of catalytic transformations. In 

particular, many Fe and Co based complexes are known to be octahedral and the unique redox flexibility of 

these metals is extremely attractive for chiral-at-metal catalysis.  
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Chapter 5. Experimental Part 

 

5.1 General Materials and Methods 

 

The chiral-at-metal Ir/Rh catalysts were synthesized according to the procedures developed by the 

Meggers group.1 All small-scale photoreactions were performed in a Schlenk tube (10 mL) with 

magnetic stirring. Electrochemical reactions were performed in a 5 mL vial using the ElectraSyn 2.0.2 

The general procedures are described in the corresponding chapters.  

 

Solvents and Reagents 

Anhydrous solvents were distilled under nitrogen from calcium hydride (CH2Cl2, and CH3CN), 

magnesium turnings/iodine (MeOH) or sodium/benzophenone (Et2O, THF and toluene), or bought 

from commercial suppliers (1,4-dioxane, DMF and DMSO). Unless otherwise mentioned, HPLC 

grade solvents including 2-methoxyethanol, EtOH, acetone, and PhCl were used directly without 

further drying. All reagents were purchased from Acros, Alfa Aesar, Sigma Aldrich, TCI, ChemPur 

and Fluorochem and used without further purification. 

 

Chromatographic Methods 

The course of the reactions and the column chromatographic elution were monitored by thin layer 

chromatography (TLC) [Macherey-Nagel (ALUGRAM®Xtra Sil G/UV254)]. Flash column 

chromatography was performed with silica gel 60 M from Macherey-Nagel (irregular shaped, 230-400 

mesh, pH 6.8, pore volume: 0.81 mL  g–1, mean pore size: 66 Å, specific surface: 492 m2  g–1, 

particle size distribution: 0.5% < 25 m and 1.7% > 71 m, water content: 1.6%). 

 

Nuclear Magnetic Resonance Spectroscopy (NMR) 

1H NMR, proton decoupled 13C NMR and 19F NMR spectra were recorded on Bruker Avance 250 (250 

MHz), Bruker Avance 300 (300 MHz) Bruker AM (500 MHz) or Bruker AM (600 MHz) 

spectrometers at ambient temperature. NMR standards were used as follows: 1H NMR spectroscopy:  

= 7.26 ppm (CDCl3), 5.32 ppm (CD2Cl2), 2.50 ppm ((CD3)2SO); 13C NMR spectroscopy:  = 77.0 ppm 
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(CDCl3), 53.8 ppm (CD2Cl2), 39.52 ppm ((CD3)2SO); 19F NMR spectroscopy:  = 0 ppm (CFCl3). The 

characteristic signals were specified from the low field to high field with the chemical shifts given in 

ppm on the  scale. 1H NMR spectra peak multiplicities indicated as singlet (s), broad singlet (br s), 

doublet (d), doublet of doublet (dd), doublet of triplet (dt), doublet of doublet of doublet (ddd), triplet 

(t), triplet of doublet (td), triplet of triplet (tt), quartet (q), multiplet (m).  

NMR yields were determined using 1,1,2,2-tetrachloroethane (a liquid) or 1,3,5-trimethoxybenzene (a 

solid, mainly used in chapter 3.6) as internal standard. 

 

High-Performance Liquid Chromatography (HPLC) 

Chiral HPLC was performed with an Agilent 1200 Series, Agilent 1260 Series HPLC System or 

Shimadzu Lc-2030c. All the HPLC conditions were detailed in the individual procedures. The type of 

the columns, mobile phase and the flow rate were specified in the individual procedures. 

 

Infrared Spectroscopy (IR) 

IR spectra were recorded on a Bruker Alpha FT-IR spectrometer. The absorption bands were indicated 

a wave numbers v (cm1). All substances were measured as films or solids. 

 

Mass Spectrometry (MS) 

High-resolution mass spectra were recorded on a Bruker En Apex Ultra 7.0 TFT-MS instrument. Ionic 

masses are given in units of m/z for the isotopes with the highest natural abundance. 

 

Circular Dichroism Spectroscopy (CD) 

CD spectra were recorded on a JASCO J-810 CD spectropolarimeter. The parameters used are as 

follows: from 600 nm to 200 nm; data pitch (0.5 nm); band with (1 nm); response (1 second); 

sensitivity (standard); scanning speed (50 nm/min); accumulation (5 times). The concentration of the 

compounds for the measurements was 0.2 mM. The formula for converting θ to ε is shown as below. 

 
)()/(32980

deg][

cmLLmolc

m





 

c = concentration of the sample; L = thickness of the measurement vessel 
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UV/Vis Analysis Spectroscopy and Stern-Volmer Quenching Experiments 

UV/Vis measurements and quenching experiments were taken on a Spectra Max M5 microplate reader 

in a 10.0 mm quartz cuvette. 

 

Optical Rotation Polarimeter 

Optical rotations were measured on a Krüss P8000-T or Perkin-Elmer 241 polarimeter with []D
22 

values reported in degrees with concentrations reported in g/100 mL. 

 

Cyclic Voltammetry 

For chapters 3.1, 3.2 and 3.3: Voltammetric experiments were conducted with a computer controlled 

Eco Chemie Autolab PGSTAT302N potentiostat in a Metrohm electrochemical cell containing 1 mm 

diameter planar platinum and glassy carbon (GC) disk electrodes (eDAQ). A ferrocene/ferrocenium 

(Fc/Fc+) redox couple as an internal standard. 

For chapters 3.5 and 3.6: Voltammetric experiments were conducted with a computer controlled Eco 

Chemie Autolab PGSTAT204 potentiostat in a Metrohm electrochemical cell containing a 1 mm 

diameter planar platinum electrode, a Ag wire electrode and a Ag/AgCl/KCl(3 M) reference electrode.  

All solution used for the voltammetric experiment was deoxygenated by nitrogen gas and 

measurement was performed at room temperature (22 ± 2 oC). 

 

Electron Paramagnetic Resonance (EPR) 

The EPR spectrometer is from Bruker (model esp300), with a modified Varian rectangular X-band 

cavity. All the samples for EPR were measured at room temperature.  

 

Quantum Yield Measurement 

All the light sensitive operations were processed in the darkroom under red light. 

For chapters 3.1, 3.3 and 3.4: The method was designed according to a published procedure with slight 

modifications.3 A 150 W xenon lamp (50% of light intensity, 420 ± 5 nm bandpass filter) was used as 

the light source. Photon flux of the spectrophotometer was determined by standard ferrioxalate 

actinometry. The yields of products were determined by GC measurement (FID detector, column: 

HP-5)  



Chapter 5. Experimental Part 

190 
 

For chapters 3.2 and 3.5: Quantum yields were determined by a method and setups developed by the 

Riedle group.4 As light source a 420 nm LED (chapter 3.5) or a 400 nm LED (chapter 3.5) was 

employed. A powermeter was used as detector. The yields of products were determined by 1H-NMR 

with an internal standard. A detailed procedure is described in section 5.6.4. 

 

Light Source 

A 21 W compact fluorescent lamp (CFL, OSRAM DULUX® SUPERSTAR Micro Twist) or 24 W 

Blue LEDs (Hongchangzhaoming from Chinese Taobao, https://hongchang-led.taobao.com) served as 

light sources. See Figure 118 and Figure 119, respectively, for their emission spectra. 

 
Figure 118.  Emission spectrum of the 21 W CFL lamp. Picture from Christian P. Haas. 

 

 

Figure 119.  Emission spectrum of the 23 W blue LEDs lamp. Picture from Christian P. Haas. 
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5.2 Photoinduced Asymmetric α-Amination and α-Alkylation 

 

5.2.1 General Procedure 

 

 

A dried 10 mL Schlenk tube was charged with 2-acyl imidazole 1 (0.10 mmol), Δ/Λ-RhS (3.5 mg, 

4 mol%), [Ru(bpy)3](PF6)2 (2.2 mg, 2.5 mol% or 1.3 mg, 1.5 mol%) and Na2HPO4 (2.8 mg, 20 mol%). 

The tube was purged with nitrogen. Then acetone/DMSO (9:1, 0.5 mL, 0.2 M) was added via syringe, 

followed by H2O (36.0 mg, 20 equiv). Azide 2 or diazo compound 4 (3.0 equiv) was added under 

nitrogen atmosphere with stirring. The reaction mixture was degassed via freeze-pump-thaw for three 

cycles. After the mixture was thoroughly degassed, the vial was sealed and positioned approximately 5 

cm from a 21 W compact fluorescent lamp. The reaction was stirred at room temperature for the 

indicated time (monitored by TLC) under nitrogen atmosphere. Afterwards, the mixture was diluted 

with CH2Cl2. The combined organic layers were concentrated under reduced pressure. The residue was 

purified by flash chromatography on silica gel (n-hexane/EtOAc) to afford the products 3 or 5, 

respectively. Racemic samples were obtained by carrying out the reactions with rac-RhS. The 

enantiomeric excess was determined by chiral HPLC analysis.   

 

5.2.2 Synthesis of Substrates 

 

2-Acyl imidazoles 1 were synthesized according to the recently published procedures.5. Azides 2 

were synthesized according to reported procedures.6 Diazo compounds 4 were synthesized according 

to reported literature.7  

The data of novel substrates are shown below 
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1-(1-(4-Methoxyphenyl)-1H-imidazol-2-yl)-2-phenylethan-1-one (1c)  

A white solid. 

1H NMR (300 MHz, CDCl3) δ 7.35-7.18 (m, 6H), 7.18-7.10 (m, 3H), 6.94-6.87 (m, 2H), 4.44 (s, 2H), 

3.82 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 188.5, 159.7, 142.9, 134.5, 131.1, 129.9, 129.5, 128.4, 127.7, 126.9, 

126.7, 114.1, 55.5, 45.6. 

IR (film): ν (cm1) 3105, 3030, 2914, 1685, 1592, 1494, 1452, 1390, 1340, 1307, 1208, 1147, 1079, 

1023, 991, 958, 912, 887, 840, 789, 761, 721, 696, 590, 542, 512, 480, 454.  

HRMS (ESI, m/z) calcd for C18H17N2O2 [M+H]+: 293.1285, found: 293.1286. 

 

 

1-(1-(4-Fluorophenyl)-1H-imidazol-2-yl)-2-phenylethan-1-one (1d)  

A white solid. 

1H NMR (300 MHz, CDCl3) δ 7.37-7.17 (m, 9H), 7.16-7.08 (m, 2H), 4.48 (s, 2H). 

13C NMR (75 MHz, CDCl3) δ 188.6, 162.5 (d, J = 247.5 Hz), 142.9, 134.3, 134.2, 129.91, 129.86, 

128.5, 127.7 (d, J = 8.8 Hz), 127.4, 126.8, 115.9 (d, J = 23.0 Hz), 45.6. 

IR (film): ν (cm1) 3159, 3077, 1683, 1508, 1449, 1399, 1219, 1147, 1027, 962, 911, 842, 793, 727, 

701, 623, 537. 

HRMS (EI, m/z) calcd for C17H13FN2O [M]+: 280.1012, found: 280.1004. 

 

 

Ethyl 4-azido-2,3,5,6-tetrafluorobenzoate (2c)  
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2c was synthesized by SNAr from corresponding ethyl 2,3,4,5,6-pentafluorobenzoate according to 

literature6c as a yellow liquid. 

1H NMR (500 MHz, CDCl3) δ 4.43 (q, J = 7.0 Hz, 2H), 1.39 (t, J = 7.3 Hz, 3H). 

13C NMR (125 MHz, CDCl3) δ 159.3, 146.4-146.1 (m), 144.3-144.0 (m), 141.6-141.3 (m), 

139.6-139.3 (m), 123.2-123.0 (m), 108.3-107.9 (m), 62.7, 14.0. 

19F NMR (282 MHz, CDCl3) δ –139.41 - –139.57 (m, 2F), –151.45 - –151.60 (m, 2F). 

IR (film): ν (cm1) 2990, 2170, 2126, 1733, 1645, 1484, 1419, 1368, 1325, 1250, 1201, 993, 915, 864, 

748. 

HRMS (ESI, m/z) calcd for C9H5F4N3O2Na [M+Na]+: 286.0210, found: 286.0210. 

 

 

5-Azido-2-(trifluoromethyl)benzonitrile (2f)  

2f was synthesized by diazotization-azidation from corresponding aniline according to literature6a as a 

grey solid. 

1H NMR (300 MHz, CDCl3) δ 7.82 (d, J = 8.4 Hz, 1H), 7.38 (d, J = 2.1 Hz, 1H), 7.30 (dd, J1 = 8.1 Hz, 

J2 = 2.1 Hz, 1H). 

13C NMR (75 MHz, CDCl3) δ 145.6, 136.3, 135.3 (q, J = 33.4 Hz), 122.3, 121.8 (q, J = 272.6 Hz), 

117.7 (q, J = 5.2 Hz), 115.0, 105.7 (q, J = 1.7 Hz). 

IR (film): ν (cm1) 2387, 2226, 2113, 1606, 1493, 1432, 1314, 1262, 1178, 1124, 1044, 905, 839, 733, 

675, 634, 548. 

HRMS (ESI, m/z) calcd for C8H3F3N4Na [M+Na]+: 235.0202, found: 235.0202. 

 

 

4-Azidophthalonitrile (2g)  

2g was synthesized by diazotization-azidation from corresponding aniline according to literature6a as a 

grey solid. 

1H NMR (300 MHz, CDCl3) δ 7.79 (d, J = 8.4 Hz, 1H), 7.40 (d, J = 1.8 Hz, 1H), 7.35 (dd, J1 = 8.1 Hz, 

J2 = 2.1 Hz, 1H). 
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13C NMR (75 MHz, CDCl3) δ 146.0, 135.1, 123.8, 123.3, 117.7, 115.0, 114.5, 111.3. 

IR (film): ν (cm1) 2233, 2122, 1764, 1589, 1558, 1483, 1413, 1306, 1263, 1212, 1173, 1131, 890, 843, 

753, 605, 521.  

HRMS (ESI, m/z) calcd for C8H3N5Na [M+Na]+: 192.0281, found: 192.0281. 

 

 

1-(Azidodifluoromethyl)-2,3,4,5,6-pentafluorobenzene (2h)  

2h was synthesized by SN reaction from corresponding perfluoro benzylic iodide according to 

literature6d as a yellow liquid. 

19F NMR (282 MHz, CDCl3) δ –64.19 - –64.92 (m, 2F), –139.56 - –140.22 (m, 2F), –149.90 - –150.93 

(m, 2F). 

IR (film): ν (cm1) 2126, 1651, 1490, 1426, 1334, 1250, 1164, 1054, 999, 975, 848, 782.  

 

 

3-(1,3-Dioxoisoindolin-2-yl)propyl 2-diazoacetate (4b)  

A yellow oil. 

1H NMR (300 MHz, CDCl3) δ 7.88-7.81 (m, 2H), 7.75-7.68 (m, 2H), 4.69 (s, 1H), 4.21 (t, J = 6.2 Hz, 

2H), 3.80 (t, J = 6.9 Hz, 2H), 2.11-2.00 (m, 2H). 

13C NMR (125 MHz, CDCl3) δ 168.2, 134.0, 132.0, 123.3, 62.2, 46.2, 34.9, 27.7. (Missing one 13C 

signal) 

IR (film): ν (cm1) 3104, 2955, 2110, 1771, 1703, 1616, 1464, 1441, 1395, 1362, 1240, 1184, 1048, 

986, 899, 794, 718, 526, 501. 

HRMS (ESI, m/z) calcd for C13H11N3O4Na [M+Na]+: 296.0642, found: 296.0642. 

 

 

Pent-4-yn-1-yl 2-diazoacetate (4d)  
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A yellow liquid. 

1H NMR (300 MHz, CDCl3) δ 4.73 (s, 1H), 4.25 (t, J = 6.2 Hz, 2H), 2.27 (td, J1 = 7.2 Hz, J2 = 2.7 Hz, 

2H), 1.96 (t, J = 2.7 Hz, 1H), 1.91-1.82 (m, 2H). 

13C NMR (75 MHz, CDCl3) δ 166.6, 82.8, 69.0, 63.3, 46.0, 27.7, 15.1. 

IR (film): ν (cm1) 3296, 3114, 2961, 2107, 1682, 1443, 1396, 1359, 1296, 1239, 1179, 1086, 1035, 

992, 738, 635, 556, 479. 

HRMS (ESI, m/z) calcd for C7H8N2O2Na [M+Na]+: 175.0478, found: 175.0478. 

 

5.2.3 Experimental and Characterization Data of Novel Products 

 

 

(S)-2-((Perfluorophenyl)amino)-2-phenyl-1-(1-phenyl-1H-imidazol-2-yl)ethan-1-one (3aa)  

According to the general procedure, the reaction of 2-phenyl-1-(1-phenyl-1H-imidazol-2-yl) 

ethan-1-one 1a (26.2 mg, 0.10 mmol), 1-azido-2,3,4,5,6-pentafluorobenzene 2a (62.7 mg, 3.0 equiv), 

Δ-RhS (3.5 mg, 4 mol%), [Ru(bpy)3](PF6)2 (2.2 mg, 2.5 mol%), Na2HPO4 (2.8 mg, 20 mol%) and 

H2O (36.0 mg, 20 equiv) in acetone/DMSO (9:1, 0.5 mL, 0.2 M) under nitrogen atmosphere with 

visible light for 8 hours, afforded 36.3 mg (82%) of 3aa as a yellow oil. Enantiomeric excess was 

established by HPLC analysis using a Chiralpak IC column, ee = 98% (HPLC: IC, 254 nm, 

n-hexane/isopropanol = 95:5, flow rate 1 mL/min, 25 C, tr (major) = 5.7 min, tr (minor) = 4.9 min). 

[]D
22 = +150.0 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.51-7.54 (m, 5H), 7.33 (d, J = 1.0 Hz, 1H), 7.32-7.27 (m, 2H), 

7.26-7.21 (m, 1H), 7.18 (d, J = 0.5 Hz, 1H), 7.14-7.11 (m, 2H), 6.74 (d, J =9.0 Hz, 1H), 5.36 (d, J = 

9.5 Hz, 1H). 

13C NMR (125 MHz, CDCl3) δ 188.1, 140.8, 137.7, 136.8, 130.5, 129.11, 129.07, 128.8, 128.4, 128.1, 

127.7, 125.5, 63.4-63.2 (m). 

19F NMR (282 MHz, CDCl3) δ –157.35 - –157.51 (m, 2F), –164.25 - –164.46 (m, 2F), –170.41 (tt, J1 = 

22.28 Hz, J2 = 5.92 Hz, 1F). 
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IR (film): ν (cm1) 3367, 1688, 1596, 1517, 1449, 1398, 1346, 1305, 1263, 1188, 1154, 1107, 1072, 

1021, 976, 911, 839, 761, 732, 694, 625, 585, 548, 526, 498, 461. 

HRMS (ESI, m/z) calcd for C23H14F5N3ONa [M+ Na]+: 466.0949, found: 466.0946. 

 

 

(S)-2-((Perfluorophenyl)amino)-2-phenyl-1-(1-(o-tolyl)-1H-imidazol-2-yl)ethan-1-one (3ba) 

According to the general procedure, the reaction of 2-phenyl-1-(1-(o-tolyl)-1H-imidazol-2- 

yl)ethan-1-one 1b (27.6 mg, 0.10 mmol), 1-azido-2,3,4,5,6-pentafluorobenzene 2a (62.7 mg, 3.0 

equiv), Δ-RhS (3.5 mg, 4 mol%), [Ru(bpy)3](PF6)2 (2.2 mg, 2.5 mol%), Na2HPO4 (2.8 mg, 20 mol%) 

and H2O (36.0 mg, 20 equiv) in acetone/DMSO (9:1, 0.5 mL, 0.2 M) under nitrogen atmosphere with 

visible light for 13 hours, afforded 36.1 mg (79%) of 3ba as a white solid . Enantiomeric excess was 

established by HPLC analysis using a Chiralpak OD-H column, ee = 99.1% (HPLC: OD-H, 254 nm, 

n-hexane/isopropanol = 95:5, flow rate 1 mL/min, 25 C, tr (major) = 7.5 min, tr (minor) = 6.8 min). 

[]D
22 = +156.4 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.47-7.31 (m, 5H), 7.30-7.18 (m, 5H), 7.09 (d, J = 1.0 Hz, 1H), 6.78 (d, 

J = 8.0 Hz, 1H, other rotamer), 6.76-6.68 (m, 1H), 5.41-5.28 (m, 1H), 2.04 (s, 3H, other rotamer), 1.41 

(s, 3H). 

13C NMR (125 MHz, CDCl3) δ 186.0, 185.9, 141.3, 141.2, 137.2, 137.1, 136.7, 134.7, 134.2, 130.81, 

130.78, 130.7, 129.5, 129.4, 128.8, 128.7, 128.4, 128.3, 128.1, 128.0, 127.18, 127.16 126.7, 126.6, 

126.4, 126.0, 63.3 (t, J = 3.4 Hz), 63.0 (t, J = 3.7 Hz), 17.2, 16.1. (Mixture of two rotation isomers). 

19F NMR (282 MHz, CDCl3) δ –157.30 - –157.68 (m, 2F), –164.31 - –164.51 (m, 2F), –170.31 - 

–170.69 (m, 1F). 

IR (film): ν (cm1) 3370, 2923, 1300, 1686, 1515, 1459, 1400, 1023, 980, 959, 768, 700, 673, 647, 618, 

558. 

HRMS (ESI, m/z) calcd for C24H16F5N3ONa [M+Na]+: 480.1106, found: 480.1102. 
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(S)-1-(1-(4-Methoxyphenyl)-1H-imidazol-2-yl)-2-((perfluorophenyl)amino)-2-phenylethan-1-one 

(3ca) 

According to the general procedure, the reaction of 1-(1-(4-methoxyphenyl)-1H-imidazol-2-yl)-2- 

phenylethan-1-one 1c (29.2 mg, 0.10 mmol), 1-azido-2,3,4,5,6-pentafluorobenzene 2a (62.7 mg, 3.0 

equiv), Δ-RhS (3.5 mg, 4 mol%), [Ru(bpy)3](PF6)2 (2.2 mg, 2.5 mol%), Na2HPO4 (2.8 mg, 20 mol%) 

and H2O (36.0 mg, 20 equiv) in acetone/DMSO (9:1, 0.5 mL, 0.2 M) under nitrogen atmosphere with 

visible light for 6 hours, afforded 37.7 mg (80%) of 3ca as a yellow oil. Enantiomeric excess was 

established by HPLC analysis using a Chiralpak IC column, ee = 99% (HPLC: IC, 254 nm, 

n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 25 C, tr (major) = 6.3 min, tr (minor) = 5.3 min). 

[]D
22 = +173.0 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.48-7.44 (m, 2H), 7.32-7.27 (m, 3H), 7.25-7.20 (m, 1H), 7.14 (d, J = 

1.0 Hz, 1H), 7.07-7.02 (m, 2H), 6.97-6.91 (m, 2H), 6.73 (d, J = 9.0 Hz, 1H), 5.36 (d, J = 9.0 Hz, 1H), 

3.86 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 186.0, 159.8, 140.8, 136.8, 130.4, 128.8, 128.3, 128.10, 128.06 126.6, 

114.2, 63.2 (t, J = 3.5 Hz), 55.5. (Missing one 13C signal) 

19F NMR (282 MHz, CDCl3) δ –157.74 - –157.90 (m, 2F), –164.67 - –164.89 (m, 2F), –170.85 (tt, J1 = 

22.00 Hz, J2 = 5.78 Hz, 1F). 

IR (film): ν (cm1) 3367, 2964, 2791, 1687, 1608, 1515, 1453, 1397, 1346, 1298, 1249, 1177, 1109, 

1071, 1020, 976, 911, 836, 779, 732, 698, 675, 625, 585, 499. 

HRMS (ESI, m/z) calcd for C24H16F5N3O2Na [M+Na]+: 496.1055, found: 496.1054. 
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(S)-1-(1-(4-Fluorophenyl)-1H-imidazol-2-yl)-2-((perfluorophenyl)amino)-2-phenylethan-1-one 

(3da)  

According to the general procedure, the reaction of 1-(1-(4-fluorophenyl)-1H-imidazol-2-yl)-2- 

phenylethan-1-one 1d (28.0 mg, 0.10 mmol), 1-azido-2,3,4,5,6-pentafluorobenzene 2a (62.7 mg, 3.0 

equiv), Δ-RhS (3.5 mg, 4 mol%), [Ru(bpy)3](PF6)2 (2.2 mg, 2.5 mol%), Na2HPO4 (2.8 mg, 20 mol%) 

and H2O (36.0 mg, 20 equiv) in acetone/DMSO (9:1, 0.5 mL, 0.2 M) under nitrogen atmosphere with 

visible light for 14 hours, afforded 34.9 mg (76%) of 3da as a yellow oil. Enantiomeric excess was 

established by HPLC analysis using a Chiralpak AD-H column, ee = 98% (HPLC: AD-H, 254 nm, 

n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 25 C, tr (major) = 7.0 min, tr (minor) = 5.4 min). 

[]D
22 = +150.0 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.48-7.43 (m, 2H), 7.32 (d, J = 1.0 Hz, 1H), 7.31-7.27 (m, 2H), 

7.26-7.21 (m, 1H), 7.16-7.09 (m, 5H), 6.72 (d, J = 9.5 Hz, 1H), 5.32 (d, J = 9.5 Hz, 1H). 

13C NMR (125 MHz, CDCl3) δ 186.2, 162.6 (d, J = 249.3), 140.9, 136.7, 133.6 (d, J = 3.3 Hz), 130.7, 

128.9, 128.4, 128.1, 127.5, 127.4 (d, J = 8.4 Hz), 116.1 (d, J = 22.9 Hz), 63.3 (t, J = 3.3 Hz). 

19F NMR (282 MHz, CDCl3) δ –111.60 (s, 1F), –157.36 - –157.51 (m, 2F), –164.17 - –164.38 (m, 2F), 

–170.23 (tt, J1 = 21.86 Hz, J2 = 6.06 Hz, 1F). 

IR (film): ν (cm1) 3368, 1687, 1514, 1452, 1399, 1345, 1310, 1227, 1154, 1099, 1070, 1023, 978, 914, 

842, 784, 735, 699, 625, 585, 545, 464, 423. 

HRMS (ESI, m/z) calcd for C23H14F6N3O [M+H]+: 462.1036, found: 462.1031. 
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(S)-2-(4-Methoxyphenyl)-2-((perfluorophenyl)amino)-1-(1-phenyl-1H-imidazol-2-yl)ethan-1-one 

(3ea) 

According to the general procedure, the reaction of 2-(4-methoxyphenyl)-1-(1-phenyl-1H- 

imidazol-2-yl)ethan-1-one 1e (29.2 mg, 0.10 mmol), 1-azido-2,3,4,5,6-pentafluorobenzene 2a (62.7 

mg, 3.0 equiv), Δ-RhS (3.5 mg, 4 mol%), [Ru(bpy)3](PF6)2 (2.2 mg, 2.5 mol%), DIPEA (2.6 mg, 20 

mol%) and H2O (36.0 mg, 20 equiv) in acetone/DMSO (9:1, 1.0 mL, 0.1 M) under nitrogen 

atmosphere with visible light for 17 hours, afforded 33.6 mg (71%) of 3ea as a yellow oil. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak OD-H column, ee = 99.1% 

(HPLC: OD-H, 254 nm, n-hexane/isopropanol = 95:5, flow rate 1 mL/min, 25 C, tr (major) = 10.1 

min, tr (minor) = 8.6 min). []D
22 = +202.6 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.51-7.42 (m, 3H), 7.39-7.34 (m, 2H), 7.32-7.30 (m, 1H), 7.18-7.10 (m, 

1H), 7.15-7.10 (m, 2H), 6.84-6.78 (m, 2H), 6.67 (br s, 1H), 5.30 (br s, 1H), 3.75 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 186.0, 159.5, 140.8, 137.7, 130.5, 129.4, 129.11, 129.06, 128.6, 127.6, 

125.6, 114.3, 62.6 (t, J = 3.3 Hz), 55.1. 

19F NMR (282 MHz, CDCl3) δ –157.30 - –157.47 (m, 2F), –164.32 - –164.55 (m, 2F), –170.46 (tt, J1 = 

22.00 Hz, J2 = 5.78 Hz, 1F). 

IR (film): ν (cm1) 3353, 2931, 2963, 1670, 1603, 1512, 1468, 1446, 1399, 1306, 1258, 1175, 1098, 

1023, 979, 956, 913, 818, 786, 761, 731, 691, 573. 

HRMS (EI, m/z) calcd for C24H16F5N3O2 [M]+: 473.1163, found: 473.1173. 
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(S)-2-((Perfluorophenyl)amino)-1-(1-phenyl-1H-imidazol-2-yl)-2-(m-tolyl)ethan-1-one (3fa) 

According to the general procedure, the reaction of 1-(1-phenyl-1H-imidazol-2-yl)-2-(m-tolyl) 

ethan-1-one 1f (27.6 mg, 0.10 mmol), 1-azido-2,3,4,5,6-pentafluorobenzene 2a (62.7 mg, 3.0 equiv), 

Δ-RhS (3.5 mg, 4 mol%), [Ru(bpy)3](PF6)2 (2.2 mg, 2.5 mol%), Na2HPO4 (2.8 mg, 20 mol%) and 

H2O (36.0 mg, 20 equiv) in acetone/DMSO (9:1, 0.5 mL, 0.2 M) under nitrogen atmosphere with 

visible light for 7 hours, afforded 35.1 mg (77%) of 3fa as a brown solid. Enantiomeric excess was 

established by HPLC analysis using a Chiralpak AD-H column, ee = 98% (HPLC: AD-H, 254 nm, 

n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 25 C, tr (major) = 6.4 min, tr (minor) = 4.7 min). 

[]D
22 = +177.0 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.51-7.40 (m, 3H), 7.32 (d, J = 1.5 Hz, 1H), 7.29-7.27 (m, 2H), 

7.26-2.24 (m, 2H, other rotamer), 7.23-2.18 (m, 1H), 7.18 (d, J = 1.5 Hz, 1H), 7.17-7.10 (m, 2H), 

7.07-7.06 (m, 1H), 7.05-7.03 (m, 1H, other rotamer), 6.69 (d, J = 14.5, 1H), 5.32-5.26 (m, 1H), 2.31 (s, 

3H). 

13C NMR (125 MHz, CDCl3) δ 186.2, 140.9, 138.6, 137.7, 136.6, 130.5, 129.2, 129.10, 129.05, 128.7, 

127.7, 125.6, 125.2, 63.3 (t, J = 5.9 Hz), 21.4. (Missing one 13C signal) 

19F NMR (282 MHz, CDCl3) δ –157.36 - –157.52 (m, 2F), –164.30 - –164.52 (m, 2F), –170.53 (tt, J1 = 

22.00 Hz, J2 = 5.78 Hz, 1F). 

IR (film): ν (cm1) 3371, 1682, 1519, 1447, 1395, 1306, 1025, 980, 957, 915, 843, 768, 727, 697, 670, 

637, 591, 555, 516, 460. 

HRMS (ESI, m/z) calcd for C24H16F5N3ONa [M+Na]+: 480.1106, found: 480.1106. 
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(S)-2-((Perfluorophenyl)amino)-1-(1-phenyl-1H-imidazol-2-yl)-2-(o-tolyl)ethan-1-one (3ga) 

According to the general procedure, the reaction of 1-(1-phenyl-1H-imidazol-2-yl)-2-(o-tolyl) 

ethan-1-one 1g (27.6 mg, 0.10 mmol), 1-azido-2,3,4,5,6-pentafluorobenzene 2a (62.7 mg, 3.0 equiv), 

Δ-RhS (3.5 mg, 4 mol%), [Ru(bpy)3](PF6)2 (2.2 mg, 2.5 mol%), Na2HPO4 (2.8 mg, 20 mol%) and 

H2O (36.0 mg, 20 equiv) in acetone/DMSO (9:1, 0.5 mL, 0.2 M) under nitrogen atmosphere with 

visible light for 10 hours, afforded 25.0 mg (55%) of 3ga as a white solid. Enantiomeric excess was 

established by HPLC analysis using a Chiralpak AD-H column, ee = 98% (HPLC: AD-H, 254 nm, 

n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 25 C, tr (major) = 6.0 min, tr (minor) = 4.6 min). 

[]D
22 = +214.2 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.49-7.41 (m, 3H), 7.25 (d, J = 0.5 Hz, 1H), 7.24-7.18 (m, 3H), 

7.17-7.14 (m, 2H), 7.14-7.11 (m, 2H), 6.90 (br s, 1H), 4.86 (br s, 1H), 2.72 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 187.3, 141.4, 138.3, 137.7, 135.0, 131.5, 130.3, 129.1, 129.0, 128.6, 

127.5, 126.6, 126.4, 125.5, 60.4 (t, J = 3.6 Hz), 19.4. 

19F NMR (282 MHz, CDCl3) δ –157.40 - –157.56 (m, 2F), –164.25 - –164.47 (m, 2F), –170.29 (tt, J1 = 

22.00 Hz, J2 = 5.64 Hz, 1F). 

IR (film): ν (cm1) 3366, 3128, 2923, 2855, 1692, 1597, 1514, 1464, 1402, 1351, 1307, 1247, 1211, 

1152, 1120, 1086, 1011, 964, 912, 875, 844, 787, 761, 733, 691, 653, 625, 579, 561, 508. 

HRMS (ESI, m/z) calcd for C24H16F5N3ONa [M+Na]+: 480.1106, found: 480.1105. 

  

 

(S)-2-(Naphthalen-2-yl)-2-((perfluorophenyl)amino)-1-(1-phenyl-1H-imidazol-2-yl)ethan-1-one 
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(3ha) 

According to the general procedure, the reaction of 2-(naphthalen-2-yl)-1-(1-phenyl-1H-imidazol- 

2-yl)ethan-1-one 1h (31.2 mg, 0.10 mmol), 1-azido-2,3,4,5,6-pentafluorobenzene 2a (62.7 mg, 3.0 

equiv), Δ-RhS (3.5 mg, 4 mol%), [Ru(bpy)3](PF6)2 (2.2 mg, 2.5 mol%), Na2HPO4 (2.8 mg, 20 mol%) 

and H2O (36.0 mg, 20 equiv) in acetone/DMSO (9:1, 0.5 mL, 0.2 M) under nitrogen atmosphere with 

visible light for 17 hours, afforded 24.8 mg (50%) of 3ha as a yellow oil. Enantiomeric excess was 

established by HPLC analysis using a Chiralpak AD-H column, ee = 95% (HPLC: AD-H, 254 nm, 

n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 25 C, tr (major) = 8.3 min, tr (minor) = 6.4 min). 

[]D
22 = +260.2 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.98 (s, 1H), 7.85-7.81 (m, 1H), 7.80-7.76 (m, 2H), 7.55 (dd, J1 = 8.5 

Hz, J2 = 1.5 Hz, 1H), 7.50-7.41 (m, 5H), 7.33 (d, J = 1.0 Hz, 1H), 7.16 (d, J = 1.0 Hz, 1H), 7.14-7.10 

(m, 2H), 6.93-6.88 (m, 1H) 5.50-5.45 (m, 1H). 

13C NMR (125 MHz, CDCl3) δ 185.8, 140.8, 137.6, 134.2, 133.3, 133.1, 130.6, 129.1, 128.8, 128.21, 

128.16, 127.8, 127.6, 126.5, 126.3, 125.6, 125.0, 63.3 (t, J = 3.6 Hz). (Missing one 13C signal) 

19F NMR (282 MHz, CDCl3) δ –157.32 - –157.49 (m, 2F), –164.18 - –164.39 (m, 2F), –170.29 (tt, J1 = 

22.00 Hz, J2 = 5.92 Hz, 1F). 

IR (film): ν (cm1) 3367, 1687, 1597, 1517, 1448, 1398, 1305, 1266, 1180, 1154, 1123, 1099, 1022, 

971, 909, 843, 813, 734, 691, 668, 641, 610, 544, 503, 474. 

HRMS (ESI, m/z) calcd for C27H16F5N3ONa [M+Na]+: 516.1106, found: 516.1106. 

 

 

(S)-2-((Perfluorophenyl)amino)-1-(1-phenyl-1H-imidazol-2-yl)-2-(thiophen-3-yl)ethan-1-one 

(3ia) 

According to the general procedure, the reaction of 1-(1-phenyl-1H-imidazol-2-yl)-2-(thiophen-3- 

yl)ethan-1-one 1i (26.8 mg, 0.10 mmol), 1-azido-2,3,4,5,6-pentafluorobenzene 2a (62.7 mg, 3.0 equiv), 

Δ-RhS (3.5 mg, 4 mol%), [Ru(bpy)3](PF6)2 (2.2 mg, 2.5 mol%), DIPEA (2.6 mg, 20 mol%) and H2O 
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(36.0 mg, 20 equiv) in acetone/DMSO (9:1, 1.0 mL, 0.1 M) under nitrogen atmosphere with visible 

light for 40 hours, afforded 19.0 mg (42%) of 3ia as a yellow oil. Enantiomeric excess was established 

by HPLC analysis using a Chiralpak AD-H column, ee = 93% (HPLC: AD-H, 254 nm, 

n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 25 C, tr (major) = 7.8 min, tr (minor) = 6.2 min). 

[]D
22 = +123.8 (c 0.4, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.50-7.44 (m, 3H), 7.38-7.35 (m, 1H), 7.34 (d, J = 1.0 Hz, 1H), 7.23 

(dd, J1 = 5.0 Hz, J2 = 3.0 Hz, 1H), 7.21 (d, J = 1.0 Hz, 1H), 7.18-7.14 (m, 2H), 7.07 (dd, J1 = 5.0 Hz, 

J2 = 1.0 Hz, 1H), 6.83 (d, J = 9.5 Hz, 1H), 5.21 (d, J = 9.5 Hz, 1H). 

13C NMR (125 MHz, CDCl3) δ 185.5, 140.7, 137.6, 137.5, 130.6, 129.2, 129.1, 127.8, 126.5, 126.3, 

125.6, 124.6, 59.3 (t, J = 3.9 Hz). 

19F NMR (282 MHz, CDCl3) δ –157.70 - –157.86 (m, 2F), –164.51 - –164.72 (m, 2F), –170.50 (tt, J1 = 

22.14 Hz, J2 = 5.50 Hz, 1F). 

IR (film): ν (cm1) 3364, 1687, 1599, 1515, 1448, 1397, 1348, 1305, 1260, 1182, 1151, 1098, 1021, 

972, 912, 840, 763, 731, 693, 664, 546, 460. 

HRMS (ESI, m/z) calcd for C21H12F5N3OSNa [M+Na]+: 472.0513, found: 472.0510. 

 

 

(S)-2-((Perfluorophenyl)amino)-2-(p-tolyl)-1-(1-(o-tolyl)-1H-imidazol-2-yl)ethan-1-one (3ja) 

According to the general procedure, the reaction of 2-(p-tolyl)-1-(1-(o-tolyl)-1H-imidazol-2- 

yl)ethan-1-one 1j (29.0 mg, 0.10 mmol), 1-azido-2,3,4,5,6-pentafluorobenzene 2a (62.7 mg, 3.0 equiv), 

Δ-RhS (3.5 mg, 4 mol%), [Ru(bpy)3](PF6)2 (2.2 mg, 2.5 mol%), DIPEA (2.6 mg, 20 mol%) and H2O 

(36.0 mg, 20 equiv) in acetone/DMSO (9:1, 1.0 mL, 0.1 M) under nitrogen atmosphere with visible 

light for 12 hours, afforded 37.5 mg (80%) of 3ja as a yellow oil. Enantiomeric excess was established 

by HPLC analysis using a Chiralpak OD-H column, ee = 99.4% (HPLC: OD-H, 254 nm, 

n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 25 C, tr (major) = 7.1 min, tr (minor) = 6.0 min). 

[]D
22 = +241.0 (c 1.0, CH2Cl2). 
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1H NMR (500 MHz, CDCl3) δ 7.42-7.27 (m, 5H), 7.26-7.19 (m, 2H), 7.10-7.03 (m, 3H), 6.80 (d, J = 

8.0 Hz, 1H, other rotamer), 6.71-6.64 (m, 1H), 5.40-5.23 (m, 1H), 2.27 (s, 3H, other rotamer), 2.25 (s, 

3H), 2.03 (s, 3H, other rotamer), 1.46 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 186.1, 186.0, 141.4, 141.3, 138.2, 138.1, 137.3, 137.2, 134.7, 134.3, 

133.7, 130.83, 130.76, 130.73, 130.68, 129.6, 129.5, 129.43, 129.37, 128.00, 127.9, 127.1, 126.7, 

126.6, 126.5, 126.1, 63.0 (t, J = 3.3 Hz), 62.8 (t, J = 3.9 Hz), 21.11, 21.08, 17.2, 16.3. (Mixture of two 

rotation isomers). 

19F NMR (282 MHz, CDCl3) δ –157.51 - –157.75 (m, 2F), –164.54 - –164.75 (m, 2F), –170.61 - 

–170.96 (m, 1F). 

IR (film): ν (cm1) 3368, 2925, 2857, 1687, 1517, 1453, 1400, 1346, 1303, 1262, 1186, 1153, 1095, 

1021, 967, 912, 851, 803, 765, 727, 653, 616, 555, 496, 455. 

HRMS (ESI, m/z) calcd for C25H18F5N3ONa [M+Na]+: 494.1262, found: 494.1263. 

 

 

(S)-2-(3-Chlorophenyl)-2-((perfluorophenyl)amino)-1-(1-(o-tolyl)-1H-imidazol-2-yl)ethan-1-one 

(3ka) 

According to the general procedure, the reaction of 2-(3-chlorophenyl)-1-(1-(o-tolyl)-1H-imidazol- 

2-yl)ethan-1-one 1k (31.1 mg, 0.10 mmol), 1-azido-2,3,4,5,6-pentafluorobenzene 2a (62.7 mg, 3.0 

equiv), Δ-RhS (3.5 mg, 4 mol%), [Ru(bpy)3](PF6)2 (2.2 mg, 2.5 mol%), Na2HPO4 (2.8 mg, 20 mol%) 

and H2O (36.0 mg, 20 equiv) in acetone/DMSO (9:1, 0.5 mL, 0.2 M) under nitrogen atmosphere with 

visible light for 48 hours, afforded 23.3 mg (47%) of 3ka as a white solid. Enantiomeric excess was 

established by HPLC analysis using a Chiralpak OD-H column, ee = 97% (HPLC: OD-H, 254 nm, 

n-hexane/isopropanol = 95:5, flow rate 1 mL/min, 25 C, tr (major) = 7.7 min, tr (minor) = 6.9 min). 

[]D
22 = +162.0 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.47-7.43 (m, 1H), 7.43-7.32 (m, 4H), 7.28-7.18 (m, 4H), 7.13-7.10 (m, 

1H), 6.83 (d, J = 8.0 Hz, 1H, other rotamer), 6.72-6.64 (m, 1H), 5.40-5.28 (m, 1H), 2.03 (s, 3H, other 
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rotamer), 1.48 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 185.3, 185.2, 141.0, 140.9, 139.0, 138.9, 137.03, 136.95, 134.7, 134.64, 

134.60, 134.2, 131.0, 130.94, 130.86, 130.1, 130.0, 129.6, 129.5, 128.63, 128.58, 128.2, 128.1, 127.50, 

127.48, 126.8, 126.7, 126.4, 126.2, 126.0, 62.6 (t, J = 3.8 Hz), 62.4 (t, J = 3.5 Hz), 17.2, 16.2. 

(Mixture of two rotation isomers). 

19F NMR (282 MHz, CDCl3) δ –157.89 - –158.16 (m, 2F), –164.29 - –164.51 (m, 2F), –170.25 - 

–170.61 (m, 1F). 

IR (film): ν (cm1) 3366, 1684, 1517, 1446, 1397, 1303, 1187, 1155, 1081, 1024, 981, 956, 911, 846, 

765, 723, 696, 664, 630, 585, 554, 453. 

HRMS (ESI, m/z) calcd for C24H15ClF5N3ONa [M+Na]+: 514.0716, found: 514.0715. 

 

 

(S)-2-((4-Bromo-2,3,5,6-tetrafluorophenyl)amino)-2-phenyl-1-(1-(o-tolyl)-1H-imidazol-2-yl)ethan

-1-one (3bb) 

According to the general procedure, the reaction of 2-phenyl-1-(1-(o-tolyl)-1H-imidazol-2- 

yl)ethan-1-one 1b (27.6 mg, 0.10 mmol), 1-azido-4-bromo-2,3,5,6-tetrafluorobenzene 2b (80.7 mg, 

3.0 equiv), Δ-RhS (3.5 mg, 4 mol%), [Ru(bpy)3](PF6)2 (2.2 mg, 2.5 mol%), Na2HPO4 (2.8 mg, 20 

mol%) and H2O (36.0 mg, 20 equiv) in acetone/DMSO (9:1, 0.5 mL, 0.2 M) under nitrogen 

atmosphere with visible light for 5 hours, afforded 46.5 mg (90%) of 3bb as a white solid. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak OD-H column, ee = 99.4% 

(HPLC: OD-H, 254 nm, n-hexane/isopropanol = 95:5, flow rate 1 mL/min, 25 C, tr (major) = 8.3 min, 

tr (minor) = 7.4 min). []D
22 = +150.8 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.50-7.43 (m, 2H), 7.42-7.19 (m, 8H), 7.11-7.09 (m, 1H), 6.86-6.81 (m, 

1H, other rotamer), 6.81-6.75 (m, 1H), 5.67-5.61 (m, 1H), 5.60-5.56 (m, 1H, other rotamer), 2.04 (s, 

3H, other rotamer), 1.41 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 185.8, 185.7, 146.2-145.8 (m), 144.3-144.0 (m), 141.4-141.0 (m), 
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139.2-138.7 (m), 137.3-136.9 (m), 136.8, 134.7, 134.3, 130.82, 130.80, 130.77, 130.7, 129.5, 129.4, 

128.84, 128.76, 128.38, 128.35 128.1, 128.0, 127.21, 127.18 126.7, 126.6, 126.4, 126.0, 62.5 (t, J = 

3.7 Hz), 62.2 (t, J = 3.8 Hz), 17.2, 16.0. (Mixture of two rotation isomers). 

19F NMR (282 MHz, CDCl3) δ –136.00 - –136.20 (m, 2F), –156.03 - –156.31 (m, 2F). 

IR (film): ν (cm1) 3350, 2923, 2856, 1688, 1641, 1495, 1455, 1404, 1299, 1148, 1074, 1026, 981, 948, 

913, 858, 762, 736, 702, 675, 619, 579, 494, 454.  

HRMS (ESI, m/z) calcd for C24H16BrF4N3ONa [M+Na]+: 540.0305, found: 540.0305. 

 

 

Ethyl (S)-2,3,5,6-tetrafluoro-4-((2-oxo-1-phenyl-2-(1-(o-tolyl)-1H-imidazol-2-yl)ethyl)amino) 

benzoate (3bc) 

According to the general procedure, the reaction of 2-phenyl-1-(1-(o-tolyl)-1H-imidazol-2- 

yl)ethan-1-one 1b (27.6 mg, 0.10 mmol), ethyl 4-azido-2,3,5,6-tetrafluorobenzoate 2c (78.9 mg, 3.0 

equiv), Δ-RhS (3.5 mg, 4 mol%), [Ru(bpy)3](PF6)2 (2.2 mg, 2.5 mol%), Na2HPO4 (2.8 mg, 20 mol%) 

and H2O (36.0 mg, 20 equiv) in acetone/DMSO (9:1, 0.5 mL, 0.2 M) under nitrogen atmosphere with 

visible light for 6 hours, afforded 41.3 mg (81%) of 3bc as a white solid. Enantiomeric excess was 

established by HPLC analysis using a Chiralpak AD-H column, ee = 99.6% (HPLC: AD-H, 254 nm, 

n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 25 C, tr (major) = 8.7 min, tr (minor) = 5.3 min). 

[]D
22 = +101.0 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.51-7.44 (m, 2H), 7.43-7.18 (m, 8H), 7.12-7.09 (m, 1H), 6.92-6.82 (m, 

1H), 6.77 (d, J = 7.8 Hz, 1H, other rotamer), 5.94-5.81 (m, 1H), 4.34 (q, J = 7.1 Hz, 2H), 2.04 (s, 3H, 

other rotamer), 1.40 (s, 3H), 1.34 (t, J = 7.4 Hz, 3H). 

13C NMR (125 MHz, CDCl3) δ 185.4, 185.2, 160.6-160.4 (m), 147.0-147.3 (m), 145.3-145.0 (m), 

141.1, 140.9, 138.1-137.7 (m), 137.04, 136.98, 136.7, 136.1-135.8 (m), 134.7, 134.2, 130.9, 130.81, 

130.80, 130.77, 129.5, 129.4, 129.12, 129.09, 129.06, 129.03, 129.00, 128.9, 128.8, 128.5, 128.4, 

128.1, 128.0, 127.31, 127.28, 126.7, 126.6, 126.4, 126.0, 62.6 (t, J = 3.8 Hz), 62.3 (t, J = 3.8 Hz), 61.6, 
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17.2, 16.0, 14.1. (Mixture of two rotation isomers). 

19F NMR (282 MHz, CDCl3) δ –140.71 - –140.86 (m, 2F), –158.78 - –156.97 (m, 2F). 

IR (film): ν (cm1) 3349, 2973, 2932, 1718, 1687, 1651, 1533, 1495, 1452, 1399, 1371, 1310, 1233, 

1154, 1022, 986, 957, 913, 842, 789, 759, 699, 624, 561. 

HRMS (ESI, m/z) calcd for C27H21F4N3O3Na [M+Na]+: 534.1411, found: 534.1416. 

 

 

(S)-2-Phenyl-2-((2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)amino)-1-(1-(o-tolyl)-1H-imidazol-

2-yl)ethan-1-one (3bd) 

According to the general procedure, the reaction of 2-phenyl-1-(1-(o-tolyl)-1H-imidazol-2- 

yl)ethan-1-one 1b (27.6 mg, 0.10 mmol), 1-azido-2,3,5,6-tetrafluoro-4-(trifluoromethyl)benzene 2d 

(77.7 mg, 3.0 equiv), Δ-RhS (3.5 mg, 4 mol%), [Ru(bpy)3](PF6)2 (2.2 mg, 2.5 mol%), Na2HPO4 (2.8 

mg, 20 mol%) and H2O (36.0 mg, 20 equiv) in acetone/DMSO (9:1, 0.5 mL, 0.2 M) under nitrogen 

atmosphere with visible light for 6 hours, afforded 35.6 mg (70%) of 3bd as a yellow oil. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak AD-H column, ee = 99% 

(HPLC: OD-H, 254 nm, n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 25 C, tr (major) = 5.1 

min, tr (minor) = 4.1 min). []D
22 = +127.8 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.51-7.44 (m, 2H), 7.43-7.19 (m, 8H), 7.12-7.09 (m, 1H), 6.91-6.87 (m, 

1H), 6.87-6.82 (m, 1H, other rotamer), 6.77 (d, J = 8.0 Hz, 1H, other rotamer), 5.97-5.91 (m, 1H), 

5.89-5.83 (m, 1H, other rotamer), 2.04 (s, 3H, other rotamer), 1.39 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 185.2, 185.1, 141.1, 140.8, 137.02, 136.96, 136.6, 134.7, 134.2, 130.93, 

130.85, 130.8, 129.53, 129.47, 129.0, 128.9, 128.6, 128.5, 128.1, 128.0, 127.38, 127.36 126.8, 126.7, 

126.4, 126.0, 63.0 (t, J = 3.6 Hz), 62.7 (t, J = 3.9 Hz), 17.2, 16.1. (Mixture of two rotation isomers). 

19F NMR (282 MHz, CDCl3) δ –55.1 (t, J = 20.87, 3F), –143.25 - –143.50 (m, 2F), –158.28 - –158.50 

(m, 2F). 

IR (film): ν (cm1) 3373, 1688, 1655, 1539, 1505, 1457, 1400, 1330, 1304, 1235, 1179, 1130, 1078, 
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1025, 983, 957, 911, 884, 835, 764, 734, 703, 672, 626, 560, 494. 

HRMS (ESI, m/z) calcd for C23H16F7N3ONa [M+Na]+: 530.1074, found: 530.1075. 

 

 

(S)-2-((3,5-Bis(trifluoromethyl)phenyl)amino)-2-phenyl-1-(1-(o-tolyl)-1H-imidazol-2-yl)ethan-1-o

ne (3be) 

According to the general procedure, the reaction of 2-phenyl-1-(1-(o-tolyl)-1H-imidazol-2-yl) 

ethan-1-one 1b (27.6 mg, 0.10 mmol), 1-azido-3,5-bis(trifluoromethyl)benzene 2e (76.6 mg, 3.0 

equiv), Δ-RhS (3.5 mg, 4 mol%), [Ru(bpy)3](PF6)2 (2.2 mg, 2.5 mol%), Na2HPO4 (2.8 mg, 20 mol%) 

and H2O (36.0 mg, 20 equiv) in acetone/DMSO (9:1, 0.5 mL, 0.2 M) under nitrogen atmosphere with 

visible light for 7 hours, afforded 29.8 mg (59%) of 3be as a colorless oil. Enantiomeric excess was 

established by HPLC analysis using a Chiralpak OD-H column, ee = 98% (HPLC: OD-H, 254 nm, 

n-hexane/isopropanol = 95:5, flow rate 1 mL/min, 25 C, tr (major) = 8.5 min, tr (minor) = 7.0 min). 

[]D
22 = +97.0 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.60-7.53 (m, 2H), 7.43-7.16 (m, 8H), 7.13-7.09 (m, 2H), 6.98-6.94 (m, 

2H), 6.78 (d, J = 7.8 Hz, 1H, other rotamer), 6.56-6.49 (m, 1H), 5.79 (d, J =7.2 Hz, 1H), 5.73 (d, J 

=7.2 Hz, 1H, other rotamer), 2.00 (s, 3H, other rotamer), 1.40 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 186.0, 185.9, 146.5, 146.4, 141.4, 141.3, 137.1, 137.0, 136.1, 134.6, 

134.2, 132.3 (q, J = 97.5 Hz) 130.80, 130.78, 130.72, 130.7, 129.43, 129.37, 129.0, 128.9, 128.39, 

128.38, 128.2, 128.1, 127.4, 126.0, 123.4 (q, J = 271.1 Hz), 112.61, 112.58, 110.6-110.4 (m), 61.9, 

61.7, 17.2, 16.0 (Mixture of two rotation isomers). 

19F NMR (282 MHz, CDCl3) δ –63.40 (6F), –63.40 (other rotamer). 

IR (film): ν (cm1) 3381, 3066, 2927, 1674, 1624, 1501, 1450, 1394, 1274, 1172, 1126, 1028, 996, 969, 

927, 867, 762, 726, 690, 644, 606, 529, 405. 

HRMS (EI, m/z) calcd for C26H19F6N3O [M]+: 503.1432, found: 503.1447. 
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(S)-5-((2-Oxo-1-phenyl-2-(1-(o-tolyl)-1H-imidazol-2-yl)ethyl)amino)-2-(trifluoromethyl)benzonit

rile (3bf) 

According to the general procedure, the reaction of 2-phenyl-1-(1-(o-tolyl)-1H-imidazol-2- 

yl)ethan-1-one 1b (27.6 mg, 0.10 mmol), 5-azido-2-(trifluoromethyl)benzonitrile 2f (63.6 mg, 3.0 

equiv), Δ-RhS (3.5 mg, 4 mol%), [Ru(bpy)3](PF6)2 (2.2 mg, 2.5 mol%), Na2HPO4 (2.8 mg, 20 mol%) 

and H2O (36.0 mg, 20 equiv) in acetone/DMSO (9:1, 0.5 mL, 0.2 M) under nitrogen atmosphere with 

visible light for 6 hours, afforded 33.9 mg (74%) of 3bf as a yellow solid. Enantiomeric excess was 

established by HPLC analysis using a Chiralpak AD-H column, ee = 96% (HPLC: AD-H, 254 nm, 

n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 25 C, tr (major) = 8.9 min, tr (minor) = 16.0 min). 

[]D
22 = +114.4 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.57-7.50 (m, 2H), 7.48-7.45 (m, 1H), 7.43-7.17 (m, 8H), 7.15-7.13 (m, 

1H), 6.89 (dd, J1 = 7.5 Hz, J2 = 2.0 Hz, 1H), 6.75 (d, J = 8.0 Hz, 1H, other rotamer), 6.70-6.65 (m, 1H), 

6.53 (d, J = 6.5 Hz, 1H), 6.49 (d, J = 6.5 Hz, 1H, other rotamer), 6.14-6.10 (m, 1H), 2.00 (s, 3H, other 

rotamer), 1.37 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 185.2, 185.1, 148.8, 148.7, 141.1, 141.0, 136.9, 136.8, 136.1, 135.60, 

135.57, 134.6, 134.24, 134.15, 134.0, 130.9, 130.83, 130.79, 129.5, 129.4, 129.1, 129.0, 128.6, 128.2, 

128.0, 127.6, 126.72, 126.67, 126.3, 126.0, 123.5, 121.3, 116.9, 114.6, 111.2, 96.2, 61.6, 61.3, 17.2, 

16.0. (Mixture of two rotation isomers). 

19F NMR (282 MHz, CDCl3) δ –63.097 (3F), –63.102 (3F, other rotamer). 

IR (film): ν (cm1) 3336, 2922, 2223, 1697, 1608, 1522, 1497, 1447, 1402, 1352, 1274, 1172, 1131, 

1025, 842, 768, 738, 701, 673, 557, 454. 

HRMS (ESI, m/z) calcd for C26H19F3N4ONa [M+Na]+: 483.1403, found: 483.1405. 
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(S)-4-((2-Oxo-1-phenyl-2-(1-(o-tolyl)-1H-imidazol-2-yl)ethyl)amino)phthalonitrile (3bg) 

According to the general procedure, the reaction of 2-phenyl-1-(1-(o-tolyl)-1H-imidazol-2- 

yl)ethan-1-one 1b (27.6 mg, 0.10 mmol), 4-azidophthalonitrile 2g (50.7 mg, 3.0 equiv), Δ-RhS (3.5 

mg, 4 mol%), [Ru(bpy)3](PF6)2 (2.2 mg, 2.5 mol%), Na2HPO4 (2.8 mg, 20 mol%) and H2O (36.0 mg, 

20 equiv) in acetone/DMSO (9:1, 0.5 mL, 0.2 M) under nitrogen atmosphere with visible light for 6 

hours, afforded 37.0 mg (89%) of 3bg as a yellow solid. Enantiomeric excess was established by 

HPLC analysis using a Chiralpak AD-H column, ee = 99% (HPLC: AD-H, 254 nm, 

n-hexane/isopropanol = 60:40, flow rate 1 mL/min, 25 C, tr (major) = 8.2 min, tr (minor) = 17.3 min). 

[]D
22 = +111.4 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.56-7.50 (m, 2H), 7.44-7.37 (m, 2H), 7.37-7.23 (m, 5H), 7.22-7.16 (m, 

2H), 7.15-7.13 (m, 1H), 6.86-6.83 (m, 1H), 6.78-6.72 (m, 1H), 6.78-6.72 (m, 1H, other rotamer), 6.50 

(d, J = 6.5 Hz, 1H), 6.46 (d, J = 6.5 Hz, 1H, other rotamer), 6.21-6.15 (m, 1H), 2.01 (s, 3H, other 

rotamer), 1.36 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 184.9, 184.8, 148.9, 148.8, 141.0, 140.9, 136.9, 136.8, 135.3, 135.2, 

134.6, 134.5, 134.1, 130.94, 130.86, 130.82, 130.79, 129.5, 129.4, 129.14, 129.10, 128.7, 128.1, 128.0, 

127.7, 126.70, 126.66, 126.3, 126.0, 117.0, 116.6, 116.4, 115.8, 102.2, 61.5, 61.3, 17.2, 15.9. (Mixture 

of two rotation isomers) 

IR (film): ν (cm1) 3366, 3063, 2923, 2220, 1685, 1596, 1514, 1454, 1398, 1346, 1304, 1257, 1023, 

968, 910, 832, 764, 731, 703, 673, 521, 492, 453,  

HRMS (ESI, m/z) calcd for C26H19N5ONa [M+Na]+: 440.1482, found: 440.1482. 

 

 

(S)-2-((4-(Azidodifluoromethyl)-2,3,5,6-tetrafluorophenyl)amino)-2-phenyl-1-(1-(o-tolyl)-1H-imi
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dazol-2-yl)ethan-1-one (3bh) 

According to the general procedure, the reaction of 2-phenyl-1-(1-(o-tolyl)-1H-imidazol-2-yl) 

ethan-1-one 1b (27.6 mg, 0.10 mmol), 1-azido-4-(azidodifluoromethyl)-2,3,5,6-tetrafluorobenzene 2h 

(84.6 mg, 3.0 equiv), Δ-RhS (3.5 mg, 4 mol%), [Ru(bpy)3](PF6)2 (2.2 mg, 2.5 mol%), Na2HPO4 (2.8 

mg, 20 mol%) and H2O (36.0 mg, 20 equiv) in acetone/DMSO (9:1, 0.5 mL, 0.2 M) under nitrogen 

atmosphere with visible light for 11 hours, afforded 25.5 mg (48%) of 3bh as a colorless oil. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak OD-H column, ee = 98% 

(HPLC: OD-H, 254 nm, n-hexane/isopropanol = 95:5, flow rate 1 mL/min, 25 C, tr (major) = 8.8 min, 

tr (minor) = 7.6 min). []D
22 = +128.2 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.50-7.43 (m, 2H), 7.42-7.18 (m, 8H), 7.11-7.09 (m, 1H), 6.90-6.85 (m, 

1H), 6.85-6.81 (m, 1H, other rotamer), 6.76 (d, J = 8.0 Hz, 1H, other rotamer), 5.90-5.85 (m, 1H), 

5.83-5.78 (m, 1H, other rotamer), 2.03 (s, 3H, other rotamer), 1.39 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 185.3, 185.2, 141.1, 140.9, 137.05, 136.98, 136.7, 134.7, 134.2, 130.9, 

130.84, 130.81, 129.52, 129.46, 128.94, 128.85, 128.1, 128.0, 127.4, 127.3, 126.75, 126.65, 126.4, 

126.0, 62.6 (t, J = 3.4 Hz), 62.2 (t, J = 3.7 Hz), 17.2, 16.0 (Mixture of two rotation isomers). 

19F NMR (282 MHz, CDCl3) δ –62.93 (t, J = 24.82, 2F), –142.24 - –142.54 (m, 2F), –157.67 - 

–157.90 (m, 2F). 

IR (film): ν (cm1) 3373, 2962, 2927, 2145, 1689, 1655, 1536, 1500, 1456, 1428, 1400, 1320, 1275, 

1229, 1148, 1028, 979, 953, 912, 865, 786, 763, 730, 697, 670, 626, 562, 488, 454, 393. 

HRMS (ESI, m/z) calcd for C25H16F6N6ONa [M+Na]+: 553.1182, found: 553.1182. 

 

 

Ethyl (S)-4-oxo-3-phenyl-4-(1-phenyl-1H-imidazol-2-yl)butanoate (5aa) 

According to the general procedure, the reaction of 2-phenyl-1-(1-phenyl-1H-imidazol-2-yl) 

ethan-1-one 1a (26.2 mg, 0.10 mmol), ethyl 2-diazoacetate 4a (34.2 mg, 3.0 equiv), Δ-RhS (3.5 mg, 4 

mol%), [Ru(bpy)3](PF6)2 (1.3 mg, 1.5 mol%), Na2HPO4 (2.8 mg, 20 mol%) and H2O (36.0 mg, 20 

equiv) in acetone/DMSO (9:1, 0.5 mL, 0.2 M) under nitrogen atmosphere with visible light for 15 
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hours, afforded 32.7 mg (94%) of 5aa as a yellow solid. Enantiomeric excess was established by 

HPLC analysis using a Chiralpak OD-H column, ee = 92% (HPLC: OD-H, 254 nm, 

n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 25 C, tr (major) = 15.0 min, tr (minor) = 11.1 min). 

[]D
22 = +213.6 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.44-7.39 (m, 5H), 7.32-7.27 (m, 2H), 7.27 (d, J = 1.5 Hz, 1H), 

7.25-7.21 (m, 1H), 7.19-7.15 (m, 2H), 7.11 (d, J = 1.0 Hz, 1H), 5.60 (dd, J1 = 10.5 Hz, J2 = 5.0 Hz, 

1H), 4.07 (qd, J1 = 7.0 Hz, J2 = 1.0 Hz, 2H), 3.30 (dd, J1 = 17.0 Hz, J2 = 10.5 Hz, 1H), 2.70 (dd, J1 = 

17.0 Hz, J2 = 5.0 Hz, 1H), 1.16 (t, J = 7.3 Hz, 3H). 

13C NMR (125 MHz, CDCl3) δ 189.4, 171.8, 142.4, 138.3, 137.6, 129.9, 128.9, 128.7, 128.6, 127.3, 

127.0, 125.6, 60.6, 48.8, 37.4, 14.1. (Missing one 13C signal)  

IR (film): ν (cm1) 2980, 2930, 1722, 1678, 1495, 1449, 1401, 1373, 1329, 1302, 1245, 1187, 1152, 

1097, 1029, 939, 906, 756, 694, 585, 530.  

HRMS (ESI, m/z) calcd for C21H21N2O3 [M+H]+: 349.1547, found: 349.1548. 

 

 

Ethyl (R)-4-oxo-3-phenyl-4-(1-(o-tolyl)-1H-imidazol-2-yl)butanoate (5ba) 

According to the general procedure, the reaction of 2-phenyl-1-(1-(o-tolyl)-1H-imidazol-2-yl) 

ethan-1-one 1b (27.6 mg, 0.10 mmol), ethyl 2-diazoacetate 4a (34.2 mg, 3.0 equiv), Λ-RhS (3.5 mg, 4 

mol%), [Ru(bpy)3](PF6)2 (1.3 mg, 1.5 mol%), Na2HPO4 (2.8 mg, 20 mol%) and H2O (36.0 mg, 20 

equiv) in acetone/DMSO (9:1, 0.5 mL, 0.2 M) under nitrogen atmosphere with visible light for 15 

hours, afforded 35.9 mg (99%) of 5ba as a yellow oil. Enantiomeric excess was established by HPLC 

analysis using a Chiralpak OD-H column, ee = 97% (HPLC: OD-H, 254 nm, n-hexane/isopropanol = 

90:10, flow rate 1 mL/min, 25 C, tr (major) = 9.8 min, tr (minor) = 11.7 min). []D
22 = –238.4 (c 1.0, 

CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.43-7.18 (m, 10H), 7.03 (d, J = 1.0 Hz, 1H), 6.90 (d, J = 8.0 Hz, 1H, 

other rotamer), 5.65-5.58 (m, 1H), 4.10-4.03 (m, 2H), 3.34-3.25 (m, 1H), 2.74-2.64 (m, 1H), 2.04 (s, 

3H), 1.55 (s, 3H, other rotamer), 1.20-1.14 (m, 3H). 
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13C NMR (125 MHz, CDCl3) δ 189.35, 189.25, 171.6, 142.9, 142.8, 137.84, 137.80, 137.7, 137.6, 

134.9, 134.3, 130.6, 130.5, 130.2, 130.1, 129.0, 128.9, 128.7, 128.61, 128.56, 128.5, 127.23, 127.19, 

126.5, 126.41, 126.38, 126.1, 60.5, 48.61, 48.58, 37.4, 37.0, 17.1, 16.4, 14.05, 14.02. (Mixture of two 

rotation isomers) 

IR (film): ν (cm1) 3111, 3061, 2981, 2931, 1729, 1682, 1594, 1495, 1453, 1403, 1375, 1305, 1243, 

1178, 1093, 1026, 941, 909, 848, 762, 699, 670, 587, 529, 455. 

HRMS (ESI, m/z) calcd for C22H22N2O3Na [M+Na]+: 385.1523, found: 385.1525 

 

 

Ethyl (R)-3-(4-methoxyphenyl)-4-oxo-4-(1-(o-tolyl)-1H-imidazol-2-yl)butanoate (5la) 

According to the general procedure, the reaction of 2-(4-methoxyphenyl)-1-(1-(o-tolyl)-1H- 

imidazol-2-yl)ethan-1-one 1l (30.6 mg, 0.10 mmol), ethyl 2-diazoacetate 4a (34.2 mg, 3.0 equiv), 

Λ-RhS (3.5 mg, 4 mol%), [Ru(bpy)3](PF6)2 (1.3 mg, 1.5 mol%), Na2HPO4 (2.8 mg, 20 mol%) and 

H2O (36.0 mg, 20 equiv) in acetone/DMSO (9:1, 0.5 mL, 0.2 M) under nitrogen atmosphere with 

visible light for 15 hours, afforded 38.1 mg (97%) of 5la as a yellow solid. Enantiomeric excess was 

established by HPLC analysis using a Chiralpak IC column, ee = 95% (HPLC: IC, 254 nm, 

n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 25 C, tr (major) = 13.1 min, tr (minor) = 14.8 

min). []D
22 = –239.4 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.38-7.26 (m, 5H), 7.25-7.18 (m, 2H), 7.03-7.01 (m, 1H), 6.89 (d, J = 

8.0 Hz, 1H, other rotamer), 6.84-6.78 (m, 2H), 5.58-5.51 (m, 1H), 4.09-4.02 (m, 2H), 3.76 (s, 3H), 

3.29-3.20 (m, 1H), 2.71-2.61 (m, 1H), 2.03 (s, 3H), 1.57 (s, 3H, other rotamer), 1.20-1.13 (m, 3H). 

13C NMR (125 MHz, CDCl3) δ 189.5, 189.4, 171.7, 158.8, 143.0, 142.9, 137.9, 134.9, 134.3, 130.6, 

130.08, 130.06, 129.7, 129.6, 129.0, 128.9, 126.5, 126.44, 126.39, 126.33, 126.31, 126.1, 114.1, 114.0, 

60.5, 55.2, 47.83, 47.76, 37.4, 37.1, 17.2, 16.5, 14.1, 14.0. (Mixture of two rotation isomers) 

IR (film): ν (cm1) 2971, 2933, 1728, 1674, 1606, 1507, 1452, 1340, 1302, 1243, 1178, 1106, 1091, 

1024, 940, 906, 848, 766, 719, 536. 

HRMS (ESI, m/z) calcd for C23H24N2O4Na [M+Na]+: 415.1628, found: 415.1629. 
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Ethyl (R)-4-oxo-3-(p-tolyl)-4-(1-(o-tolyl)-1H-imidazol-2-yl)butanoate (5ja) 

According to the general procedure, the reaction of 2-(p-tolyl)-1-(1-(o-tolyl)-1H-imidazol- 

2-yl)ethan-1-one 1j (29.0 mg, 0.10 mmol), ethyl 2-diazoacetate 4a (34.2 mg, 3.0 equiv), Λ-RhS (3.5 

mg, 4 mol%), [Ru(bpy)3](PF6)2 (2.2 mg, 2.5 mol%), Na2HPO4 (2.8 mg, 20 mol%) and H2O (36.0 mg, 

20 equiv) in acetone/DMSO (9:1, 2.0 mL, 0.05 M) under nitrogen atmosphere with visible light for 24 

hours, afforded 35.5 mg (94%) of 5ja as a yellow solid. Enantiomeric excess was established by 

HPLC analysis using a Chiralpak OD-H column, ee = 96% (HPLC: OD-H, 254 nm, 

n-hexane/isopropanol = 95:5, flow rate 1 mL/min, 25 C, tr (major) = 10.5 min, tr (minor) = 13.2 min). 

[]D
22 = –272.8 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.39-7.21 (m, 7H), 7.12-7.06 (m, 2H), 7.03-7.01 (m, 1H), 6.91 (d, J = 

8.0 Hz, 1H, other rotamer), 5.60-5.53 (m, 1H), 4.10-4.02 (m, 2H), 3.31-3.24 (m, 1H), 2.71-2.62 (m, 

1H), 2.30 (s, 3H), 2.29 (s, 3H, other rotamer), 2.04 (s, 3H), 1.59 (s, 3H, other rotamer), 1.21-1.14 (m, 

3H). 

13C NMR (125 MHz, CDCl3) δ 189.5, 189.4, 171.7, 142.3, 142.8, 137.9, 137.8, 136.8, 134.9, 134.6, 

134.5, 134.3, 130.6, 130.5, 130.11, 130.09, 129.4, 129.3, 128.95, 128.89, 128.4, 126.5, 126.41, 126.35, 

126.30, 126.29, 126.1, 60.4, 48.21, 48.20, 37.4, 37.1, 21.0, 17.2, 16.6, 14.05, 14.01. (Mixture of two 

rotation isomers) 

IR (film): ν (cm1) 3172, 2981, 2924, 1731, 1680, 1500, 1445, 1405, 1373, 1321, 1179, 1032, 942, 907, 

767, 717, 534. 

HRMS (ESI, m/z) calcd for C23H24N2O3Na [M+Na]+: 399.1679, found: 399.1677. 

 

 

Ethyl (R)-3-(4-fluorophenyl)-4-oxo-4-(1-(o-tolyl)-1H-imidazol-2-yl)butanoate (5ma) 
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According to the general procedure, the reaction of 2-(4-fluorophenyl)-1-(1-(o-tolyl)-1H-imidazol- 

2-yl)ethan-1-one 1m (29.4 mg, 0.10 mmol), ethyl 2-diazoacetate 4a (34.2 mg, 3.0 equiv), Λ-RhS (3.5 

mg, 4 mol%), [Ru(bpy)3](PF6)2 (1.3 mg, 1.5 mol%), Na2HPO4 (2.8 mg, 20 mol%) and H2O (36.0 mg, 

20 equiv) in acetone/DMSO (9:1, 1.0 mL, 0.1 M) under nitrogen atmosphere with visible light for 16 

hours, afforded 36.5 mg (96%) of 5ma as a yellow solid. Enantiomeric excess was established by 

HPLC analysis using a Chiralpak OD-H column, ee = 98% (HPLC: OD-H, 254 nm, 

n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 25 C, tr (major) = 7.6 min, tr (minor) = 8.7 min). 

[]D
22 = –205.8 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.40-7.26 (m, 5H), 7.25-7.17 (m, 2H), 7.04-7.02 (m, 1H), 6.99-6.92 (m, 

2H), 6.90 (dd, J1 = 8.0 Hz, J2 = 1.0 Hz, 1H, other rotamer), 5.62-5.54 (m, 1H), 4.08-4.01 (m, 2H), 

3.28-3.20 (m, 1H), 2.71-2.60 (m, 1H), 2.02 (s, 3H), 1.56 (s, 3H, other rotamer), 1.19-1.12 (m, 3H). 

13C NMR (125 MHz, CDCl3) δ 189.2, 189.1, 171.51, 171.49, 163.0, 161.0, 142.7, 142.6, 137.79, 

137.75, 134.9, 134.2, 133.41, 133.39, 133.35, 133.32, 130.7, 130.6, 130.23, 130.21, 130.16, 130.1, 

129.1, 129.0, 126.6, 126.5, 126.4, 126.0, 115.64, 115.59, 115.5, 115.4, 60.6, 47.8, 47.7, 37.4, 37.0, 

17.1, 16.5, 14.1, 14.0. (Mixture of two rotation isomers) 

19F NMR (282 MHz, CDCl3) δ –115.32 (1F), –115.39 (1F, other rotamer). 

IR (film): ν (cm1) 3119, 2985, 2926, 1723, 1683, 1502, 1454, 1403, 1376, 1313, 1225, 1185, 1159, 

1096, 1022, 941, 908, 842, 803, 766, 716, 544, 492, 454. 

HRMS (ESI, m/z) calcd for C22H21FN2O3Na [M+Na]+: 403.1428, found: 403.1425. 

 

 

Ethyl (R)-3-(4-chlorophenyl)-4-oxo-4-(1-(o-tolyl)-1H-imidazol-2-yl)butanoate (5na) 

According to the general procedure, the reaction of 2-(4-chlorophenyl)-1-(1-(o-tolyl)-1H-imidazol- 

2-yl)ethan-1-one 1n (31.1 mg, 0.10 mmol), ethyl 2-diazoacetate 4a (34.2 mg, 3.0 equiv), Λ-RhS (3.5 

mg, 4 mol%), [Ru(bpy)3](PF6)2 (2.2 mg, 2.5 mol%), Na2HPO4 (2.8 mg, 20 mol%) and H2O (36.0 mg, 

20 equiv) in acetone/DMSO (9:1, 2.0 mL, 0.05 M) under nitrogen atmosphere with visible light for 22 

hours, afforded 39.0 mg (98%) of 5na as a white solid. Enantiomeric excess was established by HPLC 
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analysis using a Chiralpak IC column, ee = 95% (HPLC: IC, 254 nm, n-hexane/isopropanol = 85:15, 

flow rate 1 mL/min, 25 C, tr (major) = 7.3 min, tr (minor) = 8.7 min). []D
22 = –208.4  (c 1.0, 

CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.39-7.26 (m, 5H), 7.26-7.17 (m, 4H), 7.04-7.03 (m, 1H), 6.91 (dd, J1 = 

8.0 Hz, J2 = 1.0 Hz, 1H, other rotamer), 5.61-5.54 (m, 1H), 4.08-4.01 (m, 2H), 3.16-3.06 (m, 1H), 

2.72-2.62 (m, 1H), 2.04 (s, 3H), 1.81 (s, 3H, other rotamer), 1.20-1.14 (m, 3H). 

13C NMR (125 MHz, CDCl3) δ 189.0, 188.9, 171.3, 171.2, 142.80, 142.77, 137.83, 137.81, 136.1, 

135.9, 135.0, 134.2, 134.1, 134.0, 130.7, 130.6, 130.45, 130.41, 130.2, 129.1, 129.0, 128.6, 128.5, 

128.43, 128.40, 126.9, 126.8, 126.7, 126.55, 126.50, 126.43, 126.37, 126.1, 60.6, 45.7, 45.6, 36.7, 

36.5, 17.2, 16.9, 14.03, 14.00. (Mixture of two rotation isomers) 

IR (film): ν (cm1) 2974, 2925, 1731, 1682, 1493, 1458, 1401, 1374, 1254, 1185, 1148, 1087, 1035, 

943, 906, 769, 717, 531. 

HRMS (ESI, m/z) calcd for C22H21ClN2O3Na [M+Na]+: 419.1133, found: 419.1131. 

 

 

Ethyl (R)-3-(4-bromophenyl)-4-oxo-4-(1-(o-tolyl)-1H-imidazol-2-yl)butanoate (5oa) 

According to the general procedure, the reaction of 2-(4-bromophenyl)-1-(1-(o-tolyl)-1H-imidazol- 

2-yl)ethan-1-one 1o (35.5 mg, 0.10 mmol), ethyl 2-diazoacetate 4a (34.2 mg, 3.0 equiv), Λ-RhS (3.5 

mg, 4 mol%), [Ru(bpy)3](PF6)2 (2.2 mg, 2.5 mol%), Na2HPO4 (2.8 mg, 20 mol%) and H2O (36.0 mg, 

20 equiv) in acetone/DMSO (9:1, 2.0 mL, 0.05 M) under nitrogen atmosphere with visible light for 38 

hours, afforded 41.0 mg (93%) of 5oa as a white solid. Enantiomeric excess was established by HPLC 

analysis using a Chiralpak IC column, ee = 95% (HPLC: IC, 254 nm, n-hexane/isopropanol = 85:15, 

flow rate 1 mL/min, 25 C, tr (major) = 7.8 min, tr (minor) = 9.1 min). []D
22 = –183.2 (c 1.0, 

CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.42-7.17 (m, 9H), 7.05-7.02 (m, 1H), 6.91 (d, J = 8.0 Hz, 1H, other 

rotamer), 5.60-5.53 (m, 1H), 4.08-4.02 (m, 2H), 3.27-3.19 (m, 1H), 2.70-2.61 (m, 1H), 2.01 (s, 3H), 

1.59 (s, 3H, other rotamer), 1.19-1.12 (m, 3H). 
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13C NMR (125 MHz, CDCl3) δ 188.9, 188.8, 171.43, 171.41, 142.6, 142.5, 137.74, 137.71, 136.20, 

136.17, 134.9, 134.2, 133.20, 133.19, 130.7, 130.6, 130.24, 130.21, 130.0, 129.12, 129.06, 128.9, 

128.8, 126.7, 126.63, 126.58, 126.5, 126.4, 126.0, 60.6, 47.97, 47.95, 37.2, 36.9, 17.1, 16.6, 14.1, 14.0. 

(Mixture of two rotation isomers) 

IR (film): ν (cm1) 2980, 2929, 1730, 1683, 1491, 1454, 1403, 1374, 1309, 1240, 1178, 1014, 941, 909, 

766, 722, 532. 

HRMS (ESI, m/z) calcd for C22H21BrN2O3Na [M+Na]+: 463.0628, found: 463.0624. 

 

 

Ethyl (R)-3-(3-chlorophenyl)-4-oxo-4-(1-(o-tolyl)-1H-imidazol-2-yl)butanoate (5ka) 

According to the general procedure, the reaction of 2-(3-chlorophenyl)-1-(1-(o-tolyl)-1H-imidazol- 

2-yl)ethan-1-one 1k (31.1 mg, 0.10 mmol), ethyl 2-diazoacetate 4a (34.2 mg, 3.0 equiv), Λ-RhS (3.5 

mg, 4 mol%), [Ru(bpy)3](PF6)2 (1.3 mg, 1.5 mol%), Na2HPO4 (2.8 mg, 20 mol%) and H2O (36.0 mg, 

20 equiv) in acetone/DMSO (9:1, 0.5 mL, 0.2 M) under nitrogen atmosphere with visible light for 26 

hours, afforded 36.5 mg (92%) of 5ka as a yellow oil. Enantiomeric excess was established by HPLC 

analysis using a Chiralpak IC column, ee = 95% (HPLC: IC, 254 nm, n-hexane/isopropanol = 80:20, 

flow rate 1 mL/min, 25 C, tr (major) = 7.1 min, tr (minor) = 12.2 min). []D
22 = –223.0 (c 1.0, 

CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.40-7.18 (m, 9H), 7.06-7.04 (m, 1H), 6.31 (dd, J1 = 8.0 Hz, J2 = 1.0 Hz, 

1H, other rotamer), 5.61-5.55 (m, 1H), 4.09-4.02 (m, 2H), 3.28-3.21 (m, 1H), 2.71-2.62 (m, 1H), 2.02 

(s, 3H), 1.62 (s, 3H, other rotamer), 1.20-1.13 (m, 3H). 

13C NMR (125 MHz, CDCl3) δ 188.70, 188.65, 171.4, 171.3, 142.7, 142.6, 139.72, 139.69, 137.73, 

137.69, 134.7, 134.40, 134.38, 134.2, 130.7, 130.34, 130.31, 129.91, 129.88, 129.12, 129.06, 128.64, 

128.59, 127.5, 126.88, 126.85, 126.69, 126.67, 126.6, 126.5, 126.4, 126.1, 60.6, 48.22, 48.20, 37.3, 

36.9, 17.1, 16.5, 14.1, 14.0. (Mixture of two rotation isomers) 

IR (film): ν (cm1) 2982, 2930, 1730, 1683, 1454, 1402, 1376, 1304, 1241, 1180, 1088, 1025, 942, 908, 

766, 724, 690, 454. 
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HRMS (ESI, m/z) calcd for C22H21ClN2O3Na [M+Na]+: 419.1133, found: 419.1131. 

 

 

Ethyl (R)-3-(2-chlorophenyl)-4-oxo-4-(1-(o-tolyl)-1H-imidazol-2-yl)butanoate (5pa) 

According to the general procedure, the reaction of 2-(2-chlorophenyl)-1-(1-(o-tolyl)-1H-imidazol- 

2-yl)ethan-1-one 1p (31.1 mg, 0.10 mmol), ethyl 2-diazoacetate 4a (34.2 mg, 3.0 equiv), Λ-RhS (3.5 

mg, 4 mol%), [Ru(bpy)3](PF6)2 (1.3 mg, 1.5 mol%), Na2HPO4 (2.8 mg, 20 mol%) and H2O (36.0 mg, 

20 equiv) in acetone/DMSO (9:1, 0.5 mL, 0.2 M) under nitrogen atmosphere with visible light for 15 

hours, afforded 32.2 mg (81%) of 5pa as a yellow oil. Enantiomeric excess was established by HPLC 

analysis using a Chiralpak IC column, ee = 97% (HPLC: IC, 254 nm, n-hexane/isopropanol = 85:15, 

flow rate 1 mL/min, 25 C, tr (major) = 12.9 min, tr (minor) = 15.6 min). []D
22 = –309.8 (c 1.0, 

CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.43-7.21 (m, 6H), 7.20-7.08 (m, 3H), 7.04-7.02 (m, 1H), 7.01 (d, J = 

8.0 Hz, 1H, other rotamer), 6.03-5.95 (m, 1H), 4.50-4.03 (m, 2H), 3.16-3.06 (m, 1H), 2.72-2.62 (m, 

1H), 2.04 (s, 3H), 1.81 (s, 3H, other rotamer), 1.20-1.14 (m, 3H). 

13C NMR (125 MHz, CDCl3) δ 189.0, 188.9, 171.3, 171.2, 142.80, 142.77, 137.83, 137.81, 136.1, 

135.9, 135.0, 134.2, 134.1, 134.0, 130.7, 130.6, 130.45, 130.41, 130.2, 129.1, 129.0, 128.6, 128.5, 

128.43, 128.40, 126.9, 126.8, 126.7, 126.55, 126.50, 126.43, 126.37, 126.1, 60.6, 45.7, 45.6, 36.7, 

36.5, 17.2, 16.9, 14.03, 14.00. (Mixture of two rotation isomers) 

IR (film): ν (cm1) 2982, 2929, 1731, 1683, 1451, 1403, 1375, 1299, 1242, 1180, 1033, 940, 909, 759, 

727, 458. 

HRMS (ESI, m/z) calcd for C22H22ClN2O3 [M+H]+: 397.1313, found: 397.1315. 

 

 

Ethyl (R)-3-(naphthalen-2-yl)-4-oxo-4-(1-(o-tolyl)-1H-imidazol-2-yl)butanoate (5qa) 
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According to the general procedure, the reaction of 2-(naphthalen-2-yl)-1-(1-(o-tolyl)-1H-imidazol- 

2-yl)ethan-1-one 1q (32.6 mg, 0.10 mmol), ethyl 2-diazoacetate 4a (34.2 mg, 3.0 equiv), Λ-RhS (3.5 

mg, 4 mol%), [Ru(bpy)3](PF6)2 (1.3 mg, 1.5 mol%), Na2HPO4 (2.8 mg, 20 mol%) and H2O (36.0 mg, 

20 equiv) in acetone/DMSO (9:1, 0.5 mL, 0.2 M) under nitrogen atmosphere with visible light for 15 

hours, afforded 35.4 mg (86%) of 5qa as a colorless oil. Enantiomeric excess was established by 

HPLC analysis using a Chiralpak IC column, ee = 95% (HPLC: IC, 254 nm, n-hexane/isopropanol = 

85:15, flow rate 1 mL/min, 25 C, tr (major) = 15.3 min, tr (minor) = 17.7 min). []D
22 = –297.6 (c 1.0, 

CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.83 (d, J = 12.5 Hz, 1H), 7.79-7.74 (m, 3H), 7.56-7.50 (m, 1H), 

7.46-7.40 (m, 2H), 7.38-7.27 (m, 3H), 7.24-7.17 (m, 2H), 7.01-6.98 (m, 1H), 6.85 (d, J = 8.0 Hz, 1H, 

other rotamer), 5.80-5.73 (m, 1H), 4.10-4.03 (m, 2H), 3.41-3.32 (m, 1H), 2.81-2.72 (m, 1H), 2.05 (s, 

3H), 1.52 (s, 3H, other rotamer), 1.20-1.13 (m, 3H). 

13C NMR (125 MHz, CDCl3) δ 189.2 189.1, 171.7, 171.6, 142.9, 142.8, 137.8, 135.2, 134.9, 134.3, 

133.4, 132.5, 130.61, 130.58, 130.22, 130.16, 129.1, 129.0, 128.40, 128.35, 127.9, 127.8, 127.6, 127.5, 

126.6, 126.52, 126.46, 126.4, 126.1, 126.0, 125.87, 125.85, 60.6, 48.80, 48.77, 37.5, 37.2, 17.2, 16.6, 

14.09, 14.05. (Mixture of two rotation isomers) 

IR (film): ν (cm1) 3056, 2981, 2929, 1729, 1682, 1498, 1453, 1403, 1376, 1262, 1241, 1178, 1154, 

1024, 941, 908, 816, 763, 728, 479. 

HRMS (ESI, m/z) calcd for C26H24N2O3Na [M+Na]+: 435.1679, found: 435.1678. 

 

 

3-(1,3-Dioxoisoindolin-2-yl)propyl (R)-4-oxo-3-phenyl-4-(1-(o-tolyl)-1H-imidazol-2-yl)butano- 

ate (5bb) 

According to the general procedure, the reaction of 2-phenyl-1-(1-(o-tolyl)-1H-imidazol-2-yl) 

ethan-1-one 1b (27.6 mg, 0.10 mmol), 3-(1,3-dioxoisoindolin-2-yl)propyl 2-diazoacetate 4b (82.0 mg, 

3.0 equiv), Λ-RhS (3.5 mg, 4 mol%), [Ru(bpy)3](PF6)2 (1.3 mg, 1.5 mol%), Na2HPO4 (2.8 mg, 20 

mol%) and H2O (36.0 mg, 20 equiv) in acetone/DMSO (9:1, 0.5 mL, 0.2 M) under nitrogen 
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atmosphere with visible light for 16 hours, afforded 51.3 mg (98%) of 5bb as a white solid. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IC column, ee = 96% 

(HPLC: IC, 254 nm, n-hexane/isopropanol = 50:50, flow rate 0.5 mL/min, 25 C, tr (major) = 58.0 min, 

tr (minor) = 50.5 min). []D
22 = –106.8 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.87-7.80 (m, 2H), 7.75-7.66 (m, 2H), 7.38-7.23 (m, 7H), 7.23-7.17 (m, 

3H), 7.01-7.00 (m, 1H), 6.87 (d, J = 7.5 Hz, 1H, other rotamer), 5.61-5.54 (m, 1H), 4.09-3.98 (m, 2H), 

3.76-3.67 (m, 2H), 3.29-3.19 (m, 1H), 2.68-2.59 (m, 1H), 2.01 (s, 3H), 1.98-1.90 (m, 2H), 1.52 (s, 3H, 

other rotamer). 

13C NMR (125 MHz, CDCl3) δ 189.2, 189.1, 171.6,1 171.60, 168.2, 142.9, 142.8, 137.83, 137.80, 

137.6, 137.5, 134.9, 134.3, 134.1, 133.9, 132.0, 130.65, 130.56, 130.1, 129.02, 128.96, 128.70, 128.66, 

128.6, 127.3, 127.2, 126.54, 126.50, 126.44, 126.39, 126.1, 123.3, 62.0, 48.59, 48.55, 37.2, 36.7, 35.0, 

34.9, 27.5, 17.2, 16.5. (Mixture of two rotation isomers) 

IR (film): ν (cm1) 2953, 2928, 1771, 1708, 1683, 1496, 1445, 1398, 1243, 1172, 1086, 1046, 941, 907, 

765, 717, 524, 466. 

HRMS (ESI, m/z) calcd for C31H27N3O5Na [M+Na]+: 544.1843, found: 544.1848. 

 

 

Cinnamyl (R)-4-oxo-3-phenyl-4-(1-(o-tolyl)-1H-imidazol-2-yl)butanoate (5bc) 

According to the general procedure, the reaction of 2-phenyl-1-(1-(o-tolyl)-1H-imidazol-2-yl) 

ethan-1-one 1b (27.6 mg, 0.10 mmol), cinnamyl 2-diazoacetate 4c (60.7 mg, 3.0 equiv), Λ-RhS (3.5 

mg, 4 mol%), [Ru(bpy)3](PF6)2 (1.3 mg, 1.5 mol%), Na2HPO4 (2.8 mg, 20 mol%) and H2O (36.0 mg, 

20 equiv) in acetone/DMSO (9:1, 0.5 mL, 0.2 M) under nitrogen atmosphere with visible light for 10 

hours, afforded 26.3 mg (58%) of 5bc as a yellow oil. Enantiomeric excess was established by HPLC 

analysis using a Chiralpak IC column, ee = 98% (HPLC: IC, 254 nm, n-hexane/isopropanol = 85:15, 

flow rate 1 mL/min, 25 C, tr (major) = 14.9 min, tr (minor) = 17.8 min). []D
22 = –168.6 (c 1.0, 

CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.42-7.36 (m, 2H), 7.36-7.29 (m, 6H), 7.29-7.24 (m, 4H), 7.24-7.17 (m, 
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3H), 7.17-7.14 (m, 1H, other rotamer), 7.00 (dd, J1 = 3.5 Hz, J2 = 1.0 Hz, 1H), 6.89 (dd, J1 = 8.0 Hz, J2 

= 1.0 Hz, 1H, other rotamer), 6.57 (d, J = 15.5 Hz, 1H), 6.56 (d, J = 15.5 Hz, 1H, other rotamer), 

6.21-6.12 (m, 1H), 5.67-5.60 (m, 1H), 4.72-4.61 (m, 2H), 3.39-3.30 (m, 1H), 2.79-2.70 (m, 1H), 1.98 

(s, 3H), 1.54 (s, 3H, other rotamer). 

13C NMR (125 MHz, CDCl3) δ 189.27, 189.18, 171.5, 171.4, 142.9, 142.8, 137.84, 137.79, 137.6, 

137.5, 136.2, 134.9, 134.3, 133.93, 133.85, 130.61, 130.55, 130.21, 130.20, 129.0, 128.9, 128.73, 

128.68, 128.59, 128.57, 128.51, 128.48, 128.0, 127.30, 127.27, 126.6, 126.52, 126.46, 126.44, 126.42, 

126.39, 126.0, 123.1, 123.0, 65.13, 65.12, 48.7, 48.6, 37.41, 37.0, 17.1, 16.5. (Mixture of two rotation 

isomers) 

IR (film): ν (cm1) 3059, 3030, 2927, 1732, 1682, 1495, 1451, 1404, 1308, 1242, 1161, 1091, 965, 939, 

907, 759, 732, 695, 546, 454. 

HRMS (ESI, m/z) calcd for C29H26N2O3Na [M+Na]+: 473.1836, found: 473.1837. 

 

 

Pent-4-yn-1-yl (R)-4-oxo-3-phenyl-4-(1-(o-tolyl)-1H-imidazol-2-yl)butanoate (5bd) 

According to the general procedure, the reaction of 2-phenyl-1-(1-(o-tolyl)-1H-imidazol-2-yl) 

ethan-1-one 1b (27.6 mg, 0.10 mmol), pent-4-yn-1-yl 2-diazoacetate 4d (45.7 mg, 3.0 equiv), Λ-RhS 

(3.5 mg, 4 mol%), [Ru(bpy)3](PF6)2 (1.3 mg, 1.5 mol%), Na2HPO4 (2.8 mg, 20 mol%) and H2O (36.0 

mg, 20 equiv) in acetone/DMSO (9:1, 0.5 mL, 0.2 M) under nitrogen atmosphere with visible light for 

18 hours, afforded 36.0 mg (90%) of 5bd as a yellow oil. Enantiomeric excess was established by 

HPLC analysis using a Chiralpak OD-H column, ee = 96% (HPLC: OD-H, 254 nm, 

n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 25 C, tr (major) = 12.2 min, tr (minor) = 14.6 

min). []D
22 = –201.4 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.42-7.26 (m, 7H), 7.25-7.19 (m, 3H), 7.04-7.03 (m, 1H), 6.89 (d, J = 

7.5 Hz, 1H, other rotamer), 5.65-5.57 (m, 1H), 4.17-4.07 (m, 2H), 3.36-3.29 (m, 1H), 2.75-2.66 (m, 

1H), 2.22-2.13 (m, 2H), 2.04 (s, 3H), 1.97-1.93 (m, 1H), 1.80-1.73 (m, 2H), 1.55 (s, 3H, other 

rotamer). 
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13C NMR (125 MHz, CDCl3) δ 189.2, 189.1 171.6, 171.5, 142.8, 142.7, 137.78, 137.76, 137.6, 137.4, 

134.8, 134.3, 130.6, 130.5, 130.2, 130.1, 129.0, 128.9, 128.70, 128.66, 128.5, 127.29, 127.25, 126.51, 

126.48, 126.43, 126.40, 126.39, 126.0, 83.0, 68.9, 63.1, 63.0, 48.64, 48.56, 37.3, 36.9, 27.42, 27.38, 

17.2, 16.4, 15.05, 15.00. (Mixture of two rotation isomers) 

IR (film): ν (cm1) 3289, 2959, 2927, 1731, 1682, 1495, 1453, 1403, 1362, 1306, 1243, 1170, 1089, 

1026, 941, 908, 763, 700, 639, 525. 

HRMS (ESI, m/z) calcd for C25H24N2O3Na [M+Na]+: 423.1679, found: 423.1679. 

 

 

(E)-3,7-Dimethylocta-2,6-dien-1-yl (R)-4-oxo-3-phenyl-4-(1-(o-tolyl)-1H-imidazol-2-yl)butano- 

ate (5be) 

According to the general procedure, the reaction of 2-phenyl-1-(1-(o-tolyl)-1H-imidazol-2-yl) 

ethan-1-one 1b (27.6 mg, 0.10 mmol), (E)-3,7-dimethylocta-2,6-dien-1-yl 2-diazoacetate 4e (66.7 mg, 

3.0 equiv), Λ-RhS (3.5 mg, 4 mol%), [Ru(bpy)3](PF6)2 (1.3 mg, 1.5 mol%), Na2HPO4 (2.8 mg, 20 

mol%) and H2O (36.0 mg, 20 equiv) in acetone/DMSO (9:1, 0.5 mL, 0.2 M) under nitrogen 

atmosphere with visible light for 24 hours, afforded 38.6 mg (82%) of 5be as a yellow oil. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak OD-H column, ee = 96% 

(HPLC: OD-H, 254 nm, n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 25 C, tr (major) = 7.7 

min, tr (minor) = 9.1 min). []D
22 = –170.2 (c 0.4, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.42-7.24 (m, 7H), 7.24-7.17 (m, 3H), 7.03-7.01 (m, 1H), 6.89 (d, J = 

7.5 Hz, 1H, other rotamer), 5.64-5.57 (m, 1H), 5.27-5.22 (m, 1H), 5.10-5.05 (m, 1H), 4.55-4.49 (m, 

2H), 3.35-3.26 (m, 1H), 2.75-2.65 (m, 1H), 2.11-1.97 (m, 4H), 2.04 (s, 3H), 1.69 (s, 3H), 1.65 (s, 3H), 

1.64 (s, 3H, other rotamer), 1.61 (s, 3H), 1.55 (s, 3H, other rotamer). 

13C NMR (125 MHz, CDCl3) δ 189.4, 189.3, 171.7, 143.0, 142.8, 142.1, 142.0, 137.9, 137.8, 137.7, 

137.6, 134.9, 134.3, 131.8, 130.60, 130.56, 130.2, 130.1, 129.0, 128.9, 128.7, 128.63, 128.59, 128.58, 

127.23, 127.20, 126.5, 126.45, 126.39, 126.37, 126.1, 123.7, 118.2, 118.1, 61.50, 48.65, 48.62, 39.5, 

37.4, 37.0, 26.2, 25.7, 17.7, 17.2, 16.5, 16.4. (Mixture of two rotation isomers) 
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IR (film): ν (cm1) 2968, 2922, 2858, 1731, 1685, 1496, 1451, 1405, 1310, 1240, 1167, 940, 908, 763, 

738, 700, 547. 

HRMS (ESI, m/z) calcd for C30H34N2O3Na [M+Na]+: 493.2462, found: 493.2462. 

 

 

(1S,2R,4S)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-yl (R)-4-oxo-3-phenyl-4-(1-(o-tolyl)-1H- 

imidazol-2-yl)butanoate (5bf) 

According to the general procedure, the reaction of 2-phenyl-1-(1-(o-tolyl)-1H-imidazol-2-yl) 

ethan-1-one 1b (27.6 mg, 0.10 mmol), (1S,2R,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl 

2-diazoacetate 4f (66.7 mg, 3.0 equiv), Λ-RhS (3.5 mg, 4 mol%), [Ru(bpy)3](PF6)2 (1.3 mg, 1.5 

mol%), Na2HPO4 (2.8 mg, 20 mol%) and H2O (36.0 mg, 20 equiv) in acetone/DMSO (9:1, 0.5 mL, 0.2 

M) under nitrogen atmosphere with visible light for 24 hours, afforded 43.4 mg (92%) of 5bf as a 

yellow solid. Diasteromer ratio was established by 1H NMR and HPLC analysis using a Chiralpak 

OD-H column, d.r. > 98:2 (HPLC: OD-H, 254 nm, n-hexane/isopropanol = 99:1, flow rate 1 mL/min, 

25 C, tr (major) = 17.8 min, tr (minor) = 25.5 min). []D
22 = –180.0 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.44-7.17 (m, 10H), 7.04-7.01 (m, 1H), 6.86 (d, J = 8.0 Hz, 1H, other 

rotamer), 5.67-5.50 (m, 1H), 4.87-4.76 (m, 1H), 3.39-3.25 (m, 1H), 2.79-2.70 (m, 1H), 2.32-2.21 (m, 

1H), 2.05 (s, 3H), 1.89-1.60 (m, 3H), 1.52 (s, 3H, other rotamer), 1.30-1.06 (m, 2H), 1.51 (s, 3H, other 

rotamer), 0.95-0.83 (m, 7H), 0.72 (s, 3H), 0.70 (s, 3H, other rotamer). 

13C NMR (125 MHz, CDCl3) δ 189.3, 189.2, 171.9, 171.8, 142.89, 142.87, 137.81, 137.79, 137.6, 

137.5, 134.8, 134.3, 130.6, 130.5, 130.13, 130.09, 129.0, 128.9, 128.8, 128.7, 128.62, 128.60, 128.58, 

127.22, 127.19, 126.5, 126.42, 126.35, 126.1, 80.2, 48.8, 48.61, 48.59, 48.5, 47.70, 47.66, 44.74, 

44.73, 37.5, 37.1, 36.45, 36.35, 27.82, 27.77, 27.0, 26.9, 19.6, 18.7, 17.2, 16.4, 13.3, 13.28. (Mixture 

of two rotation isomers) 

IR (film): ν (cm1) 2953, 2878, 1728, 1684, 1495, 1453, 1404, 1306, 1253, 1181, 1155, 1022, 942, 910, 

763, 731, 703, 549. 

HRMS (ESI, m/z) calcd for C30H34N2O3Na [M+Na]+: 493.2462, found: 493.2462. 
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(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl (R)-4-oxo-3-phenyl-4-(1-(o-tolyl)-1H-imidazol-2-yl) 

butanoate (5bg) 

According to the general procedure, the reaction of 2-phenyl-1-(1-(o-tolyl)-1H-imidazol-2-yl) 

ethan-1-one 1b (27.6 mg, 0.10 mmol), (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 2-diazoacetate 4g 

(67.2 mg, 3.0 equiv), Λ-RhS (3.5 mg, 4 mol%), [Ru(bpy)3](PF6)2 (1.3 mg, 1.5 mol%), Na2HPO4 (2.8 

mg, 20 mol%) and H2O (36.0 mg, 20 equiv) in acetone/DMSO (9:1, 0.5 mL, 0.2 M) under nitrogen 

atmosphere with visible light for 13 hours, afforded 44.2 mg (93%) of 5bg as a colorless oil. 

Diasteromer ratio was established by 1H NMR and HPLC analysis using a Chiralpak IC column, 

d.r. >99:1 (HPLC: IC, 254 nm, n-hexane/isopropanol = 98:2, flow rate 1 mL/min, 25 C, tr (major) = 

30.4 min, tr (minor) = 22.0 min). []D
22 = –220.6 (c 0.4, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.42-7.16 (m, 10H), 7.03-7.00 (m, 1H), 6.84 (d, J = 7.5 Hz, 1H, other 

rotamer), 5.62-5.54 (m, 1H), 4.62-4.53 (m, 1H), 3.30-3.17 (m, 1H), 2.74-2.65 (m, 1H), 2.03 (s, 3H), 

1.88-1.83 (m, 1H), 1.66-1.60 (m, 2H), 1.51 (s, 3H, other rotamer), 1.47-1.23 (m, 3H), 1.02-0.75 (m, 

9H), 0.66-0.60 (m, 3H). 

13C NMR (125 MHz, CDCl3) δ 189.3, 171.3, 171.3, 143.0, 142.9, 137.8, 137.6, 137.5, 134.9, 134.3, 

130.6, 130.14, 130.10, 129.03, 128.96, 128.68, 128.66, 128.6, 127.3, 127.2, 126.47, 126.45, 126.40, 

126.37, 126.1, 74.49, 74.47, 49.0, 48.8, 46.8, 46.7, 40.7, 37.7, 37.3, 34.2, 31.3, 26.03, 25.97, 23.33, 

23.26, 21.99, 21.95, 20.73, 20.68, 17.3, 16.4, 16.21, 16.15. (Mixture of two rotation isomers) 

IR (film): ν (cm1) 2954, 2926, 2867, 1726, 1684, 1496, 1454, 1405, 1373, 1306, 1246, 1178, 1153, 

1091, 980, 941, 909, 763, 730, 702, 549. 

HRMS (ESI, m/z) calcd for C30H36N2O3Na [M+Na]+: 495.2618, found: 495.2619. 
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(3S,8S,9S,10R,13R,14S,17R)-10,13-Dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,

14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl (R)-4-oxo-3-phenyl-4-(1-(o- 

tolyl)-1H-imidazol-2-yl)butanoate (5bh) 

According to the general procedure, the reaction of 2-phenyl-1-(1-(o-tolyl)-1H-imidazol-2-yl) 

ethan-1-one 1b (41.4 mg, 0.15 mmol), cholesteryl 2-diazoacetate 4h (45.4 mg, 0.10 mmol), Λ-RhS 

(3.5 mg, 4 mol%), [Ru(bpy)3](PF6)2 (2.2 mg, 2.5 mol%), Na2HPO4 (2.8 mg, 20 mol%) and H2O (36.0 

mg, 20 equiv) in acetone/DMSO (9:1, 2.0 mL, 0.05 M) under nitrogen atmosphere with visible light 

for 60 hours, afforded 58.1 mg (83%) of 5bh as a white solid. Diasteromer ratio was established by 1H 

NMR and HPLC analysis using a Chiralpak IC column, d.r. > 97:3 (HPLC: IC, 254 nm, 

n-hexane/isopropanol = 85:15, flow rate 1 mL/min, 25 C, tr (major) = 15.5 min, tr (minor) = 8.9 min). 

[]D
22 = –116.6 (c 0.4, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.42-7.17 (m, 10H), 7.03-7.01 (m, 1H), 6.88 (d, J = 7.5 Hz, 1H, other 

rotamer), 5.62-5.56 (m, 1H), 5.35-5.31 (m, 1H), 4.56-4.57 (m, 1H), 3.30-3.22 (m, 1H), 2.73-2.62 (m, 

1H), 2.25-2.17 (m, 2H), 2.04 (s, 3H), 2.03-1.90 (m, 2H), 1.88-1.70 (m, 3H), 1.60-0.98 (m, 21H), 1.54 

(s, 3H, other rotamer), 0.98 (s, 3H), 0.97 (s, 3H, other rotamer), 0.91 (d, J = 6.5 Hz, 3H), 0.87 (d, J = 

6.5 Hz, 3H), 0.86 (d, J = 7.0 Hz, 3H), 0.67 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 189.4, 189.3, 171.1, 171.0, 142.9, 142.8, 139.7, 139.6, 137.85, 137.83, 

137.7, 137.6, 134.9, 134.3, 130.61, 130.59, 130.10, 130.07, 129.02, 128.96, 128.7, 128.6, 127.23, 

127.20, 126.5, 126.4, 126.1, 122.50, 122.46, 74.25, 74.23, 56.6, 56.1, 49.93, 49.92, 48.7, 48.6, 42.3, 

39.7, 39.5, 37.92, 37.87, 37.8, 37.4, 36.9, 36.52, 36.50, 36.1, 35.8, 31.9, 31.84, 31.79, 28.20, 28.0, 

27.6, 27.5, 24.2, 23.8, 22.8, 22.5, 21.0, 19.3, 18.7, 17.3, 16.5, 11.8. (Mixture of two rotation isomers) 

IR (film): ν (cm1) 2939, 2864, 1730, 1685, 1496, 1458, 1406, 1373, 1245, 1176, 1007, 940, 909, 763, 

730, 703, 547. 

HRMS (ESI, m/z) calcd for C47H62N2O3Na [M+Na]+: 725.4653, found: 725.4666. 
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Ethyl (R)-4-(1-methyl-1H-imidazol-2-yl)-4-oxo-3-phenylbutanoate (5ra) 

According to the general procedure, the reaction of 1-(1-methyl-1H-imidazol-2-yl)-2-phenylethan-1 

-one 1r (20.0 mg, 0.10 mmol), ethyl 2-diazoacetate 4a (34.2 mg, 3.0 equiv), Λ-RhS (3.5 mg, 4 mol%), 

[Ru(bpy)3](PF6)2 (1.3 mg, 1.5 mol%), Na2HPO4 (2.8 mg, 20 mol%) and H2O (36.0 mg, 20 equiv) in 

acetone/DMSO (9:1, 0.5 mL, 0.2 M) under nitrogen atmosphere (degassed by freeze-pump-thaw 

cycles) with 21 W CFL for 15 hours, afforded 26.0 mg (91%) of 5ra as a yellow oil.  

Enantiomeric excess of 5ra was established by HPLC analysis as 87% ee. (HPLC: Agilent 1200 Series 

HPLC System, Daicel Chiralpak AS-H column (250 × 4.6 mm), 254 nm, n-hexane/isopropanol = 

90:10, flow rate 1 mL/min, 25 C, tr (major) = 12.8 min, tr (minor) = 11.7 min). []D
22 = -126.0 (c 1.0, 

CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.48-7.41 (m, 2H), 7.33-7.25 (m, 2H), 7.24-7.17 (m, 1H), 7.16-7.14 (m, 

1H), 6.97 (s, 1H), 5.61 (dd, J1 = 10.5 Hz, J2 = 5.1 Hz, 1H), 4.08 (q, J = 7.2 Hz, 2H), 3.95 (s, 3H), 3.39 

(dd, J1 = 16.8 Hz, J2 = 10.5 Hz, 1H), 2.77 (dd, J1 = 16.8 Hz, J2 = 5.1 Hz, 1H), 1.17 (t, J = 7.1 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 190.9, 171.8, 142.5, 138.0, 129.5, 128.7, 128.6, 127.2, 127.1, 60.5, 48.5, 

37.5, 36.0, 14.0.  

IR (film): ν (cm1) 3122, 2981, 2935, 1729, 1673, 1458, 1404, 1372, 1330, 1290, 1242, 1179, 1092, 

1027, 992, 955, 911, 845, 779, 744, 699, 560, 529. 

HRMS (ESI, m/z) calcd for C16H19N2O3 [M+H]+: 287.1390, found: 287.1396. 

 

 

Ethyl (R)-4-(1-isopropyl-1H-imidazol-2-yl)-4-oxo-3-phenylbutanoate (5sa) 

According to the general procedure, the reaction of 1-(1-isopropyl-1H-imidazol-2-yl)-2-phenylethan- 

1-one 1s (22.8 mg, 0.10 mmol), ethyl 2-diazoacetate 4a (34.2 mg, 3.0 equiv), Λ-RhS (3.5 mg, 4 

mol%), [Ru(bpy)3](PF6)2 (1.3 mg, 1.5 mol%), Na2HPO4 (2.8 mg, 20 mol%) and H2O (36.0 mg, 20 

equiv) in acetone/DMSO (9:1, 0.5 mL, 0.2 M) under nitrogen atmosphere (degassed by 

freeze-pump-thaw cycles) with 21 W CFL for 15 hours, afforded 28.7 mg (91%) of 5sa as a yellow oil.  

Enantiomeric excess of 5sa was established by HPLC analysis as 89% ee. (HPLC: Agilent 1200 Series 
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HPLC System, Daicel Chiralpak AS-H column (250 × 4.6 mm), 254 nm, n-hexane/isopropanol = 

90:10, flow rate 1 mL/min, 25 C, tr (major) = 8.1 min, tr (minor) = 7.0 min). []D
22 = -146.2 (c 1.0, 

CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.39-7.31 (m, 2H), 7.25-7.15 (m, 2H), 7.16-7.07 (m, 3H), 5.56 (dd, J1 = 

10.5 Hz, J2 = 5.1 Hz, 1H), 5.40 (hept, J = 6.6 Hz, 1H), 3.99 (q, J = 7.2 Hz, 2H), 3.29 (dd, J1 = 16.5 Hz, 

J2 = 10.2 Hz, 1H), 2.68 (dd, J1 = 16.5 Hz, J2 = 5.1 Hz, 1H), 1.36 (d, J = 6.9 Hz, 3H), 1.24 (d, J = 6.9 

Hz, 3H), 1.08 (t, J = 7.2 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 191.1, 171.7, 141.9, 138.2, 129.9, 128.6, 128.5, 127.1, 121.2, 60.5, 49.1, 

49.0, 37.7, 23.5, 23.4, 14.0. 

IR (film): ν (cm1) 3143, 2980, 2932, 1731, 1673, 1457, 1394, 1330, 1298, 1250, 1173, 1090, 1028, 

988, 951, 911, 849, 736, 699, 642, 579, 523. 

HRMS (ESI, m/z) calcd for C18H23N2O3 [M+H]+: 315.1703, found: 315.1709. 

 

 

Λ-RhS(Me) was obtained from 5-methyl-2-phenylbenzo[d]thiazole as a yellow solid.1 

1H NMR (500 MHz, CD2Cl2) δ 8.22 (s, 2H), 7.94 (d, J = 8.3 Hz, 2H), 7.64 (dd, J1 = 7.6 Hz, J2 = 1.3 

Hz, 2H), 7.44 (dd, J1 = 8.3 Hz, J2 = 1.0 Hz, 2H), 7.01 (td, J1 = 7.5 Hz, J2 = 1.0 Hz, 2H), 6.81 (td, J1 = 

7.6 Hz, J2 = 1.4 Hz, 2H), 6.17 (d, J = 7.9 Hz, 2H), 2.57 (s, 6H), 2.21 (s, 6H). 

13C NMR (125 MHz, CD2Cl2) δ 176.8, 160.9 (m), 150.1, 140.3, 139.1, 133.3, 131.2, 129.1, 128.4, 

126.2, 124.5, 123.0, 122.3 (m), 120.8, 22.0, 3.4. 

IR (film): ν (cm1) 3059, 2936, 2313, 2284, 1578, 1557, 1482, 1464, 1441, 1416, 1318, 1297, 1274, 

1246, 1161, 1123, 1027, 993, 939, 836, 758, 747, 731, 722, 698, 657, 644, 579, 557. 

HRMS (ESI, m/z) calcd for C28H20N2RhS2 [M–(MeCN)2–(PF6
-)]: 551.0123, found: 551.0113. 

CD (CH3OH) for -RhS(Me): λ, nm (Δε, M-1cm-1) 407 (–38), 366 (+58), 349 (+51), 300 (–86), 263 

(+31), 258 (+31), 242 (+41), 230 (–24), 214 (+99).  
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Figure 120.  CD spectrum of -RhS(Me). Recorded in CH3OH (0.2 mM). 

 

5.2.4 Removal of 2-Aryl Imidazolyl Group 

 

As shown in Figure 30, the directing imidazole moiety was cleaved according to the previous 

report with slight modification.8a 4 Å MS (169 mg, 100 mg/0.1 mmol of 5ba) was added to a solution 

of (R)-5ba (61 mg, 0.169 mmol) in CH3CN (0.1 M) under nitrogen atmosphere. The suspension was 

stirred vigorously under a positive pressure of nitrogen for 3 h at 0 oC. Then methyl 

trifluoromethansulfonate (30.5 mg, 0.186 mmol, 1.1 equiv) was added dropwise at 0 oC. After being 

stirred at 0 oC for 6 h, EtOH (1.0 mL) and DBU (28.3 mg, 0.186 mmol, 1.1 equiv) were subsequently 

added to the reaction mixture at 0 C. After being stirred at 0 C for 60 min, 10 mL of saturated 

NaHCO3 aqueous solution was added. And the mixture was extracted with CH2Cl2, washed with 

NaHCO3 aqueous solution, water. The organic layer was dried and the solvent was evaporated and the 

residue was purified by flash chromatography on silica gel (EtOAc/n-hexane = 1:50) to give 34.1 mg 

(R)-6 (81%) as a colorless oil. 

Enantiomeric excess of (R)-6 was established by HPLC analysis using a Chiralpak AD-H column, 

95% ee (HPLC: AD-H, n-hexane/isopropanol = 95:5, flow rate 1 mL/min, 25 C, tr (major) = 7.0 min, 

tr (minor) = 8.0 min). []D
22 = –97.6 (c 1.0, CH2Cl2).  

Literature report8b for (S)-6: 77% ee (HPLC: AD-H, n-hexane/isopropanol = 95:5, flow rate 1 mL/min, 
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Retention times: 6.69 min [(R)-enantiomer], 7.68 min [(S)-enantiomer]. []D
29 = +51.25 (c 1.19, 

CHCl3). All other spectroscopic data of 6 are in agreement with literature report.8b 

 

5.2.5 Single-Crystal X-Ray Diffraction Studies 

 

Single crystals of Rh-enolate1 suitable for X-ray diffraction were obtained by slow diffusion 

from a solution of Rh-enolate1 (20 mg) in CH2Cl2 (1.0 mL) layered with n-hexane (0.5 mL) at room 

temperature for several days in a NMR tube. 

Single crystals of 5oa suitable for X-ray diffraction were obtained by slow diffusion from a 

solution of 5oa (30 mg) in CH2Cl2 (0.5 mL) layered with n-hexane (0.5 mL) at - 20 oC for several days 

in a NMR tube. 

X-ray data were collected with a Bruker 3 circuit D8 Quest diffractometer with MoKα radiation 

(microfocus tube with multilayer optics) and Photon 100 CMOS detector at 100 K. Scaling and 

absorption correction was performed by using the SADABS software package of Bruker. Structures 

were solved using direct methods in SHELXT and refined using the full matrix least squares procedure 

in SHELXL-2014. The hydrogen atoms were placed in calculated positions and refined as riding on 

their respective C atom, and Uiso(H) was set at 1.2 Ueq(Csp2) and 1.5 Ueq(Csp3). Disorder was 

refined using restraints for both the geometry and the anisotropic displacement factors.  

The absolute configuration of 5oa has been determined. See Figure 35 for Crystal structure of 

Rh-enolate1. See Figure 121 for Crystal structure of 5oa 

 

 

Figure 121.  Crystal structure of 5oa. 
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Table 22. Crystal data and structure refinement for Rh-enolate1. 
 
  Crystal data  
 
CCDC number 1491052  
Identification code  hxqC31_0m 
Habitus, color  nugget, light green 
Crystal size 0.23 x 0.13 x 0.10 mm3 
Crystal system  Monoclinic 
Space group  P21/n Z = 4 
Unit cell dimensions a = 11.6759(5) Å α= 90°. 
 b = 23.0296(9) Å β= 92.6600(10)°. 
 c = 16.4573(7) Å γ = 90°. 
Volume 4420.5(3) Å3 
Cell determination  9634 peaks with Theta 2.4 to 27.5°. 
Empirical formula  C52 H47 N4 O Rh S2 
Moiety formula  C52 H47 N4 O Rh S2 
Formula weight  910.96 
Density (calculated) 1.369 Mg/m3 
Absorption coefficient 0.524 mm-1 
F(000)         1888 
 
Data collection:  
Diffractometer type  Bruker D8 QUEST area detector 
Wavelength  0.71073 Å 
Temperature  100(2) K 
Theta range for data collection 2.159 to 27.558°. 
Index ranges -15<=h<=15, -29<=k<=29, -21<=l<=21 
Data collection software  APEX3 (Bruker AXS Inc., 2015) 
Cell refinement software  SAINT V8.35A (Bruker AXS Inc., 2015) 
Data reduction software  SAINT V8.35A (Bruker AXS Inc., 2015) 
 
Solution and refinement: 
Reflections collected 155552 
Independent reflections 10199 [R(int) = 0.0382] 
Completeness to theta = 25.242° 99.9 %  
Observed reflections  9143[I > 2(I)]  
Reflections used for refinement  10199 
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.95 and 0.90 
Largest diff. peak and hole 0.413 and -0.701 e.Å-3 

Solution  Direct methods 
Refinement  Full-matrix least-squares on F2 
Treatment of hydrogen atoms  Calculated positions, constr. ref. 
Programs used  XT V2014/1 (Bruker AXS Inc., 2014) 
 SHELXL-2014/7 (Sheldrick, 2014) 
 DIAMOND (Crystal Impact) 
 ShelXle (Hübschle, Sheldrick, Dittrich, 2011)  
Data / restraints / parameters 10199 / 303 / 583 
Goodness-of-fit on F2 1.052 
R index (all data) wR2 = 0.0556 
R index conventional [I>2sigma(I)] R1 = 0.0227 
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Table 23. Crystal data and structure refinement for 5oa. 

  
  Crystal data  
 
CCDC number 1491053 
Identification code  hxqD53_0m 
Habitus, color  nugget, colorless 
Crystal size 0.27 x 0.22 x 0.15 mm3 

Crystal system  Orthorhombic 
Space group  P212121 Z = 4 
Unit cell dimensions a = 9.8543(4) Å α = 90°. 
 b = 13.1873(6) Å β = 90°. 
 c = 15.4684(7) Å γ = 90°. 
Volume 2010.14(15) Å3 
Cell determination  9961 peaks with Theta 2.5 to 25.3°. 
Empirical formula  C22 H21 Br N2 O3 
Moiety formula  C22 H21 Br N2 O3 
Formula weight  441.32 
Density (calculated) 1.458 Mg/m3 
Absorption coefficient 2.070 mm-1 
F(000) 904 
 
Data collection:  
 
Diffractometer type  Bruker D8 QUEST area detector 
Wavelength  0.71073 Å 
Temperature  100(2) K 
Theta range for data collection 2.451 to 25.288°. 
Index ranges -11<=h<=11, -13<=k<=15, -18<=l<=18 
Data collection software  APEX3 (Bruker AXS Inc., 2015)  
Cell refinement software  SAINT V8.35A (Bruker AXS Inc., 2015)  
Data reduction software  SAINT V8.35A (Bruker AXS Inc., 2015) 
 
Solution and refinement: 
 
Reflections collected 29129 
Independent reflections 3633 [R(int) = 0.0358] 
Completeness to theta = 25.242° 100.0 %  
Observed reflections  3507[I > 2(I)]  
Reflections used for refinement  3633 
Extinction coefficient  X = 0.0018(4) 
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.75 and 0.65 
Flack parameter (absolute struct.)   0.005(4) 
Largest diff. peak and hole 0.720 and -0.920 e.Å-3 
Solution  Direct methods 
Refinement  Full-matrix least-squares on F2 
Treatment of hydrogen atoms  Calculated positions, constr. ref. 
Programs used  XT V2014/1 (Bruker AXS Inc., 2014)  
 SHELXL-2014/7 (Sheldrick, 2014)  
 DIAMOND (Crystal Impact)  
 ShelXle (Hübschle, Sheldrick, Dittrich, 2011)  
Data / restraints / parameters 3633 / 756 / 366 
Goodness-of-fit on F2 1.152 
R index (all data) wR2 = 0.0787 
R index conventional  [I>2sigma(I)] R1 = 0.0376 
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5.3 Photoinduced Asymmetric β-Alkylation and β-Sulfonylation 

 

5.3.1 General Procedure 

 

 

Exemplary, a dried 10 mL Schlenk tube was charged with 19a (20.7 mg, 0.10 mmol), Δ-RhO (6.6 

mg, 8.0 mol%) and HE-1 (42.2 mg, 0.15 mmol). The tube was purged with nitrogen for three times. 

Then, 1,4-dioxane (anhydrous, 1.0 mL, 0.10 M, bubbling with nitrogen gas for five minutes before 

addition) was added via syringe followed by addition of 18a (32.8 mg, 0.2 mmol) under nitrogen 

atmosphere. The tube was sealed and positioned approximately 5 cm away from a 21 W compact 

fluorescent lamp. The reaction was stirred at room temperature for the indicated time (monitored by 

TLC) under nitrogen atmosphere. Afterwards, the mixture was diluted with CH2Cl2. The combined 

organic layers were concentrated under reduced pressure. The residue was purified by flash 

chromatography on silica gel (n-hexane/EtOAc) to afford the products 20a and 21a. Racemic samples 

were obtained by carrying out the reactions with rac-RhO. The enantiomeric excess was determined 

by HPLC analysis on a chiral stationary phase.  

 

5.3.2 Modifications for the Synthesis of Λ/Δ-RhO 

 

Racemic RhO complex was synthesized according to the previous procedures,9a in which the 

enantiopure RhO was obtained through a proline-mediated route resulting in a loss of at least 50% of 

rhodium complex. Herein, the resolution process was modified by using a chiral auxiliary (R)-Aux, 

namely (R)-3-fluoro-2-(4-phenyl-4,5-dihydrooxazol-2-yl)phenol, instead of proline. The 

corresponding complexes Λ/Δ-(R)-RhO are stable and could be separated by flash chromatography, 

thus improving the atom economy of the catalyst synthesis (Figure 122).  

Accordingly, to the mixture of rac-RhO (249 mg, 0.3 mmol) and K2CO3 (82.8 mg, 0.6 mmol) in 

absolute ethanol (6.0 mL) was added (R)-3-fluoro-2-(4-phenyl-4,5-dihydrooxazol-2-yl)phenol 

((R)-Aux, 91 mg, 0.33 mmol) in one portion, After stirring at 70 °C overnight, the reaction mixture 

was cooled to room temperature and concentrated to dryness. The residue was directly subjected to a 
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flash chromatography on silica gel (EtOAc/n-hexane = 1/100 to 1:10) giving Δ-(R)-RhO (117 mg, 

45% yield) as a yellow solid and Λ-(R)-RhO (112 mg, 43% yield) as a yellow solid, respectively. The 

bis-acetonitrile catalysts could be obtained after removing of auxiliary following the previously 

reported procedures.9b  

 

 

Figure 122.  Modified resolution method for the synthesis of enantiopure RhO. 

 

-(R)-RhO 

1H NMR (500 MHz, CD2Cl2) δ 8.02-7.98 (m, 1H), 7.72-7.68 (m, 1H), 7.62-7.58 (m, 1H), 7.55-7.51 (m, 

2H), 7.46 (dd, J = 8.8, 2.0 Hz, 1H), 7.36 (d, J = 8.8 Hz, 1H), 7.31-7.27 (m, 1H), 7.02-6.94 (m, 3H), 

6.92-6.84 (m, 3H), 6.67 (d, J = 7.6 Hz, 1H), 6.64-6.48 (m, 3H), 6.37-6.33 (m, 1H), 6.21 (d, J = 7.6 Hz, 

2H), 5.96 (ddd, J = 12.8, 7.8, 0.8 Hz, 1H), 4.92 (dd, J = 9.7, 4.6 Hz, 1H), 4.83 (dd, J = 9.7, 9.0 Hz, 

1H), 4.11 (dd, J = 9.0, 4.6 Hz, 1H), 1.44 (s, 9H), 1.32 (s, 9H). 

13C NMR (125 MHz, CD2Cl2) δ 175.23, 175.21, 172.0, 171.9, 170.54, 170.50, 169.3, 169.1, 167.1, 

166.9, 165.44, 165.41, 164.1 (d, J = 257.5 Hz), 150.1, 150.0, 148.60, 148.56, 141.3, 139.1, 138.6, 

134.5, 133.4, 133.3, 133.2, 131.9, 131.4, 131.11, 131.10, 130.8, 130.7, 127.9, 127.5 (2C), 125.7, 125.6, 

123.7, 123.3, 123.1, 122.4, 120.60, 120.56, 115.3, 113.0, 111.3, 110.5, 100.2 (d, J = 6.4 Hz), 98.7 (d, J 

= 24.1 Hz), 75.0, 69.9, 35.5, 35.4, 31.81, 31.80. 

IR (film): ν (cm1) 2958, 2904, 2869, 1622, 1589, 1528, 1478, 1445, 1374, 1273, 1224, 1092, 1031, 

930, 813, 782, 732, 698, 529, 455,  

HRMS (ESI, m/z) calcd for C49H44FN3O4Rh [M+H]+: 860.2365, found: 860.2357. 
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Λ-(R)-RhO 

1H NMR (500 MHz, CD2Cl2) δ 8.15-8.11 (m, 1H), 7.74-7.44 (m, 7H), 7.00-6.94 (m, 9H), 6.46-6.28 (m, 

3H), 6.04-5.90 (m, 2H), 4.37 (dd, J = 9.3, 7.8 Hz, 1H), 4.24 (dd, J = 16.8, 8.2 Hz, 1H), 4.21 (dd, J = 

16.8, 8.2 Hz, 1H), 1.43 (s, 9H), 1.30 (s, 9H). 

13C NMR (125 MHz, CD2Cl2) δ 175.03, 175.00, 172.0, 171.9, 171.81, 171.79, 168.5, 168.2, 168.0, 

167.7, 165.51, 165.50, 163.2 (d, J = 253.9 Hz), 150.6, 149.6, 149.0, 148.2, 141.3, 139.1, 138,6, 135.6, 

133.3, 132.6, 132.5, 131.3, 131.2, 130.5, 130.2, 128.5, 127.4, 127.2, 125.53, 125.50, 123.9, 123.5, 

123.0, 122.3, 119.62, 119.60, 115.2, 114.2, 110.9, 110.8, 102.6 (d, J = 8.3 Hz), 98.5 (d, J = 18.5 Hz), 

75.6, 69.3, 35.44, 35.37, 31.8, 31.6. 

IR (film): ν (cm1) 2958, 2901, 2870, 1623, 1589, 1528, 1478, 1444, 1373, 1273, 1224, 1092, 1030, 

979, 931, 814, 783, 733, 698, 529, 456. 

HRMS (ESI, m/z) calcd for C49H44FN3O4Rh [M+H]+: 860.2365, found: 860.2357. 

 

5.3.3 Synthesis of Substrates 

 

1) Method A for the synthesis of compound 19a-h 

 

To a mixture of diethyl (cyanomethyl)phosphonate (20 mmol) and a 37% aqueous solution of 

formaldehyde (80 mmol), a saturated aqueous solution of potassium carbonate (37.5 mmol) was added 

at room temperature dropwise over 30 min. After stirring for an additional 2 h, the reaction was 

quenched with saturated aqueous ammonium chloride (20 mL). Afterwards, the reaction mixture was 

extracted with diethyl ether (3 × 12.5 mL). The organic layers were combined and dried over sodium 

sulfate. The solvent was evaporated, and the remaining colorless oil was purified by flash 

chromatography using pentane/CH2Cl2 (2/1) giving the pure product 19’ as a colorless oil (70% yield). 

To a solution of 19’ (14 mmol) in dry ether (20 mL) was added phosphorus(III) bromide (5 mmol) 

at 10 C. The temperature was allowed to rise to 20 C and stirring was continued for 3 h. Water (10 

mL) was then added and the mixture was extracted with diethyl ether (3 × 30 mL). The organic phase 
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was washed with brine (20 mL), dried with sodium sulfate and concentrated under reduced pressure. 

The crude product was purified by column chromatography on silica gel (pentane/CH2Cl2, 1/1) to give 

19’’ as a colorless oil (89% yield). 

To a solution of 19’’ (2.0 mmol) in methanol (5 mL) was added corresponding sodium aryl 

sulfinate (3.0 mmol). After 2.5 h of reflux, the mixture was concentrated under reduced pressure, the 

thereby obtained residue was dissolved in EtOAc and the mixture was washed with water, brine, dried 

with Na2SO4, filtered and the filtrate was evaporated and purified by chromatography 

(EtOAc/n-hexane, 1/1) to give corresponding products 19a-h.  

The characteristic data of 19a are in accord with literature.10a Others are shown below. 

 

 

2-(Tosylmethyl)acrylonitrile (19b)  

A white solid. 

1H NMR (300 MHz, CDCl3) δ 7.83-7.76 (m, 2H), 7.43-7.36 (m, 2H), 6.20 (s, 1H), 5.98 (s, 1H), 3.91 

(d, J = 0.8 Hz, 2H), 2.46 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 145.9, 139.3, 134.4, 130.1, 128.7, 116.5, 111.6, 59.8, 21.7. 

IR (film): ν (cm1) 2985, 2226, 1315, 1288, 1144, 1084, 975, 813, 772, 676, 608, 580, 524. 

HRMS (ESI, m/z) calcd for C11H11NO2SNa [M+Na]+: 244.0403, found: 244.0398. 

 

 

2-(((4-Bromophenyl)sulfonyl)methyl)acrylonitrile (19c)  

A white solid. 

1H NMR (300 MHz, CDCl3) δ 8.13-7.85 (m, 4H), 6.26 (s, 1H), 6.05 (s, 1H), 3.98 (d, J = 0.8 Hz, 2H).  

13C NMR (75 MHz, CDCl3) δ 139.8, 139.7, 136.3, 132.9, 130.2, 116.4, 111.2, 59.8. 

IR (film): ν (cm1) 2929, 2222, 1569, 1385, 1314, 1281, 1241, 1151, 1130, 1073, 1006, 968, 902, 819, 

790, 709, 617, 579. 

HRMS (ESI, m/z) calcd for C10H8NO2SNa [M+Na]+: 307.9351, found: 307.9347. 
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2-(((4-(Trifluoromethyl)phenyl)sulfonyl)methyl)acrylonitrile (19d) 

A white solid. 

1H NMR (300 MHz, CDCl3) δ 8.08 (d, J = 8.2 Hz, 2H), 7.89 (d, J = 8.2 Hz, 2H), 6.26 (s, 1H), 6.05 (t, 

J = 0.8 Hz, 1H), 3.98 (d, J = 0.8 Hz, 2H). 

13C NMR (75 MHz, CDCl3) δ 140.9, 140.0, 136.4 (q, J = 33.2 Hz), 129.4, 126.7 (q, J = 3.6 Hz), 122.9 

(q, J = 273.2 Hz), 116.2, 111.0, 59.8. 

19F NMR (282 MHz, CDCl3) δ –63.30 (s, 3F). 

IR (film): ν (cm1) 2986, 2926, 2232, 1406, 1320, 1247, 1161, 1141, 1086, 1060, 1015, 972, 905, 844, 

799, 698, 582. 

HRMS (ESI, m/z) calcd for C11H8F3NO2SNa [M+Na]+: 298.0120, found: 298.0114. 

 

 

2-((o-Tolylsulfonyl)methyl)acrylonitrile (19e) 

A white solid. 

1H NMR (300 MHz, CDCl3) δ 7.97 (d, J = 8.0 Hz, 1H), 7.62-7.53 (m, 1H), 7.44-7.36 (m, 2H), 6.18 (s, 

1H), 6.00 (s, 1H), 3.96 (s, 2H), 2.73 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 139.3, 138.4, 135.5, 134.6, 133.0, 131.1, 126.8, 116.4, 111.3, 58.9, 20.4. 

IR (film): ν (cm1) 2991, 2936, 2229, 1594, 1454, 1404, 1314, 1285, 1243, 1199, 1153, 1122, 1058, 

960, 897, 806, 761, 698, 579. 

HRMS (ESI, m/z) calcd for C11H11NO2SNa [M+Na]+: 244.0403, found: 244.0398.  

 

 

2-((Mesitylsulfonyl)methyl)acrylonitrile (19f) 

A white solid. 

1H NMR (300 MHz, CDCl3) δ 7.00 (s, 2H), 6.20 (s, 1H), 6.00 (d, J = 0.8 Hz, 1H), 3.92 (d, J = 0.8 Hz, 

2H), 2.66 (s, 6H), 2.33 (s, 3H). 
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13C NMR (75 MHz, CDCl3) δ 144.5, 140.5, 139.0, 132.5, 131.5, 116.6, 111.4, 59.5, 23.0, 21.1. 

IR (film): ν (cm1) 2985, 2220, 1593, 1454, 1308, 3183, 1272, 1143, 971, 670, 605, 572. 

HRMS (ESI, m/z) calcd for C13H15NO2SNa [M+Na]+: 272.0716, found: 272.0710. 

 

 

2-((Naphthalen-2-ylsulfonyl)methyl)acrylonitrile (19g) 

A white solid. 

1H NMR (300 MHz, CDCl3) δ 8.75 (d, J = 8.4 Hz, 1H), 8.34-8.26 (m, 1H), 8.19 (d, J = 8.2 Hz, 1H), 

8.01 (d, J = 8.0 Hz, 1H), 7.82-7.56 (m, 3H), 6.11 (s, 1H), 5.84 (s, 1H), 4.12 (s, 2H). 

13C NMR (75 MHz, CDCl3) δ 139.1, 136.2, 134.2, 132.1, 132.0, 129.5, 129.2, 128.8, 127.2, 124.3, 

123.4, 116.2, 111.3, 59.2. 

IR (film): ν (cm1) 2929, 2234, 2186, 1505, 1311, 1256, 1164, 1114, 977, 905, 800, 770, 737, 640, 573, 

538, 474. 

HRMS (ESI, m/z) calcd for C14H11NO2SNa [M+Na]+: 280.0403, found: 280.0396. 

 

 

2-((Naphthalen-1-ylsulfonyl)methyl)acrylonitrile (19h) 

A white solid. 

1H NMR (300 MHz, CDCl3) δ 8.51 (s, 1H), 8.10-7.84 (m, 4H), 7.77-7.59 (m, 2H), 6.20 (s, 1H), 5.97 (s, 

1H), 4.01 (s, 2H). 

13C NMR (75 MHz, CDCl3) δ 139.4, 135.7, 134.2, 132.0, 131.0, 129.9, 129.8, 129.6, 128.1, 128.0, 

122.7, 116.5, 111.5, 59.8. 

IR (film): ν (cm1) 2992, 2937, 2229, 1592, 1454, 1403, 1314, 1286, 1242, 1200, 1153, 1123, 1063, 

959, 897, 761, 679, 578. 

HRMS (ESI, m/z) calcd for C14H11NO2SNa [M+Na]+: 280.0403, found: 280.0398. 
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2) Method B for the synthesis of compound 19i-m 

 

To a solution of corresponding alcohol (ROH, 10 mmol) and triethylamine (15 mmol) in acetone 

(15 mL) was added acryloyl chloride (13 mmol) dropwise at 0 C. After stirring at 0 C for 30 min, the 

reaction mixture was warmed to room temperature and stirred for additional 5 h. The resulting mixture 

was concentrated, then taken up in EtOAc (50 mL) and washed with brine (3  10 mL). The organic 

extracts were dried over anhydrous Na2SO4, concentrated by rotary evaporation. Purification by 

column chromatography (n-hexane/EtOAc, 9/1) afforded the corresponding esters. 

To a solution of a 37% aqueous solution of formaldehyde (7.0 mmol) and ester (5 mmol) in 5 mL 

1,4-dioxane-water (1:1, v/v) was added DABCO (7.0 mmol) and the reaction progress was monitored 

by TLC. Upon completion, the reaction mixture was partitioned with EtOAc (50 mL) and water (20 

mL). The organic layer was separated and washed with brine (5 mL), dried over anhydrous Na2SO4 

and concentrated under reduced pressure. The crude product was purified by column chromatography 

on silica gel (EtOAc/n-hexane, 1/1) to afford corresponding hydroxyl ester. 

To a solution of hydroxyl ester (5 mmol) in dry ether (10 mL) was added phosphorus(III) bromide 

(1.7 mmol) dropwise at 10 C. The temperature was allowed to rise to 20 C and stirring was 

continued for 3 h. Water (20 mL) was then added and the mixture was extracted with diethyl ether (3 × 

10 mL). The organic phase was washed with saturated sodium chloride solution (5 mL), dried with 

sodium sulfate and concentrated under reduced pressure. The crude product was purified by column 

chromatography on silica gel (pentane/CH2Cl2, 1/1) to give corresponding bromo compound. 

To a solution of bromo compound (2.0 mmol) in methanol (5 mL) was added corresponding 

sodium aryl sulfinate (3.0 mmol). After 2.5 h of reflux, the mixture was concentrated under reduced 
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pressure, the thereby obtained residue was dissolved in EtOAc and the mixture was washed with water, 

brine, dried with Na2SO4, filtered and the filtrate was evaporated and purified by chromatography 

(EtOAc/n-hexane, 1/1) to give corresponding products 19i-m.  

The characteristic data of 19i are in accord with literature.10b Others are shown below. 

 

 

Ethyl 2-(((4-methoxyphenyl)sulfonyl)methyl)acrylate (19j) 

A colorless oil. 

1H NMR (300 MHz, CDCl3) δ 7.78-7.72 (m, 2H), 7.00-6.94 (m, 2H), 6.47 (s, 1H), 5.88 (s, 1H), 4.12 (s, 

2H), 4.03 (q, J = 7.1 Hz, 2H), 3.86 (s, 3H), 1.17 (t, J = 7.1 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 164.8, 163.8, 133.0, 130.9, 130.0, 129.4, 114.2, 61.4, 57.7, 55.6, 14.0. 

IR (film): ν (cm1) 2984, 1716, 1591, 1496, 1463, 1413, 1308, 1252, 1187, 1139, 1086, 1020, 962, 899, 

837, 778, 670, 526. 

HRMS (ESI, m/z) calcd for C13H16O5SNa [M+Na]+: 307.0611, found: 307.0604. 

 

 

Pent-4-yn-1-yl 2-((phenylsulfonyl)methyl)acrylate (19k) 

A white solid. 

1H NMR (300 MHz, CDCl3) δ 7.90-7.84 (m, 2H), 7.68-7.62 (m, 1H), 7.59-7.51 (m, 2H), 6.51 (s, 1H), 

5.92 (s, 1H), 4.16 (s, 2H), 4.09 (t, J = 6.3 Hz, 2H), 2.24 (td, J = 7.0, 2.6 Hz, 2H), 1.98 (t, 2.6 Hz, J = 

1H), 1.84-1.74 (m, 2H). 

13C NMR (75 MHz, CDCl3) δ 164.7, 138.4, 133.9, 133.5, 129.1, 129.0, 128.7, 82.8, 69.1, 64.0, 57.5, 

27.4, 15.2. 

IR (film): ν (cm1) 3262, 1705, 1626, 1292, 1245, 1142, 1080,749, 684, 523, 480. 

HRMS (ESI, m/z) calcd for C15H16O4SNa [M+Na]+: 315.0662, found: 315.0655. 
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(E)-3,7-Dimethylocta-2,6-dien-1-yl 2-((phenylsulfonyl)methyl)acrylate (19l) 

A colorless oil (contains about 5% of Z-isomer derived from geraniol). 

1H NMR (300 MHz, CDCl3) δ 7.90-7.84 (m, 2H), 7.67-7.59 (m, 1H), 7.57-7.49 (m, 2H), 6.51 (s, 1H), 

5.94 (s, 1H), 5.25-5.17 (m, 1H), 5.12-5.04 (m, 1H), 4.46 (d, J = 7.1 Hz, 2H), 4.16 (s, 2H), 2.13-1.95 

(m, 4H), 1.69 (s, 3H), 1.66 (s, 3H), 1.61 (s, 3H).  

13C NMR (75 MHz, CDCl3) δ 164.8, 142.6, 138.5, 133.8, 133.3, 131.9, 129.2, 129.0, 128.8, 123.6, 

117.8, 62.4, 57.5, 39.5, 26.3, 25.7, 17.7, 16.5. 

IR (film): ν (cm1) 2926, 1718, 1446, 1385, 1313, 1245, 1182, 1145, 1084, 965, 892, 809, 754, 660, 

523. 

HRMS (ESI, m/z) calcd for C20H26O4SNa [M+Na]+: 385.1444, found: 385.1427. 

 

 

3-(1,3-Dioxoisoindolin-2-yl)propyl 2-((phenylsulfonyl)methyl)acrylate (19m) 

A white solid. 

1H NMR (300 MHz, CDCl3) δ 7.90-7.82 (m, 4H), 7.77-7.69 (m, 2H), 7.66-7.49 (m, 3H), 6.49 (s, 1H), 

5.89 (s, 1H), 4.14 (s, 2H), 4.02 (t, J = 6.2 Hz, 2H), 3.76 (t, J = 6.9 Hz, 2H), 2.02-1.92 (m, 2H). 

13C NMR (75 MHz, CDCl3) δ 168.2, 164.6, 138.5, 134.1, 133.8, 133.7, 132.0, 129.1, 128.8, 123.3, 

62.7, 57.5, 34.8, 27.5. 

IR (film): ν (cm1) 2959, 1707, 1445, 1403, 1375, 1307, 1199, 1161, 1083, 1054, 969, 921, 791, 755, 

681, 607, 558. 

HRMS (ESI, m/z) calcd for C21H19NO6SNa [M+Na]+: 436.0825, found: 436.0828.  
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3) Method C for the synthesis of compound 22 

 

To a solution of methyl phenyl sulfone (1.25 g, 8.0 mmol) in THF (40 mL) cooled at –78 ºC, 

nBuLi (1.6 M in n-hexane, 5.5 mL, 8.8 mmol) was added dropwise under argon atmosphere. The 

resulting solution was stirred at 0 ºC for 30 min, and then cooled back to 78 ºC. A solution of 

2,3,4,5,6-pentafluorobenzaldehyde (1.72g, 8.8 mmol) in THF (2.0 mL) was added dropwise and the 

temperature was allowed to slowly raise to room temperature, and the solution was stirred until 

methylphenylsulfone disappeared by TLC. A saturated aqueous solution of NH4Cl (20 mL) was added, 

the organic layer was separated and the aqueous layer was extracted with CH2Cl2 (3  10 mL). The 

combined organic layers were dried with Na2SO4 and evaporated under reduced pressure.  

Without further purification, the resulting alcohol was dissolved in dry CH2Cl2 (25 mL) under 

argon atmosphere, cooled to 0 ºC, then Et3N (11.2 mL, 80 mmol) and methanesulfonyl chloride (0.93 

mL, 12 mmol) were added continuously. After stirring at room temperature for 90 min, a saturated 

aqueous solution of NH4Cl (30 mL) was added, the organic layer was separated and the aqueous layer 

was extracted with CH2Cl2 (3  15 mL). The combined organic layers were dried (Na2SO4) and the 

solvent was evaporated. The residue was purified by flash chromatography (n-hexane/EtOAc, 5/1) to 

afford compound 22 (1.73g, 65%) as a white solid. 

(E)-1,2,3,4,5-Pentafluoro-6-(2-(phenylsulfonyl)vinyl)benzene (22) 

1H NMR (500 MHz, CDCl3) δ 7.98-7.92 (m, 2H), 7.73-7.65 (m, 2H), 7.63-7.55 (m, 2H), 7.22 (d, J = 

16.8 Hz, 1H).  

13C NMR (125 MHz, CDCl3) δ 147.6-147.2 (m), 144.2-143.8 (m), 140.8-140.2 (m), 139.5, 

136.4-135.8 (m), 135.5-135.1 (m), 134.0, 129.6, 128.0, 125.9-125.7 (m), 108.4-107.8 (m). 

19F NMR (282 MHz, CDCl3) δ –138.10 - –138.32 (m, 2F), –148.58 - –148.82 (m, 1F), –160.56 - 

–160.84 (m, 2F). 

IR (film): ν (cm1) 1650, 1495, 1419, 1301, 1146, 1082, 1001, 963, 845, 816, 749, 685, 550. 

HRMS (ESI, m/z) calcd for C14H7F5O2SNa [M+Na]+: 356.9979, found: 356.9970. 
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4) Others 

 

 

(E)-1-(3,5-Dimethyl-1H-pyrazol-1-yl)hepta-2,6-dien-1-one (18d) 

According to the reported procedure,10c compound 18d was obtained as a colorless liquid. 

1H NMR (300 MHz, CDCl3) δ 7.40-7.16 (m, 2H), 6.00 (s, 1H), 5,95-5.75 (m, 1H), 5.14-5.00 (m, 2H), 

2.60 (s, 3H), 2.51-2.41 (m, 2H), 2.36-2.24 (m, 2H), 2.28 (s, 3H).  

13C NMR (75 MHz, CDCl3) δ 165.1, 151.8, 150.4, 144.4, 137.1, 121.5, 115.5, 111.2, 32.2, 32.0, 14.6, 

13.8. 

IR (film): ν (cm1) 2927, 1705, 1639, 1581, 1476, 1411, 1376, 1344, 1294, 1243, 1139, 960, 914, 805, 

753, 700, 626, 586, 407. 

HRMS (ESI, m/z) calcd for C12H16N2ONa [M+Na]+: 227.1155, found: 227.1155. 

 

Hantzsch esters were synthesized following a reported procedure.10d  

 

5.3.4 Experimental and Characterization Data of Novel Products  

 

01) Table 10, entry 1  

According to the general procedure, the reaction of (E)-1-(3,5-dimethyl-1H-pyrazol-1-yl) 

but-2-en-1-one 18a (32.8 mg, 0.20 mmol), 2-((phenylsulfonyl)methyl)acrylonitrile 19a (20.8 mg, 0.10 

mmol), Δ-RhO (6.6 mg, 8.0 mol%), diethyl 2,6-diethyl-1,4-dihydropyridine-3,5-dicarboxylate (42.2 

mg, 1.5 equiv) in 1,4-dioxane (1.0 mL, 0.1 M) under nitrogen atmosphere with visible light for 24 

hours at room temperature, afforded 19.6 mg (85%) of 20a as a colorless oil and 21a (28.2mg, 92%) 

as a yellow oil. 

 

(S)-6-(3,5-Dimethyl-1H-pyrazol-1-yl)-4-methyl-2-methylene-6-oxon-hexanenitrile (20a) 

Enantiomeric excess of 20a was established by HPLC analysis using a Daicel Chiralpak OD-H 
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column, ee = 96% (HPLC: 254 nm, n-hexane/isopropanol = 99:1, flow rate 1.0 mL/min, 40 C, tr 

(major) = 6.8 min, tr (minor) = 6.4 min).  

[]D
22 = +21.1 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 5.95 (s, 1H), 5.91 (s, 1H), 5.78-5.75 (m, 1H), 3.13 (dd, J = 16.5, 5.8 Hz, 

1H), 2.99 (dd, J = 16.5, 7.3 Hz, 1H), 2.54 (s, 3H), 2.52-2.38 (m, 2H), 2.23 (s, 3H), 2.23-2.09 (m, 1H), 

1.07 (d, J = 6.6 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 172.4, 152.0, 144.0, 132.0, 121.7, 118.6, 111.2, 41.5, 41.2, 28.5, 19.3, 

14.5, 13.8. 

IR (film): ν (cm1) 2965, 2929, 2221, 1722, 1583, 1437, 1379, 1333, 1240, 1171, 1137, 996, 960, 904, 

805, 745, 642, 559. 

HRMS (ESI, m/z) calcd for C13H17N3ONa [M+Na]+: 254.1264, found: 254.1259. 

 

(R)-1-(3,5-Dimethyl-1H-pyrazol-1-yl)-3-(phenylsulfonyl)butan-1-one (21a) 

Enantiomeric excess of 21a was established by HPLC analysis using a Daicel Chiralpak OD-H 

column, ee = 85% (HPLC: 254 nm, n-hexane/isopropanol = 95:5, flow rate 1.0 mL/min, 40 C, tr 

(major) = 12.0 min, tr (minor) = 10.8 min).  

[]D
22 = +47.6 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.95-7.91 (m, 2H), 7.68-7.63 (m, 1H), 7.59-7.53 (m, 2H), 5.94 (s, 1H), 

3.89-3.82 (m, 1H), 3.76 (dd, J = 17.4, 4.4 Hz, 1H), 3.27 (dd, J = 17.4, 8.8 Hz, 1H), 2.45 (s, 3H), 2.21 

(s, 3H), 1.38 (d, J = 6.8 Hz, 3H). 

13C NMR (125 MHz, CDCl3) δ 170.0, 152.6, 144.1, 136.9, 133.8, 129.14, 129.12, 111.5, 56.1, 35.8, 

14.3, 14.0, 13.8. 

IR (film): ν (cm1) 2929, 1721, 1585, 1446, 1382, 1304, 1141, 1081, 1030, 986, 961, 911, 814, 757, 

728, 688, 582, 547. 

HRMS (ESI, m/z) calcd for C15H19N2O3S [M+H]+: 307.1111, found: 307.1107. 

 

02) Table 10, entry 2  

According to the general procedure, the reaction of (E)-1-(3,5-dimethyl-1H-pyrazol-1-yl) 
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but-2-en-1-one 18a (32.8 mg, 0.20 mmol), 2-(tosylmethyl)acrylonitrile 19b (22.1 mg, 0.10 mmol), 

Δ-RhO (6.6 mg, 8.0 mol%), diethyl 2,6-diethyl-1,4-dihydropyridine-3,5-dicarboxylate (42.2 mg, 1.5 

equiv) in 1,4-dioxane (1.0 mL, 0.1 M) under nitrogen atmosphere with visible light for 24 hours at 

room temperature, afforded 16.1 mg (68%) of 20a as a colorless oil and 21b (21.4mg, 70%) as a 

yellow oil. Enantiomeric excess of 20a was determined as 96% ee. 

 

(R)-1-(3,5-Dimethyl-1H-pyrazol-1-yl)-3-tosylbutan-1-one (21b) 

Enantiomeric excess of 21b was established by HPLC analysis using a Daicel Chiralpak OD-H 

column, ee = 79% (HPLC: 254 nm, n-hexane/ isopropanol = 95:5, flow rate 1.0 mL/min, 40 C, tr 

(major) = 14.8 min, tr (minor) = 11.0 min). []D
22 = +10.8 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.82-7.78 (m, 2H), 7.37-7.33 (m, 2H), 5.94 (s, 1H), 3.86-3.78 (m, 1H), 

3.74 (dd, J = 17.4, 4.4 Hz, 1H), 3.24 (dd, J = 17.4, 8.8 Hz, 1H), 2.45 (s, 3H), 2.44 (s, 3H), 2.21 (s, 3H), 

1.37 (d, J = 6.8 Hz, 3H). 

13C NMR (125 MHz, CDCl3) δ 170.1, 152.5, 144.8, 144.1, 133.9, 129.8, 129.1, 111.5, 56.1, 35.9, 21.6, 

14.3, 14.0, 13.8. 

IR (film): ν (cm1) 2929, 1721, 1589, 1396, 1330, 1293,1261, 1139, 1082, 1026, 987, 962, 908, 870, 

758, 721, 640, 555. 

HRMS (ESI, m/z) calcd for C16H20N2O3SNa [M+Na]+: 343.1087, found: 343.1080. 

 

03) Table 10, entry 3  

According to the general procedure, the reaction of (E)-1-(3,5-dimethyl-1H-pyrazol-1-yl) 

but-2-en-1-one 18a (32.8 mg, 0.20 mmol), 2-(((4-bromophenyl)sulfonyl)methyl)acrylonitrile 19c 

(28.5 mg, 0.10 mmol), Δ-RhO (6.6 mg, 8.0 mol%), diethyl 2,6-diethyl-1,4-dihydropyridine- 

3,5-dicarboxylate (42.2 mg, 1.5 equiv) in 1,4-dioxane (1.0 mL, 0.1 M) under nitrogen atmosphere with 

visible light for 24 hours at room temperature, afforded 18.9 mg (81%) of 20a as a colorless oil, and 

afforded 21c (33.8 mg, 88%) as a white solid. Enantiomeric excess of 20a was determined as 97% ee. 
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(R)-3-((4-bromophenyl)sulfonyl)-1-(3,5-dimethyl-1H-pyrazol-1-yl)butan-1-one (21c) 

Enantiomeric excess of 21c was established by HPLC analysis using a Daicel Chiralpak OD-H column, 

ee = 80% (HPLC: 254 nm, n-hexane/isopropanol = 95:5, flow rate 1.0 mL/min, 40 C, tr (major) = 

12.9 min, tr (minor) = 11.2 min). []D
22 = +13.1 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.80-7.76 (m, 2H), 7.71-7.67 (m, 2H), 5.96 (s, 1H), 3.89-3.81 (m, 1H), 

3.76 (dd, J = 17.4, 4.8 Hz, 1H), 3.24 (dd, J = 17.4, 8.4 Hz, 1H), 2.45 (s, 3H), 2.21 (s, 3H), 1.40 (d, J = 

6.8 Hz, 3H).  

13C NMR (125 MHz, CDCl3) δ 169.7, 152.7, 144.1, 135.9, 132.5, 130.7, 129.3, 111.6, 56.2, 35.8, 14.3, 

13.9, 13.8. 

IR (film): ν (cm1) 2981, 1727, 1575, 1446, 1384, 112, 1279, 1134, 1075, 988, 961, 914, 824, 761, 684, 

576. 

HRMS (ESI, m/z) calcd for C15H17BrN2O3SNa [M+Na]+: 407.0035, found: 407.0024. 

 

04) Table 10, entry 4 

According to the general procedure, the reaction of (E)-1-(3,5-dimethyl-1H-pyrazol-1-yl)but-2- 

en-1-one 18a (32.8 mg, 0.20 mmol), 2-(((4-(trifluoromethyl)phenyl)sulfonyl)methyl) acrylonitrile 19d 

(22.1 mg, 0.10 mmol), Δ-RhO (6.6 mg, 8.0 mol%), diethyl 2,6-diethyl-1,4-dihydropyridine-3,5- 

dicarboxylate (42.2 mg, 1.5 equiv) in 1,4-dioxane (1.0 mL, 0.1 M) under nitrogen atmosphere with 

visible light for 24 hours at room temperature, afforded 18.4 mg (78%) of 20a as a colorless oil, and 

afforded 29.2 mg (78%) of 21d as a white solid. Enantiomeric excess of 20a was determined as 95% 

ee. 

 

(R)-1-(3,5-Dimethyl-1H-pyrazol-1-yl)-3-((4-(trifluoromethyl)phenyl)sulfonyl)butan-1-one (21d) 

Enantiomeric excess of 21d was established by HPLC analysis using a Daicel Chiralpak OD-H 
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column, ee = 76% (HPLC: 254 nm, n-hexane/isopropanol = 95:5, flow rate 1.0 mL/min, 40 C, tr 

(major) = 10.3 min, tr (minor) = 9.2 min). A white solid. []D
22 = +19.9 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 8.07 (d, J = 8.2 Hz, 2H), 7.82 (d, J = 8.2 Hz, 2H), 5.95 (s, 1H), 

3.94-3.86 (m, 1H), 3.78 (dd, J = 17.4, 4.9 Hz, 1H), 3.24 (dd, J = 17.4, 8.3 Hz, 1H), 2.43 (s, 3H), 2.20 

(s, 3H), 1.42 (d, J = 6.9 Hz, 3H). 

13C NMR (125 MHz, CDCl3) δ 169.6, 152.7, 144.2, 140.6, 135.5 (q, J = 33.2 Hz), 129.8, 126.2 (q, J = 

3.6 Hz), 124.2, 123.0 (q, J = 273.2 Hz), 111.7, 56.2, 35.8, 14.2, 13.9, 13.8. 

19F NMR (282 MHz, CDCl3) δ –63.3 (s, 3F). 

IR (film): ν (cm1) 2965, 1725, 1584, 1451, 1378, 1317, 1166, 1060, 1036, 984, 960, 890, 844, 743, 

677, 545. 

HRMS (ESI, m/z) calcd for C16H17F3N2O3SNa [M+Na]+: 397.0804, found: 397.0794. 

 

05) Table 10, entry 5 

According to the general procedure, the reaction of (E)-1-(3,5-dimethyl-1H-pyrazol-1-yl) 

but-2-en-1-one 18a (32.8 mg, 0.20 mmol), 2-((o-tolylsulfonyl)methyl)acrylonitrile 19e (22.1 mg, 0.10 

mmol), Δ-RhO (6.6 mg, 8.0 mol%), diethyl 2,6-diethyl-1,4-dihydropyridine-3,5-dicarboxylate (42.2 

mg, 1.5 equiv) in 1,4-dioxane (1.0 mL, 0.1 M) under nitrogen atmosphere with visible light for 24 

hours at room temperature, afforded 16.8 mg (71%) of 20a as a colorless oil, and afforded 23.0 mg 

(72%) of 21e as a yellow oil. Enantiomeric excess of 20a was determined as 95% ee. 

 

(R)-1-(3,5-Mimethyl-1H-pyrazol-1-yl)-3-(o-tolylsulfonyl)butan-1-one (21e) 

Enantiomeric excess of 21e was established by HPLC analysis using a Daicel Chiralpak OD-H column, 

ee = 86% (HPLC: 254 nm, n-hexane/isopropanol = 95:5, flow rate 1.0 mL/min, 40 C, tr (major) = 

12.2 min, tr (minor) = 10.8 min). []D
22 = +15.4 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.99 (d, J = 7.9 Hz, 1H), 7.51-7.47 (m, 1H), 7.35-7.29 (m, 2H), 5.93 (s, 

1H), 3.99-3.91 (m, 1H), 3.75 (dd, J = 17.4, 4.4 Hz, 1H), 3.27 (dd, J = 17.4, 8.6 Hz, 1H), 2.73 (s, 3H), 

2.43 (s, 3H), 2.20 (s, 3H), 1.40 (d, J = 6.8 Hz, 3H). 
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13C NMR (125 MHz, CDCl3) δ 170.1, 152.5, 144.0, 138.9, 135.2, 133.7, 132.8, 131.3, 126.3, 111.5, 

54.8, 35.7, 20.5, 14.3, 13.7, 13.4. 

IR (film): ν (cm1) 2981, 1722, 1586, 1452, 1382, 1308, 1144, 1031, 986, 961, 807, 758, 662, 554. 

HRMS (ESI, m/z) calcd for C16H20N2O3SNa [M+Na]+: 343.1087, found: 343.1080. 

 

06) Table 10, entry 6 

According to the general procedure, the reaction of (E)-1-(3,5-dimethyl-1H-pyrazol-1-yl) 

but-2-en-1-one 18a (32.8 mg, 0.20 mmol), 2-((mesitylsulfonyl)methyl)acrylonitrile 19f (24.9 mg, 0.10 

mmol), Δ-RhO (6.6 mg, 8.0 mol%), diethyl 2,6-diethyl-1,4-dihydropyridine-3,5-dicarboxylate (42.2 

mg, 1.5 equiv) in 1,4-dioxane (1.0 mL, 0.1 M) under nitrogen atmosphere with visible light for 24 

hours at 35 C, afforded 13.5 mg (57%) of 20a as a colorless oil, and afforded 20.9 mg (60%) of 21f as 

a yellow oil. Enantiomeric excess of 20a was determined as 94% ee. 

 

(R)-1-(3,5-Dimethyl-1H-pyrazol-1-yl)-3-(mesitylsulfonyl)butan-1-one (21f) 

Enantiomeric excess of 21f was established by HPLC analysis using a Daicel Chiralpak IA column, ee 

= 89% (HPLC: 254 nm, n-hexane/isopropanol = 95:5, flow rate 1.0 mL/min, 40 C, tr (major) = 9.6 

min, tr (minor) = 10.9 min). []D
22 = 28.4 (c 0.10, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 6.93 (s, 2H), 5.93 (s, 1H), 3.97-3.89 (m, 1H), 3.78 (dd, J = 17.0, 4.6 Hz, 

1H), 3.27 (dd, J = 17.0, 8.6 Hz, 1H), 2.68 (s, 6H), 2.43 (s, 3H), 2.28 (s, 3H), 2.19 (s, 3H), 1.41 (d, J = 

6.9 Hz, 3H). 

13C NMR (125 MHz, CDCl3) δ 170.3, 152.4, 144.0, 143.3, 140.8, 132.3, 131.1, 111.4, 55.4, 35.4, 23.0, 

21.0, 14.3, 13.7, 13.2. 

IR (film): ν (cm1) 2959, 1718, 1591, 1449, 1416, 1378, 1306, 1262, 1134, 1101, 1023, 962, 799, 749, 

728, 681, 642, 569. 

HRMS (ESI, m/z) calcd for C18H25N2O3S [M+H]+: 349.1580, found: 349.1573. 
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07) Table 10, entry 7 

According to the general procedure, the reaction of (E)-1-(3,5-dimethyl-1H-pyrazol-1-yl) 

but-2-en-1-one 18a (32.8 mg, 0.20 mmol), ethyl 2-((naphthalen-2-ylsulfonyl)methyl)acrylonitrile 19g 

(25.7 mg, 0.10 mmol), Δ-RhO (6.6 mg, 8.0 mol%), diethyl 2,6-diethyl-1,4-dihydropyridine-3,5- 

dicarboxylate (42.2 mg, 1.5 equiv) in 1,4-dioxane (1.0 mL, 0.1 M) under nitrogen atmosphere with 

visible light for 24 hours at 35 C, afforded 19.4 mg (82%) of 20a as a colorless oil, and afforded 31.3 

mg (88%) of 21g as a yellow oil. Enantiomeric excess of 20a was determined as 94% ee. 

 

(R)-1-(3,5-Dimethyl-1H-pyrazol-1-yl)-3-(naphthalen-2-ylsulfonyl)butan-1-one (21g) 

Enantiomeric excess of 21g was established by HPLC analysis using a Daicel Chiralpak OD-H 

column, ee = 83% (HPLC: 254 nm, n-hexane/isopropanol = 95:5, flow rate 1.0 mL/min, 40 C, tr 

(major) = 13.5 min, tr (minor) = 14.3 min). []D
22 = +39.2 (c 1.0, CH2Cl2) 

1H NMR (300 MHz, CDCl3) δ 8.80 (d, J = 8.6 Hz, 1H), 8.31 (d, J = 7.3 Hz, 1H), 8.11 (d, J = 8.2 Hz, 

1H), 7.95 (d, J = 8.2 Hz, 1H), 7.75-7.53 (m, 3H), 5.89 (s, 1H), 4.22-4.08 (m, 1H), 3.82 (dd, J = 17.2, 

4.4 Hz, 1H), 3.34 (dd, J = 17.2, 8.8 Hz, 1H), 2.39 (s, 3H), 2.14 (s, 3H), 1.39 (d, J = 6.8 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 170.0, 152.4, 144.0, 135.3, 134.3, 132.2, 131.8, 129.3, 129.1, 128.7, 

127.0, 124.5, 124.2, 111.4, 55.6, 35.8, 14.2, 13.8, 13.6. 

IR (film): ν (cm1) 2937, 1722, 1586, 1385, 1313, 1269, 1188, 1151, 1122, 964, 886, 805, 771, 742, 

707, 663, 592. 

HRMS (ESI, m/z) calcd for C19H20N2O3SNa [M+Na]+: 379.1087, found: 379.1078. 

 

08) Table 10, entry 8 

According to the general procedure, the reaction of (E)-1-(3,5-dimethyl-1H-pyrazol-1-yl) 

but-2-en-1-one 18a (32.8 mg, 0.20 mmol), ethyl 1-((naphthalen-2-ylsulfonyl)methyl)acrylonitrile 19h 

(25.7 mg, 0.10 mmol), Δ-RhO (6.6 mg, 8.0 mol%), diethyl 2,6-diethyl-1,4-dihydropyridine-3,5- 

dicarboxylate (42.2 mg, 1.5 equiv) in 1,4-dioxane (1.0 mL, 0.1 M) under nitrogen atmosphere with 

visible light for 24 hours at 35 C, afforded 18.4 mg (78%) of 20a as a colorless oil, and afforded 29.9 



Chapter 5. Experimental Part 

249 
 

mg (84%) of 21h as a yellow oil. Enantiomeric excess of 20a was determined as 91% ee. 

 

(R)-1-(3,5-Dimethyl-1H-pyrazol-1-yl)-3-(naphthalen-1-ylsulfonyl)butan-1-one (21h) 

Enantiomeric excess of 21h was established by HPLC analysis using a Daicel Chiralpak OD-H 

column, ee = 80% (HPLC: 254 nm, n-hexane/isopropanol = 95:5, flow rate 1.0 mL/min, 40 C, tr 

(major) = 18.7 min, tr (minor) = 16.5 min. []D
22 = +15.6 (c 1.0, CH2Cl2).  

1H NMR (300 MHz, CDCl3) δ 8.50 (s, 1H), 8.03-7.87 (m, 4H), 7.71-7.57 (m, 2H), 5.88 (s, 1H), 

4.02-3.88 (m, 1H), 3.84 (dd, J = 17.4, 4.6 Hz, 1H), 3.27 (dd, J = 17.4, 8.4 Hz, 1H), 2.36 (s, 3H), 2.19 

(s, 3H), 1.43 (d, J = 6.8 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 170.0, 152.5, 144.0, 135.4, 134.0, 132.1, 131.1, 129.4, 129.34, 129.30, 

127.9, 127.6, 123.6, 111.5, 56.2, 36.0, 14.1, 14.0, 13.7. 

IR (film): ν (cm1) 2924, 1721, 1586, 1451, 1382, 1305, 1122, 1073, 1029, 985, 961, 910, 862, 815, 

752, 703, 644, 553, 474. 

HRMS (ESI, m/z) calcd for C19H21N2O3S [M+H]+: 357.1267, found: 357.1259. 

 

09) Table 10, entry 9 

According to the general procedure, the reaction of (E)-1-(3,5-dimethyl-1H-pyrazol-1-yl) 

but-2-en-1-one 18a (32.8 mg, 0.20 mmol), ethyl 2-((phenylsulfonyl)methyl)acrylate 19i (25.4 mg, 0.10 

mmol), Δ-RhO (6.6 mg, 8.0 mol%), diethyl 2,6-diethyl-1,4-dihydropyridine-3,5- dicarboxylate (42.2 

mg, 1.5 equiv) in 1,4-dioxane (1.0 mL, 0.1 M) under nitrogen atmosphere with visible light for 24 

hours at room temperature, afforded 18.3 mg (65%) of 20b as a colorless oil, and afforded 20.8 mg 

(68%) of 21a as a yellow oil. Enantiomeric excess of 21a was determined as 84% ee.  

 

Ethyl (S)-6-(3,5-dimethyl-1H-pyrazol-1-yl)-4-methyl-2-methylene-6-oxohexanoate (20b) 
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Enantiomeric excess of 20b was established by HPLC analysis using a Daicel Chiralcel OJ-H column, 

ee = 94% (HPLC: 254 nm, n-hexane/isopropanol = 99:1, flow rate 1.0 mL/min, 25 C, tr (major) = 6.9 

min, tr (minor) = 7.6 min). []D
22 = +14.2 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 6.19 (d, J = 1.6 Hz, 1H), 5.93 (s, 1H), 5.57-5.53 (m, 1H), 4.19 (q, J =  

7.2 Hz, 2H), 3.11 (dd, J = 16.4, 5.2 Hz, 1H), 2.93 (dd, J = 16.4, 7.4 Hz, 1H), 2.53 (s, 3H), 2.47-2.29 

(m, 3H), 2.22 (s, 3H), 1.29 (t, J = 7.2 Hz, 3H),1.00 (d, J = 6.4 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 173.2, 167.2, 151.6, 144.0, 139.2, 126.2, 110.9, 60.6, 41.7, 39.1, 28.8, 

19.8, 14.6, 14.2, 13.8. 

IR (film): ν (cm1) 2967, 1718, 1630, 1583, 1440, 1409, 1377, 1329, 1242, 1185, 1148, 1025, 994, 959, 

807, 746, 684, 553. 

HRMS (ESI, m/z) calcd for C15H22N2O3Na [M+Na]+: 301.1523, found: 301.1527. 

 

10) Table 10, entry 10 

According to the general procedure, the reaction of (E)-1-(3,5-dimethyl-1H-pyrazol-1-yl) 

but-2-en-1-one 18a (32.8 mg, 0.20 mmol), ethyl 2-(((4-methoxyphenyl)sulfonyl)methyl)acrylate 19j 

(28.4 mg, 0.10 mmol), Δ-RhO (6.6 mg, 8.0 mol%), diethyl 2,6-diethyl-1,4-dihydropyridine-3,5- 

dicarboxylate (42.2 mg, 1.5 equiv) in 1,4-dioxane (1.0 mL, 0.1 M) under nitrogen atmosphere with 

visible light for 24 hours at 35 C, afforded 18.3 mg (65%) of 20b as a colorless oil, and afforded 21.2 

mg (63%) of 21i as a yellow oil. Enantiomeric excess of 20b was determined as 92% ee. 

 

(R)-1-(3,5-Dimethyl-1H-pyrazol-1-yl)-3-((4-methoxyphenyl)sulfonyl)butan-1-one (21i) 

Enantiomeric excess of 21i was established by HPLC analysis using a Daicel Chiralpak OD-H column, 

ee = 81% (HPLC: 254 nm, n-hexane/isopropanol = 90:10, flow rate 1.0 mL/min, 40 C, tr (major) = 

14.4 min, tr (minor) = 11.9 min). []D
22 = +10.0 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.87-7.81 (m, 2H), 7.03-7.67 (m, 2H), 5.94 (s, 1H), 3.88 (s, 3H), 

3.85-3.71 (m, 2H), 3.27 (dd, J = 17.4, 8.8 Hz, 1H), 2.46 (s, 3H), 2.21 (s, 3H), 1.37 (d, J = 6.8 Hz, 3H). 

13C NMR (125 MHz, CDCl3) δ 170.1, 163.8, 152.5, 144.1, 131.3, 128.3, 114.3, 111.5, 56.3, 55.7, 36.0, 
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14.3, 14.1, 13.8. 

IR (film): ν (cm1) 2922, 1716, 1587, 1457, 1372, 1310, 1264, 1130, 1080, 1020, 960, 842, 411, 758, 

562. 

HRMS (ESI, m/z) calcd for C16H20N2O4SNa [M+Na]+: 359.1036, found: 359.1027. 

 

11) Table 10, entry 11 

According to the general procedure, the reaction of (E)-1-(3,5-dimethyl-1H-pyrazol-1-yl) 

but-2-en-1-one 18a (32.8 mg, 0.20 mmol), ethyl hex-4-yn-1-yl 2-((phenylsulfonyl)methyl)acrylate 

19k (30.6 mg, 0.10 mmol), Δ-RhO (6.6 mg, 8.0 mol%), diethyl 2,6-diethyl-1,4-dihydropyridine-3,5- 

dicarboxylate (42.2 mg, 1.5 equiv) in 1,4-dioxane (1.0 mL, 0.1 M) under nitrogen atmosphere with 

visible light for 24 hours at 35 C, afforded 19.0 mg (60%) of 20c as a colorless oil, and afforded 21.1 

mg (69%) of 21a as a yellow oil. Enantiomeric excess of 21a was determined as 82% ee. 

 

(S)-Pent-4-yn-1-yl-6-(3,5-dimethyl-1H-pyrazol-1-yl)-4-methyl-2-methylene-6-oxohexanoate (20c) 

Enantiomeric excess of 20c was established by HPLC analysis using a Daicel Chiralcel OJ-H column, 

ee = 92% (HPLC: 254 nm, n-hexane/isopropanol = 98:2, flow rate 1.0 mL/min, 25 C, tr (major) = 

10.0 min, tr (minor) = 11.8 min). []D
22 = +10.4 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 6.20 (d, J = 1.4 Hz, 1H), 5.94 (s, 1H), 5.59-5.56 (m, 1H), 4.24 (t, J =  

6.3 Hz, 2H), 3.11 (dd, J = 16.4, 5.4 Hz, 1H), 2.94 (dd, J = 16.4, 7.4 Hz, 1H), 2.53 (s, 3H), 2.47-2.36 

(m, 2H), 2.31 (td, J = 6.8, 2.6 Hz, 3H), 2.23 (s, 3H), 1.97 (t, J = 2.6 Hz, 1H), 1.96-1.87 (m, 2H), 1.00 

(d, J = 6.4 Hz, 3H).  

13C NMR (125 MHz, CDCl3) δ 173.1, 167.0, 151.7, 144.0, 138.9, 126.6, 111.0, 83.1, 69.0, 63.2, 41.6, 

39.1, 28.7, 27.5, 19.8, 15.3, 14.6, 13.8. 

IR (film): ν (cm1) 3296, 2960, 2928, 1718, 1629, 1583, 1438, 1409, 1379, 1330, 1244, 1182, 1149, 

1077, 996, 959, 809, 726, 637, 523. 

HRMS (ESI, m/z) calcd for C18H24N2O3Na [M+Na]+: 339.1679, found: 339.1673. 
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12) Table 10, entry 12 

According to the general procedure, the reaction of (E)-1-(3,5-dimethyl-1H-pyrazol-1-yl)but-2-en- 

1-one 18a (32.8 mg, 0.20 mmol), (E)-3,7-dimethylocta-2,6-dien-1-yl 2-((phenylsulfonyl)methyl) 

acrylate 19l (contains about 5% of Z-isomer derived from geraniol, 36.2 mg, 0.10 mmol), Δ-RhO (6.6 

mg, 8.0 mol%), diethyl 2,6-diethyl-1,4- dihydropyridine-3,5-dicarboxylate (42.2 mg, 1.5 equiv) in 

1,4-dioxane (1.0 mL, 0.1 M) under nitrogen atmosphere with visible light for 24 hours at 35 C, 

afforded 23.9 mg (62%) of 20d as a colorless oil, and afforded 22.0 mg (72%) of 21a as a yellow oil. 

Enantiomeric excess of 21a was determined as 83% ee. 

 

(E)-3,7-Dimethylocta-2,6-dien-1-yl (S)-6-(3,5-dimethyl-1H-pyrazol-1-yl)-4-methyl-2-methylene 

-6-oxohexanoate (20d) 

Enantiomeric excess of 20d was established by HPLC analysis using a Daicel Chiralpak IG column, 

ee = 92% (HPLC: 254 nm, n-hexane/isopropanol = 99.1:0.9, flow rate 1.0 mL/min, 25 C, tr (major) = 

12.4 min, tr (minor) = 13.3 min). []D
22 = +15.7 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 6.20 (d, J = 1.4 Hz, 1H), 5.94 (s, 1H), 5.58-5.55 (m, 1H), 5.40-5.34 (m, 

1H), 5.11-5.05 (m, 1H), 4.66 (d, 7.0 Hz, 2H), 3.11 (dd, J = 16.4, 5.4 Hz, 1H), 2.94 (dd, J = 16.4, 7.8 

Hz, 1H), 2.53 (s, 3H), 2.47-2.29 (m, 3H), 2.22 (s, 3H), 2.13-2.01 (m, 4H), 1.71 (s, 3H), 1.67 (s, 3H), 

1.60 (s, 3H), 1.00 (d, J = 6.4 Hz, 3H). 

13C NMR (125 MHz, CDCl3) δ 173.2, 167.2, 151.6, 144.0, 142.0, 139.1, 131.8, 126.3, 123.8, 118.4, 

111.0, 61.7, 41.6, 39.5, 39.1, 28.7, 26.3, 25.7, 19.9, 17.7, 16.5, 14.6, 13.8. 

IR (film): ν (cm1) 3298, 3172, 2963, 2925, 2873, 1633, 1598, 1519, 1462, 1381, 1316, 1244, 1158, 

1079, 1005, 956, 870, 770, 661, 544. 

HRMS (ESI, m/z) calcd for C23H34N2O3Na [M+Na]+: 409.2462, found: 409.2454. 

 

13) Table 10, entry 13 

According to the general procedure, the reaction of (E)-1-(3,5-dimethyl-1H-pyrazol-1-yl) 

but-2-en-1-one 18a (32.8 mg, 0.20 mmol), 3-(1,3-dioxoisoindolin-2-yl)propyl 2-((phenylsulfonyl) 
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methyl)acrylate 19m (41.3 mg, 0.10 mmol), Δ-RhO (6.6 mg, 8.0 mol%), diethyl 2,6-diethyl-1,4- 

dihydropyridine-3,5-dicarboxylate (42.2 mg, 1.5 equiv) in 1,4-dioxane (1.0 mL, 0.1 M) under nitrogen 

atmosphere with visible light for 24 hours at 35 C, afforded 31.9 mg (73%) of 20e as a colorless oil, 

and afforded 23.9 mg (78%) of 21a as a yellow oil. Enantiomeric excess of 21a was determined as 

82% ee 

 

(S)-3-(1,3-Dioxoisoindolin-2-yl)propyl 6-(3,5-dimethyl-1H-pyrazol-1-yl)-4-methyl-2-methylene 

-6-oxohexanoate (20e) 

Enantiomeric excess of 20e was established by HPLC analysis using a Daicel Chiralcel OJ-H column, 

ee = 92% (HPLC: 254 nm, n-hexane/isopropanol = 80:20, flow rate 1.0 mL/min, 25 C, tr (major) = 

17.4 min, tr (minor) = 20.5 min). []D
22 = +13.7 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.84-7.80 (m, 2H), 7.72-7.68 (m, 2H), 6.17 (s, 1H), 5.92 (s, 1H), 5.55 (s, 

1H), 4.17 (t, J = 6.2 Hz, 2H), 3.82 (t, J = 6.9 Hz, 2H), 3.10 (dd, J = 16.4, 5.4 Hz, 1H), 2.92 (dd, J = 

16.4, 7.7 Hz, 1H), 2.51 (s, 3H), 2.45-2.33 (m, 2H), 2.32-2.26 (m, 1H), 2.21 (s, 3H), 2.11-2.04 (m, 2H), 

0.99 (d, J = 6.4 Hz, 3H). 

13C NMR (125 MHz, CDCl3) δ 173.1, 168.2, 166.9, 151.6, 143.9, 138.7, 133.9, 132.0, 126.7, 123.2, 

110.9, 62.0, 41.6, 39.0, 35.1, 28.7, 27.6, 19.8, 14.6, 13.8. 

IR (film): ν (cm1) 2959, 2928, 1772, 1709, 1583, 1439, 1377, 1330, 1244, 1182, 1148, 1080, 1046, 

959, 805, 747, 528. 

HRMS (ESI, m/z) calcd for C24H27N3O5Na [M+Na]+: 460.1843, found: 460.1832. 

 

14) Figure 48a, reaction of 18b 

According to the general procedure, the reaction of (E)-1-(3,5-dimethyl-1H-pyrazol-1-yl) 

pent-2-en-1-one 18b (35.6 mg, 0.20 mmol), 2-((phenylsulfonyl)methyl)acrylonitrile 19a (20.8 mg, 

0.10 mmol), Δ-RhO (6.6 mg, 8.0 mol%), diethyl 2,6-diethyl-1,4-dihydropyridine-3,5-dicarboxylate 

(42.2 mg, 1.5 equiv) in 1,4-dioxane (1.0 mL, 0.1 M) under nitrogen atmosphere with visible light for 

48 hours at room temperature, afforded 20.1 mg (82%) of 20f as a colorless oil, and afforded 27.2 mg 
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(85%) of 21j as a yellow oil.  

 

(S)-6-(3,5-Dimethyl-1H-pyrazol-1-yl)-4-ethyl-2-methylene-6-oxohexanenitrile (20f) 

Enantiomeric excess of 20f was established by HPLC analysis using a Daicel Chiralpak OD-H column, 

ee = 87% (HPLC: 254 nm, n-hexane/isopropanol = 99:1, flow rate 1.0 mL/min, 40 C, tr (major) = 6.8 

min, tr (minor) = 8.5 min). []D
22 = +4.0 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 5.96 (s, 1H), 5.90 (s, 1H), 5.77-5.75 (m, 1H), 3.14-3.04 (m, 2H), 2.53 (s, 

3H), 2.38-2.31 (m, 3H), 2.23 (s, 3H), 1.55-1.43 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H). 

13C NMR (125 MHz, CDCl3) δ 172.7, 151.9, 144.0, 132.1, 121.7, 118.7, 111.2, 38.7, 38.1, 34.6, 25.9, 

14.6, 13.8, 10.8. 

IR (film): ν (cm1) 2925, 2221, 1721, 1643, 1583, 1380, 1341, 1271, 1017, 959, 806, 745, 686, 578. 

HRMS (ESI, m/z) calcd for C14H19N3ONa [M+Na]+: 268.1420, found: 268.1417. 

 

(R)-1-(3,5-Dimethyl-1H-pyrazol-1-yl)-3-(phenylsulfonyl)pentan-1-one (21j) 

Enantiomeric excess of 21j was established by HPLC analysis using a Daicel Chiralpak OD-H column, 

ee = 87% (HPLC: 254 nm, n-hexane/isopropanol = 95:5, flow rate 1.0 mL/min, 40 C, tr (major) = 

12.6 min, tr (minor) = 11.8 min). []D
22 = 4.2 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.94-7.90 (m, 2H), 7.65-7.61 (m, 1H), 7.56-7.50 (m, 2H), 5.94 (s, 1H), 

3.85-3.79 (m, 1H), 3.77 (dd, J = 17.6, 6.3 Hz, 1H), 3.28 (dd, J = 17.6, 5.8 Hz, 1H), 2.43 (s, 3H), 2.22 

(s, 3H), 2.11-2.01 (m, 1H), 1.72-1.62 (m, 1H), 1.02 (t, J = 7.4 Hz, 3H). 

13C NMR (125 MHz, CDCl3) δ 170.2, 152.4, 144.2, 137.6, 133.7, 129.1, 129.0, 111.5, 61.6, 33.7, 21.8, 

14.3, 13.8, 11.2.  

IR (film): ν (cm1) 2969, 2931, 1720, 1586, 1447, 1409, 1379, 1298, 1262, 1141, 1081, 959, 629, 693, 

595, 563. 

HRMS (ESI, m/z) calcd for C16H20N2O3SNa [M+Na]+: 343.1087, found: 343.1079. 
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15) Figure 48a, reaction of 18c 

According to the general procedure, the reaction of (E)-1-(3,5-dimethyl-1H-pyrazol-1-yl) 

hex-2-en-1-one 18c (38.5 mg, 0.20 mmol), 2-((phenylsulfonyl)methyl)acrylonitrile 19a (20.8 mg, 0.10 

mmol), Δ-RhO (6.6 mg, 8.0 mol%), diethyl 2,6-diethyl-1,4-dihydropyridine-3,5-dicarboxylate (42.2 

mg, 1.5 equiv) in 1,4-dioxane (1.0 mL, 0.1 M) under nitrogen atmosphere with visible light for 40 

hours at 35 oC, afforded 20.3 mg (78%) of 20g as a colorless oil, and afforded 26.7 mg (80%) of 21k 

as a yellow oil.  

 

(S)-6-(3,5-Dimethyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-methyleneheptanenitrile (20g) 

Enantiomeric excess of 20g was established by HPLC analysis using a Daicel Chiralpak OD-H 

column, ee = 77% (HPLC: OD-H, 254 nm, n-hexane/isopropanol = 99:1, flow rate 1.0 mL/min, 40 C, 

tr (major) = 6.2 min, tr (minor) = 5.5 min). []D
22 = +11.8 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 5.95 (s, 1H), 5.89 (s, 1H), 5.74 (s, 1H), 3.16-3.00 (m, 2H), 2.53 (s, 3H), 

2.46-2.30 (m, 3H), 2.23 (s, 3H), 1.49-1.35 (m, 4H), 0.91 (t, J = 7.2 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 172.7, 151.9, 144.0, 132.0, 121.8, 118.7, 111.2, 39.1, 38.6, 35.6, 33.0, 

19.7, 14.5, 14.1, 13.8. 

IR (film): ν (cm1) 2961, 2930, 2222, 1721, 1620, 1585, 1548, 1440, 1409, 1380, 1337, 1239, 1173, 

1108, 958, 867, 805, 742, 648, 578, 412. 

HRMS (ESI, m/z) calcd for C15H21N3ONa [M+Na]+: 282.1577, found: 282.1579. 

 

(R)-1-(3,5-Dimethyl-1H-pyrazol-1-yl)-3-(phenylsulfonyl)hexan-1-one (21k) 

Enantiomeric excess of 21k was established by HPLC analysis using a Daicel Chiralpak AD-H 

column, ee = 78% (HPLC: 254 nm, n-hexane/isopropanol = 95:5, flow rate 1.0 mL/min, 40 C, tr 

(major) = 13.0 min, tr (minor) = 16.3 min). []D
22 = 7.0 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.96-7.88 (m, 2H), 7.68-7.44 (m, 3H), 5.94 (s, 1H), 3.96-3.84 (m, 1H), 

3.76 (dd, J = 17.6, 6.4 Hz, 1H), 3.24 (dd, J = 17.6, 5.8 Hz, 1H), 2.41 (s, 3H), 2.21 (s, 3H), 2.08-1.90 
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(m, 1H), 1.67-1.29 (m, 3H), 0.89 (t, J = 7.4 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 170.2, 152.4, 144.1, 137.6, 133.6, 129.1, 129.0, 111.4, 60.2, 34.4, 30.5, 

19.9, 14.2, 13.8. 13.7.  

IR (film): ν (cm1) 2963, 2931, 2874, 1723, 1586, 1445, 1381, 1303, 1176, 1141, 1082, 1030, 999, 961, 

933, 808, 730, 691, 591, 563, 410. 

HRMS (ESI, m/z) calcd for C17H22N2O3SNa [M+Na]+: 357.1243, found: 357.1247. 

 

16) Figure 48a, reaction of 18d 

According to the general procedure, the reaction of (E)-1-(3,5-dimethyl-1H-pyrazol-1-yl) 

hepta-2,6-dien-1-one 18d (40.9 mg, 0.20 mmol), 2-((phenylsulfonyl)methyl)acrylonitrile 19a (20.8 mg, 

0.10 mmol), Δ-RhO (6.6 mg, 8.0 mol%), diethyl 2,6-diethyl-1,4-dihydropyridine-3,5- dicarboxylate 

(42.2 mg, 1.5 equiv) in 1,4-dioxane (1.0 mL, 0.1 M) under nitrogen atmosphere with visible light for 

40 hours at 35 oC, afforded 16.5 mg (61%) of 20h as a colorless oil, and afforded 21.5 mg (62%) of 

21l as a yellow oil.  

 

(S)-4-(2-(3,5-Dimethyl-1H-pyrazol-1-yl)-2-oxoethyl)-2-methyleneoct-7-enenitrile (20h) 

Enantiomeric excess of 20h was established by HPLC analysis using a Daicel Chiralpak OD-H 

column, ee = 79% (HPLC: 254 nm, n-hexane/isopropanol = 99:1, flow rate 1.0 mL/min, 40 C, tr 

(major) = 6.9 min, tr (minor) = 5.7 min). []D
22 = +6.0 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 5.95 (s, 1H), 5.90 (s, 1H), 5.87-5.71 (m, 2H), 5.07-4.93 (m, 2H), 

3.08-3.02 (m, 2H), 2.53 (s, 3H), 2.48-2.32 (m, 3H), 2.23 (s, 3H), 2.18-2.08 (m, 2H), 1.58-1.48 (m, 

2H). 

13C NMR (75 MHz, CDCl3) δ 172.5, 152.0, 144.0, 137.9, 132.1, 121.6, 118.6, 115.1, 111.2, 39.0, 38.4, 

32.8, 32.6, 30.7, 14.5, 13.8. 

IR (film): ν (cm1) 2925, 2223, 1722, 1640, 1584, 1409, 1380, 1338, 1245, 1171, 1032, 959, 915, 806, 

745, 644, 562, 410. 

HRMS (ESI, m/z) calcd for C16H21N3ONa [M+Na]+: 294.1577, found: 294.1580. 
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(R)-1-(3,5-Dimethyl-1H-pyrazol-1-yl)-3-(phenylsulfonyl)hept-6-en-1-one (21l) 

Enantiomeric excess of 21l was established by HPLC analysis using a Daicel Chiralpak AD-H column, 

ee = 83% (HPLC: 254 nm, n-hexane/isopropanol = 95:5, flow rate 1.0 mL/min, 40 C, tr (major) = 

14.1 min, tr (minor) = 17.2 min). []D
22 = 1.2 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.95-7.89 (m, 2H), 7.66-7.48 (m, 3H), 5.94 (s, 1H), 5.78-5.62 (m, 1H), 

5.03-4.93 (m, 2H), 3.98-3.86 (m, 1H), 3.78 (dd, J = 17.6, 6.4 Hz, 1H), 3.28 (dd, J = 17.6, 5.8 Hz, 1H), 

2.41 (s, 3H), 2.22 (s, 3H), 2.26-2.04 (m, 3H), 1.76-1.64 (m, 1H). 

13C NMR (75 MHz, CDCl3) δ 170.0, 152.4, 144.1, 137.6, 136.5, 133.7, 129.1, 129.0, 116.1, 111.4, 

59.7, 34.4, 30.5, 27.7, 14.2, 13.7.  

IR (film): ν (cm1) 2928, 1722, 1585, 1479, 1444, 1381, 1311, 1177, 1142, 1083, 1029, 916, 808, 732, 

691, 588, 562, 410. 

HRMS (ESI, m/z) calcd for C18H22N2O3SNa [M+Na]+: 369.1243, found: 369.1244. 

 

17) Figure 48b, reaction of 22  

According to the general procedure, the reaction of (E)-1-(3,5-dimethyl-1H-pyrazol-1-yl) 

but-2-en-1-one 18a (32.8 mg, 0.20 mmol), (E)-1,2,3,4,5-pentafluoro-6-(2-(phenylsulfonyl)vinyl) 

benzene 22 (25.7 mg, 0.10 mmol), Δ-RhO (6.6 mg, 8.0 mol%), diethyl 2,6-diethyl-1,4- 

dihydropyridine-3,5-dicarboxylate (42.2 mg, 1.5 equiv) in 1,4-dioxane (1.0 mL, 0.1 M) under nitrogen 

atmosphere with visible light for 48 hours at room temperature, afforded 21.1 mg (54%) of 23 as a 

colorless oil, and afforded 21.1 mg (59%) of 21a as a yellow oil. Enantiomeric excess of 21a was 

determined as 81% ee. 

 

(R,E)-1-(3,5-Dimethyl-1H-pyrazol-1-yl)-3-methyl-5-(perfluorophenyl)pent-4-en-1-one (23) 

Enantiomeric excess of 23 was established by HPLC analysis using a Daicel Chiralpak IG column, ee 

= 93% (HPLC: 254 nm, n-hexane/isopropanol = 99:1, flow rate 1.0 mL/min, 25 C, tr (major) = 11.4 
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min, tr (minor) = 10.4 min). []D
22 =12.0 (c 0.5, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 6.56 (dd, J = 16.4, 7.6 Hz, 1H), 6.33 (dd, J = 16.4, 1.0 Hz, 1H), 5.96 (s, 

1H), 3.28 (dd, J = 16.4, 7.6 Hz, 1H), 3.17 (dd, J = 16.4, 6.8 Hz, 1H), 3.12-3.04 (m, 1H), 2.53 (s, 3H), 

2.24 (s, 3H), 1.23 (d, J = 6.8 Hz, 3H). 

13C NMR (125 MHz, CDCl3) δ 172.2, 152.0, 144.3 (br), 144.1, 113.4, 111.2, 41.6, 34.6, 20.0, 14.6, 

13.8. 

19F NMR (282 MHz, CDCl3) δ –143.40 - –143.60 (m, 2F), –157.51 - –157.71 (m, 1F), –163.40 - 

–163.64 (m, 2F). 

IR (film): ν (cm1) 2923, 1728, 1583, 1520, 1494, 1459, 1412, 1378, 1353, 1317, 1248, 1136, 997, 967, 

802, 746. 

HRMS (ESI, m/z) calcd for C17H15F5N2ONa [M+Na]+: 381.0997, found: 381.0987. 

 

18) Figure 49a, reduction of (S)-21a 

 

To a solution of (S)-1-(3,5-dimethyl-1H-pyrazol-1-yl)-3-(phenylsulfonyl)butan-1-one (S)-21a 

(obtained by the reactions catalyzed by Λ-RhO, 85% ee, 30.6 mg, 0.10 mmol) in THF/H2O (4/1, 1.0 

mL, 0.1 M) at 0 C was added NaBH4 (38.0 mg, 1.0 mmol). The reaction mixture was stirred at room 

temperature for 6 hours. The reaction was quenched with aqueous 2 N HCl (1.0 mL) at room 

temperature and extracted with CH2Cl2 (410 mL). The combined organic layers were dried over 

anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by 

flash chromatography on silica gel (EtOAc/n-hexane = 1:1) to afford 24 (20.9 mg, 0.098 mmol, yield: 

98%) as a white solid.  

(S)-3-(Phenylsulfonyl)butan-1-ol (24)  

Enantiomeric excess of 24 was established by HPLC analysis using a Daicel Chiralpak OD-H column, 

ee = 85% (HPLC: 254 nm, n-hexane/isopropanol = 90:10, flow rate 1.0 mL/min, 40 C, tr (major) = 

19.1 min, tr (minor) = 18.1 min). []D
22 = 15.8 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.93-7.85 (m, 2H), 7.70-7.54 (m, 3H), 3.86 (dt, J = 11.0, 5.6 Hz, 1H), 

3.69 (ddd, J = 11.0, 8.4, 5.0 Hz, 1H ), 3.41-3.28 (m, 1H), 2.31-2.17 (m, 2H), 1.69 (ddt, J = 14.1, 8.8, 
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5.2 Hz, 1H), 1.27 (d, J = 6.9 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 137.2, 133.7, 129.1, 129.0, 59.3, 57.1, 32.2, 13.7. 

IR (film): ν (cm1) 3341, 3208, 3143, 2928, 2876, 1581, 1447, 1380, 1294, 1140, 1060, 1005, 796, 766, 

731, 691, 663, 589, 547. 

HRMS (ESI, m/z) calcd for C10H14O3SNa [M+Na]+: 237.0564, found: 237.0556. 

 

19) Figure 49b, transamidation of (R)-20a 

 

To a solution of (R)-6-(3,5-dimethyl-1H-pyrazol-1-yl)-4-methyl-2-methylene-6-oxohexanenitrile 

(R)-20a (obtained by the reactions catalyzed by Λ-RhO, 96% ee, 23.1 mg, 0.10 mmol) in THF (0.1 mL, 

1 M) was added 6-ethoxybenzo[d]thiazol-2-amine (97.0 mg, 0.50 mmol). The reaction mixture was 

stirred at 80 C for 40 hours. After the start material was converted completely, the reaction mixture 

was cooled to room temperature and concentrated under reduced pressure. The residue was purified by 

flash chromatography on silica gel (EtOAc/n-hexane = 1:1) to afford 25 (29.6 mg, 90% yield) as a 

white solid.  

(R)-5-Cyano-N-(6-ethoxybenzo[d]thiazol-2-yl)-3-methylhex-5-enamide (25) 

Enantiomeric excess of 25 was established by HPLC analysis using a Daicel Chiralpak OD-H column, 

ee = 96% (HPLC: 254 nm, n-hexane/isopropanol = 85:15, flow rate 1.0 mL/min, 40 C, tr (major) = 

30.6 min, tr (minor) = 22.9 min). []D
22 = 8.0 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 11.24 (br s, 1H), 7.64 (d, J = 8.8 Hz, 1H), 7.31 (d, J = 2.5 Hz, 1H), 7.06 

(dd, J =8.8, 2.5 Hz, 1H), 5.85 (s, 1H), 5.66 (s, 1H), 4.10 (q, J = 7.0, 2H), 2.55-2.27 (m, 4H), 2.12 (dd, 

J = 13.6, 7.0, 1H), 1.45 (t, J = 7.0, 3H), 0.98 (d, J = 6.1 Hz, 3H).  

13C NMR (75 MHz, CDCl3) δ 169.9, 157.3, 156.3, 141.8, 133.2, 132.4, 121.1, 121.0, 118.4, 115.9, 

105.3, 64.2, 41.2, 41.0, 29.2, 19.0, 14.8. 

IR (film): ν (cm1) 3182, 2975, 2921, 2218, 2047, 1688, 1605, 1551, 1460, 1259, 1223, 1114, 1060, 

942, 822, 747, 666.  

HRMS (ESI, m/z) calcd for C17H19N3O2SNa [M+Na]+: 330.1271, found: 330.1264. 
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5.3.5 Single-Crystal X-Ray Diffraction Studies 

 

Single crystals of RhO-Pz suitable for X-ray diffraction were obtained by slow diffusion from a 

solution of racemic RhO-Pz (20 mg) in CH2Cl2 (2.0 mL) layered with ethyl ether (1.0 mL) at room 

temperature for several days in a NMR tube. 

Single crystals of 21d suitable for X-ray diffraction were obtained by slow diffusion from a 

solution of 21d (20 mg) in ethyl ether (0.5 mL) layered with n-hexane (0.5 mL) at 4 oC for several 

days in a NMR tube. 

Single crystals of compound 25 suitable for X-ray diffraction were obtained by slow diffusion 

from a solution of 25 (30 mg), in CH2Cl2 (0.5 mL) layered with n-hexane (0.5 mL) at room 

temperature for several days in a NMR tube. 

X-ray data were collected with a Bruker 3 circuit D8 Quest diffractometer with MoKα radiation 

(microfocus tube with multilayer optics) and Photon 100 CMOS detector at 100 K. Scaling and 

absorption correction was performed by using the SADABS software package of Bruker. Structures 

were solved using direct methods in SHELXT and refined using the full matrix least squares procedure 

in SHELXL-2014. The hydrogen atoms were placed in calculated positions and refined as riding on 

their respective C atom, and Uiso(H) was set at 1.2 Ueq(Csp2) and 1.5 Ueq(Csp3). Disorder was 

refined using restraints for both the geometry and the anisotropic displacement factors.  

The absolute configuration of 21d and 25 have been determined (Figure 123). See Figure 52 for 

structure of RhO-Pz. 

 

Figure 123.  Crystal structures of compounds 21d and 25. 
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Table 24. Crystal data and structure refinement for RhO-Pz. 

 
  Crystal data  
 
CCDC number 1547314 
Identification code  hxqE104_0m 
Habitus, color  nugget, pale yellow 
Crystal size 0.34 x 0.25 x 0.23 mm3 
Crystal system  Triclinic 
Space group  P-1 Z = 2 
Unit cell dimensions a = 11.9931(5) Å α = 89.480(1)°. 
 b = 13.7713(6) Å β = 67.088(1)°. 
 c = 14.7325(6) Å γ = 79.592(1)°. 
Volume 2199.33(16) Å3 
3Cell determination  9783 peaks with Theta 2.6 to 27.5°. 
Empirical formula  C44 H46 Cl2 F6 N4 O3 P Rh 
Moiety formula  C43 H44 N4 O3 Rh, F6 P, C H2 Cl2 
Formula weight  997.63 
Density (calculated) 1.506 Mg/m3 
Absorption coefficient 0.616 mm-1 
F(000) 1020 
 
Data collection:  
 
Diffractometer type  Bruker D8 QUEST area detector 
Wavelength  0.71073 Å 
Temperature  100(2) K 
Theta range for data collection 2.248 to 27.564°. 
Index ranges -15<=h<=15, -17<=k<=17, -19<=l<=18 
Data collection software  APEX3 (Bruker AXS Inc., 2015)  
Cell refinement software  SAINT V8.35A (Bruker AXS Inc., 2015)  
Data reduction software  SAINT V8.35A (Bruker AXS Inc., 2015) 
 
Solution and refinement: 
Reflections collected 82467 
Independent reflections 10124 [R(int) = 0.0338] 
Completeness to theta = 25.242° 99.9 %  
Observed reflections  9422[I > 2(I)]  
Reflections used for refinement  10124 
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.87 and 0.82 
Largest diff. peak and hole 0.438 and -0.606 e.Å-3 
Solution  Direct methods 
Refinement  Full-matrix least-squares on F2 
Treatment of hydrogen atoms  Calculated positions, constr. ref. 
Programs used  XT V2014/1 (Bruker AXS Inc., 2014) 
 SHELXL-2014/7 (Sheldrick, 2014)  
 DIAMOND (Crystal Impact)  
 ShelXle (Hübschle, Sheldrick, Dittrich, 2011)  
Data / restraints / parameters 10124 / 144 / 590 
Goodness-of-fit on F2 1.038 
R index (all data) wR2 = 0.0560 
R index conventional [I>2sigma(I)] R1 = 0.0223 
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Table 25. Crystal data and structure refinement for 21d. 
 
  Crystal data  
 
CCDC number 1547315 
Identification code  hxq119b_0m 
Habitus, color  block, colorless 
Crystal size 0.31 x 0.13 x 0.08 mm3 
Crystal system  Tetragonal 
Space group  P43212 Z = 8 
Unit cell dimensions a = 7.1300(2) Å α = 90°. 
 b = 7.1300(2) Å β = 90°. 
 c = 66.238(2) Å γ = 90°. 
Volume 3367.3(2) Å3 
Cell determination  9348 peaks with Theta 2.5 to 25.2°. 
Empirical formula  C16 H17 F3 N2 O3 S 
Moiety formula  C16 H17 F3 N2 O3 S 
Formula weight  374.37 
Density (calculated) 1.477 Mg/m3 
Absorption coefficient 0.242 mm-1 
F(000) 1552 
 
Data collection:  
 
Diffractometer type  Bruker D8 QUEST area detector 
Wavelength  0.71073 Å 
Temperature  110(2) K 
Theta range for data collection 2.460 to 25.262°. 
Index ranges -8<=h<=8, -8<=k<=8, -79<=l<=79 
Data collection software  APEX3 (Bruker AXS Inc., 2015)  
Cell refinement software  SAINT V8.37A (Bruker AXS Inc., 2015)  
Data reduction software  SAINT V8.37A (Bruker AXS Inc., 2015) 
 
Solution and refinement: 
 
Reflections collected 35175 
Independent reflections 3048 [R(int) = 0.0499] 
Completeness to theta = 25.242° 99.9 %  
Observed reflections  2921[I > 2σ(I)]  
Reflections used for refinement  3048 
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.98 and 0.84 
Flack parameter (absolute struct.)   0.00(3) 
Largest diff. peak and hole 0.308 and -0.260 e.Å-3 
Solution  “Dual space” 
Refinement  Full-matrix least-squares on F2 
Treatment of hydrogen atoms  Calculated positions, constr. ref. 
Programs used  XT V2014/1 (Bruker AXS Inc., 2014)  
 SHELXL-2014/7 (Sheldrick, 2014)  
 DIAMOND (Crystal Impact)  
 ShelXle (Hübschle, Sheldrick, Dittrich, 2011)  
Data / restraints / parameters 3048 / 0 / 229 
Goodness-of-fit on F2 1.224 
R index (all data) wR2 = 0.1020 
R index conventional  [I>2sigma(I)] R1 = 0.0479 
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Table 26. Crystal data and structure refinement for 25. 
 
  Crystal data  
 
CCDC number 1547316 
Identification code  lsp182_0m 
Habitus, color  plate, colorless 
Crystal size 0.45 x 0.40 x 0.04 mm3 
Crystal system  Monoclinic 
Space group  P21 Z = 8 
Unit cell dimensions a = 15.7976(9) Å α = 90°. 
 b = 12.9960(8) Å β = 112.625(2)°. 
 c = 17.9469(11) Å γ = 90°. 
Volume 3401.0(4) Å3 
Cell determination  9782 peaks with Theta 2.7 to 26.4°. 
Empirical formula  C17 H19 N3 O2 S 
Moiety formula  C17 H19 N3 O2 S 
Formula weight  329.41 
Density (calculated) 1.287 Mg/m3 
Absorption coefficient 0.203 mm-1 
F(000) 1392 
 
Data collection:  
 
Diffractometer type  Bruker D8 QUEST area detector 
Wavelength  0.71073 Å 
Temperature  100(2) K 
Theta range for data collection 2.144 to 26.420°. 
Index ranges -19<=h<=19, -16<=k<=16, -22<=l<=19 
Data collection software  APEX3 (Bruker AXS Inc., 2015)  
Cell refinement software  SAINT V8.37A (Bruker AXS Inc., 2015)  
Data reduction software  SAINT V8.37A (Bruker AXS Inc., 2015) 
 
Solution and refinement: 
 
Reflections collected 40409 
Independent reflections 13945 [R(int) = 0.0372] 
Completeness to theta = 25.242° 99.9 %  
Observed reflections  12300[I > 2σ(I)]  
Reflections used for refinement  13945 
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.99 and 0.91 
Flack parameter (absolute struct.)   0.01(2)  
Largest diff. peak and hole 0.241 and -0.264 e.Å-3 
Solution  Direct methods 
Refinement  Full-matrix least-squares on F2 
Treatment of hydrogen atoms  CH calculated positions, constr. ref., NH located, 
isotr. ref. 
Programs used  XT V2014/1 (Bruker AXS Inc., 2014)  
 SHELXL-2014/7 (Sheldrick, 2014)  
 DIAMOND (Crystal Impact 
 ShelXle (Hübschle, Sheldrick, Dittrich, 2011)  
Data / restraints / parameters 13945 / 1 / 853 
Goodness-of-fit on F2 1.037 
R index (all data) wR2 = 0.0759 
R index conventional [I>2sigma(I)] R1 = 0.0353 
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5.4 Asymmetric [2+2] Photocycloaddition 

 

5.4.1 General Procedure 

 

 

Exemplary, a dried 10 mL Schlenk tube was charged with α,β-unsaturated 2-acyl imidazole 26a 

(27.4 mg, 0.10 mmol) and Δ-RhS (1.7 mg, 2 mol%). The tube was purged with nitrogen. Then, 

acetone (0.5 mL, 0.2 M) was added via syringe, followed by diene 27a (24.6 mg, 3.0 equiv) under 

nitrogen atmosphere with stirring. The reaction mixture was degassed via freeze-pump-thaw for three 

cycles. After the mixture was thoroughly degassed, the vial was sealed and positioned in a water bath 

approximately 5 cm from a 24 W blue LEDs lamp. The temperature of the water bath was kept at 

24~27 oC during the reaction. After stirring for the indicated time (monitored by TLC) under nitrogen 

atmosphere, the mixture was diluted with CH2Cl2. The combined organic layers were concentrated 

under reduced pressure. The crude residue was subjected to 1H NMR to determine the d.r. value. Then, 

the mixture was purified by flash chromatography on silica gel (n-hexane/EtOAc) to afford the 

product 28a. The enantiomeric excess was determined by chiral HPLC analysis. Racemic samples 

were obtained by carrying out the reactions with rac-RhS.  

Note: the model reaction 26a + 27a → 28a under open air conditions (assembled in air, sealed 

tube) without degassing works as well as the degassed reaction. 

 

5.4.2 Synthesis of Substrates 

 

α,β-Unsaturated 2-acyl imidazoles and N-acyl pyrazoles 26 were synthesized according to the 

recently published procedures.8a α-Methyl styrenes were synthesized following a published 

procedure.11a 3-Vinylestrone was synthesized following the reported procedure.11b The data of new 

substrates are shown below. 
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(E)-1-(1-Phenyl-1H-imidazol-2-yl)-3-(4-(trifluoromethyl)phenyl)prop-2-en-1-one (26c)  

A yellow solid. 

1H NMR (300 MHz, CDCl3) δ 8.14 (d, J = 16.2 Hz, 1H), 7.73 (d, J = 15.9 Hz, 1H), 7.77-7.72 (m, 2H), 

7.64 (d, J = 8.4 Hz, 2H), 7.52-7.47 (m, 3H), 7.39-7.31 (m, 3H), 7.27-7.25 (m, 1H). 

13C NMR (125 MHz, CDCl3) δ 178.7, 143.8, 141.7, 138.4, 138.2, 131.8 (q, J = 32.5 Hz), 130.0, 129.0, 

128.9, 128.8, 127.6, 125.9, 125.8 (q, J = 3.6 Hz), 124.9, 123.8 (q, J = 270.6 Hz). 

IR (film): ν (cm1) 3067, 2927, 1665, 1606, 1494, 1447, 1405, 1314, 1158, 1114, 1066, 1037, 975, 916, 

885, 834, 797, 753, 692, 645, 592, 501. 

HRMS (ESI, m/z) calcd for C19H13F3N2ONa [M+Na]+: 365.0872, found: 365.0871. 

 

 

(E)-3-(4-Bromophenyl)-1-(1-phenyl-1H-imidazol-2-yl)prop-2-en-1-one (26e)  

A yellow solid. 

1H NMR (300 MHz, CDCl3) δ 8.06 (d, J = 15.9 Hz, 1H), 7.66 (d, J = 15.9 Hz, 1H), 7.54-7.51 (m, 4H), 

7.50-7.45 (m, 3H), 7.37-7.31 (m, 3H), 7.24 (d, J = 0.9 Hz, 1H). 

13C NMR (75 MHz, CDCl3) δ 178.9, 144.0, 142.3, 138.5, 133.8, 132.1, 130.1, 129.9, 129.0, 128.8, 

127.4, 125.9, 124.8, 123.3. 

IR (film): ν (cm1) 3107, 1659, 1603, 1486, 1444, 1396, 1307, 1151, 1040; 1005, 975, 911, 810, 771, 

755, 690, 645, 524, 489. 

HRMS (ESI, m/z) calcd for C18H13BrN2ONa [M+Na]+: 375.0103, found: 375.0102. 

 

 

(E)-3-(3-Bromophenyl)-1-(1-phenyl-1H-imidazol-2-yl)prop-2-en-1-one (26f)  
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A yellow solid. 

1H NMR (300 MHz, CDCl3) δ 8.06 (d, J = 15.9 Hz, 1H), 7.82 (t, J = 1.8 Hz, 1H), 7.64 (d, J = 15.9 Hz, 

1H), 7.57-7.47 (m, 5H), 7.38-7.31 (m, 3H), 7.29-7.22 (m, 2H). 

13C NMR (75 MHz, CDCl3) δ 178.7, 143.9, 141.9, 138.5, 137.0, 133.2, 131.1, 130.3, 130.0, 129.0, 

128.8, 127.5, 127.4, 125.9, 124.0, 123.0. 

IR (film): ν (cm1) 3108, 3064, 1659, 1599, 1556, 1494, 1445, 1387, 1303, 1194, 1150, 1073, 1040, 

976, 887, 857, 787, 754, 668, 642, 575, 517, 428. 

HRMS (ESI, m/z) calcd for C18H13BrN2ONa [M+Na]+: 375.0103, found: 375.0103. 

 

 

(E)-3-(Furan-3-yl)-1-(1-phenyl-1H-imidazol-2-yl)prop-2-en-1-one (26i)  

A yellow solid. 

1H NMR (300 MHz, CDCl3) δ 7.76 (d, J = 15.9 Hz, 1H), 7.69-7.61 (m, 2H), 7.50-7.42 (m, 4H), 

7.34-7.30 (m, 3H), 7.22 (d, J = 0.9 Hz, 1H), 6.76 (d, J = 1.8 Hz, 1H). 

13C NMR (75 MHz, CDCl3) δ 179.1, 145.6, 144.4, 144.0, 138.6, 133.8, 129.7, 128.9, 128.7, 127.2, 

125.9, 123.4, 122.6, 107.8. 

IR (film): ν (cm1) 3107, 3022, 1658, 1591, 1550, 1491, 1442, 1404, 1306, 1213, 1151, 1045, 1003,  

975, 858, 816, 758, 727, 697, 665, 617, 591, 566, 520, 446. 

HRMS (ESI, m/z) calcd for C16H13N2O2 [M+H]+: 265.0972, found: 265.0970. 

 

 

(E)-1-(3,5-Dimethyl-1H-pyrazol-1-yl)-3-(furan-2-yl)prop-2-en-1-one (26l)  

A white solid. 

1H NMR (300 MHz, CDCl3) δ 7.78 (d, J = 15.6 Hz, 1H), 7.63 (d, J = 15.6 Hz, 1H), 7.52 (d, J = 1.5 Hz, 

1H), 6.72 (d, J = 3.6 Hz, 1H), 6.49 (d, J1 = 3.3 Hz, J2 = 1.8 Hz, 1H), 6.00 (s, 1H), 2.61 (m, 3H), 2.28 (s, 

3H). 

13C NMR (75 MHz, CDCl3) δ 165.5, 151.8, 151.7, 145.0, 144.2, 132.0, 115.7, 115.6, 112.4, 111.3, 
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14.6, 13.8. 

IR (film): ν (cm1) 3123, 2977, 2919, 1692, 1617, 1580, 1551, 1473, 1373, 1342, 1298, 1253, 1234, 

1183, 1007, 960, 879, 861, 833, 748, 690, 590, 463. 

HRMS (ESI, m/z) calcd for C12H12N2O2Na [M+Na]+: 239.0791, found: 239.0790. 

 

 

(E)-1-(3,5-Dimethyl-1H-pyrazol-1-yl)-3-(4-methoxyphenyl)prop-2-en-1-one (26n)  

A white solid. 

1H NMR (300 MHz, CDCl3) δ 7.88 (d, J = 15.6 Hz, 1H), 7.79 (d, J = 15.9 Hz, 1H), 7.67-7.60 (m, 2H), 

6.96-6.90 (m, 2H), 6.00 (s, 1H), 3.85 (s, 3H), 2.63-2.61 (m, 3H), 2.29 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 165.8, 161.7, 151.7, 146.0, 144.3, 130.5, 127.7, 115.3, 114.3, 111.2, 

55.4, 14.7, 13.8. 

IR (film): ν (cm1) 3094, 3051, 2997, 2964, 2930, 1684, 1598, 1571, 1508, 1463, 1418, 1347, 1313, 

1284, 1228, 1171, 1113, 1013, 959, 813, 763, 723, 550, 514, 445, 410. 

HRMS (ESI, m/z) calcd for C15H16N2O2Na [M+Na]+: 279.1104, found: 279.1103. 

 

 

(E)-1-(3,5-Dimethyl-1H-pyrazol-1-yl)-3-(4-chlorophenyl)prop-2-en-1-one (26o)  

A white solid. 

1H NMR (300 MHz, CDCl3) δ 7.92 (d, J = 15.9 Hz, 1H), 7.82 (d, J = 16.2 Hz, 1H), 7.63-7.57 (m, 2H), 

7.41-7.34 (m, 2H), 6.02 (s, 1H), 2.63-2.61 (m, 3H), 2.29 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 165.2, 152.0, 144.5, 144.4, 136.4, 133.3, 129.8, 129.1, 118.6, 111.5, 

14.6, 13.8. 

IR (film): ν (cm1) 2978, 2923, 1695, 1616, 1579, 1483, 1404, 1370, 1349, 1231, 1170, 1090, 1004, 

973, 803, 749, 621, 494, 403. 

HRMS (ESI, m/z) calcd for C14H13ClN2ONa [M+Na]+: 283.0609, found: 283.0608. 
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(E)-1-(3,5-Dimethyl-1H-pyrazol-1-yl)-3-phenylbut-2-en-1-one (26p)  

A white solid. 

1H NMR (300 MHz, CDCl3) δ 7.61-7.56 (m, 2H), 7.55 (q, J = 1.3 Hz, 1H), 7.44-7.37 (m, 3H), 5.98 (s, 

1H), 2.67 (d, J = 1.5 Hz, 3H), 2.63-2.61 (m, 3H), 2.25 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 165.6, 157.8, 151.2, 144.2, 142.7, 129.2, 128.5, 126.7, 117.3, 111.0, 

18.6, 14.7, 13.8. 

IR (film): ν (cm1) 3115, 2926, 1691, 1603, 1573, 1442, 1410, 1377, 1350, 1313, 1277, 1224, 1022, 

952, 876, 851, 827, 753, 740, 688, 579, 519, 493. 

HRMS (ESI, m/z) calcd for C15H16N2ONa [M+Na]+: 263.1155, found: 263.1154. 

 

 

Substrate (Z)-26p was synthesized from (E)-26p according to literature with some modifications.11c 

The mixture of ,-unsaturated N-acyl pyrazole (E)-26p (48.0 mg, 0.2 mmol) and 

Ir(ppy)2(dtbbpy)(PF6) (3.7 mg, 2.0 mol%) in acetone (2.0 mL) was stirred under N2 atmosphere with 

the irradiation of 24 W blue LEDs. After 20 h, the reaction mixture was concentrated in vacuo and 

purification by flash column chromatography yielded 37.1 mg (Z)-26p (77% yield). 

(Z)-1-(3,5-Dimethyl-1H-pyrazol-1-yl)-3-phenylbut-2-en-1-one ((Z)-26p)  

A white solid. 

1H NMR (300 MHz, CDCl3) δ 7.40-7.31 (m, 3H), 7.29-7.24 (m, 2H), 7.17 (q, J = 1.5 Hz, 1H), 5.94 (s, 

1H), 2.45-2.43 (m, 3H), 2.30 (d, J = 1.5 Hz, 3H), 2.28 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 164.5, 157.8, 151.4, 144.3, 141.1, 128.1, 128.0, 126.8, 118.0, 111.8, 

27.9, 14.5, 13.8. 

IR (film): ν (cm1) 3056, 2976, 2927, 1708, 1626, 1577, 1484, 1437, 1408, 1376, 1319, 1251, 1205, 

1174, 1141, 1082, 1053, 1027, 963, 913, 836, 763, 697, 624, 579, 533, 488, 427. 

HRMS (ESI, m/z) calcd for C15H16N2ONa [M+Na]+: 263.1155, found: 263.1154. 
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(E)-3-(3,5-Bis(trifluoromethyl)phenyl)-1-(3,5-dimethyl-1H-pyrazol-1-yl)but-2-en-1-one (26q)  

A white solid. 

1H NMR (300 MHz, CDCl3) δ 7.96 (s, 2H), 7.89 (s, 1H), 7.54 (q, J = 1.2 Hz, 1H), 6.01 (s, 1H), 2.67 (d, 

J = 1.2 Hz, 3H), 2.63-2.61 (m, 3H), 2.26 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 164.8, 153.3, 152.0, 144.7, 144.4, 132.0 (q, J = 33.3 Hz), 126.7 (q, J = 

3.0 Hz), 123.2 (q, J = 271.2 Hz), 122.7-122.4 (m), 120.3, 111.5, 18.6, 14.7, 13.8. 

IR (film): ν (cm1) 3158, 2979, 2927, 1697, 1612, 1578, 1447, 1365, 1320, 1278, 1226, 1171, 1118, 

1021, 959, 902, 876, 846, 817, 760, 722, 687, 590, 523, 397. 

HRMS (ESI, m/z) calcd for C17H14F6N2ONa [M+Na]+: 399.0903, found: 399.0901. 

 

5.4.3 Experimental and Characterization Data of Novel Products 

 

 

((1S,2S,3R)-3-Methyl-2-phenyl-3-(prop-1-en-2-yl)cyclobutyl)(1-phenyl-1H-imidazol-2-yl) 

methanone (28a)  

According to the general procedure, the reaction of (E)-3-phenyl-1-(1-phenyl-1H-imidazol-2-yl) 

prop-2-en-1-one 26a (27.4 mg, 0.10 mmol), 2,3-dimethylbuta-1,3-diene 27a (24.6 mg, 3.0 equiv) and 

Δ-RhS (1.7 mg, 2 mol%) in acetone (0.5 mL, 0.2 M) under nitrogen atmosphere with blue LEDs for 

16 hours, afforded 34.6 mg (97%, combined yield) of 28a as a colorless oil; []D
22 = +128.6 (c 1.0, 

CH2Cl2); d.r. value was determined through 1H NMR of crude materials as 14:1; enantiomeric excess 

of the major diastereoisomer was established by HPLC analysis using a Chiralpak AD-H column, ee = 

99% (HPLC: AD-H, 254 nm, n-hexane/isopropanol = 99:1, flow rate 1 mL/min, 25 C, tr (major) = 

14.1 min, tr (minor) = 9.6 min). 

1H NMR (500 MHz, CDCl3) δ 7.48-7.45 (m, 3H), 7.34 (s, 1H), 7.33-7.26 (m, 6H), 7.22-7.17 (m, 2H), 

4.89-4.79 (m, 3H), 4.07 (d, J = 10.0 Hz, 1H), 2.28 (t, J = 10.0 Hz, 1H), 2.22 (t, J = 10.0 Hz, 1H), 1.76 
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(s, 3H), 1.12 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 191.4, 152.5, 142.7, 139.9, 138.4, 129.8, 128.9, 128.7, 128.2, 127.9, 

127.4, 126.1, 125.9, 108.8, 47.6, 44.9, 40.0, 36.0, 21.3, 18.9. 

IR (film): ν (cm1) 3071, 2963, 2864, 1676, 1596, 1495, 1445, 1403, 1306, 1225, 1149, 1101, 1057, 

945, 892, 835, 759, 694, 538. 

HRMS (ESI, m/z) calcd for C24H25N2O [M+H]+: 357.1961, found: 357.1959. 

 

 

((1S,2S,3R)-2-(4-Methoxyphenyl)-3-methyl-3-(prop-1-en-2-yl)cyclobutyl)(1-phenyl-1H-imidazol-

2-yl)methanone (28b)  

According to the general procedure, the reaction of (E)-3-(4-methoxyphenyl)-1-(1-phenyl-1H- 

imidazol-2-yl)prop-2-en-1-one 26b (30.4 mg, 0.10 mmol), 2,3-dimethylbuta-1,3-diene 27a (24.6 mg, 

3.0 equiv) and Δ-RhS (1.7 mg, 2 mol%) in acetone (0.5 mL, 0.2 M) under nitrogen atmosphere with 

blue LEDs for 15 hours, afforded 35.3 mg (91%, combined yield) of 28b as a colorless oil; []D
22 = 

+181.4 (c 1.0, CH2Cl2); d.r. value was determined through 1H NMR of crude materials as 12:1; 

enantiomeric excess of the major diastereoisomer was established by HPLC analysis using a Chiralpak 

AD-H column, ee >99% (HPLC: AD-H, 254 nm, n-hexane/isopropanol = 98:2, flow rate 1 mL/min, 

25 C, tr (major) = 23.8 min, tr (minor) = 14.7 min).  

1H NMR (500 MHz, CDCl3) δ 7.46-7.41 (m, 3H), 7.30 (d, J = 1.0 Hz, 1H), 7.26-7.23 (m, 2H), 

7.23-7.20 (m, 2H), 7.18 (d, J = 1.5 Hz, 1H), 6.83-6.79 (m, 2H), 4.82-4.74 (m, 3H), 3.94 (d, J = 10.5 

Hz, 1H), 3.77 (s, 3H), 2.24 (t, J = 10.0 Hz, 1H), 2.16 (t, J = 10.0 Hz, 1H), 1.71-1.70 (m, 3H), 1.09 (s, 

3H). 

13C NMR (125 MHz, CDCl3) δ 191.5, 158.0, 152.7, 142.7, 138.4, 131.9, 129.8, 129.3, 128.9, 128.7, 

127.4, 125.9, 113.3, 108.5, 55.2, 47.4, 44.9, 40.3, 35.7, 21.3, 18.9. 

IR (film): ν (cm1) 3075, 2962, 2935, 2836, 1677, 1639, 1606, 1507, 1445, 1404, 1304, 1246, 1178, 

1150, 1074, 1036, 941, 906, 890, 836, 762, 731, 690, 653, 597, 539. 

HRMS (ESI, m/z) calcd for C25H27N2O2 [M+H]+: 387.2067, found: 387.2060. 
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((1S,2S,3R)-3-Methyl-3-(prop-1-en-2-yl)-2-(4-(trifluoromethyl)phenyl)cyclobutyl)(1-phenyl-1H-i

midazol-2-yl)methanone (28c)  

According to the general procedure, the reaction of (E)-1-(1-phenyl-1H-imidazol-2-yl)-3- 

(4-(trifluoromethyl)phenyl)prop-2-en-1-one 26c (34.2 mg, 0.10 mmol), 2,3-dimethylbuta-1,3-diene 

27a (82.1 mg, 10.0 equiv) and Δ-RhS (3.5 mg, 4 mol%) in acetone (0.5 mL, 0.2 M) under nitrogen 

atmosphere with blue LEDs for 24 hours, afforded 33.3 mg (78%, combined yield) of 28c as a 

colorless oil; []D
22 = +107.4 (c 1.0, CH2Cl2); d.r. value was determined through 1H NMR of crude 

materials as 12:1; enantiomeric excess of the major diastereoisomer was established by HPLC analysis 

using a Chiralpak AD-H column, ee = 91% (HPLC: AD-H, 254 nm, n-hexane/isopropanol = 95:5, 

flow rate 1 mL/min, 25 C, tr (major) = 7.9 min, tr (minor) = 5.4 min). 

1H NMR (500 MHz, CDCl3) δ 7.55-7.50 (m, 2H), 7.49-7.43 (m, 3H), 7.42-7.37 (m, 2H), 7.33 (s, 1H), 

7.30-7.24 (m, 2H), 7.22 (s, 1H), 4.86-4.79 (m, 3H), 4.09 (d, J = 10.0 Hz, 1H), 2.29 (t, J = 10.0 Hz, 1H), 

2.22 (t, J = 10.0 Hz, 1H), 1.74 (s, 3H), 1.10 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 191.0, 151.9, 144.07, 144.06, 142.5, 138.2, 129.9, 129.5, 129.0, 128.8, 

128.5, 128.4, 128.3, 128.2, 127.6, 125.9, 125.3, 124.93, 124.90, 124.87, 124.8, 109.1, 47.3, 45.0, 40.0, 

36.0, 21.3, 18.9. (Mixture of two diastereoisomers) 

IR (film): ν (cm1) 2967, 2938, 2866, 1679, 1619, 1497, 1446, 1405, 1322, 1229, 1161, 1117, 1067, 

1015, 942, 891, 839, 761, 690, 658, 597, 536. 

HRMS (ESI, m/z) calcd for C25H24F3N2O [M+H]+: 425.1835, found: 425.1835. 

 

 

((1S,2S,3R)-2-(4-Fluorophenyl)-3-methyl-3-(prop-1-en-2-yl)cyclobutyl)(1-phenyl-1H-imidazol-2-

yl)methanone (28d)  
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According to the general procedure, the reaction of (E)-3-(4-fluorophenyl)-1-(1-phenyl-1H- 

imidazol-2-yl)prop-2-en-1-one 26d (29.2 mg, 0.10 mmol), 2,3-dimethylbuta-1,3-diene 27a (24.6 mg, 

3.0 equiv) and Δ-RhS (1.7 mg, 2 mol%) in acetone (0.5 mL, 0.2 M) under nitrogen atmosphere with 

blue LEDs for 14 hours, afforded 34.5 mg (92%, combined yield) of 28d as a colorless oil; []D
22 = 

+131.2 (c 1.0, CH2Cl2); d.r. value was determined through 1H NMR of crude materials as 14:1; 

enantiomeric excess of the major diastereoisomer was established by HPLC analysis using a Chiralpak 

AD-H column, ee = 99% (HPLC: AD-H, 254 nm, n-hexane/isopropanol = 99:1, flow rate 1 mL/min, 

25 C, tr (major) = 17.4 min, tr (minor) = 9.4 min). 

1H NMR (500 MHz, CDCl3) δ 7.49-7.45 (m, 3H), 7.34-7.32 (m, 1H), 7.30-7.24 (m, 4H), 7.22-7.20 (m, 

1H), 7.01-6.94 (m, 2H), 4.86-4.76 (m, 3H), 4.01 (d, J = 10.0 Hz, 1H), 2.28 (t, J = 10.0 Hz, 1H), 2.21 (t, 

J = 10.0 Hz, 1H), 1.74 (s, 3H), 1.11 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 191.3, 161.5 (d, J = 242.6 Hz), 152.3, 142.7, 138.4, 135.6 (d, J = 2.6 

Hz), 129.9, 129.6 (d, J = 7.5 Hz), 129.0, 128.8, 127.5, 125.9, 114.7 (d, J = 20.9 Hz), 108.8, 47.1, 44.8, 

40.4, 35.9, 21.2, 18.9. 

IR (film): ν (cm1) 3077, 2965, 2936, 2867, 1677, 1599, 1503, 1445, 1403, 1307, 1225, 1154, 1072, 

1050, 890, 837, 760, 730, 690, 564, 537, 500. 

HRMS (ESI, m/z) calcd for C24H23FN2ONa [M+Na]+: 397.1687, found: 397.1685. 

 

 

((1S,2S,3R)-2-(4-Bromophenyl)-3-methyl-3-(prop-1-en-2-yl)cyclobutyl)(1-phenyl-1H-imidazol-2-

yl)methanone (28e)  

According to the general procedure, the reaction of (E)-3-(4-bromophenyl)-1-(1-phenyl-1H- 

imidazol-2-yl)prop-2-en-1-one 26e (35.3 mg, 0.10 mmol), 2,3-dimethylbuta-1,3-diene 27a (24.6 mg, 

3.0 equiv) and Δ-RhS (1.7 mg, 2 mol%) in acetone (0.5 mL, 0.2 M) under nitrogen atmosphere with 

blue LEDs for 15 hours, afforded 37.1 mg (85%, combined yield) of 28e as a white solid; []D
22 = 

+185.8 (c 1.0, CH2Cl2); d.r. value was determined through 1H NMR of crude materials as 10:1; 

enantiomeric excess of the major diastereoisomer was established by HPLC analysis using a Chiralpak 
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AD-H column, ee = 98% (HPLC: AD-H, 254 nm, n-hexane/isopropanol = 99:1, flow rate 1 mL/min, 

25 C, tr (major) = 23.9 min, tr (minor) = 11.3 min).  

1H NMR (500 MHz, CDCl3) δ 7.47-7.43 (m, 3H), 7.41-7.37 (m, 2H), 7.31 (m, 1H), 7.28-7.22 (m, 2H), 

7.20 (s, 1H), 7.18-7.13 (m, 2H), 4.81 (s, 1H), 4.79-4.72 (m, 2H), 3.96 (d, J = 10.0 Hz, 1H), 2.26 (t, J = 

10.0 Hz, 1H), 2.18 (t, J = 10.0 Hz, 1H), 1.72 (s, 3H), 1.08 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 191.1, 152.1, 142.5, 138.9, 138.3, 131.0, 129.94, 129.86 129.0, 128.8, 

127.6, 125.9, 120.1 108.9, 47.2, 44.8, 40.1, 35.8, 21.2, 18.9. 

IR (film): ν (cm1) 3079, 2965, 2936, 2867, 1677, 1639, 1492, 1444, 1403, 1338, 1306, 1226, 1149, 

1071, 1005, 904, 833, 761, 729, 692, 656, 537, 488. 

HRMS (ESI, m/z) calcd for C24H23BrN2ONa [M+Na]+: 457.0886, found: 457.0884. 

 

 

((1S,2S,3R)-2-(3-Bromophenyl)-3-methyl-3-(prop-1-en-2-yl)cyclobutyl)(1-phenyl-1H-imidazol-2-

yl)methanone (28f)  

According to the general procedure, the reaction of (E)-3-(3-bromophenyl)-1-(1-phenyl-1H- 

imidazol-2-yl)prop-2-en-1-one 26f (35.3 mg, 0.10 mmol), 2,3-dimethylbuta-1,3-diene 27a (82.1 mg, 

10.0 equiv) and Δ-RhS (3.5 mg, 4 mol%) in acetone (0.5 mL, 0.2 M) under nitrogen atmosphere with 

blue LEDs for 22 hours, afforded 36.6 mg (84%, combined yield) of 28f as a colorless oil; []D
22 = 

+127.2 (c 1.0, CH2Cl2); d.r. value was determined through 1H NMR of crude materials as 12:1; 

enantiomeric excess of the major diastereoisomer was established by HPLC analysis using a Chiralpak 

AD-H column, ee = 98% (HPLC: AD-H, 254 nm, n-hexane/isopropanol = 99:1, flow rate 1 mL/min, 

25 C, tr (major) = 11.2 min, tr (minor) = 9.5 min). 

1H NMR (500 MHz, CDCl3) δ 7.47-7.42 (m, 4H), 7.34-7.24 (m, 4H), 7.23-7.19 (m, 2H), 7.13 (t, J = 

7.8 Hz, 1H), 4.84 (s, 1H), 4.80 (s, 1H), 4.75 (q, J = 9.5 Hz, 1H), 4.01 (d, J = 9.5 Hz, 1H), 2.25 (t, J = 

8.2 Hz, 1H), 2.22 (t, J = 8.0 Hz, 1H), 1.73 (s, 3H), 1.11 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 191.0, 152.0, 142.42, 142.40, 138.2, 131.1, 129.9, 129.5 129.3, 128.9, 

128.8, 127.5, 126.8, 125.9, 122.2, 109.0, 46.9, 45.0, 40.2, 36.1, 21.3, 18.9. 

IR (film): ν (cm1) 3077, 2965, 2936, 2864, 1677, 1639, 1594, 1563, 1496, 1444, 1403, 1338, 1307, 
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1226, 1150, 1102, 1070, 996, 947, 890, 844, 813, 761, 692, 661, 536, 497, 438. 

HRMS (ESI, m/z) calcd for C24H23BrN2ONa [M+Na]+: 457.0886, found: 457.0883. 

 

 

((1S,2R,3R)-2-(2-Bromophenyl)-3-methyl-3-(prop-1-en-2-yl)cyclobutyl)(1-phenyl-1H-imidazol-2-

yl)methanone (28g)  

According to the general procedure, the reaction of (E)-3-(2-bromophenyl)-1-(1-phenyl-1H- 

imidazol-2-yl)prop-2-en-1-one 26g (35.3 mg, 0.10 mmol), 2,3-dimethylbuta-1,3-diene 27a (24.6 mg, 

3.0 equiv) and Δ-RhS (1.7 mg, 2 mol%) in acetone (0.5 mL, 0.2 M) under nitrogen atmosphere with 

blue LEDs for 14 hours, afforded 40.1 mg (92%, combined yield) of 28g as a colorless oil; []D
22 = 

+119.0 (c 1.0, CH2Cl2); d.r. value was determined through 1H NMR of crude materials as 6:1; 

enantiomeric excess of the major diastereoisomer was established by HPLC analysis using a Chiralpak 

AD-H column, ee = 98% (HPLC: AD-H, 254 nm, n-hexane/isopropanol = 99:1, flow rate 1 mL/min, 

25 C, tr (major) = 20.7 min, tr (minor) = 10.9 min). 

1H NMR (500 MHz, CDCl3) δ 7.62 (d, J = 7.8 Hz, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.46-7.43 (m, 3H), 

7.30 (t, J = 7.8 Hz, 1H), 7.27-7.23 (m, 3H), 7.15 (s, 1H), 7.04 (t, J = 7.5 Hz, 1H), 4.88 (q, J = 9.5 Hz, 

1H), 4.77 (s, 1H), 4.76 (s, 1H), 4.36 (d, J = 10.0 Hz, 1H), 2.52 (t, J = 10.0 Hz, 1H), 2.05 (t, J = 9.8 Hz, 

1H), 1.84 (s, 3H), 1.18 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 190.7, 151.3, 142.7, 138.6, 138.3, 133.0, 130.3, 129.7, 129.0, 128.7, 

127.9, 127.4, 126.8, 125.9, 125.3, 109.7, 47.9, 45.3, 40.9, 33.9, 21.4, 19.8. 

IR (film): ν (cm1) 3064, 2965, 2868, 1678, 1637, 1595, 1496, 1443, 1403, 1339, 1309, 1226, 1150, 

1074, 1050, 1023, 951, 890, 836, 756, 731, 691, 659, 540, 450. 

HRMS (ESI, m/z) calcd for C24H23BrN2ONa [M+Na]+: 457.0886, found: 457.0885. 

 

 

((1S,2R,3R)-2-(Furan-2-yl)-3-methyl-3-(prop-1-en-2-yl)cyclobutyl)(1-phenyl-1H-imidazol-2-yl)m
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ethanone (28h)  

According to the general procedure, the reaction of (E)-3-(furan-2-yl)-1-(1-phenyl-1H- 

imidazol-2-yl)prop-2-en-1-one 26h (26.4 mg, 0.10 mmol), 2,3-dimethylbuta-1,3-diene 27a (24.6 mg, 

3.0 equiv) and Δ-RhS (1.7 mg, 2 mol%) in acetone (0.5 mL, 0.2 M) under nitrogen atmosphere with 

blue LEDs for 16 hours, afforded 31.7 mg (92%, combined yield) of 28h as a colorless oil; []D
22 = 

+117.8 (c 1.0, CH2Cl2); d.r. value was determined through 1H NMR of crude materials as 16:1; 

enantiomeric excess of the major diastereoisomer was established by HPLC analysis using a Chiralpak 

AD-H column, ee = 99% (HPLC: AD-H, 254 nm, n-hexane/isopropanol = 98:2, flow rate 1 mL/min, 

25 C, tr (major) = 11.2 min, tr (minor) = 8.2 min).  

1H NMR (500 MHz, CDCl3) δ 7.47-7.42 (m, 3H), 7.32 (dd, J1 = 2.0 Hz, J2 = 1.0 Hz, 1H), 7.30 (d, J = 

1.0 Hz, 1H), 7.29-7.24 (m, 2H), 7.29 (d, J = 1.0 Hz, 1H), 6.28 (dd, J1 = 3.5 Hz, J2 = 2.0 Hz, 1H), 6.22 

(dt, J1 = 3.0 Hz, J2 =1.0 Hz, 1H), 4.83-4.81 (m, 1H), 4.74-4.72 (m, 1H), 4.69 (q, J = 9.5 Hz, 1H), 3.88 

(d, J = 10.0 Hz, 1H), 2.26-2.18 (m, 2H), 1.71-1.69 (m, 3H), 1.16 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 190.7, 154.7, 152.7, 142.5, 141.4, 138.3, 129.9, 128.9, 128.7, 127.3, 

126.0, 109.9, 108.3, 106.9, 45.3, 41.9, 39.8, 35.7, 22.0, 18.0. 

IR (film): ν (cm1) 3112, 3077, 2965, 2937, 2866, 1678, 1642, 1594, 1497, 1444, 1404, 1339, 1306, 

1227, 1148, 1065, 1011, 955, 890, 827, 761, 732, 692, 657, 597, 536. 

HRMS (ESI, m/z) calcd for C22H22N2O2Na [M+Na]+: 369.1573, found: 369.1572. 

 

 

((1S,2R,3R)-2-(Furan-3-yl)-3-methyl-3-(prop-1-en-2-yl)cyclobutyl)(1-phenyl-1H-imidazol-2-yl)m

ethanone (28i)  

According to the general procedure, the reaction of (E)-3-(furan-3-yl)-1-(1-phenyl-1H- 

imidazol-2-yl)prop-2-en-1-one 26i (26.4 mg, 0.10 mmol), 2,3-dimethylbuta-1,3-diene 27a (82.1 mg, 

10.0 equiv) and Δ-RhS (3.5 mg, 4 mol%) in acetone (0.5 mL, 0.2 M) under nitrogen atmosphere with 

blue LEDs for 20 hours, afforded 24.9 mg (72%, combined yield) of 28i as a colorless oil; []D
22 = 

+89.6 (c 1.0, CH2Cl2); d.r. value was determined through 1H NMR of crude materials as 9:1; 

enantiomeric excess of the major diastereoisomer was established by HPLC analysis using a Chiralpak 
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AD-H column, ee = 99% (HPLC: AD-H, 254 nm, n-hexane/isopropanol = 99:1, flow rate 1 mL/min, 

25 C, tr (major) = 18.1 min, tr (minor) = 11.5 min). 

1H NMR (500 MHz, CDCl3) δ 7.49-7.45 (m, 3H), 7.44 (d, J = 1.0 Hz, 1H), 7.35 (t, J = 1.8 Hz, 1H), 

7.32 (s, 1H), 7.30-7.26 (m, 2H), 7.21 (s, 1H), 6.36-6.34 (s, 1H), 4.75-4.73 (m, 2H), 4.57 (q, J = 9.5 Hz, 

1H), 3.73 (d, J = 10.0 Hz, 1H), 2.27 (t, J = 10.0 Hz, 1H), 2.17 (t, J = 9.8 Hz, 1H), 1.70 (s, 3H), 1.18 (s, 

3H). 

13C NMR (125 MHz, CDCl3) δ 191.3, 152.9, 142.7, 142.5, 140.3, 138.3, 129.8, 128.9, 128.7, 127.4, 

126.0, 124.1, 111.1, 108.0, 44.3, 41.0, 40.3, 35.7, 21.9, 18.3. 

IR (film): ν (cm1) 3113, 3077, 2963, 2934, 2864, 1677, 1641, 1595, 1496, 1444, 1403, 1338, 1307, 

1226, 1154, 1063, 1029, 996, 896, 880, 826, 762, 730, 692, 657, 599, 537. 

HRMS (ESI, m/z) calcd for C22H22N2O2Na [M+Na]+: 369.1573, found: 369.1572. 

 

 

((1S,2R,3R)-3-Methyl-3-(prop-1-en-2-yl)-2-((E)-styryl)cyclobutyl)(1-phenyl-1H-imidazol-2-yl)me

thanone (28j)  

According to the general procedure, the reaction of 5-phenyl-1-(1-phenyl-1H-imidazol-2-yl) 

penta-2,4-dien-1-one 26j (30.0 mg, 0.10 mmol, E/Z mixture), 2,3-dimethylbuta-1,3-diene 27a (82.1 

mg, 10.0 equiv) and Δ-RhS (3.5 mg, 4 mol%) in acetone (0.5 mL, 0.2 M) under nitrogen atmosphere 

with blue LEDs for 15 hours, afforded 33.2 mg (84%, combined yield) of 28j; d.r. value was 

determined through 1H NMR of crude materials as 6:1. The separable major diastereoisomer was 

obtained as a colorless oil; []D
22 = +190.0 (c 1.0, CH2Cl2); enantiomeric excess was established by 

HPLC analysis using a Chiralpak AD-H column, ee = 96% (HPLC: AD-H, 254 nm, 

n-hexane/isopropanol = 99:1, flow rate 1 mL/min, 25 C, tr (major) = 17.1 min, tr (minor) = 13.9 min). 

1H NMR (500 MHz, CDCl3) δ 7.47-7.43 (m, 3H), 7.37-7.33 (m, 2H), 7.30-7.25 (m, 5H), 7.21-7.16 (m, 

2H), 6.48 (d, J = 16.0 Hz, 1H), 6.35 (dd, J1 = 16.0 Hz, J2 =8.0 Hz, 1H), 4.68-4.66 (m, 2H), 4.47 (q, J = 

9.5 Hz, 1H), 3.37 (t, J = 8.8 Hz, 1H), 2.24 (t, J = 10.3 Hz, 1H), 2.11 (dd, J1 = 10.5 Hz, J2 = 9.0 Hz, 

1H), 1.66 (s, 3H), 1.31 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 191.3, 153.2, 142.7, 138.4, 137.4, 131.5, 129.7, 129.1, 128.9, 128.7, 
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128.4, 127.3, 127.1, 126.2, 125.9, 107.7, 47.7, 44.7, 41.2, 35.2, 21.7, 18.2. 

IR (film): ν (cm1) 3074, 3026, 2962, 2933, 2863, 1677, 1642, 1597, 1496, 1445, 1403, 1307, 1226, 

1149, 1051, 963, 887, 846, 807, 754, 690, 661, 536, 489. 

HRMS (ESI, m/z) calcd for C26H26N2ONa [M+Na]+: 405.1937, found: 405.1935. 

 

 

((1S,2S,3R)-3-Methyl-2-phenyl-3-(prop-1-en-2-yl)cyclobutyl)(pyridin-2-yl)methanone (28k)  

According to the general procedure, the reaction of (E)-3-phenyl-1-(pyridin-2-yl)prop-2-en-1-one 26k 

(20.9 mg, 0.10 mmol), 2,3-dimethylbuta-1,3-diene 27a (24.6 mg, 3.0 equiv) and Δ-RhS (1.7 mg, 2 

mol%) in acetone/MeCN (0.5 mL, 1:1 v/v, 0.2 M) under nitrogen atmosphere with blue LEDs for 12 

hours, afforded 21.0 mg (72%, combined yield) of 28k as a white solid; []D
22 = +50.2 (c 1.0, 

CH2Cl2); d.r. value was determined through 1H NMR of crude materials as 8:1; enantiomeric excess of 

the major diastereoisomer was established by HPLC analysis using a Chiralpak AD-H column, ee = 

95% (HPLC: AD-H, 254 nm, n-hexane/isopropanol = 99:1, flow rate 1 mL/min, 25 C, tr (major) = 

11.7 min, tr (minor) = 15.3 min).  

1H NMR (500 MHz, CDCl3) δ 8.70-8.67 (m, 1H), 8.05 (d, J = 8.0 Hz, 1H), 7.81 (td, J1 = 8.0 Hz, J2 = 

4.0 Hz, 1H), 7.45 (ddd, J1 = 7.5 Hz, J2 = 5.0 Hz, J3 = 1.0 Hz, 1H), 7.30-7.24 (m, 4H), 7.20-7.15 (m, 

1H), 4.95-4.87 (m, 2H), 4.48-4.82 (m, 1H), 4.14 (d, J = 10.0 Hz, 1H), 2.27 (t, J = 10.0 Hz, 1H), 2.21 (t, 

J = 10.0 Hz, 1H), 1.78 (s, 3H), 1.14 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 202.0, 153.0, 152.6, 149.0, 140.1, 136.8, 128.2, 127.9, 127.1, 126.1, 

122.3, 108.8, 47.8, 45.1, 38.7, 36.1, 21.5, 19.0. 

IR (film): ν (cm1) 3057, 3027, 2958, 2866, 1681, 1640, 1578, 1434, 1374, 1333, 1272, 1232, 1203, 

1060, 996, 963, 884, 853, 794, 741, 696, 637, 624, 570, 405. 

HRMS (ESI, m/z) calcd for C20H22NO [M+H]+: 292.1696, found: 292.1695. 
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(3,5-Dimethyl-1H-pyrazol-1-yl)((1S,2R,3R)-2-(furan-2-yl)-3-methyl-3-(prop-1-en-2-yl)cyclobutyl)

methanone (28l)  

According to the general procedure, the reaction of (E)-1-(3,5-dimethyl-1H-pyrazol-1-yl)-3- 

(furan-2-yl)prop-2-en-1-one 26l (21.6 mg, 0.10 mmol), 2,3-dimethylbuta-1,3-diene 27a (82.1 mg, 10.0 

equiv) and Δ-RhS (3.5 mg, 4 mol%) in acetone (0.5 mL, 0.2 M) under nitrogen atmosphere with blue 

LEDs for 18 hours, afforded 23.9 mg (80%, combined yield) of 28l as a colorless oil; []D
22 = +39.6 

(c 1.0, CH2Cl2); d.r. value was determined through 1H NMR of crude materials as 11:1; enantiomeric 

excess of the major diastereoisomer was established by HPLC analysis using a Chiralpak OD-H 

column, ee = 92% (HPLC: OD-H, 254 nm, n-hexane/isopropanol = 99.5:0.5, flow rate 0.6 mL/min, 

25 C, tr (major) = 9.5 min, tr (minor) = 11.3 min). 

1H NMR (500 MHz, CDCl3) δ 7.34 (dd, J1 = 2.0 Hz, J2 = 1.0 Hz, 1H), 6.29 (dd, J1 = 3.0 Hz, J2 = 2.0 

Hz, 1H), 6.21 (d, J = 3.0 Hz 1H), 5.94-5.93 (m, 1H), 4.87-4.86 (m, 1H), 4.78-4.77 (m, 1H), 4.54 (q, J 

= 9.7 Hz, 1H), 3.96 (d, J = 10.0 Hz, 1H), 2.52-2.51 (m, 3H), 2.31 (t, J = 10.5 Hz, 1H), 2.26-2.19 (m, 

1H), 2.23 (s, 3H), 1.74 (s, 3H), 1.16 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 174.3, 154.5, 152.7, 152.0, 144.1, 141.4, 111.2, 110.0, 108.3, 107.0, 

45.6, 42.7, 36.8, 35.8, 22.0, 18.1, 14.4, 13.8. 

IR (film): ν (cm1) 3116, 3081, 2966, 2931, 2868, 1719, 1583, 1442, 1376, 1332, 1309, 1250, 1145, 

1013, 987, 960, 891, 833, 804, 775, 731, 594, 552. 

HRMS (ESI, m/z) calcd for C18H22N2O2Na [M+Na]+: 321.1573, found: 321.1572. 

 

 

(3,5-Dimethyl-1H-pyrazol-1-yl)((1S,2S,3R)-3-methyl-2-phenyl-3-(prop-1-en-2-yl)cyclobutyl)meth

anone (28m)  

According to the general procedure, the reaction of (E)-1-(3,5-dimethyl-1H-pyrazol-1-yl) 

-3-phenylprop-2-en-1-one 26m (22.6 mg, 0.10 mmol), 2,3-dimethylbuta-1,3-diene 27a (24.6 mg, 3.0 
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equiv) and Δ-RhS (1.7 mg, 2 mol%) in acetone (0.5 mL, 0.2 M) under nitrogen atmosphere with blue 

LEDs for 15 hours, afforded 28.8 mg (93%, combined yield) of 28m as a colorless oil; []D
22 = +25.2 

(c 1.0, CH2Cl2); d.r. value was determined through 1H NMR of crude materials as 10:1; enantiomeric 

excess of the major diastereoisomer was established by HPLC analysis using a Chiralcel OJ-H column, 

ee = 96% (HPLC: OJ-H, 254 nm, n-hexane/isopropanol = 99:1, flow rate 1 mL/min, 25 C, tr (major) 

= 6.8 min, tr (minor) = 12.8 min). 

1H NMR (500 MHz, CDCl3) δ 7.34-7.28 (m, 4H), 7.27-7.20 (m, 1H), 5.98-5.97 (m, 1H), 4.94-4.92 (m, 

1H), 4.88-4.85 (m, 1H), 4.70 (q, J = 9.5 Hz, 1H), 4.16 (d, J = 10.0 Hz, 1H), 2.55-2.54 (m, 3H), 2.37 (t, 

J = 10.0 Hz, 1H), 2.27 (s, 3H), 2.27-2.22 (m, 1H), 1.81-1.80 (m, 3H), 1.13 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 174.9, 152.5, 152.0, 144.0, 139.6, 128.2, 127.9, 126.2, 111.2, 108.8, 

48.2, 45.3, 36.8, 36.0, 21.3, 19.0, 14.5, 13.8. 

IR (film): ν (cm1) 3083, 3029, 2965, 2931, 2867, 1719, 1581, 1487, 1444, 1381, 1338, 1313, 1249, 

1169, 1025, 958, 890, 842, 804, 770, 734, 697, 629, 556. 

HRMS (ESI, m/z) calcd for C20H24N2ONa [M+Na]+: 331.1781, found: 331.1780. 

 

 

(3,5-Dimethyl-1H-pyrazol-1-yl)((1S,2S,3R)-2-(4-methoxyphenyl)-3-methyl-3-(prop-1-en-2-yl)cycl

obutyl)methanone (28n)  

According to the general procedure, the reaction of (E)-1-(3,5-dimethyl-1H-pyrazol-1-yl)- 

3-(4-methoxyphenyl)prop-2-en-1-one 26n (25.6 mg, 0.10 mmol), 2,3-dimethylbuta-1,3-diene 27a 

(24.6 mg, 3.0 equiv) and Δ-RhS (1.7 mg, 2 mol%) in acetone (0.5 mL, 0.2 M) under nitrogen 

atmosphere with blue LEDs for 12 hours, afforded 29.8 mg (88%, combined yield) of 28n as a 

colorless oil; []D
22 = +48.4 (c 1.0, CH2Cl2); d.r. value was determined through 1H NMR of crude 

materials as 11:1; enantiomeric excess of the major diastereoisomer was established by HPLC analysis 

using a Chiralpak OD-H column, ee = 94% (HPLC: OD-H, 254 nm, n-hexane/isopropanol = 99:1, 

flow rate 1 mL/min, 25 C, tr (major) = 5.7 min, tr (minor) = 6.7 min). 

1H NMR (500 MHz, CDCl3) δ 7.25-7.21 (m, 2H), 6.85-6.81 (m, 2H), 5.94 (s, 1H), 4.87 (s, 1H), 
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4.82-4.80 (m, 1H), 4.62 (q, J = 9.5 Hz, 1H), 4.03 (d, J = 10.0 Hz, 1H), 3.78 (s, 3H), 2.51 (s, 3H), 2.33 

(t, J = 10.0 Hz, 1H), 2.24 (s, 3H), 2.20 (t, J = 10.0 Hz, 1H), 1.76 (s, 3H), 1.10 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 175.0, 158.1, 152.7, 151.9, 144.0, 131.7, 129.3, 113.3, 111.2, 108.6, 

55.2, 47.9, 45.3, 37.1, 35.8, 21.3, 18.9, 14.5, 13.8. 

IR (film): ν (cm1) 3081, 2962, 2933, 2836, 1719, 1611, 1581, 1512, 1443, 1381, 1337, 1310, 1246, 

1176, 1033, 958, 889, 836, 806, 769, 737, 592, 556. 

HRMS (ESI, m/z) calcd for C21H26N2O2Na [M+Na]+: 361.1886, found: 361.1885. 

 

 

((1S,2S,3R)-2-(4-Chlorophenyl)-3-methyl-3-(prop-1-en-2-yl)cyclobutyl)(3,5-dimethyl-1H-pyrazol

-1-yl)methanone (28o)  

According to the general procedure, the reaction of (E)-1-(3,5-dimethyl-1H-pyrazol-1-yl)- 

3-(4-chlorophenyl)prop-2-en-1-one 26o (26.1 mg, 0.10 mmol), 2,3-dimethylbuta-1,3-diene 27a (24.6 

mg, 3.0 equiv) and Δ-RhS (1.7 mg, 2 mol%) in acetone (0.5 mL, 0.2 M) under nitrogen atmosphere 

with blue LEDs for 12 hours, afforded 32.0 mg (94%, combined yield) of 28o as a white solid; []D
22 

= +30.2 (c 1.0, CH2Cl2); d.r. value was determined through 1H NMR of crude materials as 9:1; 

enantiomeric excess of the major diastereoisomer was established by HPLC analysis using a Chiralpak 

OD-H column, ee = 93% (HPLC: OD-H, 254 nm, n-hexane/isopropanol = 99.5:0.5, flow rate 0.6 

mL/min, 25 C, tr (major) = 9.8 min, tr (minor) = 12.1 min). 

1H NMR (500 MHz, CDCl3) δ 7.28-7.20 (m, 4H), 5.96-5.95 (m, 1H), 4.88-4.87 (m, 1H), 4.85-4.83 (m, 

1H), 4.62 (q, J = 9.7 Hz, 1H), 4.07 (d, J = 10.0 Hz, 1H), 2.53-2.52 (m, 3H), 2.36 (t, J = 10.0 Hz, 1H), 

2.24 (s, 3H), 2.24-2.18 (m, 1H), 1.78-1.77 (m, 3H), 1.09 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 174.7, 152.2, 152.1, 144.1, 138.1, 132.1, 129.6, 128.1, 111.3, 109.0, 

47.9, 45.2, 37.0, 35.8, 21.2, 18.9, 14.4, 13.8. 

IR (film): ν (cm1) 3083, 2965, 2930, 2869, 1718, 1582, 1489, 1443, 1379, 1334, 1250, 1171, 1091, 

1014, 959, 890, 836, 802, 766, 733, 661, 554, 497. 

HRMS (ESI, m/z) calcd for C20H23ClN2ONa [M+Na]+: 365.1391, found: 365.1390. 
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(3,5-Dimethyl-1H-pyrazol-1-yl)((1S,2S,3S)-2,3-dimethyl-2-phenyl-3-(prop-1-en-2-yl)cyclobutyl)

methanone (28p)  

According to the general procedure, the reaction of (E)-1-(3,5-dimethyl-1H-pyrazol-1-yl)-3- 

phenylbut-2-en-1-one 26p (24.0 mg, 0.10 mmol), 2,3-dimethylbuta-1,3-diene 27a (82.1 mg, 10.0 

equiv) and Δ-RhS (3.5 mg, 4 mol%) in acetone (0.5 mL, 0.2 M) under nitrogen atmosphere with blue 

LEDs for 19 hours, afforded 30.4 mg (95%, combined yield) of 28p as a colorless oil; []D
22 = 

+117.6 (c 1.0, CH2Cl2); d.r. value was determined through 1H NMR of crude materials as >20:1; 

enantiomeric excess of the major diastereoisomer was established by HPLC analysis using a Chiralpak 

AD-H column, ee = 99% (HPLC: AD-H, 254 nm, n-hexane/isopropanol = 99:1, flow rate 0.6 mL/min, 

25 C, tr (major) = 8.3 min, tr (minor) = 14.8 min). 

1H NMR (500 MHz, CDCl3) δ 7.69 (d, J = 8.0 Hz, 2H), 7.31 (t, J = 7.8 Hz, 2H), 7.20 (t, J = 7.3 Hz 

1H), 5.89 (s, 1H), 5.10 (dd, J1 = 10.5 Hz, J2 = 8.5 Hz, 1H), 4.97 (s, 1H), 4.91 (s, 1H), 2.95 (t, J = 10.5 

Hz, 1H), 2.50 (s, 3H), 2.13 (s, 3H), 1.79 (dd, J1 = 10.5 Hz, J2 = 8.5 Hz, 1H), 1.78 (s, 3H), 1.36 (s, 3H), 

0.99 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 173.7, 151.2, 149.1, 144.2, 143.5, 127.9, 127.3, 125.8, 111.7, 111.1, 

53.7, 48.2, 38.9, 29.8, 24.7, 20.9, 20.4, 14.4, 13.5. 

IR (film): ν (cm1) 3085, 3059, 2968, 2929, 2875, 1715, 1635, 1581, 1445, 1408, 1375, 1352, 1314, 

1248, 1143, 1078, 1029, 960, 890, 829, 804, 772, 696, 576, 416. 

HRMS (ESI, m/z) calcd for C21H26N2ONa [M+Na]+: 345.1937, found: 345.1935. 

 

 

((1S,2S,3S)-2-(3,5-Bis(trifluoromethyl)phenyl)-2,3-dimethyl-3-(prop-1-en-2-yl)cyclobutyl)(3,5-di

methyl-1H-pyrazol-1-yl)methanone (28q)  

According to the general procedure, the reaction of (E)-3-(3,5-bis(trifluoromethyl)phenyl)-1- 

(3,5-dimethyl-1H-pyrazol-1-yl)but-2-en-1-one 26q (37.6 mg, 0.10 mmol), 2,3-dimethylbuta-1,3- diene 
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27a (82.1 mg, 10.0 equiv) and Δ-RhS (3.5 mg, 4 mol%) in acetone (0.5 mL, 0.2 M) under nitrogen 

atmosphere with blue LEDs for 22 hours, afforded 42.3 mg (92%, combined yield) of 28q as a 

colorless oil; []D
22 = +73.0 (c 1.0, CH2Cl2); d.r. value was determined through 1H NMR of crude 

materials as >20:1; enantiomeric excess of the major diastereoisomer was established by HPLC 

analysis using a Chiralpak OD-H column, ee = 98% (HPLC: OD-H, 254 nm, n-hexane/isopropanol = 

99.5:0.5, flow rate 0.6 mL/min, 25 C, tr (major) = 11.0 min, tr (minor) = 12.9 min). 

1H NMR (500 MHz, CDCl3) δ 8.22 (s, 2H), 7.73 (s, 1H), 5.92 (s, 1H), 5.09 (dd, J1 = 10.0 Hz, J2 = 8.5 

Hz, 1H), 5.04 (s, 1H), 4.93 (s, 1H), 3.03 (t, J = 10.8 Hz, 1H), 2.52 (s, 3H), 2.08 (s, 3H), 1.78 (dd, J1 = 

11.0 Hz, J2 = 8.0 Hz, 1H), 1.76 (s, 3H), 1.38 (s, 3H), 0.96 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 172.6, 152.2, 147.9, 147.1, 143.9, 130.6 (q, J = 32.7 Hz), 128.3-128.1 

(m), 123.7 (q, J = 271.0 Hz), 120.0-119.8 (m), 112.8, 111.6, 53.4, 48.1, 38.9, 29.2, 24.9, 20.8, 20.2, 

14.4, 13.2. 

IR (film): ν (cm1) 3088, 2970, 2935, 2879, 1718, 1583, 1450, 1411, 1377, 1315, 1273, 1174, 1128, 

1013, 960, 938, 895, 851, 806, 759, 704, 682, 412. 

HRMS (ESI, m/z) calcd for C23H25F6N2O [M+H]+: 459.1866, found: 459.1863. 

 

 

(3,5-Dimethyl-1H-pyrazol-1-yl)((1S,2S,3S)-2-methyl-2,3-diphenylcyclobutyl)methanone (28s)  

According to the general procedure, the reaction of (E)-1-(3,5-dimethyl-1H-pyrazol-1-yl)- 

3-phenylbut-2-en-1-one 26p (24.0 mg, 0.10 mmol), styrene (104.2 mg, 10.0 equiv) and Δ-RhS (3.5 

mg, 4 mol%) in acetone (0.5 mL, 0.2 M) under nitrogen atmosphere with blue LEDs for 16 hours, 

afforded 31.9 mg (93%, combined yield) of 28s as a colorless oil; []D
22 = -61.4 (c 1.0, CH2Cl2); d.r. 

value was determined through 1H NMR of crude materials as 16:1; enantiomeric excess of the major 

diastereoisomer was established by HPLC analysis using a Chiralpak OD-H column, ee = 99% (HPLC: 

OD-H, 254 nm, n-hexane/isopropanol = 99:1, flow rate 1 mL/min, 25 C, tr (major) = 7.2 min, tr 

(minor) = 6.7 min). 

1H NMR (500 MHz, CDCl3) δ 7.52 (d, J = 7.5 Hz, 2H), 7.37-7.29 (m, 4H), 7.26-7.20 (m, 4H), 5.90 (s, 
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1H), 4.80 (dd, J1 = 10.5 Hz, J2 = 8.0 Hz, 1H), 3.94 (dd, J1 = 11.0 Hz, J2 = 8.5 Hz, 1H), 3.04 (q, J = 11.0 

Hz, 1H), 2.55 (s, 3H), 2.44 (dt, J1 = 11.0 Hz, J2 = 8.5 Hz, 1H), 1.98 (s, 3H), 1.09 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 173.1, 151.4, 148.8, 143.4, 139.6, 128.1, 128.0, 127.9, 126.5, 126.0, 

125.8, 111.0, 52.3, 47.5, 44.7, 22.7, 18.1, 14.3, 13.4. 

IR (film): ν (cm1) 3058, 3027, 2967, 2927, 1714, 1581, 1491, 1448, 1406, 1377, 1349, 1314, 1249, 

1178, 1138, 1093, 1029, 1002, 961, 921, 843, 803, 761, 695, 629, 583, 551, 479, 398. 

HRMS (ESI, m/z) calcd for C23H24N2ONa [M+Na]+: 367.1781, found: 367.1780. 

 

 

((1S,2S,3R)-3-Butoxy-2-methyl-2-phenylcyclobutyl)(3,5-dimethyl-1H-pyrazol-1-yl)methanone 

(28t)  

According to the general procedure, the reaction of (E)-1-(3,5-dimethyl-1H-pyrazol-1-yl)- 

3-phenylbut-2-en-1-one 26p (24.0 mg, 0.10 mmol), 1-(vinyloxy)butane (100.2 mg, 10.0 equiv) and 

Δ-RhS (3.5 mg, 4 mol%) in acetone (0.5 mL, 0.2 M) under nitrogen atmosphere with blue LEDs for 

12 hours, afforded 32.9 mg (97%, combined yield) of 28t; d.r. value was determined through 1H NMR 

of crude materials as 6:1. The separable major diastereoisomer was obtained as a white solid; []D
22 = 

+85.2 (c 1.0, CH2Cl2); enantiomeric excess was established by HPLC analysis using a Chiralcel OJ-H 

column, ee = 99% (HPLC: OJ-H, 254 nm, n-hexane/isopropanol = 99:1, flow rate 1 mL/min, 25 C, tr 

(major) = 4.2 min, tr (minor) = 5.2 min).  

1H NMR (500 MHz, CDCl3) δ 7.69 (d, J = 8.5 Hz, 2H), 7.34 (t, J = 7.5 Hz, 2H), 7.25-7.21 (m, 1H), 

5.92 (s, 1H), 4.78 (dd, J1 = 9.5 Hz, J2 = 5.5 Hz, 1H), 4.00 (t, J = 7.0 Hz, 1H), 3.28 (dt, J1 = 9.0 Hz, J2 = 

6.5 Hz, 1H), 3.15 (dt, J1 = 9.5 Hz, J2 = 7.0 Hz, 1H), 2.87-2.81 (m, 1H), 2.56 (s, 3H), 2.15-2.10 (m, 1H), 

2.08 (s, 3H), 1.44-1.37 (m, 2H), 1.31 (s, 3H), 1.26-1.19 (m, 2H), 0.82 (t, J = 7.3 Hz, 3H). 

13C NMR (125 MHz, CDCl3) δ 174.5, 151.6, 143.7, 143.6, 127.8, 127.5, 125.9, 111.0, 81.1, 69.1, 52.8, 

43.1, 31.7, 27.3, 25.1, 19.2, 14.5, 13.9, 13.6. 

IR (film): ν (cm1) 2957, 2924, 2869, 1706, 1581, 1488, 1452, 1412, 1376, 1350, 1310, 1240, 1180, 

1156, 1107, 1072, 1026, 963, 915, 827, 764, 704, 656, 511, 455, 416. 

HRMS (ESI, m/z) calcd for C21H28N2O2Na [M+Na]+: 363.2043, found: 363.2042. 
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(3,5-Dimethyl-1H-pyrazol-1-yl)((1S,2S,3R)-2,3-dimethyl-2-phenyl-3-((trimethylsilyl)ethynyl) 

cyclobutyl)methanone (28u)  

According to the general procedure, the reaction of (E)-1-(3,5-dimethyl-1H-pyrazol-1-yl)- 

3-phenylbut-2-en-1-one 26p (24.0 mg, 0.10 mmol), trimethyl(3-methylbut-3-en-1-yn-1-yl)silane 

(138.3 mg, 10.0 equiv) and Δ-RhS (3.5 mg, 4 mol%) in acetone (0.5 mL, 0.2 M) under nitrogen 

atmosphere with blue LEDs for 15 hours, afforded 24.8 mg (66%, combined yield) of 28u as a white 

solid; d.r. value was determined through 1H NMR of crude materials as 9:1; []D
22 = +104.8 (c 1.0, 

CH2Cl2); enantiomeric excess of the major diastereoisomer was established by HPLC analysis using a 

Chiralpak OD-H column, ee = 97% (HPLC: OD-H, 254 nm, n-hexane/isopropanol = 99:1, flow rate 

0.6 mL/min, 25 C, tr (major) = 6.0 min, tr (minor) = 10.7 min). 

1H NMR (500 MHz, CDCl3) δ 7.55-7.51 (m, 2H), 7.29-7.23 (m, 2H), 7.16 (tt, J1 = 7.0 Hz, J2 = 1.5 Hz, 

1H), 5.97-5.96 (m, 1H), 5.14 (dd, J1 = 10.5 Hz, J2 = 8.5 Hz, 1H), 2.55 (t, J = 10.5 Hz, 1H), 2.54-2.52 

(m, 3H), 2.39 (dd, J1 = 10.5 Hz, J2 = 8.5 Hz, 1H), 2.25 (s, 3H), 1.46 (s, 3H), 1.44 (s, 3H), -0.13 (s, 

9H). 

13C NMR (125 MHz, CDCl3) δ 173.1, 151.5, 147.5, 143.8, 127.3, 126.4, 125.7, 112.9, 111.3, 87.8, 

54.6, 41.7, 40.3, 34.5, 23.0, 21.1, 14.5, 13.7, -0.2. 

IR (film): ν (cm1) 3062, 2959, 2927, 2897, 2158, 1708, 1583, 1490, 1442, 1410, 1364, 1311, 1248, 

1140, 1024, 958, 836, 757, 725, 695, 646, 506, 446. 

HRMS (ESI, m/z) calcd for C23H31N2OSi [M+H]+: 379.2200, found: 379.2196. 

 

 

(3,5-Dimethyl-1H-pyrazol-1-yl)((1S,2S,3S)-2,3-dimethyl-2,3-diphenylcyclobutyl)methanone (28v) 

According to the general procedure, the reaction of (E)-1-(3,5-dimethyl-1H-pyrazol-1-yl)- 

3-phenylbut-2-en-1-one 26p (24.0 mg, 0.10 mmol), prop-1-en-2-ylbenzene (118.2 mg, 10.0 equiv) and 

Δ-RhS (3.5 mg, 4 mol%) in acetone (0.5 mL, 0.2 M) under nitrogen atmosphere with blue LEDs for 
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12 hours, afforded 33.8 mg (94%, combined yield) of 28v as a colorless oil; []D
22 = +61.2 (c 1.0, 

CH2Cl2); d.r. value was determined through 1H NMR of crude materials as >20:1; enantiomeric excess 

of the major diastereoisomer was established by HPLC analysis using a Chiralpak OD-H column, ee = 

99% (HPLC: OD-H, 254 nm, n-hexane/isopropanol = 99:1, flow rate 0.6 mL/min, 25 C, tr (major) = 

11.6 min, tr (minor) = 12.7 min). 

1H NMR (500 MHz, CDCl3) δ 7.79-7.75 (m, 2H), 7.40-7.35 (m, 6H), 7.27-7.23 (m, 2H), 5.91-5.90 (m, 

1H), 5.27 (dd, J1 = 10.0 Hz, J2 = 8.0 Hz, 1H), 3.36 (t, J = 10.5 Hz, 1H), 2.51-2.50 (m, 3H), 2.17 (s, 3H), 

1.99 (dd, J1 = 11.0 Hz, J2 = 8.0 Hz, 1H), 1.20 (s, 3H), 1.08 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 173.6, 151.3, 145.6, 144.3, 143.6, 128.1, 127.7, 127.5, 126.6, 126.02, 

125.98, 111.1, 54.3, 46.8, 39.1, 29.1, 27.4, 21.5, 14.4, 13.6. 

IR (film): ν (cm1) 3087, 3058, 3028, 2967, 2929, 2874, 1713, 1581, 1493, 1444, 1409, 1377, 1353, 

1314, 1248, 1029, 1007, 957, 909, 840, 805, 772, 731, 697, 567, 418. 

HRMS (ESI, m/z) calcd for C24H26N2ONa [M+Na]+: 381.1937, found: 381.1937. 

 

 

(3,5-Dimethyl-1H-pyrazol-1-yl)((1S,2S,3R)-2,3-dimethyl-2-phenyl-3-(thiophen-2-yl)cyclobutyl) 

methanone (28w)  

According to the general procedure, the reaction of (E)-1-(3,5-dimethyl-1H-pyrazol-1-yl)- 

3-phenylbut-2-en-1-one 26p (24.0 mg, 0.10 mmol), 2-(prop-1-en-2-yl)thiophene (138.2 mg, 10.0 

equiv) and Δ-RhS (3.5 mg, 4 mol%) in acetone (0.5 mL, 0.2 M) under nitrogen atmosphere with blue 

LEDs for 20 hours, afforded 36.1 mg (99%, combined yield) of 28w as a colorless oil; []D
22 = +90.6 

(c 1.0, CH2Cl2); d.r. value was determined through 1H NMR of crude materials as 17:1; enantiomeric 

excess of the major diastereoisomer was established by HPLC analysis using a Chiralpak OD-H 

column, ee = 99% (HPLC: OD-H, 254 nm, n-hexane/isopropanol = 99:1, flow rate 0.6 mL/min, 25 C, 

tr (major) = 19.9 min, tr (minor) = 13.1 min). 

1H NMR (500 MHz, CDCl3) δ 7.78-7.74 (m, 2H), 7.35 (t, J = 8.0 Hz, 2H), 7.27 (t, J = 2.0 Hz, 1H), 

7.25-7.21 (m, 1H), 7.08-7.04 (m, 2H), 5.97-5.96 (m, 1H), 5.20 (dd, J1 = 10.0 Hz, J2 = 8.5 Hz, 1H), 

3.26 (t, J = 10.8 Hz, 1H), 2.55-2.54 (m, 3H), 2.27 (s, 3H), 2.14 (dd, J1 = 11.0 Hz, J2 = 8.0 Hz, 1H), 
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1.25 (s, 3H), 1.21 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 173.3, 151.5, 150.5, 145.4, 143.8, 127.7, 127.0, 126.7, 126.0, 124.5, 

123.8, 111.3, 54.9, 44.8, 39.2, 32.4, 28.0, 22.6, 14.5, 13.7. 

IR (film): ν (cm1) 3062, 2967, 2928, 2870, 1713, 1582, 1444, 1409, 1377, 1352, 1313, 1259, 1240, 

1177, 1142, 1077, 1007, 960, 919, 813, 765, 695, 627, 575, 534, 502, 475, 417. 

HRMS (ESI, m/z) calcd for C22H24N2OSNa [M+Na]+: 387.1502, found: 387.1498. 

 

 

(3,5-Dimethyl-1H-pyrazol-1-yl)((1S,2S,3S)-2-methyl-2-phenyl-2',3'-dihydrospiro[cyclobutane- 

1,1'-inden]-3-yl)methanone (28x)  

According to the general procedure, the reaction of (E)-1-(3,5-dimethyl-1H-pyrazol-1-yl)- 

3-phenylbut-2-en-1-one 26p (24.0 mg, 0.10 mmol), 1-methylene-2,3-dihydro-1H-indene (130.2 mg, 

10.0 equiv) and Δ-RhS (3.5 mg, 4 mol%) in acetone (0.5 mL, 0.2 M) under nitrogen atmosphere with 

blue LEDs for 20 hours, afforded 35.7 mg (96%, combined yield) of 28x as a white solid; []D
22 = 

+37.0 (c 1.0, CH2Cl2); d.r. value was determined through 1H NMR of crude materials as >20:1; 

enantiomeric excess of the major diastereoisomer was established by HPLC analysis using a Chiralpak 

OD-H column, ee = 99% (HPLC: OD-H, 254 nm, n-hexane/isopropanol = 99:1, flow rate 0.6 mL/min, 

25 C, tr (major) = 7.5 min, tr (minor) = 10.0 min). 

1H NMR (500 MHz, CDCl3) δ 7.53 (d, J = 6.5 Hz, 1H), 7.44 (br s, 2H), 7.30-7.20 (m, 5H), 7.19-7.14 

(m, 1H), 5.98 (s, 1H), 5.19 (dd, J1 = 11.0 Hz, J2 = 8.0 Hz, 1H), 3.22 (t, J = 10.8 Hz, 1H), 2.56 (s, 3H), 

2.49 (dd, J1 = 10.5 Hz, J2 = 9.0 Hz, 1H), 2.41-2.35 (m, 1H), 2.34-2.26 (m, 1H), 2.29 (s, 3H), 2.05 (dd, 

J1 = 11.0 Hz, J2 = 8.0 Hz, 1H), 1.97 (dt, J1 = 12.5 Hz, J2 = 10.0 Hz, 1H), 1.41 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 173.4, 151.4, 146.8, 145.6, 144.7, 143.9, 127.5, 127.2, 126.6, 125.91, 

125.89, 125.7, 124.7, 111.3, 56.0, 55.9, 39.8, 38.0, 33.0, 30.7, 22.1, 14.5, 13.7. 

IR (film): ν (cm1) 3059, 3024, 2965, 2930, 2854, 1713, 1582, 1477, 1448, 1409, 1377, 1315, 1247, 

1177, 1140, 1099, 1070, 1023, 965, 937, 908, 845, 795, 760, 729, 701, 652, 623, 576. 

HRMS (ESI, m/z) calcd for C25H26N2ONa [M+Na]+: 393.1937, found: 393.1934. 
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(3,5-Dimethyl-1H-pyrazol-1-yl)((1S,2S,3S)-2-methyl-2-phenyl-3',4'-dihydro-2'H-spiro 

[cyclobutane-1,1'-naphthalen]-3-yl)methanone (28y)  

According to the general procedure, the reaction of (E)-1-(3,5-dimethyl-1H-pyrazol-1-yl)- 

3-phenylbut-2-en-1-one 26p (24.0 mg, 0.10 mmol), 1-methylene-1,2,3,4-tetrahydronaphthalene (144.2 

mg, 10.0 equiv) and Δ-RhS (3.5 mg, 4 mol%) in acetone (0.5 mL, 0.2 M) under nitrogen atmosphere 

with blue LEDs for 20 hours, afforded 37.2 mg (97%, combined yield) of 28y as a colorless oil; []D
22 

= +69.0 (c 1.0, CH2Cl2); d.r. value was determined through 1H NMR of crude materials as >20:1; 

enantiomeric excess of the major diastereoisomer was established by HPLC analysis using a Chiralpak 

OD-H column, ee = 99% (HPLC: OD-H, 254 nm, n-hexane/isopropanol = 99:1, flow rate 0.6 mL/min, 

25 C, tr (major) = 8.6 min, tr (minor) = 13.3 min). 

1H NMR (500 MHz, CDCl3) δ 7.76 (d, J = 7.5 Hz, 1H), 7.61 (d, J = 7.0 Hz, 2H), 7.31-7.26 (m, 3H), 

7.24-7.18 (m, 2H), 7.08 (d, J = 7.0 Hz, 1H), 5.91 (s, 1H), 5.36 (dd, J1 = 10.0 Hz, J2 = 8.5 Hz, 1H), 3.41 

(dd, J1 = 11.5 Hz, J2 = 10.5 Hz, 1H), 2.58-2.49 (m, 2H), 2.54 (s, 3H), 2.41 (dt, J1 = 14.0 Hz, J2 = 4.5 

Hz, 1H), 2.14 (s, 3H), 1.88 (dd, J1 = 11.5 Hz, J2 = 8.5 Hz, 1H), 1.64-1.55 (m, 1H), 1.31 (s, 3H), 

1.26-1.17 (m, 1H), 0.73-0.62 (m, 1H). 

13C NMR (125 MHz, CDCl3) δ 174.0, 151.3, 144.2, 143.5, 138.6, 137.9, 129.5, 129.0, 128.2, 127.2, 

126.3, 126.0, 124.7, 111.1, 55.1, 46.0, 39.5, 34.0, 31.5, 28.8, 21.9, 17.7, 14.3, 13.5. 

IR (film): ν (cm1) 3059, 2933, 2878, 2844, 1712, 1582, 1487, 1444, 1408, 1376, 1353, 1315, 1251, 

1178, 1136, 1071, 1033, 1007, 961, 911, 834, 754, 729, 697, 653, 565, 495, 410. 

HRMS (ESI, m/z) calcd for C26H28N2ONa [M+Na]+: 407.2094, found: 407.2091. 

 

 

(8R,9S,13S,14S)-3-((1S,2S,3S)-3-(3,5-Dimethyl-1H-pyrazole-1-carbonyl)-2-methyl-2-phenylcyclo

butyl)-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one 

(28z)  
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According to the general procedure, the reaction of (E)-1-(3,5-dimethyl-1H-pyrazol-1-yl)- 

3-phenylbut-2-en-1-one 26p (24.0 mg, 0.10 mmol), 3-vinylestrone (84.1 mg, 3.0 equiv) and Δ-RhS 

(3.5 mg, 4 mol%) in CH2Cl2 (0.5 mL, 0.2 M) under nitrogen atmosphere with blue LEDs for 24 hours, 

afforded 50.6 mg (97%, combined yield) of 28z as a yellow solid; []D
22 = +42.5 (c 1.0, CH2Cl2); d.r. 

value was determined through 1H NMR of crude materials as 8:1. 

1H NMR (600 MHz, CDCl3) δ 7.52-7.49 (m, 2H), 7.35-7.31 (m, 2H), 7.24-7.20 (m, 2H), 7.01 (s, 1H), 

6.99 (d, J = 7.8 Hz, 1H), 5.92-5.91 (m, 1H), 4.79 (dd, J1 = 10.2 Hz, J2 = 7.8 Hz, 1H), 3.85 (dd, J1 = 

10.8 Hz, J2 = 8.4 Hz, 1H), 3.00 (q, J = 10.8 Hz, 1H), 2.92 (dd, J1 = 9.0 Hz, J2 = 4.8 Hz, 2H), 2.56-2.55 

(m, 3H), 2.51 (dd, J1 = 19.2 Hz, J2 = 9.0 Hz, 1H), 2.43-2.28 (m, 3H), 2.20-1.95 (m, 4H), 2.01 (s, 3H), 

1.68-1.42 (m, 6H), 1.13 (s, 3H), 0.92 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 221.0, 173.2, 151.4, 149.0, 143.4, 137.9, 137.0, 136.1, 128.7, 127.8, 

125.94, 125.92, 125.8, 125.0, 111.0, 52.4, 50.5, 48.0, 47.0, 44.4, 44.3, 38.1, 35.8, 31.6, 29.5, 26.5, 25.7, 

23.1, 21.5, 18.4, 14.3, 13.8, 13.4. 

IR (film): ν (cm1) 2928, 2867, 1721, 1583, 1495, 1449, 1376, 1313, 1250, 1085, 1006, 964, 911, 816, 

728, 646, 581. 

HRMS (ESI, m/z) calcd for C35H40N2O2Na [M+Na]+: 543.2982, found: 543.2977. 

 

5.4.4 Single-Crystal X-Ray Diffraction Studies 

 

Single crystals of 28e suitable for X-ray diffraction were obtained by slow evaporation of a 

solution of 28e (30 mg) in Et2O (1.0 mL) at room temperature for several days in a 10 mL vial. 

Product 28p was transformed to an amide 28p’ as shown below. Single crystals of 28p’ suitable 

for X-ray diffraction were obtained by slow evaporation of a solution of 28p’ (33 mg) in Et2O (1.0 mL) 

at room temperature for several days in a NMR tube. 

 

 

The mixture of 28p (32.2 mg, 0.1 mmol) and 6-ethoxybenzo[d]thiazol-2-amine (194.3 mg, 10.0 
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equiv) in THF (0.5 mL) was heated at 85 oC under nitrogen atmosphere for 72 h. Then, the mixture 

was purified by flash chromatography on silica gel (n-hexane/EtOAc) to afford the products 28p’ 

(33.5 mg, 80% yield) as a white solid; d.r. value >20:1; []D
22 = +113.8 (c 1.0, CH2Cl2); enantiomeric 

excess was established by HPLC analysis using a Chiralpak OD-H column, ee = 98% (HPLC: OD-H, 

254 nm, n-hexane/isopropanol = 60:40, flow rate 1 mL/min, 25 C, tr (major) = 9.2 min, tr (minor) = 

23.6 min). 

(1S,2S,3S)-N-(6-Ethoxybenzo[d]thiazol-2-yl)-2,3-dimethyl-2-phenyl-3-(prop-1-en-2-yl)cyclobutan

e-1-carboxamide (28p’) 

1H NMR (300 MHz, CDCl3) δ 9.05 (br s, 1H), 7.52 (d, J = 8.7 Hz, 1H), 7.34-7.28 (m, 2H), 7.26-7.11 

(m, 4H), 6.94 (dd, J1 = 9.0 Hz, J2 = 2.7 Hz, 1H), 4.98 (s, 1H), 4.80 (s, 1H), 4.00 (q, J = 7.2 Hz, 2H), 

3.86 (dd, J1 = 9.9 Hz, J2 = 8.4 Hz, 1H), 2.79 (t, J = 10.5 Hz, 1H), 1.76 (dd, J1 = 11.1 Hz, J2 = 7.8 Hz, 

1H), 1.68 (s, 3H), 1.36 (t, J = 6.9 Hz, 3H), 1.29 (s, 3H), 0.85 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 170.7, 156.2, 155.8, 148.5, 143.3, 142.1, 133.3, 128.5, 126.67, 126.56, 

121.1, 115.8, 112.0, 105.0, 64.1, 52.6, 48.4, 40.8, 28.9, 24.2, 20.6, 20.0, 14.8. 

IR (film): ν (cm1) 3062, 2969, 2928, 2876, 1689, 1603, 1544, 1456, 1372, 1259, 1219, 1167, 1117, 

1060, 1034, 941, 890, 818, 761, 698, 550, 433. 

HRMS (ESI, m/z) calcd for C25H29N2O2S [M+H]+: 421.1944, found: 421.1941. 

 

X-ray data were collected with a Bruker 3 circuit D8 Quest diffractometer with MoKα radiation 

(microfocus tube with multilayer optics) and Photon 100 CMOS detector at 100 K. Scaling and 

absorption correction was performed by using the SADABS software package of Bruker. Structures 

were solved using direct methods in SHELXT and refined using the full matrix least squares procedure 

in SHELXL-2014. The hydrogen atoms were placed in calculated positions and refined as riding on 

their respective C atom, and Uiso(H) was set at 1.2 Ueq(Csp2) and 1.5 Ueq(Csp3). Disorder was 

refined using restraints for both the geometry and the anisotropic displacement factors.  

The relative and absolute configurations of 28e (Figure 124) and 28p’ (Figure 125) have been 

determined. 
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Figure 124.  Crystal structure of compound 28e. 

 

 

 

Figure 125.  Crystal structure of compound 28p’. 
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Table 27. Crystal data and structure refinement for 28e. 

  
 Crystal data  
 
CCDC number 1536749 
Identification code  hxqG7_0m 
Habitus, color  needle, colorless 
Crystal size 0.64 x 0.13 x 0.06 mm3 
Crystal system  Orthorhombic 
Space group  P212121 Z = 4 
Unit cell dimensions a = 6.2276(6) Å α = 90°. 
 b = 10.0974(9) Å β = 90°. 
 c = 33.032(3) Å γ = 90°. 
Volume 2077.1(3) Å3 
Cell determination  9991 peaks with Theta 2.4 to 25.2°. 
Empirical formula  C24 H23 Br N2 O 
Moiety formula  C24 H23 Br N2 O 
Formula weight  435.35 
Density (calculated) 1.392 Mg/m3 
Absorption coefficient 1.995 mm-1 
F(000) 
 896 
Data collection:  
 
Diffractometer type  Bruker D8 QUEST area detector 
Wavelength  0.71073 Å 
Temperature  110(2) K 
Theta range for data collection 2.364 to 25.270°. 
Index ranges -6<=h<=7, -12<=k<=11, -39<=l<=38 
Data collection software  APEX3 (Bruker AXS Inc., 2015)  
Cell refinement software  SAINT V8.37A (Bruker AXS Inc., 2015)  
Data reduction software  
 SAINT V8.37A (Bruker AXS Inc., 2015) 
Solution and refinement: 
 
Reflections collected 19907 
Independent reflections 3772 [R(int) = 0.0548] 
Completeness to theta = 25.242° 99.9 %  
Observed reflections  3515[I > 2σ(I)]  
Reflections used for refinement  3772. 
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.7452 and 0.5119 
Flack parameter (absolute struct.)   -0.004(4) 
Largest diff. peak and hole 0.755 and -0.830 e.Å-3 
Solution  dual space algorithm 
Refinement  Full-matrix least-squares on F2 
Treatment of hydrogen atoms  Calculated positions, constr. ref. 
Programs used  XT V2014/1 (Bruker AXS Inc., 2014)  
 SHELXL-2016/6 (Sheldrick, 2016)  
 DIAMOND (Crystal Impact) 
 ShelXle (Hübschle, Sheldrick, Dittrich, 2011)  
Data / restraints / parameters 3772 / 183 / 284 
Goodness-of-fit on F2 1.048 
R index (all data) wR2 = 0.0975 
R index conventional [I>2sigma(I)] R1 = 0.0397 
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Table 28. Crystal data and structure refinement for 28p’. 

  
 Crystal data 
 
CCDC number 1536750 
Identification code  lsp242_0m_sq 
Habitus, color  needle, colorless 
Crystal size 0.87 x 0.17 x 0.04 mm3 
Crystal system  Orthorhombic 
Space group  P21212 Z = 8 
Unit cell dimensions a = 22.0286(9) Å α = 90°. 
 b = 13.8772(6) Å β = 90°. 
 c = 15.9440(7) Å γ = 90°. 
Volume 4874.0(4) Å3 
Cell determination  9411 peaks with Theta 2.6 to 24.8°. 
Empirical formula  C25 H28 N2 O2 S 
Moiety formula  C25 H28 N2 O2 S 
Formula weight  420.55 
Density (calculated) 1.146 Mg/m3 
Absorption coefficient 0.154 mm-1 
F(000) 
 1792 
Data collection:  
 
Diffractometer type  Bruker D8 QUEST area detector 
Wavelength  0.71073 Å 
Temperature  110(2) K 
Theta range for data collection 2.154 to 25.285°. 
Index ranges -26<=h<=25, -15<=k<=16, -19<=l<=18 
Data collection software  APEX3 (Bruker AXS Inc., 2015)  
Cell refinement software  SAINT V8.37A (Bruker AXS Inc., 2015)  
Data reduction software  
 SAINT V8.37A (Bruker AXS Inc., 2015) 
Solution and refinement: 
 
Reflections collected 31255 
Independent reflections 8868 [R(int) = 0.0649] 
Completeness to theta = 25.242° 99.9 %  
Observed reflections  7140[I > 2σ(I)]  
Reflections used for refinement  8868 
.Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.7452 and 0.6600 
Flack parameter (absolute struct.)   0.06(4)  
Largest diff. peak and hole 0.273 and -0.240 e.Å-3 
Solution  Duals space algorithm 
Refinement  Full-matrix least-squares on F2 
Treatment of hydrogen atoms  CH calc., constr. ref., NH located, isotr. ref. 
Programs used  XT V2014/1 (Bruker AXS Inc., 2014)  
 SHELXL-2016/6 (Sheldrick, 2016)
 DIAMOND (Crystal Impact)  
 ShelXle (Hübschle, Sheldrick, Dittrich, 2011 
Data / restraints / parameters 8868 / 56 / 577 
Goodness-of-fit on F2 1.016 
R index (all data) wR2 = 0.1040 
R index conventional [I>2sigma(I)] R1 = 0.0466 



Chapter 5. Experimental Part 

293 
 

5.5 Asymmetric [2+3] Photocycloaddition 

 

5.5.1 General Procedure 

 

 

Exemplary, an oven-dried 10 mL Schlenk tube was charged with α,β-unsaturated N-acyl pyrazole 

30f (30.4 mg, 0.10 mmol) and Λ-RhS (3.5 mg, 4 mol%) under air. Then, CDCl3 (1.0 mL, 0.1 M) was 

added via syringe, followed by vinyl azide 31a (18.2 mg, 1.25 equiv) under open air atmosphere with 

stirring. The tube was sealed and positioned at approximately 8 cm from a 24 W blue LEDs lamp. 

After stirring for the indicated time (monitored by TLC), the mixture was directly subjected to 1H 

NMR to determine the d.r. value. Then, all the mixture was collected and purified by flash 

chromatography on silica gel (n-hexane/EtOAc) to afford the product 32f. The enantiomeric excess 

was determined by HPLC analysis on a chiral stationary phase. Racemic samples were obtained by 

carrying out the reactions with rac-RhS.  

For products 32y-32ab which might decompose in silica gel column, a fast flash chromatography 

is recommended.  

 

5.5.2 Synthesis of Substrates 

 

α,β-Unsaturated N-acyl pyrazoles 30 were synthesized according to published procedures with 

some modification.12a To a solution of pyrazole (1.0 equiv) and α,β-unsaturated carboxyl acid (1.5 

equiv) in CH2Cl2 (0.2 M) at room temperature, was added 1-propanephosphonic acid cyclic anhydride 

(CAS number: 68957-94-8; 50% solution in EtOAc; 1.5 equiv) dropwise. After stirring for 1 hour at 

room temperature, the mixture was cooled to 0 oC followed by the addition of DMAP (0.2 equiv) and 

Et3N (3.0 equiv; dropwise). Then the reaction mixture was allowed to warm to room temperature with 

stirring. After a full conversion of pyrazole was detected by TLC (5-12 h), the mixture was poured into 
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HCl solution (1 M) and extracted with EtOAc for three times. The combined organic layers were 

washed with NaOH solution (2 M), saturated NaHCO3 solution and brine. After dried with anhydrous 

Na2SO4, filtration and concentration under reduced pressure, the crude residue was purified by flash 

chromatography on silica gel (n-hexane/EtOAc) to afford the substrate 30 with yields from 75% to 

95%. To obtain with better quality, the isolated product could be washed with Et2O/n-hexane. 

Vinyl azides 31 were prepared according to published procedures.12b,c 

The data of novel substrates are shown below. 

 

 

(E)-3-Penyl-1-(3-phenyl-1H-pyrazol-1-yl)prop-2-en-1-one (30c) 

A white solid. 

1H NMR (500 MHz, CDCl3) δ 8.43 (d, J = 3.0 Hz, 1H), 8.07 (d, J = 16.0 Hz, 1H), 8.03 (d, J = 16.0 Hz, 

1H), 7.97-7.94 (m, 2H), 7.75-7.71 (m, 2H), 7.51-7.40 (m, 6H), 6.84 (d, J = 3.0 Hz, 1H). 

13C NMR (75 MHz, CDCl3) δ 163.7, 155.4, 147.6, 134.6, 132.0, 131.0, 130.0, 129.2, 129.0, 128.84, 

128.79, 126.4, 116.0, 107.7. 

IR (film): ν (cm1) 1698, 1612, 1532, 1499, 1452, 1400, 1345, 1301, 1213, 1095, 1072, 1036, 995, 954, 

915, 874, 755, 681, 564. 

HRMS (ESI, m/z) calcd for C18H14N2ONa [M+Na]+: 297.1009, found: 297.0999. 

 

 

(E)-1-(3-Methyl-1H-pyrazol-1-yl)-3-phenylprop-2-en-1-one (30d) 

A white solid. 

1H NMR (300 MHz, CDCl3) δ 8.28 (d, J = 3.0 Hz, 1H), 8.00 (d, J = 15.9 Hz, 1H), 7.87 (d, J = 15.9 Hz, 

1H), 7.73-7.67 (m, 2H), 7.46-7.40 (m, 3H), 6.30 (d, J = 2.7 Hz, 1H), 2.38 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 163.4, 153.8, 147.3, 134.6, 130.9, 129.4, 128.9, 128.8, 116.2, 110.6, 

14.0. 

IR (film): ν (cm1) 2958, 1685, 1613, 1551, 1446, 1408, 1343, 1203, 1046, 989, 940, 861, 761, 713, 

675, 569. 
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HRMS (ESI, m/z) calcd for C13H12N2ONa [M+Na]+: 235.0853, found: 235.0842. 

 

 

(E)-1-(3-(4-Fluorophenyl)-1H-pyrazol-1-yl)-3-phenylprop-2-en-1-one (30e) 

A white solid. 

1H NMR (300 MHz, CDCl3) δ 8.42 (d, J = 3.3 Hz, 1H), 8.06 (d, J = 16.2 Hz, 1H), 7.98 (d, J = 15.9 Hz, 

1H), 7.95-7.89 (m, 2H), 7.75-7.70 (m, 2H), 7.48-7.43 (m, 3H), 7.21-7.12 (m, 2H), 6.78 (d, J = 2.7 Hz, 

1H). 

13C NMR (75 MHz, CDCl3) δ 163.6, 163.4 (d, J = 247.1 Hz), 154.4, 147.7, 134.6, 131.0, 130.1, 129.0, 

128.8, 128.204 (d, J = 8.3 Hz), 128.205 (d, J = 2.9 Hz), 115.85, 115.79 (d, J = 21.6 Hz), 107.5. 

IR (film): ν (cm1) 1688, 1612, 1507, 1430, 1398, 1340, 1298, 1219, 1155, 1092, 1052, 980, 949, 885, 

840, 815, 758, 679, 624, 567. 

HRMS (ESI, m/z) calcd for C18H13FN2ONa [M+Na]+: 315.0904, found: 315.0905. 

 

 

(E)-1-(3-(4-Methoxyphenyl)-1H-pyrazol-1-yl)-3-phenylprop-2-en-1-one (30f) 

A white solid. 

1H NMR (300 MHz, CDCl3) δ 8.40 (d, J = 2.7 Hz, 1H), 8.06 (d, J = 15.9 Hz, 1H), 8.00 (d, J = 16.2 Hz, 

1H), 7.92-7.85 (m, 2H), 7.76-7.70 (m, 2H), 7.48-7.41 (m, 3H), 7.04-6.96 (m, 2H), 6.77 (d, J = 3.0 Hz, 

1H), 3.88 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 163.6, 160.5, 155.2, 147.4, 134.7, 130.9, 129.9, 129.0, 128.8, 127.8, 

124.7, 116.2, 114.2, 107.5, 55.4. 

IR (film): ν (cm1) 2964, 1692, 1613, 1510, 1401, 1352, 1301, 1251, 1220, 1174, 1094, 1024, 950, 875, 

833, 762, 678, 629, 567. 

HRMS (ESI, m/z) calcd for C19H17N2O2 [M+H]+: 305.1296, found: 305.1284. 
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(E)-3-(4-Methoxyphenyl)-1-(3-(4-methoxyphenyl)-1H-pyrazol-1-yl)prop-2-en-1-one (30g) 

A white solid. 

1H NMR (300 MHz, CDCl3) δ 8.40 (d, J = 2.7 Hz, 1H), 8.01 (d, J = 15.9 Hz, 1H), 7.91-7.83 (m, 3H), 

7.71-7.65 (m, 2H), 7.02-6.93 (m, 4H), 6.75 (d, J = 3.0 Hz, 1H), 3.87 (s, 6H). 

13C NMR (75 MHz, CDCl3) δ 163.9, 162.0, 160.4, 155.0, 147.2, 130.7, 129.8, 127.7, 127.5, 124.8, 

114.4, 114.2, 113.5, 107.2, 55.4, 55.3. 

IR (film): ν (cm1) 2999, 2932, 1690, 1596, 1568, 1509, 1428, 1395, 1342, 1294, 1251, 1216, 1173, 

1092, 1032, 996, 955, 825, 767, 726, 627, 549. 

HRMS (ESI, m/z) calcd for C20H19N2O3 [M+H]+: 335.1401, found: 335.1390. 

 

 

(E)-3-(4-((tert-Butyldimethylsilyl)oxy)phenyl)-1-(3-(4-methoxyphenyl)-1H-pyrazol-1-yl)prop-2-e

n-1-one (30h) 

A white solid. 

1H NMR (300 MHz, CDCl3) δ 8.39 (d, J = 2.7 Hz, 1H), 8.00 (d, J = 15.9 Hz, 1H), 7.91-7.82 (m, 3H), 

7.66-7.59 (m, 2H), 7.02-6.95 (m, 2H), 6.94-6.86 (m, 2H), 6.74 (d, J = 3.0 Hz, 1H), 3.85 (s, 3H), 1.01 

(s, 9H), 0.25 (s, 6H). 

13C NMR (75 MHz, CDCl3) δ 163.8, 160.4, 158.5, 154.9, 147.1, 130.5, 129.8, 128.0, 127.7, 124.7, 

120.5, 114.1, 113.7, 107.1, 55.2, 25.6, 18.2, -4.4. 

IR (film): ν (cm1) 3144, 2932, 2893, 2857, 1696, 1594, 1508, 1466, 1428, 1400, 1348, 1250, 1220, 

1170, 1094, 1035, 990, 950, 909, 831, 775, 733, 690, 630, 567, 527. 

HRMS (ESI, m/z) calcd for C25H30N2O3SiNa [M+Na]+: 457.1918, found: 457.1911. 

 

 

(E)-1-(3-(4-Methoxyphenyl)-1H-pyrazol-1-yl)-3-(p-tolyl)prop-2-en-1-one (30i) 

A white solid. 
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1H NMR (300 MHz, CDCl3) δ 8.40 (d, J = 3.0 Hz, 1H), 8.03 (d, J = 15.9 Hz, 1H), 7.95 (d, J = 15.9 Hz, 

1H), 7.93-7.85 (m, 2H), 7.62 (d, J = 8.1 Hz, 2H), 7.25 (d, J = 7.8 Hz, 2H), 7.03-6.96 (m, 2H), 6.76 (d, 

J = 2.7 Hz, 1H), 3.87 (s, 3H), 2.41 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 163.8, 160.5, 155.1, 147.5, 141.5, 132.0, 129.9, 129.7, 128.9, 127.7, 

124.7, 115.0, 114.2, 107.3, 55.3, 21.6. 

IR (film): ν (cm1) 3130, 2967, 1691, 1610, 1508, 1426, 1399, 1349, 1301, 1249, 1219, 1179, 1092, 

1030, 951, 885, 838, 807, 767, 728, 688, 628, 526. 

HRMS (ESI, m/z) calcd for C20H19N2O2 [M+H]+: 319.1452, found: 319.1442. 

 

 

(E)-3-(4-Fluorophenyl)-1-(3-(4-methoxyphenyl)-1H-pyrazol-1-yl)prop-2-en-1-one (30j) 

A white solid. 

1H NMR (300 MHz, CDCl3) δ 8.40 (d, J = 2.7 Hz, 1H), 8.00 (d, J = 15.9 Hz, 1H), 7.93 (d, J = 15.9 Hz, 

1H), 7.93-7.84 (m, 2H), 7.75-7.69 (m, 2H), 7.17-7.10 (m, 2H), 7.02-6.97 (m, 2H), 6.77 (d, J = 2.7 Hz, 

1H), 3.87 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 164.3 (d, J = 251.0 Hz), 163.5, 160.5, 155.3, 146.0, 130.9 (d, J = 3.7 

Hz), 130.8 (d, J = 9.1 Hz), 129.9, 127.8, 124.6, 116.2 (d, J = 22.0 Hz), 115.9 (d, J = 2.2 Hz), 114.2, 

107.5, 55.3. 

IR (film): ν (cm1) 3085, 2960, 1710, 1592, 1505, 1426, 1394, 1341, 1292, 1240, 1210, 1162, 1091, 

1032, 1007, 957, 877, 826, 763, 731, 626. 

HRMS (ESI, m/z) calcd for C19H15FN2O2Na [M+Na]+: 345.1021, found: 345.1010. 

 

 

(E)-3-(4-Bromophenyl)-1-(3-(4-methoxyphenyl)-1H-pyrazol-1-yl)prop-2-en-1-one (30k) 

A white solid. 

1H NMR (300 MHz, CDCl3) δ 8.39 (d, J = 3.0 Hz, 1H), 8.00 (d, J = 16.2 Hz, 1H), 7.94 (d, J = 15.9 Hz, 

1H), 7.90-7.83 (m, 2H), 7.58-7.57 (m, 4H), 7.02-6.97 (m, 2H), 6.77 (d, J = 2.7 Hz, 1H), 3.87 (s, 3H). 
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13C NMR (75 MHz, CDCl3) δ 163.3, 160.6, 155.3, 145.8, 133.5, 132.2, 130.1, 129.9, 127.8, 125.3, 

124.5, 116.8, 114.2, 107.6, 55.3. 

IR (film): ν (cm1) 3081, 2963, 1691, 1611, 1511, 1485, 1403, 1345, 1299, 1243, 1218, 1169, 1095, 

1036, 984, 944, 821, 767, 626, 528. 

HRMS (ESI, m/z) calcd for C19H15BrN2O2Na [M+Na]+: 405.0209, found: 405.0204. 

 

 

(E)-1-(3-(4-Methoxyphenyl)-1H-pyrazol-1-yl)-3-(4-(trifluoromethyl)phenyl)prop-2-en-1-one (30l) 

A white solid. 

1H NMR (300 MHz, CDCl3) δ 8.39 (d, J = 3.0 Hz, 1H), 8.08 (d, J = 16.2 Hz, 1H), 8.00 (d, J = 16.5 Hz, 

1H), 7.90-7.84 (m, 2H), 7.81 (d, J = 8.1 Hz, 2H), 7.70 (d, J = 8.4 Hz, 2H), 7.03-6.96 (m, 2H), 6.78 (d, 

J = 3.0 Hz, 1H), 3.87 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 163.1, 160.6, 155.5, 145.1, 137.9 (q, J = 1.3 Hz), 132.2 (q, J = 32.8 Hz), 

130.0, 128.8, 127.8, 125.9 (q, J = 3.7 Hz), 124.4, 123.8 (q, J = 270.8 Hz), 118.8, 114.2, 107.8, 55.3. 

IR (film): ν (cm1) 3061, 2936, 1689, 1617, 1577, 1513, 1404, 1349, 1317, 1248, 1222, 1160, 1109, 

1046, 983, 945, 878, 828, 791, 763, 739, 625, 594. 

HRMS (ESI, m/z) calcd for C20H15F3N2O2Na [M+Na]+: 395.0978, found: 395.0972. 

 

 

(E)-3-(3-Methoxyphenyl)-1-(3-(4-methoxyphenyl)-1H-pyrazol-1-yl)prop-2-en-1-one (30m) 

A white solid. 

1H NMR (300 MHz, CDCl3) δ 8.40 (d, J = 3.0 Hz, 1H), 8.02 (d, J = 16.5 Hz, 1H), 7.97 (d, J = 15.9 Hz, 

1H), 7.91-7.84 (m, 2H), 7.40-7.29 (m, 2H), 7.27-7.22 (m, 1H), 7.03-6.96 (m, 3H), 6.77 (d, J = 2.7 Hz, 

1H), 3.88 (s, 3H), 3.87 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 163.5, 160.5, 160.0, 155.2, 147.3, 136.0, 129.94, 129.90, 127.7, 124.6, 

121.5, 116.7, 116.4, 114.2, 113.8, 107.5, 55.4, 55.3. 

IR (film): ν (cm1) 2967, 2928, 1696, 1613, 1577, 1514, 1399, 1349, 1251, 1216, 1162, 1099, 1034, 

988, 949, 830, 765, 726, 676, 628, 576. 
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HRMS (ESI, m/z) calcd for C20H19N2O3 [M+H]+: 335.1390, found: 335.1386. 

 

 

(E)-3-(2-Methoxyphenyl)-1-(3-(4-methoxyphenyl)-1H-pyrazol-1-yl)prop-2-en-1-one (30n) 

A white solid. 

1H NMR (300 MHz, CDCl3) δ 8.41 (d, J = 15.9 Hz, 1H), 8.40 (d, J = 2.7 Hz, 1H), 8.05 (d, J = 16.2 Hz, 

1H), 7.91-7.85 (m, 2H), 7.77 (dd, J1 = 7.8 Hz, J2 = 1.5 Hz, 1H), 7.45-7.37 (m, 1H), 7.07-6.93 (m, 4H), 

6.76 (d, J = 3.0 Hz, 1H), 3.94 (s, 3H), 3.87 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 164.0, 160.4, 158.8, 154.9, 142.6, 132.2, 129.9, 129.1, 127.7, 124.8, 

123.7, 120.7, 116.2, 114.2, 111.3, 107.1, 55.6, 55.3. 

IR (film): ν (cm1) 2963, 2936, 1692, 1607, 1511, 1461, 1432, 1397, 1344, 1322, 1245, 1214, 1165, 

1096, 1018, 990, 949, 834, 805, 750, 627, 583, 516. 

HRMS (ESI, m/z) calcd for C20H19N2O3 [M+H]+: 335.1390, found: 335.1386. 

 

 

(E)-1-(3-(4-Methoxyphenyl)-1H-pyrazol-1-yl)-3-(thiophen-2-yl)prop-2-en-1-one (30o) 

A white solid. 

1H NMR (300 MHz, CDCl3) δ 8.38 (d, J = 3.0 Hz, 1H), 8.14 (d, J = 15.6 Hz, 1H), 7.91-7.84 (m, 2H), 

7.78 (d, J = 15.6 Hz, 1H), 7.49 (d, J = 5.1 Hz, 1H), 7.43 (d, J = 3.6 Hz, 1H), 7.12 (dd, J1 = 5.4 Hz, J2 = 

3.9 Hz, 1H), 7.03-6.97 (m, 2H), 6.76 (d, J = 2.7 Hz, 1H), 3.87 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 163.5, 160.5, 155.2, 140.1, 139.6, 132.2, 129.8, 129.7, 128.3, 127.7, 

124.7, 114.8, 114.2, 107.4, 55.3. 

IR (film): ν (cm1) 3077, 2913, 1683, 1597, 1507, 1424, 1396, 1338, 1280, 1239, 1215, 1167, 1089, 

1031, 948, 828, 768, 706, 681, 626, 592, 522. 

HRMS (ESI, m/z) calcd for C17H15N2O2S [M+H]+: 311.0849, found: 311.0844. 

 



Chapter 5. Experimental Part 

300 
 

 

(E)-1-(3-(4-Methoxyphenyl)-1H-pyrazol-1-yl)-3-(1-methyl-1H-indol-3-yl)prop-2-en-1-one (30p) 

A yellow solid. 

1H NMR (500 MHz, CDCl3) δ 8.43 (d, J = 3.0 Hz, 1H), 8.27 (d, J = 16.0 Hz, 1H), 8.13-8.08 (m, 1H), 

7.96-7.89 (m, 3H), 7.54 (s, 1H), 7.42-7.34 (m, 3H), 7.04-7.00 (m, 2H), 6.75 (d, J = 3.0 Hz, 1H), 3.88 

(s, 3H), 3.87 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 164.7, 160.3, 154.6, 140.9, 138.2, 134.6, 129.8, 127.7, 126.3, 125.0, 

123.3, 121.8, 120.9, 114.2, 113.2, 110.1, 109.9, 106.7, 55.3, 33.4. 

IR (film): ν (cm1) 3098, 2951, 2913, 1677, 1595, 1509, 1463, 1397, 1369, 1344, 1281, 1240, 1217, 

1178, 1097, 1067, 1036, 950, 830, 766, 734, 654, 630. 

HRMS (ESI, m/z) calcd for C22H20N3O2 [M+H]+: 358.1550, found: 358.1545. 

 

 

(E)-3-(4-Methoxyphenyl)-1-(3-(4-methoxyphenyl)-1H-pyrazol-1-yl)but-2-en-1-one ((E)-30q) 

A white solid. 

1H NMR (300 MHz, CDCl3) δ 8.38 (d, J = 2.7 Hz, 1H), 7.89-7.82 (m, 2H), 7.70 (q, J = 1.5 Hz, 1H), 

7.67-7.61 (m, 2H), 7.01-6.93 (m, 4H), 6.72 (d, J = 2.7 Hz, 1H), 3.86 (s, 3H), 3.85 (s, 3H), 2.74 (d, J = 

1.2 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 163.3, 161.0, 160.3, 159.3, 154.4, 134.4, 129.6, 128.2, 127.6, 124.9, 

114.1, 113.9, 113.0, 106.7, 55.32, 55.26, 18.5. 

IR (film): ν (cm1) 3001, 2930, 2838, 1683, 1594, 1567, 1509, 1435, 1396, 1348, 1286, 1246, 1217,  

1176, 1093, 1023, 928, 829, 766, 736, 698, 536, 493. 

HRMS (ESI, m/z) calcd for C21H21N2O3 [M+H]+: 349.1547, found: 349.1542. 
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(Z)-3-(4-Methoxyphenyl)-1-(3-(4-methoxyphenyl)-1H-pyrazol-1-yl)but-2-en-1-one ((Z)-30q)) 

(Z)-30q was synthesized according to the previous procedure.11c 

A white solid. 

1H NMR (500 MHz, CDCl3) δ 8.26-8.22 (m, 1H), 7.89-7.83 (m, 2H), 7.36-7.33 (m, 1H), 7.32-7.27 (m, 

2H), 7.01-6.95 (m, 2H), 6.94-6.89 (m, 2H), 6.69 (d, J = 3.0 Hz, 1H), 3.87 (s, 3H), 3.83 (s, 3H), 2.37 (d, 

J = 1.0 Hz, 3H). 

13C NMR (125 MHz, CDCl3) δ 162.3, 160.4, 160.3, 159.8, 154.8, 132.6, 129.8, 128.7, 127.7, 124.8, 

114.9, 114.1, 113.4, 106.8, 55.3, 55.2, 28.1. 

IR (film): ν (cm1) 3121, 2962, 2928, 1704, 1613, 1509, 1436, 1401, 1369, 1333, 1289, 1238, 1173, 

1103, 1050, 1023, 943, 885, 829, 814, 789, 730, 686, 639, 555, 521. 

HRMS (ESI, m/z) calcd for C21H21N2O3 [M+H]+: 349.1547, found: 349.1543. 

 

 

(E)-3-(3,5-Bis(trifluoromethyl)phenyl)-1-(3-(4-methoxyphenyl)-1H-pyrazol-1-yl)but-2-en-1-one 

(30r) 

A white solid. 

1H NMR (500 MHz, CDCl3) δ 8.39 (d, J = 3.0 Hz, 1H), 8.01 (s, 2H), 7.93 (s, 1H), 7.85-7.80 (m, 2H), 

7.69 (q, J = 1.5 Hz, 1H), 7.00-6.95 (m, 2H), 6.77 (d, J = 3.0 Hz, 1H), 3.86 (s, 3H), 2.76 (d, J = 1.5 Hz, 

3H). 

13C NMR (125 MHz, CDCl3) δ 162.6, 160.5, 155.6, 155.2, 144.6, 132.1 (q, J = 33.8 Hz), 129.8, 127.7, 

126.9-126.6 (m), 124.3, 123.1 (q, J = 271.3 Hz), 123.0-122.7 (m), 118.3, 114.2, 107.6, 55.3, 18.9. 

19F NMR (282 MHz, CDCl3) δ –62.81 (s, 6F). 

IR (film): ν (cm1) 3054, 2932, 1696, 1613, 1513, 1441, 1403, 1379, 1354, 1283, 1250, 1216, 1168, 

1119, 1090, 1032, 938, 883, 836, 774, 679, 619, 580, 523. 

HRMS (ESI, m/z) calcd for C22H16F6N2O2Na [M+Na]+: 477.1008, found: 477.1001. 
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(E)-2-(6-Methoxy-3,4-dihydronaphthalen-1(2H)-ylidene)-1-(3-(4-methoxyphenyl)-1H-pyrazol-1-

yl)ethan-1-one (30s) 

A white solid. 

1H NMR (300 MHz, CDCl3) δ 8.37 (d, J = 2.7 Hz, 1H), 7.91 (d, J = 9.0 Hz, 1H), 7.89-7.82 (m, 3H), 

7.02-6.95 (m, 2H), 6.72 (dd, J1 = 9.0 Hz, J2 = 2.4 Hz, 1H), 6.73-6.87 (m, 2H), 3.863 (s, 3H), 3.856 (s, 

3H), 3.36 (td, J1 = 7.8 Hz, J2 = 1.8 Hz, 2H), 2.82 (d, J = 6.0 Hz, 2H), 1.95-1.85 (m, 2H). 

13C NMR (75 MHz, CDCl3) δ 163.4, 161.4, 160.3, 159.4, 154.2, 143.1, 129.5, 127.6, 127.4, 127.2, 

125.0, 114.1, 113.3, 113.1, 108.0, 106.5, 55.3(two MeO), 20.7, 29.3, 22.6. 

IR (film): ν (cm1) 2927, 2837, 1683, 1579, 1504, 1434, 1397, 1331, 1299, 1221, 1174, 1097, 1036, 

955, 889, 864, 828, 767, 716, 629, 594, 527, 413. 

HRMS (ESI, m/z) calcd for C23H23N2O3 [M+H]+: 375.1703, found: 375.1699. 

 

 

4-Azidopent-4-en-1-ol (31i) 

A yellow liquid. 

1H NMR (300 MHz, CDCl3) δ 4.72-4.69 (m, 1H), 4.68-4.65 (m, 1H), 3.68 (t, J = 6.2 Hz, 2H), 

2.22-2.15 (m, 2H), 1.81-1.69 (m, 2H). 

13C NMR (75 MHz, CDCl3) δ 146.3, 98.3, 61.7, 30.2, 30.1. 

IR (film): ν (cm1) 3318, 2931, 2875, 2092, 1627, 1441, 1265, 1048, 916, 843, 657, 541, 456. 

HRMS (ESI, m/z) calcd for C5H10N3O [M+H]+: 128.0818, not found probably due to the 

decomposition. 

 

 

(E)-3,7-Dimethylocta-2,6-dien-1-yl 4-azidopent-4-enoate (31j) 

A yellow liquid. 
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1H NMR (300 MHz, CD2Cl2) δ 5.35-5.28 (m, 1H), 5.14-5.05 (m, 1H), 4.76-4.72 (m, 1H), 4.68-4.65 (m, 

1H), 4.59 (d, J = 7.2 Hz, 2H), 2.52-2.44 (m, 2H), 2.41-2.33 (m, 2H), 2.16-2.00 (m, 4H), 1.70 (s, 3H), 

1.69-1.66 (m, 3H), 1.61 (s, 3H). 

13C NMR (75 MHz, CD2Cl2) δ 172.4, 146.0, 142.7, 132.1, 124.1, 118.8, 98.7, 61.8, 39.9, 32.5, 29.4, 

26.7, 25.7, 17.7, 16.5. 

IR (film): ν (cm1) 2968, 2920, 2857, 2102, 1733, 1629, 1441, 1379, 1277, 1169, 1048, 955, 846, 634. 

HRMS (ESI, m/z) calcd for C15H23N3O2Na [M+Na]+: 300.1682, found: 300.1679. 

 

5.5.3 Experimental and Characterization Data of Novel Products 

 

 

(3,5-Dimethyl-1H-pyrazol-1-yl)((2R,3R)-2,5-diphenyl-3,4-dihydro-2H-pyrrol-3-yl)methanone 

(32a)  

As shown in Table 16 entry 1, the reaction of (E)-1-(3,5-dimethyl-1H-pyrazol-1-yl)-3- 

phenylprop-2-en-1-one 30a (22.6 mg, 0.10 mmol), (1-azidovinyl)benzene 31a (18.2 mg, 1.25 equiv) 

and Λ-RhS (6.9 mg, 8 mol%) in acetone (0.5 mL, 0.2 M) under nitrogen atmosphere (degassed with 

freeze-pump-thaw) with blue LEDs for 18 hours, afforded 32a as a white solid (54% NMR yield).  

Only one single diastereoisomer was observed through 1H NMR of crude materials. Enantiomeric 

excess of 32a was established by HPLC analysis using a Chiralpak AS-H column, ee = 86% (HPLC: 

AS-H, 254 nm, n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 40 C, tr (major) = 5.2 min, tr 

(minor) = 8.6 min). []D
22 = –37.6 (c 0.5, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.99-7.95 (m, 2H), 7.50-7.42 (m, 3H), 7.37-7.30 (m, 4H), 7.28-7.23 (m, 

1H), 5.99-5.97 (m, 1H), 5.81-5.76 (m, 1H), 4.43 (ddd, J1 = 9.5 Hz, J2 = 6.5 Hz, J3 = 6.0 Hz, 1H), 3.66 

(ddd, J1 = 17.5 Hz, J2 = 10.0 Hz, J3 = 2.0 Hz, 1H), 3.40 (ddd, J1 = 17.0 Hz, J2 = 7.0 Hz, J3 = 1.5 Hz, 

1H), 2.57 (d, J = 1.0 Hz, 3H), 2.19 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 173.9, 171.5, 152.2, 144.3, 142.7, 133.7, 130.9, 128.5, 128.4, 128.0, 

127.2, 127.0, 111.4, 78.3, 51.1, 40.5, 14.5, 13.8. 
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IR (film): ν (cm1) 3028, 2925, 1713, 1621, 1581, 1489, 1437, 1408, 1375, 1337, 1316, 1250, 1168, 

1139, 1010, 958, 917, 864, 801, 759, 695, 613. 

HRMS (ESI, m/z) calcd for C22H22N3O [M+H]+: 344.1757, found: 344.1757. 

 

 

((2R,3R)-2,5-Diphenyl-3,4-dihydro-2H-pyrrol-3-yl)(1H-pyrazol-1-yl)methanone (32b)  

As shown in Table 16 entry 2, the reaction of 3-phenyl-1-(1H-pyrazol-1-yl)prop-2-en-1-one 30b (19.8 

mg, 0.10 mmol), (1-azidovinyl)benzene 31a (18.2 mg, 1.25 equiv) and Λ-RhS (6.9 mg, 8 mol%) in 

acetone (0.5 mL, 0.2 M) under nitrogen atmosphere (degassed with freeze-pump-thaw) with blue 

LEDs for 24 hours, afforded 32b as a white solid (75% NMR yield). 

Only one single diastereoisomer was observed through 1H NMR of crude materials. Enantiomeric 

excess of 32b was established by HPLC analysis using a Chiralpak AS-H column, ee = 72% (HPLC: 

AS-H, 254 nm, n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 40 C, tr (major) = 16.2 min, tr 

(minor) = 7.5 min). []D
22 = –32.4 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 8.31 (d, J = 2.7 Hz, 1H), 7.99-7.94 (m, 2H), 7.70 (d, J = 0.9 Hz, 1H), 

7.52-7.41 (m, 3H), 7.37-7.24 (m, 5H), 6.48 (dd, J1 = 2.7 Hz, J2 = 1.2 Hz, 1H), 5.83 (dt, J1 = 6.3 Hz, J2 

= 1.5 Hz, 1H), 4.46 (ddd, J1 = 9.9 Hz, J2 = 7.2 Hz, J3 = 6.6 Hz, 1H), 3.71 (ddd, J1 = 17.1 Hz, J2 = 9.6 

Hz, J3 = 1.8 Hz, 1H), 3.43 (ddd, J1 = 17.1 Hz, J2 = 7.2 Hz, J3 = 1.8 Hz, 1H). 

13C NMR (125 MHz, CDCl3) δ 172.5, 171.2, 144.2, 142.4, 133.6, 131.0, 128.7, 128.6, 128.0, 127.4, 

126.8, 110.0, 78.6, 50.0, 40.7. (Missing one 13C signal) 

IR (film): ν (cm1) 3124, 3091, 2924, 1719, 1613, 1573, 1535, 1491, 1448, 1419, 1381, 1312, 1270, 

1247, 1198, 1101, 1028, 946, 915, 863, 832, 802, 751, 689, 641, 595. 

HRMS (ESI, m/z) calcd for C20H18N3O [M+H]+: 316.1455, found: 316.1445. 

 

 

((2R,3R)-2,5-Diphenyl-3,4-dihydro-2H-pyrrol-3-yl)(3-phenyl-1H-pyrazol-1-yl)methanone (32c)  
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As shown in Table 16 entry 7, the reaction of (E)-3-phenyl-1-(3-phenyl-1H-pyrazol-1-yl) 

prop-2-en-1-one 30c (27.4 mg, 0.10 mmol), (1-azidovinyl)benzene 31a (18.2 mg, 1.25 equiv) and 

Λ-RhS (3.5 mg, 4 mol%) in CDCl3 (0.5 mL, 0.2 M) under nitrogen atmosphere (degassed with 

freeze-pump-thaw) with blue LEDs for 18 hours, afforded 32c as a white solid (80% NMR yield).  

Only one single diastereoisomer was observed through 1H NMR of crude materials. Enantiomeric 

excess of 32c was established by HPLC analysis using a Chiralpak OD-H column, ee = 92% (HPLC: 

OD-H, 254 nm, n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 25 C, tr (major) = 11.6 min, tr 

(minor) = 15.4 min). []D
22 = +36.4 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 8.36 (d, J = 3.0 Hz, 1H), 8.04-7.99 (m, 2H), 7.79-7.75 (m, 2H), 

7.53-7.35 (m, 10H), 7.34-7.29 (m, 1H), 6.83 (d, J = 2.5 Hz, 1H), 5.86-5.83 (m, 1H), 4.59 (ddd, J1 = 9.5 

Hz, J2 = 6.5 Hz, J3 = 6.0 Hz, 1H), 3.71 (ddd, J1 = 17.0 Hz, J2 = 10.5 Hz, J3 = 2.0 Hz, 1H), 3.59 (ddd, J1 

= 17.0 Hz, J2 = 6.5 Hz, J3 = 1.5 Hz, 1H). 

13C NMR (125 MHz, CDCl3) δ 172.3, 171.4, 155.5, 142.5, 133.6, 131.4, 130.9, 129.8, 129.2, 128.6, 

128.5, 128.0, 127.3, 126.9, 126.3, 107.7, 79.2, 49.8, 40.0. (Missing one 13C signal) 

IR (film): ν (cm1) 3059, 3031, 1719, 1619, 1540, 1450, 1407, 1344, 1230, 1077, 1036, 944, 908, 799, 

756, 688, 613, 555. 

HRMS (ESI, m/z) calcd for C26H22N3O [M+H]+: 392.1757, found: 392.1754. 

 

 

((2R,3R)-2,5-Diphenyl-3,4-dihydro-2H-pyrrol-3-yl)(3-methyl-1H-pyrazol-1-yl)methanone (32d)  

As shown in Table 16 entry 8, the reaction of (E)-1-(3-methyl-1H-pyrazol-1-yl)-3- 

phenylprop-2-en-1-one 30d (21.2 mg, 0.10 mmol), (1-azidovinyl)benzene 31a (18.2 mg, 1.25 equiv) 

and Λ-RhS (3.5 mg, 4 mol%) in CDCl3 (1.0 mL, 0.1 M) under nitrogen atmosphere (degassed with 

freeze-pump-thaw) with blue LEDs for 24 hours, afforded 32d as a white solid (82% NMR yield).  

Only one single diastereoisomer was observed through 1H NMR of crude materials. Enantiomeric 

excess of 32d was established by HPLC analysis using a Chiralpak AS-H column, ee = 92% (HPLC: 

AS-H, 254 nm, n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 40 C, tr (major) = 13.2 min, tr 

(minor) = 9.3 min). []D
22 = –44.2 (c 1.0, CH2Cl2). 
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1H NMR (500 MHz, CDCl3) δ 8.18 (d, J = 3.0 Hz, 1H), 7.98-7.94 (m, 2H), 7.51-7.41 (m, 3H), 

7.36-7.30 (m, 4H), 7.29-7.24 (m, 1H), 6.28-6.26 (m, 1H), 5.81 (dt, J1 = 6.0 Hz, J2 = 2.0 Hz, 1H), 4.39 

(ddd, J1 = 10.0 Hz, J2 = 7.5 Hz, J3 = 6.5 Hz, 1H), 3.70 (ddd, J1 = 16.5 Hz, J2 = 9.5 Hz, J3 = 1.5 Hz, 

1H), 3.41 (ddd, J1 = 17.0 Hz, J2 = 7.0 Hz, J3 = 1.5 Hz, 1H), 2.28 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 172.0, 171.2, 154.1, 142.5, 133.6, 130.9, 129.3, 128.52, 128.46, 128.0, 

127.3, 126.9, 110.8, 78.5, 50.0, 40.7, 13.9. 

IR (film): ν (cm1) 3134, 2923, 1720, 1616, 1551, 1442, 1407, 1365, 1334, 1287, 1248, 1201, 1054, 

1016, 951, 899, 862, 768, 691, 609, 550. 

HRMS (ESI, m/z) calcd for C21H20N3O [M+H]+: 330.1601, found: 330.1597. 

 

 

((2R,3R)-2,5-Diphenyl-3,4-dihydro-2H-pyrrol-3-yl)(3-(4-fluorophenyl)-1H-pyrazol-1-yl) 

methanone (32e)  

As shown in Table 16 entry 9, the reaction of (E)-1-(3-(4-fluorophenyl)-1H-pyrazol-1-yl)-3- 

phenylprop-2-en-1-one 30e (29.2 mg, 0.10 mmol), (1-azidovinyl)benzene 31a (18.2 mg, 1.25 equiv) 

and Λ-RhS (3.5 mg, 4 mol%) in CDCl3 (1.0 mL, 0.1 M) under nitrogen atmosphere (degassed with 

freeze-pump-thaw) with blue LEDs for 24 hours, afforded 32e as a white solid (80% NMR yield).  

Only one single diastereoisomer was observed through 1H NMR of crude materials. Enantiomeric 

excess of 32e was established by HPLC analysis using a Chiralcel OJ-H column, ee = 92% (HPLC: 

OJ-H, 254 nm, n-hexane/isopropanol = 60:40, flow rate 1 mL/min, 40 C, tr (major) = 17.4 min, tr 

(minor) = 11.6 min). []D
22 = +36.6 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 8.33 (d, J = 3.0 Hz, 1H), 8.01-7.96 (m, 2H), 7.72-7.66 (m, 2H), 

7.54-7.43 (m, 3H), 7.37-7.27 (m, 5H), 7.12-7.05 (m, 2H), 6.77 (d, J = 3.0 Hz, 1H), 5.78 (dt, J1 = 6.0 

Hz, J2 = 1.5 Hz, 1H), 4.55 (ddd, J1 = 10.0 Hz, J2 = 7.0 Hz, J3 = 6.0 Hz, 1H), 3.68 (ddd, J1 = 17.5 Hz, J2 

= 10.0 Hz, J3 = 2.0 Hz, 1H), 3.59 (ddd, J1 = 17.0 Hz, J2 = 6.5 Hz, J3 = 1.5 Hz, 1H). 

13C NMR (125 MHz, CDCl3) δ 172.3, 171.4, 163.4 (d, J = 247.4 Hz), 154.6, 142.5, 133.6, 131.0, 

130.0, 128.6, 128.5, 128.1 (d, J = 8.4 Hz), 128.0, 127.7 (d, J = 3.1 Hz), 127.4, 127.0, 115.7 (d, J = 

21.5 Hz), 107.6, 79.4, 49.9, 40.1. 
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IR (film): ν (cm1) 3029, 2887, 1714, 1607, 1511, 1432, 1399, 1333, 1282, 1224, 1156, 1092, 1044, 

936, 909, 837, 759, 691, 616, 555. 

HRMS (ESI, m/z) calcd for C26H21FN3O [M+H]+: 410.1663, found: 410.1658. 

 

 

((2R,3R)-2,5-Diphenyl-3,4-dihydro-2H-pyrrol-3-yl)(3-(4-methoxyphenyl)-1H-pyrazol-1-yl) 

methanone (32f)  

As shown in Table 16 entry 10, the reaction of (E)-1-(3-(4-methoxyphenyl)-1H-pyrazol-1-yl)-3- 

phenylprop-2-en-1-one 30f (30.4 mg, 0.10 mmol), (1-azidovinyl)benzene 31a (18.2 mg, 1.25 equiv) 

and Λ-RhS (3.5 mg, 4 mol%) in CDCl3 (1.0 mL, 0.1 M) under nitrogen atmosphere (degassed with 

freeze-pump-thaw) with blue LEDs for 24 hours, afforded 32f as a white solid (92% NMR yield, 90% 

isolated yield).  

Only one single diastereoisomer was observed through 1H NMR of crude materials. Enantiomeric 

excess of 32f was established by HPLC analysis using a Chiralpak OD-H column, ee = 94% (HPLC: 

OD-H, 254 nm, n-hexane/isopropanol = 95:5, flow rate 1 mL/min, 40 C, tr (major) = 20.3 min, tr 

(minor) = 24.0 min). []D
22 = +14.4 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 8.31 (d, J = 3.0 Hz, 1H), 8.02-7.97 (m, 2H), 7.71-7.64 (m, 2H), 

7.53-7.43 (m, 3H), 7.39-7.32 (m, 4H), 7.31-7.27 (m, 1H), 6.96-6.91 (m, 2H), 6.75 (d, J = 3.0 Hz, 1H), 

5.82-5.78 (m, 1H), 4.55 (ddd, J1 = 9.5 Hz, J2 = 6.5 Hz, J3 = 6.0 Hz, 1H), 3.86 (s, 3H), 3.69 (ddd, J1 = 

17.0 Hz, J2 = 9.5 Hz, J3 = 2.0 Hz, 1H), 3.57 (ddd, J1 = 17.0 Hz, J2 = 6.5 Hz, J3 = 1.5 Hz, 1H). 

13C NMR (125 MHz, CDCl3) δ 172.3, 171.5, 160.5, 155.3, 142.5, 133.6, 131.0, 129.8, 128.54, 128.52, 

128.0, 127.7, 127.4, 127.0, 124.2, 114.1, 107.5, 79.2, 55.3, 49.9, 40.1. 

IR (film): ν (cm1) 2921, 2854, 1714, 1608, 1512, 1440, 1397, 1345, 1284, 1247, 1228, 1175, 1089, 

1020, 937, 901, 836, 809, 770, 726, 691, 614, 558. 

HRMS (ESI, m/z) calcd for C27H24N3O2 [M+H]+: 422.1863, found: 422.1857. 
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(3-(4-Methoxyphenyl)-1H-pyrazol-1-yl)((2R,3R)-2-(4-methoxyphenyl)-5-phenyl-3,4-dihydro-2H-

pyrrol-3-yl)methanone (32g)  

According to the general procedure, the reaction of (E)-3-(4-methoxyphenyl)-1-(3-(4- 

methoxyphenyl)-1H-pyrazol-1-yl)prop-2-en-1-one 30g (33.4 mg, 0.10 mmol), (1-azidovinyl)benzene 

31a (18.2 mg, 1.25 equiv) and Λ-RhS (3.5 mg, 4 mol%) in CDCl3 (1.0 mL, 0.1 M) under open air 

atmosphere with blue LEDs for 24 hours, afforded 32g as a white solid (40.2 mg, 89% isolated yield). 

Only one single diastereoisomer was observed through 1H NMR of crude materials. Enantiomeric 

excess of 32g was established by HPLC analysis using a Chiralpak OD-H column, ee = 99% (HPLC: 

OD-H, 254 nm, n-hexane/isopropanol = 95:5, flow rate 1 mL/min, 40 C, tr (major) = 29.4 min, tr 

(minor) = 36.1 min). []D
22 = +51.6 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 8.30 (d, J = 2.7 Hz, 1H), 8.01-7.95 (m, 2H), 7.72-7.65 (m, 2H), 

7.52-7.41 (m, 3H), 7.32-7.26 (m, 2H), 6.97-6.84 (m, 4H), 6.75 (d, J = 2.7 Hz, 1H), 5.75-5.71 (m, 1H), 

4.57-4.47 (m, 1H), 3.85 (s, 3H), 3.79 (s, 3H), 3.66 (ddd, J1 = 17.1 Hz, J2 = 9.6 Hz, J3 = 2.1 Hz, 1H), 

3.56 (ddd, J1 = 17.1 Hz, J2 = 7.2 Hz, J3 = 1.5 Hz, 1H). 

13C NMR (75 MHz, CDCl3) δ 172.4, 171.2, 160.5, 159.0, 155.3, 134.8, 133.7, 130.9, 129.8, 128.5, 

128.1, 128.0, 127.7, 124.3, 114.1, 113.9, 107.5, 78.9, 55.32, 55.26, 50.0, 40.0. 

IR (film): ν (cm1) 3057, 2962, 2911, 1713, 1610, 1511, 1435, 1405, 1352, 1334, 1300, 1246, 1173, 

1029, 938, 905, 826, 771, 733, 692, 564. 

HRMS (ESI, m/z) calcd for C28H26N3O3 [M+H]+: 452.1969, found: 452.1963. 

 

 

((2R,3R)-2-(4-((tert-Butyldimethylsilyl)oxy)phenyl)-5-phenyl-3,4-dihydro-2H-pyrrol-3-yl)(3-(4-m

ethoxyphenyl)-1H-pyrazol-1-yl)methanone (32h)  
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According to the general procedure, the reaction of (E)-3-(4-((tert-butyldimethylsilyl)oxy)phenyl)- 

1-(3-(4-methoxyphenyl)-1H-pyrazol-1-yl)prop-2-en-1-one 30h (43.4 mg, 0.10 mmol), 

(1-azidovinyl)benzene 31a (18.2 mg, 1.25 equiv) and Λ-RhS (3.5 mg, 4 mol%) in CDCl3 (1.0 mL, 0.1 

M) under open air atmosphere with blue LEDs for 24 hours, afforded 32h as a yellow oil (39.0 mg, 

71% isolated yield). 

Only one single diastereoisomer was observed through 1H NMR of crude materials. Enantiomeric 

excess of 32h was established by HPLC analysis using a Chiralpak OD-H column, ee = 99% (HPLC: 

OD-H, 254 nm, n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 40 C, tr (major) = 5.7 min, tr 

(minor) = 6.5 min). []D
22 = +27.6 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 8.30 (d, J = 3.0 Hz, 1H), 8.01-7.96 (m, 2H), 7.74-7.67 (m, 2H), 

7.52-7.41 (m, 3H), 7.25-7.18 (m, 2H), 6.98-6.91 (m, 2H), 6.84-6.78 (m, 2H), 6.75 (d, J = 2.7 Hz, 1H), 

5.76-5.70 (m, 1H), 4.57-4.47 (m, 1H), 3.86 (s, 3H), 3.67 (ddd, J1 = 17.1 Hz, J2 = 9.3 Hz, J3 = 1.8 Hz, 

1H), 3.55 (ddd, J1 = 16.8 Hz, J2 = 6.6 Hz, J3 = 2.1 Hz, 1H), 0.99 (s, 9H), 0.19 (s, 3H), 0.18 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 172.4, 171.1, 160.5, 155.4, 155.0, 135.3, 133.8, 130.9, 129.8, 128.5, 

128.03, 128.01, 127.7, 124.3, 120.0, 114.1, 107.4, 79.0, 55.3, 49.9, 40.0, 25.7, 18.2, -4.4, -4.5. 

IR (film): ν (cm1) 2954, 2932, 2893, 2857, 1719, 1611, 1509, 1435, 1403, 1354, 1335, 1247, 1173, 

1097, 1032, 908, 834, 801, 771, 730, 690, 559. 

HRMS (ESI, m/z) calcd for C33H38N3O3Si [M+H]+: 552.2677, found: 552.2669. 

 

 

(3-(4-Methoxyphenyl)-1H-pyrazol-1-yl)((2R,3R)-5-phenyl-2-(p-tolyl)-3,4-dihydro-2H-pyrrol-3-yl)

methanone (32i)  

According to the general procedure, the reaction of (E)-1-(3-(4-methoxyphenyl)-1H-pyrazol-1-yl)- 

3-(p-tolyl)prop-2-en-1-one 30i (31.8 mg, 0.10 mmol), (1-azidovinyl)benzene 31a (18.2 mg, 1.25 equiv) 

and Λ-RhS (3.5 mg, 4 mol%) in CDCl3 (1.0 mL, 0.1 M) under open air atmosphere with blue LEDs 

for 24 hours, afforded 32i as a white solid (38.1 mg, 87% isolated yield). 
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Only one single diastereoisomer was observed through 1H NMR of crude materials. Enantiomeric 

excess of 32i was established by HPLC analysis using a Chiralpak IC column, ee = 97% (HPLC: IC, 

254 nm, n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 40 C, tr (major) = 14.9 min, tr (minor) = 

13.8 min). []D
22 = +42.4 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 8.30 (d, J = 3.0 Hz, 1H), 8.00-7.96 (m, 2H), 7.69-7.65 (m, 2H), 

7.51-7.43 (m, 3H), 7.26-7.23 (m, 2H), 7.17-7.12 (m, 2H), 6.95-6.90 (m, 2H), 6.74 (d, J = 3.0 Hz, 1H), 

5.77-5.72 (m, 1H), 4.57-4.50 (m, 1H), 3.86 (s, 3H), 3.66 (ddd, J1 = 17.0 Hz, J2 = 9.5 Hz, J3 = 2.0 Hz, 

1H), 3.60-3.52 (m, 1H), 2.34 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 172.4, 171.3, 160.5, 155.3, 139.6, 137.0, 133.7, 130.9, 129.8, 129.2, 

128.5, 128.1, 127.7, 126.9, 124.3, 114.1, 107.5, 79.1, 55.3, 50.0, 40.0, 21.1. 

IR (film): ν (cm1) 3058, 2953, 2914, 1717, 1613, 1511, 1434, 1398, 1339, 1292, 1245, 1176, 1091, 

1027, 934, 902, 846, 813, 769, 728, 688, 559. 

HRMS (ESI, m/z) calcd for C28H26N3O2 [M+H]+: 436.2020, found: 436.2013. 

 

 

((2R,3R)-2-(4-Fluorophenyl)-5-phenyl-3,4-dihydro-2H-pyrrol-3-yl)(3-(4-methoxyphenyl)-1H- 

pyrazol-1-yl)methanone (32j)  

According to the general procedure, the reaction of (E)-3-(4-fluorophenyl)-1-(3-(4-methoxyphenyl)- 

1H-pyrazol-1-yl)prop-2-en-1-one 30j (32.2 mg, 0.10 mmol), (1-azidovinyl)benzene 31a (18.2 mg, 

1.25 equiv) and Λ-RhS (3.5 mg, 4 mol%) in CDCl3 (1.0 mL, 0.1 M) under open air atmosphere with 

blue LEDs for 24 hours, afforded 32j as a white solid (39.0 mg, 89% isolated yield). 

Only one single diastereoisomer was observed through 1H NMR of crude materials. Enantiomeric 

excess of 32j was established by HPLC analysis using a Chiralpak OD-H column, ee = 97% (HPLC: 

OD-H, 254 nm, n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 40 C, tr (major) = 11.8 min, tr 

(minor) = 14.6 min). []D
22 = +33.4 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 8.31 (d, J = 2.7 Hz, 1H), 8.00-7.95 (m, 2H), 7.70-7.64 (m, 2H), 

7.53-7.42 (m, 3H), 7.37-7.30 (m, 2H), 7.07-6.98 (m, 2H), 6.98-6.90 (m, 2H), 6.76 (d, J = 2.7 Hz, 1H), 



Chapter 5. Experimental Part 

311 
 

5.78-5.72 (m, 1H), 4.56-4.45 (m, 1H), 3.86 (s, 3H), 3.68 (ddd, J1 = 17.4 Hz, J2 = 9.3 Hz, J3 = 2.1 Hz, 

1H), 3.57 (ddd, J1 = 17.1 Hz, J2 = 6.9 Hz, J3 = 1.2 Hz, 1H). 

13C NMR (75 MHz, CDCl3) δ 172.2, 171.7, 162.2 (d, J = 243.8 Hz), 160.6, 155.5, 138.4 (d, J = 3.1 

Hz), 133.6, 131.1, 129.9, 128.61 (d, J = 8.0 Hz), 128.59, 128.1, 127.7, 124.2, 115.3 (d, J = 21.2 Hz), 

114.2, 107.6, 78.6, 55.3, 50.0, 40.1. 

IR (film): ν (cm1) 3138, 3061, 2964, 2913, 1719, 1608, 1506, 1400, 1336, 1246, 1224, 1177, 1028, 

936, 904, 832, 772, 727, 689, 561. 

HRMS (ESI, m/z) calcd for C27H23FN3O2 [M+H]+: 440.1769, found: 440.1762. 

 

 

((2R,3R)-2-(4-Bromophenyl)-5-phenyl-3,4-dihydro-2H-pyrrol-3-yl)(3-(4-methoxyphenyl)-1H- 

pyrazol-1-yl)methanone (32k)  

According to the general procedure, the reaction of (E)-3-(4-bromophenyl)-1-(3-(4-methoxyphenyl)- 

1H-pyrazol-1-yl)prop-2-en-1-one 30k (38.3 mg, 0.10 mmol), (1-azidovinyl)benzene 31a (18.2 mg, 

1.25 equiv) and Λ-RhS (3.5 mg, 4 mol%) in CDCl3 (1.0 mL, 0.1 M) under open air atmosphere with 

blue LEDs for 24 hours, afforded 32k as a white solid (43.6 mg, 87% isolated yield). 

Only one single diastereoisomer was observed through 1H NMR of crude materials. Enantiomeric 

excess of 32k was established by HPLC analysis using a Chiralpak OD-H column, ee = 97% (HPLC: 

OD-H, 254 nm, n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 40 C, tr (major) = 13.7 min, tr 

(minor) = 15.8 min). []D
22 = +50.8 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 8.31 (d, J = 3.0 Hz, 1H), 8.01-7.94 (m, 2H), 7.67-7.60 (m, 2H), 

7.55-7.42 (m, 5H), 7.27-7.21 (m, 2H), 7.00-6.92 (m, 2H), 6.76 (d, J = 3.0 Hz, 1H), 5.73-5.68 (m, 1H), 

4.51 (ddd, J1 = 9.0 Hz, J2 = 7.5 Hz, J3 = 6.3 Hz, 1H), 3.87 (s, 3H), 3.67 (ddd, J1 = 17.1 Hz, J2 = 9.3 Hz, 

J3 = 1.8 Hz, 1H), 3.57 (ddd, J1 = 17.4 Hz, J2 = 7.5 Hz, J3 = 1.8 Hz, 1H). 

13C NMR (75 MHz, CDCl3) δ 172.00, 171.96, 160.6, 155.5, 141.8, 133.5, 131.6, 131.1, 129.8, 128.8, 

128.6, 128.0, 127.7, 124.1, 121.3, 114.2, 107.6, 78.8, 55.3, 49.9, 40.0. 
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IR (film): ν (cm1) 2953, 2921, 1709, 1612, 1512, 1431, 1400, 1336, 1295, 1239, 1173, 1017, 945, 905, 

834, 767, 727, 692, 620, 555. 

HRMS (ESI, m/z) calcd for C27H23BrN3O2 [M+H]+: 500.0968, found: 500.0961. 

 

 

(3-(4-Methoxyphenyl)-1H-pyrazol-1-yl)((2R,3R)-5-phenyl-2-(4-(trifluoromethyl)phenyl)-3,4-dihy

dro-2H-pyrrol-3-yl)methanone (32l)  

According to the general procedure, the reaction of (E)-1-(3-(4-methoxyphenyl)-1H-pyrazol-1-yl)- 

3-(4-(trifluoromethyl)phenyl)prop-2-en-1-one 30l (37.2 mg, 0.10 mmol), (1-azidovinyl)benzene 31a 

(18.2 mg, 1.25 equiv) and Λ-RhS (3.5 mg, 4 mol%) in CDCl3 (1.0 mL, 0.1 M) under open air 

atmosphere with blue LEDs for 24 hours, afforded 32l as a white solid (44.2 mg, 90% isolated yield). 

Only one single diastereoisomer was observed through 1H NMR of crude materials. Enantiomeric 

excess of 32l was established by HPLC analysis using a Chiralpak AD-H column, ee = 95% (HPLC: 

AD-H, 254 nm, n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 40 C, tr (major) = 11.3 min, tr 

(minor) = 13.1 min). []D
22 = +27.6 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 8.32 (d, J = 3.0 Hz, 1H), 8.01-7.96 (m, 2H), 7.62-7.56 (m, 4H), 

7.55-7.49 (m, 1H), 7.49-7.44 (m, 4H), 6.94-6.90 (m, 2H), 6.76 (d, J = 2.5 Hz, 1H), 5.81-5.77 (m, 1H), 

4.53 (ddd, J1 = 9.5 Hz, J2 = 7.0 Hz, J3 = 6.5 Hz, 1H), 3.85 (s, 3H), 3.69 (ddd, J1 = 17.5 Hz, J2 = 9.5 Hz, 

J3 = 2.0 Hz, 1H), 3.64 (ddd, J1 = 17.0 Hz, J2 = 7.5 Hz, J3 = 1.5 Hz, 1H). 

13C NMR (125 MHz, CDCl3) δ 172.3, 171.9, 160.6, 155.5, 146.6, 133.3, 131.3, 130.0, 129.6 (q, J = 

32.0 Hz), 128.6, 128.1, 127.6, 127.4, 125.5 (q, J = 3.8 Hz), 124.2 (q, J = 270.4 Hz), 123.9, 114.1, 

107.8, 78.9, 55.3, 49.8, 40.1. 

IR (film): ν (cm1) 3061, 2933, 1718, 1614, 1514, 1405, 1355, 1323, 1247, 1165, 1114, 1065, 1024, 

908, 834, 800, 767, 691, 601. 

HRMS (ESI, m/z) calcd for C28H23F3N3O2 [M+H]+: 490.1737, found: 490.1729. 
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(3-(4-Methoxyphenyl)-1H-pyrazol-1-yl)((2R,3R)-2-(3-methoxyphenyl)-5-phenyl-3,4-dihydro-2H-

pyrrol-3-yl)methanone (32m)  

According to the general procedure, the reaction of (E)-3-(3-methoxyphenyl)-1-(3-(4- methoxyphenyl) 

-1H-pyrazol-1-yl)prop-2-en-1-one 30m (33.4 mg, 0.10 mmol), (1-azidovinyl)benzene 31a (18.2 mg, 

1.25 equiv) and Λ-RhS (3.5 mg, 4 mol%) in CDCl3 (1.0 mL, 0.1 M) under open air atmosphere with 

blue LEDs for 24 hours, afforded 32m as a yellow solid (38.0 mg, 84% isolated yield). 

Only one single diastereoisomer was observed through 1H NMR of crude materials. Enantiomeric 

excess of 32m was established by HPLC analysis using a Chiralpak AD-H column, ee = 98% (HPLC: 

AD-H, 254 nm, n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 40 C, tr (major) = 22.7 min, tr 

(minor) = 15.1 min). []D
22 = +11.8 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 8.31 (d, J = 2.7 Hz, 1H), 8.02-7.95 (m, 2H), 7.73-7.66 (m, 2H), 

7.54-7.41 (m, 3H), 7.26 (t, J = 7.8 Hz, 1H), 6.99-6.90 (m, 4H), 6.87-6.80 (m, 1H), 6.75 (d, J = 3.0 Hz, 

1H), 5.80-5.76 (m, 1H), 4.61-4.51 (m, 1H), 3.85 (s, 3H), 3.75 (s, 3H), 3.69 (ddd, J1 = 17.4 Hz, J2 = 9.9 

Hz, J3 = 1.8 Hz, 1H), 3.55 (ddd, J1 = 17.1 Hz, J2 = 6.9 Hz, J3 = 1.8 Hz, 1H). 

13C NMR (75 MHz, CDCl3) δ 172.3, 171.4, 160.6, 159.8, 155.4, 144.2, 133.7, 131.0, 129.8, 129.5, 

128.5, 128.0, 127.7, 124.3, 119.3, 114.1, 112.8, 112.7, 107.5, 79.1, 55.3, 55.2, 49.8, 40.3. 

IR (film): ν (cm1) 3056, 2955, 2915, 1717, 1610, 1583, 1511, 1488, 1436, 1400, 1331, 1242, 1174, 

1149, 1028, 943, 903, 833, 802, 768, 729, 692, 558. 

HRMS (ESI, m/z) calcd for C28H26N3O3 [M+H]+: 452.1969, found: 452.1962. 

 

 

(3-(4-Methoxyphenyl)-1H-pyrazol-1-yl)((2R,3R)-2-(2-methoxyphenyl)-5-phenyl-3,4-dihydro-2H-

pyrrol-3-yl)methanone (32n)  



Chapter 5. Experimental Part 

314 
 

According to the general procedure, the reaction of (E)-3-(3-methoxyphenyl)-1-(3- 

(4-methoxyphenyl)-1H-pyrazol-1-yl)prop-2-en-1-one 30n (33.4 mg, 0.10 mmol), 

(1-azidovinyl)benzene 31a (18.2 mg, 1.25 equiv) and Λ-RhS (3.5 mg, 4 mol%) in CDCl3 (1.0 mL, 0.1 

M) under open air atmosphere with blue LEDs for 24 hours, afforded 32n as a yellow oil (42.3 mg, 

94% isolated yield). 

Only one single diastereoisomer was observed through 1H NMR of crude materials. Enantiomeric 

excess of 32n was established by HPLC analysis using a Chiralpak AD-H column, ee = 94% (HPLC: 

AD-H, 254 nm, n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 40 C, tr (major) = 13.5 min, tr 

(minor) = 11.5 min). []D
22 = +60.4 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 8.38 (d, J = 3.0 Hz, 1H), 8.02-7.95 (m, 2H), 7.62-7.55 (m, 2H), 

7.54-7.42 (m, 3H), 7.38 (dd, J1 = 7.5 Hz, J2 = 1.5 Hz, 1H), 7.24 (td, J1 = 7.8 Hz, J2 = 1.8 Hz, 1H), 6.97 

(dd, J1 = 7.5 Hz, J2 = 0.9 Hz, 1H), 6.93-6.84 (m, 2H), 6.78-6.72 (m, 2H), 6.05-6.00 (m, 1H), 4.62-4.52 

(m, 1H), 3.84 (s, 3H), 3.64 (ddd, J1 = 17.4 Hz, J2 = 10.5 Hz, J3 = 2.4 Hz, 1H), 3.53 (ddd, J1 = 17.1 Hz, 

J2 = 7.5 Hz, J3 = 1.8 Hz, 1H), 3.42 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 173.9, 170.8, 160.4, 156.4, 154.8, 134.0, 131.7, 130.8, 129.5, 128.5, 

128.1, 128.0, 127.6, 127.0, 124.4, 120.5, 114.1, 110.0, 107.3, 75.8, 55.3, 54.7, 48.0, 41.5. 

IR (film): ν (cm1) 3059, 3002, 2936, 1719, 1611, 1513, 1490, 1457, 1435, 1403, 1357, 1334, 1292, 

1241, 1174, 1098, 1027, 953, 907, 838, 803, 756, 729, 692. 

HRMS (ESI, m/z) calcd for C28H26N3O3 [M+H]+: 452.1969, found: 452.1961. 

 

 

(3-(4-Methoxyphenyl)-1H-pyrazol-1-yl)((2R,3R)-5-phenyl-2-(thiophen-2-yl)-3,4-dihydro-2H- 

pyrrol-3-yl)methanone (32o)  

According to the general procedure, the reaction of (E)-1-(3-(4-methoxyphenyl)-1H-pyrazol-1-yl)- 

3-(thiophen-2-yl)prop-2-en-1-one 30o (31.0 mg, 0.10 mmol), (1-azidovinyl)benzene 31a (18.2 mg, 

1.25 equiv) and Λ-RhS (3.5 mg, 4 mol%) in CDCl3 (1.0 mL, 0.1 M) under open air atmosphere with 

blue LEDs for 24 hours, afforded 32o as a yellow solid (32.9 mg, 77% isolated yield). 
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Only one single diastereoisomer was observed through 1H NMR of crude materials. Enantiomeric 

excess of 32o was established by HPLC analysis using a Chiralpak OD-H column, ee = 90% (HPLC: 

OD-H, 254 nm, n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 40 C, tr (major) = 15.1 min, tr 

(minor) = 17.4 min). []D
22 = +5.6 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 8.31 (d, J = 3.0 Hz, 1H), 8.00-7.94 (m, 2H), 7.82-7.74 (m, 2H), 

7.54-7.41 (m, 3H), 7.24 (dd, J1 = 5.1 Hz, J2 = 1.2 Hz, 1H), 7.12-7.07 (m, 1H), 7.02-6.93 (m, 3H), 6.77 

(d, J = 3.0 Hz, 1H), 6.09-6.05 (m, 1H), 4.73-4.64 (m, 1H), 3.86 (s, 3H), 3.71 (ddd, J1 = 17.1 Hz, J2 = 

9.6 Hz, J3 = 1.8 Hz, 1H), 3.55 (ddd, J1 = 17.1 Hz, J2 = 6.9 Hz, J3 = 1.2 Hz, 1H). 

13C NMR (75 MHz, CDCl3) δ 171.9, 171.5, 160.6, 155.6, 145.9, 133.5, 131.1, 129.9, 128.5, 128.1, 

127.8, 126.8, 124.5, 124.32, 124.25, 114.2, 107.7, 75.0, 55.3, 50.0, 40.1. 

IR (film): ν (cm1) 2956, 2935, 1714, 1607, 1513, 1434, 1399, 1346, 1288, 1233, 1177, 1087, 1020, 

968, 898, 835, 807, 771, 695, 557. 

HRMS (ESI, m/z) calcd for C25H22N3O2S [M+H]+: 428.1427, found: 428.1422. 

 

 

(3-(4-Methoxyphenyl)-1H-pyrazol-1-yl)((2R,3R)-2-(1-methyl-1H-indol-3-yl)-5-phenyl-3,4- 

dihydro-2H-pyrrol-3-yl)methanone (32p)  

According to the general procedure with some modifications, the reaction of 

(E)-1-(3-(4-methoxyphenyl)-1H-pyrazol-1-yl)-3-(1-methyl-1H-indol-3-yl)prop-2-en-1-one 30p (35.7 

mg, 0.10 mmol), (1-azidovinyl)benzene 31a (18.2 mg, 1.25 equiv) and Λ-RhS (6.9 mg, 8 mol%) in 

CDCl3 (2.0 mL, 0.05 M) under nitrogen atmosphere (degassed with freeze-pump-thaw) with blue 

LEDs for 24 hours, afforded 32p as a yellow oil (42.0 mg, 88% isolated yield). 

Only one single diastereoisomer was observed through 1H NMR of crude materials. Enantiomeric 

excess of 32p was established by HPLC analysis using a Chiralpak OD-H column, ee = 97% (HPLC: 

OD-H, 254 nm, n-hexane/isopropanol = 60:40, flow rate 1 mL/min, 40 C, tr (major) = 20.4 min, tr 

(minor) = 25.5 min). []D
22 = +20.4 (c 1.0, CH2Cl2). 



Chapter 5. Experimental Part 

316 
 

1H NMR (300 MHz, CDCl3) δ 8.31 (d, J = 3.0 Hz, 1H), 8.04-7.98 (m, 2H), 7.67 (d, J = 7.8 Hz, 1H), 

7.62-7.56 (m, 2H), 7.51-7.42 (m, 3H), 7.33-7.20 (m, 2H), 7.10-7.03 (m, 2H), 6.93-6.87 (m, 2H), 6.73 

(d, J = 2.7 Hz, 1H), 6.10-6.04 (m, 1H), 4.88-4.78 (m, 1H), 3.85 (s, 3H), 3.77 (ddd, J1 = 16.8 Hz, J2 = 

9.6 Hz, J3 = 1.8 Hz, 1H), 3.70 (s, 3H), 3.59 (ddd, J1 = 17.1 Hz, J2 = 7.2 Hz, J3 = 1.5 Hz, 1H). 

13C NMR (75 MHz, CDCl3) δ 172.9, 170.3, 160.4, 155.2, 137.6, 134.0, 130.8, 129.7, 128.5, 128.0, 

127.7, 126.8, 126.6, 124.3, 121.6, 119.8, 119.2, 115.7, 114.0, 109.2, 107.4, 73.2, 55.3, 48.6, 40.4, 32.6.  

IR (film): ν (cm1) 3147, 3056, 2932, 1716, 1612, 1513, 1433, 1402, 1332, 1293, 1244, 1176, 1095, 

1027, 904, 836, 800, 769, 730, 692, 644. 

HRMS (ESI, m/z) calcd for C30H27N4O2 [M+H]+: 475.2129, found: 475.2122. 

 

 

(3-(4-Methoxyphenyl)-1H-pyrazol-1-yl)((2R,3R)-2-(4-methoxyphenyl)-2-methyl-5-phenyl-3,4-dih

ydro-2H-pyrrol-3-yl)methanone (32q)  

According to the general procedure, the reaction of (E)-3-(4-methoxyphenyl)-1-(3-(4- 

methoxyphenyl)-1H-pyrazol-1-yl)but-2-en-1-one (E)-30q (34.8 mg, 0.10 mmol), (1-azidovinyl) 

benzene 31a (18.2 mg, 1.25 equiv) and Λ-RhS (3.5 mg, 4 mol%) in CDCl3 (1.0 mL, 0.1 M) under 

open air atmosphere with blue LEDs for 24 hours, afforded 32q as a yellow solid (42.6 mg, 91% 

isolated yield). 

Only one single diastereoisomer was observed through 1H NMR of crude materials. Enantiomeric 

excess of 32q was established by HPLC analysis using a Chiralpak AD-H column, ee = 98% (HPLC: 

AD-H, 254 nm, n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 40 C, tr (major) = 12.6 min, tr 

(minor) = 10.2 min). []D
22 = +210.4 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 8.31 (d, J = 2.7 Hz, 1H), 8.04-7.99 (m, 2H), 7.68-7.61 (m, 2H), 

7.52-7.42 (m, 5H), 6.98-6.92 (m, 2H), 6.90-6.83 (m, 2H), 6.77 (d, J = 2.7 Hz, 1H), 4.94 (dd, J1 = 9.0 

Hz, J2 = 5.1 Hz, 1H), 3.87 (s, 3H), 3.80 (dd, J1 = 17.1 Hz, J2 = 5.4 Hz, 1H), 3.79 (s, 3H), 3.28 (dd, J1 = 

17.1 Hz, J2 = 9.0 Hz, 1H), 1.58 (s, 3H). 
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13C NMR (75 MHz, CDCl3) δ 172.1, 170.0, 160.5, 158.4, 155.1, 140.0, 133.9, 130.8, 129.6, 128.5, 

128.1, 127.7, 126.9, 124.3, 114.1, 113.4, 107.5, 81.3, 55.3, 55.2, 52.0, 39.0, 24.4. 

IR (film): ν (cm1) 3061, 2962, 2934, 1715, 1612, 1511, 1436, 1402, 1351, 1335, 1295, 1241, 1176, 

1100, 1028, 911, 831, 767, 729, 692. 

HRMS (ESI, m/z) calcd for C29H28N3O3 [M+H]+: 466.2125, found: 466.2118. 

 

 

((2R,3R)-2-(3,5-Bis(trifluoromethyl)phenyl)-2-methyl-5-phenyl-3,4-dihydro-2H-pyrrol-3-yl)(3-(4-

methoxyphenyl)-1H-pyrazol-1-yl)methanone (32r)  

According to the general procedure with some modifications, the reaction of 

(E)-3-(3,5-bis(trifluoromethyl)phenyl)-1-(3-(4-methoxyphenyl)-1H-pyrazol-1-yl)but-2-en-1-one 30r 

(45.4 mg, 0.10 mmol), (1-azidovinyl)benzene 31a (18.2 mg, 1.25 equiv) and Λ-RhS (6.9 mg, 8 mol%) 

in CDCl3 (1.0 mL, 0.1 M) under nitrogen atmosphere (degassed with freeze-pump-thaw) with blue 

LEDs for 45 hours, afforded 32r as a yellow oil (28.4 mg, 50% isolated yield). 

Only one single diastereoisomer was observed through 1H NMR of crude materials. Enantiomeric 

excess of 32r was established by HPLC analysis using a Chiralpak AD-H column, ee = 97% (HPLC: 

AD-H, 254 nm, n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 40 C, tr (major) = 5.7 min, tr 

(minor) = 4.0 min). []D
22 = +199.8 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 8.33 (d, J = 2.7 Hz, 1H), 8.04-7.98 (m, 4H), 7.74 (s, 1H), 7.59-7.47 (m, 

5H), 6.95-6.89 (m, 2H), 6.79 (d, J = 3.0 Hz, 1H), 4.96 (dd, J1 = 9.0 Hz, J2 = 5.7 Hz, 1H), 3.87 (s, 3H), 

3.84 (dd, J1 = 17.4 Hz, J2 = 5.4 Hz, 1H), 3.31 (dd, J1 = 17.4 Hz, J2 = 9.0 Hz, 1H), 1.63 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 172.2, 170.9, 160.7, 155.7, 150.3, 133.3, 131.4, 131.3 (q, J = 33.3 Hz), 

129.7, 128.7, 128.2, 127.5, 126.3-126.2 (m), 123.7, 123.4 (q, J = 271.8 Hz), 121.1-120.9 (m), 114.1, 

108.0, 80.6, 55.3, 51.7, 39.1, 24.6. 

19F NMR (282 MHz, CDCl3) δ –63.45 (s, 6F). 

IR (film): ν (cm1) 2979, 2936, 1718, 1614, 1515, 1405, 1366, 1276, 1241, 1172, 1125, 1029, 936, 904, 

839, 767, 733, 684, 525. 
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HRMS (ESI, m/z) calcd for C30H24F6N3O2 [M+H]+: 572.1767, found: 572.1758. 

 

 

((1R,3'R)-6-Methoxy-5'-phenyl-3,3',4,4'-tetrahydro-2H-spiro[naphthalene-1,2'-pyrrol]-3'-yl)(3-(4

-methoxyphenyl)-1H-pyrazol-1-yl)methanone (32s)  

According to the general procedure, the reaction of (E)-2-(6-methoxy-3,4-dihydronaphthalen- 

1(2H)-ylidene)-1-(3-(4-methoxyphenyl)-1H-pyrazol-1-yl)ethan-1-one 30s (37.4 mg, 0.10 mmol), 

(1-azidovinyl)benzene 31a (18.2 mg, 1.25 equiv) and Λ-RhS (3.5 mg, 4 mol%) in CDCl3 (1.0 mL, 0.1 

M) under open air atmosphere with blue LEDs for 24 hours, afforded 32s as a yellow solid (46.2 mg, 

94% isolated yield). 

Only one single diastereoisomer was observed through 1H NMR of crude materials. Enantiomeric 

excess of 32s was established by HPLC analysis using a Chiralpak OD-H column, ee = 99.6% (HPLC: 

OD-H, 254 nm, n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 40 C, tr (major) = 8.1 min, tr 

(minor) = 6.7 min). []D
22 = +144.6 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 8.25 (br s, 1H), 7.97-7.92 (m, 2H), 7.49-7.41 (m, 3H), 7.25 (d, J = 9.0 

Hz, 1H), 7.22-7.17 (m, 2H), 6.92 (dd, J1 = 8.7 Hz, J2 = 3.0 Hz, 1H), 6.84-6.78 (m, 2H), 6.67 (d, J = 2.7 

Hz, 1H), 6.49 (d, J = 2.7 Hz, 1H), 5.03 (t, J = 9.0 Hz, 1H), 3.95 (dd, J1 = 17.1 Hz, J2 = 9.0 Hz, 1H), 

3.83 (s, 3H), 3.79 (s, 3H), 3.48 (dd, J1 = 17.4 Hz, J2 = 9.6 Hz, 1H), 2.77-2.64 (m, 1H), 2.45 (dt, J1 = 

16.5 Hz, J2 = 5.1 Hz, 1H), 1.95-1.81 (m, 3H), 1.22-1.06 (m, 1H). 

13C NMR (75 MHz, CDCl3) δ 171.7, 168.0, 160.4, 158.4, 154.9, 138.4, 134.0, 133.8, 130.7, 129.1, 

128.5, 128.0, 127.7, 124.1, 113.8, 113.4, 112.5, 107.5, 80.7, 55.2, 55.1, 53.3, 39.2, 31.9, 30.0, 19.9. 

(Missing one 13C signal) 

IR (film): ν (cm1) 3000, 2935, 2836, 1712, 1611, 1579, 1507, 1435, 1403, 1335, 1293, 1238, 1173, 

1120, 1089, 1030, 942, 911, 837, 804, 765, 728, 691, 631, 559. 

HRMS (ESI, m/z) calcd for C31H30N3O3 [M+H]+: 492.2282, found: 492.2276. 
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(3-(4-Methoxyphenyl)-1H-pyrazol-1-yl)((2R,3R)-5-(4-methoxyphenyl)-2-phenyl-3,4-dihydro-2H-

pyrrol-3-yl)methanone (32t)  

According to the general procedure with some modifications, the reaction of 

(E)-1-(3-(4-methoxyphenyl)-1H-pyrazol-1-yl)-3-phenylprop-2-en-1-one 30f (30.4 mg, 0.10 mmol), 

1-(1-azidovinyl)-4-methoxybenzene 31b (21.9 mg, 1.25 equiv) and Λ-RhS (6.9 mg, 8 mol%) in 

CDCl3 (1.0 mL, 0.1 M) under nitrogen atmosphere (degassed with freeze-pump-thaw) with blue LEDs 

for 24 hours, afforded 32t as a yellow oil (33.7 mg, 75% isolated yield). 

Only one single diastereoisomer was observed through 1H NMR of crude materials. Enantiomeric 

excess of 32t was established by HPLC analysis using a Chiralpak AD-H column, ee = 90% (HPLC: 

AD-H, 254 nm, n-hexane/isopropanol = 60:40, flow rate 1 mL/min, 40 C, tr (major) = 16.3 min, tr 

(minor) = 23.4 min). []D
22 = +35.6 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 8.30 (d, J = 3.0 Hz, 1H), 7.97-7.91 (m, 2H), 7.71-7.64 (m, 2H), 

7.41-7.25 (m, 5H), 7.00-6.90 (m, 4H), 6.74 (d, J = 2.7 Hz, 1H), 5.79-5.73 (m, 1H), 4.58-4.48 (m, 1H), 

3.87 (s, 3H), 3.85 (s, 3H), 3.65 (ddd, J1 = 16.8 Hz, J2 = 9.3 Hz, J3 = 1.8 Hz, 1H), 3.53 (ddd, J1 = 16.8 

Hz, J2 = 6.9 Hz, J3 = 1.2 Hz, 1H). 

13C NMR (75 MHz, CDCl3) δ 172.4, 170.8, 161.9, 160.5, 155.3, 142.8, 129.8, 129.7, 128.5, 127.7, 

127.3, 127.0, 126.5, 124.3, 114.1, 113.9, 107.4, 79.1, 55.4, 55.3, 49.9, 40.0. 

IR (film): ν (cm1) 3004, 2959, 2837, 1717, 1608, 1512, 1431, 1403, 1336, 1296, 1245, 1173, 1096, 

1027, 945, 908, 834, 802, 770, 729, 697, 556. 

HRMS (ESI, m/z) calcd for C28H26N3O3 [M+H]+: 452.1980, found: 452.1969. 
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((2R,3R)-5-(4-Chlorophenyl)-2-phenyl-3,4-dihydro-2H-pyrrol-3-yl)(3-(4-methoxyphenyl)-1H- 

pyrazol-1-yl)methanone (32u)  

According to the general procedure, the reaction of (E)-1-(3-(4-methoxyphenyl)-1H-pyrazol-1-yl)- 

3-phenylprop-2-en-1-one 30f (30.4 mg, 0.10 mmol), 1-(1-azidovinyl)-4-chlorobenzene 31c (22.5 mg, 

1.25 equiv) and Λ-RhS (3.5 mg, 4 mol%) in CDCl3 (1.0 mL, 0.1 M) under open air atmosphere with 

blue LEDs for 24 hours, afforded 32u as a yellow solid (36.5 mg, 80% isolated yield). 

Only one single diastereoisomer was observed through 1H NMR of crude materials. Enantiomeric 

excess of 32u was established by HPLC analysis using a Chiralpak AD-H column, ee = 95% (HPLC: 

AD-H, 254 nm, n-hexane/isopropanol = 80:20, flow rate 0.6 mL/min, 40 C, tr (major) = 34.0 min, tr 

(minor) = 31.6 min). []D
22 = +21.0 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 8.30 (d, J = 3.3 Hz, 1H), 7.94-7.88 (m, 2H), 7.70-7.64 (m, 2H), 

7.46-7.40 (m, 2H), 7.37-7.27 (m, 5H), 6.96-6.89 (m, 2H), 6.75 (d, J = 2.7 Hz, 1H), 5.80-5.76 (m, 1H), 

4.60-4.51 (m, 1H), 3.86 (s, 3H), 3.65 (ddd, J1 = 17.1 Hz, J2 = 9.6 Hz, J3 = 2.1 Hz, 1H), 3.53 (ddd, J1 = 

17.1 Hz, J2 = 6.9 Hz, J3 = 1.5 Hz, 1H). 

13C NMR (75 MHz, CDCl3) δ 172.2, 170.4, 160.6, 155.5, 142.4, 137.1, 132.2, 129.9, 129.4, 128.8, 

128.6, 127.7, 127.5, 126.9, 124.2, 114.1, 107.6, 79.4, 55.3, 49.9, 40.0. 

IR (film): ν (cm1) 3029, 2928, 2836, 1716, 1612, 1513, 1431, 1402, 1355, 1333, 1293, 1246, 1175, 

1091, 1034, 946, 909, 832, 801, 769, 725, 697. 

HRMS (ESI, m/z) calcd for C27H23ClN3O2 [M+H]+: 456.1473, found: 456.1467. 

 

 

((2R,3R)-5-(3-Chlorophenyl)-2-phenyl-3,4-dihydro-2H-pyrrol-3-yl)(3-(4-methoxyphenyl)-1H- 

pyrazol-1-yl)methanone (32v)  
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According to the general procedure, the reaction of (E)-1-(3-(4-methoxyphenyl)-1H-pyrazol-1-yl)- 

3-phenylprop-2-en-1-one 30f (30.4 mg, 0.10 mmol), 1-(1-azidovinyl)-3-chlorobenzene 31d (22.5 mg, 

1.25 equiv) and Λ-RhS (3.5 mg, 4 mol%) in CDCl3 (1.0 mL, 0.1 M) under open air atmosphere with 

blue LEDs for 24 hours, afforded 32v as a yellow oil (41.8 mg, 92% isolated yield). 

Only one single diastereoisomer was observed through 1H NMR of crude materials. Enantiomeric 

excess of 32v was established by HPLC analysis using a Chiralpak IG column, ee = 95% (HPLC: IG, 

254 nm, n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 40 C, tr (major) = 22.2 min, tr (minor) = 

18.3 min). []D
22 = +23.4 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 8.31 (d, J = 3.0 Hz, 1H), 8.01 (t, J = 1.5 Hz, 1H), 7.83 (dt, J1 = 7.8 Hz, 

J2 = 1.5 Hz, 1H), 7.71-7.64 (m, 2H), 7.49-7.44 (m, 1H), 7.43-7.28 (m, 6H), 6.97-6.90 (m, 2H), 6.75 (d, 

J = 2.7 Hz, 1H), 5.84-5.78 (m, 1H), 4.62-4.51 (m, 1H), 3.86 (s, 3H), 3.65 (ddd, J1 = 17.1 Hz, J2 = 9.3 

Hz, J3 = 2.1 Hz, 1H), 3.53 (ddd, J1 = 17.1 Hz, J2 = 7.2 Hz, J3 = 1.5 Hz, 1H). 

13C NMR (75 MHz, CDCl3) δ 172.1, 170.3, 160.6, 155.5, 142.2, 135.4, 134.7, 130.9, 129.84, 129.81, 

128.6, 128.1, 127.7, 127.5, 126.9, 126.2, 124.2, 114.1, 107.6, 79.3, 55.3, 49.8, 40.0. 

IR (film): ν (cm1) 3064, 3029, 2931, 1717, 1613, 1514, 1430, 1403, 1355, 1331, 1294, 1244, 1174, 

1093, 1032, 949, 908, 837, 770, 729, 691. 

HRMS (ESI, m/z) calcd for C27H23ClN3O2 [M+H]+: 456.1473, found: 456.1467. 

 

 

((2R,3R)-5-(2-Chlorophenyl)-2-phenyl-3,4-dihydro-2H-pyrrol-3-yl)(3-(4-methoxyphenyl)-1H- 

pyrazol-1-yl)methanone (32w)  

According to the general procedure, the reaction of (E)-1-(3-(4-methoxyphenyl)-1H-pyrazol-1-yl)- 

3-phenylprop-2-en-1-one 30f (30.4 mg, 0.10 mmol), 1-(1-azidovinyl)-2-chlorobenzene 31e (22.5 mg, 

1.25 equiv) and Λ-RhS (3.5 mg, 4 mol%) in CDCl3 (1.0 mL, 0.1 M) under open air atmosphere with 

blue LEDs for 24 hours, afforded 32w as a yellow oil (36.3 mg, 80% isolated yield). 

Only one single diastereoisomer was observed through 1H NMR of crude materials. Enantiomeric 

excess of 32w was established by HPLC analysis using a Chiralpak IG column, ee = 98% (HPLC: IG, 
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254 nm, n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 40 C, tr (major) = 22.9 min, tr (minor) = 

15.5 min). []D
22 = +10.6 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 8.31 (d, J = 3.0 Hz, 1H), 7.81-7.96 (m, 1H), 7.71-7.65 (m, 2H), 

7.48-7.27 (m, 8H), 6.96-6.90 (m, 2H), 6.75 (d, J = 3.0 Hz, 1H), 5.81-5.76 (m, 1H), 4.63-4.53 (m, 1H), 

3.85 (s, 3H), 3.81 (ddd, J1 = 17.4 Hz, J2 = 9.6 Hz, J3 = 2.1 Hz, 1H), 3.62 (ddd, J1 = 17.7 Hz, J2 = 7.5 

Hz, J3 = 1.8 Hz, 1H). 

13C NMR (75 MHz, CDCl3) δ 172.5, 172.2, 160.6, 155.5, 142.1, 134.3, 132.6, 130.9, 130.8, 130.3, 

129.8, 128.5, 127.7, 127.4, 127.0, 126.9, 124.2, 114.1, 107.6, 78.8, 55.3, 50.5, 43.3. 

IR (film): ν (cm1) 3062, 2933, 2836, 1717, 1610, 1513, 1431, 1403, 1355, 1331, 1294, 1246, 1175, 

1028, 908, 836, 802, 755, 728, 700. 

HRMS (ESI, m/z) calcd for C27H23ClN3O2 [M+H]+: 456.1473, found: 456.1467. 

 

 

((2R,3R)-5-(2-Bromophenyl)-2-phenyl-3,4-dihydro-2H-pyrrol-3-yl)(3-(4-methoxyphenyl)-1H- 

pyrazol-1-yl)methanone (32x)  

According to the general procedure, the reaction of (E)-1-(3-(4-methoxyphenyl)-1H-pyrazol-1-yl)- 

3-phenylprop-2-en-1-one 30f (30.4 mg, 0.10 mmol), 1-(1-azidovinyl)-2-bromobenzene 31f (28.0 mg, 

1.25 equiv) and Λ-RhS (3.5 mg, 4 mol%) in CDCl3 (1.0 mL, 0.1 M) under open air atmosphere with 

blue LEDs for 24 hours, afforded 32x as a yellow solid (44.6 mg, 89% isolated yield). 

Only one single diastereoisomer was observed through 1H NMR of crude materials. Enantiomeric 

excess of 32x was established by HPLC analysis using a Chiralpak AD-H column, ee = 98% (HPLC: 

AD-H, 254 nm, n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 40 C, tr (major) = 16.9 min, tr 

(minor) = 10.4 min). []D
22 = +8.4 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 8.31 (d, J = 3.0 Hz, 1H), 7.71-7.61 (m, 4H), 7.48-7.27 (m, 7H), 

6.96-6.90 (m, 2H), 6.74 (d, J = 2.7 Hz, 1H), 5.82-5.76 (m, 1H), 4.64-4.55 (m, 1H), 3.85 (s, 3H), 3.82 

(ddd, J1 = 18.0 Hz, J2 = 9.6 Hz, J3 = 2.1 Hz, 1H), 3.58 (ddd, J1 = 17.4 Hz, J2 = 7.2 Hz, J3 = 1.5 Hz, 

1H). 
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13C NMR (75 MHz, CDCl3) δ 173.6, 172.1, 160.6, 155.4, 142.0, 136.7, 133.4, 130.8, 130.5, 129.8, 

128.5, 127.7, 127.44, 127.42, 127.0, 124.2, 121.1, 114.1, 107.6, 79.1, 55.3, 50.5, 43.4. 

IR (film): ν (cm1) 3061, 2958, 2931, 2836, 1716, 1610, 1513, 1430, 1402, 1355, 1330, 1293, 1245, 

1174, 1095, 1024, 947, 908, 836, 801, 751, 696. 

HRMS (ESI, m/z) calcd for C27H23BrN3O2 [M+H]+: 500.0968, found: 500.0962. 

 

 

((2R,3R)-5-(Cyclohex-1-en-1-yl)-2-phenyl-3,4-dihydro-2H-pyrrol-3-yl)(3-(4-methoxyphenyl)-1H-

pyrazol-1-yl)methanone (32y)  

According to the general procedure with some modifications, the reaction of 

(E)-1-(3-(4-methoxyphenyl)-1H-pyrazol-1-yl)-3-phenylprop-2-en-1-one 30f (30.4 mg, 0.10 mmol), 

1-(1-azidovinyl)cyclohex-1-ene 31g (18.7 mg, 1.25 equiv) and Λ-RhS (6.9 mg, 8 mol%) in CDCl3 

(1.0 mL, 0.1 M) under nitrogen atmosphere (degassed with freeze-pump-thaw) with blue LEDs for 24 

hours, afforded 32y as a yellow oil (31.8 mg, 75% isolated yield). 

Only one single diastereoisomer was observed through 1H NMR of crude materials. Enantiomeric 

excess of 32y was established by HPLC analysis using a Chiralpak AD-H column, ee = 93% (HPLC: 

AD-H, 254 nm, n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 40 C, tr (major) = 13.3 min, tr 

(minor) = 11.7 min). []D
22 = –26.4 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 8.28 (d, J = 3.0 Hz, 1H), 7.70-7.63 (m, 2H), 7.35-7.22 (m, 5H), 

6.96-6.89 (m, 2H), 6.72 (d, J = 2.7 Hz, 1H), 6.43 (t, J = 3.6 Hz, 1H), 5.67-5.62 (m, 1H), 4.42-4.33 (m, 

1H), 3.85 (s, 3H), 3.40 (ddd, J1 = 16.8 Hz, J2 = 9.6 Hz, J3 = 1.5 Hz, 1H), 3.26 (ddd, J1 = 16.5 Hz, J2 = 

6.9 Hz, J3 = 0.9 Hz, 1H), 2.57-2.48 (m, 2H), 2.28-2.21 (m, 2H), 1.80-1.61 (m, 4H). 

13C NMR (75 MHz, CDCl3) δ 173.0, 172.6, 160.5, 155.2, 142.9, 135.9, 134.6, 129.8, 128.4, 127.7, 

127.2, 126.9, 124.3, 114.1, 107.4, 78.9, 55.3, 49.7, 39.0, 26.1, 25.1, 22.3, 22.0. 

IR (film): ν (cm1) 2930, 2837, 1717, 1608, 1513, 1432, 1402, 1354, 1333, 1293, 1244, 1175, 1094, 

1027, 909, 836, 799, 766, 728, 697. 

HRMS (ESI, m/z) calcd for C27H28N3O2 [M+H]+: 426.2176, found: 426.2170. 
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((2R,3R)-5-Hexyl-2-phenyl-3,4-dihydro-2H-pyrrol-3-yl)(3-(4-methoxyphenyl)-1H-pyrazol-1-yl) 

methanone (32z)  

According to the general procedure, the reaction of (E)-1-(3-(4-methoxyphenyl)-1H-pyrazol-1-yl)- 

3-phenylprop-2-en-1-one 30f (30.4 mg, 0.10 mmol), 2-azidooct-1-ene 31h (19.2 mg, 1.25 equiv) and 

Λ-RhS (3.5 mg, 4 mol%) in CDCl3 (1.0 mL, 0.1 M) under open air atmosphere with blue LEDs for 24 

hours, afforded 32z as a yellow oil (30.1 mg, 70% isolated yield). 

Only one single diastereoisomer was observed through 1H NMR of crude materials. Enantiomeric 

excess of 32z was established by HPLC analysis using a Chiralpak IG column, ee = 97% (HPLC: IG, 

254 nm, n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 40 C, tr (major) = 15.1 min, tr (minor) = 

12.5 min). []D
22 = +49.0 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 8.28 (d, J = 2.7 Hz, 1H), 7.68-7.62 (m, 2H), 7.36-7.22 (m, 5H), 

6.95-6.89 (m, 2H), 6.72 (d, J = 2.7 Hz, 1H), 5.57-5.52 (m, 1H), 4.43-4.34 (m, 1H), 3.85 (s, 3H), 

3.22-3.04 (m, 2H), 2.52 (t, J = 8.3 Hz, 2H), 1.79-1.67 (m, 2H), 1.46-1.30 (m, 6H), 0.91 (t, J = 6.9 Hz, 

3H). 

13C NMR (75 MHz, CDCl3) δ 177.2, 172.6, 160.5, 155.3, 142.6, 129.7, 128.4, 127.7, 127.2, 126.8, 

124.3, 114.1, 107.4, 79.0, 55.3, 49.7, 42.2, 33.6, 31.5, 29.2, 26.5, 22.5, 14.0. 

IR (film): ν (cm1) 2924, 2856, 1718, 1645, 1610, 1512, 1431, 1402, 1353, 1294, 1247, 1175, 1094, 

1031, 950, 908, 837, 771, 698, 619, 525. 

HRMS (ESI, m/z) calcd for C27H32N3O2 [M+H]+: 430.2489, found: 430.2484. 

 

 

((2R,3R)-5-(3-Hydroxypropyl)-2-phenyl-3,4-dihydro-2H-pyrrol-3-yl)(3-(4-methoxyphenyl)-1H-p

yrazol-1-yl)methanone (32aa)  
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According to the general procedure, the reaction of (E)-1-(3-(4-methoxyphenyl)-1H-pyrazol-1-yl)- 

3-phenylprop-2-en-1-one 30f (30.4 mg, 0.10 mmol), 4-azidopent-4-en-1-ol 31i (15.9 mg, 1.25 equiv) 

and Λ-RhS (6.9 mg, 8 mol%) in CDCl3 (1.0 mL, 0.1 M) under nitrogen atmosphere (degassed with 

freeze-pump-thaw) with blue LEDs for 24 hours, afforded 32aa as a yellow solid (38.0 mg, 69% 

isolated yield; 94% NMR yield, not stable in silica gel column). 

Only one single diastereoisomer was observed through 1H NMR of crude materials. Enantiomeric 

excess of 32aa was established by HPLC analysis using a Chiralpak AD-H column, ee = 98% (HPLC: 

AD-H, 254 nm, n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 40 C, tr (major) = 23.7 min, tr 

(minor) = 26.4 min). []D
22 = –45.2 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 8.27 (d, J = 3.0 Hz, 1H), 7.68-7.62 (m, 2H), 7.36-7.23 (m, 5H), 

6.95-6.89 (m, 2H), 6.72 (d, J = 3.3 Hz, 1H), 5.60-5.55 (m, 1H), 4.46-4.37 (m, 1H), 3.99 (br s, 1H), 

3.85 (s, 3H), 3.75 (t, J = 5.7 Hz, 2H), 3.25-3.07 (m, 2H), 2.72-2.51 (m, 2H), 2.06-1.96 (m, 2H). 

13C NMR (75 MHz, CDCl3) δ 177.9, 172.2, 160.6, 155.4, 142.1, 129.8, 128.5, 127.7, 127.4, 126.6, 

124.2, 114.1, 107.5, 78.6, 62.5, 55.3, 49.7, 42.9, 31.3, 28.7. 

IR (film): ν (cm1) 3120, 2958, 2919, 2840, 1724, 1646, 1611, 1515, 1445, 1348, 1245, 1174, 1025, 

955, 906, 836, 768, 730, 699, 609, 524. 

HRMS (ESI, m/z) calcd for C24H26N3O3 [M+H]+: 404.1969, found: 404.1964. 

 

 

(E)-3,7-Dimethylocta-2,6-dien-1-yl 3-((2R,3R)-3-(3-(4-methoxyphenyl)-1H-pyrazole-1-carbonyl)- 

2-phenyl-3,4-dihydro-2H-pyrrol-5-yl)propanoate (32ab)  

According to the general procedure with some modifications, the reaction of 

(E)-1-(3-(4-methoxyphenyl)-1H-pyrazol-1-yl)-3-phenylprop-2-en-1-one 30f (30.4 mg, 0.10 mmol), 

(E)-3,7-dimethylocta-2,6-dien-1-yl 4-azidopent-4-enoate 31j (34.7 mg, 1.25 equiv) and Λ-RhS (6.9 

mg, 8 mol%) in CDCl3 (1.0 mL, 0.1 M) under nitrogen atmosphere (degassed with freeze-pump-thaw) 

with blue LEDs for 24 hours, afforded 32ab as a yellow solid (45.7 mg, 83% isolated yield; 92% 

NMR yield, not stable in silica gel column). 
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Only one single diastereoisomer was observed through 1H NMR of crude materials. Enantiomeric 

excess of 32ab was established by HPLC analysis using a Chiralpak OD-H column, ee = 98% (HPLC: 

OD-H, 254 nm, n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 40 C, tr (major) = 10.5 min, tr 

(minor) = 12.7 min). []D
22 = +80.6 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 8.27 (d, J = 3.0 Hz, 1H), 7.68-7.63 (m, 2H), 7.33-7.29 (m, 2H), 

7.28-7.23 (m, 3H), 6.94-6.90 (m, 2H), 6.72 (d, J = 3.0 Hz, 1H), 5.56-5.50 (m, 1H), 5.36-5.31 (m, 1H), 

5.09-5.04 (m, 1H), 4.67-4.58 (m, 2H), 3.38 (ddd, J1 = 9.5 Hz, J2 = 6.5 Hz, J3 = 5.5 Hz, 1H), 3.85 (s, 

3H), 3.20 (ddd, J1 = 17.0 Hz, J2 = 9.5 Hz, J3 = 1.5 Hz, 1H), 3.10 (ddd, J1 = 17.5 Hz, J2 = 6.5 Hz, J3 = 

1.0 Hz, 1H), 2.94-2.81 (m, 2H), 2.80-2.70 (m, 2H), 2.12-2.05 (m, 2H), 2.04-1.99 (m, 2H), 1.69-1.67 

(m, 6H), 1.59 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 175.3, 173.0, 172.4, 160.5, 155.3, 142.5, 142.2, 131.8, 129.7, 128.4, 

127.7, 127.2, 126.8, 124.2, 123.7, 118.2, 114.1, 107.5, 78.8, 61.5, 55.3, 49.8, 42.7, 39.5, 30.7, 28.2, 

26.2, 25.7, 17.7, 16.4. 

IR (film): ν (cm1) 2961, 2918, 2848, 1722, 1651, 1611, 1513, 1432, 1402, 1354, 1293, 1247, 1173, 

1095, 1031, 945, 905, 836, 771, 698. 

HRMS (ESI, m/z) calcd for C34H40N3O4 [M+H]+: 554.3013, found: 554.3003. 

 

5.5.4 Synthetic Applications 

 

1) Access to Ethisterone derivative 1-pyrroline 35 

 

(8R,9S,10R,13S,14S,17S)-17-(1-Azidovinyl)-17-hydroxy-10,13-dimethyl-1,2,6,7,8,9,10,11,12,13,14,1

5,16,17-tetradecahydro-3H-cyclopenta[a]phenanthren-3-one 34 was synthesized according to the 

reported procedure.12d Ethisterone derived vinyl azide 34 is unstable in CDCl3. So acetone is chosen as 

solvent for this transformation. 

According to the general procedure with some modifications, the reaction of 

(E)-1-(3-(4-methoxyphenyl)-1H-pyrazol-1-yl)-3-phenylprop-2-en-1-one 30f (30.4 mg, 0.10 mmol), 34 
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(44.4 mg, 1.25 equiv) and Λ-RhS (6.9 mg, 8 mol%) in acetone (1.0 mL, 0.1 M) under nitrogen 

atmosphere (degassed with freeze-pump-thaw) with blue LEDs for 48 hours, afforded 35 as a yellow 

solid (54.6 mg, 86%). []D
22 = +27.8 (c 1.0, CH2Cl2). 

A d.r. value of >20:1 was observed through 1H NMR of crude materials. Reference sample was 

obtained by carrying out the reaction with rac-RhS.  

1H NMR (500 MHz, CDCl3) δ 8.27 (d, J = 3.0 Hz, 1H), 7.63-7.59 (m, 2H), 7.33-7.23 (m, 5H), 

6.93-6.89 (m, 2H), 6.72 (d, J = 3.0 Hz, 1H), 5.73 (s, 1H), 5.62-5.56 (m, 1H), 4.50-4.43 (m, 1H), 3.84 

(s, 3H), 3.82 (br s, 1H), 3.31 (ddd, J1 = 17.0 Hz, J2 = 9.0 Hz, J3 = 1.5 Hz, 1H), 3.22 (ddd, J1 = 17.5 Hz, 

J2 = 8.5 Hz, J3 = 2.0 Hz, 1H), 2.44-2.32 (m, 4H), 2.30-2.24 (m, 1H), 2.06-1.94 (m, 2H), 1.92-1.84 (m, 

1H), 1.82-1.42 (m, 8H), 1.26-1.14 (m, 1H), 1.21 (s, 3H), 1.09-1.00 (m, 1H), 1.06 (s, 3H), 0.99-0.89 (m, 

1H). 

13C NMR (125 MHz, CD2Cl2) δ 199.3, 182.2, 172.4, 171.4, 161.0, 155.7, 142.8, 130.1, 128.8, 128.0, 

127.7, 127.1, 124.4, 124.0, 114.4, 107.9, 85.8, 77.6, 55.6, 54.2, 51.8, 50.1, 48.0, 42.9, 39.0, 36.6, 36.4, 

36.1, 34.3, 33.2, 33.1, 32.2, 24.3, 21.1, 17.6, 14.7. 

IR (film): ν (cm1) 3385, 2940, 2860, 1719, 1662, 1613, 1514, 1432, 1404, 1356, 1294, 1245, 1177, 

1027, 951, 909, 836, 802, 773, 728, 698. 

HRMS (ESI, m/z) calcd for C40H46N3O4 [M+H]+: 632.3483, found: 632.3473. 

 

2) Functional group conversions (Figure 85) 

 

 

tert-Butyl ((2R,3R)-2-(4-methoxyphenyl)-5-phenyl-3,4-dihydro-2H-pyrrole-3-carbonyl)-L- 

leucinate (36) 

According to literature report,13a L-leucin-tert-butylester hydrochlorid (44.7 mg, 0.2 mmol), toluene 

(0.5 mL), and Et3N (20.2 mg, 0.2 mmol) was added into a 10 mL Schlenk tube equipped with a stirring 

bar. After stirred at room temperature for 10 min, 32g (45.2 mg, 0.1 mmol), 1-hydroxybenzotriazole 

(27.0 mg, 0.2 mmol), and toluene (1.0 mL) was added continuously. Then the tube was sealed and 

heated at 50 oC for 16 hours. The mixture was concentrated under reduced pressure and the crude 
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residue was subjected to 1H NMR to determine the d.r. value. Then target product 36 was isolated by 

flash chromatography (n-Hexane/EtOAc) in 94% yield (43.8 mg). At the same time the auxiliary 

3-(4-methoxyphenyl)-1H-pyrazole could be obtained in 99% yield (17.4 mg). 

Only one single diastereoisomer (>20:1 d.r.) was observed through 1H NMR of crude materials. 

Reference sample was obtained by carrying out the reaction with rac-32g. []D
22 = –23.4o (c 1.0, 

CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.93-7.86 (m, 2H), 7.47-7.36 (m, 3H), 7.23-7.15 (m, 2H), 6.93-6.84 (m, 

2H), 5.71 (d, J = 8.7 Hz, 1H), 5.32-5.26 (m, 1H), 4.56 (td, J1 = 9.0 Hz, J2 = 4.8 Hz, 1H), 3.80 (s, 3H), 

3.52 (ddd, J1 = 17.1 Hz, J2 = 9.0 Hz, J3 = 2.4 Hz, 1H), 3.36 (ddd, J1 = 16.8 Hz, J2 = 9.0 Hz, J3 = 1.8 Hz, 

1H), 2.98-2.85 (m, 1H), 1.69-1.51 (m, 2H), 1.44 (s, 9H), 0.97 (d, J = 6.3 Hz, 3H), 0.94 (d, J = 6.0 Hz, 

3H). (Missing the N-H signal) 

13C NMR (75 MHz, CDCl3) δ 172.3, 172.2, 171.7, 159.1, 135.3, 133.9, 130.8, 128.4, 127.9, 114.1, 

81.9, 80.0, 55.3, 54.5, 51.3, 42.0, 39.9, 27.9, 24.9, 22.8, 22.0. (Missing one 13C signal) 

IR (film): ν (cm1) 3287, 3062, 2857, 2823, 1731, 1644, 1616, 1539, 1512, 1453, 1371, 1335, 1297, 

1243, 1147, 1037, 917, 825, 762, 731, 690, 578, 536. 

HRMS (ESI, m/z) calcd for C28H37N2O4 [M+H]+: 465.2748, found: 465.2743. 

 

 

(2R,3R,5S,6R)-6-Methoxy-2-(4-methoxyphenyl)-3-(3-(4-methoxyphenyl)-1H-pyrazole-1-carbonyl

)-5-phenyl-1-azabicyclo[3.2.0]heptan-7-one (37) 

According to literature report,13b 32g (22.6 mg, 0.05 mmol), Et3N (15.2 mg, 0.15 mmol), and CH2Cl2 

(1.0 mL) was added into a 10 mL Schlenk tube equipped with a stirring bar. 2-Methoxyacetyl chloride 

(16.3 mg, 0.15 mmol, in 1.0 mL CH2Cl2) was added to the mixture dropwise at room temperature. 

Then the tube was sealed and heated at 50 oC for 16 hours. The mixture was concentrated under 

reduced pressure and the crude residue was subjected to 1H NMR to determine the d.r. value. Then 

target product 37 was isolated by flash chromatography (n-Hexane/EtOAc) in 95% yield (24.9 mg). 

A d.r. value of 17:1 was determined through 1H NMR of crude materials. Reference sample was 

obtained by carrying out the reaction with rac-32g. Enantiomeric excess of 37 was established by 
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HPLC analysis using a Chiralpak OD-H column, ee = 98% (HPLC: OD-H, 254 nm, 

n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 40 C, tr (major) = 20.0 min, tr (minor) = 12.6 

min). []D
22 = +188.8o (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 8.24 (d, J = 3.0 Hz, 1H), 7.68-7.63 (m, 2H), 7.60-7.55 (m, 2H), 

7.50-7.43 (m, 2H), 7.42-7.37 (m, 1H), 7.26-7.22 (m, 2H), 6.95-6.90 (m, 2H), 6.81-6.76 (m, 2H), 6.72 

(d, J = 3.0 Hz, 1H), 5.57 (d, J = 8.0 Hz, 1H), 4.75-4.66 (m, 1H), 4.69 (s, 1H), 3.85 (s, 3H), 3.74 (s, 3H), 

3.34 (dd, J1 = 13.0 Hz, J2 = 6.5, 1H), 3.16 (s, 3H), 2.56 (dd, J1 = 12.5 Hz, J2 = 10.5, 1H). 

13C NMR (75 MHz, CDCl3) δ 173.3, 170.3, 160.7, 159.1, 155.6, 137.5, 131.3, 129.9, 128.31, 128.27, 

128.0, 127.7, 127.4, 124.0, 114.2, 113.9, 107.8, 90.4, 73.4, 64.0, 58.2, 55.3, 55.2, 54.8, 41.0. 

IR (film): ν (cm1) 2999, 2884, 2835, 1763, 1716, 1673, 1612, 1550, 1514, 1433, 1406, 1335, 1295, 

1246, 1217, 1175, 1142, 1093, 1023, 936, 907, 833, 774, 727, 700, 644, 577. 

HRMS (ESI, m/z) calcd for C31H30N3O5 [M+H]+: 524.2180, found: 524.2188. 

 

 

Ethyl (2R,3R)-2-(4-methoxyphenyl)-5-phenyl-3,4-dihydro-2H-pyrrole-3-carboxylate (38) 

According to literature report,13a 32g (45.2 mg, 0.1 mmol), EtOH (0.8 mL), THF (0.2 mL), LiCl (21.2 

mg, 0.5 mmol), and Et3N (50.5 mg, 0.5 mmol) was added in sequence to a 10 mL Schlenk tube 

equipped with a stirring bar. After stirred at room temperature for 16 hours, the mixture was 

concentrated under reduced pressure and the crude residue was subjected to 1H NMR to determine the 

d.r. value. Then target product 38 was isolated by flash chromatography (n-Hexane/EtOAc) in 99% 

yield (32.0 mg) at the same time the auxiliary 3-(4-methoxyphenyl)-1H-pyrazole could be obtained in 

99% yield (17.4 mg). 

Only one single diastereoisomer was observed through 1H NMR of crude materials. Reference sample 

was obtained by carrying out the reaction with rac-32g. Enantiomeric excess of 38 was established by 

HPLC analysis using a Chiralpak AD-H column, ee = 98% (HPLC: AD-H, 254 nm, 

n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 40 C, tr (major) = 13.1 min, tr (minor) = 9.5 min). 

[]D
22 = +4.2 (c 1.0, CH2Cl2). 
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1H NMR (300 MHz, CDCl3) δ 7.98-7.91 (m, 2H), 7.51-7.40 (m, 3H), 7.29-7.20 (m, 2H), 6.94-6.85 (m, 

2H), 5.55-5.49 (m, 1H), 4.31-4.17 (m, 2H), 3.81 (s, 3H), 3.53-3.35 (m, 2H), 3.15 (td, J1 = 9.0 Hz, J2 = 

6.6 Hz, 1H), 1.31 (t, J = 7.1 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 174.0, 171.3, 158.9, 135.4, 133.8, 130.9, 128.5, 127.9, 127.7, 114.0, 

79.2, 61.0, 55.3, 51.3, 39.4, 14.2.  

IR (film): ν (cm1) 2969, 2930, 2904, 2838, 1724, 1612, 1579, 1511, 1447, 1373, 1332, 1301, 1242, 

1166, 1112, 1025, 870, 823, 762, 690, 586, 545. 

HRMS (ESI, m/z) calcd for C20H22NO3 [M+H]+: 324.1594, found: 324.1590. 

 

 

Ethyl (2R,3R,5S)-2-(4-methoxyphenyl)-5-phenylpyrrolidine-3-carboxylate (39) 

38 (32.3 mg, 0.1 mmol), Pd/C (16 mg, 50%), and EtOAc (1.0 mL) was added in sequence to a 10 mL 

flask equipped with a stirring bar. After bubbling with H2 for 5 minutes, the flask was allowed to stir at 

room temperature for 12 hours. The mixture was filtered and concentrated under reduced pressure. 

Then target product 39 was isolated by flash chromatography (n-Hexane/EtOAc) in 68% yield (22.2 

mg, a white solid) as a single diastereoisomer. 

Reference sample was obtained by carrying out the reaction with rac-38. Enantiomeric excess of 39 

was established by HPLC analysis using a Chiralpak IC column, ee = 98% (HPLC: IC, 220 nm, 

n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 40 C, tr (major) = 8.2 min, tr (minor) = 7.2 min). 

[]D
22 = –74.8 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.55-7.42 (m, 4H), 7.40-7.32 (m, 2H), 7.31-7.21 (m, 1H), 6.94-6.86 (m, 

2H), 5.50 (d, J = 7.8 Hz, 1H), 4.45 (t, J = 8.3 Hz, 1H), 4.21-4.10 (m, 2H), 3.82 (s, 3H), 2.98-2.87 (m, 

1H), 2.28-2.46 (m, 1H), 2.25-2.05 (br s, 1H), 2.16-2.02 (m, 1H), 1.23 (t, J = 7.2 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 174.7, 159.0, 144.0, 135.1, 128.4, 128.0, 127.1, 126.7, 113.8, 65.3, 61.3, 

60.6, 55.3, 51.9, 38.8, 14.2.  

IR (film): ν (cm1) 3315, 2975, 2941, 2834, 1724, 1609, 1508, 1451, 1375, 1345, 1299, 1242, 1168, 

1099, 1033, 828, 755, 700, 579, 537. 

HRMS (ESI, m/z) calcd for C20H24NO3 [M+H]+: 326.1751, found: 326.1746. 
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3) Determined of the configuration of 37 was by NMR spectroscopy 

Sample of 37 dissolved in 0.6 mL of CDCl3 were performed on a Bruker AVHD 500 MHz 

spectrometer equipped with a 5 mm TXI probe with z-gradient. NOESY experiments were performed 

with mixing time of 1.5 s. Chemical shifts are referenced with the rest solvent signal. 

 

The NOESY cross peaks characteristic for the stereostructure of the molecule are presented in 

Table 29. With the known configuration at positions 2 and 3, through the observation of the NOE 

contacts among the substituents the configuration at positions 5 and 6 is unequivocally determined. 

There are additional NOESY cross peaks observed. A whole assignment to these signals are presented 

in Figure 126. The vicinal coupling constants observed are 3JH2H3 = 8 Hz, 3JH3H4α = 6 Hz, and 3JH3H4β = 

10 Hz. These values are consistent with the determined structure. 

 

Table 29. NOESY cross peaks and molecular structure of compound 37. 

 

No. Positions Configuration No. Positions Configuration 

1 H-6 – CH3-8  6 2””/6”” – H-4α α-substitution of 5-Ph 

2 H-2 – H-4β H-4β 7 2””/6”” – CH3-8 cis-config. 5-Ph / 6-OMe 

3 H-6 – H-4β α-substitution of H-6 8 2’”/6’” – H-3 trans-config. H-2 / H-3 

4 H-3 – H-4α H-4α 9 2””/6”” – H-3 α-substitution at 5-Ph 

5 2’”/6’” – 2””/6”” α-substitution of 5-Ph    
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Figure 126.  NOESY spectrum of compound 37 in CDCl3 at 300 K, mixing time 1.5 s. 

 

4) Determined of the configuration of 39 was by NMR spectroscopy 

 

An assignment of the main NOESY cross peaks are given in Figure 127, with the known 

configuration at positions 2 and 3, strong NOE cross peak between H-3 and H-4α was observed, which 

enabled the assignment of H-4α. Strong NOE was observed between H-4α and H-2”/H-6”, which 
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determined an α-substitution of phenyl group at position 5. In addition, a medium NOE contact was 

observed between H-2 and H-5, which verified the assigned configuration. The vicinal coupling 

constants observed are 3JH2H3 = 7.8 Hz, 3JH3H4α = 10.5 Hz, 3JH3H4β = 5.1 Hz, 3JH4αH4β = 13.0 Hz, 3JH4αH5 = 

8.1 Hz, 3JH4βH5 = 8.1 Hz. 

 

 

Figure 127.  NOESY spectrum of compound 39 in CDCl3 at 300 K, mixing time 1.5 s. 

 

5.5.5 Single-Crystal X-Ray Diffraction Studies 

 

Single crystals of RhS-PPz suitable for X-ray diffraction were obtained by slow diffusion of a 

solution of RhS-PPz (20 mg) in CH2Cl2 (0.5 mL) layered with Et2O (0.5 mL) at room temperature for 

several days in a NMR tube.  
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Single crystals of 32k suitable for X-ray diffraction were obtained by slow diffusion of a solution 

of 32k (30 mg) in CH2Cl2 (0.5 mL) layered with n-hexane (0.5 mL) at room temperature for several 

days in a NMR tube. 

X-ray data were collected with a STOE 4 circuit StadiVari diffractometer with CuKα radiation 

(microfocus tube with multilayer optics) and Dectris Pilatus 300K detector at 100 K. Scaling and 

absorption correction was performed by using the X-AREA/LANA software package of STOE. 

Structures were solved using direct methods in SHELXT and refined using the full matrix least 

squares procedure in SHELXL-2017. The hydrogen atoms were placed in calculated positions and 

refined as riding on their respective C atom, and Uiso(H) was set at 1.2 Ueq(Csp2) and 1.5 Ueq(Csp3). 

Disorder was refined using restraints for both the geometry and the anisotropic displacement factors.  

The relative and absolute configuration of 32k has been determined (Figure 128). The crystal 

structure of RhS-PPz was shown in Figure 76. 

 

 

Figure 128.  Crystal structure of compound 32k. 
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Table 30. Crystal data and structure refinement for RhS-PPz. 

 
  Crystal data  
 
CCDC number 1568748 
Identification code  hxqH72 
Habitus, color  block, yellow 
Crystal size 0.20 x 0.18 x 0.10 mm3 
Crystal system  Monoclinic 
Space group  P21/c Z = 4 
Unit cell dimensions a = 13.7758(2) Å α = 90°. 
 b = 15.1202(1) Å β = 96.139(1)°. 
 c = 26.0113(3) Å γ = 90°. 
Volume 5386.9(1) Å3 
Cell determination  56919 peaks with Theta 3.2 to 70.3°. 
Empirical formula  C55.89 H55.04 Cl0.74 F6 N4 O2.63 P Rh S2 
Moiety formula  C53H48N4O2Rh S2, F6 P, 0.63(C4H10O), 0.37(C H2 Cl2) 
Formula weight  1163.07 
Density (calculated) 1.434 Mg/m3 
Absorption coefficient 4.476 mm-1 
F(000) 2392 
 
Data collection:  
 
Diffractometer type  STOE STADIVARI 
Wavelength  1.54184 Å 
Temperature  100(2) K 
Theta range for data collection 3.227 to 69.719°. 
Index ranges -16<=h<=7, -18<=k<=16, -31<=l<=30 
Data collection software  X-Area Pilatus3_SV 1.31.127.0 (STOE, 2016) 
Cell refinement software  X-Area Recipe 1.33.0.0 (STOE, 2015) 
Data reduction software  X-Area Integrate 1.71.0.0 (STOE, 2016) 
 X-Area LANA 1.68.2.0 (STOE, 2016)  
 
Solution and refinement: 
 
Reflections collected 49551 
Independent reflections 10012 [R(int) = 0.0208] 
Completeness to theta = 67.684° 99.5 %  
Observed reflections  9039[I > 2σ(I)]  
Reflections used for refinement  10012 
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 1.0000 and 0.3908 
Largest diff. peak and hole 0.871 and -0.406 e.Å-3 
Solution  dual space algorithm 
Refinement  Full-matrix least-squares on F2 
Treatment of hydrogen atoms  Calculated positions, constr ref. 
Programs used  XT V2014/1 (Bruker AXS Inc., 2014)  
 SHELXL-2016/6 (Sheldrick, 2016) 
 DIAMOND (Crystal Impact) 
 ShelXle (Hübschle, Sheldrick, Dittrich, 2011)  
Data / restraints / parameters 10012 / 49 / 730 
Goodness-of-fit on F2 1.069 
R index (all data) wR2 = 0.0741 
R index conventional  [I>2sigma(I)] R1 = 0.0266 
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Table 31. Crystal data and structure refinement for 32k. 

 
 Crystal data  
 
CCDC number 1568749 
Identification code  hxqH27 
Habitus, color  plate, colorless 
Crystal size 0.17 x 0.17 x 0.04 mm3 
Crystal system  Monoclinic 
Space group  P21 Z = 2 
Unit cell dimensions a = 10.5089(2) Å α = 90°. 
 b = 7.7040(1) Å β = 101.167(1)°. 
 c = 14.2627(2) Å γ = 90°. 
Volume 1132.85(3) Å3 
Cell determination  28484 peaks with Theta 3.2 to 69.6°. 
Empirical formula  C27 H22 Br N3 O2 
Moiety formula  C27 H22 Br N3 O2 
Formula weight  500.38 
Density (calculated) 1.467 Mg/m3 
Absorption coefficient 2.713 mm-1 
F(000) 512 
 
Data collection:  
 
Diffractometer type  STOE STADIVARI 
Wavelength  1.54184 Å 
Temperature  100(2) K 
Theta range for data collection 4.288 to 69.163°. 
Index ranges -10<=h<=12, -9<=k<=8, -17<=l<=8 
Data collection software  X-Area Pilatus3_SV 1.31.127.0 (STOE, 2016)  
Cell refinement software  X-Area Recipe 1.33.0.0 (STOE, 2015)  
Data reduction software  X-Area Integrate 1.71.0.0 (STOE, 2016)  
 X-Area LANA 1.68.2.0 (STOE, 2016)  
 
Solution and refinement: 
 
Reflections collected 17616 
Independent reflections 4091 [R(int) = 0.0176] 
Completeness to theta = 67.684° 99.3 %  
Observed reflections  4006[I > 2σ(I)]  
Reflections used for refinement  4091 
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 1.0000 and 0.4410 
Flack parameter (absolute struct.)   -0.024(10)  
Largest diff. peak and hole 0.285 and -0.244 e.Å-3 
Solution  dual space algorithm 
Refinement  Full-matrix least-squares on F2 
Treatment of hydrogen atoms  Calculated positions, constr. ref. 
Programs used  XT V2014/1 (Bruker AXS Inc., 2014)  
 SHELXL-2016/6 (Sheldrick, 2016)  
 DIAMOND (Crystal Impact)  
 ShelXle (Hübschle, Sheldrick, Dittrich, 2011)  
Data / restraints / parameters 4091 / 1 / 299 
Goodness-of-fit on F2 1.050 
R index (all data) wR2 = 0.0547 
R index conventional  [I>2sigma(I)] R1 = 0.0208 
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5.6 Asymmetric [3+2] Photocycloaddition 

 

5.6.1 General Procedure 

 

 

Exemplary, an oven-dried 10 mL Schlenk tube was charged with cyclopropane 41a (24.0 mg, 

0.10 mmol) and Δ-RhS (1.7 mg, 2 mol%). The tube was purged with nitrogen. Then, acetone (1.0 mL, 

0.1 M) was added via syringe, followed by acrylonitrile 42a (13.3 mg, 2.5 equiv) and DIPEA (6.5 mg, 

0.5 equiv) under nitrogen atmosphere with stirring. The reaction mixture was degassed via 

freeze-pump-thaw for three cycles. After the mixture was thoroughly degassed, the vial was sealed and 

positioned at approximately 10 cm away from a 24 W blue LEDs lamp. After stirring for the indicated 

time (monitored by TLC), the mixture was diluted with CH2Cl2. The combined mixture was 

concentrated under reduced pressure. The crude residue was subjected to 1H NMR to determine the d.r. 

value. Then, all the mixture was collected and purified by flash chromatography on silica gel 

(n-hexane/EtOAc) to afford the product 43a. The enantiomeric excess was determined by HPLC 

analysis on a chiral stationary phase. Racemic samples were obtained by carrying out the reactions 

with rac-RhS.  

 

5.6.2 Synthesis of Substrates 

 

Cyclopropyl ketones were prepared via the well-established Weinreb ketone synthesis.5 All 

cyclopropanes are used in racemic. The data of novel substrates are shown below. 

 

 

(2,2-Dimethylcyclopropyl)(1-phenyl-1H-imidazol-2-yl)methanone (41a)  

A white solid. 
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1H NMR (300 MHz, CDCl3) δ 7.48-7.40 (m, 3H), 7.30-7.22 (m, 3H), 7.16-7.10 (m, 1H), 3.16 (dd, J1 = 

7.8 Hz, J2 = 6.0 Hz, 1H), 1.35-1.29 (m, 4H), 1.12 (s, 3H), 0.98 (dd, J1 = 7.8 Hz, J2 = 3.9 Hz, 1H). 

13C NMR (75 MHz, CDCl3) δ 188.9, 144.6, 138.8, 129.4, 128.9, 128.5, 126.5, 125.9, 32.4, 28.5, 27.3, 

24.1, 18.1. 

IR (film): ν (cm1) 3100, 3067, 2996, 2955, 2870, 1663, 1494, 1441, 1410, 1370, 1298, 1093, 1024, 

971, 894, 784, 760, 689, 642. 

HRMS (ESI, m/z) calcd for C15H17N2O [M+H]+: 241.1335, found: 241.1330. 

 

 

(2,2-Dimethylcyclopropyl)(1-mesityl-1H-imidazol-2-yl)methanone (41e)  

A white solid. 

1H NMR (300 MHz, CDCl3) δ 7.38-7.35 (m, 1H), 6.97-6.91 (m, 3H), 3.17 (dd, J1 = 7.8 Hz, J2 = 5.7 Hz, 

1H), 2.32 (s, 3H), 1.89 (s, 3H), 1.84 (s, 3H), 1.34-1.29 (m, 4H), 1.06 (s, 3H), 0.94 (dd, J1 = 7.8 Hz, J2 

= 3.6 Hz, 1H). 

13C NMR (75 MHz, CDCl3) δ 188.6, 144.5, 138.2, 135.3, 134.0, 133.9, 130.1, 128.9, 128.8, 125.1, 

32.2, 28.2, 27.2, 23.6, 21.1, 18.0, 17.3, 17.2. 

IR (film): ν (cm1) 3132, 3107, 2978, 2947, 2921, 2869, 1659, 1483, 1412, 1373, 1328, 1280, 1091, 

1019, 974, 891, 850, 816, 775, 743, 585. 

HRMS (ESI, m/z) calcd for C18H23N2O [M+H]+: 283.1805, found: 283.1797. 

 

 

(1-Phenyl-1H-imidazol-2-yl)(spiro[2.5]octan-1-yl)methanone (41f)  

A colorless oil. 

1H NMR (300 MHz, CDCl3) δ 7.48-7.41 (m, 3H), 7.30-7.28 (m, 1H), 7.28-7.22 (m, 2H), 7.17-7.14 (m, 

1H), 3.16 (dd, J1 = 7.8 Hz, J2 = 5.7 Hz, 1H), 1.73-1.38 (m, 9H), 1.33 (dd, J1 = 5.7 Hz, J2 = 3.9 Hz, 1H), 

1.28-1.12 (m, 1H), 0.96 (dd, J1 = 7.5 Hz, J2 = 3.9 Hz, 1H). 

13C NMR (75 MHz, CDCl3) δ 188.6, 144.4, 138.9, 129.4, 128.9, 128.6, 126.4, 125.9, 37.8, 36.5, 31.7, 

28.0, 26.2, 26.1, 25.9, 22.6. 
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IR (film): ν (cm1) 3109, 3063, 2923, 2850, 1666, 1596, 1495, 1442, 1411, 1330, 1305, 1208, 1147, 

1107, 1057, 1034, 966, 891, 868, 758, 690, 638, 513. 

HRMS (ESI, m/z) calcd for C18H21N2O [M+H]+: 281.1648, found: 281.1641. 

 

 

(1-Mesityl-1H-imidazol-2-yl)(spiro[2.4]heptan-1-yl)methanone (41g)  

A colorless oil. 

1H NMR (300 MHz, CDCl3) δ 7.37-7.34 (m, 1H), 6.96-6.91 (m, 3H), 3.33 (dd, J1 = 7.8 Hz, J2 = 6.0 Hz, 

1H), 2.32 (s, 3H), 1.89 (s, 3H), 1.85 (s, 3H), 1.88-1.80 (m, 1H), 1.75-1.45  (m, 7H), 1.43 (dd, J1 = 5.7 

Hz, J2 = 3.9 Hz, 1H), 1.17 (dd, J1 = 8.1 Hz, J2 = 3.6 Hz, 1H). 

13C NMR (75 MHz, CDCl3) δ 189.0, 144.4, 138.2, 135.2, 133.9, 130.1, 128.9, 128.8, 125.1, 39.3, 37.1, 

31.9, 29.7, 26.0, 25.9, 23.0, 21.1, 17.3, 17.2. (Missing one 13C signal) 

IR (film): ν (cm1) 3109, 2950, 2862, 1665, 1485, 1441, 1410, 1377, 1321, 1281, 1146, 1058, 982, 938, 

894, 851, 819, 766, 738, 581. 

HRMS (ESI, m/z) calcd for C20H25N2O [M+H]+: 309.1961, found: 309.1956. 

 

 

(1-Phenyl-1H-imidazol-2-yl)(2-phenylcyclopropyl)methanone (44a)  

Trans-44a: A white solid. 

1H NMR (300 MHz, CDCl3) δ 7.51-7.44 (m, 3H), 7.35-7.24 (m, 5H), 7.23-7.14 (m, 4H), 3.67-3.58 (m, 

1H), 2.68-2.58 (m, 1H), 1.78-1.70 (m, 1H), 1.56-1.46 (m, 1H). 

13C NMR (75 MHz, CDCl3) δ 188.9, 143.5, 140.4, 138.5, 129.9, 128.9, 128.8, 128.4, 127.1, 126.4, 

126.2, 126.0, 29.7, 29.4, 20.2. 

IR (film): ν (cm1) 3108, 3061, 3031, 1667, 1598, 1495, 1437, 1409, 1311, 1149, 1043, 966, 910, 869, 

832, 756, 692, 660, 560, 525. 

HRMS (ESI, m/z) calcd for C19H17N2O [M+H]+: 289.1335, found: 289.1328. 

Cis-44a: A white solid. Cis-44a was synthesized from the corresponding cis-cyclopropyl carboxylic 

acid.14a 
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1H NMR (300 MHz, CDCl3) δ 7.38-7.20 (m, 9H), 7.14-7.10 (m, 1H), 6.80-6.73 (m, 2H), 3.84-3.74 (m, 

1H), 3.03-2.91 (m, 1H), 2.06-1.97 (m, 1H), 1.52-1.42 (m, 1H). 

13C NMR (75 MHz, CDCl3) δ 186.0, 144.2, 138.1, 136.0, 129.6, 129.5, 128.7, 128.2, 127.8, 126.4, 

126.3, 125.3, 29.8, 27.4, 11.1. 

IR (film): ν (cm1) 3117, 3052, 3013, 1663, 1596, 1495, 1448, 1413, 1336, 1306, 1206, 1147, 1105,  

1080, 1030, 970, 918, 883, 806, 759, 724, 692, 550, 509. 

HRMS (ESI, m/z) calcd for C19H16N2ONa [M+Na]+: 311.1155, found: 311.1163. 

 

NOE spectrum of cis-44a: 
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(2-Methyl-2-phenylcyclopropyl)(1-phenyl-1H-imidazol-2-yl)methanone (44b)  

A white solid. 

1H NMR (300 MHz, CDCl3) δ 7.51-7.43 (m, 5H), 7.38-7.27 (m, 5H), 7.26-7.17 (m, 2H), 3.36 (dd, J1 = 

7.8 Hz, J2 = 6.0 Hz, 1H), 1.65 (dd, J1 = 6.3 Hz, J2 = 4.2 Hz, 1H), 1.49 (dd, J1 = 8.1 Hz, J2 = 4.2 Hz, 

1H), 1.41 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 188.3, 146.3, 144.5, 138.7, 129.7, 128.9, 128.6, 128.5, 127.6, 126.7, 

126.4, 126.0, 35.3, 32.8, 21.9, 19.4. 

IR (film): ν (cm1) 3058, 2987, 2928, 1666, 1594, 1493, 1410, 1369, 1337, 1300, 1068, 1031, 957, 906, 

851, 760, 696, 658, 541. 

HRMS (ESI, m/z) calcd for C20H19N2O [M+H]+: 303.1492, found: 303.1485. 

 

 

(1-Mesityl-1H-imidazol-2-yl)(2-phenylcyclopropyl)methanone (44c)  

A white solid. 

1H NMR (300 MHz, CDCl3) δ 7.38-7.36 (m, 1H), 7.32-7.23 (m, 2H), 7.22-7.12 (m, 3H), 7.02-7.00 (m, 

1H), 6.96 (br s, 2H), 3.64-3.57 (m, 1H), 2.64-2.56 (m, 1H), 2.34 (s, 3H), 1.90 (s, 3H), 1.88 (s, 3H), 

1.74-1.66 (m, 1H), 1.51-1.43 (m, 1H). 

13C NMR (75 MHz, CDCl3) δ 188.8, 143.5, 140.5, 138.5, 134.9, 134.1, 133.9, 130.5, 128.9, 128.4, 

126.4, 126.2, 125.7, 29.5, 29.1, 21.1, 20.2, 17.34, 17.32. (Missing one 13C signal) 

IR (film): ν (cm1) 3112, 3027, 2919, 2859, 1664, 1604, 1487, 1411, 1380, 1319, 1282, 1147, 1083, 

1038, 969, 936, 910, 855, 767, 737, 698, 669, 533. 

HRMS (ESI, m/z) calcd for C22H23N2O [M+H]+: 331.1805, found: 331.1797. 

 

 

(1-Mesityl-1H-imidazol-2-yl)(2-(p-tolyl)cyclopropyl)methanone (44d)  
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A white solid. 

1H NMR (300 MHz, CDCl3) δ 7.39-7.36 (m, 1H), 7.12-7.02 (m, 4H), 7.02-7.00 (m, 1H), 6.97 (br s, 

2H), 3.63-3.53 (m, 1H), 2.63-2.53 (m, 1H), 2.35 (s, 3H), 2.32 (s, 3H), 1.91 (s, 3H), 1.89 (s, 3H), 

1.74-1.65 (m, 1H), 1.50-1.41 (m, 1H). 

13C NMR (75 MHz, CDCl3) δ 188.9, 143.5, 138.4, 137.4, 135.9, 134.9, 134.1, 133.9, 130.5, 129.0, 

128.9, 126.1, 125.6, 29.3, 29.0, 21.1, 20.9, 20.1, 17.31, 17.28. (Missing one 13C signal) 

IR (film): ν (cm1) 3144, 3114, 3013, 2948, 2920, 2860, 1664, 1487, 1439, 1410, 1378, 1322, 1047, 

970, 943, 918, 872, 804, 771, 741, 532. 

HRMS (ESI, m/z) calcd for C23H25N2O [M+H]+: 345.1961, found: 345.1953. 

 

 

(2-(4-Bromophenyl)cyclopropyl)(1-mesityl-1H-imidazol-2-yl)methanone (44e)  

A white solid. 

1H NMR (300 MHz, CDCl3) δ 7.42-7.34 (m, 3H), 7.05-6.97 (m, 3H), 6.96 (br s, 2H), 3.60-3.52 (m, 

1H), 2.59-2.50 (m, 1H), 2.34 (s, 3H), 1.89 (s, 3H), 1.88 (s, 3H), 1.74-1.65 (m, 1H), 1.47-1.38 (m, 1H). 

13C NMR (75 MHz, CDCl3) δ 188.4, 143.4, 139.6, 138.5, 134.8, 134.1, 133.9, 131.4, 130.6, 129.0, 

128.0, 125.8, 120.1, 29.0, 28.7, 21.1, 20.0, 17.34, 17.32. (Missing one 13C signal) 

IR (film): ν (cm1) 3063, 2959, 2916, 2855, 1664, 1484, 1412, 1374, 1314, 1037, 1007, 968, 913, 857, 

841, 806, 777, 751, 532. 

HRMS (ESI, m/z) calcd for C22H22BrN2O [M+H]+: 409.0910, found: 409.0900. 

 

 

(2,2-Dimethylcyclopropyl)(pyridin-2-yl)methanone (44f) 

A grey solid. 

1H NMR (300 MHz, CDCl3) δ 8.73-8.68 (m, 1H), 8.02 (d, J = 8.1 Hz, 1H), 7.81 (td, J1 = 7.8 Hz, J2 = 

1.8 Hz, 1H), 7.44 (ddd, J1 = 7.2 Hz, J2 = 4.8 Hz, J3 = 1.2 Hz, 1H), 3.38 (dd, J1 = 7.5 Hz, J2 = 5.7 Hz, 
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1H), 1.49 (dd, J1 = 5.7 Hz, J2 = 3.9 Hz, 1H), 1.33 (s, 3H), 1.18 (s, 3H), 1.08 (dd, J1 = 7.5 Hz, J2 = 3.6 

Hz, 1H). 

13C NMR (75 MHz, CDCl3) δ 199.3, 154.8, 148.9, 136.7, 126.5, 121.5, 30.5, 28.9, 27.3, 25.0, 18.2. 

IR (film): ν (cm1) 3058, 2994, 2943, 2870, 1667, 1575, 1443, 1384, 1312, 1273, 1211, 1116, 1089, 

1038, 996, 910, 834, 797, 758, 711, 678, 646, 616. 

HRMS (ESI, m/z) calcd for C11H14NO [M+H]+: 176.1070, found: 176.1070. 

 

 

Methyl (S)-4-(((S)-1-methoxy-1-oxo-3-phenylpropan-2-yl)amino)-4-oxo-3-(N-(prop-1-en-2-yl) 

acrylamido)butanoate (42t) 

A white solid. 42t was isolated as a minor product in the tandem esterification/acylation reaction of 

aspartame following a published procedure.14b 

1H NMR (500 MHz, (CD3)2SO) δ 8.04 (d, J = 7.8 Hz, 1H), 7.27-7.21 (m, 2H), 7.21-7.18 (m, 1H), 

7.18-7.14 (m, 2H), 6.43 (dd, J1 = 16.8 Hz, J2 = 10.3 Hz, 1H), 6.22 (dd, J1 = 16.8 Hz, J2 = 2.0 Hz, 1H), 

5.73 (dd, J1 = 10.3 Hz, J2 = 2.3 Hz, 1H), 5.25 (t, J = 7.4 Hz, 1H), 5.12-5.10 (m, 1H), 4.63 (s, 1H), 

4.49-4.42 (m, 1H), 3.61 (s, 3H), 3.57 (s, 3H), 3.03 (dd, J1 = 13.9 Hz, J2 = 5.1 Hz, 1H), 2.92 (dd, J1 = 

13.8 Hz, J2 = 9.4 Hz, 1H), 2.87 (dd, J1 = 16.6 Hz, J2 = 8.0 Hz, 1H), 2.56 (dd, J1 = 16.6 Hz, J2 = 6.8 Hz, 

1H), 1.58 (s, 3H). 

13C NMR (125 MHz, (CD3)2SO) δ 171.5, 170.6, 169.3, 164.4, 141.6, 137.1, 129.1, 128.9, 128.3, 127.9, 

126.6, 118.1, 53.8, 53.3, 52.0, 51.6, 36.3, 33.5, 22.1. 

IR (film): ν (cm1) 3380, 2956, 1738, 1678, 1644, 1610, 1516, 1448, 1413, 1369, 1314, 1237, 1167, 

1128, 1024, 986, 929, 897, 824, 750, 703, 548, 497, 392. 

HRMS (ESI, m/z) calcd for C21H26N2O6Na [M+Na]+: 425.1683, found: 425.1678. 

 

 

Isopropyl 2-methyl-2-(4-(4-vinylbenzoyl)phenoxy)propanoate (42u)  
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A white solid. 42u was synthesized through a Suzuki cross coupling of fenofibrate with potassium 

vinyltrifluoroborate according to a published procedure.14c 

1H NMR (300 MHz, CDCl3) δ 7.79-7.70 (m, 4H), 7.52-7.46 (m, 2H), 6.90-6.83 (m, 2H), 6.78 (dd, J1 = 

17.4 Hz, J2 = 10.8 Hz, 1H), 5.88 (d, J = 17.7 Hz, 1H), 5.39 (d, J = 10.8 Hz, 1H), 5.09 (sept, J = 6.0 Hz, 

1H), 1.66 (s, 6H), 1.22 (s, 3H), 1.19 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 195.0, 173.2, 159.5, 141.1, 137.3, 136.1, 131.9, 130.8, 130.2, 126.0, 

117.2, 116.3, 79.4, 69.3, 25.4, 21.5. 

IR (film): ν (cm1) 3082, 2983, 2938, 2877, 1718, 1641, 1599, 1570, 1281, 1247, 1174, 1148, 1103, 

971, 923, 854, 775, 669, 594. 

HRMS (ESI, m/z) calcd for C22H24O4Na [M+Na]+: 375.1567, found: 375.1556. 

 

5.6.3 Experimental and Characterization Data of Novel Products 

 

 

((1R,2R)-4,4-Dimethyl-2-(1-phenyl-1H-imidazole-2-carbonyl)cyclopentane-1-carbonitrile (43a) 

According to the general procedure, the reaction of (2,2-dimethylcyclopropyl)(1-phenyl-1H- 

imidazol-2-yl)methanone 41a (24.0 mg, 0.10 mmol), acrylonitrile 42a (13.3 mg, 2.5 equiv), Δ-RhS 

(1.7 mg, 2 mol%) and DIPEA (6.5 mg, 0.5 equiv) in acetone (1.0 mL, 0.1 M) under nitrogen 

atmosphere with blue LEDs for 24 hours, afforded 28.8 mg (98% yield) of 43a as a colorless oil. 

The d.r. value was determined through 1H NMR of crude materials as >20:1; enantiomeric excess was 

established by HPLC analysis using a Chiralpak AD-H column, ee = 99% (HPLC: AD-H, 254 nm, 

n-hexane/isopropanol = 85:15, flow rate 1 mL/min, 40 C, tr (major) = 8.0 min, tr (minor) = 10.7 min). 

[]D
22 = –86.0 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.44-7.37 (m, 3H), 7.26-7.23 (m, 1H), 7.22-7.18 (m, 2H), 7.16-7.13 (m, 

1H), 4.51 (q, J = 9.2 Hz, 1H), 3.39 (q, J = 8.5 Hz, 1H), 2.21 (dd, J1 = 12.9 Hz, J2 = 9.3 Hz, 1H), 1.89 

(dd, J1 = 12.9 Hz, J2 = 9.0 Hz, 1H), 1.80 (dd, J1 = 12.9 Hz, J2 = 8.1 Hz, 1H), 1.48 (dd, J1 = 12.9 Hz, J2 

= 9.6 Hz, 1H), 1.14 (s, 3H), 0.93 (s, 3H). 
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13C NMR (75 MHz, CDCl3) δ 189.3, 142.0, 138.1, 130.3, 129.03, 128.97, 127.7, 125.9, 122.4, 52.1, 

46.2, 45.2, 40.3, 28.64, 28.55, 27.9. 

IR (film): ν (cm1) 3112, 2957, 2868, 2239, 1681, 1596, 1496, 1448, 1402, 1337, 1305, 1150, 1069, 

1033, 978, 910, 836, 797, 763, 731, 692, 659, 535. 

HRMS (ESI, m/z) calcd for C18H20N3O [M+H]+: 294.1601, found: 294.1593. 

 

 

Methyl (1R,2R)-4,4-dimethyl-2-(1-phenyl-1H-imidazole-2-carbonyl)cyclopentane-1-carboxylate 

(43b) 

According to the general procedure, the reaction of (2,2-dimethylcyclopropyl)(1-phenyl-1H- 

imidazol-2-yl)methanone 41a (24.0 mg, 0.10 mmol), methyl acrylate 42b (21.5 mg, 2.5 equiv), Δ-RhS 

(1.7 mg, 2 mol%) and DIPEA (6.5 mg, 0.5 equiv) in acetone (1.0 mL, 0.1 M) under nitrogen 

atmosphere with blue LEDs for 22 hours, afforded 32.5 mg (99% yield) of 43b as a colorless oil.  

The d.r. value was determined through 1H NMR of crude materials as 15:1; enantiomeric excess of the 

major diastereoisomer was established by HPLC analysis using a Chiralpak IG column, ee = 97% 

(HPLC: IG, 254 nm, n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 25 C, tr (major) = 12.4 min, 

tr (minor) = 15.4 min). []D
22 = –63.0 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.50-7.42 (m, 3H), 7.31-7.25 (m, 3H), 7.20-7.17 (m, 1H), 4.56 (q, J = 

9.0 Hz, 1H), 3.62 (s, 3H, the corresponding peak of the minor diastereoisomer at 3.27), 4.48 (q, J = 9.0 

Hz, 1H), 2.18 (dd, J1 = 12.9 Hz, J2 = 9.6 Hz, 1H), 1.89-1.82 (m, 2H), 1.61 (dd, J1 = 12.6 Hz, J2 = 9.3 

Hz, 1H), 1.13 (s, 3H), 1.02 (s, 3H, the corresponding peak of minor diastereoisomer at 1.05). 

13C NMR (75 MHz, CDCl3) δ 191.7, 175.3, 142.9, 138.5, 129.8, 128.9, 128.7, 127.0, 125.8, 51.7, 50.4, 

45.9, 44.9, 44.0, 39.5, 29.11, 29.09. 

IR (film): ν (cm1) 3134, 3110, 2952, 2867, 1730, 1681, 1597, 1504, 1493, 1445, 1404, 1369, 1306, 

1247, 1196, 1172, 1150, 1041, 1003, 982, 905, 849, 806, 760, 693, 660, 535. 

HRMS (ESI, m/z) calcd for C19H22N2O3Na [M+Na]+: 349.1523, found: 349.1520. 
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(1R,2R)-2-Bnzoyl-4,4-dimethylcyclopentyl)(1-phenyl-1H-imidazol-2-yl)methanone (43c) 

According to the general procedure, the reaction of (2,2-dimethylcyclopropyl)(1-phenyl-1H- 

imidazol-2-yl)methanone 41a (24.0 mg, 0.10 mmol), 1-phenylprop-2-en-1-one 42c (33.1 mg, 2.5 

equiv), Δ-RhS (1.7 mg, 2 mol%) and DIPEA (6.5 mg, 0.5 equiv) in acetone (1.0 mL, 0.1 M) under 

nitrogen atmosphere with blue LEDs for 24 hours, afforded 28.5 mg (77% yield) of the major 

diastereoisomer of 43c as a yellow solid. 

The d.r. value was determined through 1H NMR of crude materials as 12:1, therefore the total yield is 

estimated as 83%. Enantiomeric excess of the major diastereoisomer was established by HPLC 

analysis using a Chiralpak AD-H column, ee = 91% (HPLC: AD-H, 254 nm, n-hexane/isopropanol = 

85:15, flow rate 1 mL/min, 40 C, tr (major) = 9.1 min, tr (minor) = 15.0 min). []D
22 = –65.2 (c 1.0, 

CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.94-7.88 (m, 2H), 7.54-7.46 (m, 1H), 7.45-7.36 (m, 5H), 7.29-7.27 (m, 

1H), 7.24-7.18 (m, 2H), 7.14-7.12 (m, 1H), 4.86 (q, J = 9.3 Hz, 1H), 4.41 (q, J = 9.0 Hz, 1H), 2.31 (dd, 

J1 = 12.3 Hz, J2 = 9.3 Hz, 1H), 2.02 (dd, J1 = 12.6 Hz, J2 = 9.9 Hz, 1H), 1.77-1.66 (m, 2H), 1.12 (s, 

3H), 1.09 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 201.2, 192.3, 142.8, 138.5, 136.8, 132.7, 129.9, 128.9, 128.6, 128.4, 

126.9, 125.9, 125.8, 49.5, 48.0, 46.2, 45.8, 40.2, 29.4, 29.0. 

IR (film): ν (cm1) 3055, 2951, 2930, 2864, 1672, 1504, 1491, 1446, 1411, 1375, 1307, 1228, 1207, 

1049, 873, 812, 786, 770, 705, 694, 661, 536. 

HRMS (ESI, m/z) calcd for C24H24N2O2Na [M+Na]+: 395.1730, found: 395.1728. 

 

 

(1R,2R)-4,4-Dimethyl-2-(1-phenyl-1H-imidazole-2-carbonyl)cyclopentyl)(morpholino)methanone 

(43d) 
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According to the general procedure, the reaction of (2,2-dimethylcyclopropyl)(1-phenyl-1H- 

imidazol-2-yl)methanone 41a (24.0 mg, 0.10 mmol), 1-morpholinoprop-2-en-1-one 42d (35.3 mg, 2.5 

equiv), Δ-RhS (1.7 mg, 2 mol%) and DIPEA (6.5 mg, 0.5 equiv) in acetone (1.0 mL, 0.1 M) under 

nitrogen atmosphere with blue LEDs for 24 hours, afforded 33.1 mg (87% yield) of 43d as a colorless 

oil. 

The d.r. value was determined through 1H NMR of crude materials as >20:1; enantiomeric excess was 

established by HPLC analysis using a Chiralpak IG column, ee = 91% (HPLC: IG, 254 nm, 

n-hexane/isopropanol = 40:60, flow rate 1 mL/min, 40 C, tr (major) = 9.5 min, tr (minor) = 20.7 min). 

[]D
22 = –38.4 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.48-7.41 (m, 3H), 7.32-7.29 (m, 1H), 7.28-7.22 (m, 2H), 7.16-7.13 (m, 

1H), 4.81 (q, J = 9.0 Hz, 1H), 3.68-3.45 (m, 9H), 2.32 (dd, J1 = 12.9 Hz, J2 = 9.6 Hz, 1H), 1.79 (dd, J1 

= 12.3 Hz, J2 = 9.0 Hz, 1H), 1.68 (dd, J1 = 12.3 Hz, J2 = 9.6 Hz, 1H), 1.60 (dd, J1 = 12.6 Hz, J2 = 9.6 

Hz, 1H), 1.17 (s, 3H), 1.02 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 192.5, 173.0, 142.8, 138.6, 130.0, 128.9, 128.6, 126.9, 125.8, 66.9, 66.8, 

51.0, 46.1, 46.0, 45.1, 42.3, 41.6, 39.8, 29.5, 29.4. 

IR (film): ν (cm1) 2954, 2928, 2861, 1677, 1635, 1597, 1503, 1493, 1443, 1402, 1304, 1269, 1231, 

1211, 1113, 1069, 1046, 911, 870, 806, 762, 728, 693, 536. 

HRMS (ESI, m/z) calcd for C22H27N3O3Na [M+Na]+: 404.1945, found: 404.1942. 

 

 

Diethyl ((1R,2S)-4,4-dimethyl-2-(1-phenyl-1H-imidazole-2-carbonyl)cyclopentyl)phosphonate 

(43e) 

According to the general procedure, the reaction of (2,2-dimethylcyclopropyl)(1-phenyl-1H- 

imidazol-2-yl)methanone 41a (24.0 mg, 0.10 mmol), diethyl vinylphosphonate 42e (41.0 mg, 2.5 

equiv), Δ-RhS (1.7 mg, 2 mol%) and DIPEA (6.5 mg, 0.5 equiv) in acetone (1.0 mL, 0.1 M) under 

nitrogen atmosphere with blue LEDs for 24 hours, afforded 37.5 mg (93% yield, total yield) of 43e as 

a colorless oil as a mixture of two diastereosiomers. 
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The d.r. value was determined through 1H NMR of crude materials as 8:1; enantiomeric excess of the 

major diastereoisomer was established by HPLC analysis using a Chiralpak IG column, ee = 98% 

(HPLC: IG, 254 nm, n-hexane/isopropanol = 50:50, flow rate 1 mL/min, 40 C, tr (major) = 7.4 min, tr 

(minor) = 24.1 min). []D
22 = –33.4 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.50-7.41 (m, 3H), 7.31-7.25 (m, 3H), 7.20-7.15 (m, 1H), 4.64-4.46 (m, 

1H), 4.11-3.90 (m, 4H), 3.16-2.97 (m, 1H), 2.23-2.11 (m, 1H), 1.89-1.78 (m, 2H), 1.61 (dd, J1 = 12.9 

Hz, J2 = 8.1 Hz, 1H), 1.26-1.16 (m, 6H), 1.15 (s, 3H), 0.99 (s, 3H, the corresponding peak of the minor 

diastereoisomer at 1.05). 

13C NMR (75 MHz, CDCl3) δ 191.4 (d, J = 2.3 Hz), 142.8, 138.5, 129.8, 128.9, 128.6, 127.0, 125.7, 

61.6 (d, J = 5.4 Hz), 61.5, (d, J = 6.5 Hz), 48.1, 47.1 (d, J = 11.9 Hz), 41.6 (d, J = 2.3 Hz), 40.2 (d, J = 

12.7 Hz), 36.2 (d, J = 146.4 Hz), 29.0, 28.6, 16.4 (d, J = 1.5 Hz), 16.3 (d, J = 1.9 Hz). 

IR (film): ν (cm1) 2954, 2868, 1683, 1504, 1493, 1445, 1404, 1237, 1053, 1020, 955, 900, 810, 761, 

730, 693, 663, 564, 549, 532. 

HRMS (ESI, m/z) calcd for C21H29N2O4PNa [M+Na]+: 427.1757, found: 427.1755. 

 

 

((1S,2R)-4,4-Dimethyl-2-(phenylsulfonyl)cyclopentyl)(1-phenyl-1H-imidazol-2-yl)methanone 

(43f) 

According to the general procedure, the reaction of (2,2-dimethylcyclopropyl)(1-phenyl-1H- 

imidazol-2-yl)methanone 41a (24.0 mg, 0.10 mmol), (vinylsulfonyl)benzene 42f (42.1 mg, 2.5 equiv), 

Δ-RhS (3.5 mg, 4 mol%) and DIPEA (25.8 mg, 2.0 equiv) in acetone (1.0 mL, 0.1 M) under nitrogen 

atmosphere with blue LEDs for 20 hours, afforded 40.1 mg (98% yield) of 43f as a yellow sold. 

The d.r. value was determined through 1H NMR of crude materials as >20:1; enantiomeric excess was 

established by HPLC analysis using a Chiralpak IG column, ee = 99% (HPLC: IG, 254 nm, 

n-hexane/isopropanol = 50:50, flow rate 1 mL/min, 40 C, tr (major) = 10.4 min, tr (minor) = 20.7 

min). []D
22 = –13.4 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.90-7.83 (m, 2H), 7.60-7.52 (m, 1H), 7.48-7.38 (m, 5H), 7.31-7.28 (m, 

1H), 7.16-7.13 (m, 1H), 7.23-7.06 (m, 2H), 4.80 (q, J = 8.7 Hz, 1H), 4.35 (q, J = 9.0 Hz, 1H), 2.24 (dd, 
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J1 = 12.9 Hz, J2 = 9.9 Hz, 1H), 2.10 (dd, J1 = 13.2 Hz, J2 = 9.0 Hz, 1H), 1.85 (dd, J1 = 13.2 Hz, J2 = 

9.3 Hz, 1H), 1.61 (dd, J1 = 12.6 Hz, J2 = 8.1 Hz, 1H), 1.13 (s, 3H), 0.96 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 189.5, 142.0, 138.5, 138.1, 133.3, 130.0, 128.9, 128.8, 128.7, 127.3, 

125.7, 64.8, 47.8, 46.7, 40.9, 40.0, 28.7, 28.5. (Missing one 13C signal) 

IR (film): ν (cm1) 3124, 3062, 2952, 2868, 1685, 1496, 1450, 1407, 1340, 1294, 1144, 1080, 1033, 

987, 916, 885, 808, 755, 716, 690, 601, 561, 496, 417. 

HRMS (ESI, m/z) calcd for C23H24N2O3SNa [M+Na]+: 431.1400, found: 431.1397. 

 

 

Methyl (1R,2R)-1,4,4-trimethyl-2-(1-phenyl-1H-imidazole-2-carbonyl)cyclopentane-1- 

carboxylate (43g) 

According to the general procedure, the reaction of (2,2-dimethylcyclopropyl)(1-phenyl-1H- 

imidazol-2-yl)methanone 41a (24.0 mg, 0.10 mmol), methyl methacrylate 42g (25.0 mg, 2.5 equiv), 

Δ-RhS (3.5 mg, 4 mol%) and DIPEA (25.8 mg, 2.0 equiv) in acetone (1.0 mL, 0.1 M) under nitrogen 

atmosphere with blue LEDs for 24 hours, afforded 32.9 mg (97% yield) of 43g as a yellow solid. 

The d.r. value was determined through 1H NMR of crude materials as >20:1; enantiomeric excess was 

established by HPLC analysis using a Chiralpak IG column, ee = 99% (HPLC: IG, 254 nm, 

n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 25 C, tr (major) = 6.4 min, tr (minor) = 8.3 min). 

[]D
22 = –60.2 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.40-7.33 (m, 3H), 7.22-7.16 (m, 2H), 7.15-7.12 (m, 1H), 7.08-7.05 (m, 

1H), 4.70 (dd, J1 = 12.6 Hz, J2 = 6.6 Hz, 1H), 3.62 (s, 3H, the corresponding peak of the minor 

diastereoisomer at 3.41), 2.20 (d, J = 13.5 Hz, 1H), 1.99 (t, J = 12.6 Hz, 1H), 1.56 (dd, J1 = 12.9 Hz, J2 

= 6.3 Hz, 1H), 1.42 (d, J = 13.5 Hz, 1H), 1.09 (s, 3H), 1.03 (s, 3H), 1.01 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 191.0, 177.7, 143.7, 138.5, 129.5, 128.9, 128.6, 127.0, 125.9, 53.9, 53.5, 

53.1, 52.1, 42.2, 37.1, 31.1, 30.2, 21.5. 

IR (film): ν (cm1) 2938, 2868, 1728, 1679, 1495, 1444, 1404, 1333, 1302, 1253, 1175, 1144, 1113, 

1067, 1018, 994, 968, 899, 860, 823, 765, 688, 536. 

HRMS (ESI, m/z) calcd for C20H24N2O3Na [M+Na]+: 363.1679, found: 363.1677.  
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((1R,2R)-4,4-Dimethyl-2-phenylcyclopentyl)(1-phenyl-1H-imidazol-2-yl)methanone (43h)  

According to the general procedure, the reaction of (2,2-dimethylcyclopropyl)(1-phenyl-1H- 

imidazol-2-yl)methanone 41a (24.0 mg, 0.10 mmol), styrene 42h (26.1 mg, 2.5 equiv), Δ-RhS (3.5 mg, 

4 mol%) and DIPEA (25.8 mg, 2.0 equiv) in acetone (1.0 mL, 0.1 M) under nitrogen atmosphere with 

blue LEDs for 24 hours, afforded 28.0 mg (81% yield) of 43h as a colorless oil. 

The d.r. value was determined through 1H NMR of crude materials as >20:1; enantiomeric excess was 

established by HPLC analysis using a Chiralpak IG column, ee = 97% (HPLC: IG, 254 nm, 

n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 25 C, tr (major) = 5.4 min, tr (minor) = 6.2 min). 

[]D
22 = –171.4 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.38-7.31 (m, 3H), 7.23-7.11 (m, 5H), 7.10-7.02 (m, 3H), 7.02-6.99 (m, 

1H), 4.47-4.34 (q, J = 9.8 Hz, 1H), 3.64 (td, J1 = 11.4 Hz, J2 = 7.6 Hz, 1H), 2.16 (dd, J1 = 12.8 Hz, J2 = 

9.6 Hz, 1H), 1.89 (dd, J1 = 12.6 Hz, J2 = 7.6 Hz, 1H), 1.71 (t, J = 12.1 Hz, 1H), 1.62 (dd, J1 = 12.8 Hz, 

J2 = 9.3 Hz, 1H), 1.13 (s, 3H), 1.03 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 192.9, 143.6, 143.4, 138.4, 129.5, 128.9, 128.6, 128.2, 127.5, 126.8, 

126.0, 125.7, 54.6, 50.2, 47.1, 46.8, 38.5, 30.7, 30.2. 

IR (film): ν (cm1) 3060, 3029, 2949, 2863, 1679, 1596, 1495, 1447, 1403, 1304, 1149, 1069, 1032, 

979, 894, 816, 756, 693, 663, 528. 

HRMS (ESI, m/z) calcd for C23H25N2O [M+H]+: 345.1961, found: 345.1953. 

 

 

((1R,2R)-2-(4-Methoxyphenyl)-4,4-dimethylcyclopentyl)(1-phenyl-1H-imidazol-2-yl)methanone 

(43i) 
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According to the general procedure, the reaction of (2,2-dimethylcyclopropyl)(1-phenyl-1H- 

imidazol-2-yl)methanone 41a (24.0 mg, 0.10 mmol), 1-methoxy-4-vinylbenzene 42i (33.6 mg, 2.5 

equiv), Δ-RhS (3.5 mg, 4 mol%) and DIPEA (25.8 mg, 2.0 equiv) in acetone (1.0 mL, 0.1 M) under 

nitrogen atmosphere at 50 oC with blue LEDs for 36 hours, afforded 26.3 mg (70% yield) of 43i as a 

colorless oil. 

The d.r. value was determined through 1H NMR of crude materials as >20:1; enantiomeric excess was 

established by HPLC analysis using a Chiralpak IG column, ee = 90% (HPLC: IG, 254 nm, 

n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 25 C, tr (major) = 10.1 min, tr (minor) = 12.0 

min). []D
22 = –92.4 (c 0.5, CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.40-7.46 (m, 3H), 7.21 (d, J = 1.0 Hz, 1H), 7.20-7.17 (m, 2H), 

7.16-7.12 (m, 2H), 7.10 (d, J = 1.1 Hz, 1H), 6.75-6.75 (m, 2H), 4.47-4.39 (m, 1H), 3.74 (s, 3H), 3.66 

(td, J1 = 12.7 Hz, J2 = 7.5 Hz, 1H), 2.21 (dd, J1 = 12.9 Hz, J2 = 9.6 Hz, 1H), 1.93 (dd, J1 = 12.6 Hz, J2 

= 9.6 Hz, 1H), 1.74 (t, J = 12.3 Hz, 1H), 1.67 (dd, J1 = 12.9 Hz, J2 = 9.4 Hz, 1H), 1.19 (s, 3H), 1.09 (s, 

3H). 

13C NMR (125 MHz, CDCl3) δ 193.0, 157.8, 143.3, 138.4, 135.6, 129.5, 128.9, 128.6, 128.4, 126.9, 

125.7, 113.6, 55.2, 54.8, 50.3, 46.7, 46.4, 38.3, 30.8, 30.3. 

IR (film): ν (cm1) 3062, 2948, 2863, 1678, 1605, 1506, 1447, 1403, 1304, 1244, 1177, 1149, 1032, 

978, 891, 827, 761, 692, 662, 536. 

HRMS (ESI, m/z) calcd for C24H27N2O2 [M+H]+: 375.2067, found: 375.2063. 

 

 

((1R,2R)-2-(4-Fluorophenyl)-4,4-dimethylcyclopentyl)(1-phenyl-1H-imidazol-2-yl)methanone 

(43j) 

According to the general procedure, the reaction of (2,2-dimethylcyclopropyl)(1-phenyl-1H- 

imidazol-2-yl)methanone 41a (24.0 mg, 0.10 mmol), 1-fluoro-4-vinylbenzene 42j (30.5 mg, 2.5 equiv), 

Δ-RhS (3.5 mg, 4 mol%) and DIPEA (25.8 mg, 2.0 equiv) in acetone (1.0 mL, 0.1 M) under nitrogen 

atmosphere with blue LEDs for 26 hours, afforded 23.8 mg (66% yield) of 43j as a colorless oil. 
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The d.r. value was determined through 1H NMR of crude materials as >20:1; enantiomeric excess was 

established by HPLC analysis using a Chiralpak AD-H column, ee = 96% (HPLC: IG, 254 nm, 

n-hexane/isopropanol = 95:5, flow rate 1 mL/min, 25 C, tr (major) = 7.7 min, tr (minor) = 9.2 min). 

[]D
22 = –97.8 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.48-7.40 (m, 3H), 7.25-7.18 (m, 3H), 7.18-7.13 (m, 2H), 7.12-6.99 (m, 

1H), 6.96-6.85 (m, 2H), 4.43 (q, J = 10.5 Hz, 1H), 3.68 (td, J1 = 11.7 Hz, J2 = 7.5 Hz, 1H), 2.23 (dd, J1 

= 12.9 Hz, J2 = 9.6 Hz, 1H), 1.95 (dd, J1 = 12.6 Hz, J2 = 7.5 Hz, 1H), 1.74 (t, J = 12.0 Hz, 1H), 1.69 

(dd, J1 = 12.9 Hz, J2 = 9.6 Hz, 1H), 1.20 (s, 3H), 1.10 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 192.7, 161.3 (d, J = 242.0), 143.3, 139.2 (d, J = 2.9 Hz), 138.4, 129.6, 

128.9, 128.8 (d, J = 7.5 Hz), 128.7, 127.0, 125.7, 114.9 (d, J = 20.6 Hz), 54.8, 50.3, 46.6, 46.4, 38.4, 

30.7, 30.2. 

IR (film): ν (cm1) 3112, 3047, 2950, 2864, 1679, 1599, 1503, 1447, 1403, 1304, 1222, 1154, 1070, 

1033, 979, 893, 833, 760, 732, 692, 661, 531. 

HRMS (ESI, m/z) calcd for C23H24FN2O [M+H]+: 363.1867, found: 363.1865. 

 

 

((1R,2R)-2-(4-Bromophenyl)-4,4-dimethylcyclopentyl)(1-phenyl-1H-imidazol-2-yl)methanone 

(43k) 

According to the general procedure, the reaction of (2,2-dimethylcyclopropyl)(1-phenyl-1H- 

imidazol-2-yl)methanone 41a (24.0 mg, 0.10 mmol), 1-bromo-4-vinylbenzene 42k (45.8 mg, 2.5 

equiv), Δ-RhS (3.5 mg, 4 mol%) and DIPEA (25.8 mg, 2.0 equiv) in acetone (1.0 mL, 0.1 M) under 

nitrogen atmosphere with blue LEDs for 26 hours, afforded 31.2 mg (74% yield) of 43k as a white 

solid. 

The d.r. value was determined through 1H NMR of crude materials as >20:1; enantiomeric excess was 

established by HPLC analysis using a Chiralpak IG column, ee = 97% (HPLC: IG, 254 nm, 

n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 25 C, tr (major) = 5.9 min, tr (minor) = 6.5 min). 

[]D
22 = –123.4 (c 1.0, CH2Cl2). 
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1H NMR (300 MHz, CDCl3) δ 7.48-7.40 (m, 3H), 7.36-7.30 (m, 2H), 7.23-7.20 (m, 1H), 7.19-7.10 (m, 

5H), 4.44 (q, J = 9.8 Hz, 1H), 3.67 (td, J1 = 11.4 Hz, J2 = 7.8 Hz, 1H), 2.24 (dd, J1 = 12.9 Hz, J2 = 9.9 

Hz, 1H), 1.95 (dd, J1 = 12.3 Hz, J2 = 7.5 Hz, 1H), 1.73 (t, J = 12.0 Hz, 1H), 1.68 (dd, J1 = 13.5 Hz, J2 

= 9.6 Hz, 1H), 1.20 (s, 3H), 1.10 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 192.5, 143.2, 142.6, 138.4, 131.3, 129.6, 129.3, 128.9, 128.7, 127.1, 

125.7, 119.7, 54.5, 50.1, 46.7, 46.4, 38.5, 30.7, 30.2. 

IR (film): ν (cm1) 3121, 3046, 2947, 2925, 2859, 1680, 1491, 1451, 1405, 1369, 1303, 1074, 1035, 

1006, 893, 818, 763, 693, 654, 528. 

HRMS (ESI, m/z) calcd for C23H24BrN2O [M+H]+: 423.1067, found: 423.1063. 

 

 

4-((1R,2R)-4,4-Dimethyl-2-(1-phenyl-1H-imidazole-2-carbonyl)cyclopentyl)benzonitrile (43l) 

According to the general procedure, the reaction of (2,2-dimethylcyclopropyl)(1-phenyl-1H- 

imidazol-2-yl)methanone 41a (24.0 mg, 0.10 mmol), 4-vinylbenzonitrile 42l (32.3 mg, 2.5 equiv), 

Δ-RhS (1.7 mg, 2 mol%) and DIPEA (6.5 mg, 0.5 equiv) in acetone (1.0 mL, 0.1 M) under nitrogen 

atmosphere with blue LEDs for 20 hours, afforded 35.9 mg (97% yield) of 43l as a colorless oil. 

The d.r. value was determined through 1H NMR of crude materials as >20:1; enantiomeric excess was 

established by HPLC analysis using a Chiralpak IG column, ee = 97% (HPLC: IG, 254 nm, 

n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 25 C, tr (major) = 15.1 min, tr (minor) = 21.3 

min). []D
22 = –185.4 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.53-7.48 (m, 2H), 7.47-7.41 (m, 3H), 7.39-7.34 (m, 2H), 7.23-7.21 (m, 

1H), 7.19-7.14 (m, 2H), 7.14-7.12 (m, 1H), 4.47 (q, J = 9.8 Hz, 1H), 3.76 (td, J1 = 11.4 Hz, J2 = 7.5 Hz, 

1H), 2.27 (dd, J1 = 12.9 Hz, J2 = 9.6 Hz, 1H), 1.98 (dd, J1 = 12.6 Hz, J2 = 7.5 Hz, 1H), 1.75 (t, J = 12.0 

Hz, 1H), 1.70 (dd, J1 = 12.9 Hz, J2 = 9.3 Hz, 1H), 1.21 (s, 3H), 1.11 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 192.0, 149.4, 142.9, 138.2, 132.1, 129.7, 129.0, 128.8, 128.3, 127.2, 

125.7, 119.0, 109.9, 54.4, 49.8, 46.8, 46.7, 38.6, 30.6, 30.0. 
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IR (film): ν (cm1) 3113, 3062, 2951, 2865, 2226, 1679, 1602, 1497, 1447, 1403, 1304, 1149, 1070, 

1032, 895, 832, 763, 730, 692, 657, 558. 

HRMS (ESI, m/z) calcd for C24H24N3O [M+H]+: 370.1914, found: 370.1912. 

 

 

Methyl 4-((1R,2R)-4,4-dimethyl-2-(1-phenyl-1H-imidazole-2-carbonyl)cyclopentyl)benzoate 

(43m) 

According to the general procedure, the reaction of (2,2-dimethylcyclopropyl)(1-phenyl-1H- 

imidazol-2-yl)methanone 41a (24.0 mg, 0.10 mmol), methyl 4-vinylbenzoate 42m (40.6 mg, 2.5 

equiv), Δ-RhS (1.7 mg, 2 mol%) and DIPEA (6.5 mg, 0.5 equiv) in acetone (1.0 mL, 0.1 M) under 

nitrogen atmosphere with blue LEDs for 20 hours, afforded 39.9 mg (99% yield) of 43m as a white 

solid. 

The d.r. value was determined through 1H NMR of crude materials as >20:1; enantiomeric excess was 

established by HPLC analysis using a Chiralpak AD-H column, ee = 98% (HPLC: AD-H, 254 nm, 

n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 25 C, tr (major) = 9.0 min, tr (minor) = 12.1 min). 

[]D
22 = –184.6 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.93-7.86 (m, 2H), 7.46-7.40 (m, 3H), 7.37-7.30 (m, 2H), 7.22-7.19 (m, 

1H), 7.18-7.12 (m, 2H), 7.12-7.09 (m, 1H), 4.50 (q, J = 9.8 Hz, 1H), 3.86 (s, 3H), 3.76 (td, J1 = 11.1 

Hz, J2 = 7.5 Hz, 1H), 2.25 (dd, J1 = 12.9 Hz, J2 = 9.6 Hz, 1H), 1.98 (dd, J1 = 12.9 Hz, J2 = 7.5 Hz, 1H), 

1.79 (t, J = 12.0 Hz, 1H), 1.71 (dd, J1 = 12.9 Hz, J2 = 9.6 Hz, 1H), 1.21 (s, 3H), 1.11 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 192.4, 167.1, 149.2, 143.1, 138.3, 129.7, 129.6, 128.9, 128.7, 128.0, 

127.5, 127.1, 125.7, 54.4, 51.9, 49.8, 47.1, 46.7, 38.6, 30.6, 30.1. 

IR (film): ν (cm1) 3137, 2951, 2862, 1706, 1681, 1602, 1492, 1446, 1410, 1366, 1276, 1180, 1151, 

1100, 1038, 1015, 984, 961, 896, 854, 788, 756, 699, 660, 531. 

HRMS (ESI, m/z) calcd for C25H27N2O3 [M+H]+: 403.2016, found: 403.2013. 
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((1R,2R)-4,4-Dimethyl-2-(pyridin-2-yl)cyclopentyl)(1-phenyl-1H-imidazol-2-yl)methanone (43n) 

According to the general procedure, the reaction of (2,2-dimethylcyclopropyl)(1-phenyl-1H- 

imidazol-2-yl)methanone 41a (24.0 mg, 0.10 mmol), 2-vinylpyridine 42n (26.3 mg, 2.5 equiv), Δ-RhS 

(1.7 mg, 2 mol%) and DIPEA (6.5 mg, 0.5 equiv) in acetone (1.0 mL, 0.1 M) under nitrogen 

atmosphere with blue LEDs for 24 hours, afforded 28.2 mg (82% yield) of 43n as a colorless oil. 

The d.r. value was determined through 1H NMR of crude materials as >20:1; enantiomeric excess was 

established by HPLC analysis using a Chiralpak IG column, ee = 98% (HPLC: IG, 254 nm, 

n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 25 C, tr (major) = 9.2 min, tr (minor) = 11.7 min). 

[]D
22 = –81.8 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 8.48 (d, J = 4.5 Hz, 1H), 7.50 (td, J1 = 7.5 Hz, J2 = 1.8 Hz, 1H), 

7.46-7.40 (m, 3H), 7.29-7.23 (m, 2H), 7.22 (br s, 1H), 7.16 (d, J = 8.1 Hz, 1H), 7.12 (br s, 1H), 7.02 

(dd, J1 = 7.2 Hz, J2 = 5.4 Hz, 1H), 4.66 (q, J = 9.6 Hz, 1H), 3.99-3.87 (m, 1H), 2.29 (dd, J1 = 12.9 Hz, 

J2 = 9.9 Hz, 1H), 2.03-1.94 (m, 2H), 1.75 (dd, J1 = 12.9 Hz, J2 = 9.0 Hz, 1H), 1.21 (s, 3H), 1.12 (s, 

3H). 

13C NMR (75 MHz, CDCl3) δ 193.1, 162.9, 149.1, 143.5, 138.6, 135.9, 129.5, 128.9, 128.5, 126.6, 

125.7, 122.2, 121.0, 53.3, 48.7, 48.1, 46.3, 38.9, 30.3, 30.0. 

IR (film): ν (cm1) 3060, 2950, 2864, 1679, 1591, 1497, 1442, 1404, 1305, 1148, 1072, 1034, 991, 900, 

806, 757, 692, 661, 531. 

HRMS (ESI, m/z) calcd for C22H24N3O [M+H]+: 346.1914, found: 346.1911. 

 

 

((1R,2R)-4,4-Dimethyl-2-(4-(pyridin-2-yl)phenyl)cyclopentyl)(1-phenyl-1H-imidazol-2-yl)methan

one (43o) 
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According to the general procedure, the reaction of (2,2-dimethylcyclopropyl)(1-phenyl-1H- 

imidazol-2-yl)methanone 41a (24.0 mg, 0.10 mmol), 2-(4-vinylphenyl)pyridine 42o (45.4 mg, 2.5 

equiv), Δ-RhS (1.7 mg, 2 mol%) and DIPEA (6.5 mg, 0.5 equiv) in acetone (1.0 mL, 0.1 M) under 

nitrogen atmosphere with blue LEDs for 20 hours, afforded 41.1 mg (98% yield) of 43o as a colorless 

oil. 

The d.r. value was determined through 1H NMR of crude materials as >20:1; enantiomeric excess was 

established by HPLC analysis using a Chiralpak AD-H column, ee = 96% (HPLC: AD-H, 254 nm, 

n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 40 C, tr (major) = 13.2 min, tr (minor) = 15.6 

min). []D
22 = –200.8 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 8.67-8.62 (m, 1H), 7.89-7.83 (m, 2H), 7.74-7.64 (m, 2H), 7.45-7.35 (m, 

5H), 7.22-7.13 (m, 4H), 7.10-7.08 (m, 1H), 4.54 (q, J = 9.8 Hz, 1H), 3.77 (td, J1 = 11.4 Hz, J2 = 7.5 Hz, 

1H), 2.26 (dd, J1 = 12.9 Hz, J2 = 9.3 Hz, 1H), 2.00 (dd, J1 = 12.6 Hz, J2 = 7.5 Hz, 1H), 1.83 (t, J = 12.3 

Hz, 1H), 1.72 (dd, J1 = 12.6 Hz, J2 = 9.3 Hz, 1H), 1.23 (s, 3H), 1.13 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 192.8, 157.4, 149.5, 144.6, 143.3, 138.4, 137.2, 136.6, 129.6, 128.9, 

128.6, 127.9, 127.0, 126.8, 125.7, 121.7, 120.2, 54.5, 50.2, 47.1, 46.8, 38.5, 30.7, 30.2. 

IR (film): ν (cm1) 3056, 2950, 2863, 1678, 1586, 1497, 1461, 1440, 1403, 1302, 1150, 1069, 1034, 

982, 896, 819, 765, 731, 692, 663, 561, 507. 

HRMS (ESI, m/z) calcd for C28H28N3O [M+H]+: 422.2227, found: 422.2226. 

 

 

(1-Phenyl-1H-imidazol-2-yl)((1R,2R)-2,4,4-trimethyl-2-(4-(trifluoromethyl)phenyl)cyclopentyl)m

ethanone (43p) 

According to the general procedure, the reaction of (2,2-dimethylcyclopropyl)(1-phenyl-1H- 

imidazol-2-yl)methanone 41a (24.0 mg, 0.10 mmol), 1-(prop-1-en-2-yl)-4-(trifluoromethyl)benzene 

42p (46.6 mg, 2.5 equiv), Δ-RhS (3.5 mg, 4 mol%) and DIPEA (25.8 mg, 2.0 equiv) in acetone (1.0 

mL, 0.1 M) under nitrogen atmosphere with blue LEDs for 26 hours, afforded 40.5 mg (95% yield) of 

43p as a colorless oil. 
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The d.r. value was determined through 1H NMR of crude materials as >20:1; enantiomeric excess was 

established by HPLC analysis using a Chiralpak IG column, ee = >99% (HPLC: IG, 254 nm, 

n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 25 C, tr (major) = 4.4 min, tr (minor) = 5.4 min). 

[]D
22 = –108.8 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.61-7.55 (m, 2H), 7.54-7.48 (m, 2H), 7.47-7.42 (m, 3H), 7.23-7.17 (m, 

2H), 7.09-7.06 (m, 2H), 4.90 (dd, J1 = 12.0 Hz, J2 = 6.9 Hz, 1H), 2.22-2.11 (m, 2H), 1.93-1.82 (m, 2H), 

1.35 (s, 3H), 1.20 (s, 3H), 1.13 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 192.4, 153.6, 143.8, 138.5, 129.3, 129.0, 128.7, 127.8 (q, J = 29.8 Hz), 

127.0, 126.6, 125.9, 124.9 (q, J = 3.9 Hz), 124.4 (q, J = 269.9 Hz), 58.1, 54.7, 51.9, 44.4, 36.7, 31.7, 

31.4, 25.5. 

19F NMR (282 MHz, CDCl3) δ –62.34 (s, 3F). 

IR (film): ν (cm1) 2954, 2870, 1678, 1617, 1497, 1447, 1404, 1323, 1163, 1116, 1072, 1014, 968, 910, 

877, 826, 762, 691, 661, 605, 541, 524. 

HRMS (ESI, m/z) calcd for C25H26F3N2O [M+H]+: 427.1992, found: 427.1986. 

 

 

(1-Phenyl-1H-imidazol-2-yl)((1R,2R)-2,4,4-trimethyl-2-(3-(trifluoromethyl)phenyl)cyclopentyl) 

methanone (43q) 

According to the general procedure, the reaction of (2,2-dimethylcyclopropyl)(1-phenyl-1H- 

imidazol-2-yl)methanone 41a (24.0 mg, 0.10 mmol), 1-(prop-1-en-2-yl)-3-(trifluoromethyl)benzene 

42q (40.5 mg, 2.5 equiv), Δ-RhS (3.5 mg, 4 mol%) and DIPEA (25.8 mg, 2.0 equiv) in acetone (1.0 

mL, 0.1 M) under nitrogen atmosphere with blue LEDs for 28 hours, afforded 26.7 mg (63% yield) of 

43q as a colorless oil. 

The d.r. value was determined through 1H NMR of crude materials as >20:1; enantiomeric excess was 

established by HPLC analysis using a Chiralpak IG column, ee = 99% (HPLC: IG, 254 nm, 

n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 40 C, tr (major) = 4.0 min, tr (minor) = 4.5 min). 

[]D
22 = –159.2 (c 1.0, CH2Cl2). 
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1H NMR (300 MHz, CDCl3) δ 7.71-7.64 (m, 2H), 7.49-7.42 (m, 3H), 7.41-7.36 (m, 2H), 7.23-7.16 (m, 

2H), 7.08-7.04 (m, 2H), 4.88 (dd, J1 = 12.3 Hz, J2 = 6.9 Hz, 1H), 2.24-2.13 (m, 2H), 1.91-1.81 (m, 2H), 

1.34 (s, 3H), 1.20 (s, 3H), 1.15 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 192.4, 150.3, 143.9, 138.5, 130.1 (q, J = 34.5 Hz), 129.9 (q, J = 1.0 Hz), 

129.3, 129.0, 128.7, 128.4, 127.0, 125.9, 124.4 (q, J = 270.1 Hz), 123.0 (q, J = 3.8 Hz), 122.5 (q, J = 

3.9 Hz), 57.9, 54.9, 51.9, 44.2, 36.6, 31.8, 31.5, 25.3. 

19F NMR (282 MHz, CDCl3) δ –62.37 (s, 3F). 

IR (film): ν (cm1) 3067, 2954, 2870, 1678, 1596, 1496, 1443, 1404, 1326, 1161, 1120, 1074, 969, 902, 

823, 799, 763, 695, 661, 541. 

HRMS (ESI, m/z) calcd for C25H26F3N2O [M+H]+: 427.1992, found: 427.1990. 

 

 

(1-Phenyl-1H-imidazol-2-yl)((1R,2R)-2,4,4-trimethyl-2-((trimethylsilyl)ethynyl)cyclopentyl) 

methanone (43r) 

According to the general procedure, the reaction of (2,2-dimethylcyclopropyl)(1-phenyl-1H- 

imidazol-2-yl)methanone 41a (24.0 mg, 0.10 mmol), trimethyl(3-methylbut-3-en-1-yn-1-yl)silane 42r 

(34.6 mg, 2.5 equiv), Δ-RhS (3.5 mg, 4 mol%) and DIPEA (25.8 mg, 2.0 equiv) in acetone (1.0 mL, 

0.1 M) under nitrogen atmosphere with blue LEDs for 28 hours, afforded 37.4 mg (98% yield) of 43r 

as a colorless oil. 

The d.r. value was determined through 1H NMR of crude materials as >20:1; enantiomeric excess was 

established by HPLC analysis using a Chiralpak IG column, ee = >99% (HPLC: IG, 254 nm, 

n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 25 C, tr (major) = 4.7 min, tr (minor) = 5.1 min). 

[]D
22 = –135.8 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.49-7.42 (m, 3H), 7.30-7.24 (m, 3H), 7.19-7.16 (m, 1H), 4.73 (dd, J1 = 

11.1 Hz, J2 = 7.2 Hz, 1H), 2.04-1.90 (m, 2H), 1.75-1.64 (m, 2H), 1.19 (s, 3H), 1.13 (s, 3H), 1.07 (s, 

3H), 0.07 (s, 9H). 



Chapter 5. Experimental Part 

359 
 

13C NMR (75 MHz, CDCl3) δ 192.1, 144.5, 138.6, 129.5, 129.0, 128.6, 126.9, 125.9, 114.4, 84.2, 56.9, 

55.3, 42.30, 42.27, 37.4, 31.2, 31.1, 24.8, 0.12. 

IR (film): ν (cm1) 2955, 2868, 2160, 1679, 1497, 1445, 1406, 1309, 1248, 1049, 967, 907, 838, 759, 

693, 663, 533. 

HRMS (ESI, m/z) calcd for C23H31N2OSi [M+H]+: 379.2200, found: 379.2198. 

 

 

(3aR,5R,6S,6aR)-5-((S)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3] 

dioxol-6-yl (1R,2R)-4,4-dimethyl-2-(1-phenyl-1H-imidazole-2-carbonyl)cyclopentane-1- 

carboxylate ((1R,2R)-43s) 

According to the general procedure, the reaction of (2,2-dimethylcyclopropyl)(1-phenyl-1H- 

imidazol-2-yl)methanone 41a (24.0 mg, 0.10 mmol), the corresponding glucofuranose derived alkene 

42s (39.3 mg, 1.25 equiv), Δ-RhS (3.5 mg, 4 mol%) and DIPEA (25.8 mg, 2.0 equiv) in acetone (1.0 

mL, 0.1 M) under nitrogen atmosphere with blue LEDs for 24 hours, afforded 55.0 mg (99% yield) of 

(1R,2R)-43s as a colorless oil. 

Only a single isomer was formed as determined through 1H NMR of crude materials. []D
22 = –67.4 

(c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.42-7.34 (m, 3H), 7.25-7.17 (m, 3H), 7.13-7.10 (m, 1H), 5.71 (d, J = 

3.6 Hz, 1H), 5.16 (d, J = 3.0 Hz, 1H), 4.51 (q, J = 9.3 Hz, 1H), 4.36 (d, J = 3.6 Hz, 1H), 4.08 (dd, J1 = 

7.8 Hz, J2 = 3.0 Hz, 1H), 4.02-3.94 (m, 1H), 3.88-3.82 (m, 2H), 3.46 (q, J = 9.3 Hz, 1H), 2.09 (dd, J1 = 

12.6 Hz, J2 = 9.6 Hz, 1H), 1.79 (d, J = 9.0 Hz, 2H), 1.53 (dd, J1 = 12.6 Hz, J2 = 9.3 Hz, 1H), 1.42 (s, 

3H), 1.30 (s, 3H), 1.21 (s, 6H), 1.04 (s, 3H), 0.94 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 191.4, 173.4, 142.7, 138.4, 129.8, 129.0, 128.8, 127.2, 125.9, 112.2, 

109.3, 105.1, 83.2, 80.1, 76.0, 72.3, 67.3, 50.3, 46.0, 45.0, 43.6, 39.7, 28.9, 26.8, 26.2, 25.1. 

IR (film): ν (cm1) 2984, 2954, 2871, 1740, 1684, 1497, 1449, 1407, 1376, 1306, 1252, 1213, 1154, 

1071, 1020, 912, 886, 848, 803, 763, 732, 694, 659, 538, 511. 

HRMS (ESI, m/z) calcd for C30H38N2O8Na [M+Na]+: 577.2520, found: 577.2516. 
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(3aR,5R,6S,6aR)-5-((S)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]di

oxol-6-yl (1S,2S)-4,4-dimethyl-2-(1-phenyl-1H-imidazole-2-carbonyl)cyclopentane-1-carboxylate 

((1S,2S)-43s) 

According to the general procedure, the reaction of (2,2-dimethylcyclopropyl)(1-phenyl-1H- 

imidazol-2-yl)methanone 41a (24.0 mg, 0.10 mmol), the corresponding glucofuranose derived alkene 

42s (39.3 mg, 1.25 equiv), Λ-RhS (3.5 mg, 4 mol%) and DIPEA (25.8 mg, 2.0 equiv) in acetone (1.0 

mL, 0.1 M) under nitrogen atmosphere with blue LEDs for 24 hours, afforded 54.6 mg (98% yield) of 

(1S,2S)-43s as a colorless oil. 

Only a single isomer was formed as determined through 1H NMR of crude materials (>20:1 d.r.). 

[]D
22 = +28.8 (c 1.0, CH2Cl2).  

1H NMR (300 MHz, CDCl3) δ 7.46-7.39 (m, 3H), 7.28-7.22 (m, 3H), 7.18-7.15 (m, 1H), 5.40 (d, J = 

3.9 Hz, 1H), 5.19 (d, J = 2.7 Hz, 1H), 4.53 (q, J = 9.4 Hz, 1H), 4.36 (d, J = 3.6 Hz, 1H), 4.10 (dd, J1 = 

7.8 Hz, J2 = 3.0 Hz, 1H), 4.06-3.86 (m, 3H), 3.45 (q, J = 9.2 Hz, 1H), 2.08 (dd, J1 = 12.6 Hz, J2 = 9.0 

Hz, 1H), 1.88-1.80 (m, 2H), 1.57 (dd, J1 = 12.6 Hz, J2 = 9.9 Hz, 1H), 1.45 (s, 3H), 1.34 (s, 3H), 1.24 (s, 

3H), 1.23 (s, 3H), 1.09 (s, 3H), 1.00 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 191.7, 173.2, 142.8, 138.4, 129.7, 128.9, 128.8, 127.5, 125.9, 112.1, 

109.2, 105.0, 83.2, 80.0, 75.8, 72.3, 67.3, 50.0, 46.0, 45.5, 43.3, 39.6, 29.2, 26.8, 26.7, 26.2, 25.2. 

IR (film): ν (cm1) 2950, 2870, 1743, 1683, 1598, 1497, 1450, 1406, 1376, 1306, 1251, 1214, 1156, 

1073, 1020, 911, 848, 802, 765, 731, 694, 646, 511, 421. 

HRMS (ESI, m/z) calcd for C30H38N2O8Na [M+Na]+: 577.2520, found: 577.2536. 

 

The spectra of (1R,2R)-43s and (1S,2S)-43s are compared with the crude 1H NMR of the 

corresponding reaction mixture catalyzed by rac-RhS which shown a 1:1 mixture of (1R,2R)-43s and 

(1S,2S)-43s. 
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Methyl (S)-3-((1R,2R)-4,4-dimethyl-2-(1-phenyl-1H-imidazole-2-carbonyl)-N-(prop-1-en-2-yl) 

cyclopentane-1-carboxamido)-4-(((S)-1-methoxy-1-oxo-3-phenylpropan-2-yl)amino)-4- 

oxobutanoate (43t) 

According to the general procedure, the reaction of (2,2-dimethylcyclopropyl)(1-phenyl-1H- 

imidazol-2-yl)methanone 41a (24.0 mg, 0.10 mmol), the corresponding aspartame derived alkene 42t 

(50.3 mg, 1.25 equiv), Δ-RhS (3.5 mg, 4 mol%) and DIPEA (25.8 mg, 2.0 equiv) in acetone (1.0 mL, 

0.1 M) under nitrogen atmosphere with blue LEDs for 24 hours, afforded 56.7 mg (88% yield) of 43t 

as a yellow solid. 

Only a single isomer was formed as determined through 1H NMR of crude materials. []D
22 = –135.4 

(c 1.0, CH2Cl2). 

1H NMR (500 MHz, (CD3)2SO) δ 8.12 (d, J = 7.6 Hz, 1H), 7.64 (d, J = 1.0 Hz, 1H), 7.47-7.43 (m, 3H), 

7.31-7.27 (m, 3H), 7.27-7.22 (m, 2H), 7.21-7.17 (m, 3H), 5.14 (dd, J1 = 8.3 Hz, J2 = 6.1 Hz, 1H), 4.92 

(s, 1H), 4.52 (q, J = 9.2 Hz, 1H), 4.44-4.36 (m, 2H), 3.58 (s, 3H), 3.52 (s, 3H), 3.41 (q, J = 9.1 Hz, 1H), 

2.98 (dd, J1 = 13.8 Hz, J2 = 5.1 Hz, 1H), 2.89 (dd, J1 = 13.8 Hz, J2 = 9.5 Hz, 1H), 2.82 (dd, J1 = 16.5 

Hz, J2 = 8.7 Hz, 1H), 2.46 (dd, J1 = 16.3 Hz, J2 = 5.8 Hz, 1H), 2.04 (dd, J1 = 12.5 Hz, J2 = 9.4 Hz, 1H), 

1.60-1.50 (m, 3H), 1.57 (s, 3H), 1.12 (s, 3H), 0.93 (s, 3H). 

13C NMR (125 MHz, (CD3)2SO) δ 191.5, 173.2, 171.7, 170.6, 169.2, 142.1, 141.7, 138.1, 137.2, 129.6, 

129.0, 128.9, 128.4, 128.3, 128.1, 126.5, 125.6, 117.6, 54.9, 54.0, 51.9, 51.4, 50.9, 46.0, 45.3, 43.1, 

39.3, 36.3, 33.8, 29.3, 29.0, 22.2. 

IR (film): ν (cm1) 3423, 3332, 3112, 2952, 2865, 1738, 1678, 1499, 1442, 1399, 1306, 1209, 1169, 

1036, 912, 845, 760, 696, 535, 508. 

HRMS (ESI, m/z) calcd for C36H42N4O7Na [M+Na]+: 665.2946, found: 665.2947.  
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Isopropyl 2-(4-(4-((1R,2R)-4,4-dimethyl-2-(1-phenyl-1H-imidazole-2-carbonyl)cyclopentyl) 

benzoyl)phenoxy)-2-methylpropanoate (43u) 

According to the general procedure, the reaction of (2,2-dimethylcyclopropyl)(1-phenyl-1H- 

imidazol-2-yl)methanone 41a (24.0 mg, 0.10 mmol), the corresponding fenofibrate derived alkene 

42u (44.1 mg, 1.25 equiv), Δ-RhS (3.5 mg, 4 mol%) and DIPEA (25.8 mg, 2.0 equiv) in acetone (1.0 

mL, 0.1 M) under nitrogen atmosphere with blue LEDs for 22 hours, afforded 58.8 mg (99% yield) of 

43u as a colorless oil. 

The d.r. value was determined through 1H NMR of crude materials as >20:1; enantiomeric excess was 

established by HPLC analysis using a Chiralpak IG column, ee = 99% (HPLC: IG, 254 nm, 

n-hexane/isopropanol = 70:30, flow rate 1 mL/min, 40 C, tr (major) = 10.3 min, tr (minor) = 13.2 

min). []D
22 = –129.8 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.74-7.68 (m, 2H), 7.65-7.59 (m, 2H), 7.46-7.49 (m, 3H), 7.39-7.32 (m, 

2H), 7.23-7.20 (m, 1H), 7.20-7.14 (m, 2H), 7.13-7.10 (m, 1H), 6.87-6.80 (m, 2H), 5.08 (sept, J = 6.3 

Hz, 1H), 4.52 (q, J = 10.5 Hz, 1H), 3.86-3.73 (m, 1H), 2.27 (dd, J1 = 13.2 Hz, J2 = 9.6 Hz, 1H), 2.01 

(dd, J1 = 12.6 Hz, J2 = 7.8 Hz, 1H), 1.81 (t, J = 12.3 Hz, 1H), 1.72 (dd, J1 = 12.9 Hz, J2 = 9.6 Hz, 1H), 

1.65 (s, 6H), 1.22 (s, 3H), 1.20 (s, 3H), 1.18 (s, 3H), 1.12 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 195.2, 192.4, 173.1, 159.3, 148.3, 143.1, 138.3, 136.0, 131.9, 130.9, 

129.9, 129.7, 128.9, 128.7, 127.3, 127.1, 125.7, 117.1, 79.3, 69.2, 54.5, 50.0, 46.9, 46.7, 38.6, 30.6, 

30.1, 25.3, 21.5. 

IR (film): ν (cm1) 2949, 2866, 1730, 1680, 1651, 1599, 1499, 1449, 1406, 1282, 1247, 1175, 1146, 

1101, 1033, 974, 922, 848, 817, 763, 730, 691, 636, 522. 

HRMS (ESI, m/z) calcd for C37H41N2O5 [M+H]+: 593.3010, found: 593.3008. 

 

 

(2R,3R)-3-(1-Phenyl-1H-imidazole-2-carbonyl)spiro[4.5]decane-2-carbonitrile (43v) 
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According to the general procedure, the reaction of (1-phenyl-1H-imidazol-2-yl) 

(spiro[2.5]octan-1-yl)methanone 41f (28.0 mg, 0.10 mmol), acrylonitrile 42a (13.3 mg, 2.5 equiv), 

Δ-RhS (1.7 mg, 2 mol%) and DIPEA (6.5 mg, 0.5 equiv) in acetone (1.0 mL, 0.1 M) under nitrogen 

atmosphere with blue LEDs for 40 hours, afforded 19.1 mg (a colorless oil) of the major 

diastereoisomer and 2.5 mg of the minor diastereoisomer of 43v (65% total yield). 

The d.r. value was determined through 1H NMR of crude materials as 7:1. 

The major diastereoisomer: enantiomeric excess was established by HPLC analysis using a Chiralpak 

IG column, ee = 96% (HPLC: IG, 254 nm, n-hexane/isopropanol = 70:10, flow rate 1 mL/min, 25 °C, 

tr (major) = 16.2 min, tr (minor) = 27.0 min). []D
22 = –62.6 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.52-7.44 (m, 3H), 7.34-7.32 (m, 1H), 7.32-7.25 (m, 2H), 7.24-7.21 (m, 

1H), 4.52 (q, J = 9.3 Hz, 1H), 3.35 (q, J = 9.0 Hz, 1H), 2.34 (dd, J1 = 12.9 Hz, J2 = 9.3 Hz, 1H), 2.03 

(dd, J1 = 12.9 Hz, J2 = 8.7 Hz, 1H), 1.88 (dd, J1 = 12.9 Hz, J2 = 9.3 Hz, 1H), 1.58-1.46 (m, 5H), 

1.45-1.25 (m, 6H). 

13C NMR (75 MHz, CDCl3) δ 189.4, 142.1, 138.1, 130.3, 129.03, 128.96, 127.7, 125.9, 122.1, 51.5, 

43.64, 43.58, 42.8, 37.9, 27.8, 25.8, 23.35, 23.32. (Missing one 13C signal) 

IR (film): ν (cm1) 3113, 3062, 2924, 2852, 2239, 1682, 1596, 1496, 1447, 1403, 1339, 1307, 1149, 

1066, 1033, 962, 912, 841, 762, 731, 692, 661, 532. 

HRMS (ESI, m/z) calcd for C21H24N3O [M+H]+: 334.1914, found: 334.1906. 

The minor diastereoisomer: 1H NMR (300 MHz, CDCl3) δ 7.50-7.43 (m, 3H), 7.39-7.32 (m, 2H), 

7.30-7.27 (m, 1H), 7.24-7.20 (m, 1H), 4.49-4.36 (m, 1H), 3.62-3.51 (m, 1H), 2.09-1.78 (m, 4H), 

1.55-1.30 (m, 10H). 

 

 

(2R,3R)-3-(1-Mesityl-1H-imidazole-2-carbonyl)spiro[4.4]nonane-2-carbonitrile (43w) 

According to the general procedure, the reaction of (1-phenyl-1H-imidazol-2-yl) 

(spiro[2.4]heptan-1-yl)methanone 41g (30.8 mg, 0.10 mmol), acrylonitrile 42a (13.3 mg, 2.5 equiv), 

Δ-RhS (3.5 mg, 4 mol%) and DIPEA (25.8 mg, 2.0 equiv) in acetone (1.0 mL, 0.1 M) under nitrogen 

atmosphere with blue LEDs for 24 hours, afforded 32.9 mg of 43w (91% yield) as a white solid. 
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The d.r. value was determined through 1H NMR of crude materials as >20:1; enantiomeric excess was 

established by HPLC analysis using a Chiralpak IG column, ee = 99% (HPLC: IG, 254 nm, 

n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 40 C, tr (major) = 17.1 min, tr (minor) = 14.0 

min). []D
22 = –35.4 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.42-7.38 (m, 1H), 7.05-7.01 (m, 1H), 6.99 (br s, 1H), 6.95 (br s, 1H), 

4.53 (q, J = 8.9 Hz, 1H), 3.42 (q, J = 8.3 Hz, 1H), 2.36 (dd, J1 = 12.9 Hz, J2 = 9.3 Hz, 1H), 2.34 (s, 

3H), 2.03 (dd, J1 = 12.6 Hz, J2 = 8.7 Hz, 1H), 1.95 (dd, J1 = 12.6 Hz, J2 = 7.8 Hz, 1H), 1.91 (s, 3H), 

1.83 (s, 3H), 1.70-1.52 (m, 7H), 1.46-1.35 (m, 2H). 

13C NMR (75 MHz, CDCl3) δ 189.2, 142.1, 138.7, 134.5, 134.2, 133.7, 130.9, 129.1, 128.9, 126.3, 

122.4, 51.9, 51.4, 44.4, 43.3, 38.7, 38.6, 27.8, 24.4, 24.3, 21.1, 17.3, 17.1. 

IR (film): ν (cm1) 3108, 2949, 2921, 2859, 2238, 1681, 1485, 1448, 1402, 1314, 1282, 1218, 1155, 

1030, 979, 912, 866, 818, 781, 737, 665, 562. 

HRMS (ESI, m/z) calcd for C23H28N3O [M+H]+: 362.2227, found: 362.2225. 

 

 

(1R,2R)-4-Phenyl-2-(1-phenyl-1H-imidazole-2-carbonyl)cyclopentane-1-carbonitrile (45a) 

According to the general procedure, the reaction of (1-phenyl-1H-imidazol-2-yl) 

(2-phenylcyclopropyl)methanone 44a (28.8 mg, 0.10 mmol), acrylonitrile 42a (13.3 mg, 2.5 equiv), 

Δ-RhS (1.7 mg, 2 mol%) and DIPEA (6.5 mg, 0.5 equiv) in acetone (1.0 mL, 0.1 M) under nitrogen 

atmosphere with blue LEDs for 16 hours, afforded 33.0 mg of 45a (97% yield, a colorless oil) as a 

mixture of two diastereosiomers. 

The d.r. value was determined through 1H NMR of crude materials as 2.1:1; enantiomeric excess was 

established by HPLC analysis using a Chiralpak OD-H column, ee [major] = 97% (tr (major) = 10.3 

min, tr (minor) = 8.0 min), ee [minor] = 99% (tr (major) = 22.0 min, tr (minor) = 9.9 min) (HPLC: 

OD-H, 254 nm, n-hexane/isopropanol = 70:30, flow rate 1 mL/min, 40 C). []D
22 = –19.4 (c 1.0, 

CH2Cl2). 

1H NMR (500 MHz, CDCl3) δ 7.53-7.48 (m, 3H), 7.38-7.36 (m, 1H), 7.36-7.54 (m, 4H), 7.25-7.23 (m, 

1H), 7.23-7.18 (m, 3H), 4.74-4.68 (m, 0.33H, minor), 4.67-4.61 (m, 0.67H, major), 3.64-3.58 (m, 
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0.67H, major), 3.58-3.46 (m, 1H), 3.15-3.05 (m, 0.33H, minor), 2.93-2.85 (m, 0.67H, major), 

2.64-2.56 (m, 0.33H, minor), 2.53-2.43 (m, 1H), 2.37-2.30 (m, 0.33H, minor), 2.20-2.08 (m, 1H), 

1.84-1.75 (m, 0.67H, major). (Mixture of two diastereosiomers) 

13C NMR (125 MHz, CDCl3) δ 189.2, 188.6, 141.8, 141.75, 141.68, 141.6, 138.00, 137.96, 130.4, 

129.06, 129.05, 128.61, 128.58, 127.89, 127.87, 126.89, 126.88, 126.85, 126.80, 126.78, 125.88, 

125.86, 122.5, 121.7, 52.3, 50.9, 45.3, 44.2, 40.2, 39.4, 38.6, 38.2, 28.6. (Mixture of two 

diastereosiomers) 

IR (film): ν (cm1) 3394, 3067, 2238, 1670, 1627, 1577, 1494, 1449, 1417, 1333, 1312, 1283, 1220, 

1073, 977, 911, 846, 766, 708, 681, 589, 541, 480. 

HRMS (ESI, m/z) calcd for C22H20N3O [M+H]+: 342.1601, found: 342.1600. 

 

 

(1R,2R)-4-Methyl-4-phenyl-2-(1-phenyl-1H-imidazole-2-carbonyl)cyclopentane-1-carbonitrile 

(45b) 

According to the general procedure, the reaction of (2-methyl-2-phenylcyclopropyl) 

(1-phenyl-1H-imidazol-2-yl)methanone 44b (30.2 mg, 0.10 mmol), acrylonitrile 42a (13.3 mg, 2.5 

equiv), Δ-RhS (1.7 mg, 2 mol%) and DIPEA (6.5 mg, 0.5 equiv) in acetone (1.0 mL, 0.1 M) under 

nitrogen atmosphere with blue LEDs for 24 hours, afforded 29.8 mg of 45b (84% total yield) as two 

separable diastereoisomers. 

The d.r. value was determined through 1H NMR of crude materials as 2.2:1. 

The major diastereoisomer:  

 

Eenantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee [major] = 

95% (HPLC: IG, 254 nm, n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 40 C, tr (major) = 16.2 

min, tr (minor) = 25.4 min). []D
22 = –86.8 (c 1.0, CH2Cl2).  
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1H NMR (500 MHz, CDCl3) δ 7.48-7.46 (m, 3H), 7.37-7.36 (m, 1H), 7.31-7.26 (m, 2H), 7.26-7.23 (m, 

3H), 7.23-7.17 (m, 3H), 4.81-4.73 (m, 1H), 3.64 (ddd, J1 = 12.2 Hz, J2 = 7.5 Hz, J3 = 4.8 Hz, 1H), 2.77 

(ddd, J1 = 12.6 Hz, J2 = 8.2 Hz, J3 = 1.6 Hz, 1H), 2.48 (dd, J1 = 13.3 Hz, J2 = 10.5 Hz, 1H), 2.34 (ddd, 

J1 = 13.3 Hz, J2 = 4.8 Hz, J3 = 1.6 Hz, 1H), 2.07 (dd, J1 = 12.5 Hz, J2 = 11.0 Hz, 1H), 1.58 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 188.6, 148.2, 141.8, 138.0, 130.4, 129.0, 128.5, 127.8, 126.2, 125.8, 

125.4, 123.0, 51.7, 48.4, 45.3, 43.5, 29.7, 26.9. (Missing one 13C signal) 

IR (film): ν (cm1) 3112, 3058, 2964, 2871, 2239, 1682, 1597, 1496, 1447, 1402, 1338, 1305, 1220, 

1150, 1103, 1068, 1029, 974, 909, 834, 801, 762, 730, 695, 659, 539. 

HRMS (ESI, m/z) calcd for C23H22N3O [M+H]+: 356.1757, found: 356.1755. 

NOE spectrum: 

 

The minor diastereoisomer:  

 

H2 & H(Me) 
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Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee [minor] = 

99% (HPLC: IG, 254 nm, n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 40 C, tr (major) = 16.9 

min, tr (minor) = 22.9 min). []D
22 = +13.6 (c 0.5, CH2Cl2).  

1H NMR (500 MHz, CDCl3) δ 7.53-7.48 (m, 3H), 7.37-7.30 (m, 7H), 7.25-7.21 (m, 2H), 4.62-4.54 (m, 

1H), 3.68-3.62 (m, 1H), 2.93 (dd, J1 = 13.5 Hz, J2 = 11.3 Hz, 1H), 2.48 (dd, J1 = 12.5 Hz, J2 = 10.5 Hz, 

1H), 2.40 (ddd, J1 = 12.5 Hz, J2 = 7.7 Hz, J3 = 0.8 Hz, 1H), 2.07 (ddd, J1 = 13.6 Hz, J2 = 7.2 Hz, J3 = 

1.1 Hz, 1H), 1.24 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 189.0, 148.2, 141.9, 138.0, 130.4, 129.09, 129.06, 128.5, 127.8, 126.3, 

125.9, 125.6, 121.6, 51.4, 47.2, 44.5, 44.1, 30.0, 27.6. 

IR (film): ν (cm1) 3105, 3057, 2929, 2877, 2241, 1683, 1597, 1496, 1450, 1406, 1304, 1241, 1145, 

1103, 1069, 1031, 983, 910, 839, 801, 767, 694, 544. 

HRMS (ESI, m/z) calcd for C23H21N3ONa [M+Na]+: 378.1577, found: 378.1573. 

NOE spectrum: 

 

 

H1 & H(Me) 
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(1R,2R)-2-(1-Mesityl-1H-imidazole-2-carbonyl)-4-phenylcyclopentane-1-carbonitrile (45c) 

According to the general procedure, the reaction of (1-mesityl-1H-imidazol-2-yl) 

(2-phenylcyclopropyl)methanone 44c (33.0 mg, 0.10 mmol), acrylonitrile 42a (13.3 mg, 2.5 equiv), 

Δ-RhS (1.7 mg, 2 mol%) and DIPEA (6.5 mg, 0.5 equiv) in acetone (1.0 mL, 0.1 M) under nitrogen 

atmosphere with blue LEDs for 24 hours, afforded 38.0 mg of 45c (99% yield, a yellow oil) as a 

mixture of two diastereosiomers. 

The d.r. value was determined through 1H NMR of crude materials as 1.9:1; enantiomeric excess was 

established by HPLC analysis using a Chiralpak IC column, ee [major] = 99% (tr (major) = 24.6 min, 

tr (minor) = 19.5 min), ee [minor] = 99% (tr (major) = 30.6 min, tr (minor) = 21.6 min) (HPLC: IC, 254 

nm, n-hexane/isopropanol = 95:5, flow rate 1 mL/min, 40 C). []D
22 = +6.4 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.43-7.41 (m, 1H), 7.35-7.26 (m, 2H), 7.25-7.15 (m, 3H), 7.08-7.05 (m, 

1H), 7.02 (br s, 1H), 6.97 (br s, 1H), 4.78-4.58 (m, 1H), 3.64-3.43 (m, 1H), 3.64-3.43 (m, 0.67H, 

major), 3.14-3.00 (m, 0.33H, minor), 2.95-2.83 (m, 0.67H, major), 2.65-2.54 (m, 0.33H, minor), 

2.52-2.40 (m, 1H), 2.36 (s, 3H), 2.32-2.22 (m, 0.33H, minor), 2.22-2.05 (m, 1H), 1.94 (s, 3H), 1.86 (s, 

1H, minor), 1.83 (s, 2H, major), 1.77-1.62 (m, 0.67H, major). (Mixture of two diastereosiomers) 

13C NMR (75 MHz, CDCl3) δ 189.3, 188.6, 141.9, 141.8, 141.7, 138.8, 134.44, 134.40, 134.2, 133.70, 

133.68, 131.1, 129.2, 129.0, 128.64, 128.61, 126.9, 126.85, 126.80, 126.6, 126.5, 122.4, 121.6, 52.3, 

50.9, 45.4, 44.2, 40.4, 39.5, 38.8, 38.2, 28.5, 28.4, 21.1, 17.4, 17.1. (Mixture of two diastereosiomers) 

IR (film): ν (cm1) 3028, 2923, 2865, 2241, 1680, 1603, 1487, 1450, 1404, 1339, 1315, 1281, 1149, 

1083, 1027, 976, 909, 851, 773, 731, 698, 580, 519. 

HRMS (ESI, m/z) calcd for C25H25N3ONa [M+Na]+: 406.1890, found: 406.1887. 
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(1R,2R)-2-(1-Mesityl-1H-imidazole-2-carbonyl)-4-(p-tolyl)cyclopentane-1-carbonitrile (45d) 

According to the general procedure, the reaction of (1-mesityl-1H-imidazol-2-yl) 

(2-(p-tolyl)cyclopropyl)methanone 44d (34.5 mg, 0.10 mmol), acrylonitrile 42a (13.3 mg, 2.5 equiv), 

Δ-RhS (1.7 mg, 2 mol%) and DIPEA (6.5 mg, 0.5 equiv) in acetone (1.0 mL, 0.1 M) under nitrogen 

atmosphere with blue LEDs for 24 hours, afforded 37.1 mg of 45d (93% yield, a yellow oil) as a 

mixture of two diastereosiomers. 

The d.r. value was determined through 1H NMR of crude materials as 1.5:1; enantiomeric excess was 

established by HPLC analysis using a Chiralpak IG column, ee [major] = 98% (tr (major) = 19.9 min, 

tr (minor) = 17.8 min), ee [minor] = 99% (tr (major) = 23.0 min, tr (minor) = 18.7 min) (HPLC: IG, 254 

nm, n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 40 C). []D
22 = +22.8 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.42-7.40 (m, 1H), 7.14-7.04 (m, 5H), 7.01 (br s, 1H), 6.97 (br s, 1H), 

4.76-4.58 (m, 1H), 3.63-3.55 (m, 0.6H, major), 3.55-3.42 (m, 1H), 3.10-2.95 (m, 0.4H, minor), 

2.92-2.80 (m, 0.6H, major), 2.62-2.51 (m, 0.4H, minor), 2.49-2.38 (m, 1H), 2.36 (s, 3H), 2.32 (s, 1.2H, 

minor), 2.31 (s, 1.8H, major), 2.28-2.19 (m, 0.4H, minor), 2.18-2.04 (m, 1H), 1.94 (s, 3H), 1.85 (s, 

1.2H, minor), 1.82 (s, 1.8H, major), 1.75-1.60 (m, 0.6H, major). (Mixture of two diastereosiomers) 

13C NMR (75 MHz, CDCl3) δ 189.3, 188.7, 142.0, 141.9, 138.80, 138.77, 138.6, 136.44, 136.40, 

134.45, 134.41, 134.2, 133.7, 131.0, 129.30, 129.27, 129.2, 129.1, 128.974, 128.965, 126.8, 126.7, 

126.52, 126.49, 122.5, 121.7, 52.3, 50.9, 45.0, 43.8, 40.5, 39.6, 38.8, 38.3, 28.41, 28.39, 21.1, 20.9, 

17.4, 17.1. (Mixture of two diastereosiomers) 

IR (film): ν (cm1) 3112, 3016, 2922, 2866, 2240, 1680, 1511, 1484, 1450, 1404, 1341, 1315, 1281, 

1148, 1083, 1025, 976, 909, 851, 811, 780, 729, 672, 649, 578, 523, 443. 

HRMS (ESI, m/z) calcd for C26H27N3ONa [M+Na]+: 420.2046, found: 420.2044. 
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(1R,2R)-4-(4-Bromophenyl)-2-(1-mesityl-1H-imidazole-2-carbonyl)cyclopentane-1-carbonitrile 

(45e) 

According to the general procedure, the reaction of (2-(4-bromophenyl)cyclopropyl) 

(1-mesityl-1H-imidazol-2-yl)methanone 44e (40.9 mg, 0.10 mmol), acrylonitrile 42a (13.3 mg, 2.5 

equiv), Δ-RhS (1.7 mg, 2 mol%) and DIPEA (6.5 mg, 0.5 equiv) in acetone (1.0 mL, 0.1 M) under 

nitrogen atmosphere with blue LEDs for 24 hours, afforded 38.0 mg of 45e (90% total yield) as two 

separable diastereoisomers. 

The d.r. value was determined through 1H NMR of crude materials as 1.3:1. 

The major diastereoisomer:  

 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee [major] = 

98% (HPLC: IG, 254 nm, n-hexane/isopropanol = 70:30, flow rate 1 mL/min, 25 C, tr (major) = 16.7 

min, tr (minor) = 12.8 min). []D
22 = +25.4 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.44-7.37 (m, 3H), 7.08-7.02 (m, 3H), 7.03 (br s, 1H), 6.97 (br s, 1H), 

4.68-4.58 (m, 1H), 3.63-3.54 (m, 1H), 3.53-3.40 (m, 1H), 2.92-2.80 (m, 1H), 2.48-2.38 (m, 1H), 2.36 

(s, 3H), 2.15-2.02 (m, 1H), 1.92 (s, 3H). 1.82 (s, 3H), 1.72-1.58 (m, 1H). 

13C NMR (75 MHz, CDCl3) δ 188.5, 141.9, 140.8, 138.9, 134.4, 134.2, 133.7, 131.7, 131.1, 129.2, 

129.0, 128.6, 126.7, 122.2, 120.6, 52.1, 44.8, 40.2, 38.1, 28.6, 21.1, 17.4, 17.2. 

IR (film): ν (cm1) 3114, 2923, 2863, 2241, 1680, 1487, 1451, 1403, 1340, 1314, 1282, 1149, 1078, 

1034, 1011, 976, 909, 851, 819, 781, 730, 672, 650, 581, 519. 

HRMS (ESI, m/z) calcd for C25H25BrN3O [M+H]+: 462.1176, found: 462.1175. 

NOE spectrum: 
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The minor diastereoisomer: 

 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee [minor] = 

99% (HPLC: IG, 254 nm, n-hexane/isopropanol = 70:30, flow rate 1 mL/min, 25 C, tr (major) = 18.6 

min, tr (minor) = 13.8 min). []D
22 = +74.2 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.46-7.40 (m, 3H), 7.10-7.04 (m, 3H), 7.01 (br s, 1H), 6.98 (br s, 1H), 

4.75-4.65 (m, 1H), 3.52-3.41 (m, 1H), 3.10-2.95 (m, 1H), 2.62-2.51 (m, 1H), 2.50-2.37 (m, 1H), 2.36 

(s, 3H), 2.29-2.18 (m, 1H), 2.12-1.98 (m, 1H), 1.92 (s, 3H). 1.85 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 189.1, 141.8, 140.7, 138.9, 134.4, 134.2, 133.7, 131.8, 131.1, 129.2, 

129.0, 128.6, 126.6, 121.4, 120.6, 50.8, 43.6, 39.3, 38.6, 28.5, 21.1, 17.4, 17.2. 

IR (film): ν (cm1) 2916, 2858, 2240, 1676, 1486, 1448, 1403, 1320, 1279, 1145, 1075, 1011, 977, 912, 

848, 818, 787, 737, 660, 585, 551, 513. 

H2 & H4 
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HRMS (ESI, m/z) calcd for C25H25BrN3O [M+H]+: 462.1176, found: 462.1176. 

NOE spectrum: 

 

 

 

((1R,2R)-4,4-Dimethyl-2-picolinoylcyclopentane-1-carbonitrile (45f) 

According to the general procedure, the mixture of (2,2-dimethylcyclopropyl)(pyridin-2-yl) 

methanone 44f (17.5 mg, 0.10 mmol), acrylonitrile 42a (13.3 mg, 2.5 equiv), Δ-RhS (3.5 mg, 4 mol%) 

and DIPEA (25.8 mg, 2.0 equiv) in acetone/MeCN (1:1 v/v, 1.0 mL, 0.1 M) were stirred under 

nitrogen atmosphere with blue LEDs for 24 hours; then, another portion of Δ-RhS (3.5 mg, 4 mol%) 

was added and the mixture was continued to stir for another 20 hours. The reaction afforded 12.4 mg 

(54% yield) of the major diastereoisomer of 45f as a colorless oil. 

The d.r. value was determined through 1H NMR of crude materials as 6:1, therefore the total yield is 

estimated as 63%. Enantiomeric excess of the major diastereoisomer was established by HPLC 

analysis using a Chiralpak IG column, ee = 94% (HPLC: IG, 254 nm, n-hexane/isopropanol = 95:5, 

flow rate 1 mL/min, 25 C, tr (major) = 19.4 min, tr (minor) = 20.4 min). []D
22 = –106.4 (c 1.0, 

CH2Cl2). 

H1 & H4 
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1H NMR (500 MHz, CDCl3) δ 8.75-8.71 (m, 1H), 8.12-8.08 (m, 1H), 7.88 (td, J1 = 7.7 Hz, J2 = 1.8 Hz, 

1H), 7.52 (ddd, J1 = 7.6 Hz, J2 = 4.7 Hz, J3 = 1.2 Hz, 1H), 4.76 (q, J = 9.0 Hz, 1H), 3.66 (q, J = 8.5 Hz, 

1H), 2.28 (dd, J1 = 13.0 Hz, J2 = 9.8 Hz, 1H), 2.06 (dd, J1 = 12.9 Hz, J2 = 8.9 Hz, 1H), 1.96 (ddd, J1 = 

12.9 Hz, J2 = 8.2 Hz, J3 = 0.5 Hz, 1H), 1.51 (dd, J1 = 13.0 Hz, J2 = 9.0 Hz, 1H), 1.25 (s, 3H), 1.04 (s, 

3H). 

13C NMR (125 MHz, CDCl3) δ 199.9, 152.1, 149.2, 136.9, 127.5, 122.8, 122.7, 50.6, 45.5, 45.2, 40.4, 

28.6, 28.4, 28.0. 

IR (film): ν (cm1) 2957, 2869, 2239, 1694, 1579, 1461, 1441, 1365, 1298, 1220, 1018, 850, 797, 744, 

685, 615. 

HRMS (ESI, m/z) calcd for C14H16N2ONa [M+Na]+: 251.1155, found: 251.1155.  

 

 

(R)-(4,4-Dimethyl-2-phenylcyclopent-2-en-1-yl)(1-phenyl-1H-imidazol-2-yl)methanone (47a) 

According to the general procedure, as shown in Table 18, entry 9, the reaction of 

(2,2-dimethylcyclopropyl)(1-phenyl-1H-imidazol-2-yl)methanone 41a (12.0 mg, 0.05 mmol), 

ethynylbenzene 46a (25.6 mg, 5.0 equiv), Δ-RhS (1.7 mg, 4 mol%) and Et3N (10.1 mg, 2.0 equiv) in 

THF (0.5 mL, 0.1 M) under nitrogen atmosphere with blue LEDs for 24 hours, afforded 15.8 mg (92% 

yield, 95% NMR yield) of 47a as a colorless oil. 

The enantiomeric excess was established by HPLC analysis using a Chiralpak OD-H column, ee = 

89% (HPLC: OD-H, 254 nm, n-hexane/isopropanol = 98:2, flow rate 1 mL/min, 25 C, tr (major) = 8.9 

min, tr (minor) = 8.3 min). []D
22 = +90.6 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.36-7.29 (m, 6H), 7.25-7.12 (m, 4H), 7.10-7.04 (m, 2H), 6.09 (d, J = 

1.5 Hz, 1H), 5.62 (ddd, J1 = 9.6 Hz, J2 = 6.3 Hz, J3 = 1.8 Hz, 1H), 2.39 (dd, J1 = 12.9 Hz, J2 = 9.3 Hz, 

1H), 1.96 (dd, J1 = 12.9 Hz, J2 = 6.0 Hz, 1H), 1.19 (s, 3H), 1.18 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 193.2, 143.5, 140.5, 138.8, 138.2, 135.9, 129.7, 128.9, 128.5, 128.2, 

127.1, 126.9, 126.1, 125.5, 53.4, 45.4, 44.6, 29.1, 28.9.  
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IR (film): ν (cm1) 3057, 3030, 2953, 2862, 1683, 1596, 1496, 1445, 1398, 1309, 1045, 906, 828, 757, 

691, 554, 516. 

HRMS (ESI, m/z) calcd for C23H23N2O [M+H]+: 343.1805, found: 343.1813. 

 

 

(R)-(4,4-Dimethyl-2-phenylcyclopent-2-en-1-yl)(1-mesityl-1H-imidazol-2-yl)methanone (47b) 

According to the general procedure, as shown in Table 18, entry 16, the reaction of 

(2,2-dimethylcyclopropyl)(1-mesityl-1H-imidazol-2-yl)methanone 41e (14.1 mg, 0.05 mmol), 

ethynylbenzene 46a (25.6 mg, 5.0 equiv), Δ-RhS (1.7 mg, 4 mol%) and Et3N (10.1 mg, 2.0 equiv) in 

THF (0.5 mL, 0.1 M) under nitrogen atmosphere with blue LEDs for 22 hours, afforded 18.3 mg (95% 

yield, 99% NMR yield) of 47b as a colorless oil. 

The enantiomeric excess was established by HPLC analysis using a Chiralpak OD-H column, ee = 

98% (HPLC: OD-H, 254 nm, n-hexane/isopropanol = 98:2, flow rate 1 mL/min, 25 C, tr (major) = 6.1 

min, tr (minor) = 5.7 min). []D
22 = +62.8 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.44-7.42 (m, 1H), 7.32-7.27 (m, 2H), 7.19-7.07 (m, 3H), 7.01-6.98 (m, 

1H), 6.88 (br s, 1H), 6.80 (br s, 1H), 6.05 (d, J = 1.5 Hz, 1H), 5.65 (ddd, J1 = 9.3 Hz, J2 = 6.0 Hz, J3 = 

1.5 Hz, 1H), 2.37 (dd, J1 = 12.9 Hz, J2 = 9.6 Hz, 1H), 2.25 (s, 3H), 1.90 (dd, J1 = 12.9 Hz, J2 = 6.3 Hz, 

1H), 1.85 (s, 3H), 1.60 (s, 3H), 1.18 (s, 3H), 1.14 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 193.0, 143.3, 140.3, 138.9, 138.2, 135.8, 134.8, 134.1, 133.7, 130.3, 

128.9, 128.7, 128.1, 126.8, 126.0, 52.9, 45.4, 44.8, 29.1, 28.8, 21.0, 17.2, 16.9. (Missing one 13C 

signal) 

IR (film): ν (cm1) 3027, 2954, 2926, 2862, 1681, 1488, 1447, 1399, 1316, 1283, 1147, 1039, 906, 849, 

761, 692, 577. 

HRMS (ESI, m/z) calcd for C26H29N2O [M+H]+: 385.2274, found: 385.2266. 
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(R)-(1-Mesityl-1H-imidazol-2-yl)(2-(4-methoxyphenyl)-4,4-dimethylcyclopent-2-en-1-yl) 

methanone (47c) 

According to the general procedure, the reaction of (2,2-dimethylcyclopropyl)(1-mesityl-1H- 

imidazol-2-yl)methanone 41e (28.2 mg, 0.10 mmol), 1-ethynyl-4-methoxybenzene 46b (66.1 mg, 5.0 

equiv), Δ-RhS (3.5 mg, 4 mol%) and Et3N (20.2 mg, 2.0 equiv) in THF (1.0 mL, 0.1 M) under 

nitrogen atmosphere with blue LEDs for 24 hours, afforded 39.2 mg (95% yield) of 47c as an oil. 

The enantiomeric excess was established by HPLC analysis using a Chiralpak OD-H column, ee = 

97% (HPLC: OD-H, 254 nm, n-hexane/isopropanol = 95:5, flow rate 1 mL/min, 25 C, tr (major) = 8.5 

min, tr (minor) = 5.8 min). []D
22 = +36.0 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.44-7.41 (m, 1H), 7.26-7.20 (m, 2H), 7.01-6.99 (m, 1H), 6.88 (br s, 

1H), 6.81 (br s, 1H), 6.74-6.76 (m, 2H), 5.93 (d, J = 1.8 Hz, 1H), 5.60 (ddd, J1 = 9.6 Hz, J2 = 6.3 Hz, J-

3 = 1.8 Hz, 1H), 3.74 (s, 3H), 2.35 (dd, J1 = 12.6 Hz, J2 = 9.3 Hz, 1H), 2.26 (s, 3H), 1.88 (dd, J1 = 12.9 

Hz, J2 = 6.3 Hz, 1H), 1.85 (s, 3H), 1.62 (s, 3H), 1.16 (s, 3H), 1.12 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 193.1, 158.6, 143.3, 138.5, 138.2, 134.8, 134.1, 133.7, 130.3, 128.9, 

128.75, 128.67, 127.2, 126.0, 113.6, 55.2, 53.0, 45.4, 44.8, 29.3, 29.0, 21.0, 17.2, 16.9. (Missing one 

13C signal) 

IR (film): ν (cm1) 2951, 2925, 2861, 1682, 1607, 1510, 1487, 1451, 1400, 1288, 1248, 1177, 1035, 

906, 829, 777, 730, 582, 555, 522. 

HRMS (ESI, m/z) calcd for C27H31N2O2 [M+H]+: 415.2380, found: 415.2380. 

 

 

(R)-(2-(3,5-Bis(trifluoromethyl)phenyl)-4,4-dimethylcyclopent-2-en-1-yl)(1-mesityl-1H-imidazol-

2-yl)methanone (47d) 
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According to the general procedure, the reaction of (2,2-dimethylcyclopropyl)(1-mesityl-1H- 

imidazol-2-yl)methanone 41e (28.2 mg, 0.10 mmol), 1-ethynyl-3,5-bis(trifluoromethyl)benzene 46c 

(59.5 mg, 2.5 equiv), Δ-RhS (3.5 mg, 4 mol%) and Et3N (20.2 mg, 2.0 equiv) in acetone (1.0 mL, 0.1 

M) under nitrogen atmosphere with blue LEDs for 24 hours, afforded 35.0 mg (67% yield) of 47d as 

an oil. 

The enantiomeric excess was established by HPLC analysis using a Chiralpak OD-H column, ee = 

95% (HPLC: OD-H, 254 nm, n-hexane/isopropanol = 98:2, flow rate 1 mL/min, 25 C, tr (major) = 3.6 

min, tr (minor) = 4.0 min). []D
22 = +69.8 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.75 (s, 2H), 7.60 (s, 1H), 7.46 (d, J = 1.5 Hz, 1H), 7.42 (d, J = 1.5 Hz, 

1H), 6.89 (br s, 1H), 6.82 (br s, 1H), 6.23 (d, J = 1.5 Hz, 1H), 5.72 (ddd, J1 = 9.6 Hz, J2 = 6.3 Hz, J3 = 

1.8 Hz, 1H), 2.41 (dd, J1 = 12.6 Hz, J2 = 9.3 Hz, 1H), 2.26 (s, 3H), 1.98 (dd, J1 = 12.9 Hz, J2 = 6.6 Hz, 

1H), 1.85 (s, 3H), 1.51 (s, 3H), 1.20 (s, 3H), 1.18 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 192.1, 144.2, 142.8, 138.5, 138.0, 136.8, 134.6, 133.9, 133.6, 131.4 (q, 

J = 32.8 Hz), 130.7, 129.0, 128.8, 126.5, 126.1-126.0 (m), 123.3 (q, J = 271.2 Hz), 120.4-120.2 (m, 

1H), 52.7, 45.7, 44.5, 28.7, 28.6, 21.0, 17.2, 16.5. 

19F NMR (282 MHz, CDCl3) δ –63.00 (s, 6F). 

IR (film): ν (cm1) 2958, 2930, 2866, 1681, 1451, 1385, 1275, 1172, 1130, 1035, 899, 857, 777, 735, 

680, 579. 

HRMS (ESI, m/z) calcd for C28H27F6N2O [M+H]+: 521.2022, found: 521.2013. 

 

 

(R)-(2-(4-Bromophenyl)-4,4-dimethylcyclopent-2-en-1-yl)(1-mesityl-1H-imidazol-2-yl) 

methanone (47e) 

According to the general procedure, the reaction of (2,2-dimethylcyclopropyl)(1-mesityl-1H- 

imidazol-2-yl)methanone 41e (28.2 mg, 0.10 mmol), 1-bromo-4-ethynylbenzene 46d (90.5 mg, 5.0 

equiv), Δ-RhS (6.9 mg, 8 mol%) and Et3N (20.2 mg, 2.0 equiv) in PhCl (1.0 mL, 0.1 M) under 
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nitrogen atmosphere with blue LEDs for 24 hours, afforded 44.8 mg (97% yield) of 47e as a grey 

solid. 

The enantiomeric excess was established by HPLC analysis using a Chiralpak OD-H column, ee = 

98% (HPLC: OD-H, 254 nm, n-hexane/isopropanol = 98:2, flow rate 1 mL/min, 25 C, tr (major) = 7.1 

min, tr (minor) = 6.1 min). []D
22 = +12.6 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.44-7.41 (m, 1H), 7.32-7.25 (m, 2H), 7.20-7.13 (m, 2H), 7.03-7.00 (m, 

1H), 6.89 (br s, 1H), 6.84 (br s, 1H), 6.05 (d, J = 1.5 Hz, 1H), 5.61 (ddd, J1 = 9.3 Hz, J2 = 6.0 Hz, J3 = 

1.5 Hz, 1H), 2.37 (dd, J1 = 12.6 Hz, J2 = 9.3 Hz, 1H), 2.27 (s, 3H), 1.90 (dd, J1 = 12.9 Hz, J2 = 6.0 Hz, 

1H), 1.85 (s, 3H), 1.63 (s, 3H), 1.18 (s, 3H), 1.13 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 192.7, 143.2, 141.2, 138.3, 137.9, 134.9, 134.7, 134.0, 133.7, 131.2, 

130.4, 128.9, 128.8, 127.7, 126.2, 120.6, 52.9, 45.5, 44.7, 29.0, 28.7, 21.0, 17.2, 16.9. 

IR (film): ν (cm1) 3030, 2953, 2926, 2862, 1681, 1485, 1448, 1399, 1319, 1281, 1147, 1071, 1042, 

1010, 904, 822, 774, 734, 700, 673, 578, 552, 516, 435. 

HRMS (ESI, m/z) calcd for C26H28BrN2O [M+H]+: 463.1380, found: 463.1377.  

 

 

(R)-(4,4-Dimethyl-2-(p-tolyl)cyclopent-2-en-1-yl)(1-mesityl-1H-imidazol-2-yl)methanone (47f) 

According to the general procedure, the reaction of (2,2-dimethylcyclopropyl)(1-mesityl-1H- 

imidazol-2-yl)methanone 41e (28.2 mg, 0.10 mmol), 1-ethynyl-4-methylbenzene 46e (29.1 mg, 2.5 

equiv), Δ-RhS (3.5 mg, 4 mol%) and Et3N (20.2 mg, 2.0 equiv) in THF (1.0 mL, 0.1 M) under 

nitrogen atmosphere with blue LEDs for 28 hours, afforded 34.6 mg (87% yield) of 47f as an oil. 

The enantiomeric excess was established by HPLC analysis using a Chiralpak OD-H column, ee = 

98% (HPLC: OD-H, 254 nm, n-hexane/isopropanol = 98:2, flow rate 1 mL/min, 25 C, tr (major) = 6.8 

min, tr (minor) = 5.1 min). []D
22 = +36.0 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.43 (s, 1H), 7.19 (d, J = 8.1 Hz, 2H), 7.00 (s, 1H), 6.97 (d, J = 8.1 Hz, 

2H), 6.88 (br s, 1H), 6.81 (br s, 1H), 6.00 (d, J = 1.2 Hz, 1H), 5.62 (ddd, J1 = 9.6 Hz, J2 = 6.3 Hz, J3 = 
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1.5 Hz, 1H), 2.36 (dd, J1 = 12.6 Hz, J2 = 9.3 Hz, 1H), 2.25 (s, 6H), 1.87 (dd, J1 = 12.9 Hz, J2 = 6.0 Hz, 

1H), 1.85 (s, 3H), 1.62 (s, 3H), 1.17 (s, 3H), 1.13 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 193.0, 143.3, 139.4, 138.6, 138.2, 136.5, 134.8, 134.1, 133.7, 133.0, 

130.2, 128.9, 128.8, 128.7, 126.0, 125.9, 53.0, 45.3, 44.8, 29.2, 28.9, 21.03, 20.98, 17.2, 16.9. 

IR (film): ν (cm1) 3025, 2952, 2925, 2863, 1681, 1508, 1486, 1448, 1399, 1316, 1283, 1041, 906, 848, 

816, 775, 729, 578, 516. 

HRMS (ESI, m/z) calcd for C27H31N2O [M+H]+: 399.2431, found: 399.2431. 

 

 

(R)-(4,4-Dimethyl-2-(m-tolyl)cyclopent-2-en-1-yl)(1-mesityl-1H-imidazol-2-yl)methanone (47g) 

According to the general procedure, the reaction of (2,2-dimethylcyclopropyl)(1-mesityl-1H- 

imidazol-2-yl)methanone 41e (28.2 mg, 0.10 mmol), 1-ethynyl-3-methylbenzene 46f (58.1 mg, 5.0 

equiv), Δ-RhS (3.5 mg, 4 mol%) and Et3N (20.2 mg, 2.0 equiv) in PhCl (1.0 mL, 0.1 M) under 

nitrogen atmosphere with blue LEDs for 22 hours, afforded 39.0 mg (98% yield) of 47g as an oil. 

The enantiomeric excess was established by HPLC analysis using a Chiralpak OD-H column, ee = 

95% (HPLC: OD-H, 254 nm, n-hexane/isopropanol = 99:1, flow rate 0.6 mL/min, 40 C, tr (major) = 

8.8 min, tr (minor) = 9.6 min). []D
22 = +60.0 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.44 (d, J = 0.9 Hz, 1H), 7.14 (br s, 1H), 7.13-7.07 (m, 1H), 7.04 (t, J = 

7.5 Hz, 1H), 7.00 (d, J = 0.6 Hz, 1H), 6.95-6.89 (m, 1H), 6.88 (br s, 1H), 6.80 (br s, 1H), 6.04 (d, J = 

1.8 Hz, 1H), 5.66 (ddd, J1 = 9.0 Hz, J2 = 6.0 Hz, J3 = 1.5 Hz, 1H), 2.36 (dd, J1 = 12.6 Hz, J2 = 9.3 Hz, 

1H), 2.26 (s, 3H), 2.21 (s, 3H), 1.90 (dd, J1 = 12.9 Hz, J2 = 6.3 Hz, 1H), 1.86 (s, 3H), 1.58 (s, 3H), 

1.17 (s, 3H), 1.15 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 193.1, 143.3, 140.1, 139.0, 138.2, 137.5, 135.7, 134.8, 134.0, 133.7, 

130.3, 128.9, 128.7, 128.0, 127.6, 126.8, 126.0, 123.2, 52.9, 45.3, 44.7, 29.1, 28.9, 21.3, 21.0, 17.2, 

16.8. 

IR (film): ν (cm1) 3028, 2952, 2925, 2862, 1681, 1604, 1486, 1448, 1399, 1317, 1284, 1147, 1035, 

910, 856, 778, 730, 695, 579, 444. 



Chapter 5. Experimental Part 

379 
 

HRMS (ESI, m/z) calcd for C27H31N2O [M+H]+: 399.2431, found: 399.2429. 

 

 

(R)-(4,4-Dimethyl-2-(o-tolyl)cyclopent-2-en-1-yl)(1-mesityl-1H-imidazol-2-yl)methanone (47h) 

According to the general procedure, the reaction of (2,2-dimethylcyclopropyl)(1-mesityl-1H- 

imidazol-2-yl)methanone 41e (28.2 mg, 0.10 mmol), 1-ethynyl-2-methylbenzene 46g (58.1 mg, 5.0 

equiv), Δ-RhS (3.5 mg, 4 mol%) and Et3N (20.2 mg, 2.0 equiv) in PhCl (1.0 mL, 0.1 M) under 

nitrogen atmosphere with blue LEDs for 22 hours, afforded 39.6 mg (99% yield) of 47h as an oil. 

The enantiomeric excess was established by HPLC analysis using a Chiralpak IC column, ee = 99% 

(HPLC: IC, 254 nm, n-hexane/isopropanol = 99:1, flow rate 0.6 mL/min, 25 C, tr (major) = 12.5 min, 

tr (minor) = 11.1 min). []D
22 = +90.8 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.32 (d, J = 0.9 Hz, 1H), 7.17-7.12 (m, 1H), 7.07-6.92 (m, 3H), 

6.90-6.86 (m, 2H), 6.79 (br s, 1H), 5.66 (ddd, J1 = J2 = 7.8 Hz, J3 = 1.8 Hz, 1H), 5.63 (d, J = 1.8 Hz, 

1H), 2.35 (s, 3H), 2.28 (s, 3H), 2.25 (dd, J1 = 12.6 Hz, J2 = 8.4 Hz, 1H), 1.97 (dd, J1 = 12.3 Hz, J2 = 

8.1 Hz, 1H), 1.83 (s, 3H), 1.30 (s, 3H), 1.21 (s, 3H), 1.19 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 192.9, 143.4, 143.1, 139.4, 138.1, 136.5, 135.9, 134.8, 134.1, 133.7, 

130.1, 128.8, 128.7, 128.6, 126.5, 125.9, 125.1, 55.0, 45.6, 44.4, 29.0, 28.5, 21.0, 20.8, 17.2, 16.4. 

(Missing one 13C signal) 

IR (film): ν (cm1) 3020, 2953, 2925, 2862, 1680, 1486, 1450, 1400, 1318, 1282, 1147, 1043, 907, 847, 

759, 728, 673, 579, 455. 

HRMS (ESI, m/z) calcd for C27H31N2O [M+H]+: 399.2431, found: 399.2431. 

 

 

(R)-(4,4-Dimethyl-2-(thiophen-3-yl)cyclopent-2-en-1-yl)(1-mesityl-1H-imidazol-2-yl) 

methanone (47i) 
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According to the general procedure, the reaction of (2,2-dimethylcyclopropyl)(1-mesityl-1H- 

imidazol-2-yl)methanone 41e (28.2 mg, 0.10 mmol), 3-ethynylthiophene 46h (54.1 mg, 5.0 equiv), 

Δ-RhS (3.5 mg, 4 mol%) and Et3N (20.2 mg, 2.0 equiv) in PhCl (1.0 mL, 0.1 M) under nitrogen 

atmosphere with blue LEDs for 24 hours, afforded 33.8 mg (87% yield) of 47i as an oil. 

The enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee = 97% 

(HPLC: IG, 254 nm, n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 25 C, tr (major) = 5.3 min, tr 

(minor) = 5.7 min). []D
22 = +34.6 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.44-7.42 (m, 1H), 7.15-7.10 (m, 2H), 7.03-7.01 (m, 1H), 6.99-6.95 (m, 

1H), 6.90 (br s, 1H), 6.84 (br s, 1H), 5.93 (d, J = 1.5 Hz, 1H), 5.57 (ddd, J1 = 9.9 Hz, J2 = 5.7 Hz, J3 = 

1.5 Hz, 1H), 2.31 (dd, J1 = 13.2 Hz, J2 = 9.6 Hz, 1H), 2.27 (s, 3H), 1.90 (dd, J1 = 12.9 Hz, J2 = 5.7 Hz, 

1H), 1.86 (s, 3H), 1.66 (s, 3H), 1.16 (s, 3H), 1.15 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 193.2, 143.4, 139.6, 138.2, 137.8, 134.8, 134.1, 134.0, 133.7, 130.3, 

128.9, 128.8, 126.3, 126.2, 125.1, 120.5, 53.5, 45.5, 44.5, 29.4, 28.9, 21.0, 17.2, 17.0. 

IR (film): ν (cm1) 3028, 2952, 2863, 1680, 1485, 1448, 1398, 1315, 1281, 1147, 1039, 913, 889, 858, 

773, 730, 677, 640, 577. 

HRMS (ESI, m/z) calcd for C24H27N2OS [M+H]+: 391.1839, found: 391.1838. 

 

 

(R)-(2-(Cyclohex-1-en-1-yl)-4,4-dimethylcyclopent-2-en-1-yl)(1-mesityl-1H-imidazol-2-yl) 

methanone (47j) 

According to the general procedure, the reaction of (2,2-dimethylcyclopropyl)(1-mesityl-1H- 

imidazol-2-yl)methanone 41e (28.2 mg, 0.10 mmol), 1-ethynylcyclohex-1-ene 46i (53.1 mg, 5.0 

equiv), Δ-RhS (3.5 mg, 4 mol%) and Et3N (20.2 mg, 2.0 equiv) in PhCl (1.0 mL, 0.1 M) under 

nitrogen atmosphere with blue LEDs for 24 hours, afforded 36.5 mg (94% yield) of 47j as an oil. 

The enantiomeric excess was established by HPLC analysis using a Chiralpak OD-H column, ee = 

97% (HPLC: OD-H, 254 nm, n-hexane/isopropanol = 98:2, flow rate 1 mL/min, 25 C, tr (major) = 4.3 

min, tr (minor) = 4.9 min). []D
22 = +126.4 (c 1.0, CH2Cl2). 
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1H NMR (300 MHz, CDCl3) δ 7.28 (d, J = 0.9 Hz, 1H), 6.99 (d, J = 0.9 Hz, 1H), 6.90 (br s, 2H), 5.60 

(s, 1H), 5.47-5.41 (m, 1H), 5.30 (ddd, J1 = 8.7 Hz, J2 = 4.5 Hz, J3 = 0.9 Hz, 1H), 2.30 (s, 3H), 2.23 (dd, 

J1 = 12.9 Hz, J2 = 10.2 Hz, 1H), 2.19-2.11 (m, 2H), 2.08-1.85 (m, 2H), 1.86 (s, 3H), 1.83 (s, 3H), 1.73 

(dd, J1 = 13.2 Hz, J2 = 4.8 Hz, 1H), 1.66-1.55 (m, 2H), 1.54-1.44 (m, 2H), 1.09 (s, 3H), 1.04 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 193.5, 143.2, 140.5, 138.2, 137.7, 135.1, 134.0, 133.8, 132.6, 130.2, 

128.9, 128.8, 125.8, 125.0, 52.2, 45.2, 44.4, 29.8, 28.8, 26.1, 25.6, 22.6, 22.2, 21.0, 17.2, 17.1. 

IR (film): ν (cm1) 3033, 2926, 2862, 1681, 1486, 1446, 1399, 1316, 1282, 1144, 1039, 899, 855, 805, 

772, 729, 576. 

HRMS (ESI, m/z) calcd for C26H33N2O [M+H]+: 389.2587, found: 389.2587. 

 

 

(8R,9S,13S,14S)-3-((R)-5-(1-Mesityl-1H-imidazole-2-carbonyl)-3,3-dimethylcyclopent-1-en-1- 

yl)-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one (47k) 

According to the general procedure, the reaction of (2,2-dimethylcyclopropyl)(1-mesityl-1H- 

imidazol-2-yl)methanone 41e (28.2 mg, 0.10 mmol), the corresponding estrone derived alkyne 46j 

(34.8 mg, 1.25 equiv), Δ-RhS (6.9 mg, 8 mol%) and Et3N (20.2 mg, 2.0 equiv) in PhCl (1.0 mL, 0.1 M) 

under nitrogen atmosphere with blue LEDs for 24 hours, afforded 41.8 mg (75% yield) of 47k as a 

white solid. 

The diasetereoselectivity was established by HPLC analysis using a Chiralpak IG column, d.e. = 96% 

(HPLC: IG, 254 nm, n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 40 C, tr (major) = 18.7 min, 

tr (minor) = 16.3 min). []D
22 = +28.6 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.44 (d, J = 0.6 Hz, 1H), 7.09-7.01 (m, 3H), 7.00 (d, J = 0.6 Hz, 1H), 

6.88 (br s, 1H), 6.81 (br s, 1H), 6.00 (d, J = 1.2 Hz, 1H), 5.63 (ddd, J1 = 8.7 Hz, J2 = 6.3 Hz, J3 = 1.2 

Hz, 1H), 2.90-2.74 (m, 1H), 2.73-2.62 (m, 1H), 2.49 (dd, J1 = 18.6 Hz, J2 = 8.7 Hz, 1H), 2.40-2.30 (m, 

2H), 2.26 (s, 3H), 2.24-1.86 (m, 5H), 1.85 (s, 3H), 1.70-1.28 (m, 7H), 1.59 (s, 3H), 1.16 (s, 3H), 1.13 

(s, 3H), 0.89 (s, 3H). 
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13C NMR (75 MHz, CDCl3) δ 193.1, 143.3, 139.7, 138.7, 138.4, 138.2, 135.9, 134.8, 133.9, 133.8, 

133.3, 130.2, 128.9, 128.8, 126.6, 126.0, 125.1, 123.6, 52.9, 50.5, 47.9, 45.3, 44.8, 44.3, 38.2, 35.8, 

31.6, 29.7, 29.3, 29.0, 28.8, 26.5, 25.7, 21.5, 21.0, 17.2, 16.8, 13.8. 

IR (film): ν (cm1) 2925, 2861, 1736, 1682, 1491, 1450, 1401, 1318, 1285, 1256, 1148, 1086, 1043, 

910, 854, 825, 774, 728, 675, 646, 579, 433. 

HRMS (ESI, m/z) calcd for C38H45N2O2 [M+H]+: 561.3476, found: 561.3475. 

 

 

(R)-(1-Mesityl-1H-imidazol-2-yl)(3-phenylspiro[4.4]non-3-en-2-yl)methanone (47l) 

According to the general procedure, the reaction of (1-mesityl-1H-imidazol-2-yl) 

(spiro[2.4]heptan-1-yl)methanone 41g (30.8 mg, 0.10 mmol), ethynylbenzene 46a (51.1 mg, 5.0 

equiv), Δ-RhS (3.5 mg, 4 mol%) and Et3N (20.2 mg, 2.0 equiv) in PhCl (1.0 mL, 0.1 M) under 

nitrogen atmosphere with blue LEDs for 24 hours, afforded 37.9 mg (92% yield) of 47l as an oil. 

The enantiomeric excess was established by HPLC analysis using a Chiralpak OD-H column, ee = 

98% (HPLC: OD-H, 254 nm, n-hexane/isopropanol = 98:2, flow rate 1 mL/min, 25 C, tr (major) = 7.8 

min, tr (minor) = 6.1 min). []D
22 = +182.2 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.43 (d, J = 1.2 Hz, 1H), 7.34-7.27 (m, 2H), 7.21-7.06 (m, 3H), 7.00 (d, 

J = 0.9 Hz, 1H), 6.88 (br s, 1H), 6.80 (br s, 1H), 6.14 (d, J = 1.5 Hz, 1H), 5.61 (ddd, J1 = 9.6 Hz, J2 = 

5.7 Hz, J3 = 1.5 Hz, 1H), 2.44 (dd, J1 = 12.9 Hz, J2 = 9.6 Hz, 1H), 2.26 (s, 3H), 1.94 (dd, J1 = 12.9 Hz, 

J2 = 5.7 Hz, 1H), 1.86 (s, 3H), 1.73-1.60 (m, 7H), 1.61 (s, 3H), 1.57-1.44 (m, 1H). 

13C NMR (75 MHz, CDCl3) δ 192.9, 143.3, 139.2, 138.6, 138.2, 135.8, 134.8, 134.0, 133.7, 130.3, 

128.9, 128.7, 128.1, 126.8, 126.00, 125.96, 56.7, 52.7, 43.8, 39.7, 39.5, 24.5, 24.4, 21.0, 17.2, 16.9. 

IR (film): ν (cm1) 3027, 2947, 2861, 1681, 1488, 1446, 1399, 1316, 1283, 1146, 1036, 908, 850, 764, 

730, 692, 646, 559. 

HRMS (ESI, m/z) calcd for C28H31N2O [M+H]+: 411.2431, found: 411.2429. 
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(R)-(2,4-Diphenylcyclopent-2-en-1-yl)(1-mesityl-1H-imidazol-2-yl)methanone (47m) 

According to the general procedure, the reaction of (1-mesityl-1H-imidazol-2-yl) 

(2-phenylcyclopropyl)methanone 44c (33.0 mg, 0.10 mmol), ethynylbenzene 46a (51.1 mg, 5.0 equiv), 

Δ-RhS (6.9 mg, 8 mol%) and Et3N (20.2 mg, 2.0 equiv) in PhCl (1.0 mL, 0.1 M) under nitrogen 

atmosphere with blue LEDs for 24 hours, afforded 27.1 mg of 47m (63% total yield) as two separable 

diastereoisomers. 

The d.r. value was determined through 1H NMR of crude materials as 1.7:1. 

The major diastereoisomer: 

 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee [major] = 

94% (HPLC: IG, 254 nm, n-hexane/isopropanol = 98:2, flow rate 1 mL/min, 40 C, tr (major) = 18.5 

min, tr (minor) = 15.0 min). []D
22 = +109.4 (c 1.0, CH2Cl2).  

1H NMR (500 MHz, CDCl3) δ 7.44-7.42 (m, 1H), 7.38-7.34 (m, 2H), 7.31-7.24 (m, 4H), 7.22-7.17 (m, 

3H), 7.16-7.12 (m, 1H), 7.00-6.99 (m, 1H), 6.85 (br s, 1H), 6.82 (br s, 1H), 6.23 (t, J = 2.1 Hz, 1H), 

5.71 (tt, J1 = 8.3 Hz, J2 = 2.2 Hz, 1H), 4.14 (tt, J1 = 8.0 Hz, J2 = 2.3 Hz, 1H), 3.09 (dt, J1 = 13.1 Hz, J2 

= 6.5 Hz, 1H), 2.27 (s, 3H), 1.98 (dt, J1 = 13.1 Hz, J2 = 6.5 Hz, 1H), 1.70 (s, 3H), 1.62 (s, 3H). 

13C NMR (125 MHz, CDCl3) δ 192.6, 145.3, 143.6, 143.2, 138.3, 135.7, 134.7, 134.0, 133.8, 133.2, 

130.4, 128.9, 128.8, 128.4, 128.2, 127.9, 127.2, 126.4, 126.3, 126.2, 53.1, 51.1, 40.3, 21.1, 17.2, 17.0. 

IR (film): ν (cm1) 3130, 3023, 2924, 2848, 1679, 1602, 1489, 1447, 1398, 1321, 1286, 1147, 1056, 

1024, 984, 912, 855, 830, 783, 757, 699, 639, 583, 549, 506, 428. 

HRMS (ESI, m/z) calcd for C30H29N2O [M+H]+: 433.2274, found: 433.2274. 

NOE spectrum:  
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The minor diastereoisomer: 

 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee [minor] = 

91% (HPLC: IG, 254 nm, n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 40 C, tr (major) = 6.7 

min, tr (minor) = 11.0 min). []D
22 = +92.6 (c 1.0, CH2Cl2).  

1H NMR (500 MHz, CDCl3) δ 7.50-7.46 (m, 3H), 7.35-7.30 (m, 2H), 7.27-7.22 (m, 5H), 7.21-7.16 (m, 

1H), 7.06-7.04 (m, 1H), 6.95 (br s, 1H), 6.85 (br s, 1H), 6.41 (dd, J1 = 2.2 Hz, J2 = 1.2 Hz, 1H), 

5.81-5.76 (m, 1H), 4.27 (tt, J1 = 8.0 Hz, J2 = 2.1 Hz, 1H), 2.63 (ttt, J1 = 13.3 Hz, J2 = 8.3 Hz, J2 = 2.9 

Hz, 1H), 2.44-2.36 (m, 1H), 2.30 (s, 3H), 1.93 (s, 3H), 1.58 (s, 3H). 

H3  H1           H4  H5α  H5β  

 H4 

H1 & H5α 

H4 & H5α 



Chapter 5. Experimental Part 

385 
 

13C NMR (125 MHz, CDCl3) δ 192.9, 145.3, 143.0, 142.8, 138.4, 134.9, 134.7, 134.0, 133.8, 133.4, 

130.5, 129.0, 128.8, 128.6, 128.3, 127.5, 127.4, 126.4, 126.32, 126.26, 53.0, 51.1, 40.3, 21.1, 17.4, 

16.8. 

IR (film): ν (cm1) 3055, 3026, 2924, 2859, 1679, 1601, 1489, 1447, 1398, 1316, 1282, 1149, 1079, 

1034, 977, 908, 855, 784, 752, 695, 584, 558, 529. 

HRMS (ESI, m/z) calcd for C30H29N2O [M+H]+: 433.2274, found: 433.2274. 

NOE spectrum: 

 

 

5.6.4 Quantum Yield Measurement Using Powermeter as the Detector 

 

The quantum yield of reaction 41a + 42a  43a was measured according to the method initially 

developed by the Riedle group.4 Accordingly, a 400 nm LED was employed as light source. A 

Powermeter was used as detector. The measurement was accomplished in a dark room with a 1.1 W 

red LEDs.  

H3  H1        H4    H5β H5α  

 H4 

H1 & H5α 

H4 & H5β 
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Step 1: The radiant power of light transmitted by the cuvette with a blank solution was measured 

as Pblank = 34.37 mW.  

Step 2: The reaction mixture of 41a (48.0 mg, 0.20 mmol), 42a (26.6 mg, 2.5 equiv), rac-RhS 

(3.5 mg, 2 mol%) and DIPEA (13.0 mg, 0.5 equiv) in acetone (2.0 mL, 0.1 M) was filled into a 

fluorescence cuvette with a stirring bar and septum and degassed by bubbling with nitrogen (10 min). 

Then, the cuvette was put into the setups and illuminated with the 400 nm LED. The transmitted 

radiant power Psample = 1.04 mW was noted. The transmitted radiant power was monitored during the 

irradiation and remained constant. 

Step 3: After illumination for 2 hours (t = 2  3600 s), the amount of the formed 43a was 

determined as 7.881  10-5 mol (nproduct) by 1H NMR. 

Step 4: The overall quantum yield can be calculated as following: 

 

where Nproduct is the number of product 43a formed; Nphoton is the number of photons absorbed; NA is 

Avogadro’s constant; nproduct is the molar amount of product 43a formed; Pabsorbed is the radiant power 

absorbed; t is the irradiation time; h is the Planck’s constant; c is the speed of light; λ is the wavelength 

of light source, Pblank is the radiant power transmitted by the cuvette with a blank solution; Psample is the 

radiant power transmitted by the cuvette with reaction mixture. 

 

Steps 1-4 were repeated leading to the following result:  

 

Therefore, the average quantum yield for the reaction 41a + 42a  43a was determined as 0.11. 



Chapter 5. Experimental Part 

387 
 

5.6.5 Single-Crystal X-Ray Diffraction Studies 

 

Single crystals of 43k suitable for X-ray diffraction were obtained by slow diffusion from of a 

solution of 43k (30 mg) in Et2O (0.5 mL) layered with n-hexane (1.0 mL) at room temperature for 

several days in a NMR tube.  

Data was collected with an STOE STADIVARI diffractometer equipped with CuKα radiation, a 

graded multilayer mirror monochromator (λ = 1.54186 Å) and a DECTRIS PILATUS 300K detector 

using an oil-coated shock-cooled crystal at 230(2) K. Absorption effects were corrected semi-empirical 

using multiscanned reflexions (X-Area LANA 1.68.2.0 (STOE, 2016)). Cell constants were refined 

using 20587 of observed reflections of the data collection. The structure was solved by direct methods 

by using the program XT V2014/1 (Bruker AXS Inc., 2014) and refined by full matrix least squares 

procedures on F2 using SHELXL-2017/1 (Sheldrick, 2017). The non-hydrogen atoms have been 

refined anisotropically, carbon bonded hydrogen atoms were included at calculated positions and 

refined using the ‘riding model’ with isotropic temperature factors at 1.2 times (for CH3 groups 1.5 

times) that of the preceding carbon atom. CH3 groups were allowed to rotate about the bond to their 

next atom to fit the electron density. Nitrogen or oxygen bonded hydrogen atoms were located and 

allowed to refine isotropically.  

Relative and absolute configuration of compound 43k was determined (Figure 129).  

 

 

Figure 129.  Crystal structure of compound 43k. 
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Table 32. Crystal data and structure refinement for 43k. 

  
 Crystal data  
 
CCDC number 1815472 
Identification code  hxqJ27_230k 
Habitus, color  needle, colorless 
Crystal size 0.35 x 0.05 x 0.03 mm3 
Crystal system  Orthorhombic 
Space group  P212121 Z = 4 
Unit cell dimensions a = 6.37310(10) Å α = 90°. 
 b = 9.9779(2) Å β = 90°. 
 c = 32.3962(9) Å γ = 90°. 
Volume 2060.08(8) Å3 
Cell determination  20587 peaks with Theta 2.7 to 72.5°. 
Empirical formula  C23 H23 Br N2 O 
Moiety formula  C23 H23 Br N2 O 
Formula weight  423.34 
Density (calculated) 1.365 Mg/m3 
Absorption coefficient 2.822 mm-1 
F(000) 872 
 
Data collection:  
 
Diffractometer type  STOE STADIVARI 
Wavelength  1.54186 Å 
Temperature  230(2) K 
Theta range for data collection 2.728 to 72.236°. 
Index ranges -7<=h<=6, -10<=k<=12, -38<=l<=39 
Data collection software  X-Area Pilatus3_SV 1.31.127.0 (STOE, 2016) 
Cell refinement software  X-Area Recipe 1.33.0.0 (STOE, 2015) 
Data reduction software  X-Area Integrate 1.71.0.0 (STOE, 2016) 
 X-Area LANA 1.68.2.0 (STOE, 2016) 
 
Solution and refinement: 
 
Reflections collected 20724 
Independent reflections 4008 [R(int) = 0.0274] 
Completeness to theta = 67.686° 99.9 %  
Observed reflections  3727[I > 2σ(I)]  
Reflections used for refinement  4008 
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 1.0000 and 0.4568 
Flack parameter (absolute struct.)   -0.026(6) 
Largest diff. peak and hole 0.232 and -0.412 e.Å-3 
Solution  intrinsic phases 
Refinement  Full-matrix least-squares on F2 
Treatment of hydrogen atoms  Calculated positions, constr. ref. 
Programs used  XT V2014/1 (Bruker AXS Inc., 2014) 
 SHELXL-2017/1 (Sheldrick, 2017) 
 DIAMOND (Crystal Impact) 
 ShelXle (Hübschle, Sheldrick, Dittrich, 2011) 
Data / restraints / parameters 4008 / 72 / 294 
Goodness-of-fit on F2 1.068 
R index (all data) wR2 = 0.0620 
R index conventional  [I>2sigma(I)] R1 = 0.0245 
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5.7 Asymmetric Electrosynthesis 

 

5.7.1 General Procedure 

 

Exemplary, to a 5 mL ElectraSyn vial with a stirring bar, Δ-Rh(TMS) (4.5 mg, 0.005 mmol), 

2-acyl imidazole 48b (26.2 mg, 0.10 mmol), TBAPF6 (116.2 mg, 0.30 mmol), THF (1.0 mL), MeOH 

(2.0 mL), 2,6-lutidine (21.4 mg, 0.20 mmol) and silyl enol ether 8a (115.4 mg, 0.60 mmol) were added 

in sequence. The screw thread area of the vial was covered with a piece of Parafilm and screwed to 

finger-tight with the ElectraSyn vial cap that equipped with a graphite electrode (anode) and a Pt 

electrode (cathode). Then, the mixture was purged with nitrogen gas for 3-5 min by a nitrogen balloon. 

The undivided cell was adapted to the ElectraSyn 2.0 vial holder and electrolyzed under a constant 

current of 0.6 mA. After consumption of 2.4 F/mol of current (~11 hours for 0.1 mmol substrate), the 

reaction medium was transferred to a 25 mL round-bottom flask and purified by flash chromatography 

on silica gel (n-hexane/EtOAc) to afford the product 49b The enantiomeric excess was determined by 

HPLC analysis on a chiral stationary phase. Racemic samples were obtained by carrying out the 

reactions with rac-RhS(TMS). 

One-pot procedure: Exemplary, in a 5 mL ElectraSyn vial with a stirring bar, to the solution of 

acetophenone 8a’ (72.0 mg, 0.60 mmol) and 2,6-lutidine (74.9 mg, 0.70 mmol) in anhydrous THF (1.0 mL), 

TMSOTf (111.1 mg, 0.5 mmol) was added dropwise at 0 oC. After stirring at the same temperature for 0.5 

hour, MeOH (2.0 mL), TBAPF6 (116.2 mg, 0.30 mmol), Δ-Rh(TMS) (4.5 mg, 0.005 mmol), and 2-acyl 

imidazole 48b (26.2 mg, 0.10 mmol) were added in sequence. Following the typical procedure, the mixture 

was electrolyzed at a constant current of 0.6 mA with the consumption of 2.4 F/mol of electricity, to give 

product 49b in 56% yield (21.2 mg) with 95% ee. 

Note: The synthesis, characterization and crystal structure of Rh(TMS) are presented in Jiahui Lin’s 

M. Sc. thesis. 
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5.7.2 Synthesis of Substrates 

 

Acyl imidazoles 48 were prepared via the well-established Weinreb ketone synthesis.5 Silyl enol 

ethers 8 used were prepared according to well-developed methods15 and subjected to the reaction after 

simple extraction without further distillation. Racemic imidazoles 50 were synthesized according to 

the following route.  

 

The data of new starting materials are shown below. 

 

 

1-(1-Mesityl-1H-imidazol-2-yl)-2-phenylethan-1-one (48a)  

A white solid. 

1H NMR (300 MHz, CDCl3) δ 7.40-7.38 (m, 1H), 7.31-7.15 (m, 5H), 7.01-6.98 (m, 1H), 6.90 (br s, 

2H), 4.42 (s, 2H), 2.29 (s, 3H), 1.78 (s, 6H). 

13C NMR (125 MHz, CDCl3) δ 188.4, 143.0, 138.4, 134.6, 134.4, 134.0, 130.3, 129.8, 128.9, 128.4, 

126.7, 126.0, 45.4, 21.0, 17.1.  

IR (film): ν (cm1) 3133, 2915, 1667, 1601, 1488, 1449, 1396, 1324, 1284, 1184, 1141, 1095, 1045, 

976, 936, 911, 853, 801, 768, 733, 694, 625, 576, 518, 462, 438, 402. 

HRMS (ESI, m/z) calcd for C20H20N2ONa [M+Na]+: 327.1468, found: 327.1466. 

 

 

1-(1-Phenyl-1H-imidazol-2-yl)-2-(p-tolyl)ethan-1-one (48g)  

A white solid. 

1H NMR (300 MHz, CDCl3) δ 7.45-7.39 (m, 3H), 7.34-7.32 (m, 1H), 7.27-7.18 (m, 5H), 7.15-7.08 (m, 

2H), 4.42 (s, 2H), 2.32 (s, 3H). 
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13C NMR (75 MHz, CDCl3) δ 188.7, 142.8, 138.3, 136.3, 131.2, 129.8, 129.7, 129.1, 128.9, 128.6, 

127.3, 125.8, 45.2, 21.0.  

IR (film): ν (cm1) 3055, 2899, 1686, 1593, 1490, 1447, 1398, 1306, 1209, 1139, 1092, 1028, 960, 910, 

852, 815, 763, 729, 689, 565, 504, 474, 404.  

HRMS (ESI, m/z) calcd for C18H16N2ONa [M+Na]+: 299.1155, found: 299.1153.  

 

 

2-(3-Chlorophenyl)-1-(1-phenyl-1H-imidazol-2-yl)ethan-1-one (48i)  

A white solid. 

1H NMR (300 MHz, CDCl3) δ 7.47-7.40 (m, 3H), 7.34-7.31 (m, 2H), 7.28-7.17 (m, 6H), 4.44 (s, 2H). 

13C NMR (75 MHz, CDCl3) δ 187.7, 142.6, 138.2, 136.3, 134.2, 130.1, 129.8, 129.6, 129.0, 128.8, 

128.2, 127.7, 127.0, 125.9, 45.1.  

IR (film): ν (cm1) 3115, 1679, 1592, 1489, 1449, 1392, 1344, 1309, 1213, 1172, 1143, 1085, 1028,  

960, 909, 764, 687, 591, 535, 502, 444, 411.  

HRMS (ESI, m/z) calcd for C17H13ClN2ONa [M+Na]+: 319.0609, found: 319.0606. 

 

 

1-(1-Phenyl-1H-imidazol-2-yl)-2-(4-(trifluoromethyl)phenyl)ethan-1-one (48l)  

A white solid. 

1H NMR (300 MHz, CDCl3) δ 7.59-7.52 (m, 2H), 7.48-7.41 (m, 5H), 7.36-7.33 (m, 1H), 7.29-7.21 (m, 

3H), 4.53 (s, 2H). 

13C NMR (75 MHz, CDCl3) δ 187.5, 142.5, 138.5, 138.1, 130.3, 130.0, 129.1 (q, J = 31.8 Hz), 129.0, 

128.8, 127.7, 125.8, 125.3 (q, J = 4.0 Hz), 124.2 (q, J = 269.7 Hz), 45.3.  

IR (film): ν (cm1) 3062, 2921, 1690, 1600, 1496, 1449, 1400, 1320, 1152, 1101, 1063, 1018, 959,  

913, 866, 819, 766, 692, 638, 591, 532. 

HRMS (ESI, m/z) calcd for C18H13F3N2ONa [M+Na]+: 353.0872, found: 353.0869. 
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(8R,9S,13S,14S)-13-Methyl-3-(2-oxo-2-(1-phenyl-1H-imidazol-2-yl)ethyl)-6,7,8,9,11,12,13,14,15,1

6-decahydro-17H-cyclopenta[a]phenanthren-17-one (48o)  

A white solid. 

1H NMR (300 MHz, CDCl3) δ 7.43-7.38 (m, 3H), 7.33-7.30 (m, 1H), 7.27-7.20 (m, 3H), 7.20-7.18 (m, 

1H), 7.09 (dd, J1 = 8.1 Hz, J2 = 1.8 Hz, 1H), 7.03 (br s, 1H), 4.40 (s, 2H), 2.92-2.84 (m, 2H), 2.49 (dd, 

J1 = 17.7 Hz, J2 = 7.8 Hz, 1H), 2.45-1.90 (m, 6H), 1.70-1.30 (m, 6H), 0.89 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 188.7, 142.8, 138.32, 138.25, 136.5, 131.7, 130.5, 129.7, 128.9, 128.7, 

127.41, 127.35, 125.9, 125.4, 50.5, 48.0, 45.0, 44.3, 38.1, 35.8, 31.6, 29.3, 26.5, 25.6, 21.6, 13.8. (13C 

signal of carbonyl in estrone motif (expected at ~ 220 ppm) is beyond the range of the measurement)  

IR (film): ν (cm1) 2924, 2860, 1734, 1684, 1597, 1496, 1447, 1398, 1340, 1307, 1257, 1147, 1080, 

1047, 1010, 969, 910, 763, 728, 692, 647, 554, 519, 439. 

HRMS (ESI, m/z) calcd for C29H30N2O2Na [M+Na]+: 461.2199, found: 461.2196. 

 

 

Methyl 2-methyl-3-oxo-3-(1-phenyl-1H-imidazol-2-yl)propanoate (50a)  

A colorless oil. Racemic. 

1H NMR (300 MHz, CDCl3) δ 7.49-7.42 (m, 3H), 7.33-7.27 (m, 3H), 7.22-7.19 (m, 1H), 4.78 (q, J = 

7.5 Hz, 1H), 3.71 (s, 3H), 1.44 (d, J = 7.2 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 186.7, 171.7, 142.2, 138.0, 130.0, 129.0, 128.8, 127.4, 125.7, 52.3, 48.3, 

13.1. 

IR (film): ν (cm1) 3113, 2992, 2948, 1736, 1687, 1596, 1497, 1447, 1400, 1311, 1203, 1173, 1083, 

1028, 973, 940, 909, 858, 762, 691, 551, 515. 

HRMS (ESI, m/z) calcd for C14H14N2O3Na [M+Na]+: 281.0897, found: 281.0895. 
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Allyl 2-methyl-3-oxo-3-(1-phenyl-1H-imidazol-2-yl)propanoate (50b)  

A colorless oil. Racemic. 

1H NMR (300 MHz, CDCl3) δ 7.48-7.42 (m, 3H), 7.34-7.27 (m, 3H), 7.22-7.19 (m, 1H), 5.93-5.78 (m, 

1H), 5.30-5.15 (m, 2H), 4.80 (q, J = 7.2 Hz, 1H), 4.64-4.57 (m, 2H), 1.45 (d, J = 6.9 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 186.7, 170.9, 142.3, 138.0, 131.9, 130.0, 129.0, 128.8, 127.3, 125.7, 

118.1, 65.6, 48.4, 13.0. 

IR (film): ν (cm1) 3113, 2988, 2940, 1735, 1688, 1650, 1596, 1497, 1449, 1401, 1310, 1214, 1177, 

1081, 1024, 1005, 939, 908, 761, 691, 549, 514. 

HRMS (ESI, m/z) calcd for C16H16N2O3Na [M+Na]+: 307.1053, found: 307.1051.  

 

 

Methyl 2-(4-bromobenzyl)-3-(1-methyl-1H-imidazol-2-yl)-3-oxopropanoate (50c) 

A white solid. Racemic. 

1H NMR (300 MHz, CDCl3) δ 7.38-7.33 (m, 2H), 7.18-7.12 (m, 3H), 7.03 (br s, 1H), 5.08 (t, J = 7.4 

Hz, 1H), 3.96 (s, 3H), 3.66 (s, 3H), 3.29 (dd, J1 = 14.1 Hz, J2 = 7.5 Hz, 1H), 3.22 (dd, J1 = 14.1 Hz, J2 

= 7.8 Hz, 1H). 

13C NMR (75 MHz, CDCl3) δ 186.3, 170.1, 142.3, 137.5, 131.4, 130.8, 129.9, 127.7, 120.4, 55.1, 52.4, 

36.1, 33.9. 

IR (film): ν (cm1) 3108, 2951, 1721, 1680, 1581, 1479, 1442, 1401, 1331, 1279, 1234, 1196, 1161, 

1099, 1068, 1011, 936, 904, 869, 820, 784, 744, 717, 687, 638, 613, 579, 530. 

HRMS (ESI, m/z) calcd for C15H15BrN2O3Na [M+Na]+: 373.0158, found: 373.0156. 

 

 

Methyl 4-(4-chlorophenyl)-2-(1-methyl-1H-imidazole-2-carbonyl)-4-oxobutanoate (50d)  
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A white solid. Racemic. 

1H NMR (300 MHz, CDCl3) δ 7.95-7.88 (m, 2H), 7.46-7.40 (m, 2H), 7.23-7.20 (m, 1H), 7.07 (br s, 

1H), 5.40 (dd, J1 = 8.4 Hz, J2 = 5.7 Hz, 1H), 4.00 (s, 3H), 3.81 (dd, J1 = 17.7 Hz, J2 = 8.1 Hz, 1H), 

3.73 (s, 3H), 3.63 (dd, J1 = 17.7 Hz, J2 = 5.7 Hz, 1H). 

13C NMR (75 MHz, CDCl3) δ 195.4, 186.4, 170.4, 142.3, 139.8, 134.5, 130.0, 129.6, 128.9, 127.5, 

52.7, 49.2, 38.0, 36.1. 

IR (film): ν (cm1) 3135, 2958, 1738, 1674, 1587, 1469, 1441, 1406, 1364, 1319, 1268, 1242, 1167,  

1087, 991, 950, 908, 823, 788, 689, 648, 607, 529, 490, 458, 403.  

HRMS (ESI, m/z) calcd for C16H15ClN2O4Na [M+Na]+: 357.0613, found: 357.0610. 

 

 

Methyl 4-(4-bromophenyl)-2-(1-methyl-1H-imidazole-2-carbonyl)-4-oxobutanoate (50e) 

A white solid. Racemic. 

1H NMR (300 MHz, CDCl3) δ 7.87-7.80 (m, 2H), 7.63-7.56 (m, 2H), 7.21 (br s, 1H), 7.06 (br s, 1H), 

5.39 (dd, J1 = 8.4 Hz, J2 = 5.7 Hz, 1H), 3.99 (s, 3H), 3.79 (dd, J1 = 18.3 Hz, J2 = 8.4 Hz, 1H), 3.72 (s, 

3H), 3.63 (dd, J1 = 17.7 Hz, J2 = 5.7 Hz, 1H). 

13C NMR (75 MHz, CDCl3) δ 195.6, 186.4, 170.4, 142.3, 134.5, 131.9, 130.0, 129.7, 128.6, 127.5, 

52.7, 49.2, 38.0, 36.0. 

IR (film): ν (cm1) 3137, 2956, 1735, 1674, 1580, 1476, 1405, 1363, 1319, 1266, 1167, 1093, 1067, 

991, 949, 908, 821, 785, 756, 685, 648, 613, 531, 495, 450, 408.  

HRMS (ESI, m/z) calcd for C16H15BrN2O4Na [M+Na]+: 401.0107, found: 401.0105. 

 

 

Methyl 4-(3-methoxyphenyl)-2-(1-methyl-1H-imidazole-2-carbonyl)-4-oxobutanoate (50f) 

A colorless oil. Racemic. 

1H NMR (300 MHz, CDCl3) δ 7.58 (d, J = 7.5 Hz, 1H), 7.51-7.46 (m, 1H), 7.36 (t, J = 9.3 Hz, 1H), 
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7.21 (br s, 1H), 7.14-7.08 (m, 1H), 7.06 (br s, 1H), 5.41 (dd, J1 = 8.4 Hz, J2 = 5.4 Hz, 1H), 4.00 (s, 3H), 

3.85 (dd, J1 = 17.7 Hz, J2 = 8.7 Hz, 1H), 3.83 (s, 3H), 3.73 (s, 3H), 3.66 (dd, J1 = 18.3 Hz, J2 = 5.7 Hz, 

1H). 

13C NMR (75 MHz, CDCl3) δ 196.4, 186.6, 170.5, 159.8, 142.4, 137.5, 129.9, 129.6, 127.4, 120.9, 

120.1, 112.2, 55.4, 52.6, 49.2, 38.2, 36.0. 

IR (film): ν (cm1) 3111, 2954, 2839, 1736, 1676, 1589, 1459, 1402, 1359, 1326, 1260, 1158, 1086,  

1012, 956, 905, 867, 782, 739, 685, 611, 571, 500.  

HRMS (ESI, m/z) calcd for C17H18N2O5Na [M+Na]+: 353.1108, found: 353.1106. 

 

 

Methyl 2-(1-methyl-1H-imidazole-2-carbonyl)-4-oxo-4-(2-(trifluoromethyl)phenyl)butanoate 

(50g) 

A white solid. Racemic. 

1H NMR (300 MHz, CDCl3) δ 7.74-7.54 (m, 4H), 7.22 (br s, 1H), 7.06 (br s, 1H), 5.38 (dd, J1 = 8.4 Hz, 

J2 = 6.3 Hz, 1H), 4.00 (s, 3H), 3.73 (s, 3H), 3.67 (dd, J1 = 18.6 Hz, J2 = 8.4 Hz, 1H), 3.49 (dd, J1 = 

18.3 Hz, J2 = 6.0 Hz, 1H). 

13C NMR (125 MHz, CDCl3) δ 200.4, 185.9, 170.2, 142.2, 139.3 (q, J = 1.7 Hz), 131.8, 130.3, 130.0, 

127.6, 127.5, 127.1 (q, J = 32.3 Hz), 126.6 (q, J = 5.1 Hz), 123.4 (q, J = 272.1 Hz), 52.7, 49.6, 41.8, 

36.0. 

IR (film): ν (cm1) 3031, 2955, 2917, 1736, 1706, 1674, 1402, 1308, 1279, 1162, 1135, 1064, 1030, 

994, 946, 906, 774, 660, 564. 

HRMS (ESI, m/z) calcd for C17H15F3N2O4Na [M+Na]+: 391.0876, found: 391.0872. 

 

 

Methyl 4-methoxy-2-(1-methyl-1H-imidazole-2-carbonyl)butanoate (50h) 

A colorless oil. Racemic. 

1H NMR (300 MHz, CDCl3) δ 7.19-7.16 (m, 1H), 7.04 (br s, 1H), 4.87 (t, J = 7.1 Hz, 1H), 4.00 (s, 3H), 
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3.70 (s, 3H), 3.50-3.40 (m, 2H), 3.23 (s, 3H), 2.37-2.16 (m, 2H). 

13C NMR (75 MHz, CDCl3) δ 187.4, 170.8, 142.6, 129.6, 127.4, 70.2, 58.4, 52.4, 51.1, 36.0, 28.9. 

IR (film): ν (cm1) 3113, 2951, 2874, 2819, 1737, 1676, 1510, 1438, 1402, 1331, 1287, 1245, 1196, 

1163, 1115, 1087, 978, 912, 846, 780, 693, 610, 524. 

HRMS (ESI, m/z) calcd for C11H16N2O4Na [M+Na]+: 263.1002, found: 263.1001.  

 

 

Methyl 5-hydroxy-2-(1-methyl-1H-imidazole-2-carbonyl)pentanoate (50i) 

A colorless oil. Racemic. 

1H NMR (300 MHz, CDCl3) δ 7.17 (br s, 1H), 7.06 (br s, 1H), 4.81 (t, J = 6.9 Hz, 1H), 4.01 (s, 3H), 

3.77-3.65 (m, 2H), 3.72 (s, 3H), 2.64 (br s, 1H), 2.22-2.00 (m, 2H), 1.80-1.52 (m, 2H). 

13C NMR (75 MHz, CDCl3) δ 187.7, 170.7, 142.2, 129.7, 127.6, 61.8, 53.1, 52.3, 36.2, 30.1, 25.3. 

IR (film): ν (cm1) 3383, 2955, 2880, 1733, 1674, 1401, 1281, 1236, 1202, 1159, 1059, 1003, 957, 913, 

778, 691. 

HRMS (ESI, m/z) calcd for C11H16N2O4Na [M+Na]+: 263.1002, found: 263.1000. 

 

 

Methyl 2-(1-methyl-1H-imidazole-2-carbonyl)hept-6-enoate (50j) 

A colorless oil. Racemic. 

1H NMR (300 MHz, CDCl3) δ 7.17 (br s, 1H), 7.05 (br s, 1H), 5.86-5.70 (m, 1H), 5.05-4.90 (m, 2H), 

4.74 (t, J = 7.4 Hz, 1H), 4.01 (s, 3H), 3.69 (s, 3H), 2.14-2.04 (m, 2H), 2.04-1.94 (m, 2H), 1.55-1.38 (m, 

2H). 

13C NMR (75 MHz, CDCl3) δ 187.6, 170.9, 142.6, 138.2, 129.7, 127.6, 114.9, 53.6, 52.3, 36.1, 33.5, 

28.3, 26.8. 

IR (film): ν (cm1) 3113, 2949, 2858, 1737, 1675, 1440, 1402, 1336, 1283, 1235, 1202, 1160, 990,  

961, 912, 872, 774, 692. 

HRMS (ESI, m/z) calcd for C13H18N2O3Na [M+Na]+: 273.1210, found: 273.1208. 
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Methyl 2-(1-methyl-1H-imidazole-2-carbonyl)hept-6-ynoate (50k) 

A colorless oil. Racemic. 

1H NMR (300 MHz, CDCl3) δ 7.18-7.15 (m, 1H), 7.05 (br s, 1H), 4.75 (t, J = 7.4 Hz, 1H), 4.01 (s, 3H), 

3.69 (s, 3H), 2.23 (td, J1 = 6.9 Hz, J2 = 2.7 Hz, 2H), 2.09 (q, J = 7.5 Hz, 2H), 1.93 (t, J = 2.7 Hz, 1H), 

1.68-1.50 (m, 2H). 

13C NMR (75 MHz, CDCl3) δ 187.3, 170.7, 142.5, 129.8, 127.6, 83.7, 68.7, 53.2, 52.3, 36.1, 27.9, 26.3, 

18.3. 

IR (film): ν (cm1) 3288, 2952, 1735, 1674, 1440, 1402, 1335, 1283, 1201, 1155, 1086, 994, 961, 913, 

873, 777, 637, 512. 

HRMS (ESI, m/z) calcd for C13H16N2O3Na [M+Na]+: 271.1053, found: 271.1051. 

 

 

Methyl 6-cyano-2-(1-methyl-1H-imidazole-2-carbonyl)hexanoate (50l) 

A colorless oil. Racemic. 

1H NMR (300 MHz, CDCl3) δ 7.19-7.16 (m, 1H), 7.07 (br s, 1H), 4.75 (t, J = 7.8 Hz, 1H), 4.01 (s, 3H), 

3.70 (s, 3H), 2.34 (t, J = 7.2 Hz, 2H), 2.01 (q, J = 7.5 Hz, 2H), 1.79-1.65 (m, 2H), 1.60-1.44 (m, 2H). 

13C NMR (75 MHz, CDCl3) δ 187.2, 170.6, 142.4, 129.8, 127.8, 119.4, 53.2, 52.4, 36.1, 27.8, 26.5, 

25.1, 16.9. 

IR (film): ν (cm1) 2950, 2278, 1736, 1674, 1458, 1402, 1263, 1200, 1155, 1085, 1002, 957, 909, 845, 

782, 692. 

HRMS (ESI, m/z) calcd for C13H17N3O3Na [M+Na]+: 286.1162, found: 286.1160. 
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7-((3aR,5R,6S,6aR)-5-((S)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3

]dioxol-6-yl) 1-methyl 2-(1-methyl-1H-imidazole-2-carbonyl)heptanedioate (50m) 

A colorless oil. Mixture of two diastereoisomers. 

1H NMR (300 MHz, CDCl3) δ 7.17-7.15 (m, 1H), 7.05 (br s, 1H), 5.88-5.84 (m, 1H), 5.25-5.22 (m, 

1H), 4.72 (t, J = 7.1 Hz, 1H), 4.47 (d, J = 3.6 Hz, 1H), 4.22-4.12 (m, 2H), 4.10-4.03 (m, 1H), 

4.02-3.96 (m, 1H), 4.01 (s, 3H), 3.68 (s, 3H), 2.34 (t, J = 7.5 Hz, 2H), 1.98 (q, J = 7.8 Hz, 2H), 

1.72-1.61 (m, 2H), 1.51 (s, 3H), 1.48-1.35 (m, 2H), 1.39 (s, 3H), 1.30 (s, 6H). 

13C NMR (75 MHz, CDCl3) δ 187.4, 172.0, 170.7, 142.5, 142.4, 129.7, 127.6, 112.2, 109.3, 105.1, 

83.4, 79.9, 75.9, 72.4, 67.2, 53.4, 52.3, 36.1, 33.8, 28.3, 26.9, 26.8, 26.7, 26.2, 25.2, 24.59, 24.57. 

IR (film): ν (cm1) 2987, 2944, 2869, 1739, 1677, 1458, 1405, 1376, 1211, 1154, 1071, 1017, 952, 910, 

884, 846, 782, 735, 512. 

HRMS (ESI, m/z) calcd for C25H36N2O10Na [M+Na]+: 547.2262, found: 547.2260.  

 

5.7.3 Experimental and Characterization Data of Novel Products 

 

 

(S)-1-(1-Mesityl-1H-imidazol-2-yl)-2,4-diphenylbutane-1,4-dione (49a) 

According to the general procedure, electrolysis of the reaction mixture of 1-(1-mesityl-1H-imidazol- 

2-yl)-2-phenylethan-1-one 48a (30.4 mg, 0.10 mmol) and trimethyl((1-phenylvinyl)oxy)silane 8a 

(115.4 mg, 6.0 equiv) afforded 21.3 mg (50% yield) of 49a as a colorless oil after electricity 

consumption of 2.2 F/mol. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee = 99.6% 

(HPLC: IG, 254 nm, n-hexane/isopropanol = 70:30, flow rate 1 mL/min, 40 C, tr (major) = 16.6 min, 

tr (minor) = 9.5 min). []D
22 = +153.8 (c 1.0, CH2Cl2). 
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1H NMR (300 MHz, CD2Cl2) δ 7.95-7.88 (m, 2H), 7.60-7.51 (m, 1H), 7.49-7.35 (m, 5H), 7.33-7.18 (m, 

3H), 6.97 (br s, 1H), 6.94 (br s, 1H), 6.89 (br s, 1H), 5.68 (dd, J1 = 11.1 Hz, J2 = 3.6 Hz, 1H), 3.99 (dd, 

J1 = 18.0 Hz, J2 = 10.8 Hz, 1H), 3.32 (dd, J1 = 18.3 Hz, J2 = 3.9 Hz, 1H), 2.31 (s, 3H), 1.94 (s, 3H), 

1.53 (s, 3H). 

13C NMR (75 MHz, CD2Cl2) δ 198.1, 189.9, 143.2, 139.1, 138.7, 137.0, 135.4, 135.2, 134.5, 133.4, 

130.8, 129.1, 129.0, 128.93, 128.89, 128.3, 127.5, 126.2, 48.6, 43.1, 21.1, 17.4, 16.9. (Missing one 13C 

signal because the resolution of NMR spectrometer is not enough.) 

IR (film): ν (cm1) 3059, 3029, 2918, 2859, 1679, 1598, 1488, 1449, 1403, 1361, 1326, 1283, 1247, 

1203, 1149, 1084, 1013, 989, 959, 933, 907, 849, 736, 693, 561, 522. 

HRMS (ESI, m/z) calcd for C28H26N2O2Na [M+Na]+: 445.1886, found: 445.1882.  

 

 

(S)-2,4-Diphenyl-1-(1-phenyl-1H-imidazol-2-yl)butane-1,4-dione (49b) 

According to the general procedure, electrolysis of the reaction mixture of 

2-phenyl-1-(1-phenyl-1H-imidazol-2-yl)ethan-1-one 48b (26.2 mg, 0.10 mmol) and 

trimethyl((1-phenylvinyl)oxy)silane 8a (115.4 mg, 6.0 equiv) afforded 30.1 mg (79% yield) of 49b as 

a yellow solid after electricity consumption of 2.4 F/mol. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee = 97% 

(HPLC: IG, 254 nm, n-hexane/isopropanol = 60:40, flow rate 1 mL/min, 40 C, tr (major) = 19.3 min, 

tr (minor) = 13.9 min). []D
22 = +218.4 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CD2Cl2) δ 7.98-7.92 (m, 2H), 7.61-7.52 (m, 1H), 7.49-7.39 (m, 7H), 7.38-7.30 (m, 

2H), 7.29-7.20 (m, 4H), 7.20-7.17 (m, 1H), 5.69 (dd, J1 = 11.1 Hz, J2 = 3.6 Hz, 1H), 4.03 (dd, J1 = 

18.0 Hz, J2 = 11.1 Hz, 1H), 3.37 (dd, J1 = 18.3 Hz, J2 = 3.6 Hz, 1H). 

13C NMR (75 MHz, CD2Cl2) δ 198.2, 189.9, 143.1, 138.99, 138.96, 136.9, 133.5, 130.1, 129.20, 

129.15, 129.1, 128.9, 128.8, 128.4, 127.6, 127.5, 126.1, 48.9, 43.4. 

IR (film): ν (cm1) 3060, 2910, 1678, 1592, 1495, 1448, 1401, 1360, 1307, 1247, 1204, 1149, 1098, 

1074, 1023, 992, 939, 907, 867, 755, 691, 587, 522, 435. 

HRMS (ESI, m/z) calcd for C25H20N2O2Na [M+Na]+: 403.1417, found: 403.1415. 
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(S)-1-(1-(4-Methoxyphenyl)-1H-imidazol-2-yl)-2,4-diphenylbutane-1,4-dione (49c) 

According to the general procedure, electrolysis of the reaction mixture of 1-(1-(4-methoxyphenyl)- 

1H-imidazol-2-yl)-2-phenylethan-1-one 48c (29.2 mg, 0.10 mmol) and trimethyl((1-phenylvinyl) 

oxy)silane 8a (115.4 mg, 6.0 equiv) afforded 22.5 mg (55% yield) of 49c as a white solid after 

electricity consumption of 2.4 F/mol. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak OD-H column, ee = 96% 

(HPLC: OD-H, 254 nm, n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 40 C, tr (major) = 12.4 

min, tr (minor) = 10.8 min). []D
22 = +237.8 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CD2Cl2) δ 7.96-7.92 (m, 2H), 7.59-7.55 (m, 1H), 7.48-7.41 (m, 4H), 7.36-7.30 (m, 

2H), 7.27-7.22 (m, 2H), 7.15-7.11 (m, 3H), 6.93-6.88 (m, 2H), 5.66 (dd, J1 = 11.0 Hz, J2 = 4.0 Hz, 1H), 

4.02 (dd, J1 = 18.0 Hz, J2 = 11.0 Hz, 1H), 3.82 (s, 3H), 3.35 (dd, J1 = 18.0 Hz, J2 = 3.5 Hz, 1H). 

13C NMR (125 MHz, CD2Cl2) δ 198.2, 189.8, 159.9, 143.1, 138.9, 136.8, 133.5, 131.7, 129.8, 129.1, 

129.0, 128.9, 128.3, 127.8, 127.5, 127.1, 114.1, 55.8, 48.7, 43.4. 

IR (film): ν (cm1) 3060, 2911, 2839, 1678, 1592, 1513, 1450, 1400, 1360, 1332, 1297, 1246, 1207,  

1176, 1149, 1103, 1076, 1030, 998, 940, 907, 834, 735, 693, 623, 523, 402. 

HRMS (ESI, m/z) calcd for C26H22N2O3Na [M+Na]+: 433.1523, found: 433.1519. 

 

 

(S)-1-(1-(4-Fluorophenyl)-1H-imidazol-2-yl)-2,4-diphenylbutane-1,4-dione (49d) 

According to the general procedure, electrolysis of the reaction mixture of 1-(1-(4-fluorophenyl)- 

1H-imidazol-2-yl)-2-phenylethan-1-one 48d (28.0 mg, 0.10 mmol) and trimethyl((1-phenylvinyl) 

oxy)silane 8a (115.4 mg, 6.0 equiv) afforded 20.8 mg (52% yield) of 49d as a white solid after 

electricity consumption of 2.2 F/mol. 
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Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee = 96% 

(HPLC: IG, 254 nm, n-hexane/isopropanol = 20:80, flow rate 1 mL/min, 40 C, tr (major) = 10.5 min, 

tr (minor) = 9.4 min). []D
22 = +130.8 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CD2Cl2) δ 7.98-7.92 (m, 2H), 7.61-7.53 (m, 1H), 7.50-7.42 (m, 4H), 7.37-7.30 (m, 

2H), 7.29-7.19 (m, 4H), 7.18-7.16 (m, 1H), 7.15-7.06 (m, 2H), 5.67 (dd, J1 = 11.1 Hz, J2 = 3.6 Hz, 1H), 

4.03 (dd, J1 = 18.0 Hz, J2 = 11.1 Hz, 1H), 3.38 (dd, J1 = 18.3 Hz, J2 = 3.6 Hz, 1H). 

13C NMR (75 MHz, CD2Cl2) δ 198.3, 190.1, 162.7 (d, J = 246.1), 143.2, 138.9, 136.9, 135.0 (d, J = 

3.2 Hz), 133.6, 130.2, 129.2, 129.1, 129.0, 128.4, 128.0 (d, J = 8.7 Hz), 127.63, 127.57, 116.4 (d, J = 

23.0 Hz), 48.8, 43.5. 

IR (film): ν (cm1) 3062, 2910, 1678, 1598, 1508, 1449, 1402, 1360, 1323, 1220, 1152, 1095, 1020,  

989, 940, 907, 840, 814, 735, 693, 621, 531. 

HRMS (ESI, m/z) calcd for C25H19FN2O2Na [M+Na]+: 421.1323, found: 421.1320. 

 

 

(S)-2-(4-Methoxyphenyl)-4-phenyl-1-(1-phenyl-1H-imidazol-2-yl)butane-1,4-dione (49f) 

According to the general procedure, electrolysis of the reaction mixture of 2-(4-methoxyphenyl)-1- 

(1-phenyl-1H-imidazol-2-yl)ethan-1-one 48f (29.2 mg, 0.10 mmol) and trimethyl((1-phenylvinyl) 

oxy)silane 8a (115.4 mg, 6.0 equiv) afforded 28.0 mg (68% yield) of 49f as a yellow oil after 

electricity consumption of 2.4 F/mol. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee = 97% 

(HPLC: IG, 254 nm, n-hexane/isopropanol = 20:80, flow rate 1 mL/min, 40 C, tr (major) = 19.8 min, 

tr (minor) = 15.0 min). []D
22 = +268.2 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CD2Cl2) δ 7.97-7.91 (m, 2H), 7.60-7.52 (m, 1H), 7.49-7.34 (m, 7H), 7.29-7.26 (m, 

1H), 7.24-7.16 (m, 3H), 6.90-6.84 (m, 2H), 5.62 (dd, J1 = 10.8 Hz, J2 = 3.9 Hz, 1H), 3.99 (dd, J1 = 

18.0 Hz, J2 = 10.8 Hz, 1H), 3.77 (s, 3H), 3.33 (dd, J1 = 18.0 Hz, J2 = 3.9 Hz, 1H). 

13C NMR (75 MHz, CD2Cl2) δ 198.4, 190.1, 159.3, 143.2, 139.0, 137.0, 133.5, 130.7, 130.1, 130.0, 

129.2, 128.9, 128.8, 128.4, 127.4, 126.1, 114.5, 55.6, 48.0, 43.3. 

IR (film): ν (cm1) 3060, 2907, 2837, 1678, 1601, 1504, 1447, 1401, 1356, 1305, 1248, 1204, 1178, 
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1149, 1106, 1076, 1027, 992, 940, 907, 874, 834, 763, 734, 690, 655, 574, 535, 422.  

HRMS (ESI, m/z) calcd for C26H22N2O3Na [M+H]+: 433.1523, found: 433.1519. 

 

 

(S)-4-Phenyl-1-(1-phenyl-1H-imidazol-2-yl)-2-(p-tolyl)butane-1,4-dione (49g) 

According to the general procedure, electrolysis of the reaction mixture of 1-(1-phenyl-1H-imidazol- 

2-yl)-2-(p-tolyl)ethan 48g (27.6 mg, 0.10 mmol) and trimethyl((1-phenylvinyl)oxy)silane 8a (115.4 

mg, 6.0 equiv) afforded 34.6 mg (88% yield) of 49g as a yellow solid after electricity consumption of 

2.4 F/mol. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee = 97% 

(HPLC: IG, 254 nm, n-hexane/isopropanol = 30:70, flow rate 1 mL/min, 40 C, tr (major) = 16.2 min, 

tr (minor) = 12.8 min). []D
22 = +238.0 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CD2Cl2) δ 7.97-7.91 (m, 2H), 7.60-7.52 (m, 1H), 7.50-7.40 (m, 5H), 7.37-7.30 (m, 

2H), 7.24-7.27 (m, 1H), 7.25-7.20 (m, 2H), 7.19-7.12 (m, 3H), 5.64 (dd, J1 = 10.5 Hz, J2 = 3.3 Hz, 1H), 

4.01 (dd, J1 = 18.0 Hz, J2 = 10.8 Hz, 1H), 3.34 (dd, J1 = 17.7 Hz, J2 = 3.3 Hz, 1H), 2.32 (s, 3H). 

13C NMR (75 MHz, CD2Cl2) δ 198.3, 190.0, 143.1, 139.0, 137.4, 137.0, 135.8, 133.5, 130.3, 130.0, 

129.8, 129.2, 128.9, 128.8, 128.4, 127.5, 126.1, 48.5, 43.4, 21.1. 

IR (film): ν (cm1) 3062, 2914, 1718, 1676, 1592, 1498, 1449, 1406, 1352, 1320, 1295, 1247, 1193, 

1176, 1146, 1108, 1077, 1021, 992, 943, 908, 827, 767, 689, 655, 570, 534, 494.  

HRMS (ESI, m/z) calcd for C26H22N2O2Na [M+Na]+: 417.1573, found: 417.1571. 

 

 

(S)-2-(4-Chlorophenyl)-4-phenyl-1-(1-phenyl-1H-imidazol-2-yl)butane-1,4-dione (49h) 

According to the general procedure, electrolysis of the reaction mixture of 2-(4-chlorophenyl)-1- 

(1-phenyl-1H-imidazol-2-yl)ethan-1-one 48h (29.7 mg, 0.10 mmol) and trimethyl((1-phenylvinyl) 

oxy)silane 8a (115.4 mg, 6.0 equiv) afforded 28.5 mg (67% yield) of 49h as a yellow solid after 
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electricity consumption of 2.0 F/mol. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee = 95% 

(HPLC: IG, 254 nm, n-hexane/isopropanol = 30:70, flow rate 1 mL/min, 40 C, tr (major) = 15.0 min, 

tr (minor) = 10.8 min). []D
22 = +229.8 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CD2Cl2) δ 7.97-7.92 (m, 2H), 7.62-7.53 (m, 1H), 7.50-7.39 (m, 7H), 7.34-7.27 (m, 

3H), 7.26-7.18 (m, 3H), 5.69 (dd, J1 = 10.8 Hz, J2 = 3.9 Hz, 1H), 4.00 (dd, J1 = 18.0 Hz, J2 = 10.8 Hz, 

1H), 3.36 (dd, J1 = 18.0 Hz, J2 = 3.9 Hz, 1H). 

13C NMR (75 MHz, CD2Cl2) δ 198.0, 189.5, 142.9, 138.9, 137.5, 136.8, 133.6, 133.4, 130.6, 130.2, 

129.24, 129.21, 129.0, 128.9, 128.4, 127.7, 126.1, 48.2, 43.2. 

IR (film): ν (cm1) 3063, 2919, 2852, 1676, 1593, 1490, 1449, 1406, 1351, 1316, 1249, 1203, 1177,  

1147, 1081, 1006, 992, 942, 910, 834, 807, 772, 689, 561, 531.  

HRMS (ESI, m/z) calcd for C25H19ClN2O2Na [M+Na]+: 437.1027, found: 437.1023. 

 

 

(S)-2-(3-Chlorophenyl)-4-phenyl-1-(1-phenyl-1H-imidazol-2-yl)butane-1,4-dione (49i) 

According to the general procedure, electrolysis of the reaction mixture of 2-(3-chlorophenyl)-1- 

(1-phenyl-1H-imidazol-2-yl)ethan-1-one 48i (29.7 mg, 0.10 mmol) and trimethyl((1-phenylvinyl) 

oxy)silane 8a (115.4 mg, 6.0 equiv) afforded 36.4 mg (88% yield) of 49i as a yellow solid after 

electricity consumption of 2.4 F/mol. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee = 96% 

(HPLC: IG, 254 nm, n-hexane/isopropanol = 20:80, flow rate 1 mL/min, 40 C, tr (major) = 14.9 min, 

tr (minor) = 12.0 min). []D
22 = +172.8 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CD2Cl2) δ 7.98-7.91 (m, 2H), 7.62-7.53 (m, 1H), 7.50-7.35 (m, 7H), 7.33-7.20 (m, 

6H), 5.68 (dd, J1 = 10.8 Hz, J2 = 3.6 Hz, 1H), 4.01 (dd, J1 = 18.0 Hz, J2 = 11.1 Hz, 1H), 3.37 (dd, J1 = 

18.3 Hz, J2 = 3.9 Hz, 1H). 

13C NMR (75 MHz, CD2Cl2) δ 197.9, 189.3, 143.0, 141.1, 138.9, 136.8, 134.7, 133.6, 130.4, 130.2, 

129.2, 129.1, 129.0, 128.9, 128.4, 127.8, 127.7, 127.5, 126.1, 48.4, 43.2. 

IR (film): ν (cm1) 3061, 2911, 1679, 1592, 1496, 1445, 1400, 1354, 1306, 1243, 1204, 1149, 1077, 
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1023, 992, 940, 906, 763, 732, 689, 662, 601, 559, 527, 507.  

HRMS (ESI, m/z) calcd for C25H19ClN2O2Na [M+Na]+: 437.1027, found: 437.1023. 

 

 

(S)-2-(2-Chlorophenyl)-4-phenyl-1-(1-phenyl-1H-imidazol-2-yl)butane-1,4-dione (49j) 

According to the general procedure, electrolysis of the reaction mixture of 2-(2-chlorophenyl)-1- 

(1-phenyl-1H-imidazol-2-yl)ethan-1-one 48j (29.7 mg, 0.10 mmol) and trimethyl((1-phenylvinyl) 

oxy)silane 8a (115.4 mg, 6.0 equiv) afforded 31.4 mg (76% yield) of 49j as a yellow solid after 

electricity consumption of 2.2 F/mol. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee = 94% 

(HPLC: IG, 254 nm, n-hexane/isopropanol = 30:70, flow rate 1 mL/min, 40 C, tr (major) = 12.7 min, 

tr (minor) = 10.2 min). []D
22 = +283.2 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CD2Cl2) δ 7.97-7.90 (m, 2H), 7.61-7.52 (m, 1H), 7.50-7.41 (m, 6H), 7.33-7.26 (m, 

2H), 7.25-7.17 (m, 5H), 6.06 (dd, J1 = 10.8 Hz, J2 = 3.3 Hz, 1H), 3.86 (dd, J1 = 18.3 Hz, J2 = 11.1 Hz, 

1H), 3.31 (dd, J1 = 18.0 Hz, J2 = 3.3 Hz, 1H). 

13C NMR (75 MHz, CD2Cl2) δ 197.8, 189.5, 143.1, 138.9, 137.2, 136.8, 134.3, 133.6, 130.6, 130.3, 

129.3, 129.1, 128.94, 128.92, 128.8, 128.4, 127.7, 127.5, 126.2, 45.8, 42.1. 

IR (film): ν (cm1) 3060, 2909, 1679, 1592, 1497, 1445, 1401, 1353, 1304, 1244, 1205, 1150, 1097, 

1078, 1039, 1011, 990, 938, 906, 845, 754, 690, 540, 485.  

HRMS (ESI, m/z) calcd for C25H19ClN2O2Na [M+Na]+: 437.1027, found: 437.1024. 

 

 

(S)-2-(4-Bromophenyl)-4-phenyl-1-(1-phenyl-1H-imidazol-2-yl)butane-1,4-dione (49k) 

According to the general procedure, electrolysis of the reaction mixture of 2-(4-bromophenyl)-1- 

(1-phenyl-1H-imidazol-2-yl)ethan-1-one 48k (34.1 mg, 0.10 mmol) and trimethyl((1-phenylvinyl) 

oxy)silane 8a (115.4 mg, 6.0 equiv) afforded 38.2 mg (83% yield) of 49k as a yellow solid after 
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electricity consumption of 2.2 F/mol. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee = 97% 

(HPLC: IG, 254 nm, n-hexane/isopropanol = 30:70, flow rate 1 mL/min, 40 C, tr (major) = 16.9 min, 

tr (minor) = 11.5 min). []D
22 = +194.6 (c 1.0, CH2Cl2). 

1H NMR (250 MHz, CD2Cl2) δ 7.97-7.90 (m, 2H), 7.60-7.52 (m, 1H), 7.52-7.31 (m, 9H), 7.31-7.16 (m, 

4H), 5.66 (dd, J1 = 10.6 Hz, J2 = 3.4 Hz, 1H), 3.99 (dd, J1 = 18.0 Hz, J2 = 10.9 Hz, 1H), 3.36 (dd, J1 = 

17.9 Hz, J2 = 3.4 Hz, 1H). 

13C NMR (75 MHz, CD2Cl2) δ 198.0, 189.4, 142.9, 138.9, 138.1, 136.8, 133.6, 132.2, 130.9, 130.2, 

129.2, 129.0, 128.9, 128.4, 127.7, 126.1, 121.5, 48.2, 43.1. 

IR (film): ν (cm1) 3063, 2922, 2854, 1675, 1592, 1486, 1449, 1406, 1353, 1315, 1247, 1202, 1073, 

1005, 943, 909, 832, 770, 720, 685, 558, 528. 

HRMS (ESI, m/z) calcd for C25H19BrN2O2Na [M+Na]+: 481.0522, found: 481.0518. 

 

 

(S)-4-Phenyl-1-(1-phenyl-1H-imidazol-2-yl)-2-(4-(trifluoromethyl)phenyl)butane-1,4-dione (49l) 

According to the general procedure, electrolysis of the reaction mixture of 1-(1-phenyl-1H-imidazol- 

2-yl)-2-(4-(trifluoromethyl)phenyl)ethan-1-one 48l (33.0 mg, 0.10 mmol) and trimethyl((1- 

phenylvinyl)oxy)silane 8a (115.4 mg, 6.0 equiv) afforded 39.0 mg (87% yield) of 49l as a yellow solid 

after electricity consumption of 2.2 F/mol. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee = 95% 

(HPLC: IG, 254 nm, n-hexane/isopropanol = 30:70, flow rate 1 mL/min, 40 C, tr (major) = 11.2 min, 

tr (minor) = 7.0 min). []D
22 = +193.6 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CD2Cl2) δ 7.97-7.93 (m, 2H), 7.65-7.55 (m, 5H), 7.51-7.40 (m, 5H), 7.30 (d, J = 

1.0 Hz, 1H), 7.26-7.22 (m, 2H), 7.21 (d, J = 1.0 Hz, 1H), 5.79 (dd, J1 = 11.0 Hz, J2 = 4.0 Hz, 1H), 4.04 

(dd, J1 = 18.0 Hz, J2 = 10.5 Hz, 1H), 3.40 (dd, J1 = 18.0 Hz, J2 = 4.0 Hz, 1H). 

13C NMR (125 MHz, CD2Cl2) δ 197.7, 189.1, 143.2, 142.7, 138.7, 136.6, 133.7, 130.2, 129.52, 129.50 

(q, J = 32.0 Hz), 129.2, 128.94, 128.90, 128.3, 127.8, 126.1, 125.9 (q, J = 3.9 Hz), 124.6 (q, J = 270.3 

Hz), 48.6, 43.1. 
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IR (film): ν (cm1) 2919, 2853, 1679, 1593, 1496, 1449, 1407, 1321, 1250, 1159, 1112, 1066, 1013, 

992, 944, 910, 845, 766, 688, 605, 557, 527. 

HRMS (ESI, m/z) calcd for C26H19F3N2O2Na [M+Na]+: 471.1291, found: 471.1288. 

 

 

(S)-2-(Naphthalen-2-yl)-4-phenyl-1-(1-phenyl-1H-imidazol-2-yl)butane-1,4-dione (49m) 

According to the general procedure, electrolysis of the reaction mixture of 2-(naphthalen-2-yl)-1- 

(1-phenyl-1H-imidazol-2-yl)ethan-1-one 48m (33.0 mg, 0.10 mmol) and trimethyl((1-phenylvinyl) 

oxy)silane 8a (115.4 mg, 6.0 equiv) afforded 27.1 mg (63% yield) of 49m as a yellow solid after 

electricity consumption of 2.4 F/mol. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee = 96% 

(HPLC: IG, 254 nm, n-hexane/isopropanol = 30:70, flow rate 1 mL/min, 40 C, tr (major) = 23.5 min, 

tr (minor) = 16.2 min). []D
22 = +286.8 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CD2Cl2) δ 8.00-7.94 (m, 2H), 7.91 (br s, 1H), 7.87-7.80 (m, 3H), 7.62 (dd, J1 = 

8.4 Hz, J2 = 1.5 Hz, 1H), 7.58-7.51 (m, 1H), 7.51-7.38 (m, 7H), 7.29 (d, J = 0.9 Hz, 1H), 7.25-7.19 (m, 

2H), 7.17 (d, J = 0.9 Hz, 1H), 5.86 (dd, J1 = 11.1 Hz, J2 = 3.9 Hz, 1H), 4.14 (dd, J1 = 18.3 Hz, J2 = 

10.8 Hz, 1H), 3.46 (dd, J1 = 18.3 Hz, J2 = 3.9 Hz, 1H). 

13C NMR (75 MHz, CD2Cl2) δ 198.2, 189.7, 143.1, 139.0, 136.9, 136.4, 134.0, 133.6, 133.0, 130.1, 

129.2, 129.0, 128.847, 128.753, 128.4, 128.1, 127.9, 127.8, 127.6, 127.2, 126.6, 126.3, 126.2, 49.0, 

43.4. 

IR (film): ν (cm1) 3056, 2908, 1678, 1593, 1497, 1447, 1402, 1349, 1310, 1264, 1211, 1149, 1097, 

1075, 992, 939, 906, 858, 820, 759, 735, 690, 654, 567, 534, 478. 

HRMS (ESI, m/z) calcd for C29H22N2O2Na [M+Na]+: 453.1573, found: 453.1570. 

 

 

(S)-4-Phenyl-1-(1-phenyl-1H-imidazol-2-yl)-2-(thiophen-3-yl)butane-1,4-dione (49n) 
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According to the general procedure, electrolysis of the reaction mixture of 1-(1-phenyl-1H-imidazol- 

2-yl)-2-(thiophen-3-yl)ethan-1-one 48n (26.8 mg, 0.10 mmol) and trimethyl((1-phenylvinyl)oxy) 

silane 8a (115.4 mg, 6.0 equiv) afforded 16.2 mg (42% yield) of 49n as a yellow solid after electricity 

consumption of 2.2 F/mol. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee = 98% 

(HPLC: IG, 254 nm, n-hexane/isopropanol = 30:70, flow rate 1 mL/min, 40 C, tr (major) = 13.2 min, 

tr (minor) = 10.5 min). []D
22 = +162.6 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CD2Cl2) δ 7.98-7.92 (m, 2H), 7.62-7.53 (m, 1H), 7.50-7.38 (m, 5H), 7.33-7.20 (m, 

6H), 7.17 (dd, J1 = 4.8 Hz, J2 = 1.2 Hz, 1H), 5.81 (dd, J1 = 11.1 Hz, J2 = 3.6 Hz, 1H), 4.02 (dd, J1 = 

18.3 Hz, J2 = 11.1 Hz, 1H), 3.41 (dd, J1 = 18.3 Hz, J2 = 3.9 Hz, 1H). 

13C NMR (75 MHz, CD2Cl2) δ 198.2, 189.5, 143.1, 138.99, 138.97, 136.9, 133.6, 130.1, 129.2, 129.0, 

128.8, 128.4, 128.2, 127.6, 126.2, 126.1, 123.0, 44.2, 42.9. 

IR (film): ν (cm1) 3105, 3061, 2912, 1678, 1592, 1495, 1446, 1402, 1353, 1309, 1252, 1217, 1147,  

1076, 991, 939, 907, 848, 810, 761, 733, 690, 654, 540, 510, 408. 

HRMS (ESI, m/z) calcd for C23H18N2O2SNa [M+Na]+: 409.0981, found: 409.0978. 

 

 

(S)-4-(4-Methoxyphenyl)-2-phenyl-1-(1-phenyl-1H-imidazol-2-yl)butane-1,4-dione (49o) 

According to the general procedure, electrolysis of the reaction mixture of 

2-phenyl-1-(1-phenyl-1H-imidazol-2-yl)ethan-1-one 48b (26.2 mg, 0.10 mmol) and 

((1-(4-methoxyphenyl)vinyl)oxy)trimethylsilane 8b (133.4 mg, 6.0 equiv) afforded 37.3 mg (91% 

yield) of 49o as a yellow oil after electricity consumption of 2.2 F/mol. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee = 94% 

(HPLC: IG, 254 nm, n-hexane/isopropanol = 20:80, flow rate 1 mL/min, 40 C, tr (major) = 24.9 min, 

tr (minor) = 19.7 min). []D
22 = +168.2 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CD2Cl2) δ 7.97-7.90 (m, 2H), 7.49-7.39 (m, 5H), 7.38-7.30 (m, 2H), 7.29-7.20 (m, 

4H), 7.20-7.17 (m, 1H), 6.97-6.89 (m, 2H), 5.66 (dd, J1 = 11.1 Hz, J2 = 3.9 Hz, 1H), 3.98 (dd, J1 = 

17.7 Hz, J2 = 10.8 Hz, 1H), 3.85 (s, 3H), 3.32 (dd, J1 = 18.3 Hz, J2 = 3.9 Hz, 1H). 



Chapter 5. Experimental Part 

408 
 

13C NMR (75 MHz, CD2Cl2) δ 196.6, 190.0, 164.0, 143.2, 139.1, 139.0, 130.6, 130.047, 129.979, 

129.2, 129.12, 129.07, 128.8, 127.54, 127.49, 126.1, 114.1, 55.9, 48.9, 43.2. 

IR (film): ν (cm1) 3060, 2908, 2841, 1673, 1598, 1499, 1449, 1402, 1360, 1310, 1250, 1212, 1169, 

1105, 1075, 1023, 988, 939, 908, 836, 761, 734, 694, 588, 525. 

HRMS (ESI, m/z) calcd for C26H22N2O3Na [M+Na]+: 433.1523, found: 433.1518. 

 

 

(S)-4-(3-Methoxyphenyl)-2-phenyl-1-(1-phenyl-1H-imidazol-2-yl)butane-1,4-dione (49p) 

According to the general procedure, electrolysis of the reaction mixture of 

2-phenyl-1-(1-phenyl-1H-imidazol-2-yl)ethan-1-one 48b (26.2 mg, 0.10 mmol) and 

((1-(3-methoxyphenyl)vinyl)oxy)trimethylsilane 8c (133.4 mg, 6.0 equiv) afforded 31.4 mg (76% 

yield) of 49p as a yellow oil after electricity consumption of 2.4 F/mol. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee = 97% 

(HPLC: IG, 254 nm, n-hexane/isopropanol = 20:80, flow rate 1 mL/min, 40 C, tr (major) = 19.1 min, 

tr (minor) = 12.3 min). []D
22 = +181.8 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CD2Cl2) δ 7.57-7.52 (m, 1H), 7.49-7.40 (m, 6H), 7.40-7.30 (m, 3H), 7.29-7.20 (m, 

4H), 7.20-7.17 (m, 1H), 7.11 (ddd, J1 = 8.4 Hz, J2 = 2.7 Hz, J3 = 1.2 Hz, 1H), 5.69 (dd, J1 = 10.8 Hz, J2 

= 3.6 Hz, 1H), 4.01 (dd, J1 = 18.3 Hz, J2 = 11.1 Hz, 1H), 3.83 (s, 3H), 3.36 (dd, J1 = 18.0 Hz, J2 = 3.6 

Hz, 1H). 

13C NMR (75 MHz, CD2Cl2) δ 198.0, 189.9, 160.3, 143.1, 139.0, 138.9, 138.3, 130.1, 130.0, 129.2, 

129.146, 129.070, 128.8, 127.6, 127.5, 126.1, 121.0, 119.8, 112.8, 55.8, 48.9, 43.5. 

IR (film): ν (cm1) 3060, 2913, 2839, 1679, 1590, 1492, 1449, 1402, 1311, 1259, 1166, 1077, 1023,  

940, 908, 850, 761, 736, 692, 585, 531. 

HRMS (ESI, m/z) calcd for C26H22N2O3Na [M+Na]+: 433.1523, found: 433.1519. 
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(S)-4-(2-Methoxyphenyl)-2-phenyl-1-(1-phenyl-1H-imidazol-2-yl)butane-1,4-dione (49q) 

According to the general procedure, electrolysis of the reaction mixture of 

2-phenyl-1-(1-phenyl-1H-imidazol-2-yl)ethan-1-one 48b (26.2 mg, 0.10 mmol) and 

((1-(2-methoxyphenyl)vinyl)oxy)trimethylsilane 8d (133.4 mg, 6.0 equiv) afforded 32.8 mg (80% 

yield) of 49q as a yellow solid after electricity consumption of 2.2 F/mol. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee = 94% 

(HPLC: IG, 254 nm, n-hexane/isopropanol = 30:70, flow rate 1 mL/min, 40 C, tr (major) = 17.4 min, 

tr (minor) = 12.1 min). []D
22 = +134.4 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CD2Cl2) δ 7.68 (dd, J1 = 7.8 Hz, J2 = 1.8 Hz, 1H), 7.52-7.40 (m, 6H), 7.37-7.28 

(m, 2H), 7.28-7.20 (m, 4H), 7.20-7.17 (m, 1H), 7.02-6.94 (m, 2H), 5.64 (dd, J1 = 11.1 Hz, J2 = 3.9 Hz, 

1H), 4.01 (dd, J1 = 18.6 Hz, J2 = 11.1 Hz, 1H), 3.86 (s, 3H), 3.43 (dd, J1 = 18.6 Hz, J2 = 3.6 Hz, 1H). 

13C NMR (75 MHz, CD2Cl2) δ 199.9, 190.3, 159.5, 143.3, 139.3, 139.1, 134.1, 130.7, 130.0, 129.2, 

129.1, 129.0, 128.7, 127.8, 127.4, 126.1, 120.8, 112.1, 55.9, 49.2, 48.7. (Missing one 13C signal 

because the resolution of NMR spectrometer is not enough.) 

IR (film): ν (cm1) 3131, 3059, 2961, 2840, 1668, 1592, 1487, 1454, 1402, 1348, 1306, 1281, 1240,  

1186, 1156, 1109, 1061, 1013, 991, 938, 909, 880, 845, 808, 755, 694, 665, 578, 539, 505. 

HRMS (ESI, m/z) calcd for C26H22N2O3Na [M+Na]+: 433.1523, found: 433.1519. 

 

 

(S)-2-Phenyl-1-(1-phenyl-1H-imidazol-2-yl)-4-(3-(trifluoromethyl)phenyl)butane-1,4-dione (49r) 

According to the general procedure, electrolysis of the reaction mixture of 

2-phenyl-1-(1-phenyl-1H-imidazol-2-yl)ethan-1-one 48b (26.2 mg, 0.10 mmol) and 

trimethyl((1-(3-(trifluoromethyl)phenyl)vinyl)oxy)silane 8e (156.2 mg, 6.0 equiv) afforded 21.2 mg 

(47% yield) of 49r as a yellow oil after electricity consumption of 2.2 F/mol. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee = 98% 
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(HPLC: IG, 254 nm, n-hexane/isopropanol = 30:70, flow rate 1 mL/min, 40 C, tr (major) = 9.6 min, tr 

(minor) = 6.8 min). []D
22 = +152.8 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CD2Cl2) δ 8.20 (s, 1H), 8.14 (d, J = 7.9 Hz, 1H), 7.82 (d, J = 7.8 Hz, 1H), 7.61 (t, 

J = 7.8 Hz, 1H), 7.47-7.40 (m, 5H), 7.37-7.32 (m, 2H), 7.29-7.24 (m, 2H), 7.23-7.18 (m, 3H), 5.70 (dd, 

J1 = 10.9 Hz, J2 = 3.5 Hz, 1H), 4.04 (dd, J1 = 18.2 Hz, J2 = 11.0 Hz, 1H), 3.36 (dd, J1 = 18.2 Hz, J2 = 

3.7Hz, 1H).  

13C NMR (125 MHz, CD2Cl2) δ 197.0, 189.5, 142.9, 138.8, 138.6, 137.3, 131.7, 131.2 (q, J = 32.4 Hz), 

130.1, 129.9 (q, J = 3.7 Hz), 129.7, 129.2, 129.0, 128.8, 127.7, 127.6, 126.0, 125.2 (q, J = 2.4 Hz), 

124.2 (q, J = 270.7 Hz), 48.7, 43.4. (Missing one 13C signal because the resolution of NMR 

spectrometer is not enough.) 

IR (film): ν (cm1) 3062, 2908, 1683, 1605, 1496, 1446, 1403, 1365, 1323, 1241, 1168, 1125,  

1071, 1026, 940, 905, 809, 761, 737, 691, 585, 529, 407. 

HRMS (ESI, m/z) calcd for C26H19F3N2O2Na [M+Na]+: 471.1291, found: 471.1287. 

 

 

Methyl (S)-4-(4-oxo-3-phenyl-4-(1-phenyl-1H-imidazol-2-yl)butanoyl)benzoate (49s) 

According to the general procedure, electrolysis of the reaction mixture of 

2-phenyl-1-(1-phenyl-1H-imidazol-2-yl)ethan-1-one 48b (26.2 mg, 0.10 mmol) and ethyl 

4-(1-((trimethylsilyl)oxy)vinyl)benzoate 8f (150.2 mg, 6.0 equiv) afforded 32.1 mg (73% yield) of 49s 

as a yellow solid after electricity consumption of 2.2 F/mol. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee = 98% 

(HPLC: IG, 254 nm, n-hexane/isopropanol = 20:80, flow rate 1 mL/min, 40 C, tr (major) = 24.6 min, 

tr (minor) = 16.9 min). []D
22 = +174.8 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CD2Cl2) δ 8.09 (d, J = 8.4 Hz, 2H), 7.99 (d, J = 8.7 Hz, 2H), 7.48-7.40 (m, 5H), 

7.38-7.31 (m, 2H), 7.30-7.17 (m, 5H), 5.69 (dd, J1 = 10.8 Hz, J2 = 3.6 Hz, 1H), 4.04 (dd, J1 = 18.6 Hz, 

J2 = 11.1 Hz, 1H), 3.91 (s, 3H), 3.37 (dd, J1 = 18.3 Hz, J2 = 3.9 Hz, 1H). 

13C NMR (75 MHz, CD2Cl2) δ 197.9, 189.7, 166.4, 143.0, 140.0, 138.9, 138.7, 134.5, 130.1, 130.0, 

129.2, 129.0, 128.8, 128.4, 127.7, 127.6, 126.1, 52.7, 48.8, 43.6. (Missing one 13C signal because the 
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resolution of NMR spectrometer is not enough.) 

IR (film): ν (cm1) 3059, 2952, 1722, 1681, 1597, 1496, 1444, 1402, 1362, 1276, 1195, 1150, 1107, 

991, 939, 909, 858, 760, 733, 693, 530. 

HRMS (ESI, m/z) calcd for C27H22N2O4Na [M+Na]+: 461.1472, found: 461.1467. 

 

 

(S)-4-(Naphthalen-2-yl)-2-phenyl-1-(1-phenyl-1H-imidazol-2-yl)butane-1,4-dione (49t) 

According to the general procedure, electrolysis of the reaction mixture of 

2-phenyl-1-(1-phenyl-1H-imidazol-2-yl)ethan-1-one 48b (26.2 mg, 0.10 mmol) and 

trimethyl((1-(naphthalen-2-yl)vinyl)oxy)silane 8g (145.4 mg, 6.0 equiv) afforded 30.9 mg (72% yield) 

of 49t as a yellow solid after electricity consumption of 2.2 F/mol. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee = 96% 

(HPLC: IG, 254 nm, n-hexane/isopropanol = 30:70, flow rate 1 mL/min, 40 C, tr (major) = 25.8 min, 

tr (minor) = 15.8 min). []D
22 = +218.4 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CD2Cl2) δ 8.51 (s, 1H), 8.00 (dd, J1 = 8.4 Hz, J2 = 1.5 Hz, 1H), 7.96 (d, J = 7.8 

Hz, 1H), 7.93-7.86 (m, 2H), 7.65-7.48 (m, 4H), 7.46-7.33 (m, 5H), 7.32-7.22 (m, 4H), 7.21-7.18 (m, 

1H), 5.75 (dd, J1 = 10.8 Hz, J2 = 3.3 Hz, 1H), 4.17 (dd, J1 = 18.0 Hz, J2 = 11.1 Hz, 1H), 3.51 (dd, J1 = 

18.0 Hz, J2 = 3.6 Hz, 1H). 

13C NMR (75 MHz, CD2Cl2) δ 198.1, 189.9, 143.2, 139.03, 139.00, 136.0, 134.2, 132.9, 130.2, 130.1, 

129.9, 129.20, 129.18, 129.1, 128.9, 128.8, 128.7, 128.1, 127.62, 127.56, 127.2, 126.1, 124.1, 49.0, 

43.5. 

IR (film): ν (cm1) 3058, 2908, 1675, 1628, 1594, 1495, 1447, 1401, 1363, 1309, 1265, 1217, 1178, 

1124, 1076, 1025, 940, 905, 860, 822, 734, 694, 587, 529, 475. 

HRMS (ESI, m/z) calcd for C29H22N2O2Na [M+Na]+: 453.1573, found: 453.1570. 
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(S)-4-(Benzofuran-2-yl)-2-phenyl-1-(1-phenyl-1H-imidazol-2-yl)butane-1,4-dione (49u) 

According to the general procedure, electrolysis of the reaction mixture of 

2-phenyl-1-(1-phenyl-1H-imidazol-2-yl)ethan-1-one 48b (26.2 mg, 0.10 mmol) and 

((1-(benzofuran-2-yl)vinyl)oxy)trimethylsilane 8h (139.4 mg, 6.0 equiv) afforded 32.5 mg (77% yield) 

of 49u as a yellow oil after electricity consumption of 2.4 F/mol. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee = 99% 

(HPLC: IG, 254 nm, n-hexane/isopropanol = 30:70, flow rate 1 mL/min, 40 C, tr (major) = 26.7 min, 

tr (minor) = 17.6 min). []D
22 = +169.4 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CDCl3) δ 7.59 (d, J = 7.8 Hz, 1H), 7.48-7.36 (m, 5H), 7.36-7.30 (m, 3H), 

7.29-7.12 (m, 7H), 7.07-7.04 (m, 1H), 5.69 (dd, J1 = 10.8 Hz, J2 = 4.2 Hz, 1H), 3.95 (dd, J1 = 18.0 Hz, 

J2 = 10.8 Hz, 1H), 3.33 (dd, J1 = 18.0 Hz, J2 = 4.2 Hz, 1H). 

13C NMR (75 MHz, CDCl3) δ 189.3, 188.9, 155.6, 152.2, 142.6, 138.4, 138.1, 130.0, 128.9, 128.8, 

128.7, 128.6, 128.1, 127.3, 127.00, 126.97, 125.7, 123.8, 123.2, 112.7, 112.4, 48.0, 43.0. 

IR (film): ν (cm1) 3060, 2913, 1676, 1594, 1555, 1495, 1448, 1400, 1369, 1337, 1308, 1265, 1192,  

1140, 1103, 1075, 1018, 935, 909, 874, 833, 735, 694, 537, 499. 

HRMS (ESI, m/z) calcd for C27H20N2O3Na [M+Na]+: 443.1366, found: 443.1362. 

 

 

(S,E)-2,6-Diphenyl-1-(1-phenyl-1H-imidazol-2-yl)hex-5-ene-1,4-dione (49v) 

According to the general procedure, electrolysis of the reaction mixture of 

2-phenyl-1-(1-phenyl-1H-imidazol-2-yl)ethan-1-one 48b (26.2 mg, 0.10 mmol) and 

(E)-trimethyl((4-phenylbuta-1,3-dien-2-yl)oxy)silane 8i (131.0 mg, 6.0 equiv) afforded 31.2 mg (77% 

yield) of 49v as a yellow oil after electricity consumption of 2.4 F/mol. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee = 96% 

(HPLC: IG, 254 nm, n-hexane/isopropanol = 30:70, flow rate 1 mL/min, 40 C, tr (major) = 19.4 min, 
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tr (minor) = 14.0 min). []D
22 = +271.8 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CD2Cl2) δ 7.58-7.52 (m, 3H), 7.45-7.41 (m, 5H), 7.41-7.37 (m, 3H), 7.35-7.32 (m, 

2H), 7.27-7.20 (m, 4H), 7.18 (d, J = 1.1 Hz, 1H), 6.72 (d, J = 16.3 Hz, 1H), 5.59 (dd, J1 = 10.9 Hz, J2 

= 3.9 Hz, 1H), 3.72 (dd, J1 = 17.9 Hz, J2 = 10.9 Hz, 1H), 3.08 (dd, J1 = 17.9 Hz, J2 = 4.0 Hz, 1H). 

13C NMR (125 MHz, CDCl3) δ 198.1, 189.8, 143.1, 143.0, 138.9, 134.9, 130.8, 130.0, 129.24, 129.15, 

129.1, 128.9, 128.8, 128.6, 127.5, 126.2, 126.0, 48.7, 44.9. (Missing two 13C signal because the 

resolution of NMR spectrometer is not enough) 

IR (film): ν (cm1) 3058, 2904, 1681, 1606, 1495, 1448, 1401, 1363, 1308, 1260, 1174, 1103, 1064,  

1026, 976, 939, 909, 843, 735, 693, 585, 529. 

HRMS (ESI, m/z) calcd for C27H22N2O2Na [M+Na]+: 429.1573, found: 429.1570. 

 

 

(S)-4-(Cyclohex-1-en-1-yl)-2-phenyl-1-(1-phenyl-1H-imidazol-2-yl)butane-1,4-dione (49w) 

According to the general procedure, electrolysis of the reaction mixture of 

2-phenyl-1-(1-phenyl-1H-imidazol-2-yl)ethan-1-one 48b (26.2 mg, 0.10 mmol) and 

((1-(cyclohex-1-en-1-yl)vinyl)oxy)trimethylsilane 8j (117.8 mg, 6.0 equiv) afforded 31.6 mg (82% 

yield) of 49w as a yellow oil after electricity consumption of 2.0 F/mol. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee = 95% 

(HPLC: IG, 254 nm, n-hexane/isopropanol = 50:50, flow rate 1 mL/min, 40 C, tr (major) = 14.5 min, 

tr (minor) = 10.9 min). []D
22 = +232.6 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CD2Cl2) δ 7.46-7.37 (m, 5H), 7.35-7.27 (m, 2H), 7.26-7.18 (m, 4H), 7.17-7.14 (m, 

1H), 6.96-6.90 (m, 1H), 5.52 (dd, J1 = 11.1 Hz, J2 = 3.6 Hz, 1H), 3.68 (dd, J1 = 17.7 Hz, J2 = 11.1 Hz, 

1H), 3.04 (dd, J1 = 17.7 Hz, J2 = 3.9 Hz, 1H), 2.28-2.12 (m, 4H), 1.68-1.53 (m, 4H). 

13C NMR (75 MHz, CD2Cl2) δ 199.0, 190.2, 143.2, 140.7, 139.2, 139.1, 139.0, 130.0, 129.2, 129.04, 

129.02, 128.8, 127.43, 127.38, 126.1, 48.8, 42.2, 26.4, 23.4, 22.3, 21.9. 

IR (film): ν (cm1) 3058, 2930, 2861, 1682, 1660, 1596, 1495, 1447, 1401, 1309, 1266, 1240, 1188, 

1146, 1076, 1023, 992, 942, 907, 843, 760, 734, 695, 586, 525. 

HRMS (ESI, m/z) calcd for C25H24N2O2Na [M+Na]+: 407.1730, found: 407.1727. 
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(S,E)-2-Phenyl-1-(1-phenyl-1H-imidazol-2-yl)-6-(2,6,6-trimethylcyclohex-1-en-1-yl)hex-5-ene-1,4

-dione (49x) 

According to the general procedure, electrolysis of the reaction mixture of 

2-phenyl-1-(1-phenyl-1H-imidazol-2-yl)ethan-1-one 48b (26.2 mg, 0.10 mmol) and 

(E)-trimethyl((4-(2,6,6-trimethylcyclohex-1-en-1-yl)buta-1,3-dien-2-yl)oxy)silane 8k (158.7 mg, 6.0 

equiv) afforded 37.0 mg (82% yield) of 49x as a yellow oil after electricity consumption of 2.2 F/mol. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee = 97% 

(HPLC: IG, 254 nm, n-hexane/isopropanol = 50:50, flow rate 1 mL/min, 40 C, tr (major) = 8.9 min, tr 

(minor) = 7.4 min). []D
22 = +167.6 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CD2Cl2) δ 7.48-7.38 (m, 5H), 7.36-7.19 (m, 7H), 7.18-7.15 (m, 1H), 6.10 (d, J = 

16.5 Hz, 1H), 5.55 (dd, J1 = 11.1 Hz, J2 = 3.9 Hz, 1H), 3.61 (dd, J1 = 18.0 Hz, J2 = 10.8 Hz, 1H), 3.01 

(dd, J1 = 17.7 Hz, J2 = 4.2 Hz, 1H), 2.07 (t, J = 6.0 Hz, 2H), 1.74 (s, 3H), 1.68-1.55 (m, 2H), 1.52-1.44 

(m, 2H), 1.05 (s, 6H). 

13C NMR (75 MHz, CD2Cl2) δ 198.2, 189.9, 143.2, 142.8, 139.1, 139.0, 136.7, 136.3, 130.5, 130.0,  

129.2, 129.07, 129.03, 128.8, 127.5, 126.1, 48.8, 44.8, 40.2, 34.4, 33.9, 28.9, 21.9, 19.3. (Missing one 

13C signal because the resolution of NMR spectrometer is not enough.) 

IR (film): ν (cm1) 2929, 2863, 1682, 1593, 1496, 1449, 1402, 1363, 1309, 1260, 1174, 1148, 1100,  

1062, 1027, 977, 940, 909, 843, 761, 734, 694, 532. 

HRMS (ESI, m/z) calcd for C30H32N2O2Na [M+Na]+: 475.2356, found: 475.2351. 

 

 

(S)-2-((8R,9S,13S,14S)-13-Methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta 

[a]phenanthren-3-yl)-4-phenyl-1-(1-phenyl-1H-imidazol-2-yl)butane-1,4-dione (49y) 

According to the general procedure, electrolysis of the reaction mixture of estrone derived acyl 
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imidazole 48o (43.9 mg, 0.10 mmol) and trimethyl((1-phenylvinyl)oxy)silane 8a (115.4 mg, 6.0 equiv) 

afforded 26.7 mg (48% yield) of 49y as a white solid after electricity consumption of 2.4 F/mol. 

Diastereoselectivity was determined by 1H NMR analysis of the crude mixture as > 20:1. []D
22 = 

+213.0 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CD2Cl2) δ 7.96-7.91 (m, 2H), 7.59-7.53 (m, 1H), 7.48-7.40 (m, 5H), 7.29-7.16 (m, 

6H), 7.14 (br s, 1H), 5.58 (dd, J1 = 11.0 Hz, J2 = 3.5 Hz, 1H), 3.98 (dd, J1 = 18.2 Hz, J2 = 11.0 Hz, 1H), 

3.31 (dd, J1 = 18.1 Hz, J2 = 3.6 Hz, 1H), 2.95-2.85 (m, 2H), 2.46 (dd, J1 = 19.9 Hz, J2 = 9.4 Hz, 1H), 

2.43-2.36 (m, 1H), 2.32-2.24 (m, 1H), 2.14-1.98 (m, 3H), 1.93-1.86 (m, 1H), 1.65-1.36 (m, 6H), 0.88 

(s, 3H). 

13C NMR (125 MHz, CD2Cl2) δ 220.6, 198.2, 189.9, 143.1, 139.4, 138.9, 137.6, 136.8, 136.1, 133.5 

130.0, 129.3, 129.1, 128.9, 128.8, 128.3, 127.5, 126.3, 126.2, 126.1, 50.8, 48.3, 48.2, 44.7, 43.6, 38.4, 

36.1, 32.0, 29.8, 26.8, 26.1, 21.8, 14.0. 

IR (film): ν (cm1) 3059, 2925, 2861, 1734, 1680, 1595, 1496, 1447, 1402, 1349, 1308, 1257, 1209, 

1148, 1080, 1044, 1008, 941, 906, 821, 764, 732, 692, 560, 514. 

HRMS (ESI, m/z) calcd for C37H36N2O3Na [M+Na]+: 579.2618, found: 579.2612. 

 

 

Methyl (S)-2-methyl-4-oxo-4-phenyl-2-(1-phenyl-1H-imidazole-2-carbonyl)butanoate (51a) 

According to the general procedure, electrolysis of the reaction mixture of methyl 

2-methyl-3-oxo-3-(1-phenyl-1H-imidazol-2-yl)propanoate 50a (25.8 mg, 0.10 mmol) and 

trimethyl((1-phenylvinyl)oxy)silane 8a (115.4 mg, 6.0 equiv) afforded 31.2 mg (83% yield) of 51a as 

a yellow solid after electricity consumption of 2.2 F/mol. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IC column, ee = 96% 

(HPLC: IC, 254 nm, n-hexane/isopropanol = 70:30, flow rate 1 mL/min, 40 C, tr (major) = 7.9 min, tr 

(minor) = 10.2 min). []D
22 = –5.0 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CD2Cl2) δ 8.00-7.94 (m, 2H), 7.62-7.41 (m, 8H), 7.14-7.11 (m, 2H), 4.56 (d, J = 

18.3 Hz, 1H), 3.93 (d, J = 18.3 Hz, 1H), 3.67 (s, 3H), 1.53 (s, 3H). 

13C NMR (75 MHz, CD2Cl2) δ 198.2, 186.6, 173.5, 141.8, 139.0, 137.3, 133.7, 129.3, 129.0, 128.8, 

128.5, 126.6, 126.0, 55.5, 52.8, 46.3, 21.0. (Missing one 13C signal because the resolution of NMR 
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spectrometer is not enough.) 

IR (film): ν (cm1) 3060, 2946, 2917, 1737, 1686, 1591, 1448, 1405, 1351, 1228, 1180, 1095, 1029, 

955, 897, 855, 753, 689, 580, 539. 

HRMS (ESI, m/z) calcd for C22H20N2O4Na [M+Na]+: 399.1315, found: 399.1311. 

 

 

Allyl (S)-2-methyl-4-oxo-4-phenyl-2-(1-phenyl-1H-imidazole-2-carbonyl)butanoate (51b) 

According to the general procedure, electrolysis of the reaction mixture of allyl 2-methyl-3-oxo-3- 

(1-phenyl-1H-imidazol-2-yl)propanoate 50b (28.4 mg, 0.10 mmol) and trimethyl((1-phenylvinyl)oxy) 

silane 8a (115.4 mg, 6.0 equiv) afforded 30.2 mg (75% yield) of 51b as a yellow oil after electricity 

consumption of 2.4 F/mol. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IC column, ee = 95% 

(HPLC: IC, 254 nm, n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 40 C, tr (major) = 9.0 min, tr 

(minor) = 13.1 min). []D
22 = –10.4 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CD2Cl2) δ 8.00-7.94 (m, 2H), 7.62-7.40 (m, 8H), 7.14-7.11 (m, 2H), 5.90-5.74 (m, 

1H), 5.26-5.12 (m, 2H), 4.64-4.55 (m, 3H), 3.94 (d, J = 18.0 Hz, 1H), 1.55 (s, 3H). 

13C NMR (75 MHz, CD2Cl2) δ 198.2, 186.5, 172.7, 141.8, 139.0, 137.3, 133.7, 132.5, 129.30, 129.27, 

129.0, 128.8, 128.5, 126.6, 126.1, 118.0, 66.2, 55.6, 46.3, 21.1. 

IR (film): ν (cm1) 3063, 2928, 1736, 1688, 1593, 1497, 1449, 1401, 1350, 1302, 1225, 1181, 1101,  

960, 901, 852, 757, 690, 580, 535. 

HRMS (ESI, m/z) calcd for C24H22N2O4Na [M+Na]+: 425.1472, found: 425.1469. 

 

 

Methyl (S)-2-(4-bromobenzyl)-2-(1-methyl-1H-imidazole-2-carbonyl)-4-oxo-4-phenylbutanoate 

(51c) 

According to the general procedure, electrolysis of the reaction mixture of methyl 

2-(4-bromobenzyl)-3-(1-methyl-1H-imidazol-2-yl)-3-oxopropanoate 50c (36.8 mg, 0.10 mmol) and 
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trimethyl((1-phenylvinyl)oxy)silane 8a (115.4 mg, 6.0 equiv), catalyzed by Δ-RhS (4.3 mg, 5 mol%), 

afforded 39.6 mg (84% yield) of 51c as a white solid after electricity consumption of 2.2 F/mol. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IC column, ee = 93% 

(HPLC: IC, 254 nm, n-hexane/isopropanol = 70:30, flow rate 1 mL/min, 40 C, tr (major) = 12.6 min, 

tr (minor) = 10.4 min). []D
22 = –165.8 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CD2Cl2) δ 7.86-7.80 (m, 2H), 7.60-7.52 (m, 1H), 7.46-7.38 (m, 2H), 7.36-7.30 (m, 

2H), 7.02-6.95 (m, 2H), 6.86-6.80 (m, 2H), 4.36 (d, J = 18.6 Hz, 1H), 3.95 (s, 3H), 3.69 (d, J = 18.6 

Hz, 1H), 3.63 (s, 3H), 3.49 (d, J = 14.1 Hz, 1H), 3.40 (d, J = 13.8 Hz, 1H). 

13C NMR (75 MHz, CD2Cl2) δ 198.3, 186.9, 171.5, 142.0, 137.0, 136.3, 133.8, 132.4, 131.7, 128.9, 

128.8, 128.4, 126.8, 121.2, 60.2, 52.7, 42.4, 38.0, 36.2. 

IR (film): ν (cm1) 3058, 2952, 2923, 1736, 1683, 1483, 1443, 1399, 1357, 1216, 1180, 1076, 1044, 

1006, 941, 906, 848, 739, 690, 542, 509. 

HRMS (ESI, m/z) calcd for C23H21BrN2O4Na [M+Na]+: 491.0577, found: 491.0573. 

 

 

Methyl (R)-4-(4-chlorophenyl)-2-(1-methyl-1H-imidazole-2-carbonyl)-4-oxo-2-(2-oxo-2- 

phenylethyl)butanoate (51d) 

According to the general procedure, electrolysis of the reaction mixture of 

4-(4-chlorophenyl)-2-(1-methyl-1H-imidazole-2-carbonyl)-4-oxobutanoate 50d (33.5 mg, 0.10 mmol) 

and trimethyl((1-phenylvinyl)oxy)silane 8a (115.4 mg, 6.0 equiv), catalyzed by Δ-RhS (4.3 mg, 5 

mol%), afforded 41.2 mg (91% yield) of 51d as a yellow solid after electricity consumption of 2.4 

F/mol. The reaction catalyzed by Δ-RhS(TMS) (4.5 mg, 5 mol%) formed 51d in 46% with 87% ee. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IC column, ee = 96% 

(HPLC: IC, 254 nm, n-hexane/isopropanol = 60:40, flow rate 1 mL/min, 40 C, tr (major) = 14.2 min, 

tr (minor) = 17.1 min). []D
22 = +4.0 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CD2Cl2) δ 7.96-7.85 (m, 4H), 7.60-7.42 (m, 1H), 7.49-7.39 (m, 4H), 7.01-6.97 (m, 

2H), 4.47 (d, J = 18.3 Hz, 1H), 4.42 (d, J = 17.7 Hz, 1H), 4.11 (d, J = 18.0 Hz, 1H), 4.10 (d, J = 18.0 

Hz, 1H), 3.99 (s, 3H), 3.64 (s, 3H). 
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13C NMR (75 MHz, CD2Cl2) δ 198.2, 197.2, 187.3, 171.4, 142.0, 139.9, 137.2, 135.7, 133.7, 130.0, 

129.2, 128.9, 128.6, 128.5, 126.8, 59.1, 52.9, 43.3, 43.2, 36.5. 

IR (film): ν (cm1) 2920, 2853, 1739, 1684, 1591, 1456, 1378, 1283, 1215, 1091, 1001, 908, 815, 757, 

716, 529. 

HRMS (ESI, m/z) calcd for C24H21ClN2O5Na [M+Na]+: 475.1031, found: 475.1025. 

 

 

Methyl (R)-4-(4-bromophenyl)-2-(1-methyl-1H-imidazole-2-carbonyl)-4-oxo-2-(2-oxo-2- 

phenylethyl)butanoate (51e) 

According to the general procedure, electrolysis of the reaction mixture of methyl 

4-(4-bromophenyl)-2-(1-methyl-1H-imidazole-2-carbonyl)-4-oxobutanoate 50e (37.9 mg, 0.10 mmol) 

and trimethyl((1-phenylvinyl)oxy)silane 8a (115.4 mg, 6.0 equiv), catalyzed by Δ-RhS (4.3 mg, 5 

mol%), afforded 34.9 mg (70% yield) of 51e as a white solid after electricity consumption of 2.4 

F/mol. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IC column, ee = 93% 

(HPLC: IC, 254 nm, n-hexane/isopropanol = 50:50, flow rate 1 mL/min, 40 C, tr (major) = 12.3 min, 

tr (minor) = 14.6 min). []D
22 = +3.0 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CD2Cl2) δ 7.95-7.89 (m, 2H), 7.83-7.77 (m, 2H), 7.62-7.53 (m, 3H), 7.48-7.40 (m, 

2H), 7.01-6.97 (m, 2H), 4.46 (d, J = 18.0 Hz, 1H), 4.41 (d, J = 17.7 Hz, 1H), 4.11 (d, J = 18.0 Hz, 1H), 

4.09 (d, J = 18.0 Hz, 1H), 3.99 (s, 3H), 3.64 (s, 3H). 

13C NMR (75 MHz, CD2Cl2) δ 198.2, 197.5, 187.3, 171.4, 142.0, 137.2, 136.1, 133.7, 132.2, 130.1, 

128.9, 128.6, 128.5, 126.8, 59.1, 52.9, 43.3, 43.2, 36.5. (Missing one 13C signal because the resolution 

of NMR spectrometer is not enough.) 

IR (film): ν (cm1) 2953, 2921, 2851, 1739, 1679, 1584, 1443, 1397, 1352, 1214, 1182, 1072, 998, 967, 

942, 907, 813, 757, 734, 690, 599, 561, 530. 

HRMS (ESI, m/z) calcd for C24H21BrN2O5Na [M+Na]+: 519.0526, found: 519.0521. 
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Methyl (R)-4-(3-methoxyphenyl)-2-(1-methyl-1H-imidazole-2-carbonyl)-4-oxo-2-(2-oxo-2- 

phenylethyl)butanoate (51f) 

According to the general procedure, electrolysis of the reaction mixture of methyl 

4-(3-methoxyphenyl)-2-(1-methyl-1H-imidazole-2-carbonyl)-4-oxobutanoate 50f (33.0 mg, 0.10 

mmol) and trimethyl((1-phenylvinyl)oxy)silane 8a (115.4 mg, 6.0 equiv), catalyzed by Δ-RhS (4.3 mg, 

5 mol%), afforded 36.5 mg (81% yield) of 51f as a white solid after electricity consumption of 2.2 

F/mol. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IC column, ee = 95% 

(HPLC: IC, 254 nm, n-hexane/isopropanol = 50:50, flow rate 1 mL/min, 40 C, tr (major) = 15.1 min, 

tr (minor) = 13.3 min). []D
22 = –55.0 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CD2Cl2) δ 7.96-7.89 (m, 2H), 7.60-7.50 (m, 2H), 7.49-7.40 (m, 3H), 7.35 (t, J = 

8.0 Hz, 1H), 7.09 (ddd, J1 = 8.1 Hz, J2 = 2.4 Hz, J3 = 0.9 Hz, 8.1 Hz, 1H), 7.01-6.97 (m, 2H), 4.45 (d, 

J = 18.0 Hz, 1H), 4.44 (d, J = 18.0 Hz, 1H), 4.12 (d, J = 17.7 Hz, 1H), 4.11 (d, J = 18.0 Hz, 1H), 4.00 

(s, 3H), 3.82 (s, 3H), 3.65 (s, 3H). 

13C NMR (75 MHz, CD2Cl2) δ 198.3, 198.1, 187.4, 171.5, 160.3, 142.1, 138.6, 137.2, 133.6, 129.9, 

128.9, 128.6, 128.5, 126.8, 121.1, 119.9, 112.8, 59.1, 55.8, 52.8, 43.5, 43.3, 36.5. 

IR (film): ν (cm1) 3063, 3003, 2951, 2839, 1739, 1678, 1589, 1438, 1399, 1350, 1258, 1210, 1084, 

1043, 1003, 969, 943, 907, 782, 734, 689, 594, 563, 531. 

HRMS (ESI, m/z) calcd for C25H24N2O6Na [M+Na]+: 471.1527, found: 471.1523. 

 

 

Methyl (R)-2-(1-methyl-1H-imidazole-2-carbonyl)-4-oxo-2-(2-oxo-2-(2-(trifluoromethyl) 

phenyl)ethyl)-4-phenylbutanoate (51g) 

According to the general procedure, electrolysis of the reaction mixture of methyl 

2-(1-methyl-1H-imidazole-2-carbonyl)-4-oxo-4-(2-(trifluoromethyl)phenyl)butanoate 50g (36.8 mg, 
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0.10 mmol) and trimethyl((1-phenylvinyl)oxy)silane 8a (115.4 mg, 6.0 equiv), catalyzed by Δ-RhS 

(4.3 mg, 5 mol%), afforded 38.4 mg (79% yield) of 51g as a white solid after electricity consumption 

of 2.2 F/mol. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IC column, ee = 93% 

(HPLC: IC, 254 nm, n-hexane/isopropanol = 70:30, flow rate 1 mL/min, 40 C, tr (major) = 12.6 min, 

tr (minor) = 9.7 min). []D
22 = –12.2 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CD2Cl2) δ 7.98-7.92 (m, 2H), 7.70-7.53 (m, 5H), 7.52-7.43 (m, 2H), 7.06-7.03 (m, 

1H), 7.03-7.01 (m, 1H), 4.444 (d, J = 18.9 Hz, 1H), 4.436 (d, J = 17.7 Hz, 1H), 4.18 (d, J = 18.0 Hz, 

1H), 4.06 (d, J = 19.2 Hz, 1H), 3.99 (s, 3H), 3.68 (s, 3H). 

13C NMR (75 MHz, CD2Cl2) δ 202.0, 198.2, 187.0, 171.2, 142.0, 139.8 (q, J = 2.1 Hz), 137.2, 133.7, 

132.3, 130.7, 129.0, 128.7, 128.5, 128.1, 127.1 (q, J = 31.5 Hz), 127.0 (q, J = 5.1 Hz), 126.9, 124.0 (q, 

J = 272.0 Hz), 58.9, 52.9, 47.9, 43.0, 36.5. 

IR (film): ν (cm1) 2954, 2923, 1740, 1679, 1589, 1445, 1399, 1351, 1312, 1275, 1215, 1168, 1129, 

1066, 1038, 966, 941, 763, 692, 649, 598, 563, 409. 

HRMS (ESI, m/z) calcd for C25H21F3N2O5Na [M+Na]+: 509.1295, found: 509.1292. 

 

 

Methyl (S)-2-(2-methoxyethyl)-2-(1-methyl-1H-imidazole-2-carbonyl)-4-oxo-4- phenylbutanoate 

(51h) 

According to the general procedure, electrolysis of the reaction mixture of methyl 4-methoxy-2- 

(1-methyl-1H-imidazole-2-carbonyl)butanoate 50h (24.0 mg, 0.10 mmol) and trimethyl((1- 

phenylvinyl)oxy)silane 8a (115.4 mg, 6.0 equiv) afforded 26.8 mg (75% yield) of 51h as a colorless 

oil after electricity consumption of 2.2 F/mol. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak OD-H column, ee = 96% 

(HPLC: OD-H, 254 nm, n-hexane/isopropanol = 85:15, flow rate 1 mL/min, 40 C, tr (major) = 9.4 

min, tr (minor) = 8.8 min). []D
22 = –78.8 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CD2Cl2) δ 7.93-7.86 (m, 2H), 7.58-7.50 (m, 1H), 7.47-7.38 (m, 2H), 6.99-6.96 (m, 

1H), 6.96-6.94 (m, 1H), 4.43 (d, J = 18.0 Hz, 1H), 4.08 (d, J = 18.0 Hz, 1H), 3.96 (s, 3H), 3.63 (s, 3H), 

3.44 (t, J = 5.7 Hz, 2H), 3.06 (s, 3H), 2.37 (t, J = 5.7 Hz, 2H). 
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13C NMR (75 MHz, CD2Cl2) δ 198.1, 187.8, 172.4, 142.3, 137.3, 133.4, 128.8, 128.5, 128.4, 126.4, 

69.1, 58.4, 57.8, 52.7, 43.9, 36.1, 33.3. 

IR (film): ν (cm1) 2925, 2872, 2811, 1736, 1683, 1591, 1443, 1399, 1356, 1290, 1217, 1188, 1111, 

1001, 972, 907, 820, 757, 691, 571. 

HRMS (ESI, m/z) calcd for C19H22N2O5Na [M+Na]+: 381.1421, found: 381.1419. 

 

 

Methyl (S)-5-hydroxy-2-(1-methyl-1H-imidazole-2-carbonyl)-2-(2-oxo-2-phenylethyl) pentanoate 

(51i) 

According to the general procedure, electrolysis of the reaction mixture of methyl 5-hydroxy-2- 

(1-methyl-1H-imidazole-2-carbonyl)pentanoate 50i (24.0 mg, 0.10 mmol) and trimethyl((1- 

phenylvinyl)oxy)silane 8a (115.4 mg, 6.0 equiv), catalyzed by Δ-RhS (4.3 mg, 5 mol%), afforded 24.7 

mg (69% yield) of 51i as a colorless oil after electricity consumption of 2.2 F/mol. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak OD-H column, ee = 96% 

(HPLC: OD-H, 254 nm, n-hexane/isopropanol = 70:30, flow rate 1 mL/min, 40 C, tr (major) = 6.3 

min, tr (minor) = 7.3 min). []D
22 = –22.8 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CD2Cl2) δ 7.90-7.85 (m, 2H), 7.58-7.53 (m, 1H), 7.46-7.40 (m, 2H), 6.99-6.98 (m, 

1H), 6.97-6.95 (m, 1H), 4.40 (d, J = 18.0 Hz, 1H), 3.94 (d, J = 18.0 Hz, 1H), 3.93 (s, 3H), 3.63 (s, 3H), 

3.56 (t, J = 6.3 Hz, 2H), 2.26-2.07 (m, 2H), 1.61 (br s, 1H), 1.58-1.42 (m, 2H). 

13C NMR (125 MHz, CD2Cl2) δ 198.1, 187.9, 172.4, 142.1, 137.1, 133.6, 128.9, 128.6, 128.3, 126.5, 

62.9, 58.9, 52.6, 43.1, 36.2, 29.5, 28.1. 

IR (film): ν (cm1) 3523, 2926, 2865, 1733, 1682, 1592, 1446, 1398, 1356, 1220, 1183, 1091, 1053, 

1005, 942, 905, 757, 691, 565. 

HRMS (ESI, m/z) calcd for C19H22N2O5Na [M+Na]+: 381.1421, found: 381.1419. 

 

 

Methyl (S)-2-(1-methyl-1H-imidazole-2-carbonyl)-2-(2-oxo-2-phenylethyl)hept-6-enoate (51j) 

According to the general procedure, electrolysis of the reaction mixture of methyl 
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2-(1-methyl-1H-imidazole-2-carbonyl)hept-6-enoate 50j (25.0 mg, 0.10 mmol) and trimethyl((1- 

phenylvinyl)oxy)silane 8a (115.4 mg, 6.0 equiv), catalyzed by Δ-RhS (4.3 mg, 5 mol%), afforded 20.3 

mg (55% yield) of 51j as a colorless oil after electricity consumption of 2.4 F/mol. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IC column, ee = 94% 

(HPLC: IC, 254 nm, n-hexane/isopropanol = 85:15, flow rate 1 mL/min, 40 C, tr (major) = 11.9 min, 

tr (minor) = 11.2 min). []D
22 = –23.4 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CD2Cl2) δ 7.91-7.85 (m, 2H), 7.59-7.51 (m, 1H), 7.46-7.39 (m, 2H), 6.99-6.97 (m, 

1H), 6.96-6.94 (m, 1H), 5.82-5.65 (m, 1H), 5.01-4.87 (m, 2H), 4.40 (d, J = 18.0 Hz, 1H), 3.945 (d, J = 

18.0 Hz, 1H), 3.941 (s, 3H), 3.63 (s, 3H), 2.21-1.98 (m, 4H), 1.46-1.18 (m, 2H). 

13C NMR (75 MHz, CD2Cl2) δ 198.2, 188.0, 172.4, 142.3, 138.7, 137.3, 135.6, 128.9, 128.6, 128.4, 

126.5, 114.9, 59.2, 52.6, 43.1, 36.2, 34.2, 32.6, 24.2. 

IR (film): ν (cm1) 3069, 2950, 2925, 2856, 1736, 1683, 1591, 1444, 1400, 1355, 1291, 1220, 1085, 

996, 907, 758, 691, 565, 400. 

HRMS (ESI, m/z) calcd for C21H24N2O4Na [M+Na]+: 391.1628, found: 391.1622. 

 

 

Methyl (S)-2-(1-methyl-1H-imidazole-2-carbonyl)-2-(2-oxo-2-phenylethyl)hept-6-ynoate (51k) 

According to the general procedure, electrolysis of the reaction mixture of methyl 

2-(1-methyl-1H-imidazole-2-carbonyl)hept-6-ynoate 50k (24.8 mg, 0.10 mmol) and trimethyl((1- 

phenylvinyl)oxy)silane 8a (115.4 mg, 6.0 equiv) afforded 25.1 mg (69% yield) of 51k as a colorless 

oil after electricity consumption of 2.2 F/mol. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IG column, ee = 90% 

(HPLC: IG, 254 nm, n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 40 C, tr (major) = 34.9 min, 

tr (minor) = 33.1 min). []D
22 = –37.8 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CD2Cl2) δ 7.92-7.87 (m, 2H), 7.59-7.52 (m, 1H), 7.47-7.39 (m, 2H), 7.00-6.97 (m, 

1H), 6.97-6.94 (m, 1H), 4.43 (d, J = 18.0 Hz, 1H), 3.95 (s, 3H), 3.93 (d, J = 18.0 Hz, 1H), 3.64 (s, 3H), 

2.31-2.07 (m, 4H), 1.92 (t, J = 5.4 Hz, 1H), 1.60-1.35 (m, 2H). 

13C NMR (75 MHz, CD2Cl2) δ 198.1, 187.7, 172.3, 142.2, 137.3, 133.6, 128.9, 128.6, 128.4, 126.5, 

84.1, 68.7, 59.0, 52.7, 43.2, 36.2, 32.4, 24.2, 19.0. 



Chapter 5. Experimental Part 

423 
 

IR (film): ν (cm1) 3289, 2950, 1735, 1683, 1591, 1445, 1399, 1355, 1293, 1218, 1179, 1085, 998,  

937, 905, 758, 690, 640, 566, 523, 481. 

HRMS (ESI, m/z) calcd for C21H22N2O4Na [M+Na]+: 389.1472, found: 389.1469. 

 

 

Methyl (S)-6-cyano-2-(1-methyl-1H-imidazole-2-carbonyl)-2-(2-oxo-2-phenylethyl)hexanoate 

(51l) 

According to the general procedure, electrolysis of the reaction mixture of methyl 6-cyano-2- 

(1-methyl-1H-imidazole-2-carbonyl)hexanoate 50l (26.3 mg, 0.10 mmol) and trimethyl((1- 

phenylvinyl)oxy)silane 8a (115.4 mg, 6.0 equiv), catalyzed by Δ-RhS (4.3 mg, 5 mol%), afforded 21.0 

mg (55% yield) of 51l as a colorless oil after electricity consumption of 2.2 F/mol. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak OD-H column, ee = 91% 

(HPLC: OD-H, 254 nm, n-hexane/isopropanol = 80:20, flow rate 1 mL/min, 40 C, tr (major) = 14.8 

min, tr (minor) = 19.6 min). []D
22 = –59.2 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CD2Cl2) δ 7.92-7.85 (m, 2H), 7.61-7.52 (m, 1H), 7.47-7.39 (m, 2H), 7.01-6.98 (m, 

1H), 6.98-6.95 (m, 1H), 4.42 (d, J = 18.0 Hz, 1H), 3.93 (s, 3H), 3.92 (d, J = 17.7 Hz, 1H), 3.64 (s, 3H), 

2.31 (t, J = 7.4 Hz, 2H), 2.25-2.03 (m, 2H), 1.70-1.56 (m, 2H), 1.51-1.25 (m, 2H). 

13C NMR (75 MHz, CD2Cl2) δ 198.1, 187.7, 172.3, 142.1, 137.2, 133.7, 128.9, 128.7, 128.4, 126.7, 

119.9, 59.1, 52.7, 43.1, 36.2, 32.3, 26.0, 24.0, 17.2. 

IR (film): ν (cm1) 2950, 2870, 2246, 1736, 1683, 1591, 1450, 1400, 1356, 1286, 1220, 1174, 1091, 

1044, 1001, 944, 906, 852, 759, 692, 567. 

HRMS (ESI, m/z) calcd for C21H23N3O4Na [M+Na]+: 404.1581, found: 404.1578. 

 

 

7-((3aR,5R,6S,6aR)-5-((S)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3

]dioxol-6-yl) 1-methyl (S)-2-(1-methyl-1H-imidazole-2-carbonyl)-2-(2-oxo-2-phenylethyl) 
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heptanedioate (51m) 

According to the general procedure, electrolysis of the reaction mixture of glucofuranose derived acyl 

imidazole 50m (52.5 mg, 0.10 mmol) and trimethyl((1-phenylvinyl)oxy)silane 8a (115.4 mg, 6.0 

equiv), catalyzed by Δ-RhS (4.3 mg, 5 mol%), afforded 38.7 mg (60% yield) of 51m as a yellow solid 

after electricity consumption of 2.0 F/mol. 

Diastereoselectivity was determined by HPLC analysis using a Chiralpak IC column, de = 94% 

(HPLC: IC, 254 nm, n-hexane/isopropanol = 85:15, flow rate 1 mL/min, 40 C, tr (major) = 39.2 min, 

tr (minor) = 34.7 min). []D
22 = –32.8 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CD2Cl2) δ 7.90-7.85 (m, 2H), 7.58-7.53 (m, 1H), 7.46-7.40 (m, 2H), 6.99-6.98 (m, 

1H), 6.97-6.95 (m, 1H), 5.86 (d, J = 3.7 Hz, 1H), 5.14 (d, J = 2.7 Hz, 1H), 4.45 (d, J = 3.8 Hz, 1H), 

4.39 (d, J = 18.0 Hz, 1H), 4.22-4.14 (m, 2H), 4.05-4.01 (m, 1H), 3.98-3.93 (m, 1H), 3.93 (s, 3H), 3.91 

(d, J = 18.0 Hz, 1H), 3.62 (s, 3H), 2.30 (t, J = 7.6 Hz, 2H), 2.19-2.00 (m, 2H), 1.64-1.56 (m, 2H), 1.49 

(s, 3H), 1.37 (s, 3H), 1.35-1.20 (m, 2H), 1.29 (s, 3H), 1.28 (s, 3H). 

13C NMR (125 MHz, CD2Cl2) δ 198.1, 187.8, 172.4, 172.3, 142.0, 137.1, 133.6, 128.9, 128.6, 128.3, 

126.5, 112.4, 109.4, 105.5, 83.7, 80.0, 76.2, 72.8, 67.2, 59.0, 52.6, 43.0, 36.2, 34.1, 32.5, 26.79, 26.77, 

26.3, 25.30, 25.27, 24.3. 

IR (film): ν (cm1) 2987, 2942, 2871, 1739, 1685, 1596, 1509, 1453, 1401, 1377, 1214, 1157, 1071, 

1018, 945, 903, 846, 759, 734, 692, 565, 512. 

HRMS (ESI, m/z) calcd for C33H42N2O11Na [M+Na]+: 665.2681, found: 665.2679. 

 

 

Methyl (S)-4-(4-bromophenyl)-2-methyl-4-oxo-2-(1-phenyl-1H-imidazole-2-carbonyl) butanoate 

(51n) 

According to the general procedure, electrolysis of the reaction mixture of methyl 

2-methyl-3-oxo-3-(1-phenyl-1H-imidazol-2-yl)propanoate 50a (25.8 mg, 0.10 mmol) and 

((1-(4-bromophenyl)vinyl)oxy)trimethylsilane 8l (162.7 mg, 6.0 equiv) afforded 37.2 mg (82% yield) 

of 51n as a yellow solid after electricity consumption of 2.4 F/mol. 

Enantiomeric excess was established by HPLC analysis using a Chiralpak IC column, ee = 97% 
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(HPLC: OD-H, 254 nm, n-hexane/isopropanol = 90:10, flow rate 1 mL/min, 40 C, tr (major) = 12.2 

min, tr (minor) = 14.0 min). []D
22 = –42.6 (c 1.0, CH2Cl2). 

1H NMR (500 MHz, CD2Cl2) δ 7.86-7.82 (m, 2H), 7.64-7.59 (m, 2H), 7.54-7.45 (m, 3H), 7.44-7.39 (m, 

2H), 7.15-7.11 (m, 2H), 4.51 (d, J = 18.2 Hz, 1H), 3.88 (d, J = 18.2 Hz, 1H), 3.66 (s, 3H), 1.52 (s, 3H). 

13C NMR (125 MHz, CD2Cl2) δ 197.2, 186.3, 173.4, 141.5, 138.8, 135.9, 132.2, 130.0, 129.30, 129.26, 

128.8, 128.7, 126.6, 125.9, 55.4, 52.8, 46.2, 21.0.  

IR (film): ν (cm1) 2922, 2851, 1736, 1690, 1583, 1495, 1449, 1398, 1347, 1300, 1232, 1180, 1101, 

1070, 1028, 1002, 958, 903, 855, 813, 760, 691, 527, 453. 

HRMS (ESI, m/z) calcd for C22H19BrN2O4Na [M+Na]+: 479.0403, found: 479.0394. 

 

 

4-Methoxy-2,4,4-triphenyl-1-(1-phenyl-1H-imidazol-2-yl)butan-1-one (58) 

According to the general procedure, the reaction of 48b with 6.0 equiv 1,1-diphenyl ethylene in the 

absence of 8a furnished a three-component product 58 in 51% yield with 99% ee. Enantiomeric excess 

was established by HPLC analysis using a Chiralpak IG column, ee = 99% (HPLC: IG, 254 nm, 

n-hexane/isopropanol = 95:5, flow rate 1 mL/min, 40 C, tr (major) = 6.4 min, tr (minor) = 7.6 min). 

[]D
22 = +157.8 (c 1.0, CH2Cl2). 

1H NMR (300 MHz, CD2Cl2) δ 7.42-7.21 (m, 14H), 7.20-7.09 (m, 5H), 7.05-7.03 (m, 1H), 7.02-6.96 

(m, 2H), 5.31 (dd, J1 = 9.3 Hz, J2 = 1.5 Hz, 1H), 3.59 (dd, J1 = 14.4 Hz, J2 = 9.3 Hz, 1H), 2.91 (s, 3H), 

2.57 (dd, J1 = 14.4 Hz, J2 = 1.5 Hz, 1H). 

13C NMR (75 MHz, CD2Cl2) δ 188.8, 145.3, 144.7, 142.5, 141.1, 138.6, 129.3, 128.6, 128.5, 128.3, 

127.9, 127.5, 127.4, 127.2, 127.1, 126.8, 126.6, 126.0, 82.4, 50.4, 47.3, 38.2. 

IR (film): ν (cm1) 3058, 2928, 1683, 1596, 1493, 1446, 1399, 1311, 1261, 1152, 1073, 1030, 956, 908, 

859, 758, 696, 618, 582, 531. 

HRMS (ESI, m/z) calcd for C32H28N2O2Na [M+Na]+: 495.2043, found: 495.2037. 

 

5.7.4 Single-Crystal X-Ray Diffraction Studies 

 

Single crystals of 49k suitable for X-ray diffraction were obtained by slow diffusion of a solution 
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of 49k (30 mg) in CH2Cl2 (0.5 mL) layered with n-hexane (1.0 mL) at room temperature for several 

days in a NMR tube. 

Single crystals of 51n suitable for X-ray diffraction were obtained by slow diffusion of a solution 

of 51n (30 mg) in CH2Cl2 (0.5 mL) layered with n-hexane (1.0 mL) at –20 oC for several days in a 

NMR tube. 

Single crystals of Rh-enolate2 suitable for X-ray diffraction were obtained by slow diffusion of a 

solution of Rh-enolate2 (20 mg) in CH2Cl2 (0.5 mL) layered with Et2O (1.0 mL) at room temperature 

for several days in a NMR tube. 

Data was collected with an STOE STADIVARI diffractometer equipped with CuKα radiation, a 

graded multilayer mirror monochromator (λ = 1.54186 Å) and a DECTRIS PILATUS 300K detector 

using an oil-coated shock-cooled crystal at 100(2) K. The absolute configurations of compounds 49k 

and 51n could be determined (Figure 130). The structures of Rh-enolate2 are shown in Figure 104a. 

 

 

Figure 130.  Crystal structures of compounds 49k, and 51n. 
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Table 33. Crystal data and structure refinement for Rh-enolate2. 

Crystal data  

  

CCDC number 1866728 

Identification code  hxqM39_5 

Habitus, color  needle, pale yellow 

Crystal size 0.23 x 0.04 x 0.04 mm3 

Crystal system  Triclinic 

Space group  P-1 Z = 4 

Unit cell dimensions a = 11.8377(5) Å α = 81.120(3)°. 

 b = 19.7310(7) Å β = 81.221(3)°. 

 c = 19.8024(8) Å γ = 78.747(3)°. 

Volume 4446.0(3) Å3 

Cell determination  28713 peaks with Theta 3.8 to 75.5°. 

Empirical formula  C49 H45 N4 O Rh S2 Si2 

Moiety formula  C49 H45 N4 O Rh S2 Si2 

Formula weight  929.10 

Density (calculated) 1.388 Mg/m3 

Absorption coefficient 4.823 mm-1 

F(000) 1920 

 

Data collection:  

 

Diffractometer type  STOE STADIVARI 

Wavelength  1.54186 Å 

Temperature  100(2) K 

Theta range for data collection 3.023 to 75.866°. 

Index ranges -10<=h<=14, -24<=k<=24, -24<=l<=24 

Data collection software  X-Area Pilatus3_SV 1.31.127.0 (STOE, 2016) 

Cell refinement software  X-Area Recipe 1.33.0.0 (STOE, 2015)  

Data reduction software  X-Area Integrate 1.71.0.0 (STOE, 2016)  

 X-Area LANA 1.68.2.0 (STOE, 2016)  

 

Solution and refinement: 

Reflections collected 87185 

Independent reflections 28982 [R(int) = 0.0895] 

Completeness to theta = 67.686° 92.3 %  

Observed reflections  15724[I > 2σ(I)]  

Reflections used for refinement  28982 

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.87 and 0.38 

Largest diff. peak and hole 1.331 and -1.224 e.Å-3 

Solution  intrinsic phases   

Refinement  Full-matrix least-squares on F2 

Treatment of hydrogen atoms  Calculated positions, constr. ref. 

Programs used  XT V2014/1 (Bruker AXS Inc., 2014)  

 SHELXL-2018/3 (Sheldrick, 2018)  

 DIAMOND (Crystal Impact)  

 ShelXle (Hübschle, Sheldrick, Dittrich, 2011)  

Data / restraints / parameters 28982 / 1302 / 1076 

Goodness-of-fit on F2 0.928 

R index (all data) wR2 = 0.1938 

R index conventional  [I>2sigma(I)] R1 = 0.0726 
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Table 34. Crystal data and structure refinement for 49k.  

Crystal data  

 

CCDC number 1866727 

Identification code  hxqL160R 

Habitus, color  nugget, colorless 

Crystal size 0.49 x 0.36 x 0.21 mm3 

Crystal system  Orthorhombic 

Space group  P212121 Z = 4 

Unit cell dimensions a = 12.1520(2) Å α = 90°. 

 b = 12.7735(3) Å β = 90°. 

 c = 13.4315(2) Å γ = 90°. 

Volume 2084.89(7) Å3 

Cell determination  35530 peaks with Theta 3.3 to 76.2°. 

Empirical formula  C25 H19 Br N2 O2 

Moiety formula  C25 H19 Br N2 O2 

Formula weight  459.33 

Density (calculated) 1.463 Mg/m3 

Absorption coefficient 2.881 mm-1 

F(000) 936 

 

Data collection:  

 

Diffractometer type  STOE STADIVARI 

Wavelength  1.54186 Å 

Temperature  100(2) K 

Theta range for data collection 4.908 to 75.603°. 

Index ranges -15<=h<=12, -13<=k<=15, -15<=l<=16 

Data collection software  X-Area Pilatus3_SV 1.31.127.0 (STOE, 2016)  

Cell refinement software  X-Area Recipe 1.33.0.0 (STOE, 2015)  

Data reduction software  X-Area Integrate 1.71.0.0 (STOE, 2016)  

 X-Area LANA 1.68.2.0 (STOE, 2016)  

 

Solution and refinement: 

Reflections collected 20804 

Independent reflections 4273 [R(int) = 0.0193] 

Completeness to theta = 67.686° 99.9 %  

Observed reflections  4266[I > 2σ(I)]  

Reflections used for refinement  4273 

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.5407 and 0.2622 

Flack parameter (absolute struct.)   -0.016(4)  

Largest diff. peak and hole 0.302 and -0.757 e.Å-3 

Solution  intrinsic phases 

Refinement  Full-matrix least-squares on F2  

Treatment of hydrogen atoms  Calculated positions, constr. ref. 

Programs used  XT V2014/1 (Bruker AXS Inc., 2014)  

 SHELXL-2018/3 (Sheldrick, 2018)  

 DIAMOND (Crystal Impact)  

 ShelXle (Hübschle, Sheldrick, Dittrich, 2011)  

Data / restraints / parameters 4273 / 0 / 271 

Goodness-of-fit on F2 1.104 

R index (all data) wR2 = 0.0590 

R index conventional  [I>2sigma(I)] R1 = 0.0228 
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Table 35. Crystal data and structure refinement for 51n. 

  Crystal data  

 

CCDC number 1868792 

Identification code  hxqM124 

Habitus, color  needle, colorless 

Crystal size 0.24 x 0.03 x 0.02 mm3 

Crystal system  Orthorhombic 

Space group  P212121 Z = 4 

Unit cell dimensions a = 7.0991(3) Å α = 90°. 

 b = 14.6639(9) Å β = 90°. 

 c = 19.2121(9) Å γ = 90°. 

Volume 1999.99(18) Å3 

Cell determination  20187 peaks with Theta 3.8 to 75.4°. 

Empirical formula  C22 H19 Br N2 O4 

Moiety formula  C22 H19 Br N2 O4 

Formula weight  455.30 

Density (calculated) 1.512 Mg/m3 

Absorption coefficient 3.070 mm-3 

F(000) 928 

 

Data collection:  

 

Diffractometer type  STOE STADIVARI 

Wavelength  1.54186 Å 

Temperature  100(2) K 

Theta range for data collection 3.792 to 75.320°. 

Index ranges -8<=h<=8, -16<=k<=18, -13<=l<=23 

Data collection software  X-Area Pilatus3_SV 1.31.127.0 (STOE, 2016)  

Cell refinement software  X-Area Recipe 1.33.0.0 (STOE, 2015)  

Data reduction software  X-Area Integrate 1.71.0.0 (STOE, 2016)  

 X-Area LANA 1.68.2.0 (STOE, 2016)  

 

Solution and refinement: 

Reflections collected 18971 

Independent reflections 4044 [R(int) = 0.0506] 

Completeness to theta = 67.686° 99.6 %  

Observed reflections  3407[I > 2σ(I)]  

Reflections used for refinement  4044 

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.6496 and 0.1848 

Flack parameter (absolute struct.)   -0.032(12)  

Largest diff. peak and hole 0.545 and -0.312 e.Å-3 

Solution  intrinsic phases 

Refinement  Full-matrix least-squares on F2 

Treatment of hydrogen atoms  Calculated positions, constr. ref. 

Programs used  XT V2014/1 (Bruker AXS Inc., 2014)  

 SHELXL-2018/3 (Sheldrick, 2018)  

 DIAMOND (Crystal Impact)  

 ShelXle (Hübschle, Sheldrick, Dittrich, 2011)  

Data / restraints / parameters 4044 / 0 / 264 

Goodness-of-fit on F2 1.006 

R index (all data) wR2 = 0.0994 

R index conventional  [I>2sigma(I)] R1 = 0.0402 
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