Publikationsserver der Universitätsbibliothek Marburg

Titel:L7Ae- and LSm-RNA interactomes of Sulfolobus acidocaldarius
Autor:Daume, Michael
Weitere Beteiligte: Randau, Lennart (Dr.)
Veröffentlicht:2017
URI:https://archiv.ub.uni-marburg.de/diss/z2018/0118
DOI: https://doi.org/10.17192/z2018.0118
URN: urn:nbn:de:hebis:04-z2018-01187
DDC:570 Biowissenschaften, Biologie
Titel (trans.):L7Ae- und LSm-RNA-Interaktome von Sulfolobus acidocaldarius
Publikationsdatum:2018-12-10
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:

Summary:
The archaeal L7Ae and Sm-like proteins (LSm) are universal RNA-binding proteins. L7Ae stabilizes non-coding RNA species, including ribosomal RNA, by recognizing a structural RNA motif, termed kink-turn (k-turn). Sm family proteins, like bacterial Hfq and eukaryotic Sm/LSm, are involved in multiple RNA-related processes including small RNA (sRNA)-based translational regulation, mRNA decay or splicing. However, the function of the archaeal members is elusive. Using RNA-immunoprecipitation sequencing (RIP-Seq) methodology, this thesis aimed to identify the global RNA interaction partners (RNA interactome) of L7Ae and the three LSm proteins of the thermoacidophilic archaeon Sulfolobus acidocaldarius. Besides many known non-coding RNAs, the SRP RNA was identified as a novel binding partner of the L7Ae protein. Mobility shift assays demonstrated L7Ae binding to a k-turn motif that was found to be conserved among archaeal SRP RNAs. Interestingly, mRNAs, including the l7ae transcript, were enriched in the RIP-Seq analysis and found to comprise putative k-turns that facilitate L7Ae binding. In vivo studies showed that L7Ae autoregulates the translation of its mRNA by binding to a k-turn motif in the 5' untranslated region. A GFP reporter system was established in Escherichia coli that verified the conservation of L7Ae-mediated feedback regulation in archaea and provides a new tool for the modulation of synthetic gene circuits in bacteria. Mobility shift assays confirmed binding of L7Ae to a k-turn in the transcript of nop5-fibrillarin, suggesting that the synthesis of all C/D box sRNP core proteins (L7Ae, Nop5 and fibrillarin) is regulated by L7Ae. These studies revealed the regulation of mRNA translation as a novel function of the archaeal L7Ae protein. The LSm RIP-Seq study found mRNAs and sRNAs as LSm1 and LSm2 interactors, including a recently reported sRNA that regulates biofilm formation in S. acidocaldarius. No RNA-binding capacity was observed for LSm3. A computational analysis of the interaction partners identified the U-rich 3' termination signal of RNAs and a motif composed of UAG triplets as potential LSm binding sites, which was verified by mobility shift assays. Knock-out studies revealed that only the lsm3 gene is dispensable, whereas the genes for lsm1 and lsm2 seem to be essential. Mutant strains producing tagged versions of LSm1 and LSm2 displayed a pleiotropic phenotype. In resemblance to the roles of bacterial Hfq and eukaryotic LSm proteins, this study provides hints that archaeal LSm proteins may be involved in mRNA degradation, C/D box sRNA biogenesis and sRNA-regulated processes, like tRNA maturation and translational regulation of mRNAs.

Bibliographie / References

  1. Dennis PP, Tripp V, Lui L, Lowe T, Randau L. 2015. C/D box sRNA-guided 2'-O- methylation patterns of archaeal rRNA molecules. BMC Genomics 16:632.
  2. Licht K, Medenbach J, Luhrmann R, Kambach C, Bindereif A. 2008. 3'-cyclic phosphorylation of U6 snRNA leads to recruitment of recycling factor p110 through LSm proteins. RNA 14:1532-8.
  3. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, Rattei T, Mende DR, Sunagawa S, Kuhn M, Jensen LJ, von Mering C, Bork P. 2016. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 44:D286-93.
  4. Wang P, Yang L, Gao YQ, Zhao XS. 2015. Accurate placement of substrate RNA by Gar1 in H/ACA RNA-guided pseudouridylation. Nucleic Acids Res 43:7207-16.
  5. Watkins NJ, Segault V, Charpentier B, Nottrott S, Fabrizio P, Bachi A, Wilm M, Rosbash M, Branlant C, Luhrmann R. 2000. A common core RNP structure shared between the small nucleoar box C/D RNPs and the spliceosomal U4 snRNP. Cell 103:457-66.
  6. Kufel J, Allmang C, Verdone L, Beggs J, Tollervey D. 2003. A complex pathway for 3' processing of the yeast U3 snoRNA. Nucleic Acids Res 31:6788-97.
  7. McPhee SA, Huang L, Lilley DM. 2014. A critical base pair in k-turns that confers folding characteristics and correlates with biological function. Nat Commun 5:5127.
  8. Orell A, Tripp V, Aliaga-Tobar V, Albers SV, Maracaja-Coutinho V, Randau L. 2017. A double-stranded RNA is involved in biofilm regulation in Sulfolobus acidocaldarius. Nucleic Acids Res [in press].
  9. Fukuhara H, Kifusa M, Watanabe M, Terada A, Honda T, Numata T, Kakuta Y, Kimura M. 2006. A fifth protein subunit Ph1496p elevates the optimum temperature for the ribonuclease P activity from Pyrococcus horikoshii OT3. Biochem Biophys Res Commun 343:956-64.
  10. Martens B, Amman F, Manoharadas S, Zeichen L, Orell A, Albers SV, Hofacker I, Blasi U. 2013. Alterations of the transcriptome of Sulfolobus acidocaldarius by exoribonuclease aCPSF2. PLoS One 8:e76569.
  11. Jager D, Pernitzsch SR, Richter AS, Backofen R, Sharma CM, Schmitz RA. 2012. An archaeal sRNA targeting cis-and trans-encoded mRNAs via two distinct domains. Nucleic Acids Res 40:10964-79.
  12. Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO. 2002. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63-7.
  13. Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, Butterfield CN, Hernsdorf AW, Amano Y, Ise K, Suzuki Y, Dudek N, Relman DA, Finstad KM, Amundson R, Thomas BC, Banfield JF. 2016. A new view of the tree of life. Nat Microbiol 1:16048.
  14. Evguenieva-Hackenberg E, Walter P, Hochleitner E, Lottspeich F, Klug G. 2003. An exosome-like complex in Sulfolobus solfataricus. EMBO Rep 4:889-93.
  15. Nielsen JS, Boggild A, Andersen CB, Nielsen G, Boysen A, Brodersen DE, Valentin-Hansen P. 2007. An Hfq-like protein in archaea: crystal structure and functional characterization of the Sm protein from Methanococcus jannaschii. RNA 13:2213-23.
  16. Zwieb C, van Nues RW, Rosenblad MA, Brown JD, Samuelsson T. 2005. A nomenclature for all signal recognition particle RNAs. RNA 11:7-13.
  17. Ghalei H, Hsiao HH, Urlaub H, Wahl MC, Watkins NJ. 2010. A novel Nop5-sRNA interaction that is required for efficient archaeal box C/D sRNP formation. RNA 16:2341-8.
  18. Koonin EV, Bork P, Sander C. 1994. A novel RNA-binding motif in omnipotent suppressors of translation termination, ribosomal proteins and a ribosome modification enzyme? Nucleic Acids Res 22:2166-7.
  19. Li B, Vilardell J, Warner JR. 1996. An RNA structure involved in feedback regulation of splicing and of translation is critical for biological fitness. Proc Natl Acad Sci U S A 93:1596-600.
  20. Martens B, Manoharadas S, Hasenohrl D, Manica A, Blasi U. 2013. Antisense regulation by transposon-derived RNAs in the hyperthermophilic archaeon Sulfolobus solfataricus. EMBO Rep 14:527-33.
  21. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-54.
  22. Mura C, Randolph PS, Patterson J, Cozen AE. 2013. Archaeal and eukaryotic homologs of Hfq: A structural and evolutionary perspective on Sm function. RNA Biol 10:636-51.
  23. Makarova KS, Wolf YI, Koonin EV. 2015. Archaeal Clusters of Orthologous Genes (arCOGs): An Update and Application for Analysis of Shared Features between Thermococcales, Methanococcales, and Methanobacteriales. Life (Basel) 5:818-40.
  24. Gaspin C, Cavaille J, Erauso G, Bachellerie JP. 2000. Archaeal homologs of eukaryotic methylation guide small nucleolar RNAs: lessons from the Pyrococcus genomes. J Mol Biol 297:895-906.
  25. Kuhn JF, Tran EJ, Maxwell ES. 2002. Archaeal ribosomal protein L7 is a functional homolog of the eukaryotic 15.5kD/Snu13p snoRNP core protein. Nucleic Acids Res 30:931-41.
  26. Toro I, Basquin J, Teo-Dreher H, Suck D. 2002. Archaeal Sm proteins form heptameric and hexameric complexes: crystal structures of the Sm1 and Sm2 proteins from the hyperthermophile Archaeoglobus fulgidus. J Mol Biol 320:129-42.
  27. Zwieb C, Bhuiyan S. 2010. Archaea signal recognition particle shows the way. Archaea 2010:485051.
  28. Cavicchioli R. 2011. Archaea--timeline of the third domain. Nat Rev Microbiol 9:51- 61.
  29. Wurtzel O, Sapra R, Chen F, Zhu Y, Simmons BA, Sorek R. 2010. A single-base resolution map of an archaeal transcriptome. Genome Res 20:133-41.
  30. Bhuiyan SH, Gowda K, Hotokezaka H, Zwieb C. 2000. Assembly of archaeal signal recognition particle from recombinant components. Nucleic Acids Res 28:1365-73.
  31. Dabeva MD, Post-Beittenmiller MA, Warner JR. 1986. Autogenous regulation of splicing of the transcript of a yeast ribosomal protein gene. Proc Natl Acad Sci U S A 83:5854-7.
  32. Qi LS, Arkin AP. 2014. A versatile framework for microbial engineering using synthetic non-coding RNAs. Nat Rev Microbiol 12:341-54.
  33. Gottesman S, Storz G. 2011. Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Biol 3.
  34. Rozhdestvensky TS, Tang TH, Tchirkova IV, Brosius J, Bachellerie JP, Huttenhofer A. 2003. Binding of L7Ae protein to the K-turn of archaeal snoRNAs: a shared RNA binding motif for C/D and H/ACA box snoRNAs in Archaea. Nucleic Acids Res 31:869-77.
  35. Tsui HC, Leung HC, Winkler ME. 1994. Characterization of broadly pleiotropic phenotypes caused by an hfq insertion mutation in Escherichia coli K-12. Mol Microbiol 13:35-49.
  36. Richter H, Zoephel J, Schermuly J, Maticzka D, Backofen R, Randau L. 2012. Characterization of CRISPR RNA processing in Clostridium thermocellum and Methanococcus maripaludis. Nucleic Acids Res 40:9887-96.
  37. Mayes AE, Verdone L, Legrain P, Beggs JD. 1999. Characterization of Sm-like proteins in yeast and their association with U6 snRNA. EMBO J 18:4321-31.
  38. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-5.
  39. Makarova KS, Sorokin AV, Novichkov PS, Wolf YI, Koonin EV. 2007. Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea. Biol Direct 2:33.
  40. Spang A, Saw JH, Jorgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, van Eijk R, Schleper C, Guy L, Ettema TJ. 2015. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521:173-9.
  41. Tran E, Zhang X, Lackey L, Maxwell ES. 2005. Conserved spacing between the box C/D and C'/D' RNPs of the archaeal box C/D sRNP complex is required for efficient 2'- O-methylation of target RNAs. RNA 11:285-93.
  42. Karijolich J, Yu YT. 2011. Converting nonsense codons into sense codons by targeted pseudouridylation. Nature 474:395-8.
  43. Jorgensen SL, Hannisdal B, Lanzen A, Baumberger T, Flesland K, Fonseca R, Ovreas L, Steen IH, Thorseth IH, Pedersen RB, Schleper C. 2012. Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge. Proc Natl Acad Sci U S A 109:E2846-55.
  44. Masse E, Escorcia FE, Gottesman S. 2003. Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev 17:2374-83.
  45. Vestergaard G, Garrett RA, Shah SA. 2014. CRISPR adaptive immune systems of Archaea. RNA Biol 11:156-67.
  46. Lillestol RK, Shah SA, Brugger K, Redder P, Phan H, Christiansen J, Garrett RA. 2009. CRISPR families of the crenarchaeal genus Sulfolobus: bidirectional transcription and dynamic properties. Mol Microbiol 72:259-72.
  47. Wang H, Boisvert D, Kim KK, Kim R, Kim SH. 2000. Crystal structure of a fibrillarin homologue from Methanococcus jannaschii, a hyperthermophile, at 1.6 A resolution. EMBO J 19:317-23.
  48. Collins BM, Harrop SJ, Kornfeld GD, Dawes IW, Curmi PM, Mabbutt BC. 2001. Crystal structure of a heptameric Sm-like protein complex from archaea: implications for the structure and evolution of snRNPs. J Mol Biol 309:915-23.
  49. Ihsanawati, Nishimoto M, Higashijima K, Shirouzu M, Grosjean H, Bessho Y, Yokoyama S. 2008. Crystal structure of tRNA N2,N2-guanosine dimethyltransferase Trm1 from Pyrococcus horikoshii. J Mol Biol 383:871-84.
  50. Thore S, Mayer C, Sauter C, Weeks S, Suck D. 2003. Crystal structures of the Pyrococcus abyssi Sm core and its complex with RNA. Common features of RNA binding in archaea and eukarya. J Biol Chem 278:1239-47.
  51. Ausubel FM. 1987. Current Protocols in Molecular Biology. Wiley.
  52. Sittka A, Sharma CM, Rolle K, Vogel J. 2009. Deep sequencing of Salmonella RNA associated with heterologous Hfq proteins in vivo reveals small RNAs as a major target class and identifies RNA processing phenotypes. RNA Biol 6:266-75.
  53. Maier LK, Benz J, Fischer S, Alstetter M, Jaschinski K, Hilker R, Becker A, Allers T, Soppa J, Marchfelder A. 2015. Deletion of the Sm1 encoding motif in the lsm gene results in distinct changes in the transcriptome and enhanced swarming activity of Haloferax cells. Biochimie 117:129-37.
  54. Lechner M, Rossmanith W, Hartmann RK, Tholken C, Gutmann B, Giege P, Gobert A. 2015. Distribution of Ribonucleoprotein and Protein-Only RNase P in Eukarya. Mol Biol Evol 32:3186-93.
  55. Torarinsson E, Klenk HP, Garrett RA. 2005. Divergent transcriptional and translational signals in Archaea. Environ Microbiol 7:47-54.
  56. Sanger F, Nicklen S, Coulson AR. 1992. DNA sequencing with chain-terminating inhibitors. 1977. Biotechnology 24:104-8.
  57. Zheng G, Qin Y, Clark WC, Dai Q, Yi C, He C, Lambowitz AM, Pan T. 2015. Efficient and quantitative high-throughput tRNA sequencing. Nat Methods 12:835-7.
  58. Tran EJ, Zhang X, Maxwell ES. 2003. Efficient RNA 2'-O-methylation requires juxtaposed and symmetrically assembled archaeal box C/D and C'/D' RNPs. EMBO J 22:3930-40.
  59. Westhof E, Auffinger P. 2006. Encyclopedia of Analytical Chemistry: RNA Tertiary Structure. John Wiley & Sons, Ltd.
  60. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, 3rd, Smith HO. 2009. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343-5.
  61. Tran E, Brown J, Maxwell ES. 2004. Evolutionary origins of the RNA-guided nucleotide-modification complexes: from the primitive translation apparatus? Trends Biochem Sci 29:343-50.
  62. Lui L. 2015. Evolution of structure and function of kink-turn containing RNAs in the domain Archaea. PhD Thesis. University of California, Santa Cruz.
  63. Miller JH. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, New York.
  64. Berg L, Kucharova V, Bakke I, Valla S, Brautaset T. 2012. Exploring the 5'-UTR DNA region as a target for optimizing recombinant gene expression from the strong and inducible Pm promoter in Escherichia coli. J Biotechnol 158:224-30.
  65. Franze de Fernandez MT, Eoyang L, August JT. 1968. Factor fraction required for the synthesis of bacteriophage Qbeta-RNA. Nature 219:588-90.
  66. Stapleton JA, Endo K, Fujita Y, Hayashi K, Takinoue M, Saito H, Inoue T. 2012. Feedback control of protein expression in mammalian cells by tunable synthetic translational inhibition. ACS Synth Biol 1:83-8.
  67. Nomura M, Yates JL, Dean D, Post LE. 1980. Feedback regulation of ribosomal protein gene expression in Escherichia coli: structural homology of ribosomal RNA and ribosomal protein MRNA. Proc Natl Acad Sci U S A 77:7084-8.
  68. Nottrott S, Hartmuth K, Fabrizio P, Urlaub H, Vidovic I, Ficner R, Luhrmann R. 1999. Functional interaction of a novel 15.5kD [U4/U6.U5] tri-snRNP protein with the 5' stem-loop of U4 snRNA. EMBO J 18:6119-33.
  69. Meng J, Xu J, Qin D, He Y, Xiao X, Wang F. 2014. Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses. ISME J 8:650-9.
  70. Castelle CJ, Wrighton KC, Thomas BC, Hug LA, Brown CT, Wilkins MJ, Frischkorn KR, Tringe SG, Singh A, Markillie LM, Taylor RC, Williams KH, Banfield JF. 2015. Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr Biol 25:690-701.
  71. Holmqvist E, Wright PR, Li L, Bischler T, Barquist L, Reinhardt R, Backofen R, Vogel J. 2016. Global RNA recognition patterns of post-transcriptional regulators Hfq and CsrA revealed by UV crosslinking in vivo. EMBO J 35:991-1011.
  72. Li Y, Pan S, Zhang Y, Ren M, Feng M, Peng N, Chen L, Liang YX, She Q. 2016. Harnessing Type I and Type III CRISPR-Cas systems for genome editing. Nucleic Acids Res 44:e34.
  73. Vogel J, Luisi BF. 2011. Hfq and its constellation of RNA. Nat Rev Microbiol 9:578- 89.
  74. Updegrove TB, Zhang A, Storz G. 2016. Hfq: the flexible RNA matchmaker. Curr Opin Microbiol 30:133-8.
  75. Inoue H, Nojima H, Okayama H. 1990. High efficiency transformation of Escherichia coli with plasmids. Gene 96:23-8.
  76. Omer AD, Lowe TM, Russell AG, Ebhardt H, Eddy SR, Dennis PP. 2000. Homologs of small nucleolar RNAs in Archaea. Science 288:517-22.
  77. Fu C, Donovan WP, Shikapwashya-Hasser O, Ye X, Cole RH. 2014. Hot Fusion: an efficient method to clone multiple DNA fragments as well as inverted repeats without ligase. PLoS One 9:e115318.
  78. Wallace RB, Shaffer J, Murphy RF, Bonner J, Hirose T, Itakura K. 1979. Hybridization of synthetic oligodeoxyribonucleotides to phi chi 174 DNA: the effect of single base pair mismatch. Nucleic Acids Res 6:3543-57.
  79. Xu N, Li Y, Zhao YT, Guo L, Fang YY, Zhao JH, Wang XJ, Huang L, Guo HS. 2012. Identification and characterization of small RNAs in the hyperthermophilic archaeon Sulfolobus solfataricus. PLoS One 7:e35306.
  80. Iakhiaeva E, Iakhiaev A, Zwieb C. 2010. Identification of amino acid residues in protein SRP72 required for binding to a kinked 5e motif of the human signal recognition particle RNA. BMC Mol Biol 11:83.
  81. Rosenblad MA, Samuelsson T. 2004. Identification of chloroplast signal recognition particle RNA genes. Plant Cell Physiol 45:1633-9.
  82. Nunoura T, Takaki Y, Kakuta J, Nishi S, Sugahara J, Kazama H, Chee GJ, Hattori M, Kanai A, Atomi H, Takai K, Takami H. 2011. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res 39:3204-23.
  83. Rosenblad MA, Lopez MD, Piccinelli P, Samuelsson T. 2006. Inventory and analysis of the protein subunits of the ribonucleases P and MRP provides further evidence of homology between the yeast and human enzymes. Nucleic Acids Res 34:5145-56.
  84. Wagner M, Wagner A, Ma X, Kort JC, Ghosh A, Rauch B, Siebers B, Albers SV. 2014. Investigation of the malE promoter and MalR, a positive regulator of the maltose regulon, for an improved expression system in Sulfolobus acidocaldarius. Appl Environ Microbiol 80:1072-81.
  85. Omer AD, Ziesche S, Ebhardt H, Dennis PP. 2002. In vitro reconstitution and activity of a C/D box methylation guide ribonucleoprotein complex. Proc Natl Acad Sci U S A 99:5289-94.
  86. Rose RW, Pohlschroder M. 2002. In vivo analysis of an essential archaeal signal recognition particle in its native host. J Bacteriol 184:3260-7.
  87. Rosenblad MA, Larsen N, Samuelsson T, Zwieb C. 2009. Kinship in the SRP RNA family. RNA Biol 6:508-16.
  88. Slupska MM, King AG, Fitz-Gibbon S, Besemer J, Borodovsky M, Miller JH. 2001. Leaderless transcripts of the crenarchaeal hyperthermophile Pyrobaculum aerophilum. J Mol Biol 309:347-60.
  89. Randau L, Schroder I, Soll D. 2008. Life without RNase P. Nature 453:120-3.
  90. Liang XH, Liu Q, Fournier MJ. 2009. Loss of rRNA modifications in the decoding center of the ribosome impairs translation and strongly delays pre-rRNA processing. RNA 15:1716-28.
  91. Wilusz CJ, Wilusz J. 2013. Lsm proteins and Hfq: Life at the 3' end. RNA Biol 10:592- 601.
  92. Kufel J, Allmang C, Verdone L, Beggs JD, Tollervey D. 2002. Lsm proteins are required for normal processing of pre-tRNAs and their efficient association with La- homologous protein Lhp1p. Mol Cell Biol 22:5248-56.
  93. Robinson KE, Orans J, Kovach AR, Link TM, Brennan RG. 2014. Mapping Hfq- RNA interaction surfaces using tryptophan fluorescence quenching. Nucleic Acids Res 42:2736-49.
  94. Chen CY, Shyu AB. 2011. Mechanisms of deadenylation-dependent decay. Wiley Interdiscip Rev RNA 2:167-83.
  95. Bailey TL, Williams N, Misleh C, Li WW. 2006. MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34:W369-73.
  96. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS. 2009. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202-8.
  97. Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P. 2008. Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245-52.
  98. Forconi M, Herschlag D. 2009. Metal Ion-Based Rna Cleavage as a Structural Probe. Methods in Enzymology, Vol 468: Biophysical, Chemical, and Functional Probes of Rna Structure, Interactions and Folding, Pt A 468:91-106.
  99. Kim VN. 2005. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6:376-85.
  100. Leigh JA, Albers SV, Atomi H, Allers T. 2011. Model organisms for genetics in the domain Archaea: methanogens, halophiles, Thermococcales and Sulfolobales. FEMS Microbiol Rev 35:577-608.
  101. Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550.
  102. Moore T, Zhang Y, Fenley MO, Li H. 2004. Molecular basis of box C/D RNA-protein interactions; cocrystal structure of archaeal L7Ae and a box C/D RNA. Structure 12:807-18.
  103. Sambrook JF, Fritsch EF, Maniatis, T. 1989. Molecular Cloning: A laboratory manual. Cold Spring Harbor Laboratory Press.
  104. Wilson RC, Doudna JA. 2013. Molecular mechanisms of RNA interference. Annu Rev Biophys 42:217-39.
  105. Vilardell J, Yu SJ, Warner JR. 2000. Multiple functions of an evolutionarily conserved RNA binding domain. Mol Cell 5:761-6.
  106. Seelos L. 2015. Nachweis ribosomaler Methylierungsstellen in Sulfolobus acidocaldarius. Bachelor Thesis. Philipps University Marburg.
  107. Henras A, Henry Y, Bousquet-Antonelli C, Noaillac-Depeyre J, Gelugne JP, Caizergues-Ferrer M. 1998. Nhp2p and Nop10p are essential for the function of H/ACA snoRNPs. EMBO J 17:7078-90.
  108. Katahira M, Sato H, Mishima K, Uesugi S, Fujii S. 1993. NMR studies of G:A mismatches in oligodeoxyribonucleotide duplexes modelled after ribozymes. Nucleic Acids Res 21:5418-24.
  109. Altman S. 1990. Nobel lecture. Enzymatic cleavage of RNA by RNA. Biosci Rep 10:317-37.
  110. Kilic T, Sanglier S, Van Dorsselaer A, Suck D. 2006. Oligomerization behavior of the archaeal Sm2-type protein from Archaeoglobus fulgidus. Protein Sci 15:2310-7.
  111. Farlow WG. 1880. On The Nature Of The Peculiar Reddening Of Salted Codfish During The Summer Season. US Comm Fish and Fisheries, Report for 1878:969-973.
  112. Shabalina SA, Koonin EV. 2008. Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol 23:578-87.
  113. Tripp V. 2016. Pan-archaeal analysis of C/D box sRNA biogenesis and methylation targets. PhD thesis. Philipps University Marburg.
  114. Barns SM, Delwiche CF, Palmer JD, Pace NR. 1996. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc Natl Acad Sci U S A 93:9188-93.
  115. Woese CR, Fox GE. 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74:5088-90.
  116. Tripp V, Martin R, Orell A, Alkhnbashi OS, Backofen R, Randau L. 2017. Plasticity of archaeal C/D box sRNA biogenesis. Mol Microbiol 103:151-164.
  117. Blum E, Carpousis AJ, Higgins CF. 1999. Polyadenylation promotes degradation of 3'-structured RNA by the Escherichia coli mRNA degradosome in vitro. J Biol Chem 274:4009-16.
  118. Mohanty BK, Kushner SR. 2000. Polynucleotide phosphorylase functions both as a 3' right-arrow 5' exonuclease and a poly(A) polymerase in Escherichia coli. Proc Natl Acad Sci U S A 97:11966-71.
  119. Otaka H, Ishikawa H, Morita T, Aiba H. 2011. PolyU tail of rho-independent terminator of bacterial small RNAs is essential for Hfq action. Proc Natl Acad Sci U S A 108:13059-64.
  120. Noon KR, Bruenger E, McCloskey JA. 1998. Posttranscriptional modifications in 16S and 23S rRNAs of the archaeal hyperthermophile Sulfolobus solfataricus. J Bacteriol 180:2883-8.
  121. Regalia M, Rosenblad MA, Samuelsson T. 2002. Prediction of signal recognition particle RNA genes. Nucleic Acids Res 30:3368-77.
  122. Jager D, Forstner KU, Sharma CM, Santangelo TJ, Reeve JN. 2014. Primary transcriptome map of the hyperthermophilic archaeon Thermococcus kodakarensis. BMC Genomics 15:684.
  123. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487-91.
  124. Brunner M, Bujard H. 1987. Promoter recognition and promoter strength in the Escherichia coli system. EMBO J 6:3139-44.
  125. Olejniczak M, Storz G. 2017. ProQ/FinO-domain proteins: another ubiquitous family of RNA matchmakers? Mol Microbiol 104:905-915.
  126. Moll RG. 2003. Protein-protein, protein-RNA and protein-lipid interactions of signal- recognition particle components in the hyperthermoacidophilic archaeon Acidianus ambivalens. Biochem J 374:247-54.
  127. Shah SA, Erdmann S, Mojica FJ, Garrett RA. 2013. Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol 10:891-9.
  128. Dimastrogiovanni D, Frohlich KS, Bandyra KJ, Bruce HA, Hohensee S, Vogel J, Luisi BF. 2014. Recognition of the small regulatory RNA RydC by the bacterial Hfq protein. Elife 3.
  129. Charpentier B, Muller S, Branlant C. 2005. Reconstitution of archaeal H/ACA small ribonucleoprotein complexes active in pseudouridylation. Nucleic Acids Res 33:3133- 44.
  130. Nomura M, Gourse R, Baughman G. 1984. Regulation of the synthesis of ribosomes and ribosomal components. Annu Rev Biochem 53:75-117.
  131. Brenneis M, Soppa J. 2009. Regulation of translation in haloarchaea: 5'-and 3'-UTRs are essential and have to functionally interact in vivo. PLoS One 4:e4484.
  132. Yip WS, Vincent NG, Baserga SJ. 2013. Ribonucleoproteins in archaeal pre-rRNA processing and modification. Archaea 2013:614735.
  133. Dabeva MD, Warner JR. 1993. Ribosomal protein L32 of Saccharomyces cerevisiae regulates both splicing and translation of its own transcript. J Biol Chem 268:19669-74.
  134. Cho IM, Lai LB, Susanti D, Mukhopadhyay B, Gopalan V. 2010. Ribosomal protein L7Ae is a subunit of archaeal RNase P. Proc Natl Acad Sci U S A 107:14573-8.
  135. Gorski SA, Vogel J, Doudna JA. 2017. RNA-based recognition and targeting: sowing the seeds of specificity. Nat Rev Mol Cell Biol 18:215-228.
  136. Weichenrieder O. 2014. RNA binding by Hfq and ring-forming (L)Sm proteins: a trade-off between optimal sequence readout and RNA backbone conformation. RNA Biol 11:537-49.
  137. Toro I, Thore S, Mayer C, Basquin J, Seraphin B, Suck D. 2001. RNA binding in an Sm core domain: X-ray structure and functional analysis of an archaeal Sm protein complex. EMBO J 20:2293-303.
  138. Murina VN, Nikulin AD. 2011. RNA-binding Sm-like proteins of bacteria and archaea. similarity and difference in structure and function. Biochemistry (Mosc) 76:1434-49.
  139. Baker DL, Youssef OA, Chastkofsky MI, Dy DA, Terns RM, Terns MP. 2005. RNA-guided RNA modification: functional organization of the archaeal H/ACA RNP. Genes Dev 19:1238-48.
  140. Portnoy V, Schuster G. 2006. RNA polyadenylation and degradation in different Archaea; roles of the exosome and RNase R. Nucleic Acids Res 34:5923-31.
  141. Portnoy V, Evguenieva-Hackenberg E, Klein F, Walter P, Lorentzen E, Klug G, Schuster G. 2005. RNA polyadenylation in Archaea: not observed in Haloferax while the exosome polynucleotidylates RNA in Sulfolobus. EMBO Rep 6:1188-93.
  142. Randau L. 2012. RNA processing in the minimal organism Nanoarchaeum equitans. Genome Biol 13:R63.
  143. Fender A, Elf J, Hampel K, Zimmermann B, Wagner EG. 2010. RNAs actively cycle on the Sm-like protein Hfq. Genes Dev 24:2621-6.
  144. Pastura A. 2017. RNA substrate binding of LSm1/LSm2 complexes from Sulfolobus acidocaldarius. Master Thesis. Philipps University Marburg.
  145. Schroeder KT, Daldrop P, Lilley DM. 2011. RNA tertiary interactions in a riboswitch stabilize the structure of a kink turn. Structure 19:1233-40.
  146. Evguenieva-Hackenberg E, Roppelt V, Finsterseifer P, Klug G. 2008. Rrp4 and Csl4 are needed for efficient degradation but not for polyadenylation of synthetic and natural RNA by the archaeal exosome. Biochemistry 47:13158-68.
  147. Kiss-Laszlo Z, Henry Y, Kiss T. 1998. Sequence and structural elements of methylation guide snoRNAs essential for site-specific ribose methylation of pre-rRNA. EMBO J 17:797-807.
  148. Akopian D, Shen K, Zhang X, Shan SO. 2013. Signal recognition particle: an essential protein-targeting machine. Annu Rev Biochem 82:693-721.
  149. Walter P, Blobel G. 1982. Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum. Nature 299:691-8.
  150. Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR. 1989. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51-9.
  151. Ganot P, Bortolin ML, Kiss T. 1997. Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell 89:799-809.
  152. Kiss-Laszlo Z, Henry Y, Bachellerie JP, Caizergues-Ferrer M, Kiss T. 1996. Site- specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell 85:1077-88.
  153. Berkner S, Grogan D, Albers SV, Lipps G. 2007. Small multicopy, non-integrative shuttle vectors based on the plasmid pRN1 for Sulfolobus acidocaldarius and Sulfolobus solfataricus, model organisms of the (cren-)archaea. Nucleic Acids Res 35:e88.
  154. Dennis PP, Omer A. 2005. Small non-coding RNAs in Archaea. Curr Opin Microbiol 8:685-94.
  155. Lui L, Lowe T. 2013. Small nucleolar RNAs and RNA-guided post-transcriptional modification. Essays Biochem 54:53-77.
  156. Ni J, Tien AL, Fournier MJ. 1997. Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell 89:565-73.
  157. Babski J, Maier LK, Heyer R, Jaschinski K, Prasse D, Jager D, Randau L, Schmitz RA, Marchfelder A, Soppa J. 2014. Small regulatory RNAs in Archaea. RNA Biol 11:484-93.
  158. Salgado-Garrido J, Bragado-Nilsson E, Kandels-Lewis S, Seraphin B. 1999. Sm and Sm-like proteins assemble in two related complexes of deep evolutionary origin. EMBO J 18:3451-62.
  159. Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H. 1986. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51 Pt 1:263-73.
  160. Sauer E, Weichenrieder O. 2011. Structural basis for RNA 3'-end recognition by Hfq. Proc Natl Acad Sci U S A 108:13065-70.
  161. Eng FJ, Warner JR. 1991. Structural basis for the regulation of splicing of a yeast messenger RNA. Cell 65:797-804.
  162. Hainzl T, Huang S, Merilainen G, Brannstrom K, Sauer-Eriksson AE. 2011. Structural basis of signal-sequence recognition by the signal recognition particle. Nat Struct Mol Biol 18:389-91.
  163. Oruganti S, Zhang Y, Li H. 2005. Structural comparison of yeast snoRNP and spliceosomal protein Snu13p with its homologs. Biochem Biophys Res Commun 333:550-4.
  164. Mura C, Phillips M, Kozhukhovsky A, Eisenberg D. 2003. Structure and assembly of an augmented Sm-like archaeal protein 14-mer. Proc Natl Acad Sci U S A 100:4539- 44.
  165. Aittaleb M, Rashid R, Chen Q, Palmer JR, Daniels CJ, Li H. 2003. Structure and function of archaeal box C/D sRNP core proteins. Nat Struct Biol 10:256-63.
  166. Link TM, Valentin-Hansen P, Brennan RG. 2009. Structure of Escherichia coli Hfq bound to polyriboadenylate RNA. Proc Natl Acad Sci U S A 106:19292-7.
  167. Koo BK, Park CJ, Fernandez CF, Chim N, Ding Y, Chanfreau G, Feigon J. 2011. Structure of H/ACA RNP protein Nhp2p reveals cis/trans isomerization of a conserved proline at the RNA and Nop10 binding interface. J Mol Biol 411:927-42.
  168. Luhrmann R, Kastner B, Bach M. 1990. Structure of spliceosomal snRNPs and their role in pre-mRNA splicing. Biochim Biophys Acta 1087:265-92.
  169. Halic M, Becker T, Pool MR, Spahn CM, Grassucci RA, Frank J, Beckmann R. 2004. Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature 427:808-14.
  170. Leung AK, Nagai K, Li J. 2011. Structure of the spliceosomal U4 snRNP core domain and its implication for snRNP biogenesis. Nature 473:536-9.
  171. Becker MM, Lapouge K, Segnitz B, Wild K, Sinning I. 2017. Structures of human SRP72 complexes provide insights into SRP RNA remodeling and ribosome interaction. Nucleic Acids Res 45:470-481.
  172. Schumacher MA, Pearson RF, Moller T, Valentin-Hansen P, Brennan RG. 2002. Structures of the pleiotropic translational regulator Hfq and an Hfq-RNA complex: a bacterial Sm-like protein. EMBO J 21:3546-56.
  173. Hanahan D. 1983. Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557-80.
  174. Liang B, Xue S, Terns RM, Terns MP, Li H. 2007. Substrate RNA positioning in the archaeal H/ACA ribonucleoprotein complex. Nat Struct Mol Biol 14:1189-95.
  175. Brock TD, Brock KM, Belly RT, Weiss RL. 1972. Sulfolobus: a new genus of sulfur- oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol 84:54-68.
  176. Saito H, Fujita Y, Kashida S, Hayashi K, Inoue T. 2011. Synthetic human cell fate regulation by protein-driven RNA switches. Nat Commun 2:160.
  177. Saito H, Kobayashi T, Hara T, Fujita Y, Hayashi K, Furushima R, Inoue T. 2010. Synthetic translational regulation by an L7Ae-kink-turn RNP switch. Nat Chem Biol 6:71-8.
  178. Iakhiaeva E, Wower J, Wower IK, Zwieb C. 2008. The 5e motif of eukaryotic signal recognition particle RNA contains a conserved adenosine for the binding of SRP72. RNA 14:1143-53.
  179. Evguenieva-Hackenberg E. 2011. The archaeal exosome. Adv Exp Med Biol 702:29- 38.
  180. Lorentzen E, Walter P, Fribourg S, Evguenieva-Hackenberg E, Klug G, Conti E. 2005. The archaeal exosome core is a hexameric ring structure with three catalytic subunits. Nat Struct Mol Biol 12:575-81.
  181. Fischer S, Benz J, Spath B, Maier LK, Straub J, Granzow M, Raabe M, Urlaub H, Hoffmann J, Brutschy B, Allers T, Soppa J, Marchfelder A. 2010. The archaeal Lsm protein binds to small RNAs. J Biol Chem 285:34429-38.
  182. Guy L, Ettema TJ. 2011. The archaeal 'TACK' superphylum and the origin of eukaryotes. Trends Microbiol 19:580-7.
  183. Sobrero P, Valverde C. 2012. The bacterial protein Hfq: much more than a mere RNA- binding factor. Crit Rev Microbiol 38:276-99.
  184. Watkins NJ, Bohnsack MT. 2012. The box C/D and H/ACA snoRNPs: key players in the modification, processing and the dynamic folding of ribosomal RNA. Wiley Interdiscip Rev RNA 3:397-414.
  185. Bower-Phipps KR, Taylor DW, Wang HW, Baserga SJ. 2012. The box C/D sRNP dimeric architecture is conserved across domain Archaea. RNA 18:1527-40.
  186. Tatusov RL, Galperin MY, Natale DA, Koonin EV. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28:33- 6.
  187. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA. 2000. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289:905-20.
  188. Kierzek E, Malgowska M, Lisowiec J, Turner DH, Gdaniec Z, Kierzek R. 2014. The contribution of pseudouridine to stabilities and structure of RNAs. Nucleic Acids Res 42:3492-501.
  189. Mura C, Cascio D, Sawaya MR, Eisenberg DS. 2001. The crystal structure of a heptameric archaeal Sm protein: Implications for the eukaryotic snRNP core. Proc Natl Acad Sci U S A 98:5532-7.
  190. Chowdhury A, Mukhopadhyay J, Tharun S. 2007. The decapping activator Lsm1p- 7p-Pat1p complex has the intrinsic ability to distinguish between oligoadenylated and polyadenylated RNAs. RNA 13:998-1016.
  191. Zago MA, Dennis PP, Omer AD. 2005. The expanding world of small RNAs in the hyperthermophilic archaeon Sulfolobus solfataricus. Mol Microbiol 55:1812-28.
  192. Winkler WC, Grundy FJ, Murphy BA, Henkin TM. 2001. The GA motif: an RNA element common to bacterial antitermination systems, rRNA, and eukaryotic RNAs. RNA 7:1165-72.
  193. Martens B, Bezerra GA, Kreuter MJ, Grishkovskaya I, Manica A, Arkhipova V, Djinovic-Carugo K, Blasi U. 2015. The Heptameric SmAP1 and SmAP2 Proteins of the Crenarchaeon Sulfolobus Solfataricus Bind to Common and Distinct RNA Targets. Life (Basel) 5:1264-81.
  194. Huang L, Lilley DM. 2016. The Kink Turn, a Key Architectural Element in RNA Structure. J Mol Biol 428:790-801.
  195. Klein DJ, Schmeing TM, Moore PB, Steitz TA. 2001. The kink-turn: a new RNA secondary structure motif. EMBO J 20:4214-21.
  196. Goody TA, Melcher SE, Norman DG, Lilley DM. 2004. The kink-turn motif in RNA is dimorphic, and metal ion-dependent. RNA 10:254-64.
  197. Nolivos S, Carpousis AJ, Clouet-d'Orval B. 2005. The K-loop, a general feature of the Pyrococcus C/D guide RNAs, is an RNA structural motif related to the K-turn. Nucleic Acids Res 33:6507-14.
  198. Lilley DM. 2014. The K-turn motif in riboswitches and other RNA species. Biochim Biophys Acta 1839:995-1004.
  199. Lai SM, Lai LB, Foster MP, Gopalan V. 2014. The L7Ae protein binds to two kink- turns in the Pyrococcus furiosus RNase P RNA. Nucleic Acids Res 42:13328-38.
  200. Caban K, Kinzy SA, Copeland PR. 2007. The L7Ae RNA binding motif is a multifunctional domain required for the ribosome-dependent Sec incorporation activity of Sec insertion sequence binding protein 2. Mol Cell Biol 27:6350-60.
  201. Huang L, Lilley DM. 2013. The molecular recognition of kink-turn structure by the L7Ae class of proteins. RNA 19:1703-10.
  202. Mura C, Kozhukhovsky A, Gingery M, Phillips M, Eisenberg D. 2003. The oligomerization and ligand-binding properties of Sm-like archaeal proteins (SmAPs). Protein Sci 12:832-47.
  203. Vieira J, Messing J. 1982. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259- 68.
  204. Polacek N, Mankin AS. 2005. The ribosomal peptidyl transferase center: structure, function, evolution, inhibition. Crit Rev Biochem Mol Biol 40:285-311.
  205. Lee T, Feig AL. 2008. The RNA binding protein Hfq interacts specifically with tRNAs. RNA 14:514-23.
  206. Tollervey D, Lehtonen H, Carmo-Fonseca M, Hurt EC. 1991. The small nucleolar RNP protein NOP1 (fibrillarin) is required for pre-rRNA processing in yeast. EMBO J 10:573-83.
  207. Martens B, Hou L, Amman F, Wolfinger MT, Evguenieva-Hackenberg E, Blasi U. 2017. The SmAP1/2 proteins of the crenarchaeon Sulfolobus solfataricus interact with the exosome and stimulate A-rich tailing of transcripts. Nucleic Acids Res.
  208. Achsel T, Stark H, Luhrmann R. 2001. The Sm domain is an ancient RNA-binding motif with oligo(U) specificity. Proc Natl Acad Sci U S A 98:3685-9.
  209. Mohanty BK, Maples VF, Kushner SR. 2004. The Sm-like protein Hfq regulates polyadenylation dependent mRNA decay in Escherichia coli. Mol Microbiol 54:905- 20.
  210. Lilley DM. 2012. The structure and folding of kink turns in RNA. Wiley Interdiscip Rev RNA 3:797-805.
  211. Reichow SL, Hamma T, Ferre-D'Amare AR, Varani G. 2007. The structure and function of small nucleolar ribonucleoproteins. Nucleic Acids Res 35:1452-64.
  212. Lapinaite A, Simon B, Skjaerven L, Rakwalska-Bange M, Gabel F, Carlomagno T. 2013. The structure of the box C/D enzyme reveals regulation of RNA methylation. Nature 502:519-23.
  213. Constantinesco F, Benachenhou N, Motorin Y, Grosjean H. 1998. The tRNA(guanine-26,N2-N2) methyltransferase (Trm1) from the hyperthermophilic archaeon Pyrococcus furiosus: cloning, sequencing of the gene and its expression in Escherichia coli. Nucleic Acids Res 26:3753-61.
  214. Arluison V, Mura C, Guzman MR, Liquier J, Pellegrini O, Gingery M, Regnier P, Marco S. 2006. Three-dimensional structures of fibrillar Sm proteins: Hfq and other Sm-like proteins. J Mol Biol 356:86-96.
  215. Woese CR, Kandler O, Wheelis ML. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87:4576-9.
  216. Dominissini D, Moshitch-Moshkovitz S, Salmon-Divon M, Amariglio N, Rechavi G. 2013. Transcriptome-wide mapping of N(6)-methyladenosine by m(6)A-seq based on immunocapturing and massively parallel sequencing. Nat Protoc 8:176-89.
  217. Holcik M, Sonenberg N. 2005. Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 6:318-27.
  218. Wagner M, van Wolferen M, Wagner A, Lassak K, Meyer BH, Reimann J, Albers SV. 2012. Versatile Genetic Tool Box for the Crenarchaeote Sulfolobus acidocaldarius. Front Microbiol 3:214.
  219. Crooks GE, Hon G, Chandonia JM, Brenner SE. 2004. WebLogo: a sequence logo generator. Genome Res 14:1188-90.
  220. Burnette WN. 1981. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112:195-203.
  221. Dar D, Prasse D, Schmitz RA, Sorek R. 2016. Widespread formation of alternative 3' UTR isoforms via transcription termination in archaea. Nat Microbiol 1:16143.
  222. Tomasevic N, Peculis BA. 2002. Xenopus LSm proteins bind U8 snoRNA via an internal evolutionarily conserved octamer sequence. Mol Cell Biol 22:4101-12.
  223. Baird NJ, Zhang J, Hamma T, Ferre-D'Amare AR. 2012. YbxF and YlxQ are bacterial homologs of L7Ae and bind K-turns but not K-loops. RNA 18:759-70.
  224. Sojka L, Fucik V, Krasny L, Barvik I, Jonak J. 2007. YbxF, a protein associated with exponential-phase ribosomes in Bacillus subtilis. J Bacteriol 189:4809-14.
  225. Tharun S, He W, Mayes AE, Lennertz P, Beggs JD, Parker R. 2000. Yeast Sm-like proteins function in mRNA decapping and decay. Nature 404:515-8.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten