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Zusammenfassung

Sei G eine kompakte, zusammenhéngende Lie Gruppe und K c G eine abgeschlossene Untergruppe. Wir zeigen,
dass die Isotropiewirkung von K auf G/K 4quivariant formal ist und der Raum G/K formal im Sinne rationaler
Homotopietheorie, falls es sich bei K um die Identitdtskomponente des Schnitts der Fixpunktmengen zweier
verschiedener Involutionen auf G handelt, G/K also ein Zj x Z;-symmetrischer Raum ist. Ist K die Identitéts-
komponente der Fixpunktmenge einer einzelnen Involution und H ¢ G eine abgeschlossene, zusammenhéngen-
de Untergruppe, die K enthilt, so zeigen wir, dass auch die Wirkung von K auf G/H durch Linksmultiplikation
dquivariant formal ist. Letztere Aussage ist Aquivalent zum Hauptresultat in [6], wird hier aber mit anderen Mit-
teln bewiesen, namlich durch Angabe eines algebraischen Modells fiir die 4quivariante Kohomologie gewisser
Wirkungen.
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Abstract

Let G be a compact connected Lie group and K c G a closed subgroup. We show that the isotropy action of
K on G/K is equivariantly formal and that the space G/K is formal in the sense of rational homotopy theory
whenever K is the identity component of the intersection of the fixed point sets of two distinct involutions on
G, so that G/K is a Zy x Zy-symmetric space. If K is the identity component of the fixed point set of a single
involution and H < G is a closed connected subgroup containing K, then we show that the action of K on G/H
by left—multiplication is equivariantly formal. The latter statement is equivalent to the main result of [6], but is
proved by different means, namely by providing an algebraic model for the equivariant cohomology of certain

actions.
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CHAPTER [.

Introduction

1. Introduction and background

This thesis is concerned with G—spaces, that is, topological spaces together with a continuous (left) action of a
fixed (smooth) Lie group G, and a certain invariant associated with such spaces, their equivariant cohomology. To
motivate its definition, consider the problem of assigning to a G-space X an invariant that gives the same answer
on any G-space isomorphic to X but yet discerns as many distinct isomorphism classes of G—spaces as possible.
Perhaps among the easiest such invariants that one might come up with (apart from the isomorphism class of X)
is the cohomology H(X/G) of the orbit space X/G; of course, one might consider arbitrary coefficient groups, but
here and thereafter we confine ourselves to singular real cohomology or to de Rham cohomology if the space
under consideration happens to be a smooth manifold. In any case, it appears to be common understanding
that H(X/G) is a reasonable invariant if the G-action is free, but less well-behaved for actions with non-trivial
isotropy. A frequently given example of an action justifying this last statement is the action of the circle S! on
the unit sphere $? by rotation about a fixed axis. This action has exactly two fixed points, namely the poles of
the rotation axis, and its orbit space is homeomorphic to the closed unit interval, hence has trivial cohomology.

To overcome this difficulty one replaces X by what is now called the Borel construction and usually denoted Xg.
Originally introduced in [2], this is the space X5 := (EG x X)/G obtained from a contractible space EG on which
G acts freely (from the right), such as the total space in the universal G-bundle EG — BG over the classifying
space BG. The action of G on EG x X is the diagonal action, induced by the assignment g.(e, x) = (eg™!, gx) for
g € Gand (e, x) € EGxX, and the equivariant cohomology then is defined as H;(X) := H(X). Note that the G-
action on EG x X is free. Another indication that H;(X) is a useful invariant is that it can actually be computed
in many situations: quite generally, if G acts locally freely on a space X, then the map Xg — X/G induced by
the quotient map X — X/G yields an isomorphism H(X/G) — H(X), cf. [12, Section C.2.1]. On the other
hand, H(-) satisfies the axioms of a generalized cohomology theory with morphisms replaced by G-equivariant
morphisms, so that, for example, an equivariant Mayer—Vietoris sequence is available. In very much the same
way as the Mayer—Vietoris sequence can be used to compute the ordinary cohomology of spheres, its equivariant
counterpart can be utilized to compute the S!-equivariant cohomology of the action on $? considered above,
e. g. by means of the open cover consisting of the two open sets that one obtains by removing one of the poles
of the rotation axis at a time. The conclusion now is that Hg, (52) = H(BSl) ® H(BSI) in non-zero degrees,
because for any Lie group G the equivariant cohomology of a single point is given by H(x) = H(BG) and st
acts freely on S outside its fixed point set.

The previous eaxmple can be written more concisely as Hy, (52) =H (BSI) oH (52) (recall that the classifying
space of S! is CP™, whose cohomology ring is a polynomial algebra in one variable of degree 2), and if one
considers H, (52) asa H(BSl)—module via the morphism of rings H, (x) — Hg, (52) induced by the constant
map S2 — {+}, then this equality is even valid as H(BSl)—modules, showing that the S! action on S? is in fact
equivariantly formal. This name was coined in [10] for actions of compact connected Lie groups G on topological
spaces X, although its defining property, the collapse of the Serre spectral sequence associated with the fibration
X <> X — BG on the second page, was already investigated in [2], mostly for actions of tori and finite cyclic
groups of prime order. It is also worth pointing out that for a general fibration F < E — B with connected
fiber F and path—connected base B of finite type the degeneration of the associated Serre spectral sequence at
the E;—term is equivalent to surjectivity of the inclusion induced map H(E) — H(F). In this situation, F is
traditionally said to be (totally) non—cohomologous to zero in E, see [21, p. 148]. This shows the equivalence of
the first two items in the following list of well-known characterizations of equivariant formality.



Proposition 1.1. Let G be a compact connected Lie group with maximal torus T and X a connected G-space.
The following statements are equivalent.

(1) The G-action on X is equivariantly formal.

(2) Fiber inclusion of the fibration X <> X5 — BG induces a surjection H;(X) — H(X).
(3) The T-action on X obtained by restriction of the G-action is equivariantly formal.
(4) The H(BG)-module H;(X) is free.

(5) We have an equality of total Betti numbers dim H(X) = dimH(X T), where X7 is the fixed point set of
the induced T-action.

Actions on spaces with vanishing odd degree cohomology are equivariantly formal, as are symplectic mani-
folds with a Hamiltonian action [10, Theorem 14.1]. Further examples of equivariantly formal actions are isotropy
actions on symmetric spaces [6] and, more generally, on homogeneous spaces G/K in which the subgroup K is
the connected component of the fixed point set of an arbitrary Lie group automorphism on G, see [8]. Here, the
isotropy action associated with a homogeneous space G/K is the action of K on G/K induced by left multiplica-
tion, that is, by the assignment (k, gK) — kgK for all k € K, gK € G/K. Our main contribution with this thesis
now is that we extend the list of actions which are known to be equivariantly formal by one more item.

In theorem I1.1.2 below we will show that the isotropy action associated with G/K is equivariantly formal if
K is the connected component of the common fixed point set of two distinct commuting involutions on G, in
which case G/K is said to be a Zy x Zy—symmetric space, provided that none of the automorphisms is the identity
map. The proof borrows some ideas from the proof of the main result of [8], which we therefore summarize in
section 2. The key step is to construct a subgroup H of G which shares a maximal torus with K and for which
the cohomology of G/H is more accessible than that of G/K, as then the isotropy action associated with G/H is
equivariantly formal if and only if so is the isotropy action associated with G/K. Since eventually we want to
be able to give a description of a maximal torus of K in terms of a maximal torus of G, we thus study in section
I1.2 the problem of reconstructing a maximal torus of G from a fixed maximal torus S of K. There is a general
solution to this problem. Namely, upon fixing a reference torus T which is maximal in G and contains S, one
finds that the complexification of the Lie algebra of the centralizer of S in G, which abstractly is the union of
all maximal tori of G containing S, is the direct sum of the complexification t€ of t and the weight spaces of all
gC-roots that vanish on 5. While it is known that no such root exists if G/K is a symmetric space, certain g&—
roots might (and in general will) restrict to zero on s if G/K is Zy x Z3—-symmetric, even if the automorphisms
defining K are both inner. Fortunately, however, the set of all such roots is strongly orthogonal, meaning that the
sum of two elements of that set is not a root (see [16, p. 396]), and already sets of orthogonal roots in irreducible
root systems can be classified up to application of a Weyl group element. This we have done in section IL.4.

What makes this classification particularly useful is that in the present situation the maximal torus S of K is
the intersection of the kernels of all roots vanishing on s and the fixed point set on T of one of the automorphisms
defining K. All of this data can be formulated in terms of the root system of g€ and the list of possible sets of
roots vanishing on s is further constrained by the requirement that the automorphisms defining K be involutive.
At this point, one could thus go through the list of all possible candidates for S and verify that the subalgebra
S acts in an equivariantly formal fashion on G/S. We proceed differently and show that we may sequentially
modify the automorphisms defining K so as to almost always assume that one of them is an inner automorphism
and that the semisimple part of the fixed point set of this inner automorphism realizes a subdiagram of the
Dynkin diagram of g€. Homogeneous spaces arising from such subgroups have tractable cohomology, which
we determine in section IL5. Building on these results, in section I.6 we finally traverse the list of simple Lie
groups, determine in each case the desired subgroup H, and show that the isotropy action of H on G/H is
equivariantly formal.

Our second contribution, which actually is equivalent to the main theorem of [6], is theorem II1.5.10. The
statement here is that for every compact connected Lie group G and the connected component K of the fixed



point set of any involution on G the action of K on G/H by left-multiplication is equivariantly formal whenever
H is a closed connected subgroup of G that contains K. Of course, the novelty is not the statement itself, but
rather its proof, as it relies on an algebraic model for the equivariant cohomology of the K-action on G/H which
is solely built out of the Lie algebras of G, H, and K, and the inclusions of the latter two into the former. We note
that such a model has been realized only very recently in [4, Sect. 3.1] using methods from rational homotopy
theory, while our model is established by quite elementary means using the Cartan model for equivariant coho-
mology. The drawback of our method is that it only captures the A,—module structure of Hy(G/H), A, < S(¢")
the space of £-invariant polynomials on £, whereas the model given in [4] is isomorphic to Hy(G/H) via an
isomorphism of A —algebras. To explain this deficiency, consider an action of a compact connected Lie group G
on a smooth manifold M. The basic observation we exploit to construct our model is that there is a sequence of
vector subspaces QM)°, ig Q(M)°, (ig)2 Q(M)C, ... whose sum is stable under the differential on Q(M); here,
Q(M)G is the space of G-invariant forms on M and iy denotes the image of the operatori: g — End(Q(M)),
X > iy, contracting a form with the vector field induced by X € g. This leads to an additive, quasi-isomorphic
model of (M) and hence to a model of H;(M) which is isomorphic as an Aj—-module.

Despite the lack of a ring structure our proof of theorem I11.5.10, in contrast to the original proof in [6], does
not rely on any classification result. Again, it has to be noted that a classification—free proof of the main theorem
of [6] and even of [8, Theorem 1.1] was already achieved in [4, Theorem 7.8]. However, the proof presented in
[4] uses K—theory and relies on a reduction to the case when G is simple, while our proof works equally well for
simple and non- simple Lie groups and only uses the decomposition of g into the eigenspaces of the involution
defining K.

2. Previous results

Starting with this section we will almost exclusively consider isotropy actions on homogeneous spaces and be
concerned with the question when such an action is equivariantly formal. It thus seems appropriate to make the
following definition: given a compact connected Lie group G and a closed connected subgroup K, we say that
the pair (G, K) is equivariantly formal if the action of K on G/K by left-multiplication is equivariantly formal; we
also say that (G, K) is formal or a Cartan pair if the homogeneous space G/K is formal in the sense of rational
homotopy theory, which means that there exist commutative differential graded R-algebras Aj,..., A, and a
chain of morphisms Q(G/K) — A; «— Ay — ... > A, <« H(G/K), each of which induces an isomorphism
on the level of cohomology. While this definition is valid for arbitrary (connected) manifolds, not just G/K, we
prefer to use the following equivalent characterization of formality which is available in this particular situation:
we recall from [11] that the space Q(g)? of g—invariant forms on g is an exterior algebra over an oddly graded
subspace Py < Q(g)® of dimension rank g, called primitive space of g, and that the Samelson subspace P of the
pair (g, £) is the graded subspace of Py whose elements, considered as elements of H(g), are contained in the
image of the inclusion induced map Q(g, ) — Q(g). Then we have dim P < rank g - rank &, cf. [11, Theorem
V, sect. 10.4], and the pair (G, K) is formal if and only if the previous inequality is actually an equality; see [11,
Theorem VIII, sect. 10.4] for this and various other reformulations of formality.

These preliminary notions being introduced, we briefly summarize the proof of the main result in [8] and
show how [8] is related to [7].

Theorem 2.1 ([8, Theorem 1.1]). Let G be a compact connected Lie group and K c G the identity component
of the fixed point set of an automorphism on G. Then the pair (G, K) is (equivariantly) formal.

Note that according to [4, Theorem A] an equivariantly formal pair (G, K) with both G and K connected is
necessarily formal as well. That formality of a pair (G, K) does not necessarily enforce equivariant formality of
(G, K) is shown in [8, Example 3.7].

The proof of theorem 2.1 given in [8] can be divided into two major steps: the first step is to show that it
suffices to consider pairs (G, K) satisfying the assumptions of theorem 2.1 and for which G is simple. In the



second step one actually proves theorem 2.1 for simple groups G. Both steps crucially rely on the following
general principle.

Theorem 2.2 ([4, Theorem 2.2]). Let K and H be equal rank closed connected subgroups of a compact connected
Lie group G and such that H c K. Then (G, K) is equivariantly formal if and only if so is (G, H).

A proof of theorem 2.2 is also contained in [8, Proposition 3.5] under the additional hypothesis that the
pairs (G, K) and (G, H) are formal. Since by [22, p. 212] the pair (G, K) is formal if and only if so is (G, H), it
follows from [4, Theorem A] that this seemingly more restrictive setting is actually equivalent to the general
situation considered in theorem 2.2; the proof of the first item of [8, Proposition 3.5], which essentially states
that formality of (G, K) is equivalent to that of (G, H), is erroneous though!.

The most important consequence of theorem 2.2 is that whenever H and K are closed connected subgroups of
a compact connected Lie group G and T is a maximal torus of both H and K, then the pair (G, K) is equivariantly
formal if and only if (G, H) is equivariantly formal, because this property is satisfied by either one of the pairs
if and only if it is satisfied by the pair (G, T). In this way one can reduce the question of equivariant formality
of pairs (G, K) as in theorem 2.1 and with G simple to pairs for which K is the identity component of the fixed
point set of a finite—order automorphism. The homogeneous space G/K arising from such a pair (G, K) is called
a k—symmetric space (k = 0 the order of the automorphism defining K) or generalized symmetric space, and the
question whether or not (G, K) is equivariantly formal was already answered affirmatively in [7]. In fact, by
[7, Proposition 3.7] K shares a maximal torus with a subgroup H dubbed “folded subgroup” in [7], because its
Dynkin diagram is obtained from the Dynkin diagram of G by a process commonly called folding, and it was
observed in [7, Theorem 5.5] that H is (totally) non—cohomologous to zero in G, that is, the fiber inclusion in the
fibration H < G — G/H induces a surjection in cohomology. That (G, H) is formal then is a classical result
(cf. [11, Corollary I, sect. 10.19]) and equivariant formality follows from

Proposition 2.3 ([7, Proposition 2.6]). Let G be a compact connected Lie group, K a closed connected subgroup.
If K is totally non-cohomologous to zero in G, then (G, K) is equivariantly formal.

The question of (equivariant) formality being settled for pairs in which the ambient group is simple, we
return to the general situation considered in theorem 2.1. One now observes that whenever (G, K) and (G’, K”)
are two pairs of compact and connected Lie groups such that there is an isomorphism of Lie algebra pairs
(9,8 — (¢’,¥), then (G, K) is (equivariantly) formal if and only if so is (G’, K’), cf. [7, Corollary 2.4]. Thus, we
call a Lie algebra pair (uo, ho) equivariantly formal if there exists a compact connected Lie group U and a closed
connected subgroup H such that (U, H) is equivariantly formal and (u, b)) is isomorphic to (ug, o), for then any
other compact connected Lie group pair with matching Lie algebras is equivariantly formal as well. Passing to
the level of Lie algebras, we denote by ¢ the automorphism on g whose fixed point set is £. Then g decomposes
as a direct sum of o—invariant subalgebras g1, ..., g, which are minimal in the sense that none of them contains
a non-trivial proper o—invariant subalgebra, ¥ decomposes accordingly as the direct sum of the subalgebras
g1 nt...,g,nt and it only remains to check that each of the pairs (g;, g; n €) is (equivariantly) formal. This is
indeed the case: the pair (g;, g; n ) is isomorphic to a Lie algebra pair (u ®..0LU, A(f)), where u is a compact
simple Lie algebra and A(f) is the diagonal embedding of the fixed point set § of an automorphism on u, and
A(u) is totally non-cohomologous to zero in g; these two facts together imply that (g;, g; n £) is (equivariantly)
formal, see [8, Section 5] for more details.

!Namely, instead of the displayed equation in the proof of the first part of [8, Proposition 3.5] one has to consider an equation of the form
(w)|¢ = Y,; filt - g with f; polynomials in the image of the transgression and g; non—constant polynomials invariant under the Weyl
group of H. Averaging both sides over the Weyl group of K gives the desired conclusion.



CHAPTER 1L

Z, x Z,-symmetric spaces

1. Zj x Zy—-symmetric spaces

There is yet another generalization of symmetric spaces that also incorporates the notion of k—symmetric spaces,
the so—called I'-symmetric spaces introduced in [19].

Definition 1.1. Let I be a finite Abelian group, G a connected Lie group, and K c G a closed subgroup. The
homogeneous space G/K is called I'-symmetric if there exists an injective group homomorphism I' < Aut(G)
such that (G)g < K < GF, where G is the common fixed point set of the automorphisms I' ¢ Aut(G).

Since every finite Abelian group is a product of cyclic groups, the above definition can be rephrased by saying
that a homogeneous space G/K with G connected and K c G closed is ' = Zj, x ... x Zj,~symmetric if there
exist ¢ distinct commuting automorphisms o1, ..., o¢ of G, with o; of order k;, such that

(G'n..nG%)yc K c(G° n...nG).

Theorem 1.2. Let G be a compact connected Lie group, o1 and oy two involutions on G, and suppose that G/K
is a Zy x Zy—symmetric space, where K = (G°! n G2)y. Then the pair (G, K) is (equivariantly) formal.

We note that the classification of Z;xZ,-symmetric spaces G/K with G a simple Lie group was achieved in [1]
and [17], but while we do make use of the classification of simple Lie algebras and finite-order automorphisms
thereon, our proof of theorem 1.2 does not rely on the classification of Zy x Zy-symmetric spaces.

Recall (cf. [14, p. 130]) that a Lie algebra g is compact, if so is the connected subgroup of Aut(g) with Lie
algebra {ady | X € g}. According to [14, Corollary 6.7, chap. II] this is the case if and only if there is a compact
Lie group with Lie algebra (isomorphic to) g. If g is compact and semisimple, then every connected Lie group
with Lie algebra g is compact (see [14, Theorem 6.9, chap. II]), and we call a subalgebra ) c g compact, if the
connected subgroup H c G with Lie algebra b is compact, where G is the simply—connected Lie group with Lie
algebra g. For the sequel and for the proof of theorem 1.2 it will be convienent to introduce the following relation
on the set of all compact subalgebras of a compact semisimple Lie algebra g: two such subalgebras b, £ c g are
related, if there exists a sequence of compact subalgebras my, ..., my,; of g such that my = h, my,; = £ and if
forall i = 0,..., k the subalgebras m; and m;,; share a common maximal torus, that is, if there exists a maximal
torus s ¢ m; which also is maximal torus of m;,.;. This defines an equivalence relation and we denote the
equivalence class of a subalgebra € by [¢];. Note that if € c g is a compact subalgebra, then the pair (g, £) is
(equivariantly) formal if and only if there exists a subalgebra h) € [€]f such that (g, b) is so. Now theorem 1.2 will
be a consequence of

Theorem 1.3. In addition to the hypotheses of theorem 1.2 assume that G is simple. Then there exists a compact
subalgebra § € [£]f which is totally non-cohomologous to zero in g.

PROOF OF THEOREM 1.2 USING THEOREM 1.3. Let [g,g] = g1 @ ... ® g;; be the decomposition of the semisimple
part of g into its simple ideals and consider the subgroup I = {idg, 01, 02, 0102} inside the group of Lie algebra
automorphisms of g. It is isomorphic to ZyxZ; and acts naturallyon T := {gy,..., gm}. Moreover, as was already
observed in [8, Section 5], it will suffice to check that for each i the pair (m,m n £), where m = Zyer v(gi), is
(equivariantly) formal.



Set b := g; and choose representatives y1I'y, ..., ypI'y for each class in I'/Tyy, where I'y is the isotropy subgroup
at b of the action of T'on Z, p = [I/Tyy|, and y; = idg. Then an isomorphism of Lie algebras is given by the map

O:he..obh—m (Xg,....Xp) = y1(Xq) + ... + Yp(Xp),

because ys(h) and y:(h) are distinct ideals of [g, g] for s # tand m = @‘f:l ¥s(B). Moreover, if f c b is the common
fixed point set of all elements in I'y, then ® maps A(f), the diagonal embedding of f, isomorphically onto m n ¢:
in fact, any element y € I' permutes I'/T, so there exist a permutation 7 on {1,..., p} and elements y{ € I'y for
each s such that yy; = y,(y/ for all t. Then we have, for all X € f:

p p
Y(@(X, ..., X)) = ; yys(X) = ; Yr(s(X) = (X, ..., X).

To prove the converse inclusion, note that if &(Xj, ..., X}) is fixed by some y;, then X; = Xi, because we chose
y1 = id and because y;y;(X;) € b only holds if i = j. Hence, if ®(X1, ..., Xp) is fixed by all elements of T, then
Xy =Xz = ... = Xp and also Xj € f, because every y € Ty leaves f invariant.

Thus, it will suffice to check that (@f;l b, A(f)) is (equivariantly) formal. But an orbit of T is either of length
1, 2, or 4, and if p = 1, then § is just the common fixed point set of oy and oy, whence the pair in question is
(equivariantly) formal by theorem 1.3. If p = 2, then I'y contains one non-trivial element o, so f = b is the fixed
point set of an involution, and it was observed in [8, Section 5] that (h @ h, A(f)) is (equivariantly) formal in this
case as well: indeed, if we choose n € [f]f to be totally non-cohomologous to zero in f, which is possible by [8,
Section 4] or [7, Theorem 5.5], then A(n) is totally non—cohomologous to zero in h & h as well and A(n) € [A(f)]s-
Finally, if p = 4, then Iy is trivial, whence f = . As is well-known, A(h) is totally non-cohomologous to zero

inhehebheb. O

2. Preliminaries

Let G be a compact connected Lie group and o a finite-order automorphism on G. It follows from [14, Lemma
5.3, chap. X], that the centralizer Zg (s) in g of any maximal torus s of g° is a maximal torus of g, and hence the
unique maximal torus of g containing s. Thus, if o1, ..., 0y are commuting automorphisms of G, then there is a
maximal torus of g which is invariant for all o, i = 1,..., £. In fact, put oy.+1 = idg and suppose that for some i,
1< i=<{,t;is a maximal torus of ¢;, where

and that t; is invariant under o7, ..., 0¢+1; such a torus exists for i = 1, because £; is the common fixed point
set of 01, ..., oy, whence any maximal torus of £; is fixed by each oj. Since all o; commute, o; then restricts to
a finite—order automorphism o; : €1 — ¥;.1 with fixed point set €;. As €;.1 is the common fixed point set of
Oi+1, ..., 07 and thus the Lie algebra of a compact Lie group, we conclude that t;,1 = Zg,, , (t;) is a maximal torus
of £;,1. By definition, t;;1 is fixed by oy1,..., 07, and if j < i, then 0j(t;+1) is a maximal torus of £;,1 containing
t;, hence must be equal to t;;1. Continuing in this way, we eventually obtain a maximal torus ty+1 of €1 = g
with oj(tg1) = tpr forall j=1,..., ¢,

Proposition 2.1. Let G be a compact connected Lie group, a ¢ g an Abelian subalgebra, and t a maximal torus
of g containing a. Denote by A c (t€)* the set of roots with respect to the Cartan subalgebra t€ of g€ and by
I’ c A the set of roots vanishing on a. Then, as a vector space,

Nye(@) = Zge(a) = (€ o @ g5
ael

Proor. That € is contained in Zyc(a) is true because t is Abelian. Now choose a € T as well as X € g$,. By



definition, for every Y € a:
[Y,X]=+a(Y)X =0,
hence gga is contained in ch(a). Conversely, let V€N gq;(a), and write

N=X+ Y X,
aeA

where Xp € t€ and X, € gg. For Y € a we have

C2a3[V, V] = Y a(V)Xs € D oS,
a€EN a€EN

which is only possible if a(Y)X, = 0 for all « € A. Hence, if X, # 0, then a c ker @ and « € I'. We have shown:
tCo P gl c Zg(a) = Ng(a) = o @ b O
a€el a€l'0

For the remainder of this section we fix a compact connected Lie group G, two commuting involutions o3 and
oy on G (not necessarily different), and an Ad-invariant negative definite inner product ¢, -) on g for which oy
and oy are isometries. Note that any negative definite Ad-invariant inner product (-, ) on g gives rise to such
an inner product: just take

() + 01(5) + 02( ) + (0102) (-, )-

Moreover, we put K := (G%)g, K2 := (G%)y, and choose a maximal torus S c (G°! n G°2)y. According to our
previous observations, T; = Z, (S) then is a maximal torus in K; and T := Z5(T1) is a maximal torus in G. Let
A be the gc—roots with respect to €, A* a choice of positive roots, I' ¢ A the set of roots vanishing on s, and
I :=TnA*. We also set 7a := aor whenever « is a root and 7 is an automorphism on g leaving t invariant.

Proposition 2.2. Let g = £; @ p; be the decomposition of g into the 1- and (-1)-eigenspaces of o7. Then
(1) the root space gg is contained in p"l: for all ¢ €T;
(2) if ¢ €T, then oy = @ and
(3) ova = -a;
(4) any two roots a, § € T are strongly orthogonal, that is, neither @ + ff nor @ - f is a root;

(5) denoting for a root a by Hy € it the element with (H,, - ) = a, we have

t€ = N kerae @ CHy,

ael* ael

and any two summands in this decomposition are mutually orthogonal with respect to <-, -).
Proor.

(1) Pick a € T and note that oy« still vanishes on s. Thus, the space U := g8 + ggla is o1—invariant, and so
decomposes as the direct sum U = (U n E‘f) ®(Un p?). Now proposition 2.1 implies that

Untf cZe(s)nkf = Zye(s) = ¢ < €,

and since U n € = {0}, it follows that U n E‘E = {0} as well. Thus, U ¢ p‘lc.



(2) We have just seen that given a € T the root space g$ is contained in p‘f. So, if we pick E, € g§ and
E 4, € g‘_Ea, then [Ey, E-o] € E‘f. We may assume that {E,, E_;) = 1, and then H, = [Eq, E_,] for the
element H, € it with {H,, - ) = a. Therefore,

a =<{Hgy,- ) =<01(Hy)," yoo1 = {(Hy, )oo1 = 010

3) According to the previous item, H, € £€, and since ;1 and o, commute, o3(H,) must be contained in £€
g p 1 1
as well. Therefore,

H, + 02(Hy) € € n E‘E n Eg = sC.
Now for Y € 5€ we compute
(Y,Hy + 02(Hy)) = 2{Y,Hy) = 2a(Y) = 0.

But ¢ -, - ) is non-degenerate on sC, hence we must have H, + 02(Hy) = 0, which is equivalent to saying
that oya = —a, because oy is an isometry of { -, - ).

(4) Let «, f € T and suppose that « + f was a root for a contradiction. We could choose non-zero root vectors
Xy € gg and X3 € gfg, and then [Xg, Xg] € gg+ﬁ would be a non-zero root vector as well. But ch (s)isa
Lie algebra and X, Xﬁ are elements of ch (s), so according to the first item

[Xe» Xp] € ] 0 Z,e(s) = 4 < £,

which is impossible. Therefore, a + § is not a root.

(5) Let a, p € T'* be two distinct roots. It is well known (cf. [16, Proposition 2.48, sect. I1.5]) that the a—string
containing f, that is, the subset of A u {0} consisting of elements f + na with n € Z, has no gaps and that
the integers p, ¢ = 0 such that (f + na € Au {0}) < (-p = n = q) satisfy p - ¢ = 2{a, f¥/{a, @). Since
neither a + ff nor a - f is a root, we hence must have

0 =<{a, B> = {Hq, Hg).
In particular, the elements Hy, a € I'", are linearly independent. Now let

U= @ CHyand U’ = ) kera.
a€el'* a€el'*

Then the equation a(Y) = (Hy, Y) for Y € t€ shows that U’ = € n UL, and so t€ = U e U’. O

3. Automorphisms

We continue to use the notation of the previous section. Given « € A, denote by s, : it — it the reflection
along the hyperplane orthogonal to Hy, i.e. the map

2(Hy, X
s, (X) = X - M.
{Hy, Hy»
Since the elements of T are mutually orthogonal, we immediately have

Proposition 3.1. The members of {sy, |« € I'"} commute pairwise.

Note that proposition 2.2 suggests that oy acts as a product of hyperplane reflections on a certain subspace
of t. This subspace will be a proper subspace in general, but if oy is an inner autormophism, then it actually is



all of t. We shall show that under some mild assumptions on o; the maximal torus s of £; n €2 can in fact be
recovered from T

Proposition 3.2. Suppose that o2 = cov holds for some element n € G and some automorphism v on G that
fixes t; pointwise. Then

(1) the element n is contained in Zg(S) n Ng(Ty),

(2) the maximal torus t is v—invariant,

() 2lit = [ Taer+(sm,)o(Vlig)-
Proor.

(1) By assumption, T; is contained in the 1-eigenspace of v and o2 = cpov. Since S is contained in the
1-eigenspace of oy and T is oy—invariant, the same statement is true with ¢, in place of os.

(2) Just note that v(T) is a maximal torus of G containing Ti, so v(T) = T.

(3) We already observed that n centralizes S and it is a well-known fact (see [16, Corollary 4.51, sect. IV.5])
that centralizers of tori are connected, so, according to proposition 2.1, we may express n as n = exp(X),
where X = X+ Xt for certain elements X, € tand Xr € @ ¢r 09. In particular, if Y € L, L : = (] ger ker a,
then [Y, X] = 0. Thus, Adj fixes L n it pointwise, as do the elements sy with € I'*. On the other hand,
if € " is arbitrary, then Hp c it; by proposition 2.2, so

Adn(Hﬁ) = Gz(Hﬁ) =-Hp = ( 1;1L sHa) (Hﬁ)

Therefore, Ad, restricts to [ ] er+ sy, on it, whence the v-invariance of t implies the claim. O

Corollary 3.3. Suppose that oz = cpevand t; ¢ g¥, and put L : = ") ger+ ker a. Then

itnL=(is) ®i(tnpy), ity = (is) ® @ RHy, and rank(t; n €2) = rank(t;) - [T*].
a€el™
Proor. We know from proposition 2.2 that it = (it n L) @ €5+ RH, is a decomposition into two o1 -invariant

subspaces and that @+ RHy is entirely contained in it;. Thus, we must have it n L = (it; n L) @ i(t n p1) and
ity = (ity n L) ® @ 4+ RHy. Now recall that (it;)°? = is, while (it;)® = it; n L holds by proposition 3.2. O

If g is simple the condition that oy is a composition of an inner automorphism and an automorphism fixing t;
is not too restrictive: in fact, we will see later that if o7 is an outer automorphisms, then, except for Lie algebras
of type D4, we may assume that o7 = cor and oy = c¢por or that 07 = ctor and oy = ¢, for some involution
7: G — Gandelements t € Ty, n € Ng(Ty) - T, where H = (G7)y.

The following propositions state that in this case we may trade ¢ € Ty for some element ¢’ € T to first assume
that n € H and that oy = c,o7; afterwards we may replace o1 by an inner automorphism.

Proposition 3.4. Suppose that o1 = ¢;or and 07 = ¢pov, where 7 is an involution, v = T or v = idg, t € T1, and
n € Ny(Ty) - T, with H = (G7)g. Then there exist elements t’ € T and h € Ny(T;) such that ¢y ot and ¢j,ot are
commuting involutions whose common fixed point set has s as a maximal torus.

Proor. First suppose that v = 7. Then we choose g € exp(tn p1), h € Ny(T1) with n = hqand set L :=
(\aer+ ker a. Note that t n L decomposes, by corollary 3.3, as tn L = s ® (tn py) and that the elements of tn L are
fixed by Ady, because o1, = 7| and hence proposition 3.2 applies. So if we pick Y € tnp; with g = exp(Y) and
put 7 = exp(Y/2), then ¢,-1°02°¢, is an involution, ¢ = r? and 7(r) = r~1. Therefore, we have

€-1°02°Cr = Cpgp-1°T°Cr = Cpgp-1°C-1°T = CpoT;



similarly, c,-1e010¢r = ¢ -1,7. Thus, ¢ -1,°T and cpo7 are two commuting involutions. Since their common fixed

point subalgebra is con]f]ugate to €1 n gg via Ad,-1 and Ad,-1 fixes s, the claim follows.

Now assume that v = idg. Choose a decomposition n = hq as before and use corollary 3.3 to additionally
find s € exp(s), a € exp(P er+ R(1Hy)) with t = sa. We will show that g := cysot is an involution, that y
commutes with o1, and that s is a maximal torus of g°! n g#. The previous case then implies the claim, because
ns € Ny (Ty) - T. To begin with, we assert that (c;)? = (cq)z; indeed, c; and ¢, coincide on t, whence we have
cp(a) = a ! and cx(s) = s (cf. proposition 3.2), so this follows from
Cn = 019Cp°01 = CroCy(p)°Ct = C5°Ca°CpoC

-1°Ct = CpoCs°C,-1°C,-1°Ct

q q

together with the commutativity of g, s, and a. Also note that h, ¢, and s commute with each other and that H
contains s. These observations imply that g is an involution commuting with oy, since

'u2 = Cps°ToCpsoT = CHSOChq-ls - (ch)ZO(cs)z - (Cn)z =id

and since cs, 7, and ¢, commute with o;. Finally, note that any maximal torus of g°! n g# containing s is a subset
of Z4(s) and that by propositions 2.1 and 2.2 o1 only fixes t; on Zy(s). Then s must be a maximal torus of g°! ng#,
as t€ and @ ¢r 95 are p-invariant subspaces and Hlg, = o2, only fixes s. O

Proposition 3.5. Suppose that o7 = ¢sot and that oy = ¢,o7, where 7 is an involution, ¢ is contained in T, and
h is an element of Ny (T1), with H = (G7)p. Let II,4q < II be the set of all roots € II for which the integer
Y aer+ 2¢a, ByKa, a) is odd. Then 7(a) # « for all @ € TT44.

Lemma 3.6. Under the assumptions of proposition 3.5 we have gC < h® for each root « € T.

Proor. Observe that the requirements of proposition 3.2 are met, so h is an element of Zg(S) n H = Zg(S).
Since Zy(S) is connected, we may express h as h = exp(Z) for some element Z € Zp(s) = Zgy(s) n b, say
Z = Zy+ Y ger+ Za» with Zy € tand Z, € gG o g€, for each root & € T*. Recall that o coincides with 7 on t,
because ¢; is the identity on t, so as o fixes each root « € T'*, 7 fixes each element of I'" too. Therefore, gg and
g“}a are eigenspaces of 7, whence Z, necessarily vanishes if gg ¢ bC. However, if f € T* was a root with Zﬂ =0,
then, as the elements of T are strongly orthogonal, we also would have [Z, Hﬁ] = 0, and hence Adh(Hﬁ) = Hp.
But this is impossible, because we know from proposition 3.2 that Ad,(Hg) = —Hg. Consequently, Zg # 0 and

g5 <h". 0

PROOF OF PROPOSITION 3.5. The decomposition t = ses’, withs” = @ ¢+ R(iHg)®(tnp1) yields a decomposition
k = k. k- for every element k € T, where k. € exp(s) and k_ € exp(s’). Moreover, o> restricts to id on s and to
(-id) on s’, so the condition that ¢;or commutes with o, can be rephrased as

-1 2 2 2
CkoT = 02oCkoTo(02) " &= CkoT = Cp(pyo(cp)oT == ()" = (cp)%s

but ¢, is an involution, because ¢; commutes with 7 and o3 is an involution, so cger commutes with oy if and
only if ¢;_ is an involution. In particular, if we let ¢ = ¢, t_, then ¢;_ is an involution.

With this characterization at hand we can show that no root in I1,44 is fixed by z: let us further decompose
t_as t_ = qr, where q € exp(t np1), r = exp(Z), and Z = Y e+ tqin/{a, a)Hy for certain real numbers t,.
Recalling that each element f§ € I' is contained in the (-1)-eigenspace of o1, but in the fixed point set of 7, and
that s ® (t n p1) is the common kernel of the elements of T on t, we find that

s - — — iﬂtﬂ~ .
ldgg 01 |gg Adr|gg € ld,

s0, (tg — 1) € 2Z. On the other hand, if € Il with 7(f) = f is arbitrary, then Adg restricts to +id on gg, because
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tn p; is the (-1)—-eigenspace of 7 on t. Combined with the fact that ¢; is an involution this gives

ldgg = (Adqr| C)2 = (Ad”gg)z = (_I)ZaEF {aay . ld,

95
because 2{a, f)/{a, &) is an integer and (f, — 1) is an even number. Therefore, f € I1,44. O

Corollary 3.7. In addition to the hypotheses of proposition 3.5 assume that g is semisimple. Let Ileyen = IT\II,44q
and choose, for each a € Ilyqq, €x € {+1} with €4 = —€;(,). There exists p € exp(t n p1) such that

(1) Ad, is equal to (i) - id on g% and to the identity on g% for all @ € Iy 44, f € Hevens,
(2) the automorphism v = ¢, exp(x), Where X = 3’ ,cp+ in/{a, ayHg, is an involution, and
(3) op commutes with v and s is a maximal torus of g¥ n g°2.

Proor. Choose Y € tsuch that a(Y) = 0 for all @ € Ieyen and such that a(Y) = €,iz/2 for all roots a € I 44; this
is possible, because the restrictions of the elements of II constitute a basis of (it)". Then Y is necessarily contained
in t n py, because a(Y + 7(Y)) vanishes for all « by choice of the integers €g, § € [1,qq- We set p := exp(Y) and
observe that Ad, indeed is equal to (€,i) - id on aC, if a € T 44, and to id else. Thus, for each simple root a € II
the maps (Adp)2 and (AdeXP(X))2 coincide on g€ and are equal to id or (-id), so v = Ad, exp(x) is an involution.
Moreover, v commutes with o, because vooy = v‘loaz.

Hence, it remains to show that s is a maximal torus of g¥ n g%, and to this end it suffices to verify the
maximality of 5. However, we already know that the complexification of Zg(s) is the sum of the o1~ and o2~
invariant subspaces t€ and @ ¢ g9. By construction, Ad,, equals id on the latter space, because 7(a) = « for
a € T, while Ady,(x) is just (-id) by proposition 2.2; hence v only fixes t in Z4(s), and the fixed point set of o7
on t is precisely s, because t; = t*. Thus, only s is fixed by both v and o3 in Zy(3). O

4. Normal forms for strongly orthogonal roots

4.1. Abstract normal forms

In the previous sections we learned that for a suitable choice of Cartan subalgebra the set of roots vanishing on
a maximal torus of the joint fixed point subalgebra of two commuting inner involutions is strongly orthogonal
and satisfies a certain involutivity condition. The purpose of this section is to establish a normal form for all
sets of roots satisfying these properties.

Recall (cf. [16, p. 149]) that an (abstract) root system (V,{-,-), A) consists of a finite-dimensional Euclidean
vector space (V, (-, -)) together with a non-empty set A ¢ V of non-zero vectors such that

(1) V = spang A,
(2) for each « € A the reflection

2a,v)
a

sq: VoV, o> v- s
“ {a,a)

maps A into itself, and
(3) the number 2{a, f)/{a, a) is an integer whenever « and f are elements of A.

A root system A is reduced if o € A implies that 2« ¢ A. It is called reducible if there exists a non-trivial disjoint
decomposition A = A’ uA” such that {a’, a’’) = 0 for all «’ € A’ and &’/ € A”’. If no such decomposition exists,
then A is irreducible.

Definition 4.1. Let A be a root system in the Euclidean vector space (V, ¢, -)).
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(1) A pair (U, Q) is a root subsystem of A if
a) Q c Ais non—empty,
b) U = spang Q, and
c) s¢(Q)cQforall x € Q.

(2) The root subsystem of A spanned by S, S < A a non-empty set, is the pair (spang$S, A n spanyS).
Remark 4.2. Let A be a root system.

(1) If (U, Q) is a root subsystem of A, then (U, <-, -)|yxy, Q) is a root system. If S ¢ A is a non—empty subset,
then the root subsystem spanned by S is a root subsytem in the sense of definition 4.1.

(2) Let (U, Q) be a root subsystem of A. We can identify the Weyl group W(Q) of Q, which by definition is a
subgroup of O(U, -, -)|uxu), with a subgroup W(Q, A) of the Weyl group W(A) of A, where

W(Q,A) :={we W) |w=sgo...o50, a €Q} <OV, ().

In fact, the map p: W(Q,A) — W(Q) restricting an element w € W(Q,A) to U is a homomorphism
of groups. Moreover, if w € W(Q), say with w = t40... ot , Where a; € Q and 5, : U — U denotes
reflection along the hyperplane in U perpendicular to ¢;, then

P(Sap0 .- 08q) = W;
and if w € ker p, then w = idy, because p(w) = idy and w(v’) = v for all v’ € U+ by definition.

Recall that any choice of positive roots A" in a root system A determines a set of simple roots IT ¢ A*, and that
any root a can be uniquely written as a = 3’ gy mpf for integers my of the same sign. The number }’ e mp is
commonly referred to as the level of the root «a.

Proposition 4.3. Let A be a reduced irreducible root system, A* c A a choice of positive roots, and oy € A.
There exists a unique root § of maximal level in the orbit W - &y of the Weyl group W = W(A), and this root
satisfies (5, a) = 0 for all « € A™*.

Proor. Choose any root § of maximal level in W - ag = {w(a)|w € W}. If « € A" is a root with <J, a) < 0,
then s4(J) is a root having higher level than § and still is contained in W' - &, which is impossible. Therefore,
we have {(J, @) = 0 for any positive root «. In order to prove the uniqueness statement, let IT ¢ A" be the simple
roots associated with the given choice of positivity and note that § is positive, so we may write

d=Y mga,
a€ll

with my € Z.o. We claim that each of the integers m,, is non—zero. For if this was not the case, then IT = II/ uIT”/

with Tl = {&| mg = 0} and IT” = {« | my > 0} would be a non-trivial disjoint union. Moreover, for any f € T’

we would have

<(S»ﬁ>: 2 ma<a,ﬂ>>

a€ell”

and the right hand side is non—positive, because the inner product of two distinct simple roots already is non—
positive. By what we have just shown, (J,) = 0, and so <4,) = 0 and hence {a, ) = 0 would have to
hold for all @ € II” and B € II’. But this is impossible, because we are assuming A to be irreducible. Now let
Y € W - o be another root of maximal level. The same line of reasoning as before also applies to y and shows
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that y = Y ,ep o« for integers n, > 0. In particular, since there is some simple root § € II with <5, ) > 0, we
also must have (J, y) > 0. Therefore, § - y is either a positive or a negative root (or 0), and since

§-y=2 (mg-nga,
a€ll
it follows that (my — ng)qern is either a sequence of non-negative or non—positive integers. But § and y have
the same level, that is, ). ;e Ma = Y. gern Na> and therefore my = ny for all o € I O

Let A be a reduced irreducible root system and A* a choice of positive roots. A well-known consequence of
the classification of such root systems is that any two simple roots of the same length are contained in the same
Weyl group orbit. On the other hand, every root is contained in the Weyl group orbit of a simple root (see [16,
Proposition 2.62, sect. I1.6]), so if L is the length of a root in A*, then by proposition 4.3 we may unambiguously
speak of the highest root (with respect to the level) of length L.

Now let IT ¢ A" be the simple roots and T ¢ A a non—empty set of (not necessarily strongly) orthogonal roots
such that T’ = (-I'). We further suppose that all elements of T are of the same length L > 0 and put I'* =T'n A*.
We claim that there is a way to describe the possible elements that I' may contain, up to application of a Weyl
group element. To this end, let us introduce some notation for non-empty subsets A c II that we will make
use of in the sequel. Given such a set A we write A4 to denote the root subsystem of A spanned by A and we
put A} = Ay n A", which is a notion of positivity with simple roots A. Moreover, we call A irreducible if Ay
is irreducible, and refer to a non-empty subset A’ c A as an irreducible component of A if A’ is maximal (with
respect to inclusion) among all irreducible subsets of A. Note that A decomposes as A = Aj u ... u Ap, where
each A; is an irreducible component of A and the members of A; are orthogonal to A for all i # j. Finally, if A is
irreducible and admits roots of length L, then we write §(A) to denote the highest root of length L in A4 (with
respect to A7,).

Next, we recursively define a family (A;)-o,...» of non-empty subsets of P(II) (the power set of IT) as follows.
We put Ag := {II} and suppose that for some k = 0 the sets Ay, ..., Ay are already defined. Then a non-empty
subset A c Il is contained in Ay, if and only if

(1) Ay isirreducible and admits roots of length L,

(2) there exists a (possibly empty) set B c IT whose members are orthogonal to each member of A and a set
v(A) € Ay such that

8(v(A)* n v(A) = Bu A;

in other words, A is an irreducible component of §(v(A))* n v(A) that admits roots of length L. We put n := k
if no such A exists and call Ay, ..., A, the normal form tree for (A, A*) and L.

Remark 4.4. Closely related to the normal form tree construced above is the so—called cascade of strongly
orthogonal roots defined in [18, Section 1]: indeed, if A € A; for some i > 1, then in the notation of [18] §(A)
is an offspring of 5(v(A)). If Ay, ..., A; are such that A; € A;, then {5(Ay), ..., 5(A;)} is called a chain cascade in
[18].

Proposition 4.5. Any two distinct sets A;, A; are disjoint and Aa, Ay are perpendicular for all A, A” € Ay
with A # A’. Moreover, for A € Ay, the element v(A) is the only set in A with A n v(A) # @.

Remark 4.6. Thus, we may define a graph with vertices the elements of Agu...u.Ap, where A, A’ are connected
by an edge if and only if A = v(A”). The resulting graph is a tree, hence the name.

Proor. We first show by induction on k = 0,..., n that v(A) is the only set in A} intersecting A € Ay, non-
trivially and that A, A’ € A} have non-trivial intersection only if A” = A. This is immediate if k = 0, because
Ao = {II}, so suppose that the induction hypothesis has been established for some natural number k > 0.
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Choose A, A’ € A}, arbitrarily and note that by the induction assumption v(A) and v(A’) are the unique sets
in A with An v(A) # @ and A’ n v(A’) # @. Hence, if An A’ is non-empty, then, since A c v(A) and A’ c v(A")
holds by definition, also v(A) n v(A’) is non—empty, so by the induction assumption we must have v(A) = v(A’).
The defining property of v(A) is that 5(v(A))* n v(A) = Bu A holds for some subset B c IT whose members are
orthogonal to each member of A. Therefore,

Ay = (AA/ n spany (A n B)) u (AA/ n spany (A’ n A))

is a decomposition into two sets whose members are mutually orthogonal, whence by irreducibility of A ,, we
must have A 4/ < spany(AnA’). Thus, A’ n Bis empty and A’ ¢ A. Exchanging the roles of A and A” we conclude
that A = A/, so two sets in Ay, intersect non-trivially only if they are equal. To finish the induction step, just
note that if A € Ay,, is arbitrary and B € Ay, intersects A non-trivially, then also v(A) n B # @, because
A c v(A), so by what we have just shown B = v(A).

Now suppose that A, A” € A} are two distinct sets and let j > 0 be the smallest integer such that v/*1(A) =
v/*1(A’). By definition we have §(2/*1(A))* n v/*1(A) = B u v/(A) for some set B which is perpendicular to
v/(A) and hence intersects v/(A) trivially. Since we just showed that ©/(A) intersects v/(A’) trivially as well,
we conclude that ©/(A’) must be contained in B. Thus, v/(A’) is perpendicular to v/(A), whence A and A’ are
perpendicular too, because A ¢ v/(A) and A’ ¢ v/(A’). Finally, suppose that A is contained in Ay n A, j for
integers k = 0 and j = 1. Then vk(A) € Ag n Aj, whence v*(A) = I1 This is impossible, however, because each
element of A; is a proper subset of II. O

Corollary 4.7. For B€ Ay, and all A€ Ag u...u Aj such that A # B we have B c §(A)*.

Proor. If A € Ay, the statement follows readily from proposition 4.5, so we suppose that A € Aj_; for some
j = 1. If A is different from v/(B), then even v/(B) and A are perpendicular. If A is equal to v/(B), then v/~(B) c
8(A)* holds by definition, so B < v/~!(B) is perpendicular to 5(A). O

Corollary 4.8. Let B € Ay. Any w € W(B) permutes the members of {Ag|A€ Ap}, if m< k.

PrOOF. Fix some j = 0 and put £ := k - j. If A € Ay is different from ¢/(B), then A and v/(B) are perpendicular,
whence so are A and B. Since w is a product of reflections s, with a € B, w hence fixes A and A4 in this case.
On the other hand, if A = vi(B), butj > 0, let Cy,..., Cpcll be the irreducible components of S5(A)* n A. Note
that C; is contained in A¢41 if and only if A¢, admits roots of length L, so we may further assume that for some
s = 1 the sets Cy, ..., Cs contain roots of length L, while Cq.1, ..., Cp do not, and that vj_l(B) = Cy. Now observe
that the root subsystem spanned by 8(A)' n A is precisely §(A)* n A4. Indeed, any root @ € Ay is a Z.o— or
Z..o-linear combination of elements in A, so if (5(A), a) = 0, then « must be a linear combination of elements
in §(A)* n A, because {5(A), B = 0 holds for all § € A by proposition 4.3. Hence, we have

5(A)J‘ nAg=Ac u...u Acp.

Also note that B is perpendicular to §(A), but contained in A4, so w leaves §(A)* n A4 invariant. Hence, since w
is an isometry and A, is irreducible, we must have w(A¢,) € {A¢,, ..., Acp} for each i. Moreover, if A¢, admits
roots of length L, then so does w(A(;), whence w even permutes the set {Ac,,...,Ac, }. [

Theorem 4.9. There exists a Weyl group element w € W(A) such that
(1) w)nA* c{6(A)|]A€ Agu...u Ap} and
(2) if 6(A) is contained in w(I') n A*, then either A = IT or §(v(A)) is contained in w(l').

Lemma 4.10. If @ € Ay, A € Ay, is perpendicular to 5(A), then a € A 4, for some irreducible component A’ of
S(A)* n A. If in addition « is of length L, then k < n and A’ is contained in Aj.,;.
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ProOF. Express a as a = } g mpf for integers (mp)pea of the same sign. Since (a, §(A)) = 0 holds by
assumption, we conclude that only those coefficients mg with (8(A), B = 0 can be non-zero, and since « is a
root, some mg must be non-zero. Hence, §(A)* n A is non-empty and S(A nA=Cru...u Cp, where Cy, ..., Cp
are the irreducible components. Thus, if f € C; for some i and some f with mg # 0, then also @ € Ac,. Moreover,
if a is of length L, then A¢, admits roots of length L, so C; € Ay, and k < n. O

PROOF OF THEOREM 4.9. Put A1 := @ and denote for each k = -1,..., n by §(A_) the set {§(A)|A€ Agu...u
Ap}. We inductively prove that for k = -1, ..., n there exists an element w € W(A) such that

(1) every element in (w([') n A*)\ 8(A.t) is contained in A 4 for some A € Ay, and
(2) 6(v(A)) € w(l') whenever @ € w(I') n Ay for some A € Ay u...u Ajq.

For k = -1 the set §(A.y) is empty and A¢ = {II}, so we may take w = id in this case. Now suppose that
the induction hypothesis holds for some number k < n, so there exists w € W(A) verifying the two properties
above. In particular, there exist elements Ay, ..., A, € A, such that each element of I := (w(I) n A*)\ (A )
is contained in some Ay, ..., A Ap> and we may assume p to be the minimal number of elements required to
satisfy this property. Thus, we may choose an element y; € I” n Ay, for each i = 1,..., p. Since A, is reduced
and irreducible, all roots of the same length are contained in one Weyl group orbit, so there exists an element
wi € W(A,,) such that wi(y;) is the highest root of A 4, having length L, that is, wi(y;) = 5(A;). Now consider the
element w := wyo ... owp. We know from proposition 4.5 that w’ leaves each of the root systems A A; invariant,
because each w; is a product of root reflections s, with a € A;. The same reasoning combined with corollary 4.7
shows that w; fixes §(A)) for all i # j and also all roots in (A ). Hence, w’ fixes the elements in §(A_y), so if we
put w := w’ow, then the set w(I')nA* fully contains w(I')n §(.A ) and all of the roots §(A1), ..., 6(Ap). Moreover,
each root & in (W(I') n A*)\ §(A.k.1) is contained in some A 4,, because the same is true for (W) Y(a) € T”. Since
the roots in T are pairwise orthogonal, such an a hence is orthogonal to §(A;), because w/(y;) = 8(4A;), and
therefore already contained in A4 for some A € Aj,, by lemma 4.10; in particular, no such « exists if k = n - 1.
It remains to verify the second property, so suppose that we are given a positive root « € w(I') n A for some
B € Aju..u Ag,y. We already know from the induction assumption that either a € §(A.x) or a € Ay, must
hold, and if @ € §(A.i), then B must be contained in A u ... u Ay by corollary 4.7. Since w’ fixes §(Ax)
pointwise, the induction statement for k shows that §(v(B)) must be contained in w(T') if & € 5(A ). If @ € Ay,
for some iand B € Ay, ;_; for some j = 0, then Ag and Ayi(a;) intersect non-trivially, hence B and v/(A;) must be
equal by proposition 4.5. Moreover, (w)"!(a) and « both are contained in Ayi(a,) because w’ leaves invariant
Ay, so by corollary 4.8 (w)™! must leave Avicay and Ag invariant as well. Therefore, (w)"!(a) is contained in
w(T') n Ag, whence by induction assumption §(v(B)) € §(.A.k) is contained in w(T') and also w(I'). The final case
to consider is that « is an element of some A4, but that B € Ay,,. Then A; = v(B), and §(A;) is contained in
w(T') by construction. O

4.2. Normal forms for simply laced root systems

Withis this section, we fix a reduced irreducible root system A whose roots are all of the same length, a set of
positive roots A* with corresponding simple roots II, and a non—empty set of strongly orthogonal roots T c A.
As before, we also set " = T'n A* and we additionally suppose that the integer

2a,p)
=p(AT, ) :=
pa) = pOT.0) 1= B 7

is even for all roots . Note that if w € W(A) is arbitrary, then p(A, w(l'), ) still is even, because this number is
equal to p(w™!(a)). Hence, we may use theorem 4.9 to assume that I'* is contained in {§4|A € Ag u...u Ay}
and that each §(v(A)) is contained in I whenever §(A) is an element of T and A # I1.
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Example 4.11 (Normal form for A,). It will be convenient to associate with any reduced irreducible root system
Q with positive roots Q* and simple roots ® a modified Dynkin diagram. By this we shall mean the graph with
vertices ® u {J.}., where §, denotes the highest root of length ¢ and ¢ ranges over all root lengths in Q, and
whose edge set is built according to the rules of an ordinary Dynkin diagram. The resulting diagram for root
systems of type A, r = 1, is given in figure 1. If A is of type A, and we label the simple roots IT = {ay, ..., @}

8

e T

a a a1 ar

F1GURE 1. Modified Dynkin diagram for root systems of type A,, r > 1. The highest rootis § = a1 + ... + .

as in figure 1, we can immediately read off the sets Ay, ..., A,. In fact,

Ao = {H}, A] = {{az,...,ar_l}}, cees Al’ = {{ai+1,...,ar_,-}},

so I'" = {6(Ap), ..., 6(Aq)} for some q < [r/2], where A; = {1, ..., ar—;}. However, the constraint p(a) € 2Z
can only be satisfied if r is odd and g = (r - 1)/2, for otherwise ag+1 — 8(Aq) is a root and p(ag+1) = 1. Therefore,
r=2k+1andT" is equal to {Jy,..., Ok,1}, where §; = @; + ... + @p—j+1-

Example 4.12 (Normal form for D,). Suppose that A is of type D,, r > 4, and enumerate the simple roots
II={a,...,a} as in figure 2. We first assume that r = 2k + 1 is odd. Then we have, for i > 1:

)

ar-1

ar a Qr-2
ar

F1GURE 2. Modified Dynkin diagram for root systems of type D,, r > 4. The highest rootis § = 1 + 2ap + ... +
20r-2 + 0r-1 + ar.

A= {ezia b @i art s Ajer = {{aks b {@ako1 @k @i } > Ak = {{e2kr} )

Thus, if we let A; = {a;, ..., @}, then there exists a maximal integer 1 < m < k such that I'* contains the element
6(A2m-1), and then I'* will also contain §(A1), §(A3), ..., 5(Az2m-3), because v(Azi11) = Azi—1. No element a1
with m < i < k can be contained inI'*, for otherwise we could choose i maximal with ay;_1 € I'*, and then a»;_1 is
the only element of I'" not perpendicular to ay;, whence p(a;) = 1. Similarly, if ¢rz;_1 is contained inT'* for some
1 < i, then ap;_3 is contained in I'* as well, for otherwise p(az;—2) = -1 would hold. On the other hand, a1
must be contained in I'" to ensure p(azm) € 2Z, hence I'* is equal to {a, 5(A1), a3, 5(A3), ..., d2m-1, 6(A2m-1)},
for some 1 < m < k. Now suppose that r = 2k. This time we have

Ai = {{a’zl'_1}, {(X2i+1,...,0{r}} fori<k-1land Ayp_; = {{(sz_3}, {azk_l}, {azk}}.

We again let A; = {«;, ..., @y} and define 1 < m < k-2 to be the maximal integer such that I'* contains 6(Azpm-1).
If m < k-2, then the same argument as in the case of odd rank shows that I'* is equal to {apj-1, §(Azi-1)|i = m}.
If m = k-2, then an odd (in particular non-zero) number of elements of { @yj_3, @yf_1, do } must be contained in
I'*, for otherwise p(azi_») is not even, and if ay_3 is contained in T'*, then the same reasoning as in the previous
case shows that oy, ..., ayi_3 actually are contained in I'*. For later reference, let us summarize all the cases we
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discussed: T* is equal to one of the sets

{a1,61, 03,8, ..., 00m-1, B2m-1}, {61, 83, ..., -3, v} or {1, 61, a3, 83, ..., Op3, ar-1, 0tr },
where 2m - 1 < r - 2, y is either a,_1 or &, and §; = a; + 2(Qj+1 + ... + Ar—2) + Ar—1 + 0r; moreover, the last two
cases can only occur if r is even.

Example 4.13 (Normal form for E¢). We assume that A is of type E¢ and enumerate the simple roots as in
figure 3. Note that the root subsystem spanned by IT\ {as} is of type As. Hence we can immediately deduce

s s
O O
a1 a a3 ag a5

F1GURE 3. Modified Dynkin diagram for root systems of type E¢. The highest root is § = a1 + 2a2 + 303 + 204 +
o5 + 204.

from example 4.11 that T is equal to {J, 81, 82, a3 }, where § = a1 +2ap+3a3+204+ a5+ 205, 6 = a1+ Az +a3+ay+as,
and 8 = ap + a3 + ay.

Example 4.14 (Normal form for E7). Suppose that A is of type E;7 and that the simple roots are enumerated as
in figure 4. The root subsystem spanned by IT\ {a7} is of type D, so I'* must be the union of {(I)} and one

as s
aj a2 a3 a4 a6 a7

F1GURE 4. Modified Dynkin diagram for root systems of type E;. The highest root is § = a1 + 2a2 + 303 + 4oy +
205 + 306 + 2017.

of the sets that we determined in example 4.12. However, in order for p(a;) to be even, there must be an odd
number of roots in I'* \ {§(IT)} which are non-perpendicular to ¢, and this only leaves the possibilities

{6, 01,61}, {6, 61,83, a6}, or {3, a1, 61, a3, &3, @5, 6 }

for I'*, where § = 6(Il) and 6; = «; + 2(js1 + ... + Q) + a5 + 0.

Example 4.15 (Normal form for Eg). The case that A is of type Eg can be treated similarly as in example 4.14.
In fact, enumerate the simple roots as in figure 5 and observe that IT\ {ag} spans a root subsystem of type E7.

3 as
E O
ag a az a3 ay a ay

FIGURE 5. Modified Dynkin diagram for root systems of type Es, r = 1. The highest root is § = 3a; + 42 + 503 +
6ay + 305 + 4o + 207 + 208.

So,I'*\ {8}, where ¢ is the highest root of A*, must contain an odd number of roots that are non—perpendicular
to ag, as otherwise p(ag) would not be even, and this shows that I'* is equal to

{(S, 5,, ai, (31} or {5, 5’,0(1, 51, as, 53,0(5, (Xs},

where 8’ = a1 + 2a2 + 303 + day + 2015 + 30 + 207 and &; = @ + 2(jq + ... + AY) + As + .
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4.3. Normal forms for non-simply laced root systems

As in the previous section, we fix a reduced irreducible root system A, a set of positive roots A*, and the asso-
ciated simple roots II. As already pointed out earlier, it is a consequence of the classification of irreducible root
systems that A admits at most two different root lengths, and we assume that different root lengths do occur in
A. The purpose of this section is to provide normal forms for sets I' consisting of strongly orthogonal roots in
A in case that the elements of I" are not necessarily all of the same length. We begin with some slightly more
general considerations.

Proposition 4.16. Let § be the highest long root in A and suppose that §- nII = A u A’ for non-empty sets
A, A’ with the property that each element in A is orthogonal to A”. Then A4 and A 4 are irreducible, and there
exist long roots a, a; € Il such that 6- n 1 =TI\ {ay} and such that A = {1} or A’ = {a1}.

Proor. Express § as § = ).,y Mq o and consider the equation

_%8,8) S m 28, a)
T (8,8 4 18,8

it implies, due to the non-negativity of (3, a) for each « € I, that at most two summands in the right hand sum
can be non-zero, and we first show that there is actually only one non-zero summand. Suppose that there exist
B1, Po € I with {8, B;) > 0 for a contradiction and observe that mg, = mg, = 1. Now for any root € II we have

2B s g BB

1) =5 5y weitis ™ BB

and q(p) is determined by the f-string containing d. Since §-2p; is neither a Z.y— nor a Z_¢-linear combination
of elements in IT and hence not a root, and since m, > 0 for all « € II, we conclude that q(f;) = 1 and that there
is exactly one element y; € IT with {f3;, ;) # 0. In particular, there can be no decomposition IT\ {81} = Bu B’ for
non-empty sets B, B’ such that B’ ¢ B*, for if y; € B, say, then also IT = (Bu {81 }) u B’ would be a decomposition
into the orthogonal sets Bu{f; } and B’. For the same reason IT\ {1, 2} does not admit a non-trivial orthogonal
decomposition either, and this contradicts our assumptions, because

M\ {B1, B} = nll=AuA.

Therefore, there exists exactly one root oy € II with (J,ay) > 0 and Stnll =11\ {ao}, and since § is a long
root, which implies that 2¢4, ap /{5, §) = 1, this root has mg, = 2. Also note that § - 3ay is not a root, whence
either q(ap) = 1 or q(ap) = 2. However, if q(ay) = 2 would hold, then § — 209 would be a root and could be
expressed as § — 2a9 = 8 + ff/ for elements f € Ay u {0} and f’ € Ay u {0}. But since my > 0 for all & € 11,
the elements ff and 8’ both are non-trivial, which is impossible, because A and A’ are mutually orthogonal.
Thus, g(a) = 1 and ap also is a long root, so the explicit expression for g(ap) given above shows that there
are at most three simple roots different from @y which are non—perpendicular to o. But if there was only one
simple root  with (ay, f) # 0, then a similar argument as already provided earlier would show that IT\ {a}
admits no non-trivial orthogonal decomposition. To exclude the case that there are three roots, we observe that
if § € I1is a root which is different from ay, has mg =1, and is non—perpendicular to ay, then  is the only root
a € IT\ {B} with {a, ) # 0, because any other such root would contribute a summand m,2{f, a)/{f, ) < 0 to
q(p), which is impossible because mg, = 2 and () = 0. Moreover, in this case 2¢f, ap »/{p, f) is equal to 1, which
is equivalent to saying that f is a long root. In particular, if there were three simple roots f;, f2, and f3 different
from ay satisfying <fi, @) # 0, then necessarily mg, = 1, because g(ag) = 1, and ap would be the only root
not perpendicular to f;. Hence, IT\ {a, p1, f2. f3} would not admit any non-trivial orthogonal decomposition,
which by irreducibility of A would only be possible if IT = {ay, f1, f2, f3}. But then IT would only consist of long
roots and hence not admit two different root lengths. Therefore, there are exactly two roots a1, a € IT which
are non-perpendicular to ap, and if suitably enumerated they satisfy my, = 1 and mg, = 2. As just observed, o
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then is a long root and ¢ is the only root not perpendicular to e;. Thus, IT\ {&; } and hence also IT\ {a, a1 }
admits no non-trivial orthogonal decomposition, so either A = {a;} and A’ = I\ {ag, a1} or A =TT\ {ap, o1 }
and A’ = {a;} has to hold. O

For the remainder of this section we fix a reduced irreducible root system A admitting two root lengths Ljqp,
and L, positive roots A*, and denote by IT the simple roots. Let Ay, ..., A, be the normal form tree for
(A, A7) and Lj,pg constructed in section 4.1. An inductive proof using proposition 4.16 then shows that either
Ay consists of a single element or that Ay contains two elements, one of which consists of a single long root.
In particular, each A contains exactly one set Ay such that A4, might admit short roots.

Now if I' ¢ A with T' = (-T) is a non—-empty subset consisting of orthogonal roots, then we may provide
a normal form for I' as follows. Let I'ng and T'gyort be the subsets of T containing all long and short roots,
respectively. If one of Iy Or I'gport is empty, then we may use theorem 4.9 to obtain a normal form for I'.
Otherwise, we may still use theorem 4.9 to assume that Iy,, n A is contained in {5(A)|A € Aqu ... u An}.
Note that Ag = IT and let £ > 0 be the maximal integer such that Iy, is contained in §(A,)*. Since Tghopt
is orthogonal to 8(Ay), 5(v(Ay)), ..., 5(vf(Ay)), lemma 4.10 implies that T,y is fully contained in Q := Ag for
some irreducible component ® of 5(A;)* n A,. Observe that no element 5(A) with A € A,,; and k = 2 can
be contained in Iope. In fact, if this was the case, then vk(A) = Ap would have to hold, because A \ {A;}
contains at most one more set and this set consists of a single root. Similarly, v¥1(A) cannot consist of a single
element, because vF2(A) is non-empty, so vk 1(A) must be equal to ® = Ag,q. But then 6(A) € T'pg would also
imply 8(A¢+1) € Iong, and Ty would be contained in 8(Ag+1)* by lemma 4.10, contradicting the choice of ¢.
Consequently, as ¢ is perpendicular to all elements in A, different from @, it follows from corollary 4.7 that
each element w € W(Q) ¢ W(Ay,) fixes Iy, pointwise. Moreover, if By, ..., By, is the normal form tree for
(Q, Q%) and L, o1, where QF = Q n A* are the positive roots with corresponding simple roots ®, then according
to theorem 4.9 there exists w € W(Q) such that w(Tg,ort) N Q* is contained in {y(B)| B € By u ... u By, }, where
y(B) denotes the highest short root in Qp. In summary, we have shown

Theorem 4.17. There exist a Weyl group element w € W(A), an integer £ > 0, a set Ay € A, and an irreducible
component ® of §(Ag)* n Ag with the following properties: if By, ..., By, © P(®) is the normal form tree for
Q := Ag and the short root length in A, then

(1) w(liong) n A is contained in {6(A)|A € Agu...u Aps1},

(2) W(lghort) N A" is contained in {y(B)|B€ By u ... u Bp},

(3) if 6(A) € w(T) for some A € Aj U ...u Ay, then also §(v(A)) € w(I),

(4) 6(Ap) € w(I'), and if y(B) € w(T') for some B € B u ... u By, then also y(v(B)) € w(T).

Fix a set of strongly orthogonal roots I with I' = (-I') and suppose that the integer p(«) introduced earlier,
a € I1, is even. In the following, we explicitly determine normal forms for I in case that I' satisfies the conclusions
of theorem 4.9 or theorem 4.17 with w = id.

Example 4.18 (Normal form for B,). Suppose that A is of type B,, r = 2, and enumerate the simple roots
II = {a,...,a} as in figure 6. Let us further suppose that I only consists of short roots first. Then according to
figure 6 the normal form tree By, ..., Bp for the short roots is given by B; = {B;}, where B; = {ajs1, ..., ar} for
i< r-1,s0m=r-1 Note, however, that the difference y(B;) - y(B;) of two highest short roots with i > j is
a root again, but that the roots in I are assumed to be strongly orthogonal, which is why I'* can only consist of
the highest short root y(IT). Now suppose that I only consists of long roots and write r = 2k + 1 or r = 2k. Then
the normal form tree Ay, ..., A, is given by

Ai = {{ai} {aisr, o} }if 1 s i< k-1,and Ag = {{ape1} s
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Diagram for r = 2. Diagram for r = 3.

FIGURE 6. Modified Dynkin diagrams for root systems of types B, r = 2. The highestrootis § = aj +2a+...+ 20,
the highest short rootis y = a1 + ... + a.

note that the above formula is indeed valid in case r = 2k + 1, because ayy,1 is a short root, so {ar, 1} € Ay in
this case. Hence, if we put A; := {a;,..., &} for 1 < i < r, then the situation is analogous to that of example 4.12,
whence there exists an integer m < k such that I'* is equal to {@2;-1, 8(A2i-1) | i = m}. Finally, suppose that T
contains both long and short roots. Then each element in Iy is equal to 5(A) for some A € Ay and there exist
¢ =0, A’ € A, such that each element of Ty, is equal to y(B) for some B € B;, where By, ..., By, now is the
normal form tree for Ag and @ is an irreducible component of §(A’)! n A’. In particular, A 4, must admit short
roots, whence either A’ = Ay;_; for some i or A’ = {a,}. In any case it follows that I, n A* only contains one
highest short root y = y(B) for some irreducible set B c II. However, the integer 2{y, a)/{y, y) is even for all
simple roots &, no matter if & € B or not, whence the parity of p(A, I'ong, @) and p() is the same for all a € I1. In
particular, p(A, T'opg, -) must be an even function, so I'jope N A must be equal to {a1, 5(A1), ..., @2m-1, 5(Azm-1)},
where m < k and k = |r/2]. Then Tgo;e n A* = {y(B)}, with B the irreducible component of 6(A2,-1)" n Azm-1
admitting short roots. All of these cases can be summarized as follows: I'" is equal to

{nt {x, 61,03, 8,...,m,m}, or {1, b1, 23, 83, ..., A, O, Y2}
where m < r is an odd number, §; = a; + 2(@j+1 + ... + @), and y; = & + ... + ;.

Example 4.19 (Normal form for C,). We assume that A is of type C,, r = 3, and that the simple roots II are
enumerated as indicated in figure 7. The normal form tree for the long roots in A is given by A; = {A;+1} with

1)

a

a —O——0

14

F1GURE 7. Modified Dynkin diagram for root systems of type C,, r = 3. The highest rootis § = 203 +...+2a,_1 +ap,
the highest short rootis y = o1 + 2ap + ... + 2ap-1 + .

Aj ={aj,...,ar}, because A,_1 = {ar_1, @} spans a root subsystem of type By in A, with short root o,_;. Hence,
if T only contains long roots, then I' = {§(A;),..., 5(Am)} for some m =< r and to satisfy p(ap) € 2Z, we must
have m = r. Next, suppose that I" consists of short roots only and that r = 2k + 1 or r = 2k. In this case the
normal form tree for short roots is given by

B = {{a2,-_1},{a2i+1,...,a2k+1}},if1 <i<k-1,and By = {{Olzk_l}};

we carefully note that { @, } is not contained in By, because either r = 2k+1 and ayy,; is along root or r = 2k and
{aak_1, @) } € By_1 spans a root subsystem of type By, with short root ay;_;. Put B; = {a;, ..., } for i = 1 and
observe that r cannot be odd. In fact, if r = 2k+1, then the same reasoning as in example 4.12 shows the only way
that the function p can be even valued is that there exists some m < k such that T* = {a;_1, y(B2i-1)| i < m},
and this contradicts our assumption that I consists of strongly orthogonal roots, because a1 + y(B1) = (A1) is
a root. Similarly, if r = 2k, then no root az;—1 with i < k can be contained in I, for then also y(B;) and ¢; must
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be contained in I. This implies that I'* = {y(By), y(Bs3), ..., y(Bok_1)}. Finally, suppose that I contains both long
and short roots. Then Igpe = {6(A1), ..., 6(Am)} for some m < r and each root in Igpey is the highest short
root of some element in the normal form tree for the irreducible component ® of §(An,)* n Ay, admitting short
roots. Note, however, that 5(Am)J- nAp, always consists of a single irreducible component. In particular, the case
m = r-1is excluded, because this component is equal to { &, } and &, is along root. Therefore, ® = {am+1,..., &},
whence if m < r -2, then Q := Ag is a root subsystem of type C,_,, and {a, §(A;)) vanishes forall « € ®, i < m.
Hence, p(Q, Tghorts ) is even valued and Iyt is one of the sets that we encountered above. Similarly, if m = r-2,
then ® = {a,_1, @} and Q is of type By, whence according to example 4.18 gyt = {y(®)}. In total, we have
shown that T'* equals

{81, ... 81, o} or {81, ..., 8, Yists Vie3soes Yr=1}s

where 0 < i<r,r-iiseven, §; = 2(o; +... + ar_1) + o, and yj = & + 2(j41 + ... + ap_1) + & for j < r - 1, while

Yr-1= Qr-1+ Qr.

Example 4.20 (Normal form for F4). Suppose that A is of type F4 and enumerate the simple roots as in figure 8.
Let us first note that I cannot consist of short roots only: indeed, if y is the highest short root of A and T = {y},

o2 a3 a4

Y

F1cure 8. Modified Dynkin diagram for root systems of type F4. The highest root is § = 2a; + 42 + 303 + 20,
the highest short root is y = 201 + 3a + 203 + 4.

then p(e;) = 1 is not even. Hence, there must be at least two short roots in I'*, and since yJ- nIl = {a, a3, a4}
spans a root subsystem of type B3, we must have I'" = {y, y2}, where yy = a + a3 + a4. But then y + y» = § is the
highest long root of A, which is impossible, because the elements of T are supposed to be strongly orthogonal.
Consequently, T contains the highest long root §. Now 8 nII = {a1, a2, a3} spans a root subsystem of type Cs,
so I'" must be the union of {5} and one of the normal forms given in example 4.19. It follows that I'* is equal
to {0, 81,02, a3} or {J, &1, y2}, where &1 = 2(a1 + a2) + a3, 82 = 2a0 + a3, and y» = @y + a3 (note that ag + 2y, is a
root, so p(ay) is indeed even in the second case).

Example 4.21 (Normal form for Gz). Suppose that A is of type Gy and let the simple roots be enumerated as
in figure 9. Note that the normal form tree for the long root length in A only is A¢ = {II}, because the only

FIGURE 9. Modified Dynkin diagram for root systems of type Gy. The highest root is § = 3a; + 2a», the highest
short root is y = 201 + 2.

root which is non-perpendicular to the highest long root § of A is a1, which is a short root. Similarly, the
normal form tree for the short root length in A is just By = {II}, because only ay is non-perpendicular to the
highest short root y of A. Therefore, I must contain both a long and a short root, whence by our convention to
enumerate the long roots first we must have I'" = {§, o }.
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5. Cohomology of associated subalgebras

Let g be a compact semisimple Lie algebra (equivalently: the Killing form on g is negative—definite), t a maximal
torus, A the roots with respect to the Cartan subalgebra g€, and A* a notion of positivity. In the sequel, we
frequently have to consider the Lie subalgebra of g associated with Q, where Q is a non-empty subset of the
roots A. By this we shall mean the smallest subalgebra £ of g containing the spaces g n (gg ® g‘?a) for each root
a € Q. Explicitly, this subalgebra is given as the intersection of g with the subalgebra

[0 0%] e @ g
a€A*nspan; Q a€Anspan; Q
Note that if A is an automorphism of g which leaves invariant t, then A(£) is the subalgebra associated with
(AH)Q) = {acA|a € Q). We will almost exclusively be interested in the case that Q is a subset of the
set of all simple roots IT ¢ A", and we list some properties for such associated subalgebras in the following
propositions. These are mostly straightforward to verify, but nonetheless, we decided to provide the proofs.

Proposition 5.1. Let Il c I be a non-empty subset and £ the subalgebra associated with IIy.
(1) &is compact semisimple.

(2) A maximal torus for € is given by

s=gn @ [o5 05%]
a€lly

(3) Restriction to sC induces a bijection ® from A n span, Il onto the set of roots of £ with respect to sC.
Moreover, @ (AJr n spanZHO) is a notion of positivity with simple roots @ (Ilp).

Proor. The restrictions of the elements of IIj to s€ give a basis of (s¢)*, so no non-trivial element of a root
space g§ with @ € A n spany Iy can simultaneously commute with all elements of s. This implies that s is a
maximal Abelian subspace of £. Consequently, the center of £ must be contained in s, and since the root space of
every root in Iy is contained in €, no non-trivial element of s can be central. Now observe that the existence
of an ad-invariant inner product on g (hence £) implies that £ is semisimple and also compact.

Finally, let A’ be the roots of €€ on s€ and ®: A n spany IIy — A’ be induced by restriction. As already
noted, the elements ®(«a), a € Iy, constitute a basis of the dual of € s0®is injective and, by construction of ¢,
surjective. Thus ®(Ily) is a set of simple roots for the choice of positive roots ®(A* n span, Iy). [

Note that the isomorphism type of (g,€), where £ is the subalgebra associated with a non-empty subset
Iy c I, only depends on g and II. In fact, suppose that b is a compact semisimple Lie algebra with maximal
torus 5§ c h. Let Q be the roots on s€, 0 ¢ Q a choice of positive roots, and ® ¢ Q" the associated simple
roots. Further suppose that m is the subalgebra of § associated with a non—-empty subset &, < ® and that
o is an isomorphism between the Dynkin diagrams of g€ and h€ which satisfies o(Ily) = ®; here, we call a
bijection ¢ : Il — ® an isomorphism between the Dynkin diagrams of g€ and hC, or more precisely between
(spangIL<-,-)) and (spang®, K-, - »), if it satisfies

Na By _ 24o(@), (B
(@ ~ Kola), ol

for all simple roots o, € II and negative-definite ad-invariant inner products <-,-), «-,-)» on g, h. Let
{Xa, X} aert be chosen such that X, is a root vector for « € I, Xy = -X_4, and (Xy, X_¢) = 1 (see e.g.
the proof of [7, Lemma 3.6]). Write H, := [Xy, X-q]. Choose root vectors Yy, Y-, for each y € ® with the
analogous properties and set I, := [Yy, Y_,]. According to the isomorphism theorem ([16, Theorem 2.108, sect.
I1.10]), the assignments Hy +— I -1, and Xy — Ys_14, Where a € II, uniquely extend to an automorphism of
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complex Lie algebras o : g€ — hC. This automorphism necessarily maps X_ to Y_ »-14> and hence satisfies

o(Xa) = 0(-X_g) = -Y_ 1, = 0(Xa)

Since the elements (Hy)qerr and (Iy)yeg span it and is, o maps t onto s, and together with the relation above this
implies o(g) = h. But by construction, ¢ maps £€ isomorphically onto m®, and hence also has to map £ onto m.
In summary, we have shown:

Proposition 5.2. The Lie algebra pairs (g, £) and (h, m) are isomorphic if and only if there is an automorphism
of Dynkin diagrams that maps Iy onto ®y.

We remind the reader that a subalgebra £ of g is totally non—cohomologous to zero in g if the canonical map
H(g) — H(¥) is surjective. If  is compact, then, according to [11, Theorem X, sect. 10.19], the previous definition
can be rephrased by saying that restriction of polynomials induces a surjection A; — A, (recall that Ay and A,
are the spaces of invariant polynomials on g and £, respectively).

Corollary 5.3. Suppose that g is simple with g€ of type A, and let Il = {ay,..., 2} be enumerated as in
example 4.11. The subalgebra £ of g associated with a;, ..., aj, where 1 < i < j < r, is totally non-cohomologous
to zero in g.

Remark 5.4. The corresponding statement on the level of Lie groups, namely, that for k < r the subgroup
SU(k) < SU(r + 1), embedded as a subblock, is totally non—-cohomologous to zero, is well-known (see [11,
Example 1, sect. 11.11], for example, and note that U(r + 1)/U(k) = SU(r + 1)/SU(k) if U(k) c U(r + 1) is
embedded accordingly). The proof of corollary 5.3, which essentially establishes this correspondence, is merely
included for the convenience of the reader.

Proor. For 1 < m < n < r denote by ¥, , the subalgebra of g associated with {ay,, ..., o, }. We have a chain of
inclusions

b=t otjno. o, Db, Dt,=9
resulting in the chain of maps

Ag = AEL, — Afz,r - ... AEU — AEI_’H — ... A?i,j = Ag.
The roots of £, , with respect to the Cartan subalgebra @Z:m[ggk, gq_:ak] are exactly the restrictions of the roots
Amn := Anspang{am, ... an}, and with respect to the notion of positivity induced by A* n A, ,, the simple roots
are precisely the restrictions of ap, ..., a,. Thus, £, , is the Lie subalgebra of £, ,.1 (and also €,,_1 ) associated
with the simple roots {ay,, ..., an }, whence in the statement of the corollary it suffices to consider the case that
the difference rank(g) — rank(¥) is 1, that is, the cases i = 1, j = r - 1 and i = 2, j = r. We shall treat the first case,
the second case can be proven analogously.

Thus, we assume that £ is the subalgebra associated with the simple roots {a, ..., @r-1}. According to propo-
sition 5.2, it will suffice to verify the statement of the corollary for a specific choice of Lie algebra of type A,
and a specific choice of Cartan subalgebra and (positive) roots. Consider the Lie algebra su(r + 1) and the set of
all diagonal matrices s c su(r + 1). As is well-known, s is a maximal torus, and we claim that

(5 0)

is the Lie subalgebra associated with a suitable choice of simple roots of su(r+1). In fact, consider the Lie algebra
isomorphism

Aezu(r)},

D su(r+ 1)C =su(r+1) e su(r +1) — sl(r + 1,C), (A, B) — A +1iB,
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and denote by E;;j the complex (r + 1)-by—(r + 1) matrix with entries 1 in the (i, j)-th position and 0 everywhere
else. Then ® maps the Cartan subalgebra s€ onto the Cartan subalgebra of s{(r + 1, C) consisting of all diagonal
matrices, and with respect to this choice, the roots of 5[(r + 1, C) are the linear maps ¢; - ¢j, i # j, where ey, ..., 711
is the basis dual to the basis Ej 1, ..., Er+1,r+1, cf. [16, Example 1, sect. IL.1]. If we declare the elements of the form
& — & with i < j to be positive, then a1, ..., &, with a; = & - €;,1 are the corresponding simple roots. Moreover,
since the root space of a root ¢ - ¢ is exactly the subspace spanned by E;;, it follows that the subspace of
sl(r + 1, C) associated with the simple roots ay, ..., a—1 is precisely the Lie subalgebra sl(r,C) < sl(r + 1,C)
consisting of matrices whose last column and last row is identically zero. But ® maps b isomorphically onto
sl(r,C), and hence the subalgebra of su(r + 1) associated with the roots a;°®, ..., @r_1°® is . The claim now
follows from the alternative characterization of surjectivity of the map Aj; — Ay given in [11, Theorem IX, sect.
10.18], because the cohomology algebra of the pair (su(r + 1), b) is of dimension two: in fact, b is the Lie algebra
of the isotropy subgroup SU(r + 1), of the standard action of SU(r + 1) on the (2r + 1)-sphere §2r+l ¢,
where p = (0,...,0,1) is an element of the standard basis of C"*!, so the cohomology of (su(r + 1), b) is that of
SU(r + 1)/ SU(r + 1),. O

Let 7: g — g be an automorphism of Lie algebras and A : II — II an automorphism of the Dynkin diagram
of gc. We say that 7 is induced by A, if T leaves invariant t and II, and if there exists a collection of non-zero
root vectors E, for every simple root a € II such that 7(Ey) = E A-1(q)- Note that in this case the map IT — II,
a — 7(a), coincides with A and that 7 is necessarily of finite order, since II is a finite set and the root vectors
(Eq)qert together with their complex conjugates generate g€ as an algebra. In the language of [7], g7 is a folded
subalgebra, cf. [7, Proposition 3.7], and it was shown in [7, Proposition 3.5] that g* is compact semisimple with
maximal torus s = 7. Moreover, since 7 fixes the Weyl chamber of g€ defined by the simple roots II, a notion
of positivity is obtained by declaring a root on s to be positive if it can be obtained by restricting a root in A*.

With respect to this choice of positivity, the restrictions of the roots in IT are the simple roots on 5¢.

Proposition 5.5. Let 7: g — g be an automorphism induced by an automorphism of the Dynkin diagram of
g€ and write b := g7, s := t*. Suppose that ITy < II is a non-empty subset satisfying 7(Ily) = IIy and let £ be
the subalgebra of g associated with IIy. Then € is r-invariant and with respect to the restricted roots

Oc := { a|5c| aEH}

the subalgebra f of h associated with Tlp|,c < II|,c coincides with the fixed point subalgebra m : = €.

Proor. Put Ag := A nspanyIly. In order to prove the statement, it suffices to consider the r-invariant spaces

o C C L C
Vg = 1520 [gz—i(a)’ g_,[i(a)] and Wﬁ 1= ]%) grj(ﬁ)

for roots a € Iy and S € Ay, since ¢€ is a sum of such V, and Wpg.

We first show m ¢ f. To this end, choose § € Ag and suppose that a non-zero vector X € Wy is being fixed
by 7. For any element T € s we then have [T, X] = §(T)X, whence /§, the restriction of f to s, is a root of h€.
Because f3 is an element of Ag, § must be contained in span,, II| .c, and therefore

Xehg;f‘?

To conclude that m is contained in f, recall that there exist root vectors E, € g for all a € I with the property
that 7(Eq) = E.-1,. If k = 0 is the smallest integer with **1(a) = a, a € Ty, then, since each root space is
one—dimensional, the elements [Ey, E¢], T[Eq, Ea], ..., T¥[Ex, E4] hence constitute a basis of V,; in particular,
is of order k on V. It follows that the fixed point set of 7 on V; is one-dimensional, spanned by the non-zero
vector YK 7i[Ey, E,]. However, & is a root of hC with non-zero root vector

Xz i= Eq+ 7 (Eg) + ... + 75 (E),
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FiGure 11. Folding a Lie algebra of type A,j. Black nodes indicate the roots of associated subalgebras.

and the difference of the simple roots 7¥(«t) — /() is never a root. Therefore,

k. koo
X Xl = 3 [7'(E), T(Ee)] = 3, 7'[Ee, Fol
ij= i=

is an element of fC, and m c f. For the converse inclusion, note that X; and hence bg is contained in mC.

Therefore, m is a subalgebra of h that contains the spaces b n (§€ @ h€,), so we have f ¢ m by definition. O

Example 5.6. Let us assume that g is simple and that g€ is of type A,, r > 2. Then there is only one non-trivial
automorphism 7 on the Dynkin diagram of g€. Explicitly, if IT = {ay, ..., &} is enumerated as in example 4.11,
then this automorphism is given by 7(@;) = @,_(;_1), and arguing as in the proof of proposition 5.2, we may
extend 7 to an automorphism 7 : g — g. If r is odd, say r = 2k - 1, then the complexfication of the fixed point
set h of 7: g — g is of type Cy with simple roots a1, ..., & and long root & (cf. [7, Lemma 5.2]), where we
write @; to denote the restriction of ¢; to the complexification of the maximal torus s = t° of h. If we let £ be the
subalgebra of g associated with the simple roots Il = IT\ {aj, @}, then according to proposition 5.5 the fixed
point set of 7 on £ is the Lie subalgebra f associated with the simple roots &, ..., &; its complexification is a Lie
algebra of type Cy_;. The situation is visualized in figure 10.

If r is even, with r = 2k, then the fixed point set is of type By. The simple roots of h = g* are again given by
a1, ..., 0, and this time @ is the short simple root. The fixed point set of 7 on the subalgebra of g associated
with the simple roots ITp = IT\ {ay, ag.1} is the subalgebra f of h associated with the simple roots &, ..., @_1-
Here, € is of type A_;, cf. figure 11.

Corollary 5.7. Suppose that g€ is of type B, (r = 2) or C, (r = 3) and let the simple roots IT = {aj, ..., &} be
enumerated as in example 4.18 or example 4.19, respectively. The subalgebra of g associated with the simple
roots aj, Qj+1, ..., &%, where 1 < i < r, is totally non-cohomologous to zero in g.

Proor. It will suffice to consider an arbitrary Lie algebra whose complexification is of type C, or B, and it will
also suffice to consider the case i = 2, cf. proposition 5.2 and the proof of corollary 5.3.

Let n = su(2r) be the compact Lie algebra whose complexification is of type Az,—; and choose a maximal
torus § ¢ n, a set of roots Q, and positive roots Q*. Then the fixed point subalgebra § of an automorphism
7: n — n induced by the non-trivial automorphism of the Dynkin diagram of n€ is of type C,; if instead we
start with the compact Lie algebra n whose complexfication is of type Ay, then h€ is of type B,. Moreover,
if we enumerate the simple roots fi, ..., for-1 (respectively fi, ..., for) as in example 5.6 and denote by ﬁ~i the
restriction of f; to the complexfication of s7, then {fi, ..., B} is a set of simple roots for hC, enumerated as in
example 4.19 (or example 4.18). The subalgebra m of n associated with the simple roots fs, ..., far-2 (respectively
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with f, ..., f2r-1 in case that we are considering a Lie algebra of type Ajy,) is 7-invariant and f = m7 is the
subalgebra of b associated with the simple roots fs, ..., . We obtain a commutative diagram

A, *)Ah

|

Ay —— Af’

with all maps induced by canonical inclusions, so it remains to verify surjectivity of the right hand vertical map.
But the left hand vertical map is surjective by corollary 5.3 and the lower horizontal map is surjective, because
m is compact semisimple and § is the fixed point subalgebra of an automorphism induced by an automorphism
of the Dynkin diagram of mC, cf. [7, Proposition 4.6]. Hence, Ab — Af is surjective too. O

Suppose that g = tet is a decomposition of g into two ideals. As was already noted in the proof of theorem 1.2,
the diagonal embedding A(£) < g then is totally non-cohomologous to zero in g: indeed, there is a canonical
isomorphism Ape Ay — Aggps induced by the projections tet — te 0 and £t — £e 0, which takes AA(E) onto
A(A;), and the restriction map A, ® A, — A(A,) is surjective. The next proposition generalizes this observation
to cases where we do not have a global decomposition of g (note that A(£) is the fixed point set of the involution
exchanging the two summands of g).

Proposition 5.8. Let o be an involutive Lie algebra automorphism of g and suppose that £ c g is a Lie subalge-
bra, invariant under o. Further suppose that € = £; @ €5 is a decomposition of £ into two ideals with o(€;) = &
and let b be the fixed point subalgebra of ¢ on £.

(1) Let I c Ay be the graded subspace consisting of all polynomials with o”(f) = f. If the map I — Ay,
J = fle,» is a surjection, then so is Ay — Ah’f = flp-

(2) Let Jg, < Ay, and J < Ay be the ideals generated by all polynomials of odd degree. If I — A, [Tty
f = fle, +Je,» is a surjection, then so is Ay — Ah/]h’f = fly +Jp-

PRrOOF.

(1) Forj = 1,2 consider the linear isomorphisms
®i: & — b, X — X+ o(X).

Since € = £; @ £, as Lie algebras and o maps €; onto £, and vice versa, these are actually homomorphisms
of Lie algebras. Consequently, they induce isomorphisms ®;: A, — Ag;. Now let py: € — £ and
p2 - € — ¥y denote the projections with kernels €, and £, respectively. If X € ¢ is fixed by o, then
o(p1(X)) = p2(X) and o(p2(X)) = p1(X). Hence, if g € Af) is homogeneous, then

7 (#5())], () = (2100 + (X)) = 8(p1(X) + p2(X)) = g(X)

and pj (@;(g)) restricts to g. By assumption, we find a homogeneous polynomial f € I with the property
that f|g1 = ®3(g), and then, for all X € &;:

(0" (D, X) = f(a(X)) = fle, (a(X)) = 1(g)(0(X)) = g(X + (X)) = 5(g)(X).

But f is fixed by o”, and so fl, = ®5(g). Since A, ® A, is isomorphic to A, via the map sending f; @ f;
to (pi(f1)) - (P3(f2)), we thus find that

fle = p1 (@1(8)) + g + p3 (P2(8)),
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where q € Ay is a polynomial in the graded subspace generated by the set p] (A;l) - p;(Agz) consisting of
products of polynomials without constant term. Thus, it follows that

fly=g+4qly+g=2g+ qly-

In particular, if g is of degree 1, then necessarily ¢ = 0 and g is in the image of the restriction map
Ag — Ay. Proceeding by induction on the degree of g, we see that Ag — Ay is surjective.

(2) We retain the notation of the previous item. Then, if g € Aj, is a homogeneous polynomial, there exists
f € I with fl,, = ®j(g) + p for some homogeneous polynomial p € Ji,. Arguing analogously as in the
previous case, we find that

fle, = (@ (e, = P2(F) + b,

where p = (ol,)"(p) is a homogeneous polynomial in J,, the ideal generated by all polnyomials of odd
degree. Thus, we still have

fle +Je = p1(®1(8)) + g + pa(P5(g) + J,

where q € pj(A;)) - p3(Ap,) and Jp < Ap again is the ideal generated by all odd degree polynomials. We
conclude that

flo+Jy =28+ qly + Jp,
and, as in the proof of the previous item, that Ay — Ay — Ay/Jj is surjective. O

Let us recall in passing some facts from [11]. If € c g is a compact subalgebra, totally non-cohomologous to
zero in g, then according to [11, Proposition VII, sect. 6.11] we have a commutative diagram

Pg
Py —— Ag

L

Pe HAE;

here, Py < Q(g)® and P < Q(¢)t are the primitive subspaces, the vertical maps are induced by the canonical
inclusions, and the maps pg, pe are the (“distinguished”) transgressions, cf. [11, Definition, sect. 6.10]. By [11,
Theorem X, sect. 10.19], the kernel of the left hand vertical map is exactly the Samelson subspace of the pair
(9,9, soif vy, ..., vy is any homogeneous basis of Py such that vs,1, ..., vy is a basis of the kernel of Py — P,
then necessarily s = rank() and the images of wy, ... ws of the elements vy, ..., v5s form a homogeneous basis of
Py. Note that we are considering g* < S(g") as concentrated in degree 1, so pg maps a homogeneous primitive
element of degree k onto a homogeneous polynomial of degree (k + 1)/2. Thus, if we put x; := py(v;) and
¥j := pe(wj), then the canonical inclusions extend to isomorphisms of graded algebras R[x1, ..., x,] = Ay and
Ry, .o ys] = A, [11, Theorem I, sect. 6.13]; they fit into the commutative diagram

]R[X1, ---’xr] I ]R[Yh ~~~,)/s],

where the lower vertical map sends x; to y; if i < s and x41, ..., X to zero.

These observations in particular apply if 7: g — g is an automorphism induced by an automorphism of
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the Dynkin diagram of g€ and ¢ = g7 is its fixed point set, because ¢ is a folded subalgebra and hence totally
non-cohomologous to zero in g by [7, Proposition 4.6]. Moreover, if 7 is actually an involution, then we may
choose vy, ..., vy to be a basis consisting of eigenvectors of 7*: Py — Py: in fact, given a form » on g the
restriction of w + 7*(w) to £ coincides with 2w, so the kernel of Py — P is 7" invariant and its image is spanned
by all elements in the 1-eigenspace of 7*. According to [11, Proposition VII, sect. 10.26] the elements vs,1, ..., vy
constitute a basis of the (-1)-eigenspace of t* and hence vy, ..., vs must be a basis of its 1-eigenspace. Because
of 7%0pg = pget” (see [11, Proposition VII, sect. 6.11]), the kernel of A; — A, hence coincides with the ideal
generated by the (-1)-eigenspace of 7 : Ay — A.

Specializing even further, suppose that g€ is of type A, and that 7 is induced by the non trivial automorphism
of the Dynkin diagram of g€. As is well-known (see e.g.[15, Proposition, sect. 3.7]), the degrees of any set of
basic invariants of a simple Lie group, that is, the degrees of any set of algebraically independent generators of
the invariant polynomials, are uniquely determined, up to permutation. For g and ¢ the sets of degrees of basic
invariants are given by {2,3,...,r + 1} and {2,4, ..., 2s}, respectively, see [15, Table 1, sect. 3.7]. In particular,
the elements xg41, ..., X, must be of odd degree and the kernel of the map Ag — Ay is the ideal in Ag generated
by all polynomials of odd degree (this is actually how surjectivity of the map A; — A, was concluded in [7,
Theorem 5.5]). Combined with proposition 5.8, this leads to the following

Corollary 5.9. Suppose that g€ is of type B, (r = 2) or C, (r = 3) and let the simple roots II = {ay,..., &}
be enumerated as in example 4.18 or example 4.19, respectively. If £ is the subalgebra of g associated with the
simple roots aj, ..., @r-1, then the inclusion induced map Ag — A/], where J ¢ A, is the ideal generated by all
polynomials of odd degree, is surjective.

Proor. To clarify the exposition, we only consider the case that g€ is of type C,, the proof in case that g€ is of
type B, only requires minor modifications. Recall from proposition 5.2 that it suffices to verify the statement
for an arbitrary Lie algebra whose complexfication is of type C,. We shall make use of this fact and proceed as
in the proof of corollary 5.7: let n be a Lie algebra such that n€ is of type As,_j, fix a maximal torus b in 1, a
choice of positivity Q* for the roots Q on b€, and let ® be the simple roots. Further suppose that b is the fixed
point set of an involution 7 on n which is induced by the non-trivial automorphism on the Dynkin diagram
of n€. Then hC is of type C,, and if we enumerate the simple roots ® = {fi,..., f2r_1} as in example 4.11 and
denote the restriction of f; to the complexfication of b” by ﬁi, then /§1, e /§r are simple roots for the notion of
positivity induced by QF, enumerated as in example 4.19.

Now consider the subalgebra m of n associated with IT\ { 5, }. It decomposes as m = m; @ my, where the ideals
my and my of m are the subalgebras of n associated with the simple roots {f1, ..., fr-1} and {Br1, ..., for-1},
respectively. Note that the fixed point subalgebra f = m” is the subalgebra of §) associated with the simple roots
/§1, e /§r—1 and that 7 maps m; onto my. The claim thus follows from proposition 5.8 once we show that the
polynomials in the 1-eigenspace E of 7" : A, — A, surject onto Ay, /Im,, where In, c A, denotes the ideal
generated by all polynomials of odd degree, because the map A, — Af factors through Ay — Af' But in the
paragraph preceding this corollary we have observed that E surjects onto A, /I, where I is the ideal generated
by all polynomials of odd degree, and by corollary 5.3 the canonical map A, — A, is surjective. Thus, the
map E — Ay, /Im; must be surjective too. O

Another fact from [11], which enters the next corollary and also proposition 5.12, concerns the Samelson
subspace P ¢ Py of (g, t), where £ is a compact subalgebra of g. Denote by pg : Py — Ay the transgression.
Then a primitive element w € Py is contained in the Samelson subspace P if and only if pg(w)|, is contained
in the subspace generated by all elements of the form py(n)|, - f with f € Ay a non—constant polynomial and
11 € Py arbitrary, see [11, Corollary II, sect. 10.8]. Thus, if vy, ..., v is a homogeneous basis of Py and xi, ..., x; its
image under Pg SO that Ag = R[xy, ..., xr], then v; is contained in P if and only if x; is contained in the subspace
xilg - Ag + o+ Xplg - A

Corollary 5.10. Suppose that g€ is of type D, (r = 4) and let the simple roots IT = {a, ..., &} be enumerated
as in example 4.12. If £ is the subalgebra of g associated with the simple roots IT\ {«,} or with the simple roots
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IT\ {ay-1}, then the inclusion induced map Ay — A/J, where J ¢ A, is the ideal generated by all polynomials
of odd degree, is surjective.

Proor. We shall only treat the case that ¢ is the subalgebra associated with the simple roots ITp = IT\ {a,}, the
other case being similar. Recall from proposition 5.1 that a maximal torus for £ is given by

r-1

s=gn @ [05.05%,].

i=1

€ via restriction, and that A* induces a notion

that A n spanyIlj bijectively corresponds to the set of roots on s
of positivity with simple roots the restrictions &j, ..., &-1 of the roots a1, ..., a_1. In particular, the subalgebras
q and b of ¢ associated with the simple roots {a1,..., &—2} and {ay, ..., @-2} are equal to the subalgebras of
g associated with the simple roots {a, ..., @r—2} and {a, ..., @r—2}. We will show that the canonical inclusion
induces a surjection Ay — Ay/Jq, where J; is the ideal generated by all polynomials of odd degree, but before
doing so, let us see how surjectivity of the aforementioned map implies the statement of the corollary. For this,
we will have to distinguish the cases r odd and even.

If r = 2k + 1, then we note that the map Ag/Jy — Aq/Jq is actually an isomorphism: indeed, Ay — Aq
is surjective by corollary 5.3, Ag is a polynomial algebra on r - 1 generators of degrees 2,3,...,r, and Aq is
polynomial algebra on r-2 generators of degrees 2, 3, ..., r—1. Since r = 2k+1is odd, Ag/Je and Ag/Jq hence are two
polynomial algebras on k generators of degrees 2,4, ..., 2k. For degree reasons the epimorphism Ag/Jy — Aq/Jy
then necessarily has to be an isomorphism.

The case r = 2k is more involved. Let 7: £ — £ be an automorphism induced by the non-trivial auto-
morphism of the Dynkin diagram of £C and note that b is r-invariant; in fact, the restriction 7: j — b is an
automorphism induced by the non-trivial Dynkin diagram automorphism of hC. Put m = h7, n = €7 and recall
from our discussion before corollary 5.9 that in the commutative diagram

Ag — Al — Ayl

A, A, A

ms

in which all maps are induced by canonical inclusions and Jj is the ideal generated by all polynomials of odd
degree, the vertical maps are well-defined isomorphisms, because n, m are folded subalgebras and J, J; are
precisely the kernels of the restrictions A, — Ay, Ay — Ay. Also note that Ay/J; — Ay/Jy is surjective by
corollary 5.3, so ing — Aq /Jq is a surjection, then Ag — A, is surjective as well. Now we use the transgression
Py — Ay toidentify a homogeneous basis vy, ..., vy of the primitive subspace Py with homogeneous polynomials
xi,...,Xr € Ag. Similarly, we may use the transgressions of n and m to choose homogeneous polynomials
Plss Pp IN AL, g1, ..., k1 In Ay, and since m is totally non—cohomologous to zero in n, we may choose these
polynomials in such a way that the diagram of graded algebras

A, A, Ap

R[x, ..., %] —— R[p1, ..., pr] — R[q1, ..., qr_1],

where the lower right horizontal map sends p; to g; if i < k - 1 and to zero if i = k, commutes. Note that nC and
mC are of type Cy and Cj_y, so the sets of degrees of the basic invariants of g, m, and n are
{2,4,...,2r -2}y v {r}, {2,4,...,2k}, and {2,4,..., 2k - 2},

respectively (cf. [15, Table 1, sect. 3.7]), whence for degree reasons p; must be of degree 2k. Also, we may
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assume x; to be of degree 2i if i < r — 1 and x, to be of degree r. With this arrangement the surjectivity of
the map A; — A, implies that the subalgebra generated by #(x1), ..., #(x¢_1) coincides with the subalgebra
generated by pi, ..., pr_1. Moreover, if k+1 < i < r-1, then the element #(x;), whose degree is at most 4k - 2, but
not 2k, is contained in the ideal I = p; - A +...+ pr_; - A}, whence the elements vg,1, ..., vy_1 must be contained
in the Samelson subspace P c Py of the pair (g, n). Since P is bounded in dimension by rank(g) - rank(n) = k,
at most one of the elements v, v, can hence be contained in P. In particular, if we write t(xy) = cpy + u and
t(xr) = dpr + v, with u,v € I and ¢, d € R, then one of ¢ or d must be non-zero, for otherwise both v and v,
would be contained in P. Since py, ..., pr_1 are already part of the image of t, it follows that ¢ is surjective.
Thus, it remains to verify that A; — Ay/Jq is an epimorphism, and we argue as follows. Let ¢ : II — IIbe
the involution exchanging a,_; with a, and fixing all other simple roots. It is an automorphism of the Dynkin
diagram of g€ and hence extends to an involution ¢ : g — g. Let f be its fixed point set, put b = t°, and denote
by Bi, ..., fr-1 the restrictions of the simple roots aj, ..., 1 to the Cartan subalgebra bC of fC. We already
observed that f, ..., fr-1 is a set of simple roots for a suitable notion of positivity, and because a1, ..., ar_2 are
fixed by o, proposition 5.5 implies that ¢ = g also is the subalgebra of f associated with the simple roots
Bi, ..., Br—2. Since fc is of type B,_1 (see [7, Lemma 5.2]), with short root f,_1, corollary 5.9 thus implies that
Af — Agy/Jq is surjective. But f is also a folded subalgebra, and hence restriction gives a surjection A; — Af. In
total, Ag — Aq/ Jq is surjective. O

For the proof of proposition 5.12 below we will have to collect some more results from [11]. Given a Lie
subalgebra t of g we shall use the symbol A, to denote the set of invariant polynomials on ¢ with grading
induced by viewing t" as a graded vector space concentrated in degree 2. More precisely, A, is the graded
algebra which is equal to A, as an algebra, but whose k-th graded component A{; is zero, if k is odd, and A@,
if k = 2j is even. Thus, a homogeneous polynomial of degree k in A, corresponds to a homogeneous element
of degree 2k in A, and the transgression p: P; — A, is homogeneous of degree 1. Now suppose that £ is
compact and let d be the anti-derivation on A, ® A(Pg) sending A, ® 1 to zero and an element 1 & w with
w € Py to p(w)| ® 1. The differential graded R-algebra (A, ® A(Pg), d) is called the Koszul complex for the
pair (g, £), see [11, Section 10.8]; in the notation of [11, Section 2.17], the space A, together with the restriction
d| p, + Py — Ay isasymmetric Py-algebra and the Koszul complex for (g, £) coincides with the Koszul complex
for the symmetric Py—algebra (A,, d| Pg)~ By [11, Theorem III, sect. 10.8] there is an isomorphism of graded
algebras between H(AE ® A(Pg)) and H(g, £), so the graded algebra structure of H(g, £) is determined by the
one of H(A, ® A(Py)).

Let P ¢ Py be the Samelson space and choose a graded vector space P’ ¢ Py complementary to P, that is, such
that P; = P @ P/. A well-known theorem (cf. [11, Theorem V and corollary I, sect. 2.15]) now states that there
is an isomorphism of graded algebras between H(AE ® A(Pg)) and H (AE ® A(P’)) ® A(P), where we think of
A, ® A(P’) as a differential graded subalgebra of (A, ® A(Py),d). In particular, if (g, ¥) is formal, then P’ = 0
and H (AE ® A (P’ )) reduces to A,/J, where ] is the ideal in A, generated by the image of the inclusion induced
map Ag — A, see [11, Theorem VII, sect. 2.19].

Lemma 5.11. Let £ be a compact Lie algebra and h c £ a simple subalgebra. Then the inclusion induced map
Ay — Ay is a surjection in degree 2.

Proor. For every vector space V there is a natural isomorphism of graded vector spaces between S(V*) and the
space of symmetric multilinear forms Sym(V); it induces the commutative diagram

Symz(E)E = A%

L

Sym?(h)? = AZ,

where both vertical maps are induced by the canonical inclusion ¢ : h — £ Hence, it will suffice to verify the
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surjectivity of the map * : Sym(£)! — Sym(h)Y in degree 2. Let (-, -) be an ad—invariant inner product on ¢, that
is, such that ady is skew—symmetric for all X € €; such an inner product exists, because we are assuming ¢ to be
compact. Then (-, - is an ad—invariant inner product on b, so the image of i* : Sym?(£)® — Sym?(h)" is at least
one—dimensional and § is necessarily compact. However, it is a well-known consequence of Schur’s Lemma
(see [16, Proposition 5.1, sect. V.1]) that the space of ad-invariant symmetric bilinear forms on a compact simple
Lie algebra is one-dimensional. In fact, fix some ad-invariant inner product -, -)»» on . Choose h € SymZ(f))h
arbitrarily and define T: h — b by requiring that T(X), Y)» = h(X,Y) holds for all X,Y € h. The ad-
invariance of «-,-) and h implies that ady oT = Toadx holds for all X € § and the symmetry of h forces T
to be self-adjoint with respect to (:,-). Therefore, T is diagonalizable, with real eigenvalues, and if A is an
eigenvalue of T, then the kernel of T - 1id is a non-trivial ideal of h, hence already equal to b. O

Proposition 5.12. Suppose that g€ is of type E7 and that the simple roots IT = {a;, ..., a7} are enumerated as
in example 4.14. Let ¢ be the subalgebra of g associated with IT\ {e1} and J < A, the ideal generated by all
polynomials of odd degree. Then the canonical restriction Ay — A,/J is surjective.

ProOF. Note that £C is a Lie algebra of type Eg, so the set of degrees of the basic invariants of ¢ is {2, 5, 6, 8,9, 12};
the set of degrees of the basic invariants of g is {2,6,8,10,12,14,18}. Let vy, vs, vs, V10, V12, V14, Vig be a
homogeneous basis of Py, increasingly ordered by degree, and xz, ..., x13 € A the images under the transgression
(note the grading). We claim that there is a dichotomy: either the element vg corresponding to the homogeneous
polynomial x¢ of degree 6 is contained in the Samelson space P ¢ Py of (g, £) or the map A; — A,/] is surjective.
To see this, suppose that v is not contained in P and let f be the fixed point set of an automorphism on £ induced
by the non-trivial automorphism of the Dynkin diagram of €. Then b is a folded subalgebra, with h€ of type
F4, and its set of degrees of basic invariants is given by {2, 6, 8, 12}. Thus, as in the proof of corollary 5.10, the
kernel of the inclusion induced map A, — Ay is precisely J and we may choose homogeneous polynomials ps,
D5, Pe» Ps, P9, P12 in Ay and gz, ge, gs, q12 in Ay, enumerated in increasing order of degree, such that the diagram

A, Ay Ay

R[x2, ..., x18] — R[po, ..., pr2] —R[q, ..., q12],

where the lower right horizontal map sends (p2, pe, ps, p12) to (g2, g6, g8, q12) and ps, py to zero, commutes. Now
recall that v; is an elment of P if and only the restriction of x; to £ is contained in xa - Ay +... + x1g]¢ - A, and
that x; restricts to a non-zero multiple of p; as well as g2 by lemma 5.11. So if vs € P, then xg¢ = cpg + dps for
some non-zero constant ¢ € R and some constant d € R, and x|, = cqs + d @3 as well. We conclude that x2lp
and x|, generate the same subalgebra as g2 and g, and it follows for degree reasons that the restrictions of the
elements x79, x14, and xj3 are contained in the ideal g - Aa + ¢ Aa. Hence, v19, v14, and vig are contained in
the Samelson space of the pair (g, h), and since the latter space is at most three—dimensional, the element x8|h
cannot be contained in the ideal generated by x| and xg|,. Similarly, x;2|; cannot be contained in the ideal
generated by the restrictions of xy, x4, and xg. But this means that Ag — Ab is surjective, and since the kernel
of A, — Ay is the ideal generated by ps and po, which is exactly J, the map Ay — Ay/J is surjective as well.

Therefore, we only need to show that vg is not contained in P, and we assume vg € P to hold for a contra-
diction. Then (g, £) is formal and vg cannot be contained in P. Thus, by the same reasoning as before, p, and ps
must be contained in the ideal I generated by the image of the restriction map Aj; — A,. Once more it follows
for degree reasons that modulo the ideal (p2, ps) generated by p, and ps we have the equalities

2 2 2 3
x10lg = aps, xiz2le = bpiz + cpg, x1ale = dpops, and xisle = ep12ps + fp5 + gps>

for certain real constants a, b, ¢, d, e, f, and g. As a consequence, the ideal I generated by py, ps, ps, and the
restrictions of xj2 and x;3 already contains I, because xiolg , x14l¢ € Ip. By the discussion preceeding lemma 5.11
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the quotient A,/I is finite-dimensional, A,/I ® A(P) being isomorphic to H(g, £), so the quotient A,/Iy must be
finite—dimensional too. This observation leads to the desired contradiction, because

Ay/ly = Rpy, ..., pr2)/(p2. ps. ps. X12le» x1sle) = R(ps, po, p12)/ (bp12 + cpt, epraps + f15 + g

is a quotient of a polynomial algebra in three variables by an ideal generated by two homogeneous, but non-
constant polynomials, which is infinite-dimensional. Thus, v is not an element of P. O

6. Equivariant and ordinary cohomology of simple Z; x Z;-symmetric spaces

6.1. Inner automorphisms

Throughout this section, we fix a simple, compact connected Lie group G and two commuting involutive Lie
group automorphisms o1, o2 on G. As in section 2, we denote by K; = (G%), the fixed point set of 0j, i = 1,2,
choose a maximal torus S c (G n G%)( and an Ad- as well as 01— and oz—invariant negative—definite inner
product {-,-» on g. Then Ty = Zg, (S) is a maximal torus in Kj, T = Zg(T1) a maximal torus in G. Let A be the
gC-roots with respect to the Cartan subalgebra t*, A* a choice of positive roots with simple roots I, T < A the
set of roots vanishing on s, andI'* := T'nA*. Once an enumeration Il = {ay, ..., @} of the simple roots has been
chosen, we shall also denote by (u, ..., u,) the basis dual to the basis (a1, ..., &) of spangIL

Our first goal is to show that the pair (g, €1 n £2) is (equivariantly) formal if o7 and oy are both inner auto-
morphisms. If T is empty, then this is certainly the case, as then s = t is a maximal torus (cf. proposition 2.1),
whence £; n £ is a Lie subalgebra of maximal rank. Thus, we may assume that I' # @. Now we observe that T’
is a set of strongly orthogonal roots by proposition 2.2 and that p(f) = ). ,cr+ 2€a, f)/{a, &) is an even number
for all B, cf. proposition 3.5. Therefore, I possesses a normal form, that is, there exists a Weyl group element
w € W(A) such that w([') n A* is one of the sets specified in examples 4.11 to 4.15 or examples 4.18 to 4.21. It
is a well-known fact (see [16, Theorem 4.54, sect. IV.6]) that the abstract Weyl group W(A) corresponds under
the isomorphism spang A — (it)", @ — «af;, to the action induced by the coadjoint action of the analytic Weyl
group Ng(T)/T on (it)*, so there exists an element n € Ng(T) such that the dual map (Ad,)" coincides with
w on spanpA. Put A := (cn)”! and consider the inner automorphisms Aeoy oA™! and AcoyeA~Ll. These are two
commuting involutions and their fixed point subalgebra is A(£; n £;) with maximal torus A(s). Moreover, the set
of roots vanishing on A(s) is

(A = {aeA e €A} = {ac Ady | @ € A} = (Ady)"(T) = w(D),

and since A maps [£1 n €2]f onto [A(81 n £2)]s, there is no loss of generality if we assume that w = id. Also note
that by corollary 3.7 we may assume that

i
o1 = ¢, with h = exp ( > 2Ha> ,
o€l ‘0{|
as ¢, commutes with o2 and £; n € and gAdh n £, share the same maximal torus s.

Now we check that [£;n€;]; contains a subalgebra that is totally non-cohomologous to zero in g by considering
the various Lie algebra isomorphism classes that g€ may assume.

Theorem 6.1. If g€ is of type A, r > 1, then some element in [£; n £]; is non-cohomologous to zero in g.
PrOOF. As noted before, we may assume that I is in normal form and that the simple roots IT = {a, ..., a, } are
enumerated as in example 4.11. Recall that the rank r of G necessarily is an odd number, say r = 2k + 1, and

thatTn A" = {61, ..., 8ky1}, with 8; = & + ... + @p—_j+1. Since o7 is given by conjugation with elements in T, the
fixed point set £ of oy is the direct sum of t© and those root spaces g§ on which o acts as the identity. Now if
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a=maq + ...+ mpay is a root, then

im k+12¢(8:, a)
O'1|gg = exp < Z SN

cid = (-1)™k+1 4,
2 4 <6]-,51>> 1)

so o is the identity of the root space of « if and only if my,; € 2Z. However, every positive root of g is of the
form o; + 41 + ... + aj for integers 1 < i < j < r, whence the fixed point set of oy is

=t @ g"e @ of.
aeN aeN”

where A’ = A nspang{a, ..., } and A” = A n spang{ @i, ..., ®k41 }- Thus, we have

€= ) keray) o (é [65.0%] e @ gC> ® (25 (66, 0%] e @ gC>

i#k+1 i=1 aeN i=k+2 a€eN”’
= ( N kera,-) oit il
i#k+1

where i; is the subalgebra of g associated with the simple roots «y, ..., @ and i, is the subalgebra associated
with ay,s, ..., dgx,1. We claim that oy maps i1 onto iy. Indeed, the common kernel of all simple roots different
from a,; constitutes the one—dimensional center of E‘f and hence is invariant under oy. The subalgebras i‘f and
ig are simple ideals of £, both of type Ay, and thus either interchanged by o, or invariant subspaces. However,
02 maps the root @ = @y + ... + g onto f = —(,g + ... + Aak41) and hence also sends g& isomorphically onto g%.
Therefore, 0y(i1) intersects iz non-trivially, whence o3(i1) = iz.

Now it follows from proposition 5.1 and corollary 3.3 that £; n €3 is of rank k, and we have just observed
that the fixed point set of o2 on i; @ i is isomorphic to the diagonal A(i;) < i; @ i3, a Lie algebra of rank k.
Therefore, o acts as —id on Z(#;), and £; n €, is precisely the fixed point set of o2 on i; @ iy. Since 1i; is totally
non-cohomologous to zero in g by corollary 5.3 and every invariant polynomial on g is in particular a fixed
point of o3, the theorem now follows from proposition 5.8. O

Theorem 6.2. If g€ is of type B, r = 2, then some element in [£; n €;]¢ is non—cohomologous to zero in g.

PROOF. Let ay, ..., @ be the simple roots associated with A*, enumerated as in example 4.18. This time, there are
three normal forms to consider, and all of them can be treated simultaneously as follows. We know that s, the
maximal torus of €1 n€y, is the fixed point set of o on t, so in the second normal form, there exists an odd number
k < r such that s€ is the common kernel of the roots {a, &1, a3, 8, ..., ay, O}, with &; = & + 2(8j41 + ... + &) for
i < r. The first and third normal forms state that s is the common fixed point set of the root reflections defined
by the elements in one of the sets {y1} or {a1, &1, 23, 83, ..., O, O, Yis2}, Where yj = @ + ... + oy and k < r is
again odd. Thus, in all three cases, the maximal torus s€ is given by

.
C c C
5 = . @ [ga]’ g—a}] >
where ¢ = [I'*|. But this means that s is the maximal torus of the Lie subalgebra of g associated with the simple
roots a1, ..., &, which is non-cohomologous to zero in g by corollary 5.7. O

Theorem 6.3. If g€ is of type C,, r > 3, then some element in [£; n £]; is non-cohomologous to zero in g.

Proor. According to example 4.19, there are two normal forms to consider, one of which cannot apply: indeed,
if T" would be equal to {81, 8, ..., 8r—1, &}, where &; = 2(a; + ... + a,_1) + @, then by corollary 3.3 £; n 2 would
be of rank 0, which is impossible. Therefore, we only need to consider the normal form in which I'" is equal to
{61, ..., 8i, Yi+1, Vis3, .., Yr-1} for some i < r such that r - i is even, where y; = §; - ¢; is the highest short root in
the root subsystem spanned by {¢j, ..., ar }. To compute the fixed point set of o1, let @ = mya; +... + mya, be an
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arbitrary root and set my := 0. We have, forall i < r -1,

26,0y

s 2y @) _
8,8y

<Yis Vi)

2< )’r—l, (X> —
<}’r—1a )’r—1>

- mj_1, Mi1 — Mi_1, 2my = my, and o1gc = (-1)™r id,

so a root vector of « is fixed if and only if m, € 2Z. However, there is no root with m, ¢ {0, -1, 1}, because the
highest root of gC is 61 = 2(aq + ... + ap-1) + . Thus, the fixed point set of o3 is €1 = Z(€;) @ b, where the center
Z(1) = RZ is spanned by an element Z € t in the common kernel of the roots in IT\ { &, } and b is the rank r - 1
subalgebra of g associated with the simple roots IT\ {a; }; in fact, h® is of type A,_1. The automorphism o, sends
b to b, so the restriction oy : h — b cannot be an inner automorphism, as otherwise £; n €2 would be of rank at
least r-1, and we claim that this implies that £; n€y is equal to h7. To see this, recall that b is compact semisimple,
whence there exists a maximal torus b c ) and a choice of positive roots Q" for the roots Q on bC, all of which
are op—invariant. Let ® ¢ Q" be the corresponding simple roots and 7 : h — h the automorphism induced by
the Dynkin diagram automorphism oy : ® — @; the fixed point set § of 7 shares the maximal torus b* = b
with h?2, so o2 : & — ® must be non-trivial. But there is only one non-trivial Dynkin diagram automorphism
on a Lie algebra of type A,_1, and thus f€ must be of type Cy., if r = 2k, or of type B, if r = 2k + 1, cf. [7, Lemma
5.2]. In both cases h is of rank k : = |r/2], so according to the decomposition ¢; = Z(#;) @ ) the rank of £; n £,
must be at least k. On the other hand, T'* consists of i + (r - i)/2 elements, whence £; n £; is of rank (r - i)/2 by
corollary 3.3, and this is only possible if either r is even and i = 0 or r is odd and i = 1. In any case it follows
for rank reasons that € n £, = h°2. In particular, £; n €5 and § share a maximal torus, so it will suffice to verify
that f is totally non—cohomologous to zero in g. However, the ideal Jj, in Ay generated by all polynomials of odd
degree is exactly the kernel of the inclusion induced surjection Ah — Af, and restriction induces a surjection
Ay — Ab/ Jy by corollary 5.9. Hence, Ay — Af is surjective and f is totally non-cohomologous to zeroin g. [

Theorem 6.4. If g€ is of type D, r > 4,then some element in [£; n €] is non-cohomologous to zero in g.

Proor. We can immediately rule out one of the normal forms that may appear by example 4.12: if r is even and
I ={m,b1,..., %3, Or—3, tr_1, & }, then €1 n £, is a Lie algebra of rank r — [T*| = 0, which is impossible. Thus,
there are only two normal forms to consider. The second normal form that we shall treat is when r = 2k is even
and I'" is equal to the set {81, 8, ..., Or_3, Y}, where §; = a; + 2(js1 + ... + Ar—2) + tp—1 + & and y € {p_1, @ }.
Both cases, y = a1 and y = «, can be handled analogously, so let us assume that y = @,. Then the proof of
theorem 6.3, almost verbatimely carries over: in fact, if & = Z;=1 mjaj is aroot and i < r - 2, then

26, a) 2(6r-2, a)
=mis1 - mjand ———— = 2my_p — My_3 + Mp_1 + My,

{Or-2,8r-2)

so oy restricts to (-1)™ - id on gg. Hence ¢; is equal to Z(1) ® b, where Z(¥,) is the one-dimensional center
of ¢4, spanned by an element in the joint kernel of all roots in ', and b is the subalgebra associated with the
simple roots ay, ..., ay—1, with f)C of type Ayx_q. Since rank(t; n &) < r - 2, the restriction oy : h — b cannot
be inner, h% must be equal to £; n £, and the fixed point set § of an automorphism 7 : h — b induced by the
non-trivial Dynkin diagram automorphism of h€ with respect to a suitable Cartan subalgebra shares a maximal
torus with h%. By corollary 5.9, f is totally non-cohomologous to zero in g.

Thus, we consider the last normal form, according to which I'* = {a, 81, ..., @, 5} holds for some odd
number k < r - 2. The effect of o7 on the root space of aroot = mya + ... + mpa, is

ir k 2(aj,ay 2}, a)
= — E: id = (=1)™t+mg
T1lgc eXp(z £ <y ) ’ (8,8 id=(-1) id,

and we will further have to distinguish between the cases k = 1 and k > 1.

The case k = 1. Here ¢ is equal to Z(¥;) @ b, where Z(#;) is one-dimensional and § is the subalgebra of g
associated with the simple roots ay, ..., a,. Let &, ..., & denote their restrictions to the complexification of the
standard maximal torus b = gn @Lz[ggi,ggai] of h and put Iy = {ay,..., & }. Furtherlet 7: g — g be an
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automorphism induced by the automorphism IT — II which exchanges a,-; with a, and fixes all other roots,
and observe that 7 leaves invariant b and Ily, interchanges &,-; with &, and fixes all other elements of IIj.
Moreover, the connected subgroup H c G with Lie algebra § is compact, because ) is compact semisimple, and
we claim that there exists a Weyl group element 4 € H such that Adj, o020 Ady-1 : TIp — Il coincides with
7: Il — Io. In fact, oz leaves invariant b and the Weyl group acts transitively on the set of Weyl chambers, so
we may choose h such that Ady, coy° Adj,-1 leaves invariant ITy. Then Ady, coz0 Ady-1 : Iy — Iy cannot be the
identity map, as otherwise the r — 1 dimensional torus b would be fixed by Adj, °o2° Adj,-1, which is impossible,
because h has rank r - 2. Now if r # 5, then the Dynkin diagram of hC is either of type As or of type D,
with r - 1 = 5, and since there is only one non-trivial automorphism on such diagrams, the existence of h is
verified for r # 5. If = 5 we observe that

02(@2) = oa(2)lpe = Say S5, (@2)]ye = 02,

where Sg denotes the restriction of &, and that o, fixes the remaining roots a3, a4, and as. Let h € H be an
element such that (Ady)" corresponds on spanglly to the Weyl group element w := sgsgr with f = az + a3 + a4
and p/ = @ + & + @. Recalling that hC is of type Dy, with triple node &, we compute

w(i) = as, w(@s) = a3, w(ds) = -0z, and w(ds) = d,

s0 Adj, co90 Adj-1 is as desired. Now we already observed that for rank reasons h? equals £; n €. Since Adp(h?)
and § := b7 share the maximal torus Ady(s) (indeed, §€ is of type B,_2), it hence suffices to verify that f is totally
non-cohomologous to zero in g. But if f1,..., f,—1 denotes the restrictions of the simple roots i, ..., ar-1 to
the complexification of the maximal torus t” of g*, then according to proposition 5.5 f is the subalgebra of g©
associated with fs, ..., fr—1. This subalgebra is totally non-cohomologous to zero in g* by corollary 5.7, and
since g* is a folded subalgebra, also f is totally non-cohomologous to zero in g.

The case k = 2. We shall see that this case cannot occur, the reason being as follows. Let Ag be the roots of
E&E with respect to t€ and observe that A := Ao n A" is a notion of positivity. We claim that the simple roots
Iy ¢ Aj decompose as a disjoint union Iy = ITj u ITj with

I = {a; + aje1 | i even, i < k} U { s, ..., 2} and TT] = {aj + aji1]jodd, j < k} u {x},

where x = dj_5 — o;_1. Indeed, a root « is contained in Ay if and only if the integer uj(@) + ... + ug(a) is even,
) H6 and Hf)’ are subsets of AJ. Since none of the simple roots a, ..., @k is contained in Ag, we conclude that
a; + ajy1 is a simple root for i < k. Now the roots of g€ are contained in one of the sets

Jj-1 r-2
spanZ(H\ {ar_l}) nA, spanZ(H\{ar}) nA, or {Z.as +2 tz G+ a1 +ap|i<jsr- 1},
s=i =j

and the former two sets are root subsystems of type A,_1. Hence, if § and f’ are two elements of Aj with
k = B+ B, then either u;_5(8) = 1 or ur_(f’) = 1. Without loss of generality, assume that u;_5(8) = 1 and
ug_5(f’) = 0. Then also uy_1(B) = 1, for otherwise ff & Ay, and this implies that u;_;(8’) vanishes too. But then
B’ is only a root if ur(f’) < 2, whence in order for € Ag to hold we must have u(f) = 2 and already f = .
Thus, « is simple and II{, u IT{ < Ilo. Since k is odd, IT{, and IT} consist, respectively, of m := (k - 1)/2 + (r - k)
and n := (k - 1)/2 + 1 elements, and since m + n = r, we actually have an equality I1y = I u II{; in particular,
£, is semisimple.

By examining the various root strings of the elements of II{, and IT{, we find that any two elements o’ € IT}
and o’/ € II{/ are strongly orthogonal, and that A n spanyIly, Ag n spanyII] are two root systems of types D,
and Dy, (or Ay, if n < 4), respectively; for example, if n > 4, then ay_4 + aj_3 is the triple node. Hence, if we let
i/, " be the subalgebras of £; associated with the simple roots IT{, and IT{/, then £; = i’ @ i"’ as Lie algebras and
0, either interchanges i’ with i’ or leaves both ideals invariant. However, o(at;) = @y, because a; is contained
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in the common kernel of all roots in T'*. So 0, has to leave IT{, and i’ invariant, hence also i”’. But the fixed point
set of an involution on a Lie algebra of type Dy (or Ay with ¢ < 3) is at least of rank ¢ - 1, whence £; n €, must
be of rank at least r - 2, contradicting the inequality r - [T*| = r - 4. O

Theorem 6.5. If g€ is of type Eg, then some element in [£; n £;]; is non—cohomologous to zero in g.

Proor. We shall see that in this case the subalgebra €1 n £ is actually of full rank. Assuming the contrary, then,
as in the proofs for the previously dealt Lie algebra types, we may assume I' to be in normal form and the simple
roots IT = {ay, ap, a3, a4, a5, o } to be enumerated as in example 4.13. Thus,

I = {65,561, 5, a3}, where § = o + 2a + 3013 + 204 + ot5 + 206 and &; = @ + ... + Ay_j.

Given aroot @ = myay + ... + mgag, we have

2<a,5>_m 2<a,51>_m e m and2<a,5z>
5,8y TSy TN s 5y

=m + mg—mp - ms - Mg,

s0 oy restricts to (~1)™*™s id on g¥. Hence, if A¢ are the roots of E? with respect to t€ and A} = Ag n A" is the
notion of positivity induced by A*, with simple roots IIy, then

I = {01, a2, a3 + @, ag, &5} and T} = {8 - s}

are two sets of positive roots. We claim that Iy = H(’) U H(’)’. In fact, the elements of H6 are simple in Ag, because
a3 and o are not roots of E‘lc. Thus, it only remains to verify the simplicity of k := & - a, for then ITj u II}/
consists of 6 elements and £; hence is a Lie subalgebra of rank 6. So suppose that k =  + ' for roots 8, f’ € A}
and write B = myoq + ... + mgag, f’ = njaq + ... + ngas. Since ug(k) is equal to 1, we may assume that mg = 1
and ng = 0. Then /' is contained in span, (I \ {as}), a root system of type As, and hence there exist integers
s<t=5suchthatn; = 1forall s < i< tand n; =0 else. However, the only simple root different from a5 that
is not perpendicular to x = & - a is a3, and since = k - 8’ is a root, whereas k + f’ is not, because § is the
highest root, it follows that

2, k) . 2{ a3, k)
BBy LY

0#

so n3 = 1. But then f’ is not a root of €€, because ns + ng = 1 is not an even number.

Therefore, IIy = ITj u IIj and €; is semisimple. Let i’ and i”’ be the subalgebras of £; associated with IIj and
I}/, respectively. By examining the roots strings, we find that a3 + a, k) = 0, so the roots in IT} are orthogonal
to k, and that H(’) is of type As. Therefore, £; = i’ @i’/ is a direct sum of Lie algebras and oy necessarily has to
leave i/ invariant. Since the fixed point set of an involution on i’ has rank at least 3 and r - |I'*| = 2, we obtain
the desired contradiction. O

Theorem 6.6. If g€ is of type Eg, then some element in [£; n £]; is non-cohomologous to zero in g.

Proor. Note that one of the normal forms states that I'" consists of 8 elements, and hence cannot apply. The
other normal form can be treated similarly as in the proof of theorem 6.5. Here are the details. Recall that
I'* = {8,8, a1, 6}, where & is the highest root, &’ is the highest root of the root subsystem of type E7 spanned
by the simple roots {ai,..., a7}, and &; is the highest root of the root subsystem of type D¢ spanned by the
simple roots {ay, ..., & }. Hence, if @ = myay + ... + mgog is a root, then

28,y . 28, ay o 26, ay
5,8y s sy T TS ey

my — my — mg, and 0'1|gg = (-1)™*™ms id .

Let Ag be the set of roots of £ with respect to t€. Then ITj = I1\ {a1, a8} U {a1 + ag} and ITff = {5 - ag} are
two sets of positive roots with respect to the notion of positivity A§ induced by A*. Moreover, II} are simple
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roots in A}, and we check that k := § - ag is simple too. So let 8, € Aj with k =  + f’ be given. Since
ug(x) = 1, we may assume that ug(f) = 1 and ug(f’) = 0. In particular, f’ is contained in the root subsystem of
type E7 spanned by I1\ {as}, and since u;(5) = 1, u1(f’) can either be 0 or 1. The latter possibility is excluded,
because ” would not be a root of E‘ID otherwise, and so u;(f’) = 0. But the only root different from ag that is not
perpendicular to « is ag, and since x - f/ = f is a root and x + 8’ is not, we must have

2P k)

2{ay,
AN w(f) {a1,K) _

@y "

0#

which is impossible. Therefore,  is simple too. Now it follows that ITj uII{ is a simple system for {’,“1: and that ¢,
is a sum of two simple ideals of types E;y and A;. Since any involution on a Lie algebra of type E7 has full rank,
but r - [T*| = 4, I must be empty. O

Theorem 6.7. If g€ is of type F4, then some element in [£; n £;]; is non-cohomologous to zero in g.

Proor. The proofis very similar to the proofs of theorems 6.5 and 6.6. We only need to consider the normal form
inwhichT* isequal to {8, &1, y2}, with § = 2a; + 40 + 33 + 204 the highest long root of A, §; = 2a1 +2a2 + a3 the
highest long root of the root subsystem of type C3 spanned by {1, a2, 23}, and y, the highest short root of the
root subsystem of type By spanned by {ay, a3}. Note that d; and y; are long and short roots in A, respectively,
so if a € A is arbitrary, with a« = mja; + maaz + msas + myay, then

KXo,y Kooy o Kyna)
8.8y T GLey T Gy

=2ms - my — 2my, and (71|gC = (—1)mstma
a

Denote by A the roots of E‘E with respect to t€ and put Af := AgnA*. It follows that IT) = IT\{a3, s} u{az + a4}
and H6’ = {k}, with k = § — a4, are sets of positive roots in Aj. The elements of 1'[(’J are simple in Ag and we claim
that « is simple as well. To see this, assume that k = § + ’ holds for roots f8, f’ € Aj. Since us(x) = 1, we may
assume that us(f) = 1 and ug(f’) = 0. Then B is contained in the root subsystem spanned by {a1, a2, a3}, and
since its highest long root is di, it follows that u3(8’) equals 0 or 1. Hence, since f’ is supposed to be a root of
{’?, we must have u3(f’) = 0. But the only simple root different from a4 not perpendicular to « is a3, and since
k — B’ is a root but k + B’ is not, we have

2P k)

2{as3,
B =) las, 1)

04 <ﬁ/,,3/>_ ,

a contradiction. Thus, ITj u IT) is a simple system for £ and the subalgebras i/, i’ associated with ITj, Ty are
actually two ideals. Their complexifications are Lie algebras of types A3 and Ay, respectively, whence the fixed
point set of oy on €5 is a subalgebra of rank at least 2. But the normal form dictates that the rank of £€; n €, be 1,
which is impossible. Therefore, I' must be empty and £; n €, has full rank. O

Theorem 6.8. If g€ is of type E7, then some element in [£; n €] is non-cohomologous to zero in g.

Proor. Of the three normal forms that may appear by example 4.14, one states that I'* consists of 7 elements
and hence cannot apply. If T* = {§, 81, 83, & }, where § is the highest root of A™ and &1, 83 are the highest roots
of the root subsystems of types Dy, Dy spanned by IT\ {a7} and IT\ {1, a2, a7}, respectively, then for a root
a=mio +...+ myay we have

26, a) o 2(51, @) - m (8, a)
8.8y ULy r T (8,680

= mg — mym — my, and 01|gc = (-1)™M*™M id .
(24

It follows, similarly as in theorems 6.5 and 6.6, that IT” = I\ {a7} u {as + a7} and IT”/ = {5 - a7} are two mutually
orthogonal sets whose union is the set of simple roots for £; with respect to the notion of positivity induced by
A*. The sets IT and IT”/ give rise to a decomposition of £; into two ideals whose complexifications are of types
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Type of ambient Lie algebra  Type of fixed point set

As AjeoAjorCy

Agr (r=1) B,
Agpi1(r=2) Cry10rDpyg
Dyi1(r=3) BpeB,p
E¢ CqorFy

TaBLE 1. Possible Lie algebra type of the fixed point set of an outer involution on a complex simple Lie algebra.
The case As is listed separately to clarify the meaning of D5.

D¢ and A1, respectively, and since the fixed point set of an involution on a Lie algebra of type D¢ has rank at
least 5, we conclude that this normal form cannot occur either.

Finally, suppose that I'" = {§, 8, 1 }. Then o7 is given by (-1)™! id on the root space of a root @ = myay +
... + myaz and the fixed point set of o7 has a one—dimensional center; it decomposes as €1 = Z(£1) ® b, where
b is the subalgebra of #; associated with the simple roots IT\ {¢;}. The proof now proceeds along the same
lines as the proof of theorem 6.3: using the standard maximal torus, the standard set of roots, positive roots,
and simple roots introduced in proposition 5.1, we find that h€ is of type E¢ and that the fixed point set f of
an automorphism 7 : h — b induced by the non-trivial automorphism of the Dynkin diagram of h¢ shares
a maximal torus with §, because €; n € has rank 4 and o2 : h — b hence cannot be an inner automorphism.
Moreover, f is a folded subalgebra in b, with f€ of type F4, and the kernel of the surjective map Ay — Af is the
ideal J generated by all polynomials of odd degree. Since A; — Ab/ '] is a surjection by proposition 5.12, § is
totally non—-cohomologous to zero in g. O

Theorem 6.9. If g€ is of type Gy, then some element in [£; n €] is non-cohomologous to zero in g.

Proor. Indeed, £; n €2 must be of full rank and I must be empty, for if I' was non-empty, the only normal form
for root systems of type Gz would state that I'* consists of two elements, whence s would be trivial. O

6.2. Outer automorphisms

We continue to use the notation established in the previous section, but this time we assume that o7 is an outer
automorphism; oy might be inner or outer. For this case we will have to employ the classification of involutive
automorphisms on complex simple Lie algebras given in [14, Theorem 5.15, chap. X], or more precisely the
classification of the type of the fixed point set of such automorphisms presented in [14, Tables Il and III, pp. 514
and 515]. For the convenience of the reader we have reproduced the classification results for the cases that arise
from non-inner automorphisms in table 1.

As an immediate consequence of this classification we have

Theorem 6.10. If g€ is of type E¢, then some b € [£1 n €3] is non-cohomologous to zero in g.

Proor. According to table 1 E‘lE is either of type C4 or F4 and hence does not admit any outer automorphism.
Therefore, oy : €; — £ fixes a maximal torus of €;, whence [£; n &2]f = [£;]f, and we already know that there
exists a subalgebra b € [£1]; with the desired property. O

Proposition 6.11. Suppose that the Dynkin diagram of g€ only admits one non-trivial automorphism A : I —
II. Then there exists an involution 7: G — G induced by A and elements ¢t € Tj, n € Ny(T1) - T such that
01 = ¢tot and 0y = cyov, where v € {7,idg} and H = (G%)y.

Remark 6.12. If one only requires that n be contained in Ng(T7), then the statement of proposition 6.11 is
known, cf. [23, Lemma 5.3]. The point of proposition 6.11 is that we can take n € Ny (T7) - T.

Proor. First of all note that o7 : IT — IT and A must coincide, because oj is not inner, whence both maps are
non-trivial automorphisms on the Dynkin diagram of g€. Now let I’ < IT be the set of all simple roots that are
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fixed by o7 and choose a subset II” < IT \ [T/ with the property that IT = II’ u IT”” u ¢1(IT”/) is a disjoint union;
such a decomposition exists, because o1 : II — Il is an automorphism of order 2. Next, pick a non-zero weight
vector E, for each simple root € II’ u IT"”” and put Ep := 01(Es (p)) for all f € o (IT”). In this way we obtain
a collection of root vectors {E, | @ € I}, one for each simple root. The elements of IT constitute a real basis of
(it)", because g is (semi-)simple, and the only eigenvalues of o are 1 and (-1), so we may pick an element X € t
such that a(iX) = =, if 01(Ey) = —Eq, and a(iX) = 0 else. In particular, X is contained in the joint kernel of all
members of II”” and ¢1(IT""), and since a(X + 01(X)) = 2a(X) holds for all & € II, we even have X € t;. Now
consider the automorphism 7 := Cexp(x)°01. It satisfies 7(Eq) = Eg-1, for all a € II, and since 7 and o7 agree
on {, 7 is an automorphism induced by A.

For the second part of the statement, we first show that o» = c,ov holds, at least with n an element of Ng(T7).
This is true if 0y is an inner automorphism (cf. proposition 3.2), so let us assume that oy is outer. Note that oy
permutes the roots of €, and so maps the Weyl chamber defined by A* (that is, the set of elements Y € it with
a(Y) > 0 if and only if « € A*) onto a different Weyl chamber. As is known, the Weyl group acts transitively
on the set of Weyl chambers, hence we find g € Ng(T) such that Adg—l o0y preserves the Weyl chamber defined
by A*, and consequently also A* and II. Also note: Cg-1°07 is outer, because an automorphism is inner if and
only if it fixes a maximal torus. In particular, the non-trivial map Adg—l ooy : II — Il must coincide with A, so
we may use the weight vectors {E, | @ € IT} chosen earlier and proceed analogously as in the first part of the
proof to find t’ € T such that Cg-1°02 = CpoT, the only difference to the proof of the first part being that the root
vector E, of a root a € II” is not necessarily mapped onto E A(a)» Dut rather a scalar multiple of E,(,); this is

why t can only be assumed to be an element of T. Then we have o3 = ¢,or and n := gt/ must be contained

c
g
in Ng(Ty) by proposition 3.2.

To conclude the proof, it thus will suffice to show that N5(T1) = Ng(Ty) - T. To this end, recall that T
is the unique maximal torus of G containing Tj, so any element of X := Ng(T;) also normalizes T, whence

P :=Ng(T1) - T actually is a (closed) subgroup of X. Consider the inclusion induced diagram
X/P —— Ng(T)/P <—— Ng(T)/T.

The left hand map is injective and the right hand map is a surjection originating from the Weyl group of G, so
X/P is a finite set. To compute its number of elements, we use [8, Proposition 2.3], according to which

dim H(X)

dimH%(X/P) =
mEX/P) = G (p)

-dimH(P n Xp).

Now P = Ng(Ty) - T is a space having as many components as Ny (T1) does, because T is path—connected, and
the identity component of X = Ng(T1) is Zg(T1) = T. Moreover, H is a folded subgroup with maximal torus
Ty, and it was shown in [7, Proposition 4.4] that the number of connected components of N;(T7) equals the
number of connected components of N (T1). Therefore, X/P is connected, and so Ng(T1) = Ny (T1) - T. O

Now suppose that the Dynkin diagram of g€ only admits one non-trivial automorphism. Then by proposi-
tions 3.4 and 6.11 we may assume that o1 = ¢;or and that oy = cpov, where t € T, n € Ny(Ty), v € {r,idg}, and
H is the identity component of the fixed point set of an automorphism 7 : G — G induced by the non-trivial
Dynkin diagram automorphism IT — II. Moreover, if w € W(A) is a Weyl group element that is represented by
(Adp,)" for some element h € H, then we may assume that I is equal to w(I'): in fact, in this case ¢; and 7 commute,
and since t; = ", h must be an element of Ny (T1). Thus, ¢-1001°¢h = ¢, )-1(°T and ¢-1002°C, = ¢, )-1(n)°T are
two commuting involutions with common fixed subalgebra Adj(£; n £;) and for which w(T) is the set of roots
vanishing on the maximal torus Ady(s).

Having applied all desired transformations to I', we define IT,4q < II to be the set of simple roots f§ for which
P(B) = Y ger+ 2 a, ByKea, ) is odd and put Ileven := I\ I gq. We have shown in corollary 3.7 and propo-
sition 3.5 that no root in Il 4q is fixed by 7 and that for any choice of integers {e, € {1} |a € Il 44} such
that €, = —€,(,) there exists an element p € T with the property that for all simple roots a the map Ad,, is
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multiplication with e,i on g¥, if & € I 44, and equal to id else. We also showed that there exists s € T such
that Ad, restricts to multiplication with exp(ir Y ,er+<{a, f)/{a, a)) on gg, that v; := cps is an involution which
commutes with v, := oy, and that s is a maximal torus for the common fixed point set of v; and v,.

Theorem 6.13. If g is of type A, then some element in [€; n €2]f is non—cohomologous to zero in g.

Proor. Note that if r = 2k is even, then E“l: is of type By by table 1 and hence only admits inner automorphisms.
Thus, [81 n &2]f = [£1]; and the claim follows in this case, cf. also theorem 6.10.

Henceforth, we assume that r = 2k - 1 is odd. Then k > 2, necessarily, and we further suppose that oy : £; —
£, is not an inner automorphism. By table 1 {?‘IE must be either of type A;j @ Aj or of type Dy and oy : & — &
either interchanges the two simple summands of £; or is an outer automorphism of order two. In both cases we
have rank (¢; n &3) = rank (¢;) - 1 and rank €; = k. Now note that the Dynkin diagram of g€ only admits one
non-trivial automorphism, so the considerations preceeding this theorem apply. In particular, we know from
corollary 3.3 that rank (¢; n €2) = rank (1) - [T*|, so I'* consists of a single element y, and this element must be
fixed by 7 because of lemma 3.6. If we enumerate the simple roots I as in example 4.11, then 7 maps a root ay_;
to ai.j, and since the elements of A* are of the form @; + i1 + ... + a; for integers i, j with i < j, we hence have
Y= Qg +...+ o forsome £ =0,...., k- 1.

To conclude the theorem, let us consider the involutions v; and 1» constructed earlier. Observe that

1, i=k-ftori=k+¢,

2<y,ai>_ -1, i=k-¢-lori=k+¢+1,
22 2, i=kandf=0,
0, else,
and recall that we need to choose integers {€y € {+1}|a € I qq} satisfying €5 = —¢;(4) in order to define v;.

We define €, to be equal to 1 if and only if & = @; for some i < k. With this choice it follows that for any root
a € Awith @ = myag + ... + myp_1 ogp_1 We have Vl\gq: = (-1)™, where
o

my, t=k-1,
m=
My_p + Mpppr1, €lse.

Now we are ready to determine the fixed point subalgebra f; of v;. In fact, if A9 c A are the roots of f‘lﬁ with
respect to t€ and A is the notion of positivity induced by A*, with resulting simple roots Iy, then

II , t=k-1,
m:{ \a)

M\ { k¢, o1} U{Y + A1}, else,

because a root a € Aj with @ = myay + ... + myp_ g1 either has my = 0,if £ = k-1, or my_p = Myypyq, if
¢ # k - 1. Thus, §1 = Z(f1) ® m has a one-dimensional center Z(f;) given by the common kernel of the 2k - 2
elements in ITy. Moreover, the roots of f; correspond bijectively to the roots of m® with respect to m€ n €
via restriction and the positive roots induce a notion of positivity whose simple roots are the restrictions of
the elements in Iy. In particular, if £ = k — 1, then m is the subalgebra of g associated with ay, ..., ayr_; and
hence is of type Ay_q). Since we already know that rank (¢; n€2) = k - 1, v, : m — m hence must be an
outer automorphism and f; n fo = m'2, where f2 = g'2. Since [f; n f2]¢ contains a subalgebra which is totally
non-cohomologous to zero in m and Ag — A, is surjective, the claim follows if ¢ = k - 1.

An analogous argument shows that the claim also holds if £ = 0: for i = 1,..., k we define m; to be the
subalgebra of g associated with IT\{ @, @;+1 }u{@j+ai.1}. Thenmy = mand Adg : m; — m;,q is an isomorphism,
provided that g € Ng(T) is such that (Adgq)* = Sg;,;- Since the inner automorphism corresponding to s, maps
the Lie subalgebra of g associated with {ay, ..., &} onto my, it hence follows that m is totally non-cohomologous

40



to zero in g, so the equivalence class [fi n f2]f of f1 n fa = m" will contain a respresentative which is totally
non-cohomologous to zero in g as well.

Finally, we consider the case £ # 0,k — 1. One can show, but we will not, that m is a sum of two simple
ideals whose complexifications are of types Az¢ and Ay(x_p_q), and that these ideals are v;-invariant. Since
the arguments of the previous cases cannot be adapted to this situation, we compute s instead and explicitly
construct a subalgebra which is totally non-cohomologous to zero in g.

To this end, recall that by corollary 3.3 s is the fixed point set of SH, on t; = t7 and that Hy =Hy_,+...+Hgy,.
We also know that t; is a maximal torus of ) = g7, that the restrictions f, ..., f; of a1, ..., o to t? form a set of
simple roots for the notion of positivity induced by A*, and that §€ is of type C, with long root . In particular,
since the elements L; = 1/2(Hy,; + Hy,, ;) are fixed by 7 and satisfy (L;,-) = f; on t;, we must have CL; = [hfgi, h‘_cﬂi]
forall i = 1,..., k. Moreover, the elements L; with i < k- ¢ -1 or i > k - £ are fixed by SH,» as is Ly_p_q + Ly_y,
and since s is of rank k - 1, they must comprise a basis of is. So, if we write ® = {f,..., fr} and define m;
to be the subalgebra of h associated with ® \ {f;, fis1} u {fi + fi+1}, then my_,_; shares the maximal torus s
with f1 n f2. But the Weyl group element Ady of h with (Ad,-1)" = sg, and x € Ny(T1) maps m; isomorphically
onto m;,1, and the Weyl group element of f) representing s, maps m; isomorphically onto the subalgebra of h
associated with {fs, ..., B }. Since the latter is totally non—-cohomologous to zero in ) by corollary 5.7 and b is
totally non-cohomologous to zero in g, it follows that m;_,_; must be totally non-cohomologous to zero in g
as well. Hence, my_,_; € [f1 n f2] is the desired subalgebra. O

Theorem 6.14. If g€ is of type D,, r > 4, then some element in [£; n £;]; is non-cohomologous to zero in g.

ProOOF. We first note that we may assume r = 2k + 1: from the classification we know that £; =i’ ®i” is a sum
of two simple ideals whose complexfications are of types By and B,_j_1, respectively. Since Lie algebras of type
B, only admit inner automorphisms (even in the case m = 1), it follows that oy either fixes a maximal torus of
£1 or that o, interchanges i’ and i”’. In the former case £; € [£; n £]; is totally non-cohomologous to zero in g,
and in the latter case ranki’ = ranki’”, so r = 2k + 1.

In particular, r # 4, so the Dynkin diagram of g€ only admits one non-trivial automorphism and the maps v,
vy are defined. Enumerate the simple roots IT as in example 4.12. We show that the root reflections sg;, ..., Say,;_;»
and ss,, |, where 81 = apg_1 + gk + Izk41, can be represented by (Ady)” with h € Ny (T1). Indeed, it is a well-
known fact (cf. the proof of [16, Theorem 4.54, sect. IV.6]) that the root reflection s, of a root « is represented by
Adexp(x) for some element X € aCegC,, soif 7 is the identity on g&, then s, can be represented by some element
in Ny (Ty). This is definitely the case for the simple roots a1, ..., agx_1, just by definition of an automorphism
induced by a Dynkin diagram automorphism; and if Xy_1, Xk, and X, are non-zero weight vectors for the
roots aoy_1, tog, and ayp, 1, respectively, such that 7(Xyx) = Xog1, then [Xog 1, [Xog_1, Xok]] is @ non-zero root
vector for §,;_; and

t([Xakr1, Xok-1, Xak11) = Dok Xok-1 Xoks11] = ([Xoks Xok-11 Xoks1] = [Xoks 1, [Xok-1, Xok]],

because ady;,, is a derivation and ayy., ayi.q are perpendicular.

Now observe that the root subsystem Q of A spanned by the roots {ay, ..., @gk_1, 92_1} is of type Dy, with
triple node ayx_, connected to the mutually perpendicular roots ayy_3, doi_1, and dx_1. Moreover, we deduce
from our explicit description of the roots A given in theorem 6.4 that Q is equal to the set of all roots in A
which are fixed by 7, whence I' is a set of strongly orthogonal roots in Q. Thus, if we can show that p is
even valued on Q, then it follows from theorem 4.9 together with our discussion before theorem 6.13 that we
may assume I'* to be in one of the normal forms obtained in example 4.12, because the Weyl group W(Q) is
generated by the root reflections sy, ..., Sa,;,_,» and ss,,- However, p(a;) is even for roots i <= 2k - 1, because
such roots are fixed by 7 and hence contained in ITeven. Moreover, the roots in I' are fixed by 7 as well, whence
per = p, and since () = g1, it hence follows that p(dop_1) = p(aar_1) + 2p(eag) is even. Combined
with the facts rank €; = 2k, rank (¢; n€2) = k, and T*| = rank¥; - rank (¢; n €;), we henceforth assume I’
to be equal to one of the sets {a1, 1, 23, 83, ..., Ag_1, 01}, {01, 53, .., Oop_1}, or {1, 83, ..., ak_3, Ao_1 }, Where

41



Oi = aj + 2(Qs1 + ... + Agp_1) + Aok + Aopeq. Suppose that Sy € T, so I'" is the second of the three sets in
question. Then we have

pji=plyg) = Y, ———= =

2(0{,0(]'} 1, j=2k2k+1,
a€r+ <0(,(X>

0, else,

s0 Iodq = { @k, k41 } consists of two elements. Hence, if we choose €4, = -i, €n,;,, = i, then v; is (~id) on
ggzkﬂ and the identity on the root space of all other simple roots cf. corollary 3.7. Thus, the fixed point set
f1 of v1 is f1 = Z(f1) ® m, where m is the subalgebra of g associated with the simple roots {a,..., @y }. Its
complexification is of type Ayx and since the inclusion m — g induces a surjection A; — A, modulo the ideal
in A, generated by all polynomials of odd degree, it follows that m*? = (f;)"? shares a maximal torus with a
subalgebra that is totally non-cohomologous to zero in g, cf. also the proof of theorem 6.4.

The proof is similar in case ay_; is contained in I'*, the difference being that pyp = pyr.; = -1 and that
Pak-1 = 2. Hence, if we let €4, = i, €4,,, = —i, then v; is (-id) on the root space of the roots az_1, otpf+1
and the identity on the weight spaces of the remaining simple roots. Thus, f; = Z(f1) ® m, and this time m is
the subalgebra of g associated with {ay, ..., @ok_o, dag_1 + Ao41, 2k }- But for any element g € Ng(T) such that
(Adg-1)" = Say,, the automorphism Adg sends the subalgebra of g associated with {o1, ..., ayx } isomorphically
onto m, so Ay — Ay, is surjective modulo the ideal ] ¢ A, generated by all polynomials of odd degree too.
Since J is the kernel of any involution on m that is induced by the non-trivial Dynkin diagram automorphism
on some Cartan subalgebra of mC, the claim follows.

Now suppose that I'* is neither of the two previous sets. Then I 44 is empty and vy = (-1)™**"-1, The
proof given in theorem 6.4 carries over almost verbatimely if k — 1 > 1, the only difference being that v, does
not fix ayx.1 but ayp_;. Hence, the same rank considerations show that this case cannot occur. If k -1 = 1,
we note that v, fixes L3 = Hy, and Ly = 1/2(Hy, + Hy), so iL3 and iL4 are basis vectors for s. Moreover, if we
write a; for the restriction of «; to the complexification of t; = t7, then {L3,-) = @3 and {L4,-) = au, I)C is of
type B4, and {1, ..., da} is a set of simple roots on tclj with respect to the notion of positivity induced by A™,
with short root @;. Therefore, s is the maximal torus of the subalgebra m of h associated with {as, a4}, which
is totally non-cohomologous to zero in §) by corollary 5.7, and since b is a folded subalgebra, m is also totally
non-cohomologous to zero in g. O
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CHAPTER III.

An algebraic model for the equivariant cohomology of isotropy actions

1. g-actions

Let g be a (finite-dimensional real) Lie algebra, A(g) the exterior algebra of g, and Q(g) the space of alternating
forms on g. Then Q(g) is a differential graded R-algebra with respect to the exterior derivative d, which is the
unique anti-derivation, homogeneous of degree 1, such that dw(X, Y) = —~w([X, Y]) holds for all © € Q!(g) and
all X,Y € g. We can use d to introduce a differential on A(g): for each integer p = 0 there is a canonical and
non-degenerate pairing

(2r QP(@) e AP(g) — R,
0® (X1 A A Xp) = (X1, .., Xp),

so we may uniquely define a linear map 9 : A(g) — A(g), homogeneous of degree -1, which is dual to (-d) with
respect to this pairing, that is, such that we have (w, 9A1) = —(dw, A) for all v € QP(g) and all A € AP“(g). The
non-degeneracy of the pairing above readily shows that d is a differential, but, unfortunately, it is not an anti-
derivation on A(g) with respect to the canonical ring structure on A(g), unless d is trivial. In fact, d vanishes on
Al(g), because d is zero on Q°(g), while we have (X A Y) = [X, Y] forall X, Y € g.

Moreover, just as the adjoint map induces a representation g — End(Q(g)), X — —(adx)", where (adx)" :
Q(g) — Q(g) is the unique extension of ady : g* — g" to a derivation in Q(g), we obtain a representation
g — End(A(g)) by extending each of the maps ady : g — g to a derivation adyx : A(g) — A(g). The maps
ady and (adx)" then are dual to each other with respect to the canonical pairing between Q(g) and A(g), and
we shall denote the subalgebra of all invariant elements in A(g) by A(g)? or simply A, if there is no source for
confusion.

Definition 1.1. Let (M, d) be a differential graded R—-module (R-dgm for short), that is, a Z-graded vector
space M over R together with a differential d : M — M, homogeneous of degree 1. An action of g in (M, d)
is a tuple (i, £) consisting of R-linear mapsi: g — End(M) and L : g — End(M), subject to the following
conditions, for all X, Y € g:

(1) ix is homogeneous of degree —1 and Lx is homogeneous of degree 0,
(2) we have (ix)? = 0 and irx,y] = Lxely —iyeLx,

() Lx,y] = Lx°Ly - Ly°Lx,

(4) Lx = deiyx +ixed.

We remark that if g is the Lie algebra of a Lie group G, then [13] refers to (M, d) and (i, £) as a G*—module,
cf. [13, Definition 2.3.1, sect. 2.3]. If M actually is a differential graded R-algebra, Lx is a derivation, and iy
is an anti—derivation for all X € g, then the data of the definition above is also known as a differential graded
g-algebra (cf. [9, Definition 3.1]) or operation of g (see [11, Definition, sect. 7.1], although there it additionally
is required that M is non—negatively graded).

Example 1.2.

(1) If we consider the contraction operator ix : Q(g) — Q(g), X € g,asamapi: g — End(Q(g)), X — ix,
and the contragredient representation as a map -ad": g — End(Q(g)), X — -(ady)’, then the pair
(i, —ad") is a g—action in the differential graded R-module (Q(g), d).
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Let Ly : A(g) — A(g) denote multiplication from the left with X € g in the algebra A(g). Then Ly is dual
toix : Q(g) — Q(g) with respect to the canonical pairing introduced earlier, and since ady and (ady)”
are also dual to each other, it follows that (L., ad) is a g—action in (A™"(g), 9), where A™*(g) coincides with
A(g) as a vector space, but its p—th graded component is given by (A™*(g))? = A™P(g) for all integers p.
For example, if X, Y are arbitrary elements of g and w € Q(g) and A € A(g) are arbitrary homogeneous
elements of (ordinary) degree p > 0, then to verify the equation L[y y] = adx °Ly-Ly°ady, we observe that

{w, L[X,y](/l» = <i[X,Y] w, Ay = {(~adx)"iyw + iy(adx) w, A) = (w,-Ly adx(A) + adx Ly(1)).

If g is the Lie algebra of a Lie group G and M is a (smooth) G-manifold, then g acts on the R-dgm (Q(M), d)
of forms on M together with the exterior derivative d : Q(M) — Q(M). In fact, if given a vector field X
on M we let iy denote contraction of a form with X and write Lx for the Lie derivative in the direction
of X, then the defining equations for an action are satisfied by all pairs of vector fields X, ¥ on M. In
particular, if X € g, then the assignments X + iz and X + L5 define an action of g in Q(M), where
X is the vector field induced by the G—action, that is, the complete vector field with flow M xR — M,
(t, p) — exp(~tX).p. Note that some authors declare -X to be the induced vector field, however we shall
see later that the choice of sign that we make is dictated if we require that all maps between differential
graded R—modules be chain maps.

Actions can be pulled back along Lie algebra homomorphisms: if (i, £) is a g—action in a differential graded
R-module M, b is a Lie algebra, and F : ) — g is a homomorphism of Lie algebras, then (ioF, LoF) is an
h—-action in M.

Now suppose that g—acts on an R-dgm (M, d) and extend the representation of g in S(g*) and M to the tensor

product of vector spaces S(g") ® M via the assignment X — Ly, with Lx :=(-adx) ®id+ideLy forall X € g.
We denote by Cy(M) the space of all invariant elements in S(g") ® M and endow Cy(M) with the Z xZ-bigrading

M) = (SP(g") @ MTP)T.

As is well known, Cy(M) is a double complex, called Cartan complex, whose total cohomology is commonly

referred to as the equivariant cohomology of the g-action on (M, d). The details are collected in

Proposition 1.3. Let Xj, ..., X, be a basis of g with dual basis ¢y, ..., &, € g". Let further id ®d and ng ®in be the
R-linear maps on S(g") ® M induced by the R-bilinear assignments (f, m) — f ® d(m) and (f, m) — f¢ ® ix;m,

respectively.

(1)
@)
®)

©

The maps d and Lx commute for all X € g, and
i extends to a homomorphism of R-algebrasi: A(g) — End(M).

The mapsidedand: : = Z]'-’:I M,; ®ix; restrict to endomorphisms on Cy(M). As such they are differentials
and homogeneous of bidegrees (0, 1) and (1, 0), respectively.

the maps id ®d and : anti-commute on Cy(M).

Proor. To prove the first item, note that

Lxod = (doiy + ixod)od = do(doix +ixed) = doLy.

The second statement is a consequence of the fact that, for all X, Y € g, we have 0 = ix, ycix,y and that the

right hand side of this equation is equal to ixeiy + iycix, by linearity of the map i.
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To prove the third item, note that id ®d is even a differential on S(g*) ® M, and we claim that so is . In fact,
S(g") is a commutative ring, so MgoMg; = Me;oMs; for all i, j and

n n
Lol = ‘ZI(M&-OMEJ-) ® (iXi°in) = Z(Msic’Msj) ® (iXic’in) - Z‘(Mf,- °My;) ® (in °ix;) = 0.
ij= i<j i>j

Moreover, since d commutes with L x for all X € g, also id ®d commutes with the representation of g in S(g")e M.
Hence, to finish the proof of the third statement it suffices to show that : commutes with Lx too. To this end,
we compute, using that Ly is a derivation on S(g*), for all pure tensors f ® m

n
([,Xol)(f ® m) = z:l ﬁx(fé‘j) ® inm + (fé‘j) ® EXinm
J:
n
= (Lx)(f & m) + Zl(fﬁx(fj)) ® ix;m + (f) ® ix x;)m.
]:
and observe that Lx(¢) = - Y11, &([X, Xi])ei, whence

(fﬁx(ej)) ®ixm=- Zn‘ll zn:l(fgi) ® &([X, Xi])ixjm =- zn“l(fgi) ® iy x;)m-
i=1j= i=

1=

J

To verify the last item, we first observe that the operator Z]'-’ZI M;;°Lx; vanishes identically on S(g"). In fact,
since each of the maps Ly; is a derivation on S(g"), it will suffice to check this for i € g, and for such an element
we compute

n

% () == T h(%XDeies = 0
i,j=

J=1

the last equation being true due to the skew—symmetry of [-,-]. Now observe that on Cy(M) we have
n n
(ided)er+ 1o(ided) = 3 Mg @ Lx; = = 3 (MgoLx;) ®id. O
Jj=1 Jj=1

It should be noted that the definition of the differentials does not depend on the actual choice of basis and
dual basis. Indeed, there is a canonical homomorphism of R-algebras from S(g") into the space of all maps
g — R given by interpreting a tensor f € S!(g*) as the form X > f(X), and this homomorphism is injective
in each degree. Hence, for each degree p one obtains an identification of SP(g") ® M with a certain subspace of
all maps g* — M, usually referred to as the space of M—valued polynomials on g. Under this identification the
sum id ®d - 1 becomes the map sending an M-valued polynomial f to the map X +— d(f(X)) - ix(f(X)).

We use the symbol Hy(M) to denote the cohomology of the Cartan complex (Cy(M),id @d - 1). If M = Q(X)
is the space of smooth forms on a smooth manifold X and G is compact connected, then Hy(M) is isomorphic,
as an Ag—algebra, to the topological model Hj(X) of equivariant cohomology introduced in section L1, cf. [12,
Theorem C.4]. Next, suppose that g also acts on an R-dgm (V, d’) and let ® : M — N be a chain map, i.e. a
map with ®od = d’o®. Motivated by the next result, we call ® a morphism of g—actions if ® additionally is a
morphism of representations and if ®ei — jo® or ®oi + io® is the zero map g — End(M, N); thus either for all
X € g we have ®oix = ixo® or for all X € g we have ®oiy = —ixo®.

Proposition 1.4. Suppose that g is compact and let M, N be two differential graded R—-modules which are
acted on by g. Further suppose that ® : M — VN is a morphism of g—actions, homogeneous of degree 0, which
induces an isomorphism on cohomology, that the inclusions M% — M and V% — N are quasi—isomorphisms,
and that there exists an integer go € Z with M7 = 0, N = 0 for all g < qo. Then the map e@® : Cy(M) — C4(N)
is a quasi-isomorphism, where € is the linear map sending a homogeneous polynomial f € SP(g*) to o - f and
o € {£1} is chosen in such a way that ®eix = 0 - ixo® for all X € g.
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Proor. Note that € ® @ is a map of double complexes: if we denote the differentials on M and N by dj; and dy,
respectively, then certainly (id ®dy)o(€ ® @) = (€ ® ®)o(id ®d),), since  is assumed to be a chain map. If f ® m is
a pure tensor with f homogeneous of degree p and Xj, ..., Xy is a basis of g with dual basis ¢, ..., &,, then

(M;; ® ix))o(e ® ®)(f ® m) = o - (fe;) ® ix, D(m)
= o1 (fg)) @ D(ix;m)
= (e ® ©)o(M;; ® ix;)(f ® m),
and this implies that iyo(€ ® @) = (€ ® ®)o1y;. Consequently, € ® ® induces a map between the vertical filtrations

on C4(M) and Cy(N) (called “first filtration” in [3, Section A.2]), hence also amap e ® ® : E; py — E; v between
the first pages of the associated spectral sequences. This map fits into a commutative diagram

HY(CP" (M), id edy) <22> HY(CE"(V),id edy)

| |

Ef]?/l eod Ep’q

for all integers p, g, where the vertical maps are isomorphisms, and since we are assuming that M, N are con-
centrated in positive degrees with the exception of finitely many negative degrees, it will suffice to show that
the upper horizontal map is an isomorphism for all p, g to conclude that e ® ® : E; »y — E; v and hence also
e® ®: Hy(M) — Hy(V) is an isomorphism, see [3, Section A.4].

However, since g is compact, the canonical inclusion Ag®Mg — (S(g")eM)? = Cy4(M) is a quasi-isomorphism,
cf. [11, Proposition IV, sect. 7.6]. Similarly, Ag&\fg — Cg (V) is a quasi-isomorphism, so we have, for all integers
p and ¢, a commutative diagram

AP @ HIP(MO) _esd AP @ HIP(NO)

| |

HY (k" (M) —=22> HI(CP"(V))

in which the vertical maps are again isomorphisms. Moreover, ® is a morphism of the representations of g in
M and VN, hence restricts to a map ® : M9 — N9, This restriction of the quasi-isomorphism ® must again be a
quasi-isomorphism, because M® — M as well as N¥ — N are so. Therefore, the upper horizontal map in the
diagram above is an isomorphism, as is € & ® : Hg(M) — Hy(N). O

2. Constructing g-actions

Throughout this section we fix a compact connected Lie group G and a differential graded R-module (M, d).
Recall that we set A = A(g)? and suppose that we are given an R-algebra homomorphismi: A — End(M) with
the following property: whenever v € A is homogeneous of degree p, then

(1) i, is homogeneous of degree —p and
(2) iyed = (-1)? - doi,.

Note that i turns M into a left A-module, and if given v € A we define R, : A(g) — A(g) via Ry(4) = A v for
A € A(g), then A(g) becomes a right A-module. Hence, we may form the tensor product of A-modules

E = A(g) epa M.
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Observe that € does not canonically inherit a bigrading from A(g) and M, however, if we let % = ¥ i—izk Al(g)®p
M, then € = Pz £ is a Z-grading.

Proposition 2.1. Let f : M — M be an R-linear map with i,of = (-1)P - foi, for all homogeneous elements
v € Aofdegree pandlet € : A(g) — A(g) be the degree involution, that is, the linear map taking a homogeneous
element A € AP(g) to e(4) = (-1)? - A. Then the assignment A(g) x M — &, (A, m) — e(1) ®f(m), is A-balanced
and hence descends to an R-linear map e epf : € — £.

Proor. Let v € A and A € A(g) be homogeneous elements of respective degrees p and g, and choose m € M
arbitrarily. Balancedness of the map in question is implied by the chain of equations

e(Ru(Y) enf(m) = (~1)P*1- Aepiyf(m) = (-1)T - 2o f(ivm) = €(A) @ f(iv(m)). [

Remark 2.2. Note that € and f are not maps of right- and left—-A-modules, though, so the notation € ®, f is
not customary. However, if g : A(g) — A(g) is an endomorphism of the right A-module A(g), not necessarily
homogeneous, then we still have (g ®5id)o(e ®4 f) = (geo€) ®A f and (€ ®p f)o(g ®Aid) = (€og) ® f, because the
maps on the right hand sides of the previous two equations are induced by A-balanced maps A(g) x M — &.
For example, if 1 € A(g), v € A is homogeneous of degree p, and m € M, then we have

(e2g) (Rv(D) ®af(m) = (-1)7 - Ry((e2g)(D)) @nf(m) = (€og)(A) ®A[(ivmm).

Similarly, if h : M — M is amap of the left A-module M, then (e®,f)-(id ®ph) = e®(foh) and (id @ph)o(e®Af) =
€ & (hof).

Proposition 2.3. The map 0 is a morphism of the right A-module A(g).

Proor. It is a well known fact (cf. [11, Lemma I, sect. 5.12]) that each element in A is closed with respect to .
Now suppose that we have shown that d(Ry(4)) = R,(d(A)) for all homogeneous elements A of degree at most p
and all elements v € A. Let X, X1, ... Xp €9 and put A = Xj A ... A Xp. By the Cartan formula and because R,
commutes with Ly and ady, it follows that

(9°Ry)(Lx(A)) = (9°Lx)(Ry(A)) = Ry (adx(A) - Lx=d(1)) = (Ry°0)(Lx(2)).
Since the elements of the form Ly (1) span A?*!(g), we inductively conclude that R,o9 = d°R,. O

In a similar fashion, one shows that each element X € g gives rise to maps Ly®pid: €& — £andady ®pid: &
— &, uniquely determined by the condition that a pure tensor A®ym be mapped to (Lx®pid)(A®m) = Lx(A)eym
and (ady ® id)(A ® m) = adx (1) ® m, respectively.

Proposition 2.4. The map § := 9 ®p id +€ ® d is a differential on &£, homogeneous of degree 1, and the tuple
(L(y®n id,ad @4 id) is a g-action in (€, 9).

Proor. The maps 0 and € anti-commute, hence so do d ®, id and € ®, d, which is why § is a differential on
E. It is homogeneous of degree 1, because so are € ®p d and 9 ®, id, by our choice of grading. Next, recall
that (L), ad) already is a g-action in (A™*(g), 9) by example 1.2, so of all the properties that need to be verified
in order for the specified tuple to define a g—action in (&, §), those not involving the differential § are already
satisfied. Hence, it only remains to verify the Cartan formula. The latter indeed holds for all X € g, because Ly
and € anti-commute, whence

doLx®p id+Lx®p idod = (doLyx + Lxod) ®pid +(eoLy + Lxo€) ®pad = ady ®4 id. O

Our next goal is to show that the natural inclusion M — &£, m +— 1 ® m, is a quasi—isomorphism between
(M, d) and (&, 6) by providing an explicit quasi-inverse map £ — M. To construct this map, we need to make
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a general observation. So suppose that X is a topological space and that I : C(X) — R is an R-linear map on
the space of continuous real valued functions on X. Given a finite-dimensional R-vector space V, equipped
with its canonical smooth structure, we can extend I to an operator I : C(X,V) — V by requiring that the
following universal property be satisfied: for all forms o € V* and all continuous functions f : X — V we have
(aoI)(f) = I(aof). Indeed, if v, ..., v, is any basis of V with dual basis e, ..., &,, then the operator C(X,V) — V
mapping f to Y i.; I(¢;of)v; satisfies the universal property for each ¢, whence by linearity of I it must be
satisfied for arbitrary forms o € V.

We apply this reasoning in case that X is a compact oriented (smooth) manifold, with or without boundary,
and I = [, dx is a notion of integration of continous functions on X. More precisely, [, f(x)dx = [, fV
for some fixed volume form V on X, where the right hand side is the ordinary integral of forms on oriented
manifolds. Extend .[X dx to an operator C(X, A(g)) — R and suppose that f : X — G is a continuous function.
Then for all A € A(g) the assignment X — A(g), x — Adf(y)(4), defines another continuous function, where
we have extended each Ady : g — g to a homomorphism of R-algebras Adg : A(g) — A(g). Consequently,
we obtain an operator

Hxf - A(g) — A(g), A— /XAdf(x)(/l) dx,

which is homogeneous of degree 0. Also note that if an R-linear map F : A(g) — A(g) commutes with Ad, for
all g € G, then it also commutes with px ¢: in fact, if a € (A(g))" and A € A(g) are arbitrary, then by the universal

property
(copix foF)(A) = /X a(Ady(F(1)) dx = /X (aoF) (Ad (D) dx = (aeFopax )2,

whence iy goF = Fopy r. In particular, d and R, commute with px ¢: the former because the exterior derivative d
on Q(g) commutes with (Adg)" € End(Q(g)) and (Adg)" is dual to Adg € End(A(g)) with respect to the canonical
pairing between A(g) and Q(g); and the latter because G is connected, so that A = A(g)? is precisely the space of
elements which are invariant with respect to the representation Ad : G — End(A(g)). Therefore, 1y r descends
to a well-defined chain map px s ®pid : &€ — €.

Let us be more specific about the choices that we make if X = [0,1] or X = G, since these are the only cases
of interest to us. If X = [0, 1], we take the volume form used to define H{o,11.f to be the standard volume form on
[0, 1], and then pyo 1] ¢(4) is just the ordinary integral of the path t — Ady(;(4) in A(g). For X = G we choose
V to be a biinvariant volume form, so y;q(A) will be Ad- and hence ad-invariant. Given that we will make
frequent use of i ;q, let us also write 1 := pgjq. Now the promised quasi-inverse map M — A is introduced
in the following

Proposition 2.5. There is a unique R-linear map 7 : £ — M taking a pure tensor A ® m to 7(A® m) =i m,
and this map is a chain map.

PROOF. We just argued that y commutes with R, forall v € A, so the assignment A(g)xM — M, (A, m) — i ym,
is A-balanced and induces a map 7 : & — M. Moreover, since the elements of A are d—closed and p commutes
with 9, we have pod = 0. This implies that 7 is a chain map, for if A € A(g) is homogeneous of degree p and
m € M is arbitrary, then

(7[05)(). ®A m) = iu(a(ﬂ))m + iﬂ(e(a))dm = (—l)p : ip(ﬂ)dm = dip(ﬂ)m = (doﬂ')(/l ®A m) O

Theorem 2.6. There exists a chain homotopy H : A(g) — A(g), homogeneous of degree 1, between p and id
which commutes with R, for all v € A.

Proor. In fact, a fairly standard chain homotopy will do. Here are the details. First note that since G is compact
and connected we find a finite open cover U" of G such that each set U € U admits a smooth map Fy : U x
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[0,1] — G connecting the identity map on U to the constant map U — {e}, that is, such that Fy(g,1) = g
and Fy(g,0) = e for all g € U and the neutral element e € G. We further find a partition of unity (¢y)yer
subordinate to V. For A € A(g) we define

po() = /G £0(g) Adg(2) dg and Ay = /G £5(g)2 dg.

By linearity of the (extended) integral we then have y(d) - A = Y 1, pu(A) - Ay. Next, fix U € U', A € A(g), a
point g € G, and t € [0,1]. f we let k : = AdFU(g,t)’ then

d

d
E]sztAdFU<g,s><A> - Adg o

Adj-1p,(g,5)(A) = (Adg o adyyy g n)(A),
=t

N

where Wy (g, t) € g is the vector field which at e evaluates to y’(t) and y(s) = k™'Fy(g, s); to see this, recall
that there is an isomorphism T,qEnd(g) — End(g) taking a tangent vector a’(0), @ a smooth curve in End(g), to
the map X — %L_O a(s)(X) and use that (Adoy)’(t) = (d Ad).(y’(t)). We also observe that Wy (g, t) depends
smoothly on t since y(t) = e and the exponential map of G is a diffeomorphism onto some open neighborhood
of e. Combined with the universal property of the extended integral and the fundamental theorem of calculus
we conclude that

1 d 1
Adg(D) - 2 = /O |, Adrgo di - /0 (Adg (g 1) > ad iy (g.)(A) d.
s=

Now put Ty(g, A) := &y(g) - /;]1 (Adp, (g,1) °Lwy (g,1)(4) dt and note that Ty (g, -) commutes with R, for all v € A,
because Ly and Ady do so for all X € g, k € G. Hence, if we use the generalized Cartan formula to replace
adwy, (g.1) bY 9°Lwy(g,1) + Lwy (g,1)°0 in the displayed formula above, multiply the result with £y(g), and integrate
over G afterwards, then we obtain

o) - Ay = /G o(Tulg. 1)) + Ty (g o) dg = (2-Hy + Hy=0)(A),

where we have set Hy(4) = /; Ty(g, A) dg. Again, observe that Hy commutes with R, for all v € A, because
Ty(g, -) already does. Thus, if we write H := . ¢7 Hy, then y - id = 9°H + Hed and H is as claimed. O

Corollary 2.7. H induces a chain homotopy H ®4id, homogeneous of degree -1, between p ®5id and idg.

Proor. Part of the statement of theorem 2.6 was that H commutes with Ry, for all A, so we obtain a well defined
map H epid: &€ — £. Moreover, € and H anti-commute, because H is homogeneous of degree 1. Therefore,

H ®pidod + §oH ®pid = (Hod + Hed) ®pid +(Hoe + ecH) ®pd = popid —idg . O

Corollary 2.8. The natural inclusion M — &, m — 1 ®, m, is a quasi-isomorphism with quasi-inverse 7.

3. Compatibility with existing actions

We continue to use the notation of the previous section and additionally assume that (j, £) is an action of a Lie
algebra m in (M, d) satisfying the following property: if v € A is homogeneous of degree p, then

(1) jaeiy = (=1)? -iyejg and
(2) Lpciy =1Ly

for all A € m. The second condition says that £ 4 is a homomorphism of the A-module M, hence induces a well-
defined map idepLy : € — & for all A € m, and by proposition 2.1 we obtain a linear map e ®p ja: € — &
sending a pure tensor A ®p m to €(1) ®p ja(m).
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Proposition 3.1. We seti(x 4) := Lx®a id+€e ®p js and L(x 4) := adx ®pid+idepLy forall X € g, A € m.
Then the assignments (X, A) — i(x 4) and (X, A) — L(x 4 define a g ® m-action in (£, 6).

Proor. Ultimately, this is a consequence of the fact that the degree involution € : M — M commutes with
all homogeneous maps of even degree and anti-commutes with all homogeneous maps of odd degree. In more
detail, let [+, -] : End(€)xEnd(€) — End(€) also denote the commutator of endomorphisms. Then forall X, Y € g
and A, B € m we have

[E(X,A)si(Y,B)] = [adx ®pid, Ly®p ld] + [adx ®pid, € ®AjB] + [ld AL A, Ly®a ld] + [ld oaL g, € ®AjB]

= i[X,Y] ®A id +e ®Aj[A,B]'

In a similar fashion one verifies the equation [L(x a), L(y,B)] = L([x,v][4,B])> the right hand side of which, by
definition of the bracket on the sum g @ m, is equal to L[(x a)(y,)]- To validate the Cartan formula recall that
6 = 0 ®p id +€ ®p d and that both €09 + do€ and Lyee + eoLx vanish, so we compute

i(X,A)(S + 5i(X,A) = (Lx®p id)d + 6(Lx®p id) + (€ ®p ja)d + S(e ®p ja) = adxy @p id +id ®p L 4. O

4. An exact sequence

Let G be a compact connected Lie group, g its Lie algebra, and put A = A(g)Y. If M and V are left- and right-
A-modules, respectively, then restriction of scalars turns M and N into R-vector spaces, so the tensor product
(of R-modules) NV M = N ®g M is declared. It is a real vector space and contains NV ®5M as a quotient. In fact,
we have a short exact sequence of real vector spaces

0——=I1—NoM—>NeoyM ——0,

where I ¢ N ® M is the subspace spanned by all elements of the form (nv) ® m - ne (vm), withn € N, m € M,
and v € A; the map V @ M — N ®, M is the natural map sending a pure tensor n ® m to n ®y m. Moreover, if
f: N— Nandg: M — M are R-linear maps, then the assignment N e M — N @ M, (n, m) — f(n) ®xg(m),
is A-balanced if and only if I is an invariant subspaceof fe g: Ne M — N & M.

Specifically, if V = A™*(g), M is a differential graded R-module with differential d, andi. A — End(M) is as
in section 2, making M a left—-A-module, then the balancedness of the maps adx ® id, Lx ®, id, 9 ®, id, and
€ 8 d implies that the maps ady ®id, Ly ® id, d ® id, and € ® d restrict to endomorphisms of I for all X € g.
Hence, (L ® idj;, ad ® idyy) is a g-action in A™"(g) ® M which restricts to a g-action in I, and if u is another
compact Lie algebra and F : u — g is a Lie algebra homomorphism, then also u acts on (I, &), (A™"(g) ® M, &),
and £ = A(g) ®A M via the pullback of the respective g—action along F, where §y := 0 ® id +¢ ® d. We claim that
we obtain an exact sequence of differential graded A,~modules

0 Cu(D) Cu(A™(g) @ M) Cu(&) 0.

Indeed, since tensoring with a fixed vector space preserves exact sequences, this is immediate for the left portion
of the sequence above. To see that the map S(u") ® A™"(g) ® M — S(u") ® £ is still surjective after passing to the
subspaces of u-invariant elements, note that due to the compactness of u we have, by [11, Lemma I, sect. 4.3,
and theorem III, sect. 4.4], for each p = 0 a projection y, € End(S=P(u”) ® A™*(g)) onto the space of u-invariant
elements (SSp(u*) ® A"(g))u whose kernel is spanned by all elements of the form Lx(f ® 1), where X € g,
f € S*P(u*),and A € A(g). They assemble to a projection y onto the u-invariants in S(u*)® A™"(g), and ; commutes
with id @R, for all v € A. Thus, the map p ® idy, which — by definition of the u-action in S(u*) ® A™(g) ® M —
is the projection onto the u-invariants, induces a map p ®5idys. Hence, if x € S(u”) ® A™(g) ® M is a preimage
of y € C,(€), then so is (1 ® id)(x) € C,(A™"(g) ® M).

Now the short exact sequence of differential graded A ,—modules induces a long exact cohomology sequence
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of A,,—modules, which may be rewritten as the exact sequence

H,(I) —=H,(A™(g) ® M) ——=H, (&)
\—/

X

with y the “connecting homomorphism”. Explicity, y is the map, homogeneoeus of degree 1, sending x € H,(€),
say with x represented by }’; fj ® Aj ®, mj, to the class of }’; &(f; ® A; @ m;) in H,,(I).

Proposition 4.1. Suppose that M7 = 0 for all but finitely many ¢ < 0 and that F : u — g is not the trivial map.
Then H,(A™"(g) ® M) is a torsion A,—module.

Lemma 4.2. Suppose that MY = 0 for all but finitely many g < 0. Then the A,-module H,(A™"(g) ® M) is
isomorphic to H, (A" (g)) ® H(M), the u-action in A™*(g) being the pullback of the g—action along F : u — g.

Proor. Recall that g acts on A™"(g) ® M via (L, ® idy,ad ® idy) and that the u-action is the pullback of this
g—action along the map F. On the other hand, a g-action in the R-dgm (A™"(g) ® H(M), 9 ® id) is declared by
(L(.) ® id,ad ®id), and if s: H(M) — ker(d) is a section, that is, an R-linear map, homogeneous of degree 0,
such that s(x) represents the cohomology class x € H(M), then id®s: A™(g) e H(M) — A™*(g) ® M is a map of
g—actions. In fact, we have yo(id ®s) = (id ®s)(d ® id), because s maps into the kernel of d and §) = de®id +e® d.
Thus, if id ®s is a quasi-isomorphism, then it also induces an isomorphism of A ,—modules H,(A™*(g) ® H(M)) —
H,(A™"(g) ® M), as according to [11, Theorem III, sect. 4.4] the inclusion of the u-invariants in A™*(g) is a
quasi-isomorphism, so that proposition 1.4 applies. Since we have a canonical isomorphism of A,-modules
H,(A™"(g)) ® H(M) = H,,(A™"(g) ® H(M)), the claim will then follow.

Therefore, it only remains to show that id ®s is a quasi—isomorphism. But (A™"(g) ® M, &) is just the tensor
product of two differential graded R—modules, so, by the Kinneth formula (cf. [20, Theorem 10.1, chap. V]),
the map p: H(A™"(g)) e H(M) — H(A™"(g) ® M) sending [A] ® [m] to [ ® m] is an isomorphism, where square
brackets indicate equivalence classes. Since the kernel of d®id is spanned by all elements A®x with A € ker 9, the
restriction of id ®s to ker(d ® id) factors through p, and it follows that id ®s must be a quasi—isomorphism. [

PROOF OF PROPOSITION 4.1. By lemma 4.2 it will suffice to show that H,(A™"(g)) is a torsion A,-module, and
we first assume that F : u — g is injective. Put £ := F(u). If Y1, ..., Y}, is a basis of £ with dual basis ¢, ..., &,
then F‘l(Y1), s F‘l(Yn) is a basis of u with dual basis &1oF, ..., &;°F; this observation shows that (F*) ® id in-
duces an isomorphism of differential graded R-modules C,(A™"(g)) — C,(A™"(g)), and under this isomorphism
multiplication in H,(A™"(g)) with a polynomial f € A, corresponds to multiplication with F*(f) in H,(A™(g)).
Therefore, it suffices to show that H,(A™"(g)) is a torsion A,—module.

But, neglecting gradings, H,(A™"(g)) is just H(g, £): to see this, choose a non-zero element V € A™(g), where
m = dimg, and define the Lie algebraic Poincaré duality isomorphism D : AK(g) — Q™ k(g), 1 — i)V, for
all k. It is a map of representations, because any non-zero element in A™(g) is invariant, g being compact,
and it satisfies DeLx = ix°D for all X € g. Using the Cartan formula and that V is d-closed, we conclude
by induction on k that deD = D9 on Am_k(g), so id ®D induces an isomorphism of (ungraded) vector spaces
Hy(A™"(g)) — H(Q(g)). Asis well known (see e.g. [11, Section 10.9]), H,(Q(g)) = H(g, £), by compactness of €. In
particular, H,(A™"(g)) is finite-dimensional, and since multiplication in H,(A™*(g)) with a homogeneous element
f € A, of degree k > 0 is a homogeneous endomorphism of H,(A™"(g)) of degree 2k and A, is non-trivial, it
follows that H,(A™*(g)) is a torsion A,—module.

Now let F be arbitrary, but non-trivial, and put uy := ker F. Then 14 is an ideal in u, and since u is compact,
we find a compact ideal up c u complementary to uy, that is, such that u = uy ® uy as Lie algebras. The
canonical isomorpism S((1t1)") ® S((uz)") — S(u”) induced by the projections u — u3 and u — uj restricts to an
isomorphism A, ®A,, — A, and induces, since 11 acts trivially on A™"(g), an isomorphism of differential graded
R-modules A, ® C,,(A7(g)) — C,(A7(g)), where we consider the left hand side as the tensor product of the
trivial R-dgm (A, 0) with C,,(A™"(g)). In particular, we have an isomorphism A, ® H,, (A™(g)) — Hy(A™"(g))
under which multiplication with a polynomial f € A, corresponds to multiplication with the pullback of f along
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the projection u — u;. Since u; is non-trivial by assumption, our earlier considerations show that H,;, (A™"(g))
is a torsion A,;,~module, whence also H,(A™"(g)) is a torsion A;;—module. O

Corollary 4.3. Under the hypothesis of proposition 4.1 the connecting homomorphism induces an isomorphism
of K(A,)-vector spaces H, (€)[S'] — H,(I)[S™!], where S = A, \ {0} and K(A,)) = A,[S™!] is the quotient field
of A,
Proor. We just checked that H,(A™"(g) ® M) is a torsion A, ,—module, that is, a trivial K(A)-vector space.
Since localization preserves exact sequences [5, Proposition 2.5, sect. 2.2], the localization at S of the long exact
cohomology sequence for the triple (I, A™*(8)M, €) hence reduces to an isomorphism H, (€)[S™!] — H,(I)[S™!].

O

5. Applications to smooth manifolds

5.1. General results

Let G be a compact connected Lie group with Lie algebra g and M a manifold which is acted on by G (from the
left). We already have seen in example 1.2 that the G-action induces a g-action on (Q(M), d) via the assignments
X - iy and X — Lx, where X is the vector field induced by X € g and i, Lx denotes contraction with,
respectively Lie derivative in direction of X. Our goal in this section is to introduce on Q(M)¥, the differential
graded submodule of Q(M) consisting of g-invariant elements, a right-A-module structure and to show that
Q(M) is quasi-isomorphic, through a morphism of g-actions, to A(g) & (Q(M)g).

We extend the assignment g — End(Q(M)), X — iy, to a morphism of R-algebras A(g) — End(Q(M)),
A— ii’ and set Te: M — M, p— g.p, for all g € G. Also note that Q(M)® = Q(M)G, because G is connected.

Proposition 5.1. Choose an invariant form & € Q(M)® and A € A(g). For all g € G we have
(Te) (i) = igg g @

Proor. Observe that if X € g is arbitrary, then Adgﬁ is Tg—related to X. Indeed, the integral curve of the
former vector field emanating at p is given by the curve t +— exp(Adg-1 X).p = g’l.(exp(X).gp), so after
composing with T, we obtain the integral curve t +— exp(tX).gp of X starting at g.p = Tg(p). Hence, by
invariance of w we have

(Tg)' (i 0) = a0 (Tg)'w = a0 @ =

Corollary 5.2. For all v € A the map iy restricts to an endomorphism Q(M)¥% — Q(M)®. Moreover, if A € A(g)
is homogeneous of degree p and w € Q(M)?, then dijo = iz; w + (-1)f - iz dw.

Remark 5.3. We stress that the formula above holds even in case that p is equal to or exceeds the degree of
(any homogeneous component of) w. In this case the right hand side of the formula vanishes identically.

Proor. The first statement is an immediate consequence of proposition 5.1. To prove the second assertion, we
proceed by induction on the degree of A, that is, we show that for all elements A € A(g) of degree at most p
the claimed formula holds. If p = 0, then A is a scalar and the operator iy is just multiplication by A. For the
induction step, note that it will suffice to consider elements of the form Lx(4) with A € A(g) of degree p, since
AP*1(g) is spanned by such elements. Then we have im = iyeiz, whence for invariant forms » on M the
Cartan formula implies

dlm w = ﬁyl} w — IY dlz [ON
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note that this formula in particular holds for 0-forms (i.e. smooth functions), so the equation remains true in
case that w is homogeneous and of degree at most p. On the other hand, if ¢ € M, then by proposition 5.1

.l d
<0 ((Texp(—tX)) (II w))q = E

. d . .
(Lxiz w)q T (lAdexp(,X)()L) ‘”)q = (ladxu) “))q’

t=0
because contraction of forms on a fixed tangent space is a linear endomorphism of a finite-dimensional vector
space and hence commutes with taking differential. Using the Cartan formula in A(g) as well as the induction
hypotheses, we thus find

dliLx(A) W= (179@;((/1)) + 17[‘)((3(/1))) w- IY( iy + (-1)P - lid> w =g oy 0+ (-1)P*t. e dw. O

In particular, if v € A is homogeneous of degree p, then doiy = (-1)? - iyed on Q(M)®. Hence, if we consider
Q(M)® a left-A-module via the maps iy and let £ := A(g) & (Q(M)g), then the results of the previous sections
apply to &.

Theorem 5.4. The map A(g) x Q(M)® — QM), (A, w) — izo, is A-balanced and descends to a quasi-
isomorphism of g-actions ® : & — Q(M).

Proor. We extendedi: g — End(Q(M)) to a homomorphism of R-algebras, so we have imw = iziyw for all
A € A(g) and v € A, and this proves that we indeed have a well-defined map ® on €. For the same reason we
have ®o(Lx ®y id) = io® for all X € g. Checking that @ is a chain map amounts to verifying that the diagram

4 8k+1

ek °

M)k —4s okt

is commutative for all integers k, which it is by definition of § and corollary 5.2; carefully note that the diagram
in particular commutes when k is negative and so one or both spaces in the bottom row of the diagram are
trivial, whereas the spaces in the top row might be non-zero, cf. remark 5.3. Next, note that in the proof of
corollary 5.2 we also showed that Lyizo = im(u forall X € g and all A € A(g), @ € Q(M)?, proving that
Lzo® = do(ady ®4 id).

Finally, recall from corollary 2.8 that the canonical inclusion Q(M)® — £ is a quasi—isomorphism. Since by
compactness of G also the canonical inclusion Q(M)? < Q(M) is a quasi-isomorphism [11, Proposition XIII,
sect. 7.20] and the latter map factors through @, so must be ®. O

Corollary 5.5. Let U be a compact connected Lie group, F: U — G a homomorphism of Lie groups, and
consider the pulled back action of u in £, Q(M) along F: u — g. Then ide,®: H, () — H, (Q(M)) is an
isomorphism of A, -modules.

Example 5.6 (Actions by multiplication, biquotients). Let H and K be two compact and connected Lie groups,
0: H— Gand r: K — G two Lie group homomorphisms, and consider the action of a closed subgroup
Uc HxKonM = G given by (h,k).g = o(h)gr(k™?) for all (h,k) € U and g € G. We can consider the
induced u-action as the pullback of a g @ g-action on Q(G): indeed, G x G acts on G by the rule (g1, g2).g =
g18(g2)7! for all g1, g2, g € G, and then the u-action is the pullback of the induced g ® g-action along the map
ce1: u— gaog. Thus, according to corollary 5.5 the u-equivariant cohomology can be modeled on the R-dgm
€ = A(g @ g) @7 (Q(G)?°9), where now A = A(g o g)?°%.

Let us be explicit about the A-module structure on Q(G)39. If we denote by i1 and i, the inclusions of g = g&0
and g = 0@ g into geg, respectively, and extend both maps to R—algebra homomorphisms A(g) — A(g @ g), then
they induce an isomorphism A(g) ® A(g) — A(g e g) sending A; ® A to 11(A1)12(A2). This isomorphism restricts
to an isomorphism A(g)? ® A(g)? — A(g @ )99, so it will suffice to examine the effect of each of the factors
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separately. To this end, note that Q(G)?®9 is just the space of biinvariant forms on G, so the map ¥ : Q(g) —
Q(G) extending a form w € Q(g) to a left-invariant form on G restricts to an isomorphism Q(g)? — Q(G)%°9.
Moreover, if X € g, then

n(X)(e) = -X(e) and 12(X)(e) = X(e),

because the integral curves of these vectors fields starting at the identity element e € G are given by ¢t —
exp(-tX)-eand t — e-exp(~tX)~!, respectively. Since contracting a biinvariant form on G with an element of
A gives a biinvariant form again (corollary 5.2) and a left-invariant form is determined by the value it takes at
e, it follows that for w € Q(g)? and homogeneous v € A(g)¥, say of degree p, we have

im‘lf(w) = (-1)? - ¥(i, w) and im‘lf(w) = ¥Y(iyw).

5.2. Commuting actions

Let G and K be two compact connected Lie groups, both acting on a smooth manifold M. Suppose that the
actions commute and that we are interested in computing the equivariant cohomology of the induced g & £-
action on Q(M). One way to do so is to consider Q(M) as a A(g e E)g%—module and to apply the previously
established results, but in the present situation it actually suffices to regard Q(M) as a module over A = A(g)®.

More precisely, let X and Y* denote the vector fields on M induced by the G- and K-action, respectively,
where X € gand Y € £ Denote by Ty : M — M, p — g.p,and S : M — M, p — k.p, translation by g € G
and k € K and note that Ty and S commute by assumption; in particular, (Sx)* and consequently L y+ restricts
to an endomorphism on Q(M)? for all Y € €. Moreover, if X € g, then X is Sg—related to itself for every k € K,
so for any form w on Gand all Y € ¢ t € R we have

(Sexp(—tY))*(iYw) = iY(Sexp(—tY))*w-

Differentiating this equality, we hence find that L y+ciy; = ix;oLy+. By the same reasoning iy+ restricts to a map

Q(M)® — Q(M)8, so we are in the situation of proposition 3.1, with jy = iy+. Thus, we have a g ® £-action in
g

£ = A(g) oa (Q(M))".

Proposition 5.7. The map ® : & — Q(M) introduced in theorem 5.4 is a morphism of g @ £-actions.

Proor. In fact, given Y € £ it is immediate that (I)OE(O’Y) = Ly+o®. Moreover, if 1 ® w is a pure tensor, with
A € A(g) homogeneous of degree p, then

(Poi(g,y))(A ®A®) = (Poe @piy+)(A ®p0) = (1) - iziyrw = iysij.

These observations, together with the fact that ® already is a morphism of g—actions, imply that ® is a morphism
of g @ £-actions. O

Since @ is a quasi-isomorphism, corollary 5.5 generalizes accordingly and we have

Corollary 5.8. Let U be a compact connected Lie group, F: U — G x K a homomorphism of Lie groups, and
consider the pulled back action of u in €, Q(M) along F: u — g e £. Thenidep®: H (£) — H,(Q(M)) is an
isomorphism of A, ~modules.

Example 5.9 (Homogeneous spaces). Let H ¢ G be a closed connected subgroup, suppose that M = G/H, and
that G acts on G/H by multiplication from the left; no additional assumptions are made about the action of K.
If U is another compact connected Lie group and F: U — G x K is a homomorphism, then we can pull back
the action of g @ £ along F: u — g e £. According to corollary 5.8 the equivariant cohomology of this u—action
on Q(G/H) then is computed by the u-action on £ = A(g) ®x (Q(G/H)g), and Q(G/H)? is just the space of
left-invariant forms on G/H.
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Now the map ¥ : Q(g,h) — Q(G/H)? extending an h-basic form on g to a left-invariant form on G/H is
an isomorphism of differential graded R-modules, so we can also pullback the £-action on G/H along ¥ to
a t-action (j, £) on the differential graded R—submodule Q(g, h) of Q(g). Under this isomorphism ¥ the map
iy corresponds, just as in example 5.6, to the map (-1)? - i, on Q(g, h), whenever v € A is homogeneous of
degree p. Also observe that we still have jyci, = (-1)P - iyojy and Lyei, = iyoLy forall Y € & so g @ ¢ acts
on B = A(g) ®A Q(g, b) as well. Moreover, if we pull back this g @ ¢ action on B along F, then the induced
map ide¥ : H,(B) — H,(€) is an isomorphism of A,~modules too, because ¥ : Q(g,h) — Q(G/H)? is an
isomorphism. Hence, the equivariant cohomology of the u-action on Q(G/H) is also isomorphic, as an A,,—
module, to H,,(53).

As an explicit example, let K = {e} be the trivial subgroup, U c G any closed connected subgroup, and F the
inclusion. Then H, (/) is the equivariant cohomology of the action of U on G/H given by left-multiplication,
and the action of u in B is just the restriction of the g-action (L, ®x id, ad @4 id).

5.3. Symmetric spaces

Let G be a compact connected Lie group, ¢ : G — G an involution and U := (G?)o the identity component of
the fixed point set of 0. If H ¢ G is a closed connected subgroup, then we have shown in example 5.9 that u acts
on B = A(g) ®AQ(g, b) via the pullback of the g-action (L(,)@x id, ad @4 id) along the inclusion, and that H,,(13)
is isomorphic, as an A ,—module, to the equivariant cohomology of the U-action on G/H by left-multiplication.
As an application of this result we shall show

Theorem 5.10. Suppose that H contains U. Then the action of U on G/H by left-multiplication is equivariantly
formal.

Lemma 5.11. Let w € Q(g, ) be a closed form, homogeneous of degree p. The map A™*(g) — B, A — Ae®pw, is
homogeneous of degree p and a map of u—actions. Hence, it induces a map of double complexesj : C,(A™"(g)) —
Cu(B).

PROOF. Just observe that §(1 ®pw) = (9 ®p id)(A ®p w) for all A € A(g), because w is closed. Now it is immediate
from the g-actions in A™*(g) and B that the assignment A™*(g) — B, 1 — A ®x 0w, is a map of g—actions, and by
definition of the grading in /3 this assignment is homogeneous of degree p. O

Lemma 5.12. The map A(g) x Q(g,h) — B, (4, ) — o(A) ®x(c”w), descends to a map o ®x(c") : B — B, and
0 ®A(07) is a morphism of u-actions.

Proor. Given A € A(g) and w € Q(g, ) we have ¢"(iyw) = is(1)0" (@), so the map A(g) x Q(g,h) — B sending
a pair (4, ) to o(4) ®p (0" w) is A-balanced. The resulting map o ®4 (¢”) is morphism of u-actions, because u is
the fixed point set of o, whence Lyco = 0oLy and ady oo = goady for all X € u. O

Lemma 5.13. Let i : A(g) — A(g) be the projection onto A (cf. theorem 2.6) and write E. for the 1-eigenspace
of o : A(g) — A(g). Then E, is y-invariant.

Proor. By the universal property of the extended integral we have (aop)(A) = [;(a° Adg)(4) dg for all elements
a in (A(g))" and A € A(g), and if f : G — R is continuous, then the right hand side is defined as [ f(g) dg =
Ji fV for some biinvariant volume form V on G. Observe that since g decomposes as g = u @ p, where p is the
(-1)—eigenspace of ¢ on g, and since the map Q(g) — Q(G)% extending a form on Q(g) to a left—invariant form
is an isomorphism, we have 0*(V) = € - V for some € € {+1}. In particular, if 1 € E, and we let f(g) := Adg(4),

then oof = foo, because oo Adg = Adg( oo, and

8)
(o)) = /G (ao0of)g) dg - /G (aofoo)V = e /G o ((asf)V) = /G (@of)V = (ap)(A),

because ¢~ is orientation preserving if and only if € = 1. O
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PROOF OF THEOREM 5.10. We need to show that the spectral sequence associated with the vertical filtration on
C,(B) collapses on the first page, see [13, Section 6.9]. Equivalently, we need to prove that the map H,(B) —
H(B) induced by the map S(u") ® B — 3 sending a pure tensor f ® o to f(0) - w is surjective. Thus, we fix
x € H(B), and since the natural inclusion Q(g,h) — B is a quasi-isomorphism, we may assume that x is
represented by an element of the form 1 @5 w, with w € Q(g, h) homogeneous of degree p > 0.

Let E,, E_ be the 1- and (-1)-eigenspaces of o : A(g) — A(g) and denote by j: C,(A™(g)) — C,(B)
the map constructed in lemma 5.11. We shall prove by induction that for each r > 0 there exist elements
€0, ---» cr € Cy(A™"(g)) with the following properties:

(1) o=181,
(2) c¢; is contained in Clil’*i(A"(g)) nS(u’)® E,, and
3) de(i(co + ... + &) € G P (B),

where dc = id ®§-1is the differential on C, (1), 6 is the differential on B, and : = ), M, ® Lx, ®id for some basis
Xi, ..., Xi of u with dual basis €y, ..., ;. Note that existence of such elements implies surjectivity of the map in
question, because C,(B3) vanishes in bidegrees (x, -i) for sufficiently large i = 0. Also note that the statement is
true for r = 0 and ¢y = 1 ® 1, because w is closed and j(cp) = 1 ® 1 ®) w is an element of bidegree (0, p), whence
dc(j(co)) = —1(j(co)) is an element of bidegree (1, p). Therefore, we may assume that the induction hypothesis
holds up to some natural number r = 0, and choose ¢y, ..., ¢, satisfying the induction statement.

Our first claim is that ¢’ := 1(j(c;)) is closed with respect to id 5. We have just checked this in case that r = 0
so assume that r > 0. Since by induction hypothesis the element d¢(j(cp + ... + cr)) is of bidegree (r + 1, p — r), all
homogeneous components of dc(j(cp + ... + ¢,)) of bidegree different from (r + 1, p — r) must vanish individually.
However, the map j is homogeneous of bidegree (0, p), so the element (id ®5)(j(c;)) has bidegree (i, p - i + 1) and
1(j(c;)) is of bidegree (i + 1, p — i). Therefore, we already must have (id ®6)(j(c;)) = 1(j(cr-1)), and so

(id 88) ((12)(er)) = ~(ro(id ©8))(i(er)) = ~()2(ier-1)) =

because (id ®9) and ¢ anti-commute and ¢ already is a differential.

Now consider the projection p from A(g) onto A. We have already seen in section 2 that y descends to a
well-defined map p ®4id on B, that y ®id commutes with the g-representation in /3, and that there exists a
chain homotopy H : A™"(g) — A™'(g), homogeneous of degree -1, between p and id which also induces a chain
homotopy H ®,id between p ®id and the identity map on B. Since ¢’ is closed with respect to id ®5, we hence
have

¢’ - (idep @pid)(c’) = ((id @5)o(id eH ®4id))(c’) = ((id ®0 ® id)o(id ®H @,id))(c),

because any element in the image of j is already closed with respect to id ®e & d.

Observe that the expression (id #p ® id)(c) is identically zero: in fact, it follows from the very definition of
the map j that we have (id ey ®5id)ej = jo(id ®u). Moreover, if A € E., then also Lx(4) € E, for all X € u, and
since y leaves the space E, invariant as well, we have

(id op ®id)(c’ tzkl(] o(id ®p)o(M,, ® LXt))(c,) €j (S(u )® (E n Az”l))
However, if A € E, is homogeneous of degree 2r + 1, then necessarily A € A*(u) ® A(p), where A*(u) now is
the space generated by all homogeneous elements of non-zero degree. Since w € Q(g, b) is h-basic and u c b,
we hence have iyw = 0 for all such . As v ®pw = +1 ®, i, for all homogeneous v € A, it follows that
(idop ®pid)(c’) = 0
It remains to note that, due to the compactness of ut and [11, Theorem III, sect. 4.4], both S(u*) ® A™"(g) and
S(u") ® B can be exhausted as a union of finite-dimensional u-invariant subspaces and hence admit decomposi-
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tions C,(A™"(g))® W and C,(B)® W', respectively, where W is the subspace spanned by all elements of the form
Lx(a) with a € S(u") ® A™(g), X € g, and W’ is the subspace spanned by all elements of the form Lx(b) with
b € S(u*)® BB; thatis, W and W’ are the kernels of the projections onto the u-invariants. Since C,(A™*(g)) further
decomposes as a sum of the 1- and (-1)-eigenspaces of id ®o, we may decompose (id ® H)(i(c,)) accordingly as
(id ®H)(«(cr)) = ¢r+1 + n + w, where

Ccre1 € CIFETTTH AT (@) n S(W) @ By, n € Cy(A™(g)) nS(w) ® E_,and w € W.

Since j sends W into W/, id®d ®, id leaves W’ invariant, and ¢’ is an element of C,(B), it follows that ¢ =
(id®9 ®p id)(j(cr+1 + n)). Moreover, since every homogeneous element in Q(g, h) of degree q is an eigenvector
of " to the value (-1), it follows that j(n) is an eigenvector of id ®c ®(c*) for the eigenvalue (-1)P*!, whereas
¢’ and j(cr+1) are eigenvectors for the eigenvalue (-1)P. Therefore, we already must have

¢ = (ided oy id)(j(cre1)) = (id ©8)(i(cr1)),

whence the elements ¢, ..., cr+1 are as required by the induction claim. O

Remark 5.14. As already pointed out earlier, theorem 5.10 above can actually be deduced from the main the-
orem of [6], which treats the case H = U. To see this, note that we may assume that u contains no non-zero
ideal of g. In fact, if g’/ c uisanideal of g, theng = g’ @ g”, h = h’ @ g/, and u = v’ @ g’/ for some ideal g’
in g, where b/, 1’ c g’. Write G/, G/, H’, and U’ for the corresponding Lie groups. Since the action of u” & g’
on Q(g’ ® g”’,h’ ® g”’) defined in example 5.9 is isomorphic to that of u on Q(g, h), the action of U on G/H is
equivariantly formal if and only if so is the action of U’ x G’ on (G’ x G”)/(H’ x G’’), which, in turn, is the case
if and only if U acts in an equivariantly formal fashion on G’/H’. Hence, we may assume G = G’, H = H’, and
U = U’ right away.

We claim that then necessarily b = (1 n [g, g]) ® a for some subspace a c Z(g). Indeed, it follows from [14,
Proposition 5.2, sect. VIIL5], that [g, g] decomposes as [g,g] = I; ® ... ® [, in such a way that each [; is an
ideal in [g, g] and such that u n [g,g] = u; @ ... ® u,, where u; = u n [;. Moreover, [; is an invariant subspace
of the involution defining u, and if p; is the (-1)—eigenspace of this involution on [;, then the representation
u; — End(p;), X — ady, is irreducible. Now fix an index j > 0 and let ; denote the image of h under the
projection Z(g) ® [g,g] — [;. Note that this projection is a Lie algebra homomorphism, whence b; is a Lie
subalgebra, and that u; < b;, because u; c b. If u; was a proper subspace of f); there would be an element X €
whose component X; € h; under the aforementioned projection would not be contained in u;, and since u; c b
and [; = u; ® pj, we could assume X; € p;. Thus, h; n p; would be a non-trivial u;—-invariant subspace, whence
by irreducibility of the representation of u; in p; necessarily h; np; = p; would have to hold. But then we would
have [; < b, because

b 2 [u;,b] = [w;, b;] 2 [w;,p;] = pj,

contradicting our assumption that b does not contain any ideal of g. Therefore, u; = ;. So if X € b is arbitrary
and we write X = X’ + X"/ with X’ € Z(g) and X"’ € [g, g, then X’/ € u and hence already X’ € h, proving that
h =(un(g g]) e (hnZ(g)). It remains to note that also u = (un [g, g]) ® (un Z(g)) and that the action of U on
G/H is equivariantly formal if G is Abelian.
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