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Tag der mündlichen Prüfung: 24.04.2018
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Zusammenfassung

Die Körperwandmuskulatur der Larve von D. melanogaster ist ein hochgradig
geordnetes System von quergestreiften Muskelfasern, die durch die Fusion von
Myoblasten entstehen, ähnlich den Skelettmuskelfasern der Wirbeltiere. In der
vorliegenden Arbeit wird die Embryonalentwicklung dieser Muskeln als geneti-
sches Modellsystem für Myogenese, Muskelregeneration und verwandte Prozesse
genutzt.

Rols7 ist ein wichtiges Protein in der Signalkette, die die zur Myoblastenfusion
notwendige Verzweigung der Aktinfilamente steuert. In den somatischen Mus-
kelgründerzellen ist die rols7 -mRNA in einem oder mehreren Flecken nahe der
Zelloberfläche lokalisiert.

Die vorliegende Arbeit zeigt, dass zur Lokalisation des rols7-Transkriptes der
3’-untranslatierte Bereich notwendig ist. Eine Reporter-mRNA, die sowohl diese
Trailer-Region als auch den 5’-untranslatierten Bereich trägt, wird selbst in Ab-
wesenheit von nativem rols-Transkript in einer Weise intrazellulär lokalisiert, die
identisch mit dem wildtypischen Muster zu sein scheint.

Es wird gezeigt, dass die rols7 mRNA auch in den Gründerzellen der zirkulären
und longitudinalen visceralen Muskeln intrazellulär lokalisiert wird; in letzteren
sammelt sie sich in Flecken in der Nähe der Spitzen der spindelförmigen Zellen,
nahe den zu erwartenden Fusionspunkten. Zumindest für diesen Zelltyp kann
daher vermutet werden, dass die Lokalisierung der rols7 mRNA die Lokalisierung
des Rols7-Proteins und damit die Myoblastenfusion vorbereitet.

Auf der Suche nach neuen myogeneserelevanten Faktoren wird der Muskel-
phänotyp der EMS-induzierten Mutante E831 analysiert. Als Grund für die chao-
tische Anordnung der embryonalen Körperwandmuskeln der Mutante wird eine
Nonsens-Mutation der Condensin-Untereinheit barren identifiziert. Cap-G, eine
andere Condensin-Untereinheit, zeigt einen sehr ähnlichen Phänotyp.

Während sowohl Gründerzellen als auch fusionskompetente Myoblasten in
einer barren-Mutante offenbar korrekt determiniert werden, ist das Expressions-
muster der Muskelidentitätsgene in einer Weise gestört, die mit den chaotischen
Störungen der Muskelanordnung korreliert.

Der Condensin-Komplex erfüllt in jeder Zelle eine Reihe unterschiedlicher
essentieller Aufgaben. Um zu klären, ob der Muskelphänotyp mit der regula-
torischen Rolle von Condensin während der Interphase oder mit seiner Funktion
bei der Chromosomentrennung während der Zellteilung zusammenhängt, muss
der Zeitpunkt bestimmt werden, an dem das Barren-Protein in der Muskulatur
benötigt wird. Zu diesem Zweck wird ein barren-Rettungskonstrukt mit dem
Gal4-UAS-System exprimiert.

Gal4-Treiber retten den Phänotyp nur, wenn sie Barren deutlich vor der let-
zten Zellteilung exprimieren, bei der die Muskelgründerzellen entstehen. Dieses
Ergebnis legt nahe, dass der Phänotyp durch einen mitotischen Defekt bedingt
ist. Der Mechanismus, der den Identitätsverlust der Muskeln auslöst, erinnert an
die genomische Instabilität von Krebszelllinien.
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Summary

The body wall musculature of the D. melanogaster larva is a highly ordered
assembly of striated myotubes that are formed by fusion of myoblasts, much like
the skeletal muscle fibres of vertebrates. In this study, the embryonic development
of this musculature is used as a genetic model system for myogenesis, muscle
regeneration and related processes.

Rols7 is a crucial protein in the signal transduction chain that controls the
Actin filament branching necessary for myoblast fusion. In somatic muscle
founder cells, the rols7 mRNA shows intracellular localization into one or more
patches near the cell surface. This thesis demonstrates that the rols7 transcript’s
3’ untranslated region is necessary for its localization. A reporter mRNA with this
trailer region as well as the 5’ untranslated region gets intracellularly localized in
a way seemingly identical to the wild type pattern, even in the absence of native
rols transcripts.

The rols7 mRNA is shown to be intracellularly localized in the circular and
longitudinal visceral muscle founder cells as well; in the latter it forms spots close
to the tips of the spindle-shaped cells, near the expected sites of cell-cell fusion.
At least for this latter cell type it can be suspected that rols7 mRNA localisation
facilitates protein localisation and eventually myoblast fusion by preforming the
Rols7 protein’s distribution pattern.

In search of previously unknown factors involved in myogenesis, the muscle
phenotype of the EMS-induced mutant line E831 is analyzed. As the cause for
the disturbed arrangement of the embryonic body wall musculature a nonsense
mutation of the Condensin subunit barren is identified. Cap-G, another Con-
densin subunit, is found to show a phenotype very similar to that of barren.

While in a barren mutant both muscle founder cells and fusion competent
myoblasts seem to get specified, muscle identity genes are expressed irregularly
in a manner that corresponds to the perturbation of the muscle pattern.

In every cell, the Condensin complex fulfills a variety of essential functions. To
help clarify whether the muscle phenotype is connected to Condensin’s regulatory
role during interphase or its function in chromosome segregation during mitosis,
the time point at which Barren is needed in the musculature has to be identified.
To this end, the Gal4-UAS system is used to express a barren rescue construct.

Gal4 drivers are found to rescue the phenotype only if they express Barren
considerably before the final cell division that gives rise to the muscle founder
cells. This finding suggests that the muscle phenotype is caused by a mitotic
defect. The mechanism behind the loss of muscle identity appears to be a
phenomenon related to the genomic instability of cancer cell lines.
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Chapter 1

Introduction

D. melanogaster is a convenient model organism for genetic research due to its

simple and inexpensive cultivation, short generational time, numerous offspring

and compact, low-redundancy genome in only 4 chromosomes. An additional

advantage is the long tradition of Drosophila use in genetic research; a large

collection of mutants is available, including ”balancer” chromosomes that carry

large inversions, suppressing meiotic crossing over and thus allowing recessive

lethal alleles to be kept as stable stocks. Drosophila was the first metazoon whose

germ line could be genetically modified (Rubin and Spradling 1982; Spradling

and Rubin 1982). The sequence of the Drosophila genome was published in 2000

(Adams et al. 2000; Myers et al. 2000).

Drosophila embryos are accessible in their eggs with relative ease and de-

velop from egg laying to hatching within a day. Morphological and anatomical

changes during development are easily visible under a microscope; this allows to

define developmental stages numbered from 1 to 17, with the egg usually beeing

layed around stage 5 and the larva hatching after completion of stage 17 (see

Appendix C, p. 136).

The highly regular, segmentally repeated pattern of larval body wall mus-

cles makes deviations and alterations of the musculature easy to spot in the fly

embryo; the developing musculature can be made visible for example with an

antibody stain against β3Tubulin, a protein that is expressed quite specifically in

muscles (Fig. 1.1).

Like the skeletal muscle fibres of vertebrates, Drosophila body wall (”so-

matic”) myotubes are striated, multi-nucleated syncytia, arising from the fusion

9



Introduction

Figure 1.1. An immunohistochemical stain us-

ing anti-β3Tubulin antibody visualizes the somatic

musculature of this early stage 17 embryo. Myo-

genesis is drawing to a close, with most muscles

attached to their apodemes and only a few un-

fused myoblasts left (arrowheads); one can be seen

stretching its filopodium towards a myotube (ar-

row). Every segment has the same muscle pattern,

with little variation in the three thoracic segments

and the first abdominal segment, and no variation

in the abdominal segments 2–7. All embryos are

depicted in standard orientation: anterior is to the

left, dorsal is up.

of myoblasts. The process of myogenesis and muscle regeneration in vertebrates

has been shown to share many of the components and mechanisms involved

in Drosophila myogenesis (Wakelam 1985; Maqbool and Jagla 2007; Srinivas

et al. 2007; Moore et al. 2007). However, while a vertebrate muscle is com-

prised from several myotubes, a larval Drosophila muscle is made up from only

one myotube.

These traits and the aforementioned advantages make Drosophila a valuable

model system for studying the mechanisms of myogenesis, helping to understand

vertebrate development and human diseases like muscle dystrophies.

10



Introduction Embryonic myogenesis in Drosophila

1.1 Embryonic myogenesis in Drosophila

1.1.1 Determination of myoblasts

On the ventral surface of the early embryo, the prospective mesoderm is desig-

nated by expression of the transcription factors twist, snail and Mef2 (Simpson

1983; Anderson and Nüsslein-Volhard 1984; Boulay et al. 1987; Thisse et al.

1988; Nguyen et al. 1994). These ventral cells invaginate during gastrulation,

first forming a tube along the embryo, then loosing their epithelial character; then

they reassemble into a monolayer under the ectoderm (Leptin and Grunewald

1990).

This mesodermal cell layer is then further subdivided along the dorsoventral

axis by the dorsal expression of decapentaplegic (dpp), and along the anterior-

posterior axis by the segmentally repeated expression of segment polarity genes

(see Fig. 1.2). Domains with little dpp and even-skipped (eve), but high levels

of sloppy-paired (slp) retain strong twist expression, resume Mef2 expression

and develop into somatic musculature (Nguyen et al. 1994; Lilly et al. 1994;

Baylies and Bate 1996; Riechmann et al. 1997).

From stage 10 on, Dpp and the wingless (wg) pathway in cooperation with

various muscle identity genes (reviewed in Tixier et al. 2010) trigger lethal of

scute (l’sc) expression in cell clusters in the high-Twist domains of each segment

(Carmena et al. 1995, 1998). This expression of l’sc then gets narrowed down

by the EGFR-Spitz pathway (Buff et al. 1998) until one muscle progenitor cell

is singled out from the cluster via the Notch-Delta pathway (Baker and Schu-

biger 1996; Rusconi and Corbin 1998); all other cells become fusion competent

myoblasts (FCMs).

FCMs are characterized by expression of the transcription factor lame duck

(lmd) (Duan et al. 2001). Some of them undergo a final mitosis at stage 12-

13 before beginning to fuse (Beckett and Baylies 2007). They present the

Immunoglobin super family (IgSF) proteins Sticks and Stones (SNS) and Hibris

(Hbs) on their membrane (Bour et al. 2000; Dworak et al. 2001; Artero et al.

2001).
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Introduction Embryonic myogenesis in Drosophila

Figure 1.2. Subdivisions of the meso-

derm at stage 9–10, in schematic lateral

view; dorsal is up, anterior to the left. High

levels of Slp in combination with low lev-

els of Dpp and Eve specify segmental do-

mains of high Twist expression, which give

rise to the somatic musculature. Modified

after Riechmann et al. 1997

Figure 1.3. 1 In the segmental domains of

high Twist expression (blue) the Wingless path-

way, Dpp and various muscle identity genes trig-

ger groups of cells to express lethal of scute (l’sc,

dark blue). 2 Lateral inhibition via the ”neu-

rogenic” Notch-Delta pathway singles out progen-

itor cells from the competence clusters; all other

myogenic cells become fusion-competent myoblasts

(FCMs). The progenitor cells are already commit-

ted to form one specific muscle. 3 The progenitor

cells go through one final wave of mitosis, giving rise

to the founder cells (FCs). In one daughter cell, the

Numb-Inscutable pathway modifies the previous cell

fate; the other cell retains its preconceived identity.

4 The FCs fuse with FCMs and form muscles.

Modified after Baylies et al. 1998.
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Introduction Embryonic myogenesis in Drosophila

The prospective musculature is patterned by intersecting expression domains

of muscle identity genes: Each muscle progenitor cell expresses a characteristic

individual subset (reviewed in Tixier et al. 2010).

At stage 12, the progenitor cells go through a final round of mitosis, during

which Inscutable (Carmena et al. 1998) anchors Numb (Ruiz-Gómez et al.

1997) to the mitotic spindle so that only one cell inherits all Numb protein. Numb

then inhibits the Notch pathway, modifying the expression of muscle identity

genes; the other cell retains the set of muscle identity genes that the progenitor

cell previously expressed.

In some cases, one daughter cell retains a high level of twist expression; these

adult precursor cells remain dormant, undergo proliferation later in larval life and

give rise to adult musculature (Bate et al. 1991).

All other daughter cells of the muscle progenitors give rise to embryonic

musculature; each one of them is programmed to form one specific muscle.

They are called muscle founder cells (FCs). Even if all other steps of myogenesis

fail, the founder cells will still form so-called ”mini-muscles” and try to attach

to their respective apodemes; they carry all information necessary to form their

muscle (Bate 1990; Carmena et al. 1998).

Every abdominal segment from A2 to A6 contains 30 muscle founder cells

on each side.

1.1.2 Myoblast fusion

After determination, the founder cells loose twist expression and begin to fuse

with FCMs. These fusions, however, only add cell mass; after fusion, FCM nuclei

start to express the same genes as the original founder cell nucleus, and all nuclei

in the myotube become indiscernible (Rushton et al. 1995; Carmena et al.

1995). In the end of the fusion process, the largest muscle contains up to 25

nuclei, the smallest 3–4 (Bate 1990).

The fusion of the nascent myotube with FCMs happens in two waves: At

stages 12–13, a first wave of fusion events produces ”muscle precursors” with

two or three nuclei; the final number of up to 25 nuclei is reached in a second

wave of fusions complete by stage 15. These two steps of accretion employ a

slightly different set of genes.

13



Introduction Embryonic myogenesis in Drosophila

Both the FCMs and the founder cells form filopodia to establish contact

with each other (Bate 1990; Fig. 1.1). The chemoattraction of FCMs to the

founder cells and nascent myotubes depends on Sticks and Stones (SNS) on the

FCM’s surface (Bour et al. 2000), and on the expression of the IgSF proteins

Dumbfounded / Kin of Irregular Chiasma (Duf/Kirre) (Ruiz-Gómez et al. 2000;

Dworak et al. 2001; Chen and Olson 2001) and Roughest / Irregular Chiasma

C (Rst/IrreC) (Strünkelnberg et al. 2001) on the founder cell side.

The FCMs also express Rst. FCM Rst engages Rst proteins on the nascent

myotube’s membrane, while SNS binds both Rst and Duf (Ruiz-Gómez et al.

2000; Strünkelnberg et al. 2001).

Besides IgSF adhesion proteins, the myoblasts also present N-Cadherin (CadN)

on their surface. N-Cadherin mutants do not show an aberrant muscle pheno-

type; however, mutants of schizo / loner (siz), a negative regulator of CadN,

have a massive fusion defect that is ameliorated in siz,cadN double mutants

(Dottermusch-Heidel et al. 2012).

After cell adhesion is established, the interacting IgSF proteins clear the center

of the circular contact surface between the two cells, forming a ring (Kesper

et al. 2007). CadN must probably also be excluded or removed from the central

part to allow fusion (Dottermusch-Heidel et al. 2012).

Upon engaging their counterparts on the opposed cell membrane, the intra-

cellular domains of the IgSF proteins recruit Dreadlocks (Dock), an SH2/SH3

adaptor protein. Duf in the nascent myotubes additionally recruits Rolling peb-

bles / Antisocial (Rols/Ants) (Chen and Olson 2001; Menon and Chia 2001;

Rau et al. 2001) and Siz (Bulchand et al. 2010), while SNS in the FCM also

binds the SH2/SH3 adaptor protein Crk.

These proteins are the starting point of a cytoplasmic signal transduction

cascade that triggers the branching of Actin filaments (Fig. 1.4).

Inside the FCM, under the circular contact surface, a dense plug of Actin

filaments is formed; on the myotube side, a thinner sheet of Actin appears in the

opposing position (Kesper et al. 2007; Schäfer et al. 2007; Kim et al. 2007;

Massarwa et al. 2007; Richardson et al. 2007).

This circular adhesive structure with its spatially localized signal transduction

chain is called the fusion-restricted myogenic adhesive structure (FuRMAS); it

14



Introduction Embryonic myogenesis in Drosophila

Figure 1.4. Signal cascades and inter-

actions that trigger Actin filament branch-

ing, leading to myoblast fusion. Cell adhe-

sion molecules in white. Illustration from

Önel et al. 2014.

resembles vertebrate immunological synapses, podosomes and synapses (Kesper

et al. 2007; Önel et al. 2014).

In the course of the fusion event, the FuRMAS widens from 1 µm to 5 µm, the

diameter of an FCM Kesper et al. 2007; Önel and Renkawitz-Pohl 2009. From

the Actin plug on the FCM side, finger-like, Actin-filled membrane protrusions

dig into the nascent myotube (Sens et al. 2010; Dhanyasi et al. 2015; Hamp

et al. 2016).

In some TEM images, electron-dense vesicles can be seen associated with the

opposing membranes in both cells, aligning pairwise across the two cell mem-

branes into what has been called the ”prefusion complex”. In presumably later

stages of the process, the membranes take the form of electron-dense plaques

(Doberstein et al. 1997).

It is unclear weather it is membrane stress around the Actin-filled membrane

protrusions pushing into the myotube, some unknown fusogen perhaps carried in

the electron-dense vesicles, or a combination of both that brings by the ultimate

membrane breakdown. Some experiments imply the latter possibility:

In cultured Drosophila S2R+ cells transfected with the Caenorhabditis elegans
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Introduction Intracellular rols mRNA localization

fusogen Eff-1, which fuse at a low rate, cotransfection with sns or a chimeric

fusion of duf and Wasp-interacting protein (WIP) triggers the formation of acti-

nous protrusions and enhances fusion efficiency considarably (Shilagardi et al.

2013). In this experimental system, both Eff-1 and SNS localize towards the

tips of the podosome-like, Actin-filled membrane protrusions, but do not strictly

colocalize, remaining in separate, neighboring patches instead. Eff-1 appears as

electron-dense plaques.

It is not yet known which proteins could be the native fusogens in Drosophila

myoblast fusion; the only protein that is reckoned to be part of classical vesicle

fusion machinery and that causes a fusion defect when mutant is the MARVEL-

domain protein Singles Bar (Sing) (Estrada et al. 2007).

TEM images of sections of chemically fixed materials show the membrane be-

tween FCM and myotube vesicularizing at multiple sites or dissolving (Doberstein

et al. 1997); newer studies, however, point out that this might be a fixational

artefact, as it can also be found in juxtaposed membranes of cell types that are

believed to never fuse. In sections of high pressure frozen material, seemingly

only one large fusion pore per podosome-like protrusion appears (Sens et al.

2010; Dhanyasi et al. 2015; Hamp et al. 2016).

In the present study, two genes with a relevance for myogenesis are analyzed.

The mechanism behind the intracellular localisation of the mRNA of rols7 is elu-

cidated; furthermore, a fly mutant line with a severe embryonic muscle phenotype

is identified as a barren allel, and the role that this Condensin subunit plays in

myogenesis is analyzed.

1.2 Intracellular rols mRNA localization

The Rolling Pebbles (Rols) protein is a central hub in the signal transduction for

myoblast fusion; it is also part of the Z discs in mature myotubes (Kreisköther

et al. 2006). Overexpression of the mammalian orthologue of rols , TANC1, is

thought to be the cause of human Rhabdomyosarcoma, a cancer of myoblasts

that fail to differentiate and fuse (Avirneni-Vadlamudi et al. 2012).
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Rols is an intracellular adaptor protein that appears in two isoforms: Rols6,

with 1670 amino acids, and Rols7, with 1900 amino acids (Rau et al. 2001).

Rols6 has 79 specific amino acids on its N terminus, which are coded by the

first two exons. It is expressed in the endoderm, the Malpighian tubules and the

apodemes.

rols7 has six downstream exons in common with rols6, plus two unique up-

stream exons. The second of the latter codes for 308 rols7 -specific N-terminal

amino acids. Rols7 is found in the musculature (Rau et al. 2001). In founder

cells and nascent myotubes, the Rols7 protein is localized in the FuRMAS; it

interacts with Duf, helping to transduce the signal for Actin sheet formation.

The rols7 mRNA is localized in patches near the surface of the founder cells

(Kesper 2005). A two kbp region including and upstream of the first exon of rols7

is sufficient to let a reporter gene reproduce the somatic musculature expression

pattern of rols7 (Kesper 2005); however, the intracellular localization pattern

of the rols7 mRNA is not reproduced by such a construct (Kesper, personal

communication).

Intracellular localization of transcripts often depends on a tertiary structure

fold in the mRNA’s 3’ untranslated region (3’ UTR); in Drosophila this is known

for example from hairy (Bullock et al. 2003), fs(1)K10 (Serano and Cohen

1995) and bicoid (MacDonald 1990; Macdonald and Struhl 1988). In some

cases, however, localization is mediated by folding sequences in other parts of

the mRNA, as in the gurken transcript, whose localization depends upon parts

of its 5’ UTR, coding region and 3’ UTR at different time points (Saunders and

Cohen 1999; Thio et al. 2000; Van De Bor et al. 2005).

In this study, the 3’ UTR of the rols7 transcript is assayed for its localizing

activity in somatic founder cells. Furthermore, the founder cells of the visceral

musculature are analyzed for rols transcript localization using improved in situ

hybridisation methods.
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1.3 SMC complexes and their functions

1.3.1 The SMC complexes Condensin and Cohesin

The E831 Drosophila mutant line, which is showing a disarrayed embryonic mus-

culature, is speculated to host a barren mutant (Jacobs 2006). Barren is a

member of the Kleisin protein family and a subunit of the Condensin I complex.

Condensins, as well as the closely related Cohesins, are DNA-binding protein

complexes that are characterized by a core dimer of elongated SMC (Structural

Maintenance of Chromosomes) proteins. These 50 nm (Hirano 2005) to 59 nm

(Anderson et al. 2002) long proteins have a ”hinge” domain located centrally

in their polypeptide chain; to both sides of the hinge the chain forms α-helices

and folds back on itself, forming an antiparallel coiled-coil stalk, bringing the N-

and C-termini of the protein together to form a globular ATPase ”head” that

resembles an ATP binding cassette (ABC) transporter domain (Larionov et al.

1985; Notarnicola et al. 1991; Strunnikov et al. 1993; Saka et al. 1994;

Saitoh et al. 1994; Michaelis et al. 1997; Melby et al. 1998). SMC proteins

dimerize hinge to hinge and head to head (see Fig. 1.5, p. 22; 1.7, p. 33; Hirano

and Mitchison 1994; Strunnikov et al. 1995; Hirano et al. 1997; Losada et al.

1998; Yoshimura et al. 2002; Anderson et al. 2002; Haering et al. 2002).

This SMC dimer alone can already fulfill certain functions. For other func-

tions, a larger holocomplex must be formed: A Kleisin family protein (named

for greek ”kleisimo” for ”closure”) binds at or near the dimerized head domains,

and additional non-SMC subunits bind usually to the Kleisin (Hirano et al. 1997;

Losada et al. 1998; Anderson et al. 2002; Schleiffer et al. 2003).

SMC holocomplexes bind to DNA strands in a non-sequence-specific manner,

likely by closing around them (Gruber et al. 2003; Ivanov and Nasmyth 2005).

However, they often use a loading factor that confers a degree of sequence speci-

fity. It consists of Scc2 and Scc4, and is sometimes called Kollerin (Michaelis

et al. 1997; Furuya et al. 1998; Tóth et al. 1999; Ciosk et al. 2000; Watrin

et al. 2006; Chao et al. 2015). Scc2 and most of the non-SMC non-Kleisin

subunits and regulatory factors are characterized by HEAT-repeats and form a

protein family defined by general structural similarity (Wells et al. 2017).
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The SMC complexes and their associate proteins are fairly ubiquitous among

organisms from bacteria to humans. The names they are called by have varied

over time and from species to species; the nomenclature preferred in most con-

temporary texts is mainly derived from that of Saccharomyces cerevisiae. For

easier understanding of the literature referenced here, some of the various syn-

onyms are listed in Table 1.1.

Several more variants of SMC complex exist beside the already mentioned: The

Condensin-like Dosage Compensation Complex of C. elegans, the homodimeric

bacterial SMC complexes, the eukaryotic SMC5-SMC6 complex with non-SMC

subunits that resemble the bacterial ones, and the Rad50 DNA repair complex,

which matches the general structure of a SMC complex but has a differently built

”hinge”. All these will be omitted here, as they are beyond the scope of this

study.

Table 1.1. Homologues and Synonyms of SMC complex components and associated

proteins in various species

General

name in

this text

Protein class Drosophila

Ortholog

(abbrevi-

ated)

Other synonyms Obsolete

names

Scc2 SMC loader / Kollerin component –

HEAT repeat

Nipped B NIPBL, DeLangin

Scc4 SMC loader / Kollerin component Mau2

SMC2 Condensin SMC subunit Cap-E Sc2

SMC4 Condensin SMC subunit Gluon

(Glu)

Cap-C

Cap-H Condensin I non-SMC subunit –

γ-Kleisin

Barren

(Barr)

Cap-G Condensin I non-SMC HEAT-repeat

subunit
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General

name in

this text

Protein class Drosophila

Ortholog

(abbrev.)

Other synonyms Obsolete

names

Cap-D2 Condensin I non-SMC HEAT-repeat

subunit

Cap-H2 Condensin II non-SMC subunit –

β-Kleisin

Cap-G2 Condensin II non-SMC HEAT-repeat

subunit

Cap-D3 Condensin II non-SMC HEAT-repeat

subunit

Topo II Topoisomerase type II Top2 Sc1

SMC1 Cohesin SMC subunit Cap-C

SMC3 Cohesin SMC subunit Cap SMC2

Scc1 Mitosis specific Cohesin non-SMC

subunit – α-Kleisin

Verthandi

(Vtd)

Mcd1, Rad21

Rec8 Meiosis specific Cohesin non-SMC

subunit – α-Kleisin

Scc3 Cohesin regulator – HEAT repeat Stromalin/

Stromalin2

(SA/SA2)

STAG1/STAG2

Pds5 Cohesin regulator – HEAT repeat

Wapl Cohesin regulator – helical repeat Wings

apart-like

(Wapl)

Wpl1, WAPAL

Sororin Cohesin regulator Dalmatian

Shugoshin

(Sgo)

Cohesin regulator Shugoshin-

like

(Sgol)
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1.3.2 The Condensin complex

Molecular composition and DNA binding mechanism

Condensins are pentameric complexes that are characterized by the SMC pro-

teins SMC2 and SMC4 (Saitoh et al. 1994; Hirano et al. 1997). This SMC

dimer alone is called 8S Condensin, referring to its sedimentation coefficient of

8 Svedberg (Hirano et al. 1997). It is able to bind both single stranded DNA

(ssDNA) and double stranded DNA (dsDNA), probably with its ”hinge” region

(Yoshimura et al. 2002; Sakai et al. 2003).

The SMC dimer can bind a Kleisin protein and two other non-SMC subunits

at its ”head” region to form 13S Condensin (Hirano et al. 1997; Anderson

et al. 2002; Yoshimura et al. 2002). This holocomplex associates with DNA

probably by closing around the strands and encircling them, with the two SMCs

topologically forming a ”ring” (Cuylen et al. 2011).

However, in electron microscopic and atomic force microscopic images, Con-

densin appears more rod-shaped than ring-like, probably because of the elongated

SMC subunits being straight and oriented in parallel in the complex (Ander-

son et al. 2002). Moreover, seemingly the SMCs’ coiled-coil regions can bend

around, possibly bringing the hinge region into contact with the head (Fig. 1.5;

Yoshimura et al. 2002; Anderson et al. 2002).

It is not clear whether the SMC complex loading factor Scc2-4 is necessary

to load Condensin onto DNA. In Scc2-4 mutants, overall levels of Condensin

binding to chromosomes are reduced by about 50%; however, Condensin binding

still happens, and no physical interaction between Scc2-4 and Condensin could

be proven (D’Ambrosio et al. 2008b).

The longest-known form of the complex, Condensin I, contains the non-SMC

subunits Cap-D2, Cap-G, and the Kleisin Cap-H, which is called Barren (Barr)

in Drosophila. A second SMC2-SMC4 complex, Condensin II, has first been

identified in HeLa cells and was shown to exist in many metazoans (Ono et al.

2003; Yeong et al. 2003). It is formed with the subunits Cap-D3, Cap-G2 and

the Kleisin Cap-H2.
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A B C D

F G H I J

Figure 1.5. Electron micrographs of hu-

man Condensin, modified from Anderson et al.

2002. A–D show what presumably are SMC2-

SMC4 dimers, F–J can be assumed to be pen-

tameric holocomplexes. Shown configurations are

sorted from the more abundant (left) to the less

abundant (right). Frequencies of different config-

urations might be skewed by preparational arte-

facts. A 44% of SMC dimers split at the head end.

B Many of these complexes bend in the coiled-coil

regions. C 32% form a compact rod. Many of these

also are bent in their coiled-coil region (not shown).

D 12% form an open ”V” shape with the SMCs

seemingly only interacting at the hinge (arrow), and

another 12% of the complexes split along the coiled-

coils, remaining connected at both the head and

hinge domains (not shown). F 49% of pentameric

Condensin holocomplexes show a compact rod con-

figuration. G About a third of the latter show

a sharply bent coiled-coil region. H 27% show

what seems to be one of the SMC heads dissociat-

ing from the rest of the complex. About a third of

these also have a sharp bend in their coiled-coil stalk

(not shown). I 21% split along the stalk, remain-

ing connected at both the head and hinge domains.

J 3% of the holocomplexes show one SMC dissoci-

ating almost completely, remaining connected only

at the hinge region (arrow).
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For Drosophila, the existence of a functional Condensin II complex has been

disputed, as no Cap-G2 gene could be identified and other putative Condensin II

components do not seem to interact with each other (Herzog et al. 2013).

C. elegans, on the other hand, seems to lack a classical Condensin I, express-

ing only a homologue of Condensin II (Hirano 2005).

Enzymatic activities of Condensin

8S Condensin has a strong activity of reannealing denatured DNA without ATP

hydrolysis (Sutani and Yanagida 1997). DNA binding relies on the hinge re-

gion, and reannealing works even when one of the SMC head domains is deleted

(Yoshimura et al. 2002; Sakai et al. 2003).

Phosphorylation of the 13S Condensin non-SMC subunits by Cdk I activates

positive DNA supercoiling activity in the presence of Topoisomerase I (Kimura

et al. 1998, 1999). The mechanism behind this seems to be that a single 13S

Condensin complex can introduce two positive writhes into a DNA molecule, con-

suming 2 ATP in the process; this probably happens by physically wrapping two

loops of about 92bp each through (or around) the ”head” side of the Condensin

complex. Topoisomerase then removes the corresponding negative supercoils, ef-

fecting a net change in linking number (Bazett-Jones et al. 2002; Strick et al.

2004).

Condensin interacts directly with Topoisomerase II (Bhat et al. 1996) and

might be necessary for the latter’s recruitment to DNA and activation (Coelho

et al. 2003).

In regard to its biological function, Condensin plays a confusing multitude of

roles. The common principal behind them seems to be the looping and unloop-

ing of DNA that Condensin mediates in cooperation with Topoisomerase II. The

looping activity seems to be the functional basis for chromosomal condensation

during heterochromatinization and mitosis, as well as for long-distance regulatory

sequence interaction and transcriptional insulation; the presumptive reverse ca-

pability to dissolve DNA loops may be behind the disentangling of chromosomes

at anaphase and the cytophysiological ”antipairing” activity of Condensin that

acts as a repulsive force between chromatids.
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Condensin in chromosomal condensation and segregation

SMCs were first isolated as a protein component of condensed chromosomes;

together with Topoisomerase II, SMCs in mitotic HeLa cells comprise at least

40% of non-histone chromosomal proteins, and up to 7% of total chromosomal

protein (Lewis and Laemmli 1982). In chromosomes condensed for cell division,

Condensin and Topo II form an axial scaffold that the chromatin is attached

to in consecutive loops of 80–120kbp (Earnshaw and Laemmli 1983; Earnshaw

and Heck 1985; Gasser et al. 1986; Maeshima and Laemmli 2003).

Condensin I is spread evenly along the chromosomal axis (Coelho et al.

2003); in organisms that have Condensin II, it is found primarily at the centromere

and in a bead-like pattern along the chromosomal axis (Ono et al. 2003, 2004).

Condensin I is a cytoplasmic protein for most of the cell cycle, only associ-

ating with the chromosomes at prometaphase after nuclear envelope breakdown;

contrarily, Condensin II remains in the nucleoplasm throughout the cell cycle and

binds to chromatin at prophase (Sutani et al. 1999; Ono et al. 2004; Hirota

et al. 2004; Gerlich et al. 2006).

The major part of the Condensin I complexes seems to bind in a fluctuating

fashion, exchanging with a cytoplasmic pool; in HeLa cells, only a small fraction

of Condensin I, but about half of all Condensin II is bound stably to chromatin

during mitosis (Gerlich et al. 2006).

In most organisms, chromatin condensation still happens in the absence of

Condensin, but is slow, aberrant, or incomplete (f.e. Steffensen et al. 2001;

Hagstrom et al. 2002; Kaitna et al. 2002; Coelho et al. 2003; Somma et al.

2003; Hudson et al. 2003); only under special experimental conditions where

single, unreplicated chromatids are condensed in Xenopus laevis egg extract or in

Drosophila double parked mutants, Condensin proves necessary for condensation

(Cuvier and Hirano 2003; Dej et al. 2004).

Once mitosis has progressed, metazoan cells mutant for Condensin compo-

nents show a phenotype called ”chromatin bridging”; at anaphase, the chromo-

somal arms of diverging chromosomes seem to remain connected by threads of

chromatin (Saka et al. 1994; Strunnikov et al. 1995; Bhat et al. 1996). In
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A B

Figure 1.6. Budding Yeast cells (S. cerevisiae),

wild type (”SMC2”) and smc2-6 mutant (”smc2”).

DNA is visualized with DAPI, mitotic spindle with

anti-Tubulin antibody. A Wild type. Cells in

telophase are recognizable by their long-stretched

mitotic spindles (indicated by arrowheads). Chro-

matin is cleanly segregated into two new nuclei, vis-

ible in the DAPI stain. B smc2-6 heat-sensitive

mutant yeast cells. After 3h at the nonpermissive

temperature of 37◦C, anaphase leads to chromatin

bridging (arrowheads). After 6h, the surviving cells

have arrested in the early stages of mitosis, recog-

nizable by the short spindles (indicated by arrow-

heads). Images from Strunnikov et al. 1995

some cases, only centromeres are able to seperate; this is to be expected in

Condensin I mutants of organisms that use Condensin II in their centromeres.

Sometimes, anaphase is not initiated at all, with cells getting stuck at metaphase

(Dej et al. 2004).

Chromatin bridging might be caused by lacking resolution of repetetive rDNA

clusters (see below, 1.3.2; D’Amours et al. 2004; Tomson et al. 2006; Wang

et al. 2006; D’Ambrosio et al. 2008a), by premature decondensation of chro-

mosomes, or by chromatids not being disentangled by Topoisomerase II. (Cuvier

and Hirano 2003; Coelho et al. 2003) The latter would be caused by failure of

Condensin-mediated Topo II recruitment; Hudson et al. 2003 have shown that

the axial scaffold of mitotic chromosomes, uniting most Topo II molecules in the

cell, is completely missing in SMC2 mutant cultured chicken cells.

Mitotic phenotypes in Drosophila. In Drosophila embryonic develop-

ment, the mitotic phenotype of Condensin mutants does not become apparent

at first due to a large supply of maternal mRNA; the hypomorphic alleles Cap-GK1

and Cap-GK2 only show chromatin bridging in anaphase 15 (Dej et al. 2004),

lethal barren and gluon alleles in anaphase 16 (Bhat et al. 1996; Steffensen

et al. 2001; Hagstrom et al. 2002; Hudson et al. 2003).
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In Drosophila Cap-G mutants, the number of prometaphase nuclei in the

dorsal ectoderm of stage 10 embryos is increased (Dej et al. 2004); cells seem

to be stuck in a suspended mitosis. The number of mitotic figures visible in

sections of later embryos seems to be reduced in Condensin component mutants,

implying that cells can revert out of mitosis (Cobbe et al. 2006).

Drosophila embryonic epidermal cells seem to attempt cytokinesis in spite of

chromatin bridging (Bhat et al. 1996). Neural cells, however, seem to be reduced

in number and increased in size in Drosophila barren mutants (Bhat et al. 1996);

it is unclear whether this is due to apoptosis of one or both daughter cells, a

failure of Cytokinesis leading to a binucleate or tetraploid cell, or reversion out of

mitosis and arrest of cell cycle. In the brain of third instar larvae hemizygous for

the weak allele cap-gK3 , aneuploid and polyploid cells can be detected besides

the usual mitotic defects (Dej et al. 2004).

Condensin mutations in tumorigenesis. About 5% of all human can-

cer genomes and transcriptomes feature mutations of Condensin components

(reviewed in Strunnikov 2010).

The genomic instability caused by double strand breaks after chromatin bridg-

ing is thought to be among the driving forces behind cancer. The randomized

distribution of chromosome fragments leads to what is called a loss of heterozy-

gousity for groups of genes; this way, recessive tumorigenic alleles can express

their phenotype in a hemizygous situation. This speeds up the cellular evolution

towards more aggressive growth.

InDrosophila, genome instability alone does not lead to tumor growth (Castel-

lanos et al. 2008); it has even been shown to cause cell cycle exit into G1 phase

and premature differentiation in larval neuroblasts and adult intestinal stem cells

(Gogendeau et al. 2015). In the wing and eye discs, chromosomal instability

triggers apoptosis; if apoptosis is genetically blocked, the cells overgrow mas-

sively. Such wing disc cells loose their typical shape, delaminate out of their

epithelium, become invasive and can even form metastases after transplantation

into a new host’s abdomen (Dekanty et al. 2012, 2015).
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Condensin and the organization of interphase chromatin

Condensin also seems to play a role in the spatial arrangement of interphase

chromatin.

In human (Cabello et al. 2001), X. laevis (Uzbekov et al. 2003) and S.

cerevisiae cells (Freeman et al. 2000), Condensin I has been found binding to

the rDNA in the nucleolus well before mitosis, during G2 phase. In S. cerevisiae

and Schizosaccharomyces pombe, Condensin was shown to bind to all genes

that are transcribed by RNA polymerase III (some snRNA and snoRNA genes

and all rRNA and tRNA genes) as well as the RNA polymerase II -transcribed

ribosomal protein genes, clustering them around the nucleolus (Haeusler et al.

2008; Iwasaki et al. 2010). The ”B-Box” sequence GTTCxAxxC, part of the

promoter for RNA polymerase III, seems to be a loading site for both Condensin

and Cohesin by Scc2-Scc4 (D’Ambrosio et al. 2008b). There even exist isolated

B-Boxes without any further promoter elements (Noma et al. 2006).

The preference of Condensin for B-Boxes is not based on direct binding; the

complex rather interacts with the RNApol III transcription factors TFIIIB and

TFIIIC, assembled on the DNA strand (Haeusler et al. 2008).

In Schizosaccharomyces pombe, Condensin binds to the TATA-binding pro-

tein (TBP) and thus localizes to active RNApol II promoters; this may be part

of the regulatory mechanism of ,,gene bookmarking” (see below, section 1.3.2

p. 30). However, it also leads to the recruitment of strong RNApol II promoters

to the centromere/tDNA cluster (Iwasaki et al. 2015; Nakazawa et al. 2015).

Homologous chromosome association in Drosophila. In dipterans,

homologous chromosome pairs are closely aligned over their whole length

(”paired”) in most cell types throughout development (Stevens 1908; Metz

1916). This phenomenon is similar, but not identical to the chromosome pairing

at meiosis; while the somatic cell lineage establishes pairing during cell cycle 14

(Hiraoka et al. 1993), the germ line only does so for the last five mitoses leading

up to meiosis (reviewed in Joyce et al. 2013)

In Condensin II component knock-downs in cultured Drosophila Kc167 cells,

pairing of heterochromatic regions is enhanced (Joyce et al. 2012).
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Polytene chromosomes are a phenomenon that is considered to be related to

chromosome pairing: Chromatids sticking to each other, multiplied by repeated

rounds of DNA replication without a subsequent mitosis, aligned gene by gene

over their full length. The ovary nurse cells of D. melanogaster at certain de-

velopmental stages form polytene chromosomes that remain in strict alignment

of homologous chromatids for their first four rounds (of up to twelve) of DNA

replication.

After the fifth round of replication, all replicated chromatids of each pair of

chromosome disengage their arms from each other, remaining connected only

at the centromeres. The chromosomes take on the form of discrete, spherical

”chromatin territories” with interspersed chromatin-free ”interchromatin com-

partments” (Dej and Spradling 1999). The centromeres locate to the nuclear

periphery. (Bauer et al. 2012)

In Drosophila Cap-H2 mutants, this transition from closely aligned chro-

matids to chromatin territories is blocked; also, the centromeres at the nuclear

periphery cluster together and are joined by the pericentric heterochromatin,

which in wild type cells would be dispersed throughout the nucleus (Bauer et al.

2012).

Distance measurements between pairs of simultaneous fluorescent in situ hy-

bridizations on pairs of loci on the same chromosome also show that chromosomes

of Cap-H2 and SMC4 mutants are less condensed; they grow longer with each

round of replication, whereas wild type chromosomes retain a constant length

(Bauer et al. 2012).

Later on in the development of Cap-H2 (and also Cap-D3) mutant nurse cells,

the polytene chromosomes fail to disassemble normally (Hartl et al. 2008).

Cap-H2 overexpression dissolves the normally persistent polytene chromo-

somes in larval salivary gland cells (Hartl et al. 2008), reforming them into

chromatin territories similar to those seen in nurse cells. This is concomitant

with a contraction in chromosome length (Bauer et al. 2012).
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Condensin in transcriptional regulation

There is a wide variety of examples for Condensin function in transcriptional reg-

ulation. Most cases seem to be based either on the formation and dissolution of

large chromatin loops, Condensin’s related role in condensation/decondensation,

or a chromatid disentangling activity similar to what Condensin does at anaphase.

Condensin as a mediator of regulatory long distance interactions.

In Drosophila, Barren is necessary for the function of the Polycomb (Pc) repres-

sion complex (PRC).

In a transgenic construct, an ectopic Fab-7 Pc binding site (a ”Polycomb

response element”) is able to repress an adjacent reporter gene. The repressive

activity of Fab-7 sites depends on physical association with a second Fab-7

element, natural or ectopic. This physical association is independent of linear

distance on chromosomes (Bantignies et al. 2003). Both in mutants of Pc

group proteins and barren, this repressive effect of ectopic Fab-7 sites is lost

(Lupo et al. 2001).

One copy of barr L305 enhances the phenotype of the Fab-7 2 mutation, effect-

ing a complete reduction of the 7th abdominal tergite. Also, Condensin I and

Topoisomerase II colocalize with each other on known Pc repression complex

binding sites within the BX-C locus. Moreover, Barren and Topo II coimmuno-

precipitate with the 140 kDa isoform of the Pc group protein Polyhomeotic (Ph)

(Lupo et al. 2001). ph mutants, intriguingly, show massive chromatin bridging

early in embryogenesis.

A phenomenon probably related to the constant chromosome pairing in Dro-

sophila (see above, section 1.3.2 p. 27) is transvection: The influencing of a

gene’s transcription by a mutation in an enhancer on the homologue sister locus

(reviewed in Duncan 2002). Mutants of the Condensin II–Kleisin Cap-H2 show

an increase of transvection, while Cap-H2 overexpression conversely reduces it

(Hartl et al. 2008).

During their maturation, B lymphocytes undergo a rearrangement of their

genome called V(D)J recombination. This creates the gene for the B cell re-

ceptor, the unique antibody B lymphocytes present on their surface and secrete
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upon activation. For V(D)J recombination the κ Immunoglobulin (Igκ) locus

among others, coding for parts of the light Ig chain, has to achieve a physical

contraction by establishing long-distance chromatin interactions.

On the Igκ locus of mouse pro-B cells, the Polycomb group proteins YY1

and EZH2 interact with Condensin I and Cohesin. Deletion of the YY1 REPO

domain, which is necessary for interaction with Condensin, produces the same

defects in B cell development as a YY1 knock-out, namely partial failure of the

physical contraction of the Igκ-locus (Pan et al. 2013).

Gene regulation by chromatin condensation and decondensation.

In animal cells, transcription is halted during mitosis (reviewed in Gottesfeld and

Forbes 1997). Once mitosis is completed, the cell’s specific pattern of gene

expression mostly resumes as it was before. This mechanism is called ”gene

bookmarking”. It seems to be based on TATA-binding protein (TBP) remaining

bound to promoters during mitosis and interacting with both Condensin I and

Protein Phosphatase 2A, having the latter dephosphorylate and thus deactivate

Condensin. This seems to keep promoters uncondensed during mitosis, helping

TBP to resume transcription instantly (Xing et al. 2008).

Conversely, when in Cap-H mutant DT40 chicken cells a Cap-H rescue con-

struct is shut off before mitosis, the expression level of those genes that normally

are strongly expressed and would associate with Condensin I will be reduced after

mitosis (Kim et al. 2013).

Other transcription factors, like HSF2, also seem to interact with Condensin

and trigger the same bookmarking mechanism as TBP (Xing et al. 2005). In

dividing chicken DT40 cells, 30% of SMC2 and 42% of Cap-H bind to active

promoters, which comprise only 3% of the genome (Kim et al. 2013). The situa-

tion in S. pombe is similar (see above, 1.3.2 27, Iwasaki et al. 2015; Nakazawa

et al. 2015).

In Drosophila, heterozygous Condensin Imutants seem to be modifiers of position

effect variegation, altering the expression level of reporter genes that are located

close to heterochromatic chromosome regions. Dej et al. 2004 see barr L305 ,

cap-GK1 and cap-GK2 as suppressors of variegation (enhancing the expression of

30



Introduction SMC complexes and their functions

a heterochromatized w+ gene); however the quantitative study by Cobbe et al.

2006 sees only the SMC4 allele gluon88−82 and to a much lesser extent SMC2 jsl2

as such, reporting gluon17C , gluon88−41B, gluon88−37, barr L305 and cap-G 64 as

enhancers of variegation.

In mammals, Quiescent T Cells prior to activation by their specific antigen show a

permanent condensation of most of their chromatin that depends on Condensin II

(Rawlings et al. 2011). In the mouse mutant nessy, an amino acid substitution

in Condensin II β–Kleisin causes a defect in T-cell development (Gosling et al.

2007).

Condensin in human diseases

The protein MCPH1, which in humans causes primary microcephaly when mu-

tant, is among other things a regulator that interacts with Condensin II and

probably competes for the latter’s chromosomal binding sites. Cells from pa-

tients with a mutation of MCPH1 show a premature chromosome condensation

during G2 phase (Trimborn et al. 2006; Yamashita et al. 2011). Drosophila

mutants of mcph1 show chromatin bridging.

Some human cancer cell lines carry mutations of Condensin components

(Strunnikov 2010); for example, some Pyothorax-associated lymphoma (PAL)

derived cell lines are mutant for the Condensin SMCs hCap-C and hCap-E (Ham

et al. 2007). This is probably connected to the mitotic defects exhibited by

Condensin mutants (see above, section 1.3.2, p. 26).

1.3.3 The Cohesin complex

Molecular composition and structure

Cohesin is a protein complex necessary for sister chromatid cohesion and hete-

rochromatin formation. It is characterized by the subunits SMC1 (Hirano et al.

1997; Hirano and Mitchison 1994) and SMC3. The two SMCs dimerize with

their ”hinge” and ”head” domains (Haering et al. 2002; Anderson et al. 2002).
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In the Mitosis-specific form of Cohesin, they are joined by the α-Kleisin Scc1

(Birkenbihl and Subramani 1992, 1995; Michaelis et al. 1997; Guacci et al.

1997). In ”meiotic” Cohesin, Scc1 is replaced by the α-Kleisin Rec8.

This trimer associates stably with a pair of chromatids (Kulemzina et al.

2012). However, it interacts with various regulatory subunits that mostly bind to

the Kleisin:

• Scc3, a HEAT repeat protein, binds to Scc1 (Tóth et al. 1999; Losada

et al. 2000).

• Pds5 (Precocious Dissociation of Sisters), a HEAT repeat protein which

binds to Scc3 and the Kleisin Scc1 (Denison et al. 1993; Panizza et al.

2000; Hartman et al. 2000), but can also bind to the SMCs’ hinge region

(Mc Intyre et al. 2007).

• Wapl (Wings apart -like), a helical repeat protein which binds to Scc1,

Scc3 and Pds5 (Verná et al. 2000; Kueng et al. 2006; Gandhi et al.

2006; Shintomi and Hirano 2009; Kulemzina et al. 2012), stimulates dis-

sociation of the Kleisin from SMC3 and thus release from chromatin (Chan

et al. 2012; Buheitel and Stemmann 2013; Eichinger et al. 2013; Hara

et al. 2014).

• Sororin binds to Pds5 and seems to be a competetive inhibitor of Wapl. It

associates with Cohesin from S phase on, stabilizes Cohesin’s binding to

chromatin and is degraded once mitosis is completed (Rankin et al. 2005;

Schmitz et al. 2007; Lafont et al. 2010; Nishiyama et al. 2010).

• Shugoshin (Sgo), which binds to Scc1 and Scc3. For this binding site,

it competes with Wapl. It recruits Protein phosphatase 2A (PP2A) to

Cohesin, preventing it from being permanently phosphorylated. This way,

it promotes and protects sister chromatid cohesion at the centromeres

(Wang and Dai 2005; Kitajima et al. 2006; Hara et al. 2014).

A single Cohesin can embrace two strands of DNA, linking them topologically

(Haering et al. 2008). In electron-microscopic images, the two SMCs can often

be seen as a ring (see Fig. 1.7, Anderson et al. 2002; Gruber et al. 2003). This
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A B C D E

Figure 1.7. Electron micrographs of human

Cohesin, modified from Anderson et al. 2002.

The common kinks in the SMCs’ coiled-coil stalks

are indicated with white arrows. Shown configura-

tions are sorted from the more abundant (left) to the

less abundant (right). Some configurations might be

more or less abundant in vivo, due to preparational

artefacts. A 47% of all complexes are closed rings

with a roughly globular association on one side that

seemingly is an assembly of several substructures,

probably the non-SMC subunits. B In 33%, the

bulky aggregate appears more stretched out so that

the presumable SMC head domains are discernible

from the subcomplex between them. C 20% show

one of the presumed SMC heads detached from the

non-SMC subcomplex. D 11% of SMC dimers are

not associated with a larger complex at all; about

half of these have an open ”V” configuration, while

others E form a ring.

contrasts to Condensin, which looks roughly rod-shaped with no central opening

(Yoshimura et al. 2002; Anderson et al. 2002). FRET studies imply that the

SMC head domains interact in direct contact with each other and the Kleisin,

without the latter having to bridge any gap (Mc Intyre et al. 2007); the open

ring shape seems to be due to kinks in the SMCs’ coiled-coil stalks (see Fig. 1.7,

Anderson et al. 2002; Gruber et al. 2003). S. pombe Cohesin SMCs contain

13 Proline residues in the coiled-coil domains, which might work as helix-breakers

and confer flexibility to these domains (Sakai et al. 2003).

In contrast to 8S Condensin, the Cohesin SMC dimer alone has almost no affin-

ity to ssDNA and very low affinity to linear dsDNA in vitro. However, the hinge

domain might still have a function beyond SMC dimerisation: Atomic force mi-

croscopic images sometimes show the coiled-coil region bending around, extend-

ing the hinge region towards the head (Sakai et al. 2003). Artificial dimers of

isolated SMC1 and SMC3 hinge domains also can coimmunoprecipitate isolated

SMC1 head domains (Mc Intyre et al. 2007).

As a holocomplex with at least the Kleisin, Cohesin can bind to cruciform

DNA and Histone-associated DNA (Akhmedov et al. 1998; Sakai et al. 2003).

In vivo, Cohesin seems to be loaded onto DNA by the Scc2-Scc4 complex

(Michaelis et al. 1997; Furuya et al. 1998; Tóth et al. 1999; Watrin et al.
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2006). Loading seems to happen by opening the hinge domains (Gruber et al.

2006; Buheitel and Stemmann 2013); it also depends on ATP hydrolysis by the

SMC’s ATPase ”heads” (Arumugam et al. 2003; Weitzer et al. 2003). ATPase

activity is stimulated by the Kleisin Scc1 and only occurs during loading onto

DNA (Lammens et al. 2004; Arumugam et al. 2006).

Cohesin can dissociate from DNA in two ways: Upon cleavage of Scc1 by Sep-

arase, or by dissociation of Scc1 from the SMC3 head, regulated by additional

protein factors.

Cohesin in mitosis

Cohesin is loaded onto chromatin in telophase. At DNA replication in S phase,

the SMC3 head is acetylated (Tóth et al. 1999; Skibbens et al. 1999; Ivanov

et al. 2002) and the complex is joined by Sororin, displacing Wapl and stabilizing

the association with the now duplicated sister chromatids (Zhang et al. 2008;

Rowland et al. 2009; Sutani et al. 2009; Lafont et al. 2010; Nishiyama et al.

2010).

On the chromosomal arms, Cohesin dissociates in prophase (Losada et al.

1998; Waizenegger et al. 2000) by opening the interface between SMC3 and

the Kleisin (Buheitel and Stemmann 2013). This is triggered by phosphoryla-

tion of Scc3 and Sororin and subsequent replacement of Sororin by Wapl, and

deacetylation of SMC3 (Gandhi et al. 2006; Kueng et al. 2006).

On the centromere, this pathway is inhibited by Shugoshin (Shintomi and

Hirano 2009); here, Cohesin is released only at anaphase onset, when Scc1 is

cleaved by Separase/Separin (Uhlmann et al. 2000). This prolonged cohesion at

the centromere contributes to the typical X-shape of metaphase chromosomes.

Once telophase is reached, Cohesin is once more loaded onto the chromatids,

where it seems to have vital functions during interphase.

Mutants of Cohesin components, regulators or loading factors often show pre-

mature separation of chromosomes during mitosis (Lee and Orr-Weaver 2001).

This can result in genomic instability (Percival et al. 2015).

In Drosophila, cells without functional Cohesin fail to form a metaphase plate;

instead, sister chromatids segregate asynchronously, in an erratic, unreliable fash-
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ion, sometimes moving forth and back between spindle poles. After a mitotic

arrest that lasts for about 20min, chromosomes decondense abruptly and cytoki-

nesis is initiated, with the cleavage furrow cutting through all chromatids that

get in the way (Pauli et al. 2008).

Cohesin in transcriptional regulation

In S. cerevisiae, Cohesin is enriched both on the centromere and in intergenic

regions between convergent RNA-polymerase-II-transcribed genes. In contrast

to Condensin, which tends to remain at its loading site, Cohesin seems to get

pushed downstream by RNApol II (Glynn et al. 2004; Lengronne et al. 2004;

reviewed in Ocampo-Hafalla and Uhlmann 2011).

However in Metazoa, this sliding mechanism seems to have little impact on

Cohesin distribution, as Cohesin’s binding half-life of about 20min is not long

enough to be pushed along the full length of a human (Gerlich et al. 2006;

Parelho et al. 2008) or Drosophila gene (Misulovin et al. 2008; Gause et al.

2010).

In Drosophila, Cohesin and the loading factor Nipped-B are found prefer-

entially at the promoters of actively transcribed genes; they are, however, ex-

cluded from genes silenced by Polycomb group (PcG) repressors (Dorsett 2009;

Misulovin et al. 2008; Schaaf et al. 2009).

Mutants of Cohesin components and loaders show altered expression of cer-

tain genes like cut that are regulated by distant enhancers, implying that Cohesin

is necessary for long-range interaction (Rollins et al. 1999; Dorsett et al.

2005). Mutations of Cohesin components modify the phenotypes of many muta-

tions in Drosophila (reviewed in Dorsett 2009); for example in vtd mutants, the

phenotype of Kr If is modified towards ectopic appendage-like outgrowths in the

eyes. This seems to be an heritable epigenetic effect, as it lasts for at least five

generations even if the genetic background is restored to vtd+ (Sollars et al.

2003).

In postmitotic, differentiating Drosophila neural cells, artificial inactivation of

the Cohesin complex leads to severe defects in axon pruning (Pauli et al. 2008).

Somatically generated clones of SMC1− neurons show axon pruning defects and
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reduced expression of the Ecdysone receptor EcR-B1. Postmitotic expression of

transgenic SMC1 in such neurons rescues the phenotype; overexpression of EcR-

B1 partially also does. A reduced dosage of EcR-B1 aggravates the phenotype;

presumably, Cohesin regulates the Ecdysone receptor (Schuldiner et al. 2008).

Inactivation of Cohesin in Drosophila salivary leads to altered transcription levels

of many genes; 419 genes changed at least 1.5-fold, several tens of genes up to

over a hundred fold. Cohesin is found enriched at the transcription start sites of

about half of these genes. (Pauli et al. 2010).

In C.elegans, mutants of Scc4 show guidance defects in migrating cells and

axons (Takagi et al. 1997; Bénard et al. 2004).

In Zebrafish, changes in dosage of Cohesin components that do not inhibit

mitosis have been shown to alter gene expression levels (Horsfield et al. 2007).

Partial knockdown of Scc1/Rad21 in zebrafish embryos produced a defect of

neural crest cell targeting, producing among other things heart defects resembling

those in below-mentioned (p. 37) human Cornelia deLange Syndrome and CAID

(Schuster et al. 2015).

In mammals, Cohesin is enriched on its Scc2-4 mediated loading sites and,

among others, on CCCTC-Binding Factor (CTCF) binding sites. At these, Co-

hesin binding depends on functional CTCF (Rubio et al. 2008), and CTCF func-

tion depends on intact Cohesin (Parelho et al. 2008; Wendt et al. 2008). Dur-

ing mitosis in human cells, CTCF remains bound to chromatin (Burke et al.

2005) and accumulates on the centromeres (Zhang et al. 2004). The vertebrate

Scc3 paralogue SA1/STAG1 interacts directly with CTCF (Rubio et al. 2008).

Mechanistically, CTCF-dependent enhancer insulation as well as other reg-

ulatory functions of Cohesin seem to involve the formation of large chromatin

loops (Nativio et al. 2009; Schmidt et al. 2010).

In human cell lines, Cohesin has been shown to share CTCF-free binding sites

with tissue-specific regulator proteins like the Estrogen Receptor (Schmidt et al.

2010).
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Cohesin in human diseases

In humans, mutations of Cohesin components, loaders and regulators give rise to

a number of syndromes that are called Cohesinopathies. Many present with ab-

normal mitosis figures; some symptoms, however, seem more likely to be caused

by defects in gene regulation. Phenotypically, the more severe of these syndromes

with their phocomelia and dismelia resemble the effects of fetal exposition to

Thalidomide (a purely superficial similarity, as this drug works by inhibition of

angiogenesis; D’Amato et al. 1994, reviewed in Vargesson 2015).

A few examples for Cohesinopathies are Cornelia deLange Syndrome, Roberts

Syndrome, and Chronic Atrial and Intestinal Dysrhythmia.

Cornelia deLange Syndrome (CdLS) is characterized by mental and

physical retardation, heart defects, characteristic facial features, hirsutism and

abnormalities of upper limbs and many other body parts and organs. CdLS is

caused by mutations of Scc2 (Krantz et al. 2004; Tonkin et al. 2004), SMC1,

or SMC3 (Musio et al. 2006; Deardorff et al. 2007). Mutations of the SMCs

often lead to lighter cases showing only mental retardation. In cells from CdLS

patients with Scc2 mutation, precocious sister chromatid separation can be de-

tected (Kaur et al. 2005). CdLS is a quite common disorder, with about 1 in

10000 humans afflicted.

Roberts syndrome is characterised by varying degrees of growth deficiency

of prenatal onset, reduction of limbs, craniofacial anomalies, microcephaly, and

mental deficiencies. Many of the more severe cases are stillborn. Lighter forms of

this syndrome, with survival into adulthood, are called SC phocomelia syn-

drome (Schüle et al. 2005).

Roberts syndrome is caused by a variety of mutations of the acetyl transferase

ESCO2, which acetylates the SMC3 head region, promoting Cohesin binding to

sister chromatids at S phase (Vega et al. 2005; Schüle et al. 2005). Cells

from Roberts syndrome patients show abnormal mitosis figures, centromeres and

nucleoli (Tomkins and Sisken 1984).
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Chronic Atrial and Intestinal Dysrhythmia (CAID) patients suffer

from a malfunction of the cardiac sinus node, resulting in a decreased heart

rhythm, and from chronic intestinal obstruction caused by pathological changes

of the intestinal musculature and nervous system.

CAID is caused by a mutation in the Cohesin component Shugoshin-like 1

(SGOL1). Cells from patients with CAID show overactive TGF-β signaling, a

centromeric cohesion defect during mitosis, an accelerated cell cycle and pre-

mature cell senescence; however, no aneuploidy is observed (Chetaille et al.

2014).

Cohesin components, regulators and loaders are also often mutated in human

cancer cell lines (reviewed in Strunnikov 2010; Solomon et al. 2014; Losada 2014;

Orgil et al. 2016); STAG2/SA2 is one of only twelve genes that are mutated in

more than three different types of cancer (Lawrence et al. 2014).

1.3.4 This study: The effect of Condensin and Cohesin

mutations on Drosophila embryonic myogenesis

Here, we identify a D. melanogaster mutant with heavily disturbed embryonic

musculature as carrying a barren point mutation. We show that other barren

alleles as well as Cap-G mutants show the same or a similar phenotype. In

contrast, mutations of Cap-D2 or the Cohesin components SMC1 and vtd show

no such phenotype.

We use an UAS-regulated rescue construct and various tissue-specific Gal4

driver lines to narrow down the time and cell type when Condensin is necessary for

myogenesis. This allows us to identify the mechanism that causes the phenotype,

telling apart regulatory from mitotic effects of the Condensin mutations.

We find that the phenotype is a loss of muscle identity. It seems to be caused

by a lack of Barren before the last mitosis that gives rise to the muscle founder

cells, the carriers of the identities of the various muscles; thus, it is most likely

an effect of aberrant mitoses.
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Chapter 2

Materials and Methods

2.1 Materials, Reagents and Instruments

2.1.1 Instruments

Microscopic equipment

Stereo microscopes M3

M3B Wild, Heerbrugg,

Switzerland

Stemi DV4

Stemi SV6 Zeiss, Jena

CO2 anaesthesia pads Workshops

Philipps-Universität

Marburg

CO2 supply system Linde, Düsseldorf

Epifluorescence

stereo microscope

SZX9 Olympus, Planegg
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DIC microscope Axioskop Zeiss, Jena

Camera Powershot G5 Canon

Camera AxioCam ICc 1 Zeiss, Jena

Software AxioVision Zeiss, Jena

Epifluorescence

microscope

Axiophot Zeiss, Jena

Camera AxioCam ICc 3 Zeiss, Jena

Software AxioVision Release 4.8 Zeiss, Jena

Epifluorescence and

CID microscope

ApoTome Zeiss, Jena

CID grid ApoTome Zeiss, Jena

Camera AxioCam Zeiss, Jena

Software AxioVision Zeiss, Jena

Other instruments

DNA gel

electrophoresis

apparatus

Workshops

Philipps-Universität

Marburg
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Workshops MPI

Martinsried

DNA gel

electrophoresis

voltage supply

PowerPac 300 BioRad, München

Power Pack P25 Biometra, Göttingen

DNA electrophoresis

gel UV

transilluminator

TI1 Biometra, Göttingen

DNA electrophoresis

gel documentation

camera and printer

?? Biotech-Fischer

UVsolo Biometra, Göttingen

Microcentrifuge Biofuge pico Heraeus Instruments,

Hanau

Cryomicrocentrifuge Biofuge fresco Heraeus Instruments,

Hanau

Cryocentrifuge Megafuge 1.0 R Heraeus Instruments,

Hanau

PCR cycler Mastercycler Personal Eppendorf, Hamburg

Personal Cycler Biometra, Göttingen

Photometers Ultrospec 3000

Gene-Quant 1300 Pharmacia, Freiburg

pH meter GPRT 1400A Greisinger electronic

pH211 Hanna Instruments
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UV Crosslinker UV StratalinkerTM

2400

Stratagene, LaJolla,

USA

Water baths C10 Haake, Karlsruhe

C1 Haake, Karlsruhe

GFL 1002 GFL, Burgwedel

Cryo water bath KH-3 Biometra, Burgwedel

Heater block HBT130-2 Haep Labor Consult,

Bovenden

Dri-Block DB 2A Techne, Wertheim

70◦C Oven Mammert

Magnetic stirrer Variomag Mono H+P Labortechnik,

München

Heater plate with

magnetic stirrer

IKA Combimag RCT IKA-Werke, Staufen

Vortex shaker Reax 200 Heidolph, Schwabach

Speed Shaker Vibrax VXR Basic IKA-Werke, Staufen

Microfuge cup holder

for speed shaker

Typ VX 2 E IKA-Werke, Staufen

Dish Shaker WT12 Biometra, Burgwedel

3D shaker Rocky 3D Föbel Labortechnik,

Lindau
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2.1.2 Chemicals and Reagents

Primary Antibodies

Antibody Typical dilution Source

Anti - βGalactosidase, Mouse

monoclonal

1:2000 - 1:5000 Promega, Madison,

USA

Anti - βGalactosidase, Rabbit

polyclonal

1:2000 Cappel, Hamburg

Anti - β3Tubulin, Rabbit

polyclonal

1:5000 Leiss et al. 1988

Anti - β3Tubulin, Guinea pig

polyclonal

1:5000 Leiss et al. 1988

Anti - Mef2, Rabbit

polyclonal

1:5000 Bour et al. 1995

Anti - Lmd, Rabbit polyclonal 1:2000 Duan et al. 2001

Anti - BP102, Mouse

monoclonal (ab12455)

1:50 Abcam, Cambridge

Anti - GFP, Mouse

monoclonal

1:1000 Covance, Princeton,

USA

Anti - GFP, Rabbit polyclonal

(ab6556)

1:1500 Abcam, Cambridge

Alkalic Phosphatase-coupled

Sheep polyclonal Anti - DIG

Fab fragment

1:5000 (for spot

test)

Roche Diagnostics,

Mannheim

Biotinylated Anti - DIG, Goat 1:200 Roche Diagnostics,

Mannheim
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Anti - FasIII, Mouse

monoclonal (7G10)

1:50 Patel et al. 1987 /

DSHB (p. 102)

Secondary Antibodies

Biotinylated Goat polyclonal

Anti - Rabbit-IgG

1:1000 Vector Laboratories,

Burlingame, USA

Biotinylated Goat polyclonal

Anti - Rat-IgG

1:1000 Vector Laboratories,

Burlingame, USA

Biotinylated Horse polyclonal

Anti - Mouse-IgG

1:1000 Vector Laboratories,

Burlingame, USA

DyLight488-coupled Goat

polyclonal Anti - Rabbit-IgG

1:50-

1:100

Dianova, Hamburg

Alexa488-coupled Goat polyclonal

Anti - Guinea pig-IgG

1:50-

1:100

Dianova, Hamburg

Cy2-coupled Goat polyclonal

Anti - Rabbit-IgG

1:50-

1:100

Dianova, Hamburg

Cy3/Cy5-coupled Goat polyclonal

Anti - Rabbit-IgG

1:200-

1:300

Dianova, Hamburg

Cy2-coupled Goat polyclonal

Anti - Guinea Pig-IgG

1:50-

1:100

Dianova, Hamburg

Cy3/Cy5-coupled Goat polyclonal

Anti - Guinea Pig-IgG

1:200-

1:300

Dianova, Hamburg

Cy2-coupled Goat polyclonal

Anti - Mouse-IgG

1:50-

1:100

Dianova, Hamburg

DyLight488-coupled Goat

polyclonal Anti - Mouse-IgG

1:50-

1:100

Dianova, Hamburg
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Cy3/Cy5-coupled Goat polyclonal

Anti - Mouse-IgG

1:200-

1:300

Dianova, Hamburg

Cy2-coupled Goat polyclonal

Anti - Rat-IgG

1:50-

1:100

Dianova, Hamburg

Enzymes and enzyme kits

AccuPrime Proof Reading Polymerase Invitrogen, Karlsruhe

Restriction endonucleases MBI Fermentas, St.Leon-Roth

New England Biolabs, Frankfurt

Amersham Pharmacia Biotech,

Freiburg

Roche Diagnostics, Mannheim

RNase A Boehringer, Mannheim

T4 DNA-Ligase Roche Diagnostics, Mannheim

Taq DNA Polymerase Peqlab, Erlangen

Other reagent kits

DIG RNA Labeling and Detection Kit Roche Diagnostics,

Mannheim

Epon Epoxy embedding kit Fluka, Neu-Ulm
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JETsorb Kit GENOMED, Bad

Oeynhausen

JETstar Plasmid Kit 2.0 GENOMED, Bad

Oeynhausen

TOPO TA Cloning Kit Invitrogen, Karlsruhe

TSA Fluorescein System Perkin Elmer, Rodgau

TSA Tetramethylrhodamine System Perkin Elmer, Rodgau

Vectastain ABC Kit Elite PK-6100 Standard Vector Laboratories,

Burlingame, USA

Other chemicals

DAB Sigma, Deisenhofen

Dan Klorix

(Sodiumhypochloride

solution)

Colgate Palmoliv, Hamburg

Fluoromount G Southern Biotechnology Associates,

Birmingham, USA

Hybond-N membrane Amersham, Braunschweig

Mass Ruler

DNA-Ladder, Mix

MBI Fermentas, St. Leon-Roth

NBT-X-phosphate Roche Diagnostics, Mannheim

Non-immune Goat

serum

Non-immune Horse

serum

Vector Laboratories, Burlingame, USA
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Oligonucleotides /

Primers

MWG Biotech, Ebersberg

Triton X-100 Roth, Karlsruhe

Tween 20 Sigma, Deisenhofen

2.1.3 Composition of solutions, buffers and media

Solutions and media for bacterial cultures

Ampicillin stock 100 mg/ml in 70% Ethanol

Chloramphenicol

stock

34 mg/ml in 70% Ethanol

Kanamycin stock 50 mg/ml in 70% Ethanol

LB medium 10 g/l Baktotrypton, 5 g/l yeast extract, 5 g/l

NaCl

LB agar 1,5% (w/v) Bactoagar in LB medium

Solutions for DNA extraction

Silanizing

solution

Dichlordimethylsilane in 1.1.1-Trichlorethane

S1 50 mM Tris, 10 mM EDTA, 100 µg/ml RNAse A in H2O dd,

adjusted to pH 8 with HCl

S2 200 mM NaOH, 1% (w/v) SDS in H2O dd
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S3 2,6 M Potassium acetate in H2O dd, adjusted to pH 5,2 with

acetic acid

E1 10 mM EDTA, 100 µg/ml RNase A in H2O dd

E2 200 mM NaOH, 1% (w/v) SDS in H2O dd

E3 3,2 M Potassium acetate in H2O dd, adjusted to pH 5,0 with

acetic acid

E4 600 mM NaCl, 100 mM Sodium acetate, 0,15 % (v/v) Triton

X-100 in H2O dd, adjusted to pH 5,0 with acetic acid

E5 800 mM NaCl, 100 mM Sodium acetate in H2O dd, adjusted

to pH 5,0 with acetic acid

E6 1,25 M NaCl, 100 mM Tris in H2O dd, adjusted to pH 8,5

with HCl

Extraction

Buffer for

Genomic

Fly DNA

0,1 M Tris, 0,1 M EDTA, 1%(w/v) SDS in H2O dd, adjusted

to pH 9 with HCl

SquiB 1 mM EDTA, 25 mM NaCl, 10 mM Tris in H2O dd, adjusted

to pH 8,2 with HCl

Solutions for DNA gel electrophoresis

10x TBE 0,89 M Tris, 0,89 M Boric acid, 2 mM EDTA

DNA electrophoresis

gel

0,5%-2% Agarose solved in boiling TBE, 0,6

mg/l% Ethidium bromide added at 60◦C

10x loading buffer 40% Glycerine, 0,9% (w/v) Boric acid, 0,1%

(w/v) Bromophenol blue (optionally 0,1% (w/v)

Xylene cyanol) in TBE
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Media for Drosophila culture

Drosophila culture

medium

60% (w/v) Maize flour (organic), 60% (w/v) Malt

extract, 7,15% (w/v) Fructose, 1,2% Yeast, 0,7%

(w/v) Agar, 0,6% Propionic acid, 0,2% Nipargine

Grape juice bottle

agar

5% (w/v) Sucrose, 0,8% (w/v) Nipargine in Grape

juice, diluted 1:4 at 70◦C in water with 2% Agar

Apple juice plate

agar

5% (w/v) Sucrose, 0,8% (w/v) Nipargine in Apple

juice, diluted 1:4 at 60◦C in water with 5,2% Agar

Solutions for embryonal microinjection

10x Injection buffer 1mM NaHPO4, 50mM KCl

Vector solution for

microinjection

2,5µl 10x injection buffer, 2,5µl pπ25.7wc helper

plasmid, 5µg vector plasmid; fill to 20µl with

sterile H2Odd

Heptane glue Brown adhesive packet tape is incubated shaking

in heptane for a few hours to solve the adhesive

glue in the heptane
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Solutions for Drosophila embryo handling

TNX 0,7% NaCl, 0,1% Triton X-100 in H2O

TNX/Klorix 50% Dan Klorix in TNX

10x PBS 1,3 M NaCl, 70 mM Na2HPO4, 30 mM NaH2PO4 in H2O

demin.

PBT 0,1% Tween 20 in PBS

FPBS 40 g/l Paraformaldehyde in PBS, solved at 60◦C

PBTB 1% (w/v) milk powder in PBT

Solutions for in situ hybridization

20x SSC 3 M NaCl, 0,3 M Sodium citrate in H2O dd; adjust to pH

7,0 with HCl

HS 50% Formamide, 25% 20x SSC, 0,1% Heparin (50

mg/ml), 0,1% Tween 20 in H2O dd

10x DIG1 1 M Tris, 1,5 M NaCl in H2O dd; adjust to pH 7,5 with

HCl

DIG2 0,5% blocking reagent in DIG1, solved at 60◦C

DIG3 0,1 M Tris, 0,1 M NaCl, 0,05 M MgCl2 in H2O dd; adjust

to pH 9,5 with HCl
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2.1.4 Online Resources

Bloomington Drosophila Stock Center

(BDSC)

flystocks.bio.indiana.edu

Vienna Drosophila RNAi Center

(VDRC)

www.vdrc.at

Developmental Studies Hybridoma

Bank (DSHB)

dshb.biology.uiowa.edu

FlyBase (Gramates et al. 2017) flybase.org

FlyMove (Weigmann et al. 2003) flymove.uni-muenster.de

OligoCalc oligonucleotide properties

calculator (Kibbe 2007)

biotools.nubic.northwestern.

edu/OligoCalc.html

PubMed Literature Database www.ncbi.nlm.nih.gov/pubmed

NCBI basic local alignment search tool

(BLAST)

blast.ncbi.nlm.nih.gov/Blast.

cgi
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2.2 Drosophila stocks

”BL” stands for stock numbers of the Bloomington Drosophila Stock Center

(BDSC), ”v” stands for stock numbers of the Vienna Drosophila RNAi Center

(VDRC)

Name Chromosomal

region

Source Comment

Acer k07704 29D4 BL10679

apmd544-Gal4 41F8 BL3041

barr k14014 38B1-B2 BL11117

barr L305 38B1-B2 BL4402

bHLH54F-lacZ Ismat et al. 2010 βGal-Expression in the

longitudinal visceral founder

myoblasts

Cap-D2 f03381 99B7 BL18648

Cap-G 64 49E7-F3 BL9456

Cap-G 6 49E7-F3 BL5562

da-Gal4 ubiquitous driver

Df(2L)BSC341 37B11–D3 BL24365 covers CG17572

Df(2R)BSC135 56C11–D5 BL9423 covers CG9416

Df(2R)BSC429 51C2–D1 BL24933 covers SMC2

Df(3L)BSC395 68F1–F2 BL24419 covers rols

Df(3R)01215 99A6–C1 BL5424 covers Kul, Cap-D2

Df(3R)BSC491 95A7–A10 BL24995 covers CG18754, SPE

Df(3R)BSC547 99B5–C2 BL25075 covers Kul, Cap-D2
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Name Chromosomal

region

Source Comment

Df(3R)BSC620 99C5–D3 BL25695 covers TACE

Df(3R)BSC714 13E14–14A8 BL26566 covers mmd

Df(3R)BSC846 99A1–B10 BL27919 covers Kul, Cap-D2

Df(3R)Exel6197 95D8–E1 BL7676 covers SMC1

Dr / TM3, Sb,

Dfd-lacZ

(=”TDLZ”)

Chromosome III Gift by A. Holz,

Giessen

Drop (Dr) eye marker over a

TM3 balancer with Stubble (Sb)

bristle marker and Deformed

(Dfd)-lacZ embryonic marker

Dr / TM3, Sb,

ftz-lacZ

(=”TFLZ”)

Chromosome III Drop (Dr) eye marker over a

TM3 balancer with Stubble (Sb)

bristle marker and fushi tarazu

(ftz)-lacZ embryonic marker

E831 22E1, 36E1–E3,

28B1-B2,

47A1–A7

Gift by C. Klämbt,

Münster; Hummel

et al. 1999a,b

EMS-induced allele with at least

four mutations, one of them

barren

E832 Gift by C. Klämbt,

Münster; Hummel

et al. 1999a,b

Sister line from the same

mutagenesis screen as E831, but

with a different set of mutations

glu k08819

(SMC4)

36A12-A13 BL10831

If / CyO, hg-lacZ Chromosome II Gift by M. Affolter,

Basels

Krüppel Irregular facets-1 (If) eye

marker over Curly of Oster

(CyO) balancer with Doux Curly

wing marker and hindgut

(hg)-lacZ embryonic marker

Kul-dsRNA Chromosome II v28347 RNAi construct
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Name Chromosomal

region

Source Comment

kuz 3 34C4-C6 BL3653

kuz e29-4 34C4-C6 BL5804

Mef2-Gal4 Chromosome III Ranganayakulu

et al. 1998

Mef2 driver, active from early

on in all myoblasts

Neu3 c01955 88C10-D1 BL10769

Neu3 MB01428 88C10-D1 BL23312

rols-Gal4 Gift by C. Stute,

Marburg

rols driver, active in founder

cells and muscles

rP298-Gal4 X Chromosome Menon and Chia

2001

duf driver, active from early on

in founder cells and muscles

rP298-lacZ X Chromosome Nose et al. 1998 duf marker, in founder cell and

muscle nuclei

Rya-R44F 16 44F1-F2 BL6812

SMC1 exc46 95D11 BL25718

SMC2 jsl2 36A12-A13 BL9455

sns pro3-Gal4 Chromosome II Gift by S. Abmayr,

Kansas City;

Kocherlakota

et al. 2008

sns driver, active in FCMs

Sp / CyO,

hg-lacZ; Dr /

TM3, Sb,

Dfd-lacZ

Chromosome II,

III

Double balancer:

wingless Sternopleural-1 (Sp) bristle

and Dr eye marker over CyO,

hg-lacZ and TDLZ

Sp / CyO,

hg-lacZ; Dr /

TM3, Sb,

ftz-lacZ

Chromosome II,

III

Double balancer:

wingless Sternopleural-1 (Sp) bristle

and Dr eye marker over CyO,

hg-lacZ and TFLZ

54



Materials and Methods Molecular and bacterial methods

Name Chromosomal

region

Source Comment

Sp / CyO; TM2,

Ubx / MKRS, Sb

(=”CSTM”)

Chromosome II,

III

Triple balancer:

wingless Sternopleural-1 (Sp) bristle

marker over CyO balancer /

wing marker; TM2 balancer

with Ultrabithorax (Ubx) haltere

marker over MKRS balancer

with Sb bristle marker

TGX X Chromosome Gift by A.

Michelson, Boston

twist driver, active from early on

in the whole mesoderm;

Baylies and Bate 1996

UASP-barr-eGFP

III.1

Chromosome III Gift by S.

Heidmann,

Bayreuth;

Oliveira et al.

2007

barren rescue construct with

GFP marker

UASP-barr-eGFP

III.2

Chromosome III Gift by S.

Heidmann,

Bayreuth;

Oliveira et al.

2007

barren rescue construct with

GFP marker

vtd 80Fh-1 80F BL26164

24B-Gal4

(How-Gal4)

Chromosome III Reim and Frasch

2005

ubiquitous driver

2.3 Molecular and bacterial methods

2.3.1 DNA extraction from adult flies

A number of flies comprising a volume of about 0,5ml are anaesthetized at 4◦C or

killed in ether. The flies are then crushed with a pestle in an 1,5ml microcentrifuge
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cup with 500µl Extraction Buffer for Genomic Fly DNA. The resulting suspension

is incubated at 65◦C for 20min.

70µl 8M potassium acetate are added, and the mixture is placed on ice for

30min.

Then the suspension is centrifuged for 15min at maximum speed at 4◦C.

The pellet is discarded, the clear supernatant is centrifuged again for 15min at

maximum speed at 4◦C. The pellet again is discarded, the supernatant in a new

cup mixed with 0,5 volumes of isopropanol, cooled to -20◦C. This mixture is

centrifuged for 20min at maximum speed at 4◦C.

The supernatant is discarded, the pellet washed twice by centrifugation for

10min each at maximum speed and 4◦C first in 500µl 70% ethanol, then 300µl

70% non-denatured ethanol.

The pellet is dried by placing the open cup in a water bath at 37◦C for 10min.

Then it is solved in 100µl H2O dd.

2.3.2 DNA extraction from Drosophila embryos

Up to ten fresh or recently fixed embryos are mashed in 20µl SquiB. Another 30µl

SquiB and 1µl Proteinase K (20g/µl ) are added; then the mixture is incubated

for 30 min at 37◦C and for 2 min at 82◦C. From the supernatant, the DNA is

precipitated with ethanol in a fresh cup as described below (section 2.3.5, p. 57)

and solved in 5µl H2O dd.

2.3.3 Photometric measurement of DNA concentra-

tion

The concentration of a DNA solution can be measured by its ultraviolet light

absorption at a wavelength of 260nm.

For this, a quartz glass cuvette is filled with H2O dd and placed in a pho-

tometer. The photometer is adjusted to a wavelength of 260nm and calibrated

to a reference optical density (OD) of zero.

Next, the DNA solution is diluted 1:250 in 500µl H2O dd, filled into the

emptied quartz glass cuvette and the OD260 is measured. The DNA concentration
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in µg/µl can be calculated as follows:

Concentration = OD260 ×Dilutionfactor/21

2.3.4 Estimation of DNA concentration after DNA gel

electrophoresis

DNA concentrations can be estimated by comparing the signal of a DNA solution

on an agarose gel with a standard.

The DNA sulution is diluted 1:10, 1:100 and 1:1000, mixed with loading buffer

and loaded onto a DNA electrophoresis gel along with a standard of known DNA

concentration.

Electrophoresis is performed as described below. The gel, stained with ethid-

ium bromide, is analyzed on an UV transilluminator.

2.3.5 DNA precipitation with ethanol

Various alcohols can precipitate DNA from a solution. This allows to remove

impurities and to produce a DNA solution with higher concentration.

To precipitate a DNA solution with ethanol, 0,1 volumes of 3M sodium ac-

etate and 2,5 volumes of 96% non-denatured ethanol, cooled to -20◦C are added.

This mixture is incubated at -20◦C for 15min, then centrifuged at maximum speed

for 30min at 4◦C.

The supernatant is discarded and the pellet washed by centrifugation for

10min at 4◦C in 200µl 70% non-denatured alcohol.

The pellet is dried by placing the open cup in a water bath at 37◦C for 10min.

Then it is dissolved in the desired amount of H2O dd.

2.3.6 Amplification of DNA fragments by polymerase

chain reaction

(Mullis et al. 1986; Saiki et al. 1988)

Polymerase chain reaction (PCR) as used here allows the in vitro amplification

of an arbitrary stretch of DNA of at least 2kbp of length. This target sequence

must be flanked by short known sequences. The technique can also be used to
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attach short sequences to the amplified stretch, namely target sites for restriction

endonucleases.

The DNA molecule that contains the sequence to be amplified is called the

template. Short DNA molecules of 20bp–60bp length, called the primers, are

designed to be complementary to sequences at the ends of the target sequence,

facing inwards with their 3’ end. These two should have a similar melting tem-

perature.

Short sequences that are to be added at the ends of the PCR product can be

inserted at the 5’ ends of the primers. Restriction endonuclease target sequences

that are to be digested while the PCR product is still linear need an overhang of

at least 4bp for the restriction endonucleases to be able to bind.

Besides the template and the primers, a heat resistant DNA polymerase and

the four desoxynucleotide triphosphates (dNTPs) are necessary.

In a volume of about 20µl -50µl , the mixture will contain:

• 10ng–100ng template DNA

• 25pmol of each primer

• 1/10 volume 2mM dNTPs

• 1/10 volume 10x reaction buffer (supplied with the enzyme)

• 1U DNA polymerase

• H2O dd

The amplification happens in three steps:

First, the strands of the DNA are melted, i.e. separated by warming to 95◦C

for between 10s and 1min.

Next, the mixture is cooled down to the annealing temperature of the primers,

usually between 50◦C and 70◦C, for about 30s. The primers can now bind to their

complementary sequences at the ends of the target sequence.

Third, the mixture is heated to the working temperature of the polymerase,

usually 68◦C or 72◦C. The longer the target sequence is, the longer this tem-

perature must be held; the common Taq polymerase (from Thermus aquaticus)

polymerizes about 1000 nucleotides per minute.
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These steps are programmed in a thermocycler and repeated about 30-40

times. They are usually preceded by a prolonged melting step to denature the

template completely, and followed by indefinite cooling to 4◦C until the mixture

is removed from the thermocycler.

The exact thermocycling sequences used in this study, along with various

primer sequences, are given in section B, p. 134.

2.3.7 Topoisomerase mediated ligation

Vaccinia virus topoisomerase I has the ability to bind a certain target sequence

on a DNA molecule, nick one strand, let the DNA unwind and religate the nick.

This is used in TOPO vectors. These are linearized vectors with topoisomerase

molecules bound to their ends. Upon contact with a free linear DNA molecule,

the enzyme ligates it to the DNA molecule it is bound to and dissociates.

In this study, two TOPO vectors are used: pCR II TOPO TA and pCR II

TOPO blunt. The former has a 5’ one nucleotide ”T” overhang to make use

of the fact that Taq polymerase always attaches one non-specific nucleotide to

the 3’ end of the DNA strand it synthesizes, usually an Adenine. The T–A

base pairing enhances the effectivity and specificity of the TOPO ligation. For

polymerase formulations that do not attach the unspecific ”A” overhang to their

product, pCR II TOPO blunt without an overhang is used. The insert will be

ligated with equal likelihood in either orientation.

The reaction is prepared as follows:

• 0,25µl -1µl TOPO vector

• 2µl PCR product

• ad 6µl H2O dd

2.3.8 Sequencing

For sequencing, DNA samples are sent to AGOWA / LGC Genomics, Berlin, in

a volume of 10 µl , diluted in H2O dd. DNA content should be either 100 ng of

plasmid DNA, 100 ng of a PCR fragment shorter than 500 bp, 200 ng of a PCR

fragment between 500 bp and 2 kbp, or 400 ng of Fragments over 2 kbp.
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Standard sequencing primers targeted at widespread plasmid sequences can

be added by the company on request; alternatively, 20 pmol of a sequencing

primer are added.

2.3.9 Restriction endonuclease digest

Restriction endonucleases (often called restriction enzymes) cut DNA strands at

specific palindromic target sequences of 4–8 nucleotides. Often, they leave an

overhang on one of the DNA strands. This overhang can be used as a ”sticky

end” to increase the efficiency of a ligation; the sequence recognition of the

enzymes allows for a quick method to verify the identity of DNA molecules.

An analytical digest is typically composed like this:

• H2O dd ad 10µl

• 1µl 10x reaction buffer (supplied with the enzyme)

• 0,25µl Restriction enzyme

• 0,25µg – 0,5µg DNA

The mixture is incubated for at least 45min at the temperature optimum of

the enzyme, typically 37◦C.

Preparative digests with more DNA are incubated with more enzyme in a

larger volume for a longer duration. If the DNA to be digested is already linear,

the restriction site must be at least four base pairs away from the DNA’s end,

and a tenfold concentration of enzyme must be used.

2.3.10 DNA gel electrophoresis

Because of their phosphate groups, DNA molecules are negatively charged. In

an electric field, they wander towards the positive electrode. By letting them

wander through a gel matrix, they can be separated by size.

Here, mostly 1% (w/v) agarose gels are used. Gels with lower concentrations

of agarose allow for a finer separation of larger DNA molecules; for the separation

of very small DNA, gels of higher concentration can be used.
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Agarose in the necessary concentration is solved by boiling in TBE; after

cooling to about 60◦C, ethidium bromide solution is added to a final concentration

of 0,6 mg/l. A gel is then cast in a frame with a comb placed at one end to

create loading wells for the DNA samples.

Most proteins do not interfere with DNA gel electrophoresis, so the reacted

mixtures of restriction endonuclease digests or PCRs can be used directly as

samples. To let the DNA solutions sink down in the gel’s loading wells, they

must be made more dense by mixing with 20% 10x loading buffer. Besides

glycerine, the loading buffer also contains negatively charged dyes that wander

through the electric field roughly at the speed of 300bp DNA (bromophenol blue)

or 1000bp DNA (xylene cyanol). This is to make the loading of the sample and

the subsequent progress of the electrophoresis visible.

The electrophoresis chamber with the gel is filled with TBE, and the samples

are loaded into the gel wells. In one well, a marker consisting of DNA fragments

of known size and concentration is loaded. A voltage of about 7V/cm distance

between the electrodes is applied for 30min-60min, depending on the running

distance allowed by the size of the gel.

The ethidium bromide from the gel, a red fluorescent substance, intercalates

in the DNA molecules; this way, the DNA bands can be easily observed on an

UV transilluminator.

2.3.11 DNA extraction from an electrophoresis gel

After DNA fragments of different lengths have been separated by agarose gel

electrophoresis, they can be extracted from the gel for further use.

For this, the relevant DNA band is cut out of the gel. To avoid destruction of

the DNA by UV light , the gel is split in parallel to the running direction, cutting

the sample lane into a smaller part that remains attached to the marker lane,

and a bigger part that is used for DNA extraction. On an UV transilluminator,

the part with the marker is notched at the level of the DNA band of interest.

This gel part is then used as a pattern to cut out the relevant slice from the

bigger part of the gel.
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Mechanical elution

DNA can be extracted mechanically from a gel slice with the help of a centrifuge.

For this, glass wool and fine glass beads are soaked in silanizing solution and dried.

A hole is drilled into the bottom of a 0,5ml PCR cup with a heated needle. A

few glass beads are layered over the hole. Over these, a bit of silanized glass

wool is stuffed down in the cup.

The gel slice is placed in the prepared cup, which in turn is placed in a 1,5ml

microcentrifuge cup. This contraption is then centrifuged at top speed for 5min.

The DNA is precipitated from the eluate with ethanol as described above (section

2.3.5, p. 57).

DNA extraction with chaotropic agents and silica

Substances that are able to disorganize the tertiary structure of macromolecules

by blocking and disrupting hydrogen bonds are called chaotropic agents. Many

such chaotropic substances, like NaI or guanidium chloride (C(NH2)3Cl), are able

to dissolve agarose gels.

In the presence of chaotropic agents, DNA binds to silica; so after dissolving

a gel slice in a chaotropic buffer, the DNA can be captured with a silica column

or silica beads.

In this study, two different commercial kits were employed for gel dissolving

DNA extraction from: The JETSorb gel extraction kit (Genomed), which uses a

silica suspension, and the GFX kit, which uses a silica matrix in a spin column.

These kits were used according to their manuals.

2.3.12 Ligation using ligase

To ligate an arbitrary DNA sequence, called the insert, into an arbitrary vector,

both must be linearized with restriction enzymes as described above.

It is preferable to use restriction enzymes that leave overhangs, as these can

associate, enhancing the efficiency of ligation. Religation of the vector with itself

is prevented by using two restriction enzymes that produce different overhangs;

the insert must conversely be prepared with two compatible restriction enzymes.
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This also makes sure that the insert can be ligated into the vector in only one

orientation.

Vector and insert are prepared freshly, as the ligase relies on the DNA strands

having phosphorylated ends, which tend to get dephosphorylated during storage.

The unused fragments and all remaining enzymes and buffers from the digests

are removed by gel electrophoresis and subsequent extraction as described above.

In an end volume of 20µl – 30µl with 10% 10x ligation buffer and option-

ally 5% PEG-4000, 1U T4 ligase is mixed with 50ng-400ng vector and about a

threefold molarity of the insert.

The mixture is incubated over night at 16◦C – 18◦C; the next day, it can be

used for transformation.

2.3.13 Transformation of chemically competent E. coli

cells

A portion of chemically competent E. coli DH5α or TOP10 (Invitrogen) cells is

thawed on ice. 3µg DNA are added (when transforming ligation mixtures, 20µl

are used, as these often suffer from low efficiency) and left on ice for 30min.

Next, the mixture is heat shocked for 30s-90s at 42◦C and then cooled on

ice for 1min. 200µl LB medium, warmed to 37◦C, are added, and the mixture is

incubated shaking at 37◦C for 1h.

The suspension with the bacteria are plated onto an agar plate with the an-

tibiotic that the vector plasmid confers resistance against, to select for successful

transformants. The plate is incubated over night at 37◦C or over the weekend at

room temperature, until bacterial colonies become visible; sometimes, somewhat

longer incubation periods are necessary.

2.3.14 Analytical plasmid preparation by alkalic lysis

(Birnboim and Doly 1979)

Bacterial colonies are picked from an agar plate and inoculated in 3ml LB

medium with 50-100µg/ml of the antibiotic the plasmid conveys resistance against.

These cultures are incubated over night at 37◦C.
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The next day, about 2ml of each culture are filled into a 2ml microcentrifuge

cup and centrifuged for 1min at top speed (13000rpm). The supernatant is

discarded, the pellet is resuspended in 250µl S1 solution. 250µl S2 are added,

and the mixture is incubated at room temperature for 5min.

Next, 250µl S3 are added, and the mixture is centrifuged for 10min at top

speed. The supernatant is transferred into a new 1,5ml microcentrifuge cup,

mixed with 600µl isopropanol and centrifuged at 4◦C for 20min at top speed.

700µl 70% ethanol are added to the drained pellet and centrifuged at top

speed for 10min at 4◦C.

The pellet is again drained, and the open cup is placed in a water bath at

37◦C to let residual ethanol evaporate. 50µl H2O dd are added, and the pellet is

solved by shaking at room temperature for at least 30min.

2.3.15 Large scale high purity plasmid preparation

For long term storage as well as for applications that need larger amounts or

higher purity of DNA than what ”mini” plasmid preparation affords, the JETstar

II kit (Genomed) is used for ”midi” scale plasmid preparation.

A picked bacterial colony or 5µl -20µl of bacterial suspension from a mini

preparation are inoculated into 50ml LB medium with 100µg/µl of the antibiotic

that the plasmid in question confers resistance against. This culture is incubated

at 37◦C over night.

The next day, a JETstar column is flushed with 10ml E4 solution for equili-

bration.

The bacterial suspension is centrifuged in a 50ml centrifuge tube for 10min at

top speed (4500rpm). The drained pellet is resuspended in 4ml E1 solution. 4ml

E2 solution are added and the mixture is incubated for 5min at room temperature.

4ml E3 are added, and the mixture is centrifuged for 10min at top speed.

The supernatant is filled onto the column, without all solid precipitates. After

the supernatant has run through, the column is washed with 20ml E5.

The column is eluted with 5ml E6. The eluate is split into 5 2ml microcen-

trifuge cups. Each portion is mixed with 800µl isopropanol and centrifuged at

top speed for 30min at 4◦C.
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The drained pellets are centrifuged with 1ml non-denatured 70% ethanol at

top speed for 10min at 4◦C.

The supernatant is discarded, and the open cups are placed in a water bath

at 37◦C for 10min to let residual ethanol evaporate. Then, each pellet is solved

in 40µl H2O dd by shaking for 30min.

Typically, this protocol yields DNA concentrations from 0,5µg/µl to 2µg/µl.

2.4 Drosophila methods

2.4.1 Drosophila stock keeping and crossing

Drosophila stocks and crossings are kept in transparent plastic tubes, typically

7cm high and 2cm wide, filled 2cm high with Drosophila culture medium. A

little bit of dry yeast is added on top of the medium immediately before use.

The tubes are closed with a plug of polymeric foam; fine pored foam has the

advantage of not letting mites pass.

For stock keeping, ideally about 20 adult flies are placed in a fly tube. After

four to six weeks at 18◦C, the medium is used up and the adult flies are knocked

into a fresh tube.

For crossing, Drosophila culture medium must be as fresh as possible. Virgin

females must be used, as Drosophila females store sperm and are capable of

laying fertile eggs for several days after just one mating; they are also reluctant

to mate again during this time (Feng et al. 2014). Ideally, three or more females

and more males than females should be placed in a fly tube. Offspring start to

hatch after about 10 days at 25◦C and after about 20 days at 18◦C.

For easier handling and examination, flies can be anaesthesised with CO2 or

Ether.

2.4.2 Balancer chromosomes

(reviewed in Lindsley and Zimm 1992)

Balancer chromosomes contain large inversions that prevent crossing over

with their non-balancer sister chromosomes, one or more dominant visible markers
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that allow for easy detection of the balancer chromosome in the adult fly, and

one or more recessive lethal alleles that kill flies in a homozygous setting with

two copies of the balancer chromosome.

A recessive lethal allele that would normally slowly disappear from a popula-

tion can be kept over a balancer chromosome as a stable stock. However, if the

sister chromosome to the balancer chromosome does not carry a lethal mutation,

the balancer chromosome itself will be selected out of the stock.

To tell homozygous and heterozygous embryos apart, so called ”blue bal-

ancers” are used. These chromosomes carry a lacZ transgene, fused to a pro-

moter that gives a characteristic expression pattern during embryonic develop-

ment, like for example hindgut-lacZ (hg-lacZ) or fushi tarazu-lacZ (ftz-lacZ). An

α-β Gal antibody stain on a number of embryos will reveal all those that carry

the balancer chromosome.

Instead of lacZ, GFP can be used as a reporter gene; such balancer chromo-

somes are sometimes called ”green balancers”.

In this study, the CyO, hg-lacZ blue balancer ist used for the second chro-

mosome. It expresses βGal in the hindgut, starting at stage 9,accumulating its

signal throughout the whole embryonic development.

As blue balancers for the third chromosome, TM3, Sb, Dfd-lacZ (=”TDLZ”)

is used when later stages of embryonic development are analyzed; it expresses

βGal in parts of the head. For earlier embryos, TM3, Sb, ftz-lacZ (=”TFLZ”)

is used. It gives βGal expression in a striped, segmental pattern that gets very

weak towards the end of embryonic development.

To keep a balancer chromosome as a stock, it is combined with a sister chro-

mosome that carries a recessive lethal allele and a dominant visible marker, like

Krüppel Irregular facets-1 (If) or wingless Sternopleural-1 (Sp) for the second chromo-

some or Drop (Dr) for the third.

To create a stock that holds a certain mutation over a certain balancer, the

mutant flies are crossed against flies from the balancer stock. All offsprings

that show the balancer’s dominant marker but not the marker from the balancer

stock’s sister chromosome are collected for the new stock.
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To introduce a homozygous viable mutation or transgene on the X chromo-

some into a stock with a balancer for the second or third chromosome, males

from the stock are crossed against females from a balancer stock that carries

the desired X-chromosomal gene. This step is repeated with F1 males. The new

stock is then established from the progeny.

2.4.3 Generation of transgenic flies with P-element vec-

tors

(Rubin and Spradling 1982; Spradling and Rubin 1982)

The P element is a DNA transposon that is ubiquitous in modern wild

Drosophila but is absent in lab strains that were sampled from the wild before

about 1920. It consists of a transposase gene flanked by two inverted 31bp re-

peats, the Transposase’s target sequences. Only in germ line cells the transposase

mRNA is spliced correctly to produce active Transposase protein; in somatic cells,

an inactive Transposase working as a competetive inhibitor is produced instead.

To use the P element as a vector for the transformation of flies, the trans-

posase gene is replaced with whatever sequence is to be inserted into the fly

genome, and one or more marker genes for a dominant visible phenotype (usu-

ally a mini-white gene). This construct is assembled in a bacterial plasmid vector

for easy amplification in Escherichia coli.

The P element vector is then injected into the posterior area of blastoderm

stage Drosophila embryos together with a helper plasmid that contains a complete

transposase gene, but not the flanking inverted repeats. When the pole cells

(the germ line cells) separate from the soma, the Transposase translated from

the helper plasmid pastes the area between the inverted repeats into the germ

line cell’s genome in a more or less random location.

Microinjection

Before use, the vector solution is centrifuged at maximum speed at 4◦C to remove

all traces of solids, as they would clog the needle.

Embryos are collected hourly from white− (w−) egglays, dechorionated and

rinsed as described above. They are glued to a cover slip with heptane glue and
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overlayered with Voltalef oil (low molecular weight poly-chlorotrifluoroethylene,

PCTFE) to prevent dehydration. Each embryo is injected in its posterior end

with a needle drawn from a glass micropipette. The coverslip with the embryos

is then transferred to an apple juice agar plate, again overlayered with Voltalef

oil and incubated at 25◦C.

Collecting the transgenic flies

After about 24h, larvae will hatch; these are collected into a fly tube with

Drosophila culture medium.

After eclosion, the adult flies, which partly have transformed germ line cells,

are crossed against w− flies; in the next generation, transformed flies can be

recognized by their pale orange to yellow eye color, which is caused by the white+

marker transgene.

Separating multiple insertions by meiotic recombination

In D. melanogaster, only the germ line cells of female flies go through crossing

over at meiosis; so to separate two insertions on the same chromosome into dif-

ferent offsprings, the chromosome must be kept over a non-balancer chromosome

in a female fly. To isolate multiple insertions of the transgene, the transgenic flies

are crossed against w− flies for several generations, using always female offspring.

Identification of the chromosome carrying the P-element and es-

tablishment of stocks

These flies are then crossed against a double balancer like CSTM or Sp/CyO,hg-

lacZ; Dr/TM3,ftz-lacZ ; this crossing is repeated with the male w+ offspring.

Some second generation offspring will now have a dominant marker over a bal-

ancer for one chromosome and the w+-marked transgene of interest over a bal-

ancer on the other chromosome. Both these flies and their siblings with a wild

type situation on the non-transgenic chromosome pair can be collected to estab-

lish stocks; if the P-element insertion does not create a lethal allele, homozygous

transgenic flies will appear in the next generation.
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2.4.4 Ectopic expression with the Gal4–UAS system

(Brand and Perrimon 1993)

Gal4 is a transcriptional activator protein from Saccharomyces cerevisiae that

binds to the Upstream Activating Sequence (UAS) and activates the expression of

a downstream gene. This is a mechanism that remains functional when expressed

transgenically in Drosophila.

Typically, the Gal4 and UAS components will come from two different fly

strains crossed together.

The Gal4 strain or ”driver” is often created by enhancer trap mutagenesis:

An insertional vector carrying the Gal4 ORF with a core promoter, but without

enhancer is inserted randomly into the genome. This way, it sometimes will be

expressed under the control of an enhancer in the vicinity of its site of insertion.

It is also possible to create a driver by inserting a preassembled construct

consisting of a known, specific enhancer sequence and the Gal4 gene into the fly

genome.

Many well characterized driver strains can be ordered from Drosophila stock

centers.

The UAS sequence can be included in constructs together with a core pro-

moter sequence, often in multiple repeats. This can be used to express a tagged

version of a protein of interest, perhaps as a rescue construct in a mutant; to

ectopically misexpress a gene or simply to have a reporter gene like lacZ or eGFP

expressed in the pattern of Gal4 driver activity.

2.4.5 Egglays

To receive Drosophila eggs, stock flies or a crossing are kept on grape or apple

juice agar.

For smaller numbers of flies, small fly tubes filled about 1cm high with grape

juice agar are used; a little bit of dry yeast is added on top of the medium, and

the tube is closed with a polymeric foam plug.

For larger numbers of flies, a tube of about 5cm diameter is set on an apple

juice agar plate; the other end of the tube is closed with wire mesh or gauze. On

the apple juice agar, a little bit of rehydrated, creamed dry yeast is added.
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The flies start to lay eggs quite instantly; if they are left on the egglay medium

for example for 12h, the eggs harvested will be mostly 12h old.

2.4.6 Formaldehyde fixation of Drosophila embryos

(Frasch et al. 1987; Dequin et al. 1984)

Embryos are collected by wiping them off the egglay agar medium with a brush

and TNX/Tween. They are dechorionated with TNX/Klorix under microscopic

control until the chorion is dissolved (typically a few minutes). The TNX/Klorix

solution is then drained completely, and the embryos rinsed once in PBT. Then

they are overlayered with heptane and transferred into microfuge cups with equal

amounts of heptane and FPBS, typically 300µl – 500µl each, depending on the

amount of embryos. The cups are then vigorously shaken on a Vibrax shaker for

15min; embryos for use in in situ hybridizations are shaken for 20min. Heptane

and FPBS are then drained and the embryos rinsed once in fresh heptane. Then

300µl – 500µl each of methanol and heptane are added to the embryos and

vigorously shaken on a Vortex shaker. The liquid is removed together with all

embryos that have not sunken to the bottom. The embryos are rinsed twice in

methanol and then left in another 500µl of methanol. Before further use, the

embryos should be incubated in methanol over night; they can be stored in the

methanol for years.

2.4.7 Antibody stains

Antibodies against a specific protein can be generated by immunizing an animal

against it. With some luck, the antibody will bind to its antigen even when it is

in a fixed whole-mount Drosophila embryo.

In this context, all antisera, purified antibody solutions and all partly purified

products in between, monoclonal or polyclonal, are here referred to (somewhat

imprecisely) as ”antibodies”.

Detecting the bound antibody usually involves having a ”secondary antibody”

bind to it; this is an antiserum from an animal immunized against antibodies from

the species the primary antibody was raised in. It contains polyclonal antibodies
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targeting several epitopes on the surface of the primary antibody, thus amplifying

the potential signal.

It is possible to perform a double stain with two different primary antibodies

on the same embryo. If the antibodies have been generated in different species,

they can be labeled differentially with two different secondary antibodies.

Primary antibody solutions can typically be used two or three times before

the antibody is used up; some can be used more often, increasing in signal clarity

as unspecifically binding components get absorbed by the embryos.

Primary antibody incubation

A number of embryos that makes a volume of roughly 20µl are transferred into

an 1,5ml microcentrifuge cup with a cut up 1ml pipette tip. They are rehydrated

by washing 3x 10min in PBT.

The primary antibody is diluted in PBT as listed (2.1.2) to a volume of 250µl

–500µl and incubated on the embryos either for 45min – 2h at room temperature

under gentle shaking or overnight at 4◦C.

In a double stain, the two antibodies can be applied in parallel as one solution,

or sequentially one by one.

Blocking

After incubation with the primary antibody, the embryos are washed 3x for 10min

in PBT.

To saturate unspecific binding potential, the embryos are incubated for 20min

– 30min in PBT with 2% non-immune (”normal”) serum, preferentially from the

species the secondary antibody was generated in. This step is called ”blocking”.

2.4.8 Immunofluorescent stain

Secondary antibodies that are coupled to fluorophores are a quick method of

detection that also allows for advanced microscopic techniques like computed

image deconvolution (CID).
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Incubation

The secondary antibodies are diluted as listed (2.1.2) in PBT with 2% non-

immune goat serum. In a double (or multiple) stain, the detection of the different

primary antibodies can happen in parallel in the same solution.

Incubation is for 1h – 2h gently rocking at room temperature. The embryos

are then washed 3x 10min in PBT.

Mounting

The embryos are drained and mixed with 40µl Fluoromount. They are transferred

to a microscopic slide and spread around with a needle tip. A coverslip is put

on carefully, so as not to entrap any air bubbles. Residual air is pushed out by

gently pressing the coverslip down.

2.4.9 Immunohistochemical stain

A very sensitive way to detect the primary antibody is immunohistochemical

staining with a biotinylated secondary antibody and peroxidase in an Avidin-

Biotin complex (ABC).

Avidin binds Biotin with high affinity in four independent binding sites. When

Avidin is incubated with polybiotinylated horseradish peroxidase, complexes with

several molecules of peroxidase and Avidin are formed. These complexes can

permeate into the fixed embryo, where the Avidin binds to the Biotin groups on

the secondary antibody, which in turn is still bound to the primary antibody.

The peroxidase can then be detected by its ability to oxidate a soluble chro-

mogen into an insoluble pigment.

Preincubation of secondary antibody

To remove components with unspecific binding activity, the secondary antibody

is incubated at room temperature for at least 30min on a fresh batch of fixed

embryos (wild type or any other) that have been rehydrated as described above.

For this, the secondary antibody is diluted 1:200 in PBT with 2% serum of the

species in which the secondary antibody has been generated (typically goat or

horse).
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This preincubated antibody can be stored or used instantly.

Secondary antibody incubation

The preincubated antibody solution is diluted 1:5 in PBT with 2% serum, yielding

a final antibody dilution of 1:1000. 500µl of this solution are added to the drained

embryos and incubated gently shaking at room temperature for 45min – 2h.

After this, the embryos are washed 3x for 10min in PBT.

Detection

While the embryos wash, for every batch of embryos 4µl Vectastain ABC Solution

A and 4µl solution B are added to 500µl PBT and incubated gently shaking at

room temperature for 30min.

The solution is then added to the drained embryos and incubated gently

shaking at room temperature for another 30min.

The embryos are washed 3x for 10min in PBT and transferred with 500µl

PBT into small glass dishes. 10µl -20µl DAB (10mg/ml), 5µl H2O2 (1%) and

10µl NiCl (1% w/v) are added; if this is the second round of a double stain, the

NiCl is left out.

The staining process is observed under a stereo microscope. When the stain

is strong enough, the staining solution is drained and replaced with PBT. The

embryos are transferred back into microcentrifuge cups and washed 3x for 10min

in PBT.

The used staining solution and anything that has come into contact with it

is decontaminated with Klorix to destroy the mutagenic DAB.

Mounting in EPON

The embryos are washed in 96% ethanol once briefly, then another time for 10min

under gentle shaking, then over night at 4◦C.

For mounting, they are transferred onto a microscopic slide together with as

little ethanol as possible. Excess ethanol is allowed to evaporate, but the embryos

must not dry out completely.

A drop of EPON is dripped on and the embryos are spread around with a

needle tip. A coverslip is laid on them carefully to avoid air bubbles to be trapped.
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If the space under the coverslip is not filled completely with EPON, little drops

are added at the edges so they can be sucked under by capillary forces.

The slide is then baked overnight at 70◦C to harden the EPON.

2.4.10 Fluorescent in situ hybridisation (FISH)

(Lécuyer et al. 2008, simplified)

RNA probe synthesis by in vitro transcription

RNA in situ hybridization allows to visualize the distribution of mRNAs in a

formaldehyde-fixed embryo. The technique is based on the formation of nucleic

acid double strands from an RNA that occurs in the embryo and a labeled probe

RNA or DNA.

Here, RNA probes labeled with the digoxigenin (DIG) hapten are used. These

probes are produced by in vitro transcription from a DNA template using a

bacteriophage T3, T7 or SP6 RNA polymerase. The template DNA is kept in

a vector that can be amplified in bacteria and has promoter sites for the phage

RNA polymerases, facing into the insert from both sides.

The sequence of the probe must be in the ”antisense” direction, so the probe

can form a duplex with the target RNA. As a negative control, a probe in ”sense”

direction is often also synthesized.

With a short probe sequence, in vitro transcription is likely to run into the

vector sequence. To prevent this, the vector is linearized by digestion with a

restriction enzyme cutting downstream of the desired sequence. When using

a long insert for probe generation (>1kbp), this step is not necessary, as the

processivity of the phage RNA polymerases is rather limited.

The RNA probe is sythesized using the DIG RNA Labeling and Detection Kit

(Roche Diagnostics, Mannheim). The reaction is mixed as follows:

• H2Odd ad 20µl

• 2µl 10x Transcription buffer

• 2µl DIG RNA labeling mix

• 1µl RNA polymerase
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• 1µg template DNA

The reaction is incubated for 2h at 37◦C. After that, the DNA is precipitated

with ethanol and solved in 50µl H2Odd.

Testing the probes

The efficiency of the probe synthesis is variable. To assay the signal strength a

probe yields and to gain a clue on the concentration it must be applied in for in

situ hybridization, it is diluted 1:10, 1:100 and 1:1000 and spotted on a Hybond

N membrane in spots of 1µl .

After drying, the membrane is fixed with ultraviolet light using the au-

tocrosslink setting of the UV Stratalinker. The membrane is rinsed shortly with

DIG1, then blocked in DIG2 for 10min.

Then, the membrane is incubated gently rocking for 15min in 5ml DIG1 with

1µl phosphatase-coupled anti-DIG antibody. The membrane is then washed twice

for 5min in DIG1.

For detection of the signal, the membrane is equilibrated in DIG3, then de-

veloped for 10min in 2ml DIG3 with 10µl NBT and 10µl X-phosphate. Then,

the membrane is washed thoroughly in tap water and dried.

Hybridization

A volume of up to 50µl of formaldehyde-fixed embryos (preferentially fixed for

20min to reduce bloating during hybridization) is washed 3x for 10min in 500µl

PBT, then equilibrated in 500µl PBT/50% HS and 100% HS for 10min each.

Then the embryos are prehybridized in 200µl HS at 56◦C for at least 2h. The

hybridization probe is meanwhile diluted in 50µl –100µl HS in a concentration

depending on the signal strength of the probe (typically around 1:50). This probe

solution is boiled at 98◦C for 15min and then pipetted on the drained embryos

while keeping them at 56◦C. The embryos are incubated with the probe solution

over night at this temperature.

The next day, the embryos are drained and washed 3x 10min in HS, preheated

to 56◦C. Then they are equilibrated with HS/25% PBT, HS/50% PBT and

PBT/25% HS for 10min each at 56◦C. After that, they are washed 3x 5min in

PBT at 56◦C.
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The embryos are cooled to room temperature and washed for another 5min

in PBT,then blocked for 10min in PBTB.

Detection

1µl biotinylated anti-DIG-antibody (0,5µg/µl ) is diluted in 200µl PBTB. The

embryos are incubated in this antibody solution for 2h at room temperature, or,

preferentially, at 4◦C over night.

After incubation, the embryos are washed 6x 10min in PBTB, then once with

PBT and twice with PBS for 5min each.

1µl tyramide conjugate is diluted 1:100 in tyramide reaction buffer, added to

the rinsed embryos and incubated for 2h. For this step and all the following, the

embryos should be protected from light, to prevent fluorophore bleaching.

The embryos are washed 6x 10min at room temperature or over night in PBS.

Then they are mounted in Fluoromount as described under ”Immunofluorescent

stain” (section 2.4.8, p. 71).

Double labeling with anti–βGal antibody

Most Antibodies do not seem to work on embryos on which an in situ hy-

bridization has worked; the only known exception is polyclonal rabbit anti–

βGalactosidase (Cappel, Hamburg).

This primary antibody can be applied together with anti-DIG or right af-

terwards with a short wash in between. The fluorophore-conjugated anti-rabbit

secondary antibody can be applied before the tyramide reaction or afterwards.

Alternatively, the whole anti–βGalactosidase stain can be executed after the

tyramide reaction.
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Chapter 3

Results

3.1 The rols7 mRNA requires its 3’-trailer

for localization in somatic founder cells,

and is also localized in visceral founder

cells

3.1.1 In visceral founder cells, the rols7 mRNA is in-

tracellularly localized

In Kesper 2005, it was shown that the rols7 transcript in the somatic founder cells

is localized in spots close to the cell membrane. In this study, an improved fluo-

rescent in situ hybridization (FISH) protocol (Lécuyer et al. 2008) is used with

an antisense RNA probe generated from rols LD1 cDNA, on embryos carrying

the rP298-lacZ marker (Nose et al. 1998). The embryos are stained with poly-

clonal rabbit anti-βGalactosidase antibody (Cappel, Hamburg) to visualize the

lacZ-expressing founder cell nuclei (other anti-βGalactosidase and anti-β3Tubulin

antibodies do not work effectively on in situ hybridized embryos).

These experiments show that the founder cells of the circular visceral muscles

also have rols7 transcript localization; the localization towards the inner side of

the band of founder cells can give the impression of a narrow stripe of rols

transcript running along each side of the forming gut (Fig. 3.1 E, F).
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The same in situ hybridization technique and immunofluorescent anti-βGal

stain applied on embryos carrying bHLH54F-lacZ, which marks longitudinal vis-

ceral founder cells (Georgias et al. 1997; Kusch and Reuter 1999; Ismat et al.

2010), shows the rols transcript localized in spots close to the tips of these

spindle-shaped cells (Fig. 3.2 C, D).

3.1.2 The 3’-trailer of the rols mRNA is necessary for

transcript localization in somatic founder cells

While a 2 kbp region upstream of the rols7 transcription start is a sufficient

promoter to drive a reporter gene strongly in all somatic founder cells (Kesper

2005), such a reporter construct does not reproduce the intracellular localization

of the rols7 transcript (Kesper, personal communication).

As mRNA localization is often achieved by the transcript’s 3’-trailer, a re-

porter construct named pRODO was created, featuring the 2 kbp rols7 regulatory

region, a complete eGFP reading frame, and 1.8 kbp of the rols downstream se-

quence. This was achieved by excision of the lacZ reporter gene and SV40

trailer from the ROPOZ construct (Kesper 2005) and subsequent insertion of an

eGFP and rols genomic downstream sequence, preassembled in another plasmid

(Jacobs 2006).

The long rols genomic downstream region was included to isolate the reporter

gene from the rest of the P-element vector and the genomic surrounding; also,

the seven polyadenylation signals in this sequence, roughly the 5-fold of what is

to be statistically expected (Jacobs 2006), might have a biological significance.

In the fly, pRODO is supposed to be transcribed in the somatic founder cells

into an mRNA coding for eGFP, with the 300 bp rols mRNA trailer. Antibody

staining against GFP shows that the reporter gene is expressed as expected

(Fig. 3.3).

Fluorescent in situ hybridization (FISH) with an RNA probe against eGFP

on pRODO embryos with an rP298-lacZ founder cell nuclear marker shows that

the reporter mRNA gets intracellularly localized, much like wild type rols mRNA

(Fig. 3.4).
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A B

C D

E F

Figure 3.1. In the circular visceral muscle

founder cells, the rols mRNA is intracellu-

larly localized. Fluorescent in situ hybridiza-

tion with a rols antisense RNA probe in green.

rP298-lacZ (stained red with anti-βGal antibody)

marks the founder cells of all embryonic muscles.

A , B Overview: Stage 12 embryo, ventral view.

Area in dashed frame is shown enlarged in figures C

and D, area in thick frame in E and F. C , D Image

composed from three consecutive CID sections, fo-

cussing on the somatic founder cells. The rols tran-

script is localized to patches in the periphery of the

cells (arrowheads), as shown in Kesper 2005. E ,

F CID image, focussed on the circular visceral my-

oblasts. The rols transcript appears localized to the

periphery of the founder cells (arrowheads), forming

a band of transcript along one side of the founder

cell band.
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A B

C D

Figure 3.2. In the longitudinal visceral

muscle founder cells, the rols mRNA is in-

tracellularly localized. Fluorescent in

situ hybridizations with a rols antisense RNA

probe on a bHLH54F-lacZ embryo that expresses

β-Galactosidase in its longitudinal visceral founder

cells. FISH in green, anti-βGal stain in red. A ,

B Overview: Stage 13 embryo. Scale bar: 100µm.

Framed area enlarged in the following images. C ,

D Images composed from several consecutive CID

sections. The rols mRNA is localized at the poles

of the spindle-shaped founder cells (arrowheads).

Scale bar: 20µm
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A α-GFP B α-GFP

Figure 3.3. An immunohistochemical anti-

GFP stain on pRODO6.1 embryos shows the

expression of pRODO in the somatic expres-

sion domain of rols. A Stage 10. The eGFP

reporter protein is detected in the earliest groups

of founder cells. B Stage 12. eGFP protein is

detected in the forming musculature.

A B

Figure 3.4. The pRODO reporter

mRNA is intracellularly localized like rols

mRNA. Fluorescent in situ hybridization with

an eGFP antisense RNA probe (green) on an em-

bryo from a crossing of rP298-lacZ with pRODO6.1

flies; image composed from a CID stack. The eGFP

reporter mRNA is localized into spots (arrowheads)

outside of the nuclei. A shows the rP298-positive

founder cell nuclei in red.
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A B

Figure 3.5. Even in the absence of any

native rols mRNA, pRODO mRNA is intra-

cellularly localized. Early stage 12 embryo

with pRODO reporter in a rols deficient Df(3L)BK9

background. In situ hybridization with an antisense

RNA probe against eGFP in green. A α-βGal an-

tibody stain in red. No balancer stain is visible, so

the embryo is homozygous rols−. Scale bar 50µm

B Enlargement of framed region in A. Image com-

posed from a CID stack. The reporter transcript is

localized in patches (arrowheads). Scale bar 10µm.

Often, mRNA localization involves di- or multimerization of transcripts fa-

cilitated by special RNA:RNA interaction domains, which are distinct from the

sequence domains recognized by the localization machinery (Ferrandon et al.

1997; Hachet and Ephrussi 2004; Bullock et al. 2003; Jambor et al. 2011;

Hartswood et al. 2012). This allows transcripts to be localized by ”piggy back-

ing” based on mere partial homology, even when they do not contain the local-

ization signal itself.

To exclude this possibility, the FISH experiment is repeated on embryos carry-

ing pRODO and rP298 in a rols− background, showing that the pRODO reporter

transcript gets localized independently from wild type rols mRNA (Fig. 3.5).
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3.2 For normal myogenesis, Barren is required

before the progenitor division

3.2.1 The E831 myogenic mutation in 38A7-B2 is not

complemented by barren mutants

E831 is an EMS-induced lethal mutant of the second chromosome (Hummel

et al. 1999a,b). It was found to show a muscle phenotype by Anne Holz, in her

screen that led to the identification of wasp and Arp3 as relevant for myogenesis

(Schäfer et al. 2007; Berger et al. 2008). An initial complementation analysis

identified three lethal mutations on the chromosome (Reichert 2004). In Jacobs

2006, a refined complementation analysis brought the number of lethal mutations

up to four, narrowing down the site causing the E831 muscle phenotype to

chromosomal region 38A7-B2. For this study, several known lethal mutations

from that region were tested for lethality in a transheterozygous situation with

the E831 chromosome; thus, barren was identified as allelic to the E831 38A7-B2

mutation.

Both transheterozygous barr L305 /E831 (Fig. 3.6 C) and homozygous barr L305

embryos (Fig. 3.6 D) show a muscle phenotype much like that of a homozygous

E831 embryo (Fig. 3.6 B). The same goes for the P-element insertion barrk14014,

both in homozygous embryos and in all transheterozygous permutations (not

shown).

If E831 contains a barren mutation, you would expect E831 embryos to also

show the aberrant phenotype of the central nervous system (cns) that is typical

for barren mutants (Bhat et al. 1996). A stain with the BP102 antibody, which

decorates the cns, shows that this is the case (Fig. 3.7).

3.2.2 The E831 chromosome contains a nonsense mu-

tation of barren

For molecular identification of the barr mutation in E831, the mutant barren

gene from that line needed to be amplified and sequenced.
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A B

C D

Figure 3.6. The mutation causing the mus-

cle phenotype in the mutant line E831 is al-

lelic to barren. Embryos are histochemi-

cally stained with antibodies against β3Tubulin to

show the musculature. A Wildtype embryo, stage

17. B E831 embryo, stage 16-17. Note the dis-

oriented muscles and the large dorsal gaps in the

muscle pattern. C Transheterozygous rP298;

barr L305 /E831 embryo, stage 16. An additional

antibody stain against βGal on this rP298-lacZ em-

bryo shows the nuclei of Duf/Kirre positive cells,

demonstrating that at least some of the muscle fi-

bres are multinucleated (arrowheads). D barr L305

embryo, stage 16. The muscle phenotype resembles

that of E831.
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A B

C D

Figure 3.7. As can be expected from a

barren allel, E831 shows a disturbed central

nervous system. The cns is visualized with an

α-BP102 antibody stain. A , B Wild type embryo,

stage 16 C , D E831 embryo, stage 15. The gan-

glia appear malformed (arrowheads). Scale bars

100µm.
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For this, embryos from the fly lines rP298-lacZ; E831/ CyO, hg-lacZ and

E832/ CyO, hg-lacZ were immunohistochemically stained with an anti-βGal an-

tibody, which stains the LacZ gene product. From each fly line, a few embryos

that do not show the hg-lacZ marker stain were selected; these are homozygous

mutant embryos that do not carry a balancer chromosome. The rP298-lacZ

marker serves as an internal control to assure the effectivity of the immunohis-

tochemical stain.

From these homozygous mutant embryos, genomic DNA was extracted. The

DNA from E832 serves as a wild type control; this mutant line was created

in the same mutagenesis screen as E831, using the same progenitor line, and

complements all mutations in its sister.

The amplification of the gene was done in two segments of roughly 2 kbp

each (for details, see Appendix B, p. 134) The PCR products were ligated into

the pCRII vector. After further propagation in E. coli cells, the resulting plasmids

were sequenced.

As expected, the sequences derived from E832 translate into a wild type

Barr protein; however, the sequences from E831 indicated a two base deletion

in the upstream segment (Fig. 3.8). To corroburate this finding, two additional

sequencing primers, AAA TGC GCA TGG CGT CCA AG and CTG GTT

CCT CTT TAG AAG CC, were used to get bidirectional sequence readout of

the mutated region.

This way, the E831 barr mutation could be identified as a deletion of base

pairs 145 and 146 of the first coding exon, with the frame shift resulting in a

stop signal twelve codons downstream. The resulting mutant protein is 59 amino

acids long, in comparison to the wild type 735.

3.2.3 Cap-G also shows a muscle phenotype

As Barren is a Condensin subunit, we tested mutants of other components of

Condensin and the related Cohesin complex for their embryonic musculature

phenotype. We found that Cap-G6 , a nonsense mutation and probably null allele

of the non-SMC Condensin component gene Cap-G, has a phenotype similar to

but less variable than that of barren: Randomly disturbed somatic muscle pattern,

malformed pharynx musculature, missing or duplicated heart cells, incomplete
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Figure 3.8. The mutant line E831 contains

a two bp deletion in the first coding exon of

barren. E831’s sister line E832 gives a wild type

sequence for the barr gene. In the E831 mutant

chromosome, basepairs 145 and 146 of the first cod-

ing exon are deleted (black arrowhead). The result-

ing frame shift causes a stop codon (red octagon)

twelve codons downstream of the deletion. The full

gene span of barren is shown above in blue. The

longest transcript variant, barr-RC, is shown in or-

ange (coding region) and dark grey (non-coding re-

gion). The sequence shown in detail is indicated in

the gene span in light grey. The cyan arrowhead on

the small black arrow marks the P element insertion

generating the allele barrk14014 .
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dorsal closure. Unlike most barren embryos, Cap-G6 mutant embryos often show

an altered overall shape. (Fig. 3.9C).

Cap-G64 , a D254Y missense mutation (Philp 1998; Cobbe et al. 2006), shows

a severe but very variable phenotype, ranging from embryos with reduced, misar-

ranged musculature and missing or duplicated heart cells (Fig. 3.9 A) to embryos

of aberrant shape without recognizable musculature (Fig. 3.9 B). Transheterozy-

gous Cap-G6 / Cap-G64 embryos show the variable yet often strong phenotype

of Cap-G64 (Fig. 3.9 D).

The Cap-D2f03381 mutant does not show any obvious muscle phenotype (Fig.

3.10 A). Transheterozygous crossings of deletions that cover Cap-D2 show no

muscle phenotype either (Fig. A.16, p. 130).

Where the Condensin complex has a SMC2-SMC4 dimer at its core, Cohesin is

based upon a SMC1-SMC3 dimer. It plays a somewhat different cytophysiological

role than Condensin. Defects in the Cohesin complex lead to premature sister

chromatid separation during mitosis (Lee and Orr-Weaver 2001), as well as gene

regulation defects during interphase (Pauli et al. 2008, 2010; Schaaf et al. 2009,

reviewed in Dorsett 2009).

The SMC1exc46 deletion eliminates most of the SMC1 gene; SMC1exc46 is

lethal in a heterozygous situation with the larger covering deletion Df(3R)Exel6197

(95D8–95E1). However, SMC1exc46 embryos show no muscle phenotype

(Fig. 3.10 B).

vtd80Fh-1 is an EMS-induced point mutation in the first protein-coding exon

of the Kleisin gene vtd that turns the 18th residue into a stop codon (Hallson

et al. 2008). It shows no embryonic muscle phenotype (Fig. 3.10 C).

3.2.4 The expression patterns of some muscle identity

genes are irregular in barr mutants

Two subunits of Condensin, Cap-G and Barren/Cap-H, cause severe muscle phe-

notypes when lacking or dysfunctional. As Condensin plays roles both in cell

division and in gene regulation, it is however unclear what exactly causes the
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A B

C D

Figure 3.9. Mutants of Condensin compo-

nent Cap-G show a muscle phenotype. Im-

munofluorescent stain against β3Tubulin on em-

bryos mutant for the non-SMC Condensin compo-

nent Cap-G. A Cap-G64 embryo, stage 16, light

phenotype. Some heart cells are missing (arrow);

the somatic muscle pattern is disturbed. The phar-

ynx musculature is barely recognizable (white box,

enlarged in inset). The circular visceral musculature

is present (arrowhead). B Cap-G64 embryo, severe

phenotype. No muscles are recognizable. C Cap-

G6 embryo. The whole embryo appears twisted;

dorsal closure is incomplete. The somatic muscle

pattern is disturbed; the pharynx musculature is

present, but appears reduced and distorted (white

box, enlarged in inset). D Transheterozygous Cap-

G6 / Cap-G64 embryo. β3Tubulin-positive cells are

present, but no recognizable muscles are formed.

All scalebars: 100µm.

89



Results For normal myogenesis, Barren is required before the progenitor division

A B

C

Figure 3.10. Mutants of Cap-D2 and the

Cohesin subunits SMC1 and vtd do not show

an embryonic muscle phenotype β3Tubulin

stain showing the somatic muscle phenotype of a

mutant of the Condensin non-SMC subunit Cap-D2

and of Cohesin components. A Cap-D2f03381 em-

bryo, stage 16. The muscle pattern looks normal.

B SMC1exc46 embryo, stage 17, ventrolateral view.

The somatic musculature seems normally developed.

C vtdFh80-1 mutant embryo, late stage 16, dorsolat-

eral view. The somatic musculature seems normally

developed. Scale bars: 100µm
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phenotype. To analyze the role that Condensin plays in myogenesis, we try to

characterize the barren phenotype in greater detail.

ladybird (lb) as a muscle identity gene is expressed in the Segmental Bor-

der Muscle (SBM) (Jagla et al. 1998). The lb-PS-lacZ fly line expresses

βGalactosidase in the SBM, and particularly in the nucleus of its founder cell. An

anti-βGal stain on lb-PS-lacZ; barr L305 embryos shows that most SBMs express

βGal and are comparatively intact in a barren mutant embryo (Fig. 3.11).

Krüppel is expressed as a muscle identity gene in the dorsal acute muscle 1

(DA1), the dorsal oblique muscle 1 (DO1), the lateral longitudinal muscle 1

(LL1), the lateral transverse muscles 2 and 4 (LT2 and LT4), the ventral longitu-

dinal muscle 3 (VL3), the ventral acute muscle 2 (VA2) and the ventral oblique

muscles 2 and 5 (VO2 and VO5) (Ruiz-Gómez et al. 1997). In an anti-Krüppel

stain on a wild type embryo, not every nucleus that should express Krüppel is

equally well visible, but the pattern looks regular (Fig. 3.12 A). In a barren

mutant, this regular pattern is disturbed (Fig. 3.12 B).

3.2.5 Both founder cells and FCMs seem to get speci-

fied in barr mutants

All myoblasts and muscle cells express the transcription factor Mef2 from early

on. An antibody stain against Mef2 shows no clear differences between a barren

embryo and the wild type at an early stage of myogenesis (Fig. 3.13), so basic

determination of the myoblast lineage obviously is unaltered in a barren mutant.

From the Mef2-expressing clusters of myoblasts, muscle precursor cells are

singled out by a process of lateral inhibition; all other cells become FCMs. The

muscle precursor cells undergo one mitosis; the nuclei of the resulting founder

cells can easily be identified with the rP298 marker, a lacZ enhancer trap in the

Duf/Kirre gene.

In young barren embryos prior to myoblast fusion, the number and position

of rP298-positive nuclei seems to be normal; however, minor aberrations cannot

be ruled out (Fig. 3.14). In older barren embryos, the number of rP298-positive

nuclei varies from normal to a reduction of an estimated 50% (Fig. 3.15).

91



Results For normal myogenesis, Barren is required before the progenitor division

A B

C D

Figure 3.11. In barr embryos, the muscle

identity gene lb shows its normal expression

pattern in the SBMs, which correspondingly

appear relatively normal. Embryos with lb-

PS-lacZ marker. A Stage 15 balancer embryo show-

ing wild type musculature. B The βGal signal re-

porting Ladybird expression is visible in the central

nervous system and in the segmental border muscles

(arrowheads). C, D Stage 16 barr L305 mutant.

While most of the musculature is in disarray, the

segmental border muscles are in their normal posi-

tions.
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A B

Figure 3.12. In barr embryos, the pattern

of Kr-positive cells appears disturbed. Em-

bryos stained with α-Krüppel (Kr) antibody; for

each image, two optical sections were combined.

A Wild type balancer embryo, stage 13. B Stage

14 barr L305 embryo. The pattern of Kr-positive

cells is disturbed. Scale bars: 100µm

A B

Figure 3.13. The number and distribution

of Mef2-positive myoblast nuclei appears nor-

mal in early barren embryos. α-Mef2 stain.

A Wild type embryo, stage 11. B barr L305 em-

bryo, stage 11. The Mef2 expression pattern does

not seem to differ from the wild type. Scale bars:

100µm.
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A B

C D

Figure 3.14. In early barren embryos,

the pattern of rP298-positive muscle founder

cells appears normal. The rP298-lacZ marker

expresses β-Galactosidase in all muscle founder

cells. A Wild type balancer embryo, early stage 12.

Image combined from two optical sections. B The

same wild type embryo; optical section through a

deeper layer. C barr L305 embryo, late stage 11.

Image combined from two optical sections. D The

same barr L305 embryo; optical section through a

deeper layer. No obvious difference to the wild type

is visible. Scale bars: 100µm.

A B

Figure 3.15. In late stage barren embryos,

the number of rP298-positive muscle nuclei

can be reduced. α-βGal stain on rP298 embryos

in stage 15-16. A Wild type embryo. Image com-

bined from two optical sections. B barr L305 em-

bryo. In this strong phenotype, the rP298-positive

nuclei seem somewhat reduced in number, and their

regular pattern is disturbed. Scale bars: 100µm.
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A B

Figure 3.16. FCMs seem to be correctly

specified in barren embryos. α-Lmd

stain. A Wild type balancer embryo, late stage

11. The Lmd-positive FCMs form a segmental pat-

tern. B The Lmd-positive cells appear in the nor-

mal FCM pattern in this stage 11 barr L305 embryo.

An anti-Lameduck (Lmd) antibody decorates the FCMs. In an anti-Lmd

stain of barren embryos, the mass and distribution of FCMs at an early stage of

myogenesis looks normal (Fig. 3.16).

3.2.6 Double mutants of barren and rols seem to show

an additive phenotype, implying that the barren

defect affects the founder cell lineage

Even if the FCMs get correctly specified in barren mutants, the reduction of

muscle nuclei at later stages of embryonic development in some embryos could

still be explained with a reduction of FCMs after their determination, or a fusion

defect. To test whether Barren is essential for FCM survival, a double mutant of

barren and a myoblast fusion mutant is generated. If the FCMs cannot fuse with

the nascent muscle fibres, their condition is rendered irrelevant as they will be

cleared away by macrophages; so if barren is needed only in the FCMs, a double

mutant of barren and a myoblast fusion mutant would show only the mini-muscle

phenotype of the fusion mutant.

However, double mutants of barrL305 and the deficiency Df(2L)BSC395

(which eliminates rols) show the mini muscles of the fusion mutant phenotype in

a disarray that is typical for a barren mutant. There also is a more drastic reduc-

tion in muscle mass than in any single mutant (Fig. 3.17 B). Both phenotypes

seem to add to each other, implying that barren is not (or not only) necessary

for the FCMs, but for the development of the precursor/founder cells.
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A B

Figure 3.17. A rols; barr double mu-

tant shows an additive phenotype char-

acterized by both disorientation of mus-

cles and an aggravated reduction of muscle

mass. Antibody stain on a rols; barr double

mutant egglay; anti-β3Tubulin in green; anti-βGal

stain in red showing balancer chromosome markers.

A Df(3L)BSC395 (rols) deficient embryo. SBMs

are reduced to mini muscles (arrows); unfused my-

oblasts are visible (arrowheads). The muscle pat-

tern is regular. Non-mutant Barren is conferred by

the balancer chromosome, whose hg>>lacZ marker

is visible in red. B Df(3L)BSC395; barr L305 dou-

ble mutant embryo. Somatic muscles are disorga-

nized and drastically reduced in mass and number.

Scale bars: 100µm

3.2.7 A barren rescue construct is only effective if ex-

pressed before the precursor cell division

The Gal4-UAS system allows to precisely control the expression of a transgene

that carries an UAS sequence: Transcription is triggered by binding of the Gal4

transcriptional activator protein, which does not naturally occur in Drosophila.

The gene for Gal4 in turn can be inserted into the genome as an enhancer trap or

ligated in a transgenic construct downstream of a suitable transcriptional control

region.

Oliveira et al. made a barren rescue construct with an UAS promoter that

can be expressed in a tissue specific manner with the help of a Gal4 driver. Its

expression can be easily detected by its eGFP tag (Oliveira et al. 2007).

Two fly lines carrying this rescue construct on the third chromosome were

obtained: UASP-barr-eGFP III.1 and UASP-barr-eGFP III.2.

In a genetic background without a Gal4 driver, UASP-barr-eGFP III.1 shows

a base line expression in the embryonic heart and in some lateral structures

(Fig. 3.18); UASP-barr-eGFP III.2 shows no such expression (Fig. 3.20).
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The daughterless (da)-Gal4 driver drives expression ubiquitously from early

on in embryonic development. In an E831/ Df(2L)Exel7077; da-Gal4/ UASP-

barr-eGFP III.1 embryo (F1 from Df(2L)Exel7077/ CyO, hg-lacZ; UASP-barr-

eGFP III.1 × E831/ CyO, hg-lacZ; da-Gal4/TM3, ftz-lacZ crossing) that shows

ubiquitous Barr-eGFP expression, the somatic muscle phenotype of homozygous

barren mutants is reverted to the wild type (Fig. 3.19).

However, all adult offsprings of a barr L305 / CyO, hg-lacZ; da-Gal4 × Df(2L)-

Exel7077/ CyO, hg-lacZ; UASP-barr-eGFP III.1 crossing (which all share the

genotype da-Gal4/UASP-barr-eGFP III.1) show poor locomotion, fail to inflate

their wings and die within a few days post eclosion. Seemingly UASP-barr-eGFP

III.1 has a lethal effect on adult flies when expressed ubiquitously, either by some

effect of the transgene’s insertion site, or by being mutant and either a barren

antimorph or just generally toxic. Driving this construct with TGX (twist-Gal4)

or Mef2-Gal4 (strongly active from early on in the whole mesoderm or all somatic

muscles, respectively) does not have any obviously lethal effects in the adult fly.

In the adult F1 progeny of a barr L305 / CyO, hg-lacZ; da-Gal4 × Df(2L)Exel-

7077/ CyO, hg-lacZ; UASP-barr-eGFP III.2 crossing both Curly-winged balancer

flies and straight-winged barr L305 / Df(2L)Exel7077 flies are present and fully

viable; thus UASP-barr-eGFP III.2 seems to allow a complete rescue of the barren

mutant with a suitable Gal4 driver. This, together with the fact that the UASP-

barr-eGFP III.2 line by itself has no detectable expression and no rescue capability

without a Gal4 driver (Fig. 3.21 and 3.20), recommends this fly line for cell type-

and time point-specific rescue experiments.

Different Gal4 driver constructs often yield different expression levels. To

allow a semi-quantitative estimation of the expression level, a standardized ex-

posure time of 2 seconds is used for the channel showing the anti-GFP stain in

all further experiments.

Driving UASP-barr-eGFP III.2 with TGX (twist-Gal4 on X chromosome) or

Mef2-Gal4, which drive expression in the whole mesoderm from stage 8 or in

all cells of the muscle lineage from stage 9 on, respectively, we see a complete

recovery of the barren somatic muscle phenotype (Fig. 3.22).
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A B

C D

Figure 3.18. UASP-barr-eGFP III.1

shows a distinctive expression pattern even

without a Gal4 driver. Embryos with UASP-

barr-eGFP III.1 rescue construct without any Gal4

driver. Exposure time of the α-GFP channel (blue

in left column, shown as single channel in the right

column) was extended beyond the standard two

seconds to give a visible signal. A Heterozy-

gous Df(2L)Exel7077/ CyO, hg-lacZ; UASP-barr-

GFP III.1 stage 17 embryo, lateral view. B The

UASP-barr-GFP III.1 construct produces eGFP ex-

pression in the vicinity of the lateral muscle bundles

in segmental structures that might be tracheal pits

(arrowheads). C Same genotype, stage 15 embryo,

dorsal view. D barr-eGFP expression can be de-

tected in the pharynx and in some cells of the heart

(arrowheads). The lateral stain on the presumable

tracheal pits is also visible (arrows). Scale bars:

100µm.
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A B C

Figure 3.19. Early ubiquitous expres-

sion of a barr-eGFP construct rescues the

phenotype of E831. Stage 16 E831/

Df(2L)Exel7077; da-Gal4/ UASP-barr-eGFP III.1

embryo (from a crossing Df(2L)Exel7077/ CyO, hg-

lacZ; UASP-barr-eGFP III.1 × E831/ CyO, hg-

lacZ; da-Gal4/TM3, ftz-lacZ ). A α-β3Tubulin in

red, α-βGal in blue, and α-GFP in green. The

absence of a blue α-βGal signal in odd-numbered

parasegments shows that this embryo inherited the

da-Gal4 driver, not the TM3, ftz-lacZ balancer.

B The α-GFP stain is found throughout the whole

embryo, demonstrating the ubiquitous expression of

Barr-eGFP. C The muscle pattern in β3Tubulin

stain looks like the wild type. Scale bar: 100µm.

A B

Figure 3.20. Without a Gal4 driver,

UASP-barr-eGFP III.2 is not expressed in a

discernible pattern. Embryos with UASP-

barr-eGFP III.2 rescue construct without any Gal4

driver. Exposure time of the α-GFP channel (shown

in the right image and in blue in the left) was

extended beyond the standard two seconds in an

attempt to give a visible signal. A Heterozy-

gous Df(2L)Exel7077/ CyO, hg-lacZ; UASP-barr-

GFP III.2 stage 17 embryo, lateral view. B No au-

tonomous expression pattern of Barren-GFP is vis-

ible. Scale bars: 100µm.
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A B

Figure 3.21. Without a Gal4 driver,

UASP-barr-eGFP III.2 does not rescue the

barr phenotype. Homozygous Df(2L)Exel7077;

UASP-barr-eGFP III.2 embryo, stage 15. The

Df(2L)Exel7077 deficiency deletes barren; no Gal4

driver is included. A The α-GFP stain gives only

a faint background signal in the gut, showing that

barr-GFP is not expressed. B The α-β3Tubulin

stain shows the disturbed muscle pattern of a bar-

ren mutant: Without a Gal4 driver, no rescue is

achieved. Scale bar: 100µm

Upon myoblast fusion, the FCM nuclei loose their FCM identity and start to

express the genetic program of the nascent muscle they fused into, namely muscle

identity genes and founder cell specific myoblast fusion genes. One possible

explanation for the chaotic muscle phenotype is barren causing a defect of gene

regulation in FCMs, leading to a failure of FCM nuclei to undergo reprogramming.

The sns pro3-Gal4 driver becomes active at early stage 12 in FCMs. UASP-

barr-eGFP under the control of this driver would not only supply Barren to the

FCMs at the time of their fusion, but via myoblast fusion also to the nascent

myotubes.

However, while Barr-eGFP in such an experiment can be seen strongly ex-

pressed in all somatic muscles after myoblast fusion, we see no rescue of the

barren muscle phenotype (Fig. 3.23). Thus it seems likely that Barren is re-

quired prior to myoblast fusion in the progenitor/muscle founder myoblasts and

not in the FCMs.

The rP298-Gal4 driver becomes active in progenitor cells around the time of

their final division; it is strong enough to rescue duf and rols mutants with corre-

sponding UAS rescue constructs (Menon and Chia 2001). barr embryos driving

UAS-barr-eGFP with rP298-Gal4 still show the barr phenotype (Fig. 3.24).
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A B C

D E F

Figure 3.22. Early Barr-eGFP expres-

sion in the whole mesoderm rescues the barr

somatic muscle phenotype. A TGX;

barr L305 / CyO, hg-lacZ; UASP-barr-eGFP III.2

embryo, stage 16. B The α-GFP stain shows

the Barr-eGFP rescue construct expressed in the

whole mesoderm. The expression appears weaker

than in other rescue experiments; this might be due

to the twist-Gal4 driver already being inactive for

a long time at the shown stage. C Same em-

bryo, α-β3Tubulin stain. The somatic musculature

looks like the wild type. D Stage 15 barr L305

/ Df(2L)Exel7077; Mef2-Gal4/ UASP-barr-eGFP

III.2 embryo (from a barr L305 / CyO, hg-

lacZ; Mef2-Gal4 × Df(2L)Exel7077/ CyO, hg-lacZ;

UASP-barr-eGFP III.2 crossing). E Barr-eGFP is

expressed in all somatic muscle cells. F Same em-

bryo, α-β3Tubulin stain. The somatic muscle pat-

tern looks like the wild type. Scale bars: 100µm.

A B C

Figure 3.23. sns-Gal4 driving barr-

GFP does not rescue the barr pheno-

type. Stage 16 barrL305, sns pro3-Gal4/

Df(2L)Exel7077; UASP-barr-eGFP III.2 /+ em-

bryo (from a barrL305, sns pro3-Gal4/ CyO, hg-

lacZ × Df(2L)Exel7077/ CyO, hg-lacZ; UASP-barr-

eGFP III.2 crossing). A, B: With myoblast fusion

completed, Barr-eGFP is expressed in all somatic

muscle cells. C The α-β3Tubulin stain shows the

barr mutant muscle phenotype. Scale bar: 100µm.
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A B C

Figure 3.24. rP298-Gal4 driving barr-

GFP does not rescue the barr pheno-

type. Stage 16 rP298-Gal4; barr L305 /

Df(2L)Exel7077; UASP-barr-GFP III.2 / + em-

bryo (from a rP298-Gal4; barr L305 / CyO, hg-

lacZ × Df(2L)Exel7077/ CyO, hg-lacZ; UASP-barr-

GFP III.2 crossing). A, B: Barr-eGFP is expressed

in the whole somatic musculature. C The α-

β3Tubulin stain shows a light barr phenotype in the

lateral muscle bundles. Scale bar: 100µm.
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Chapter 4

Discussion and Perspectives

4.1 rols mRNA localization probably serves

localized protein synthesis close to the

site of fusion

4.1.1 The 3’ trailer is necessary for rols mRNA local-

ization in somatic founder cells

We have shown that a reporter mRNA with both the rols7 5’ leader and rols

3’ trailer gets localized in the somatic founder cells in a pattern similar to the

localization of wild type rols7 transcript, while a reporter mRNA that combines

the rols7 leader with an SV40 trailer (a sequence from the Simian Vacuolating

virus 40) does not (D. Kesper, personal communication).

Further experimentation will be needed to test weather the rols trailer is

sufficient for mRNA localization, or weather the rols7 leader sequence is also

necessary.

4.1.2 The rols mRNA is also localized in other my-

oblasts

The combination of fluorescent in situ hybridization with immunofluorescent

stains on markers for specific subsets of myoblasts reveal a subcellular local-
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ization of rols not only in the somatic founder cells, but also in the circular and

longitudinal visceral founder cells.

The circular visceral founder cells show the rols transcript localized on their

interior, gut-ward side. The longitudinal visceral founder cells often have the

rols mRNA localized at the tips of their spindle shaped bodies, the sites of Duf

accumulation (Rudolf et al. 2014).

In analogy, we can speculate that the peripheral spots to which the rols

transcript is localized in somatic founder cells correspond to prospective filopodia

or fusion sites; however, the site of Duf and Rols accumulation in the nascent

myotube and, ultimately, the site of fusion may be dictated entirely by the FCM’s

first contact, with the speckles of rols mRNA just a functionless homology to

the situation in the other types of muscle founder cell.

Experimental clarification of this point is difficult to achieve, as the somatic

founder cells lack the stereotypic orientation and shape of their visceral coun-

terparts, and the rP298-lacZ marker shows only nuclei, not cell shapes. Here, a

new marker strategy would become necessary in future experiments, for example

a combination of rP298-Gal4 and UAS-lacZ.

4.1.3 rols mRNA localization may facilitate efficient

protein localization

The first mRNA in situ hybridizations in Drosophila were performed on oocytes

or embryos at the syncytial blastoderm stage. These cells are about 0.5mm

large (where myoblasts have a diameter of approximately 5µm). In these early

developmental stages, mRNA localization often creates a morphogen gradient

(for example bicoid, Driever and Nüsslein-Volhard 1988) and gives an obvious

phenotype when failing.

Mutant phenotypes also have allowed to analyse mRNA localization in smaller

cells, for example in cases where asymmetric mRNA distribution and the sub-

sequent protein gradient convey an altered cell fate to one daughter cell after

mitosis (like for example prospero, Li et al. 1997; Broadus et al. 1998).

In contrast, rols mRNA localization does not seem to be connected to an

obvious phenotype; rols mutants can be rescued with constructs that do not

have the native trailer (Menon and Chia 2001; Menon et al. 2005).
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Today, improved in situ hybridization techniques give a detailed subcellular

resolution; this way, Lécuyer et al. 2007 have found that 71% of all transcripts

expressed during Drosophila embryogenesis are intracellularly localized.

Often, the localization of the mRNA prefigures the distribution of the trans-

lated protein. Even if some additional mechanism is in place for localization on

protein level (like it is for example for Prospero), mRNA localization can still

provide an improvement in efficiency: Moving one mRNA molecule around takes

less energy than having the many protein molecules it can give rise to cross the

same distance; transporting an mRNA to its target area and then derepressing

its translation at the right moment can allow for a more exact temporal control

of protein expression than having the protein translated at random places in the

cytoplasm and relying on ”just in time” delivery to its destination.

We can speculate that in rols rescue experiments with the non-localizing

SV40 trailer, enough of the generated Rols protein reaches its destination in

time to recreate the wild type phenotype, at least under lab conditions. The

rols mRNA localization possibly has a beneficial effect on the organism’s fitness

under the less-than-optimal conditions the fly lives under in the wild.

4.2 The barren muscle phenotype is probably

caused by aneuploidia

The embryonic musculature of D. melanogaster is highly organized and segmen-

tally repeated; each muscle in every segment can be identified by its shape and

position, which are defined by the expression of a set of muscle identity genes.

In the E831 mutant line, however, this order is more or less disturbed; muscles

stray seemingly at random, even crossing over segmental borders. Stains for

muscle identity genes correspond with the appearance of muscles: Muscles that

look more or less like the wild type, like the segmental border muscle often does,

are likely to stain for their normal muscle identity genes; for the more affected

muscles, not even marker stains for single muscles allow the identification of a

clear pattern. More severe grades of this mutant’s phenotype can also show a

reduction of muscle mass and a reduced number of rP298-positive (duf/kirre

expressing) nuclei by the end of embryonic myogenesis.
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It is, however, not a defect of myoblast fusion; such a defect would typically

leave a lot of unfused myoblasts crowding around the rudimentary myotubes,

which conversely would still be in a relatively ordered pattern.

In this study, we have shown that this phenotype is caused by mutations

of Condensin I components. E831 contains a barren nonsense mutation that

presumingly eliminates the protein; a P element insertion (barrk14014) and a dele-

tion of the first exons of barren (barr L305) give exactly the same phenotype.

The Cap-G6 null allele gives a similar, strong, less variable phenotype; Cap-G64

yields embryos with no identifiable musculature whatsoever. The latter, a D254Y

missense mutation affecting a protein-protein interaction domain (Cobbe et al.

2006), is seemingly a gain-of-function allel, as Cap-G64/Cap-G6 transheterozy-

gous also mostly show the more drastic Cap-G64 phenotype.

While it is trivial that crucial housekeeping genes like the Condensin com-

ponents should severely affect the embryonic development when defective, the

genesis of such a specific phenotype as the seemingly general loss of muscle

identity is much less obvious.

The mRNAs for Condensin components are deposited in the oocyte before

fertilization; these maternal mRNAs can cover for about the first half of em-

bryonic develompment. This is the reason why we see structured embryos with

working germ band retraction and muscular tissue of some kind, and not just

undeveloped oocytes that failed in their first mitosis.

Generally, Condensin has two kinds of functions whose defect could trigger the

phenotype: Regulatory and mitotic. Concretely, we can name several scenarios:

• Loss of Condensin implicates loss of Polycomb group repression (Lupo

et al. 2001; Bantignies et al. 2003). The general derepression of genes,

especially inactive muscle identity genes, might produce a muscle pheno-

type. However, such a scenario happening in founder cells would likely

produce a more ordered phenotype than what we see, as it would end up

activating the same set of genes in all muscles.

A failure of repressional mechanisms in FCM nuclei might make syncytial

myotubes behave like FCMs, possibly explaining the phenotype. However,
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neither an additional myoblast fusion mutant in background nor a rescue

construct expressed specifically in the FCMs can reestablish the muscle

pattern, letting this hypothesis seem unlikely.

• Indiscriminate gene bookmarking. Gene bookmarking over mitotic cy-

cles requires the local deactivation of Condensin near core promoters (Xing

et al. 2008); general loss of Condensin might therefore, to a degree, acti-

vate all promoters. This might explain the loss of muscle identity and the

seeming relevance of the progenitor division.

In such a scenario, however, we should see a generalization of the expres-

sion of muscle identity genes; this is not what immunohistochemical stains

show.

• Condensin is a modifier of position effect variegation (Dej et al. 2004;

Cobbe et al. 2006); random heterochromatinization or deheterochro-

matinization of muscle identity genes might produce the chaotic mus-

cle pattern we observe.

• A failure of chromatid segregation during mitosis can have various

effects: Cells can initiate apoptosis; cells can revert out of mitosis (Cobbe

et al. 2006; this would leave the equivalent of a cell in G2 phase); cytoki-

nesis can fail due to chromatin bridging (leaving a binucleate or tetraploid

cell, like probably the peripheral neurons in Drosophila barren, see Bhat

et al. 1996); or cytokinesis can succeed (leading to two aneuploid cells, like

seemingly in Drosophila barren epidermis cells; see Bhat et al. 1996).

Especially the latter scenario, comprising a randomization of the daughter cells’

genetic make up, might produce the observed phenotype. This would imply,

however, that the faulty gene expression program arising from the compromised

founder cell nucleus cannot be corrected on access to the intact genomes of the

FCM nuclei.

A strong argument for assuming a mitotic defect as the cause of the pheno-

type comes from rescue studies: A rescue construct that restitutes Barren protein

only is effective if expressed well before the final mitosis of the muscle progenitor

cells. Barren expression after that mitosis has no effect on the muscle phenotype

(Fig. 4.1).
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Figure 4.1. Only Gal4 drivers that are ac-

tive in the progenitor cell can rescue the bar-

ren phenotype. The transcriptional activity of

various Gal4 drivers over time in different myogenic

cell types. Ability to rescue the barr muscle pheno-

type with an UAS-barr-GFP construct indicated to

the right.

Thick black lines (——): Gal4 driver certain to

be active; dashed lines (- - -): Activity of Gal4

driver driver is uncertain at this time point; dotted

lines (······): Gal4 driver is known to be transcrip-

tionally inactive, but gene products of UAS con-

structs should be abundant; ∞: Mitosis. Stages

and events according to Hartenstein 1993 and

FlyMove (Weigmann et al. 2003).

This hypothesis can also explain the variability of the barren phenotype: After

13 mitoses until blastoderm cellularization and three more divisions after meso-

derm invagination (Hartenstein 1993), the progenitor division is the 17th and

final mitosis in this cell lineage. Due to a stash of maternally supplied mRNA,

barren mutants do not become apparent during the first few mitoses; Bhat et al.

1996 see anaphase bridging in epidermal cells not before mitosis 16. Depend-

ing on minimal differences in the maternal barren mRNA supply, the progenitor

division might sometimes come to pass with relatively little chromatin bridging,

resulting in mostly intact daughter cells; in other cases the progenitor cell might

be affected so badly that it has to revert out of mitosis, or one or both daughter

cells die, resulting in reduced muscle mass.

Cap-G mutants already show anaphase bridging in mitosis 15 (Dej et al.

2004), explaining their constant, strong phenotype. Condensin components whose

mutants do not show a muscle phenotype might simply have a large enough sup-

ply of maternal mRNA for the embryonic/larval muscle lineage to make it through

its final mitosis.
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Genome instability is a feature of many cancer cell lines: The genetic make up

of the cells is randomized in every mitosis, the loss of heterozygousity producing

a hemizygous situation for recessive mutant alleles that can subsequently drive

tumorigenesis further.

The embryonic musculature of Drosophila could be an intriguing model sys-

tem for this. While Drosophila cells always require a second mutation preventing

terminal differentiation or apoptosis to actually form tumors, the embryonic mus-

culature, being already terminally differentiated, demonstrates a loss of tissue

architecture in an easily observable way after seemingly only one faulty mitosis.

The musculature of a Condensin mutant Drosophila embryo essentially presents

genomic instability in a nutshell.

Perspectives on further experiments

The rP298-Gal4 driver, which becomes active around the time of the final pro-

genitor division and is strong enough to rescue duf and rols mutants with the

respective UAS constructs (Menon and Chia 2001), fails to rescue the muscle

phenotype when driving a barren rescue construct. The latest-expressing Gal4

driver that manages to do the rescue is Mef2-Gal4 ; it is expressed in all cells of

the muscle lineage, starting before progenitor cells are singled out from the crowd

determined to become Fusion-competent myoblasts, and stays active during the

whole myogenesis (see p. 108 Fig. 4.1).

To corroborate the finding that barren is necessary for the progenitor division,

it would be useful to drive a rescue construct only in the progenitor cells, distinctly

before their final mitosis. A driver capable of that might be apterousmd544-Gal4,

an enhancer trap in the regulatory region of apterous, a muscle identity gene

expressed in a small subset of progenitor and founder cells (see Fig. 4.1, 4.2;

Bourgouin et al. 1992).

The practical problem with this experimental strategy is that apterous lies

rather close to barren on the second chromosome, and is thus difficult to intro-

duce into a barr− background.
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A B

C D

Figure 4.2. Antibody stains against β3Tubulin

(red) and GFP (green) on apmd544-Gal4; UAS-GFP

embryos. A , B Early stage 12. apmd544 drives GFP

expression in parts of the myotome. C, D Stage 17.

GFP expression is detected in varying intensities in

the muscles of the lateral bundles and in the VA2

muscle. It can also be seen in a ventral, segmental,

cellular pattern probably part of the ventral nerve

chord, and very strongly in anterior and posterior

structures of unclear identity.
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To further exclude the possibility that Condensin is necessary for gene regula-

tion during myogenesis, the TEV cleavage strategy that Pauli et al. (2008)

use to destroy Verthandi (the Kleisin of Cohesin) in specific cell types and time

points could be adapted to Barren, or to the SMCs; this way, Condensin could

be deactivated specifically after the final mitosis.

A TUNEL assay labels DNA breaks. It is usually used to visualize apoptotic

cells; however, it also might be able to detect cells that sustained DNA breaks

due to a defect of chromosomal segregation.

Assuming the phenotype is actually caused by a faulty progenitor division

leading to aneuploid founder cells, we can suppose that other mutations that

cause genomic instability have a similar effect on musculature. A variety of

potential candidate genes can be taken for example from Dekanty et al. (2012)

and Castellanos et al. (2008), see Table 4.1.
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Relevant biological function Gene Chromosomal region

DNA damage check point atm = tefu 88E3-E4

Condensation orc2 88A3

Spindle assembly rod 100C6-C7

asp 96A19-A20

Chromosomal segregation fbl 77B9-C1

Cytokinesis, Chromatin organization sti 69C4

Cytokinesis tsr 60B5

dia 38E7-E8

Cell differentiation Medea 100C7-D1

Table 4.1. Mutants that induce genomic instability, mostly from Dekanty et al. (2012)

and Castellanos et al. (2008).
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Appendix A

Analysis of various candidate

genes

A.1 In situ-hybridizations of candidate genes

Gene Chromo-

somal

region

Protein class mRNA expression

pattern

p. Muscle

pheno-

type

p.

daw 23B1-B2 Activin-like

ligand of

TGF-β

mesoderm or cns;

segmental

115 n.d.

nolo 39F1-F3 Ig-ADAM-TS mesoderm,

segmental; midgut

116 n.d.

CG4096 5B1 ADAM-TS segmental; epidermal

(tracheal pits ?),

midgut (?), cells in

head

117 n.d.

CG6512 74A1-A2 Metalloprotease mesoderm/cns (?),

segmental; midgut,

hindgut

118 n.d.
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Gene Chromo-

somal

region

Protein class mRNA expression

pattern

p. Muscle

pheno-

type

p.

Nep2 82D2 Metalloprotease epidermis,

segmentally

patterned

119 n.d.

Neu3 88C10-

D1

ADAM segmental in

mesoderm

(musculature ?) and

cns; anterior and

posterior

120f – 123

mmd 14A1-A4 ADAM n.d. – 124

Acer 29D4 Metalloprotease n.d. – 125

CG18754,

SPE

95A7 Secretase n.d. – 125

CG17572 37B13 Inactive serine

protease

n.d. – 126

Kul 99B9 ADAM n.d. –

(RNAi:+)

127ff

kuz 34C4-C6 ADAM n.d. – 131f

Tace 99D1 Metalloprotease n.d. – 132

CG9416 56D2 Peptidase n.d. – 133

Rya-

R44F

44F1-F2 Calcium

channel

n.d. – 133
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A daw in situ hybridization B daw in situ hybridization

Figure A.1. Antisense-RNA-in situ hybridi-

sations against dawdle (daw), using the cDNA

GH14433. daw, also known as Alp23B, was se-

lected for analysis by Detlev Buttgereit (personal

communication) because of its potentially mesoder-

mal expression pattern. A Stage 12, lateral view.

A segmental expression pattern is visible ventrally.

B Stage 16, lateral view. daw is expressed in the

pharynx, in the hindgut and in other posterior struc-

tures. Along the ventral nerve chord a regular pat-

tern of probably two small patches of expression per

hemisegment is visible.

115



Appendix A Analysis of various candidate genes

A nolo in situ hybridization

C nolo in situ hybridization D nolo in situ hybridization

E nolo in situ hybridization F nolo in situ hybridization

Figure A.2. Antisense-RNA-in situ hybridi-

sations against no long nerve chord (nolo), using

the cDNA GH19218. nolo was selected for analy-

sis by David Breier (Breier 2009) because of its

Immunoglobulin-like and ADAM-TS (a disintegrin

and metalloprotease - thrombospondin) domains,

which potentially play a role in myogenesis. A Stage

13, lateral view. The nolo mRNA is distributed ho-

mogenously in a broad area in the dorsal part of

the abdomen, possibly part of the mesoderm. A

segmental expression pattern in a deep layer of the

embryo, possibly mesodermal, is visible in the ven-

tral abdominal region. C Stage 16, lateral view.

nolo is expressed in many small patches along the

ventral nerve chord, in parts of the midgut walls and

in several anterior structures. D A different optical

section of the same embryo. A segmental expression

pattern is visible dorsally, possibly in cells that are

part of the heart. E Stage 17, lateral view. nolo is

expressed in small cell clusters in the ventral nerve

chord and in several anterior and posterior struc-

tures. F A different optical section of the same

embryo. A segmental pattern of small cell clusters

is visible dorsally, possibly part of the heart.
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A CG4096 in situ hybridization B CG4096 in situ hybridization

C CG4096 in situ hybridization D CG4096 in situ hybridization

E CG4096 in situ hybridization

Figure A.3. Antisense-RNA-in situ hybridis-

ations against CG4096, using the cDNA GH22104.

CG4096 was selected for analysis by David Breier

(Breier 2009) because of its potential role in myo-

genesis as an ADAM-TS. A , B Stage 11, lat-

eral view. A segmental expression pattern is visible.

C Stage 14, lateral view. The segmental expres-

sion domains probably correspond to the tracheal

pits. D Stage 14, dorsal view. E Stage 16, dor-

sal view. The segmental expression pattern seems

more differentiated, with the anteriormost two do-

mains showing the strongest expression. Additional

CG4096-expressing cells are visible in the head.
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A CG6512 in situ hybridization B CG6512 in situ hybridization

C CG6512 in situ hybridization

Figure A.4. Antisense-RNA-in situ hybridis-

ations against CG6512, using the cDNA SD01613.

The gene was selected for analysis by David Breier

(Breier 2009) because of its potential role in myo-

genesis as a metalloprotease.

The expression in the early ventral nerve chord and

in the midgut is of doubtful relevance, as a sense-

RNA in situ hybridization probe produces the same

pattern (not shown). A Stage 10. CG6512 is ex-

pressed in a stripe that might be the ventral nerve

chord or the mesoderm. B Stage 14. Expression

is visible in the midgut and ventrally in a segmen-

tal pattern, possibly corresponding to cells in the

mesoderm or the ventral nerve chord. C Stage 15,

dorsal view. CG6512 is expressed in the midgut;

the lateral segmental expression pattern probably

corresponds to the mesoderm.
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A Nep2 in situ hybridization B Nep2 in situ hybridization

C Nep2 in situ hybridization

Figure A.5. Antisense-RNA-in situ hybridisa-

tions against Neprilysin 2 (Nep2), using the cDNA

GH07643. The gene was selected for analysis by

David Breier (Breier 2009) because of its potential

role in myogenesis as a metalloprotease. A Stage

12. Nep2 is expressed in the abdominal part of

what seems to be the epidermis. The expression

is strongest in the dorsalmost part of each segment.

B Stage 14. Nep2 is expressed in a distinct, segmen-

tally repeated pattern in the epidermis. C Stage

14, dorsal view.
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A Neu3 in situ hybridization B Neu3 in situ hybridization

C Neu3 in situ hybridization

Figure A.6. Antisense-RNA-in situ hybridi-

sations against Neuroectoderm-expressed 3 (Neu3),

also known as Meltrin, using the cDNA RE23052.

Neu3 was selected for analysis by David Breier

(Breier 2009) for beeing potentially relevant for

myogenesis as an ADAM protein; it one of the

two Drosophila orthologues of the mammalian

ADAM12.

The expression in anterior and posterior structures

is somewhat doubtful, as in situ hybridizations with

a Sense-RNA probe made from the same cDNA

show a similar pattern (not shown). Since the time

this experiment was conducted, the quality/ identity

of the RE23052 cDNA has been challenged. A Stage

11. Neu3 is expressed segmentally in what might be

the ventral nerve chord, and in some anterior and

posterior structures. B Stage 11, dorsolateral view.

Neu3 expression is visible in narrow, segmentally

structured stripes lateral to the area of the ventral

nerve chord, close to the epidermis. C Stage 13.

Neu3 is expressed in segmental domains towards the

ventral side of the embryo, possibly part of the meso-

derm or the ventral nerve chord. There also seems

to be expression in the pharynx and other anterior

and posterior structures.
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A Neu3 in situ hybridization B Neu3 in situ hybridization, α− βGal

Figure A.7. Fluorescent antisense-RNA-in situ

hybridisations against Neu3/ Meltrin, using the

cDNA RE23052. A Stage 12. Neu3 is expressed

in various cells that seem to be part of or closely

associated with the ventral nerve chord. There also

is a more lateral segmental pattern. B The rP298-

lacZ marker visualizes the muscle founder cells in

red. These do not show Neu3 expression, but are

closely associated with the lateral Neu3 -expressing

cells.
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A.2 Mutants and RNAi-knock-downs of can-

didate genes
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A Neu3c01955 α− β3Tubulin B Neu3MB01428 α− β3Tubulin

Figure A.8. Fluorescent anti-β3Tubulin stains

on various mutants of Neu3. This metalloprotease,

also known as Meltrin, is one of two Drosophila or-

thologues of mammalian ADAM12. It was selected

for analysis because of its mRNA expression pat-

tern, and because of the role ADAM12 plays in

mammalian muscle cell cultures. A Neu3c01955,

a lethal PiggyBac insertion in an intron of Neu3.

Stage 17, lateral view. The embryo looks like a wild

type. B Neu3MB01428, a lethal Minos insertion in

the last, non-coding exon of Neu3. Stage 17, dorso-

lateral view. The shape of the embryo looks altered,

but the musculature seems unaffected.
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A Df(3R)BSC714 α- β3Tubulin

Figure A.9. mind-meld (mmd) is an

orthologue of mammalian ADAM12 and a

paralogue of Meltrin/Neu3 and might take

over the latter’s functions in a Neu3 mu-

tant. The deficiency Df(1)BSC714 (13E14–

14A8) covers mmd and about 65 other

genes. A Embryo at about stage 16, dor-

solateral view. Somatic musculature and

heart appear normal.
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A Acer α-β3Tubulin B Acer α-β3Tubulin

Figure A.10. The metalloendopeptidase

Angiotensin-converting enzyme –related (Acer) is

expressed in embryonic cardioblasts and a variety

of other tissues. It was selected for further analy-

sis by David Breier (Breier 2009). Crackower

et al. 2002 identify Acerk07704, a P-element in-

sertion in the 3’-UTR, as embryonic lethal due to

a heart defect. However, Carhan et al. 2011

found an Acer null allele generated by imprecise

excision to be viable. A Ventrolateral, stage 16.

The anti-β3Tubulin stain shows that the somatic

and pharynx musculature are relatively intact in the

Acerk07704 mutant. B Dorsal, stage 16. The gut

constrictions are formed normally, implying that the

intestinal musculature also is formed.

A Df(3R)BSC491 α-β3Tubulin B Df(3R)BSC491 α-FasIII

Figure A.11. Spätzle-processing enzyme

(SPE) and its neighbor and putative paralogue

CG18754 are analyzed because of their expres-

sion in the embryonic mesoderm: CG18754 is ex-

pressed strongly in the somatic muscle primor-

dia, SPE in the fat body (Fisher et al. 2012).

As secretases with functionality similiar to metal-

loproteases, they potentially play a role in myo-

genesis. The deficiency Df(3R)BSC491 (95A7–

95A10) covers CG18754, SPE and 13 other genes.

A About stage 15. The musculature appears nor-

mal. B Stage 16, anti-FasIII stain. The gut appears

normal.

125



Appendix A Analysis of various candidate genes

A Df(2L)BSC341 α-β3Tubulin B Df(2L)BSC341 α-β3Tubulin

Figure A.12. As secretases with functionality

similiar to metalloproteases, serine proteases poten-

tially play a role in myogenesis. Inactive proteases

like CG17572 (Ross et al. 2003) can play regula-

tory roles as competitive inhibitors. The deficiency

Df(2L)BSC341 (37B11–37D3) covers CG17572 and

45 other genes. A Late stage 16. The musculature

appears mostly normal. B Same embryo, different

optical section. The gut constrictions are formed,

implying that the visceral musculature is normally

developed.
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A How≫ Kul RNAi α− β3Tubulin B twist≫ Kul RNAi α− β3Tubulin

C SnS≫ Kul RNAi α− β3Tubulin

Figure A.13. Kuzbanian-like (Kul) is one of

two Drosophila orthologues of the mammalian me-

talloprotease ADAM10, which among other things

cleaves cell adhesion proteins like Cadherins and Ig-

Domain proteins in synapses (see f.e. Kim et al.

2010). Due to this function of its mammalian ortho-

logue, and due to its mesodermal expression pattern

(Detlev Buttgereit, personal communication), Kul

was selected for further analysis. RNAi knock-down

experiments against Kul, using the Kul-dsRNA line

VDRC 28347 (Dietzl et al. 2007), were con-

ducted with various Gal4 drivers. The phenotypes

are somewhat variable. A Stage 17. Kul -RNAi with

a Held-out wings (How) Gal4-driver can sometimes

produce embryos with a disarrayed muscle pattern

and reduced muscle mass. B Stage 17. Kul -RNAi

with a twist Gal4-driver (TGX). The muscle pat-

tern looks relatively normal; some muscles appear

thinner than usual. C Stage 17. Kul -RNAi with

a Sticks and Stones (SnS) Gal4-driver. Some mus-

cles are disoriented; many muscles are thinner than

usual, verging towards a ”mini muscle” phenotype.
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A Df(3R)BSC846 α− β3Tubulin B Df(3R)01215 α− β3Tubulin

Figure A.14. RNAi knock-down experiments

against Kul have shown light muscle phenotypes, so

deficiencies that cover Kul are analyzed for their

muscle phenotype. A Stage 15(?). The de-

ficiency Df(3R)BSC846 (99A1–99B10) covers Kul

and about 75 other genes. Its musculature lacks

any pattern; many of the β3Tubulin-positive cells

are not recognizable as muscle cells. B Stage

17(?). The deficiency Df(3R)01215 (99A6–99C1)

covers Kul and about 80 other genes. The somatic

musculature is somewhat reduced in mass; the re-

maining muscles are disoriented.
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A Df(3R)BSC547 α− β3Tubulin B Df(3R)BSC547 α− β3Tubulin

C Df(3R)BSC547 α− β3Tubulin D Df(3R)BSC547 α− β3Tubulin

Figure A.15. RNAi knock-down experiments

against Kul have shown light muscle phenotypes, so

deficiencies that cover Kul are analyzed for their

muscle phenotype with an anti-β3Tubulin stain.

The deficiency Df(3R)BSC547 covers Kuzbanian-

like (Kul) and about 45 other genes. The pheno-

type it shows is extremely variable, with the em-

bryos falling roughly into four categories. A Lateral

view. The musculature is mostly present, but germ

band retraction and/or dorsal closue fail. B Dor-

sal view. Few β3Tubulin-positive structures are vis-

ible, and fewer can be identified as muscles. The

segmental globular structures might be Bolvig’s or-

gans. C Dorsal view. The pharynx musculature

is present, but most other musculature is missing.

D Nothing besides the dorsoventral axis is recog-

nizable.
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A Df(3R)BSC547×Df(3R)01215

α-β3Tubulin

B Df(3R)BSC547×Df(3R)01215

α-β3Tubulin

C Df(3R)BSC547×Df(3R)BSC846

α-β3Tubulin

D Df(3R)BSC547×Df(3R)BSC846

α-β3Tubulin

Figure A.16. The available deficiencies that

cover Kul are rather large, deleting a lot of other

genes besides Kul. Transheterozygous embryos

from a crossing of two deficiencies allow to ana-

lyze the effect of a smaller deletion. A A cross-

ing of the deficiency lines Df(3R)BSC547 (99B5–

99C2) and Df(3R)01215 (99A6–99C1) yields tran-

sheterozygous embryos that are deficient for the

chromosomal area 99B5–99C1; this covers Kul and

about 36 other genes, among them Cap-D2. In this

lateral view of a stage 16 embryo, the somatic mus-

culature seems normally developed. B Same

crossing, stage 17, dorsal view. The heart is also

normally developed. C A crossing of the

deficiency lines Df(3R)BSC547 (99B5–99C2) and

Df(3R)BSC846 (99A1–99B10) yields transheterozy-

gous embryos that are deficient for the chromoso-

mal area 99B5–99B10; this covers Kul and about

31 other genes, among them Cap-D2. In this stage

17 embryo, the somatic musculature seems normally

developed. D A different optical section of the

same embryo. The heart looks normal.
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Appendix A Analysis of various candidate genes

A kuze29-4 α-β3Tubulin

B kuz3;Df(3R)BSC846 × kuz3;Df(3R)BSC547

α-β3Tubulin

C kuz3;Df(3R)BSC846 × kuz3;Df(3R)BSC547

α-β3Tubulin

Figure A.17. In mammals, the metallo-

protease ADAM10 cleaves cell adhesion proteins in

synapses (see f.e. Kim et al. 2010). This role

makes the Drosophila orthologues of ADAM10 can-

didates for a role in myoblast fusion, as this pro-

cess depends on cell adhesion and involves synapse-

like structures. ADAM10 has two Drosophila ortho-

logues: kuzbanian (kuz) and Kuzbanian-like (Kul).

Due to its expression pattern, kuz is not a likely can-

didate for a role in myogenesis; however, metallopro-

teases often are able to cover for each other, so dou-

ble mutants might show a phenotype. A kuze29-4

is a small deletion that covers the first two exons of

kuz. The somatic musculature appears to be nor-

mally developed. B Multiple mutant of kuz3, Kul

and about 31 other genes. kuz3 is an insertion of

a duplicated fragment from the X chromosome into

kuz ; the Kul deficiency is a transheterozygous cross-

ing of Df(3R)BSC846 and Df(3R)BSC547. In this

embryo, the β3Tubulin-positive cells are not recog-

nizable as muscles. C In this stage 16 embryo

with the same genotype, the somatic musculature

appears mostly normal.
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Appendix A Analysis of various candidate genes

A Df(3R)BSC620 α-β3Tubulin B Df(3R)BSC620 α-β3Tubulin

C kuze29-4;Df(3R)BSC620 α-β3Tubulin D kuze29-4;Df(3R)BSC620 α-β3Tubulin

Figure A.18. Metalloproteases are a large

family of enzymes whose members are often able

to functionally replace each other. Because of this,

double mutants might show a phenotype where mu-

tations of a single metalloprotease do not. Here,

the muscle phenotype of the metalloprotease tumor

necrosis factor alpha—converting enzyme (Tace) is

analyzed with α-β3Tubulin stains. A The de-

ficiency Df(3R)BSC620 (99C5–99D3) covers Tace

and about 33 other genes. Stage 14. The somatic

musculature appears normal. B Same embryo,

different optical section. The midgut musculature

also appears normal. C A multiple mutant of

kuze29-4, Tace and about 33 other genes. kuze29-4 is

a small deletion that cover the first two exons of kuz.

Stage 15. The somatic musculature appears normal.

D Same embryo, higher magnification, different op-

tical section. The circular visceral musculature is

present and appears to be normally developed.
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Appendix A Analysis of various candidate genes

A Df(2R)BSC135 α-β3Tubulin B Df(2R)BSC135 α-β3Tubulin

Figure A.19. The peptidase CG9416 is ana-

lyzed because of its mesodermal expression pattern.

The deficiency Df(3R)BSC135 (56C11–56D5) cov-

ers CG9416 and about 18 other genes. A Stage

15. The somatic musculature is developing nor-

mally. B Stage 14. The circular visceral mus-

culature is present.

A Rya-R44F16 α- β3Tubulin

Figure A.20. Ryanodine receptor 44F

(Rya-R44F), also known as Ryanodine re-

ceptor (RyR), is a Calcium channel gene lo-

cated in chromosomal band 44F, directly

downstream of SnS. The protein is nec-

essary for muscle contraction (Sullivan

et al. 2000). Many protein components of

mature musculature, such as Rols and Titin,

also play a role during myogenesis; specif-

ically, the vesicle fusion that occurs dur-

ing myoblast fusion might be triggered by

Rya-R44F controlled Calcium influx. Rya-

R44F is expressed in myoblasts (Hasan

and Rosbash 1992).

The mutant Rya-R44F16 is a jump-out that

deletes about 1,8kBP around the first exon.

This anti-β3Tubulin stained stage 15 em-

bryo shows a normal somatic musculature.
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Appendix B

PCR amplification of the

genomic sequence of barr

All primer sequences given in 3’–5’ direction.

Primers for the upstream half of barr:

barr2F CAT TGC CAT AGT CCA AAG CCT TGG

barr2R GCC AGT GTT GGC AAG AGT CCC

Primers for the downstream half of barr:

barr1F CTC GCA TAT GTA CAG AGT GTA ATC GG

barr1R CGA AGA AGT CAG CGC ATC TGA ATG C

The PCR is conducted in a volume of 25 µl with 0,5 µl of genomic DNA template,

25 pmol of each primer and 1 U of Accuprime DNA polymerase.
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Appendix B PCR amplification of the genomic sequence of barr

Thermocycling sequence:

5 min 94◦C

Repeat 3×:

1 min 94◦C

2 min 60◦C

2 min 68◦C

Repeat 35×:

30 s 94◦C

30 s 60◦C

2 min 68◦C
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Appendix C

Embryonic developmental

stages according to the Atlas of

Drosophila Development

136



Appendix C Embryonic developmental stages

Figure C.1. Schematic representation of stages 5 to

17 of D. melanogaster embryonic development according to

Campos-Ortega and Hartenstein 1985.

Abbreviations: amg Anterior midgut rudiment; br brain; cf

cephalic furrow; cl clypeolabrum; df dorsal fold; dr dorsal

ridge; es esophagus; go gonads; hg hindgut; lb labial bud;

md mandibular bud; mg midgut; mp Malpighian tubules;

mx maxillary bud; pc pole cells; pmg posterior midgut rudi-

ment; pnb procephalic neuroblasts; pro procephalon; ps

posterior spiracle; po proventriculus; sg salivary gland; stp

stomodeal plate; st stomodeum; tp tracheal pits; vf ventral

furrow; vnb ventral neuroblasts; vnc ventral nerve cord.

Modified from Hartenstein 1993.

137



Appendix D

Abbreviations

D.1 Genetic symbols

ap apterous

asp abnormal spindle

atm (=tefu) ataxia telangiectasia mutated

barr barren

cadN cadherin N

Cap-D2 Chromosome associated protein D2

Cap-G Chromosome associated protein G

Cap-H Chromosome associated protein H

CyO Curly of Oster

Cy Curly

da daughterless

Dfd Deformed

dia diaphanous
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Appendix D Abbreviations

dpp decapentaplegic

Dr Drop

duf (=kirre) dumbfounded

eve even-skipped

Fab-7 Frontabdominal-7

FasIII Fasciclin III

fbl fumble

FM7c first chromosome multiply inverted 7c

fs(1)K10 female sterile (on first chromosome) K10

ftz fushi tarazu

glu (=SMC4) gluon

hg hindgut

If Irregular facets

kirre (=duf) kin of Irregular Chiasma

Kr Krüppel

Kul Kuzbanian-like

kuz kuzbanian

l(3)11m-254 (=Medea) lethal (on third chromosome) 11m-254

l(3)7m-62 (=sti) lethal (on third chromosome) 7m-62

lb ladybird

lmd lame duck

l’sc lethal of scute
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Appendix D Abbreviations

mcph1 microcephaly 1

Mef2 Myocyte enhancer factor 2

orc2 origin recognition complex subunit 2

ph polyhomeotic

rod rough deal

rols rolling pebbles

rst roughest

Sb Stubble

siz schizo (=loner)

slp sloppy-paired

SMC1 structural maintainance of chromosomes 1

SMC2 structural maintainance of chromosomes 2

SMC4 (=glu) structural maintainance of chromosomes 4

sns sticks and stones

Sp Sternopleural

sti sticky

TDLZ TM3, Sb, Deformed-lacZ

tefu (=atm) telomer fusion

TFLZ TM3, Sb, fushi tarazu-lacZ

TGX twist-Gal4 on X chromosome

TM2 Third chromosome multiply inverted 2

TM3 Third chromosome multiply inverted 3

140



Appendix D Abbreviations

tsr twin star

twi twist

UAS Upstream activating sequence

Ubx Ultrabithorax

vtd verthandi

wasp Wiskott-Aldrich syndrome protein

wg wingless

wip Wasp-interacting protein

w white

D.2 List of species

Caenorhabditis elegans

Drosophila melanogaster

Escherichia coli

Saccharomyces cerevisiae

Schizosaccharomyces pombe

Thermus aquaticus

Xenopus laevis

D.3 List of abbreviations

ADAM A disintegrin and metalloprotease

ADAM-TS ADAM - Thrombospondin

bp base pairs

CID computed image deconvolution
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Appendix D Abbreviations

cns central nervous system

DAB 3-3-Diaminobenzidine tetrahydrochloride

dd double distilled

demin. demineralized

DIC differential interference contrast

DIG Digoxigenin

DNA Deoxyribonucleic acid

dNTP deoxynucleotide triphosphate

eGFP enhanced green fluorescent protein

EMS Ethyl methanesulfonate

et al. et alii (and others)

FuRMAS Fusion-restricted myogenic adhesive complex

GFP green fluorescent protein

Ig Immunoglobin

IgSF Immunoglobin subfamily

kbp 1000 base pairs

LB Luria - Bertani

mRNA messenger ribonucleic acid

n.d. not determined

OD optical density

ORF open reading frame

PCR polymerase chain reaction
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Appendix D Abbreviations

pns peripheral nervous system

SBM segmental border muscle

Taq Thermus aquaticus

TEM transmission electron microscopy

TUNEL terminal deoxynucleotidyl transferase dUTP nick end labeling

UTR untranslated region

UV ultraviolet

v/v volume of volume

w/v weight of volume
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C. Bénard, H. Kébir, S. Takagi, and S. Hekimi. mau-2 acts cell-autonomously to guide axonal

migrations in Caenorhabditis elegans. Development (Cambridge, England), 131(23):

5947–58, 2004. doi: 10.1242/dev.01433. ↑p. 36
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S. Önel. The Wiskott-Aldrich syndrome protein (WASP) is essential for myoblast fusion

in Drosophila. Developmental biology, 304(2):664–74, 2007. doi: 10.1016/j.ydbio.2007.

01.015. ↑p. 14, 83

A. Schleiffer, S. Kaitna, S. Maurer-Stroh, M. Glotzer, K. Nasmyth, and F. Eisenhaber. Kleisins:

a superfamily of bacterial and eukaryotic SMC protein partners. Molecular cell, 11(3):

571–5, 2003. ↑p. 18

D. Schmidt, P. Schwalie, C. Ross-Innes, A. Hurtado, G. Brown, J. Carroll, P. Flicek, and

D. Odom. A CTCF-independent role for cohesin in tissue-specific transcription. Genome

research, 20(5):578–88, 2010. doi: 10.1101/gr.100479.109. ↑p. 36
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B. Schüle, A. Oviedo, K. Johnston, S. Pai, and U. Francke. Inactivating mutations in ESCO2

cause SC phocomelia and Roberts syndrome: no phenotype-genotype correlation. Amer-

ican journal of human genetics, 77(6):1117–28, 2005. doi: 10.1086/498695. ↑p. 37

K. Schuster, B. Leeke, M. Meier, Y. Wang, T. Newman, S. Burgess, and J. Horsfield. A neural

crest origin for cohesinopathy heart defects. Human molecular genetics, 24(24):7005–16,

2015. doi: 10.1093/hmg/ddv402. ↑p. 36

K. Sens, S. Zhang, P. Jin, R. Duan, G. Zhang, F. Luo, L. Parachini, and E. Chen. An invasive

podosome-like structure promotes fusion pore formation during myoblast fusion. The

Journal of cell biology, 191(5):1013–27, 2010. doi: 10.1083/jcb.201006006. ↑p. 15, 16

165



Bibliography

T. Serano and R. Cohen. A small predicted stem-loop structure mediates oocyte localization of

Drosophila K10 mRNA. Development (Cambridge, England), 121(11):3809–18, 1995.

↑p. 17

K. Shilagardi, S. Li, F. Luo, F. Marikar, R. Duan, P. Jin, J. Kim, K. Murnen, and E. Chen.

Actin-propelled invasive membrane protrusions promote fusogenic protein engagement

during cell-cell fusion. Science (New York, N.Y.), 340(6130):359–63, 2013. doi: 10.

1126/science.1234781. ↑p. 16

K. Shintomi and T. Hirano. Releasing cohesin from chromosome arms in early mitosis: opposing

actions of Wapl-Pds5 and Sgo1. Genes & development, 23(18):2224–36, 2009. doi:

10.1101/gad.1844309. ↑p. 32, 34

P. Simpson. Maternal-Zygotic Gene Interactions during Formation of the Dorsoventral Pattern

in Drosophila Embryos. Genetics, 105(3):615–32, 1983. ↑p. 11

R. Skibbens, L. Corson, D. Koshland, and P. Hieter. Ctf7p is essential for sister chromatid

cohesion and links mitotic chromosome structure to the DNA replication machinery.

Genes & development, 13(3):307–19, 1999. ↑p. 34

V. Sollars, X. Lu, L. Xiao, X. Wang, M. Garfinkel, and D. Ruden. Evidence for an epigenetic

mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nature

genetics, 33(1):70–4, 2003. doi: 10.1038/ng1067. ↑p. 35

D. Solomon, J. Kim, and T. Waldman. Cohesin gene mutations in tumorigenesis: from

discovery to clinical significance. BMB reports, 47(6):299–310, 2014. ↑p. 38

M. Somma, B. Fasulo, G. Siriaco, and G. Cenci. Chromosome condensation defects in barren

RNA-interfered Drosophila cells. Genetics, 165(3):1607–11, 2003. ↑p. 24

A. Spradling and G. Rubin. Transposition of cloned P elements into Drosophila germ line

chromosomes. Science (New York, N.Y.), 218(4570):341–7, 1982. ↑p. 9, 67

B. Srinivas, J. Woo, W. Leong, and S. Roy. A conserved molecular pathway mediates myoblast

fusion in insects and vertebrates. Nature genetics, 39(6):781–6, 2007. doi: 10.1038/

ng2055. ↑p. 10

S. Steffensen, P. Coelho, N. Cobbe, S. Vass, M. Costa, B. Hassan, S. Prokopenko, H. Bellen,

M. Heck, and C. Sunkel. A role for Drosophila SMC4 in the resolution of sister chromatids

in mitosis. Current biology : CB, 11(5):295–307, 2001. ↑p. 24, 25

N. Stevens. A study of the germ cells of certain Diptera, with reference to the heterochromo-

somes and phenomena of synapsis. Journal of Experimental Zoology, 5:359–374, 1908.

↑p. 27

166



Bibliography

T. Strick, T. Kawaguchi, and T. Hirano. Real-time detection of single-molecule DNA

compaction by condensin I. Current biology : CB, 14(10):874–80, 2004. doi:

10.1016/j.cub.2004.04.038. ↑p. 23

M. Strünkelnberg, B. Bonengel, L. Moda, A. Hertenstein, H. de Couet, R. Ramos, and K. Fis-

chbach. rst and its paralogue kirre act redundantly during embryonic muscle development

in Drosophila. Development (Cambridge, England), 128(21):4229–39, 2001. ↑p. 14

A. Strunnikov. One-hit wonders of genomic instability. Cell division, 5(1):15, 2010. doi:

10.1186/1747-1028-5-15. ↑p. 26, 31, 38

A. Strunnikov, V. Larionov, and D. Koshland. SMC1: an essential yeast gene encoding a

putative head-rod-tail protein is required for nuclear division and defines a new ubiquitous

protein family. The Journal of cell biology, 123(6):1635–48, 1993. ↑p. 18

A. Strunnikov, E. Hogan, and D. Koshland. SMC2, a Saccharomyces cerevisiae gene essential

for chromosome segregation and condensation, defines a subgroup within the SMC family.

Genes & development, 9(5):587–99, 1995. ↑p. 18, 24, 25

K. Sullivan, K. Scott, C. Zuker, and G. Rubin. The ryanodine receptor is essential for larval de-

velopment in Drosophila melanogaster. Proceedings of the National Academy of Sciences

of the United States of America, 97(11):5942–7, 2000. doi: 10.1073/pnas.110145997.

↑p. 133

T. Sutani and M. Yanagida. DNA renaturation activity of the SMC complex implicated in

chromosome condensation. Nature, 388(6644):798–801, 1997. doi: 10.1038/42062.

↑p. 23

T. Sutani, T. Yuasa, T. Tomonaga, N. Dohmae, K. Takio, and M. Yanagida. Fission yeast

condensin complex: essential roles of non-SMC subunits for condensation and Cdc2

phosphorylation of Cut3/SMC4. Genes & development, 13(17):2271–83, 1999. ↑p. 24

T. Sutani, T. Kawaguchi, R. Kanno, T. Itoh, and K. Shirahige. Budding yeast Wpl1(Rad61)-

Pds5 complex counteracts sister chromatid cohesion-establishing reaction. Current biol-

ogy : CB, 19(6):492–7, 2009. doi: 10.1016/j.cub.2009.01.062. ↑p. 34

S. Takagi, C. Bénard, J. Pak, D. Livingstone, and S. Hekimi. Cellular and axonal migrations are

misguided along both body axes in the maternal-effect mau-2 mutants of Caenorhabditis

elegans. Development (Cambridge, England), 124(24):5115–26, 1997. ↑p. 36
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