Publikationsserver der Universitätsbibliothek Marburg

Titel:Funktionelle Charakterisierung der Gene NPC2 und ADRBK1 im Pankreaskarzinom
Autor:Häuser, Christin
Weitere Beteiligte: Buchholz, Malte (Prof. Dr.)
Veröffentlicht:2018
URI:https://archiv.ub.uni-marburg.de/diss/z2018/0202
URN: urn:nbn:de:hebis:04-z2018-02022
DOI: https://doi.org/10.17192/z2018.0202
DDC:610 Medizin
Titel (trans.):Functional characterization of the genes NPC2 and ADRBK1 in pancreatic ductal adenocarcinoma
Publikationsdatum:2018-05-03
Lizenz:https://creativecommons.org/licenses/by-nc-sa/4.0

Dokument

Schlagwörter:
Pankreaskarzinom, ADRBK1, NPC2, pankreatisch duktales Adenokarzinom, pancreatic ductal adenocarcinoma, pancreatic cancer, ADRBK1, NPC2

Zusammenfassung:
Das duktale Adenokarzinom des Pankreas stellt heute immer noch eines der aggressivsten und am schlechtesten behandelbaren Malignome dar. Deshalb ist es umso wichtiger, Genetik und Pathomechanismen dieser Erkrankung im Detail aufzuklären und Marker zur Früh- bzw. Differenzialdiagnose sowie potentielle Ziele für targeted therapies zu finden. Mit Hilfe von enzymatisch generierten, Transkriptom-basierten shRNA-Bibliotheken konnten in Hochdurchsatzanalysen potentielle Onko- bzw. Tumorsuppressorgene in PDAC identifiziert werden. NPC2 wurde als eines dieser potentiellen Onkogene für weitere funktionelle Assays im Bezug auf Zellvitalität, -proliferation und -motilität ausgewählt. Expressionsanalysen auf mRNA-Ebene zeigten eine deutliche Überexpression des Gens sowohl in pankreatischem Tumorgewebe als auch in verschiedenen Pankreaskarzinomzelllinien. Von vier in dieser Arbeit untersuchten Zelllinien zeigte sich nach siRNA-vermitteltem Knockdown jedoch nur in BxPC3-Zellen ein akuter funktioneller Effekt im Sinne einer hoch signifikanten Abnahme der Zellvitalität. Dieser wachstumsfördernde Effekt von NPC2 lässt sich nicht auf das Pankreaskarzinom im Allgemeinen übertragen. Die Zellproliferation und –motilität waren nach transienter Repression von NPC2 im Kurzzeit-Versuch nicht beeinträchtigt. Auch das Gen ADRBK1 wurde in einem Hochdurchsatz-Screening, welches auf Pankreaskarzinom-spezifischen cDNA-Microarrays und dem Prinzip der reversen Transfektion basierte, identifiziert. ADRBK1 zeigte eine zeitabhängige Translokation in den Nukleus und es stellte sich die Frage, ob die Kinase eine direkte Rolle bei der Genregulation spielt. Vorversuche der Arbeitsgruppe zeigten zudem, dass ADRBK1 im humanen PDAC nicht nur signifikant überexprimiert wird, sondern auch pro- proliferative Effekte vermittelt. Rekombinante Überexpression der Kinase beschleunigte das Zellwachstum, während ihr Knockdown dieses signifikant inhibierte. Als Ursache für die beobachtete Wachstumshemmung kamen potentiell die Induktion eines Zellzyklusarrests oder Apoptose in Frage. Die daraufhin von mir im Western-Blot untersuchten Proteinlevel von CDKN1A/p21, CDKN1B/p27, Cyclin A, Cyclin D1, pRB und c-myc waren nach ADRBK1-Repression jedoch unverändert. Eine Spaltung der Apoptosemarker PARP und Caspase 3 war nur in der Zelllinie PaTu-8988t nachweisbar. Somit kann weder die Induktion von Apoptose noch ein Zellzyklusarrest als maßgebliche Ursache der Wachstumsabnahme nach ADRBK-Knockdown gelten. Um die Bedeutung des Gens für PDAC weiter aufzuklären, sollte die nukleäre Translokation und deren potentielle Auswirkungen auf die Genfunktion weiter untersucht werden. Zudem sollten zelluläre Zielproteine von ADRBK1, die Relevanz der Kinase beim Zusammenspiel von Krebszellen mit infiltrierenden Immunzellen und ihre Rolle bezüglich der Zellmotilität identifiziert werden.

Bibliographie / References

  1. Kastrinos, F., Mukherjee, B., Tayob, N., Wang, F., Sparr, J., Raymond, V. M., … Syngal, S. (2009). Risk of pancreatic cancer in families with Lynch syndrome. JAMA, 302(16), 1790-5. http://doi.org/10.1001/jama.2009.1529
  2. Neoptolemos, J. P., Stocken, D. D., Bassi, C., Ghaneh, P., Cunningham, D., Goldstein, D., … Büchler, M. W. (2010). Adjuvant chemotherapy with fluorouracil plus folinic acid vs gemcitabine following pancreatic cancer resection: a randomized controlled trial. JAMA, 304(10), 1073-81. http://doi.org/10.1001/jama.2010.1275
  3. Wagner, M., Redaelli, C., Lietz, M., Seiler, C. A., Friess, H., & Büchler, M. W. (2004). Curative resection is the single most important factor determining outcome in patients with pancreatic adenocarcinoma. The British Journal of Surgery, 91(5), 586-94. http://doi.org/10.1002/bjs.4484
  4. McWilliams, R. R., Rabe, K. G., Olswold, C., De Andrade, M., & Petersen, G. M. (2005). Risk of malignancy in first-degree relatives of patients with pancreatic carcinoma. Cancer, 104(2), 388-94. http://doi.org/10.1002/cncr.21166
  5. Fensterer, H., Giehl, K., Buchholz, M., Ellenrieder, V., Buck, A., Kestler, H. A., … Gress, T. M. (2004). Expression profiling of the influence of RAS mutants on the TGFB1-induced phenotype of the pancreatic cancer cell line PANC-1. Genes, Chromosomes & Cancer, 39(3), 224-35. http://doi.org/10.1002/gcc.20000
  6. Klein, A., Amigo, L., Retamal, M. J., Morales, M. G., Miquel, J. F., Rigotti, A., & Zanlungo, S. (2006). NPC2 is expressed in human and murine liver and secreted into bile: potential implications for body cholesterol homeostasis. Hepatology (Baltimore, Md.), 43(1), 126-33. http://doi.org/10.1002/hep.20985
  7. Yamanashi, Y., Takada, T., Shoda, J.-I., & Suzuki, H. (2012). Novel function of Niemann-Pick C1-like 1 as a negative regulator of Niemann-Pick C2 protein. Hepatology (Baltimore, Md.), 55(3), 953-64. http://doi.org/10.1002/hep.24772
  8. Wei, Z., Hurtt, R., Ciccarelli, M., Koch, W. J., & Doria, C. (2012). Growth inhibition of human hepatocellular carcinoma cells by overexpression of G-protein-coupled receptor kinase 2. Journal of Cellular Physiology, 227(6), 2371-7. http://doi.org/10.1002/jcp.22972
  9. Aredia, F., & Scovassi, A. I. (2014). Poly(ADP-ribose): A signaling molecule in different paradigms of cell death. Biochemical Pharmacology, 92(1), 157-163. http://doi.org/10.1016/j.bcp.2014.06.021
  10. Kwon, H. J., Abi-Mosleh, L., Wang, M. L., Deisenhofer, J., Goldstein, J. L., Brown, M. S., & Infante, R. E. (2009). Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol. Cell, 137(7), 1213-24. http://doi.org/10.1016/j.cell.2009.03.049
  11. Thiery, J. P., Acloque, H., Huang, R. Y. J., & Nieto, M. A. (2009). Epithelial- mesenchymal transitions in development and disease. Cell, 139(5), 871-90. http://doi.org/10.1016/j.cell.2009.11.007
  12. Huth, J., Buchholz, M., Kraus, J. M., Mølhave, K., Gradinaru, C., v Wichert, G., … Kestler, H. A. (2011). TimeLapseAnalyzer: multi-target analysis for live-cell imaging and time-lapse microscopy. Computer Methods and Programs in Biomedicine, 104(2), 227-34. http://doi.org/10.1016/j.cmpb.2011.06.002
  13. Ben, Q., Xu, M., Ning, X., Liu, J., Hong, S., Huang, W., … Li, Z. (2011). Diabetes mellitus and risk of pancreatic cancer: A meta-analysis of cohort studies. European Journal of Cancer (Oxford, England : 1990), 47(13), 1928-37. http://doi.org/10.1016/j.ejca.2011.03.003
  14. Bezard, E., Gross, C. E., Qin, L., Gurevich, V. V, Benovic, J. L., & Gurevich, E. V. (2005). L-DOPA reverses the MPTP-induced elevation of the arrestin2 and GRK6 expression and enhanced ERK activation in monkey brain. Neurobiology of Disease, 18(2), 323-35. http://doi.org/10.1016/j.nbd.2004.10.005
  15. Patterson, M. C., Hendriksz, C. J., Walterfang, M., Sedel, F., Vanier, M. T., & Wijburg, F. (2012). Recommendations for the diagnosis and management of Niemann-Pick disease type C: an update. Molecular Genetics and Metabolism, 106(3), 330-44. http://doi.org/10.1016/j.ymgme.2012.03.012
  16. Iacobuzio-Donahue, C. A., Maitra, A., Olsen, M., Lowe, A. W., van Heek, N. T., Rosty, C., … Goggins, M. (2003). Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays. The American Journal of Pathology, 162(4), 1151-62. http://doi.org/10.1016/S0002-9440(10)63911-9
  17. Ziauddin, J., & Sabatini, D. M. (2001). Microarrays of cells expressing defined cDNAs. Nature, 411(6833), 107-10. http://doi.org/10.1038/35075114
  18. Vogelstein, B., & Kinzler, K. W. (2004). Cancer genes and the pathways they control. Nature Medicine, 10(8), 789-99. http://doi.org/10.1038/nm1087
  19. Siegel, P. M., & Massagué, J. (2003). Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nature Reviews. Cancer, 3(11), 807-21. http://doi.org/10.1038/nrc1208
  20. Meyer, N., & Penn, L. Z. (2008). Reflecting on 25 years with MYC. Nature Reviews Cancer, 8(12), 976-990. http://doi.org/10.1038/nrc2231
  21. Abbas, T., & Dutta, A. (2009). p21 in cancer: intricate networks and multiple activities. Nature Reviews. Cancer, 9(6), 400-14. http://doi.org/10.1038/nrc2657
  22. Taylor, R. C., Cullen, S. P., & Martin, S. J. (2008). Apoptosis: controlled demolition at the cellular level. Nature Reviews Molecular Cell Biology, 9(3), 231-241. http://doi.org/10.1038/nrm2312
  23. Li, J., Gu, D., Lee, S. S.-Y., Song, B., Bandyopadhyay, S., Chen, S., … Cheng, J.-X. (2016). Abrogating cholesterol esterification suppresses growth and metastasis of pancreatic cancer. Oncogene. http://doi.org/10.1038/onc.2016.168
  24. Ho, J., Cocolakis, E., Dumas, V. M., Posner, B. I., Laporte, S. A., & Lebrun, J.-J. (2005). The G protein-coupled receptor kinase-2 is a TGFbeta-inducible antagonist of TGFbeta signal transduction. The EMBO Journal, 24(18), 3247-58. http://doi.org/10.1038/sj.emboj.7600794
  25. Buchholz, M., Schatz, A., Wagner, M., Michl, P., Linhart, T., Adler, G., … Ellenrieder, V. (2006). Overexpression of c-myc in pancreatic cancer caused by ectopic activation of NFATc1 and the Ca2+/calcineurin signaling pathway. The EMBO Journal, 25(15), 3714-3724. http://doi.org/10.1038/sj.emboj.7601246
  26. Patial, S., Luo, J., Porter, K. J., Benovic, J. L., & Parameswaran, N. (2010). G-protein- coupled-receptor kinases mediate TNFα-induced NFκB signalling via direct interaction with and phosphorylation of IκBα. The Biochemical Journal, 425(1), 169-78. http://doi.org/10.1042/BJ20090908
  27. Kanda, M., Matthaei, H., Wu, J., Hong, S.-M., Yu, J., Borges, M., … Goggins, M. (2012). Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology, 142(4), 730-733.e9. http://doi.org/10.1053/j.gastro.2011.12.042
  28. Conroy, T., Desseigne, F., Ychou, M., Bouché, O., Guimbaud, R., Bécouarn, Y., … Ducreux, M. (2011). FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. The New England Journal of Medicine, 364(19), 1817-25. http://doi.org/10.1056/NEJMoa1011923
  29. Brugge, W. R., Lauwers, G. Y., Sahani, D., Fernandez-del Castillo, C., & Warshaw, A. L. (2004). Cystic neoplasms of the pancreas. The New England Journal of Medicine, 351(12), 1218-26. http://doi.org/10.1056/NEJMra031623
  30. Silva, J. M., Mizuno, H., Brady, A., Lucito, R., & Hannon, G. J. (2004). RNA interference microarrays: high-throughput loss-of-function genetics in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 101(17), 6548-52. http://doi.org/10.1073/pnas.0400165101
  31. Jiang, X., Yang, P., & Ma, L. (2009). Kinase activity-independent regulation of cyclin pathway by GRK2 is essential for zebrafish early development. Proceedings of the National Academy of Sciences of the United States of America, 106(25), 10183-8. http://doi.org/10.1073/pnas.0812105106
  32. Csepeggi, C., Jiang, M., Kojima, F., Crofford, L. J., & Frolov, A. (2011). Somatic cell plasticity and Niemann-Pick type C2 protein: fibroblast activation. The Journal of Biological Chemistry, 286(3), 2078-87. http://doi.org/10.1074/jbc.M110.135897
  33. Deer, E. L., González-Hernández, J., Coursen, J. D., Shea, J. E., Ngatia, J., Scaife, C. L., … Mulvihill, S. J. (2010). Phenotype and genotype of pancreatic cancer cell lines. Pancreas, 39(4), 425-35. http://doi.org/10.1097/MPA.0b013e3181c15963
  34. Conrad, C., Erfle, H., Warnat, P., Daigle, N., Lörch, T., Ellenberg, J., … Eils, R. (2004). Automatic identification of subcellular phenotypes on human cell arrays. Genome Research, 14(6), 1130-6. http://doi.org/10.1101/gr.2383804
  35. Jones, S., Zhang, X., Parsons, D. W., Lin, J. C.-H., Leary, R. J., Angenendt, P., … Kinzler, K. W. (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science (New York, N.Y.), 321(5897), 1801-6. http://doi.org/10.1126/science.1164368
  36. Jones, S., Hruban, R. H., Kamiyama, M., Borges, M., Zhang, X., Parsons, D. W., … Klein, A. P. (2009). Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science (New York, N.Y.), 324(5924), 217. http://doi.org/10.1126/science.1171202
  37. Olive, K. P., Jacobetz, M. A., Davidson, C. J., Gopinathan, A., McIntyre, D., Honess, D., … Tuveson, D. A. (2009). Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science (New York, N.Y.), 324(5933), 1457-61. http://doi.org/10.1126/science.1171362
  38. Neesse, a., Michl, P., Frese, K. K., Feig, C., Cook, N., Jacobetz, M. a., … Tuveson, D. a. (2011). Stromal biology and therapy in pancreatic cancer. Gut, 60(6), 861-868. http://doi.org/10.1136/gut.2010.226092
  39. Premont, R. T., & Gainetdinov, R. R. (2007). Physiological roles of G protein-coupled receptor kinases and arrestins. Annual Review of Physiology, 69, 511-34. http://doi.org/10.1146/annurev.physiol.69.022405.154731
  40. Buchholz, M., Kestler, H. A., Bauer, A., Böck, W., Rau, B., Leder, G., … Gress, T. M. (2005). Specialized DNA arrays for the differentiation of pancreatic tumors. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 11(22), 8048-54. http://doi.org/10.1158/1078-0432.CCR-05- 1274
  41. Young, A., Lou, D., & McCormick, F. (2013). Oncogenic and wild-type Ras play divergent roles in the regulation of mitogen-activated protein kinase signaling. Cancer Discovery, 3(1), 112-23. http://doi.org/10.1158/2159-8290.CD-12-0231
  42. Kennedy, B. E., Charman, M., & Karten, B. (2012). Niemann-Pick Type C2 protein contributes to the transport of endosomal cholesterol to mitochondria without interacting with NPC1. Journal of Lipid Research, 53(12), 2632-42. http://doi.org/10.1194/jlr.M029942
  43. Shah, A. N., Summy, J. M., Zhang, J., Park, S. I., Parikh, N. U., & Gallick, G. E. (2007). Development and characterization of gemcitabine-resistant pancreatic tumor cells. Annals of Surgical Oncology, 14(12), 3629-37. http://doi.org/10.1245/s10434-007- 9583-5
  44. Sugawara, M., Ohye, H., Tomoda, C., Kogai, T., Kamata, Y., Pezeshkpour, G. H., & Moatamed, F. (2011). A novel role for Niemann-Pick disease type 2C protein in papillae formation. PloS One, 6(1), e15777. http://doi.org/10.1371/journal.pone.0015777
  45. Liao, Y.-J., Lin, M.-W., Yen, C.-H., Lin, Y.-T., Wang, C.-K., Huang, S.-F., … Arthur Chen, Y.-M. (2013). Characterization of Niemann-Pick Type C2 protein expression in multiple cancers using a novel NPC2 monoclonal antibody. PloS One, 8(10), e77586. http://doi.org/10.1371/journal.pone.0077586
  46. Buchholz, M., Honstein, T., Kirchhoff, S., Kreider, R., Schmidt, H., Sipos, B., & Gress, T. M. (2015). A multistep high-content screening approach to identify novel functionally relevant target genes in pancreatic cancer. PloS One, 10(4), e0122946. http://doi.org/10.1371/journal.pone.0122946
  47. Kamata, T., Jin, H., Giblett, S., Patel, B., Patel, F., Foster, C., … Whiteside, T. (2015). The cholesterol-binding protein NPC2 restrains recruitment of stromal macrophage-lineage cells to early-stage lung tumours. EMBO Molecular Medicine, 7(9), 1119-37. http://doi.org/10.15252/emmm.201404838
  48. Métayé, T., Levillain, P., Kraimps, J.-L., & Perdrisot, R. (2008). Immunohistochemical detection, regulation and antiproliferative function of G-protein-coupled receptor kinase 2 in thyroid carcinomas. The Journal of Endocrinology, 198(1), 101-10. http://doi.org/10.1677/JOE-07-0562
  49. Siegel, R. L., Miller, K. D., & Jemal, A. (2017). Cancer statistics, 2017. CA: A Cancer Journal for Clinicians, 67(1), 7-30. http://doi.org/10.3322/caac.21387
  50. Cruz, P. M. R., Mo, H., McConathy, W. J., Sabnis, N., & Lacko, A. G. (2013). The role of cholesterol metabolism and cholesterol transport in carcinogenesis: a review of scientific findings, relevant to future cancer therapeutics. Frontiers in Pharmacology, 4, 119. http://doi.org/10.3389/fphar.2013.00119
  51. Schober, M., Jesenofsky, R., Faissner, R., Weidenauer, C., Hagmann, W., Michl, P., … Löhr, J.-M. (2014). Desmoplasia and chemoresistance in pancreatic cancer. Cancers, 6(4), 2137-54. http://doi.org/10.3390/cancers6042137
  52. Lafarga, V., Mayor, F., & Penela, P. (2012). The interplay between G protein-coupled receptor kinase 2 (GRK2) and histone deacetylase 6 (HDAC6) at the crossroads of epithelial cell motility. Cell Adhesion & Migration, 6(6), 495-501. http://doi.org/10.4161/cam.21585
  53. Lombardi, M. S., Kavelaars, A., Cobelens, P. M., Schmidt, R. E., Schedlowski, M., & Heijnen, C. J. (2001). Adjuvant arthritis induces down-regulation of G protein- coupled receptor kinases in the immune system. Journal of Immunology (Baltimore, Md. : 1950), 166(3), 1635-40.
  54. Oettle, H., Neuhaus, P., Hochhaus, A., Hartmann, J. T., Gellert, K., Ridwelski, K., … Riess, H. (2013). Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: the CONKO-001 randomized trial. JAMA, 310(14), 1473-81.
  55. Ungerer, M., Böhm, M., Elce, J. S., Erdmann, E., & Lohse, M. J. (1993). Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. Circulation, 87(2), 454-63.
  56. Gress, T. M., Müller-Pillasch, F., Geng, M., Zimmerhackl, F., Zehetner, G., Friess, H., … Lehrach, H. (1996). A pancreatic cancer-specific expression profile. Oncogene, 13(8), 1819-30.
  57. Benovic, J. L., Strasser, R. H., Caron, M. G., & Lefkowitz, R. J. (1986). Beta-adrenergic receptor kinase: identification of a novel protein kinase that phosphorylates the agonist-occupied form of the receptor. Proceedings of the National Academy of Sciences of the United States of America, 83(9), 2797-801.
  58. Hurlé, M. A. (2001). Changes in the expression of G protein-coupled receptor kinases and beta-arrestin 2 in rat brain during opioid tolerance and supersensitivity. Journal of Neurochemistry, 77(2), 486-92.
  59. Tan, M. H., Nowak, N. J., Loor, R., Ochi, H., Sandberg, A. A., Lopez, C., … Chu, T. M. (1986). Characterization of a new primary human pancreatic tumor line. Cancer Investigation, 4(1), 15-23.
  60. Rulyak, S. J., Brentnall, T. A., Lynch, H. T., & Austin, M. A. (2003). Characterization of the neoplastic phenotype in the familial atypical multiple-mole melanoma- pancreatic carcinoma syndrome. Cancer, 98(4), 798-804.
  61. Danksagung Zuerst bedanke ich mich bei Herrn Prof. Dr. Thomas Gress für die Möglichkeit meine Doktorarbeit in seiner Abteilung anfertigen zu dürfen.
  62. Jaber, M., Koch, W. J., Rockman, H., Smith, B., Bond, R. A., Sulik, K. K., … Giros, B. (1996). Essential role of beta-adrenergic receptor kinase 1 in cardiac development and function. Proceedings of the National Academy of Sciences of the United States of America, 93(23), 12974-9.
  63. Elsässer, H. P., Lehr, U., Agricola, B., & Kern, H. F. (1992). Establishment and characterisation of two cell lines with different grade of differentiation derived from one primary human pancreatic adenocarcinoma. Virchows Archiv. B, Cell Pathology Including Molecular Pathology, 61(5), 295-306.
  64. Iwamura, T., Katsuki, T., & Ide, K. (1987). Establishment and characterization of a human pancreatic cancer cell line (SUIT-2) producing carcinoembryonic antigen and carbohydrate antigen 19-9. Japanese Journal of Cancer Research : Gann, 78(1), 54-62.
  65. Prowatke, I., Devens, F., Benner, A., Gröne, E. F., Mertens, D., Gröne, H.-J., … Joos, S. (2007). Expression analysis of imbalanced genes in prostate carcinoma using tissue microarrays. British Journal of Cancer, 96(1), 82-8.
  66. Crnogorac-Jurcevic, T., Efthimiou, E., Nielsen, T., Loader, J., Terris, B., Stamp, G., … Lemoine, N. R. (2002). Expression profiling of microdissected pancreatic adenocarcinomas. Oncogene, 21(29), 4587-94.
  67. Ferlay, J., Soerjomataram, I., Ervik, M., Dikshit, R., Eser, S., Mathers, C., … Bray, F. (2013). GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase. No. 11 [Internet].
  68. Vroon, A., Kavelaars, A., Limmroth, V., Lombardi, M. S., Goebel, M. U., Van Dam, A.- M., … Heijnen, C. J. (2005). G protein-coupled receptor kinase 2 in multiple sclerosis and experimental autoimmune encephalomyelitis. Journal of Immunology (Baltimore, Md. : 1950), 174(7), 4400-6.
  69. Jacobetz, M. A., Chan, D. S., Neesse, A., Bapiro, T. E., Cook, N., Frese, K. K., … Tuveson, D. A. (2013). Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut, 62(1), 112-20.
  70. Han, H., Bearss, D. J., Browne, L. W., Calaluce, R., Nagle, R. B., & Von Hoff, D. D. (2002). Identification of differentially expressed genes in pancreatic cancer cells using cDNA microarray. Cancer Research, 62(10), 2890-6.
  71. Gress, T. M., Wallrapp, C., Frohme, M., Müller-Pillasch, F., Lacher, U., Friess, H., … Hoheisel, J. D. (1997). Identification of genes with specific expression in pancreatic cancer by cDNA representational difference analysis. Genes, Chromosomes & Cancer, 19(2), 97-103.
  72. Giardiello, F. M., Offerhaus, G. J., Lee, D. H., Krush, A. J., Tersmette, A. C., Booker, S. V, … Hamilton, S. R. (1993). Increased risk of thyroid and pancreatic carcinoma in familial adenomatous polyposis. Gut, 34(10), 1394-6.
  73. Von Hoff, D. D., Ervin, T., Arena, F. P., Chiorean, E. G., Infante, J., Moore, M., … Renschler, M. F. (2013). Increased survival in pancreatic cancer with nab- paclitaxel plus gemcitabine. The New England Journal of Medicine, 369(18), 1691-703.
  74. Hagmann, W., Jesnowski, R., & Löhr, J. M. (2010). Interdependence of gemcitabine treatment, transporter expression, and resistance in human pancreatic carcinoma cells. Neoplasia (New York, N.Y.), 12(9), 740-7.
  75. Sultana, A., Smith, C. T., Cunningham, D., Starling, N., Neoptolemos, J. P., & Ghaneh, P. (2007). Meta-analyses of chemotherapy for locally advanced and metastatic pancreatic cancer. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 25(18), 2607-15.
  76. Vilá, M. R., Lloreta, J., Schüssler, M. H., Berrozpe, G., Welt, S., & Real, F. X. (1995). New pancreas cancers cell lines that represent distinct stages of ductal differentiation. Laboratory Investigation; a Journal of Technical Methods and Pathology, 72(4), 395-404.
  77. Yamanashi, Y., Takada, T., Yoshikado, T., Shoda, J.-I., & Suzuki, H. (2011). NPC2 regulates biliary cholesterol secretion via stimulation of ABCG5/G8-mediated cholesterol transport. Gastroenterology, 140(5), 1664-74.
  78. Biankin, A. V., Kench, J. G., Morey, A. L., Lee, C.-S., Biankin, S. A., Head, D. R., … Sutherland, R. L. (2001). Overexpression of p21WAF1/CIP1 is an Early Event in the Development of Pancreatic Intraepithelial Neoplasia. Cancer Res., 61(24), 8830-8837.
  79. Georgakilas, A. G., Martin, O. A., & Bonner, W. M. (2017). p21: A Two-Faced Genome Guardian. Trends in Molecular Medicine, 23(4), 310-319.
  80. Esposito, I., Konukiewitz, B., Schlitter, A. M., & Klöppel, G. (2014). Pathology of pancreatic ductal adenocarcinoma: Facts, challenges and future developments. World Journal of Gastroenterology : WJG, 20(38), 13833-13841.
  81. Chari, S. T., Leibson, C. L., Rabe, K. G., Ransom, J., de Andrade, M., & Petersen, G. M. (2005). Probability of pancreatic cancer following diabetes: a population-based study. Gastroenterology, 129(2), 504-11.
  82. Hruban, R. H., Goggins, M., Parsons, J., & Kern, S. E. (2000). Progression model for pancreatic cancer. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 6(8), 2969-72.
  83. Lim, W., Olschwang, S., Keller, J. J., Westerman, A. M., Menko, F. H., Boardman, L. A., … Houlston, R. S. (2004). Relative frequency and morphology of cancers in STK11 mutation carriers. Gastroenterology, 126(7), 1788-94.
  84. Malka, D., Hammel, P., Maire, F., Rufat, P., Madeira, I., Pessione, F., … Ruszniewski, P. (2002). Risk of pancreatic adenocarcinoma in chronic pancreatitis. Gut, 51(6), 849-52.
  85. Zhang, C., Chen, X., Li, Y., S W A, H., Wu, J., Shi, X., … Kim, S. (2014). si-RNA- Mediated Silencing of ADRBK1 Gene Attenuates Breast Cancer Cell Proliferation. Cancer Biotherapy & Radiopharmaceuticals, 29(8), 303-9.
  86. Targeting Gbetagamma signaling to inhibit prostate tumor formation and growth. The Journal of Biological Chemistry, 278(39), 37569-73.
  87. Nazli, O., Bozdag, A. D., Tansug, T., Kir, R., & Kaymak, E. (2000). The diagnostic importance of CEA and CA 19-9 for the early diagnosis of pancreatic carcinoma. Hepato-Gastroenterology, 47(36), 1750-2.
  88. Iqbal, J., Ragone, A., Lubinski, J., Lynch, H. T., Moller, P., Ghadirian, P., … Narod, S. A. (2012). The incidence of pancreatic cancer in BRCA1 and BRCA2 mutation carriers. British Journal of Cancer, 107(12), 2005-9.
  89. Vascular-targeted overexpression of G protein-coupled receptor kinase-2 in transgenic mice attenuates beta-adrenergic receptor signaling and increases resting blood pressure. Molecular Pharmacology, 61(4), 749-58.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten