Publikationsserver der Universitätsbibliothek Marburg

Titel:Influence of the in vivo half-antibody exchange on the therapeutic efficacy of an IgG4 antibody-drug conjugate
Autor:Herbener, Peter
Weitere Beteiligte: Maier, Uwe G. (Prof. Dr.)
Veröffentlicht:2018
URI:https://archiv.ub.uni-marburg.de/diss/z2018/0126
URN: urn:nbn:de:hebis:04-z2018-01263
DOI: https://doi.org/10.17192/z2018.0126
DDC:570 Biowissenschaften, Biologie
Titel (trans.):Der Einfluss des In-vivo-Halbantikörperaustausches auf die therapeutische Wirksamkeit eines IgG4-basierten Antikörper-Wirkstoff-Konjugats
Publikationsdatum:2018-06-26
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
antibody, BT062, bispezifische Antikörper, Immunglobulin G, bispecific antibody, cytotoxicity, Antikörper, internalization, half-antibody, multip, Immunglobulin G, IgG4, cancer, BT062, Internalisi, Indatuximab ravtansine, IgG4, antibody-drug conjugate, Antikörper, Antikörper-Wirkstoff-Konjugat, ADC, immunoglobulin, Halbantikörper

Summary:
A high number of therapeutic antibodies and their derivates e.g. antibody-drug conjugates (ADC) are under preclinical or clinical evaluation for the treatment of cancer. Most of those ADCs are based on the IgG1 or IgG4 subtype, depending on whether additional effector functions are desired or not. In contrast to IgG1, IgG4 is hardly capable to induce antibody-dependent cell-mediated or complement-dependent cytotoxicity and thus IgG4-based ADCs with cytotoxic payloads targeting only proliferating cells may have a preferred safety profile. Another unique property of the IgG4 subtype is the in vivo exchange of half-antibodies, resulting in random bispecific antibodies. BT062 (indatuximab ravtansine) is an ADC composed of an anti-CD138 IgG4 antibody conjugated to the highly cytotoxic maytansin derivate DM4. BT062 is currently evaluated in a clinical trial for the treatment of multiple myeloma. To investigate the influence of IgG4 half-antibody exchange on the functional properties and efficacy of ADCs, the following BT062 model antibodies mimicking the different process-derived antibody species were generated: (I) Wildtyp (WT) nBT062; (II) stable nBT062, comprising S228P and R409K mutations to prevent IgG4 shuffling in vivo; (III) half nBT062, serving as a model of the transistant state as C226S and C229S amino acid substitutions lead to the lack of covalent half antibody dimerization; and (IV) bispecific nBT062-natalizumab monovalently recognizing CD138 and CD49d antigens. All nBT062 variants were produced in FreeStyle CHO-S cells and purified by protein A affinity chromatography. Electrophoresis, western blotting and size exclusion chromatography were used to confirm the purification quality and provide first evidence on the aimed characteristics of each antibody due to the introduced mutations. In vitro analyses on NCI-H929 (CD138+/CD49d+), Ba/F3-hCD138 (CD138+/CD49d-) and Jurkat (CD138-/CD49d+) cells demonstrated nanomolar binding activities of all nBT062 variants towards CD138 followed by antigen-mediated internalization. After successful conjugation with model-corresponding quanities of DM4, resulting ADCs were investigated by an in vitro cytotoxicity assay. All nBT062-DM4 variants were capable to inhibit tumor cell proliferation by picomolar quanitities (IC50: ~80-460 pM). The MAXF 1322 xenograft mouse model was used to directly assess the influence of IgG4 shuffling in vivo. Bispecific nBT062-natalizumab-DM4 was the least potent model demonstrating only a boarderline efficacy even without the presense of human IgG4. WT nBT062-DM4, stable nBT062-DM4 and half nBT062 were highly effective against the tumor cells. At a low dosage, the efficacy of WT nBT062-DM4 and half nBT062-DM4 was reduced by the presence of human IgG4, while stable nBT062-DM4 was hardly affected. Analysis of mouse plasma samples confirmed the formation of bispecific antibodies out of WT nBT062-DM4 and half nBT062-DM4, but no half-antibody exchange was detected within samples of stable nBT062. These data clearly demonstrate an advantage of incorporating half-antibody exchange-preventing mutations into IgG4-based ADCs.

Bibliographie / References

  1. Kiese, Sylvia; Papppenberger, Astrid; Friess, Wolfgang; Mahler, Hanns-Christian (2008): Shaken, not stirred: mechanical stress testing of an IgG1 antibody. In Journal of pharmaceutical sciences 97 (10), pp. 4347-4366. DOI: 10.1002/jps.21328.
  2. Atwell, S.; Ridgway, J. B.; Wells, J. A.; Carter, P. (1997): Stable heterodimers from remodeling the domain interface of a homodimer using a phage display library. In Journal of Molecular Biology 270 (1), pp. 26-35. DOI: 10.1006/jmbi.1997.1116.
  3. Jefferis, Roy (2005): Glycosylation of natural and recombinant antibody molecules. In Adv. Exp. Med. Biol. 564, pp. 143-148. DOI: 10.1007/0-387-25515-X_26.
  4. Hornick, Carole L.; Karush, Fred (1972): Antibody affinity-III the role of multivalence. In Immunochemistry 9 (3), pp. 325-340. DOI: 10.1016/0019-2791(72)90096-1.
  5. Jefferis, Roy (2012): Isotype and glycoform selection for antibody therapeutics. In Archives of biochemistry and biophysics 526 (2), pp. 159-166. DOI: 10.1016/j.abb.2012.03.021.
  6. Bouchard, Hervé; Viskov, Christian; Garcia-Echeverria, Carlos (2014): Antibody-drug conjugates-a new wave of cancer drugs. In Bioorganic & medicinal chemistry letters 24 (23), pp. 5357-5363. DOI: 10.1016/j.bmcl.2014.10.021.
  7. Barok, Mark; Tanner, Minna; Köninki, Katri; Isola, Jorma (2011b): Trastuzumab-DM1 is highly effective in preclinical models of HER2-positive gastric cancer. In Cancer letters 306 (2), pp. 171-179. DOI: 10.1016/j.canlet.2011.03.002.
  8. Hanahan, Douglas; Weinberg, Robert A. (2011): Hallmarks of cancer. The next generation. In Cell 144 (5), pp. 646-674. DOI: 10.1016/j.cell.2011.02.013.
  9. Aalberse, Rob C.; Sutton, Brian J. (2014): Structural Determinants of Unique Properties of Human IgG4-Fc. In Journal of Molecular Biology 426 (3), pp. 630-644. DOI: 10.1016/j.jmb.2013.10.039.
  10. Hannus, Stefan (2009): The in vitro biological activity of the HLA-DR-binding clinical IgG4 antibody 1D09C3 is a consequence of the disruption of cell aggregates and can be abrogated by Fab arm exchange. In Molecular Immunology 46 (16), pp. 3269-3277. DOI: 10.1016/j.molimm.2009.07.031.
  11. Cozzini, Pietro (2017): In silico pharmacogenetic approach. The natalizumab case study. In Toxicology and applied pharmacology 330, pp. 93-99. DOI: 10.1016/j.taap.2017.07.011.
  12. Fux, Liat; Ilan, Neta; Sanderson, Ralph D.; Vlodavsky, Israel (2009): Heparanase. Busy at the cell surface. In Trends in biochemical sciences 34 (10), pp. 511-519. DOI: 10.1016/j.tibs.2009.06.005.
  13. Morard, Florence; Vita, Natalio; Wijdenes, John (1998): Identification and location on syndecan-1 core protein of the epitopes of B-B2 and B-B4 monoclonal antibodies. In FEBS Letters 426 (1), pp. 67-70. DOI: 10.1016/S0014-5793(98)00310-X.
  14. Carter, Paul (2001): Bispecific human IgG by design. In Journal of Immunological Methods 248 (1-2), pp. 7-15. DOI: 10.1016/S0022-1759(00)00339-2.
  15. Compston, Alastair; Coles, Alasdair (2002): Multiple sclerosis. In Lancet 359 (9313), pp. 1221-1231. DOI: 10.1016/S0140-6736(02)08220-X.
  16. Compston, Alastair; Coles, Alasdair (2008): Multiple sclerosis. In Lancet 372 (9648), pp. 1502-1517. DOI: 10.1016/S0140-6736(08)61620-7.
  17. Baumgart, Daniel C.; Sandborn, William J. (2012): Crohn's disease. In Lancet 380 (9853), pp. 1590-1605. DOI: 10.1016/S0140-6736(12)60026-9.
  18. DeVay, Rachel M.; Delaria, Kathy; Zhu, Guoyun; Holz, Charles; Foletti, Davide; Sutton, Janette et al. (2017): Improved Lysosomal Trafficking Can Modulate the Potency of Antibody Drug Conjugates. In Bioconjugate chemistry 28 (4), pp. 1102-1114. DOI: 10.1021/acs.bioconjchem.7b00013.
  19. Kim, Michael T.; Chen, Yan; Marhoul, Joseph; Jacobson, Fred (2014): Statistical modeling of the drug load distribution on trastuzumab emtansine (Kadcyla), a lysine-linked antibody drug conjugate. In Bioconjugate chemistry 25 (7), pp. 1223-1232. DOI: 10.1021/bc5000109.
  20. Bondza, Sina; Stenberg, Jonas; Nestor, Marika; Andersson, Karl; Björkelund, Hanna (2014): Conjugation effects on antibody-drug conjugates. Evaluation of interaction kinetics in real time on living cells. In Molecular pharmaceutics 11 (11), pp. 4154-4163. DOI: 10.1021/mp500379d.
  21. Goldmacher, Victor S.; Amphlett, Godfrey; Wang, Lintao; Lazar, Alexandru C. (2015): Statistics of the distribution of the abundance of molecules with various drug loads in maytansinoid antibody-drug conjugates. In Molecular pharmaceutics 12 (6), pp. 1738-1744. DOI: 10.1021/mp5007536.
  22. Farrell, H. E.; Vally, H.; Lynch, D. M.; Fleming, P.; Shellam, G. R.; Scalzo, A. A.; Davis- Poynter, N. J. (1997): Inhibition of natural killer cells by a cytomegalovirus MHC class I homologue in vivo. In Nature 386 (6624), pp. 510-514. DOI: 10.1038/386510a0.
  23. Diamantis, Nikolaos; Banerji, Udai (2016): Antibody-drug conjugates--an emerging class of cancer treatment. In British journal of cancer 114 (4), pp. 362-367. DOI: 10.1038/bjc.2015.435.
  24. Bayer-Garner, I. B.; Sanderson, R. D.; Dhodapkar, M. V.; Owens, R. B.; Wilson, C. S. (2001): Syndecan-1 (CD138) immunoreactivity in bone marrow biopsies of multiple myeloma: shed syndecan-1 accumulates in fibrotic regions. In Mod. Pathol. 14 (10), pp. 1052-1058. DOI: 10.1038/modpathol.3880435.
  25. Broug, Ellen; Bland-Ward, Philip A.; Powell, John; Johnson, Kevin S. (2010): Fab-arm exchange. In Nature biotechnology 28 (2), 123-5; author reply 125-6. DOI: 10.1038/nbt0210- 123.
  26. Bayry, Jagadeesh; Lacroix-Desmazes, Sébastien; Kazatchkine, Michel D.; Kaveri, Srini V. (2007): Monoclonal antibody and intravenous immunoglobulin therapy for rheumatic diseases: rationale and mechanisms of action. In Nat Clin Pract Rheumatol 3 (5), pp. 262- 272. DOI: 10.1038/ncprheum0481.
  27. Green, L. L.; Hardy, M. C.; Maynard-Currie, C. E.; Tsuda, H.; Louie, D. M.; Mendez, M. J. et al. (1994): Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs. In Nat. Genet. 7 (1), pp. 13-21. DOI: 10.1038/ng0594-13.
  28. Kärre, Klas (2008): Natural killer cell recognition of missing self. In Nat Immunol 9 (5), pp. 477-480. DOI: 10.1038/ni0508-477.Define:
  29. Bachmann, Martin F.; Jennings, Gary T. (2010): Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. In Nat Rev Immunol 10 (11), pp. 787-796. DOI: 10.1038/nri2868.
  30. Meijer, H. P.; Bende, R. J.; van Dijk, M.; Lokhorst, H. M. et al. (2003): The hepatocyte growth factor/Met pathway controls proliferation and apoptosis in multiple myeloma. In Leukemia 17 (4), pp. 764-774. DOI: 10.1038/sj.leu.2402875.
  31. Moreau, Philippe (2009): Autologous hematopoietic stem-cell transplantation for multiple myeloma. In N. Engl. J. Med. 360 (25), pp. 2645-2654. DOI: 10.1056/NEJMct0805626.
  32. Hudis, Clifford A. (2007): Trastuzumab--mechanism of action and use in clinical practice. In N. Engl. J. Med. 357 (1), pp. 39-51. DOI: 10.1056/NEJMra043186.
  33. Croce, Carlo M. (2008): Oncogenes and cancer. In N. Engl. J. Med. 358 (5), pp. 502-511. DOI: 10.1056/NEJMra072367.
  34. Chen, Keyang; Williams, Kevin Jon (2013): Molecular mediators for raft-dependent endocytosis of syndecan-1, a highly conserved, multifunctional receptor. In J. Biol. Chem. 288 (20), pp. 13988-13999. DOI: 10.1074/jbc.M112.444737.
  35. Dunn, Olive Jean (1964): Multiple Comparisons Using Rank Sums. In Technometrics 6 (3), pp. 241-252. DOI: 10.1080/00401706.1964.10490181.
  36. Chng, Jake; Wang, Tianhua; Nian, Rui; Lau, Ally; Hoi, Kong Meng; Ho, Steven C. L. et al. (2015): Cleavage efficient 2A peptides for high level monoclonal antibody expression in CHO cells. In mAbs 7 (2), pp. 403-412. DOI: 10.1080/19420862.2015.1008351.
  37. Zhu, Lei et al. (2016): In-depth structural characterization of Kadcyla® (ado-trastuzumab emtansine) and its biosimilar candidate. In MAbs 8 (7), pp. 1210-1223. DOI: 10.1080/19420862.2016.1204502.
  38. Brinkmann, Ulrich; Kontermann, Roland E. (2017): The making of bispecific antibodies. In MAbs 9 (2), pp. 182-212. DOI: 10.1080/19420862.2016.1268307.
  39. Donnelly, M. L.; Hughes, L. E.; Luke, G.; Mendoza, H.; Dam, E. ten; Gani, D.; Ryan, M. D. (2001a): The 'cleavage' activities of foot-and-mouth disease virus 2A site-directed mutants and naturally occurring '2A-like' sequences. In The Journal of general virology 82 (Pt 5), pp. 1027-1041. DOI: 10.1099/0022-1317-82-5-1027.
  40. Bernfield, M.; Götte, M.; Park, P. W.; Reizes, O.; Fitzgerald, M. L.; Lincecum, J.; Zako, M. (1999): Functions of cell surface heparan sulfate proteoglycans. In Annu. Rev. Biochem. 68, pp. 729-777. DOI: 10.1146/annurev.biochem.68.1.729.
  41. Goldstein, J. L.; Brown, M. S.; Anderson, R. G.; Russell, D. W.; Schneider, W. J. (1985): Receptor-mediated endocytosis. Concepts emerging from the LDL receptor system. In Annu. Rev. Cell Biol. 1, pp. 1-39. DOI: 10.1146/annurev.cb.01.110185.000245.
  42. Bernfield, M.; Kokenyesi, R.; Kato, M.; Hinkes, M. T.; Spring, J.; Gallo, R. L.; Lose, E. J. (1992): Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. In Annu. Rev. Cell Biol. 8, pp. 365-393. DOI: 10.1146/annurev.cb.08.110192.002053.
  43. Honjo, T. (1983): Immunoglobulin genes. In Annu. Rev. Immunol. 1, pp. 499-528. DOI: 10.1146/annurev.iy.01.040183.002435.
  44. Cerveny, Charles G. et al. (2004): Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. In Clinical cancer research : an official journal of the American Association for Cancer Research 10 (20), pp. 7063-7070. DOI: 10.1158/1078- 0432.CCR-04-0789.
  45. Wubbolts, Richard et al. (2016): Efficient Payload Delivery by a Bispecific Antibody- Drug Conjugate Targeting HER2 and CD63. In Molecular cancer therapeutics 15 (11), pp. 2688-2697. DOI: 10.1158/1535-7163.MCT-16-0364.
  46. Kelly, Marcus P. et al. (2017): Bispecific Antibodies and Antibody-Drug Conjugates (ADCs) Bridging HER2 and Prolactin Receptor Improve Efficacy of HER2 ADCs. In Mol. Cancer Ther. 16 (4), pp. 681-693. DOI: 10.1158/1535-7163.MCT-16-0658.
  47. Fuki, I. V.; Kuhn, K. M.; Lomazov, I. R.; Rothman, V. L.; Tuszynski, G. P.; Iozzo, R. V. et al. (1997): The syndecan family of proteoglycans. Novel receptors mediating internalization of atherogenic lipoproteins in vitro. In The Journal of clinical investigation 100 (6), pp. 1611- 1622. DOI: 10.1172/JCI119685.
  48. Barok, Mark; Tanner, Minna; Köninki, Katri; Isola, Jorma (2011a): Trastuzumab-DM1 causes tumour growth inhibition by mitotic catastrophe in trastuzumab-resistant breast cancer cells in vivo. In Breast cancer research : BCR 13 (2), R46. DOI: 10.1186/bcr2868.
  49. Barok, Mark; Joensuu, Heikki; Isola, Jorma (2014): Trastuzumab emtansine. Mechanisms of action and drug resistance. In Breast cancer research : BCR 16 (2), p. 209. DOI: 10.1186/bcr3621.
  50. Cromwell, Mary E. M.; Hilario, Eric; Jacobson, Fred (2006): Protein aggregation and bioprocessing. In The AAPS journal 8 (3), E572-9. DOI: 10.1208/aapsj080366.
  51. Beerli, Roger R.; Hell, Tamara; Merkel, Anna S.; Grawunder, Ulf (2015): Sortase Enzyme-Mediated Generation of Site-Specifically Conjugated Antibody Drug Conjugates with High In Vitro and In Vivo Potency. In PLoS ONE 10 (7), e0131177. DOI: 10.1371/journal.pone.0131177.
  52. Jefferis, Roy (2007): Antibody therapeutics. In Expert Opin. Biol. Ther. 7 (9), pp. 1401- 1413. DOI: 10.1517/14712598.7.9.1401.
  53. Cai, Henry Hongrong (2016): Monoclonal Antibodies for Cancer Therapy Approved by FDA. In MOJI 4 (2). DOI: 10.15406/moji.2016.04.00120.
  54. B. Wong, Rosie (2012): Functional Role of Glycosylation in a Human IgG4 Antibody Assessed by Surface Plasmon Resonance Technology. In TOPHARMJ 6 (1), pp. 27-33. DOI: 10.2174/1874143601206010027.
  55. Kaplan, E. L.; Meier, Paul (1958): Nonparametric Estimation from Incomplete Observations. In Journal of the American Statistical Association 53 (282), p. 457. DOI: 10.2307/2281868.
  56. Kim, Eunhee G.; Kim, Kristine M. (2015): Strategies and Advancement in Antibody-Drug Conjugate Optimization for Targeted Cancer Therapeutics. In Biomolecules & therapeutics 23 (6), pp. 493-509. DOI: 10.4062/biomolther.2015.116.
  57. Schanzer, Jürgen et al. (2014): Progress in overcoming the chain association issue in bispecific heterodimeric IgG antibodies. In mAbs 4 (6), pp. 653-663. DOI: 10.4161/mabs.21379.
  58. Kontermann, Roland E. (2012): Dual targeting strategies with bispecific antibodies. In MAbs 4 (2), pp. 182-197. DOI: 10.4161/mabs.4.2.19000.
  59. Bleeker, W. K.; Teeling, J. L.; Hack, C. E. (2001): Accelerated autoantibody clearance by intravenous immunoglobulin therapy. Studies in experimental models to determine the magnitude and time course of the effect. In Blood 98 (10), pp. 3136-3142.
  60. Köhler, G.; Milstein, C. (1975): Continuous cultures of fused cells secreting antibody of predefined specificity. In Nature 256 (5517), pp. 495-497.
  61. Fell, H. P.; Yarnold, S.; Hellström, I.; Hellström, K. E.; Folger, K. R. (1989): Homologous recombination in hybridoma cells: heavy chain chimeric antibody produced by gene targeting. In Proc. Natl. Acad. Sci. U.S.A. 86 (21), pp. 8507-8511.
  62. Bendig, Mary M.; Leger, Olivier J.; Saldanha, Jose; Jones, S. Tarran; Yednock, Ted A. (1995): Humanized antibodies against leukocyte adhesion molecule VLA-4. Applied for by ATHENA NEUROSCIENCES INC [US] on 11/21/1995. App. no. US19950561521 19951121. Patent no. US5840299 (A).
  63. Aalberse, Rob C.; Schuurman, Janine (2002): IgG4 breaking the rules. In Immunology 105 (1), pp. 9-19.
  64. Igney, Frederik H.; Krammer, Peter H. (2002): Immune escape of tumors: apoptosis resistance and tumor counterattack. In J. Leukoc. Biol. 71 (6), pp. 907-920.
  65. Kim, U.; Baumler, A.; Carruthers, C.; Bielat, K. (1975): Immunological escape mechanism in spontaneously metastasizing mammary tumors. In Proc. Natl. Acad. Sci. U.S.A. 72 (3), pp. 1012-1016.
  66. Inbar, D.; Hochman, J.; Givol, D. (1972): Localization of antibody-combining sites within the variable portions of heavy and light chains. In Proc. Natl. Acad. Sci. U.S.A. 69 (9), pp. 2659- 2662.
  67. Cretney, E.; Degli-Esposti, M. A.; Densley, E. H.; Farrell, H. E.; Davis-Poynter, N. J.; Smyth, M. J. (1999): m144, a murine cytomegalovirus (MCMV)-encoded major histocompatibility complex class I homologue, confers tumor resistance to natural killer cell- mediated rejection. In J. Exp. Med. 190 (3), pp. 435-444.
  68. Aucouturier, P.; Danon, F.; Daveau, M.; Guillou, B.; Sabbah, A.; Besson, J.; Preud'homme, J. L. (1984): Measurement of serum IgG4 levels by a competitive immunoenzymatic assay with monoclonal antibodies. In J. Immunol. Methods 74 (1), pp. 151-162.
  69. Hutchinson, Michael (2007): Natalizumab: A new treatment for relapsing remitting multiple sclerosis. In Therapeutics and clinical risk management 3 (2), pp. 259-268.
  70. Harris, R. J. (1995): Processing of C-terminal lysine and arginine residues of proteins isolated from mammalian cell culture. In Journal of chromatography. A 705 (1), pp. 129-134.
  71. Jakobovits, A. (1995): Production of fully human antibodies by transgenic mice. In Curr. Opin. Biotechnol. 6 (5), pp. 561-566.
  72. Grillo-López, Antonio J.; Hedrick, Eric; Rashford, Michelle; Benyunes, Mark (2002): Rituximab: ongoing and future clinical development. In Semin. Oncol. 29 (1 Suppl 2), pp. 105-112.
  73. Aalberse, R. C.; van der Gaag, R; van Leeuwen, J. (1983): Serologic aspects of IgG4 antibodies. I. Prolonged immunization results in an IgG4-restricted response. In J. Immunol. 130 (2), pp. 722-726.
  74. Harding, Fiona A.; Stickler, Marcia M.; Razo, Jennifer; DuBridge, Robert B. (2010): The immunogenicity of humanized and fully human antibodies. Residual immunogenicity resides in the CDR regions. In MAbs 2 (3), pp. 256-265.
  75. Di Carlo, E.; Forni, G.; Lollini, P.; Colombo, M. P.; Modesti, A.; Musiani, P. (2001): The intriguing role of polymorphonuclear neutrophils in antitumor reactions. In Blood 97 (2), pp. 339-345.
  76. Fuki, I. V.; Meyer, M. E.; Williams, K. J. (2000): Transmembrane and cytoplasmic domains of syndecan mediate a multi-step endocytic pathway involving detergent-insoluble membrane rafts. In Biochem. J. 351 Pt 3, pp. 607-612.
  77. Elgert, K. D.; Alleva, D. G.; Mullins, D. W. (1998): Tumor-induced immune dysfunction: the macrophage connection. In J. Leukoc. Biol. 64 (3), pp. 275-290.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten