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Part I. 

Cumulus 
 

Introduction and Summary 

This thesis consists of three main studies that cover complementary aspects of action-to-perception 

transfer. In the recent decades, cognitive psychology has started a paradigm shift from its traditional 

approach to put the stimulus first and treat the action as response to a less one-directional view of 

perception and action. Quite trivially, action influences perception by changing the external world: we 

move objects, we locomote or we move our sensory organs. More crucially, action also influences 

perception internally. Study II and III will address this question directly, by studying perceptual effects 

of action on physically unchanged stimuli. Study I deals with biological motion. I will argue that the 

perception of biological motion may present a naturalistic example for direct action-to-perception 

transfer. The cues of animate locomotion are detected rapidly and effortlessly, and allow quick retrieval 

of detailed information about the actor, as we related to our immense experience with moving our own 

bodies in ways that correspond to the physical “laws” which the dynamics of these cues represent. In 

sum, the studies reported in this thesis provide novel insight on shared action-perception 

representations, their perceptual consequences and their relation to cognitive models of the world. 

In Study I, we showed that biological motion cues distort the perceived size of the actor’s figure: a 

biological motion stimulus is perceived larger than matched control stimuli and lets subsequent stimuli 

appear smaller. Provided the importance of biological motion, this is in line with other studies that 

relate subjective importance to perceived size – however, the connection with animate motion has not 

been reported earlier. If there are shared action-perception representations, do they operate on different 

representational levels? In study II, we coupled a stimulus that was in competition with another to 

action more or less strongly. While the degree of action-perception coupling did not affect overt reports 

of stimulus’ visibility, oculomotor measures were modulated. This suggests different degrees of action 

perception coupling on different representational levels, with varying access to awareness. Does in turn 

the internal cognitive model of the world penetrate action perception coupling? In study III, we showed 

that the effect of action-perception congruency on perceptual stability critically depends on the internal 

cognitive model of action perception coupling. Studies II and III together indicate that no single 

mechanism or representation can account for all action-perception findings. In the general discussion, I 

will consider the needed adjustments to current models as well as alternative theoretical approaches. 
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1. Biological motion perception 

For terrestrial animals, the most important feat to recognize is the locomotion of others, the majority of 

whom are legged creatures. Whether potential prey, predator, mate or a fellow gatherer to share tasks 

with, recognizing their motion has arguably been crucial for our highly social species throughout its 

evolutionary history. There are certain levels of this process, starting with recognition, but going far 

beyond that: from its motion only, we are able to retrieve information about physical as well as 

personal properties of the actor. 

If we consider our normal visual sensory input impoverished (which is to be interpreted in relation to 

the amount of useful information we are able to retrieve from it), the most common biological motion 

display will certainly illustrate the logic behind this assumption. Used first by Johansson (1973; 1976), 

point-light displays depict the movements of the human body’s major joints in a highly condensed way. 

From the 2-dimensional motion of a few dots, we are able to readily recognize complex actions, 

without any surface information and with no explicitly defined structural connection between the dots. 

 

 
Figure 1. Point-light figures. Note that in an orthographic rendering, there are two possible 

interpretations due to depth-ambiguity – the illustrations here highlight only one of them. (Text and 

images have been modified. Source: Vanrie, Dekeyser, & Verfaillie, 2004) 

 

Beyond simple recognition, we are also able to rapidly detect biological motion stimuli, which carries 

obvious functional significance. As Johansson (1973) anticipated, this ability seems to be “… a highly 

mechanical, automatic type of visual data treatment.” This ability can even be observed when the 

configural information (structure from motion) that is available in a point-light walker as described 

above is removed by spatially scrambling the dots, resulting in an isolation of local motion cues. In a 

search-task, Wang, Zhang, He and Jiang (2010) found a search advantage of such spatially scrambled 
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point-light walkers. That is in line with other studies which demonstrated incidental processing of 

biological motion stimuli (Thornton & Vuong, 2004) and a rapid modulation of attention by local 

biological motion cues (Wang, Yang, Shi, & Jiang, 2014) – reinforcing Johansson’s original hunch. 

Point-light walkers do not only draw attention to themselves, but also orient it towards their direction 

of translation, as demonstrated by Shi, Weng, He, and Jiang (2010). While some studies emphasize the 

importance of local motion cues in the processing of point-light figures (Chang & Troje, 2009; Mather, 

Radford, & West, 1992; Saunderes, Suchan, & Troje, 2009; Troje & Westhoff, 2006; Wang et al., 

2014), others show that global aspects can be important as well (e.g. Beintema & Lappe, 2002; 

Bertenthal & Pinto, 1994; Coulson, 2004; Cutting, 1981; Lange & Lappe, 2006; Neri, Morrone, & 

Burr, 1998; Shiffrar, Lichtey, & Heptulla-Chatterjee, 1997). This makes it clear that both play a role, 

and probably the most important aspect of the global-local debate is that different cues can contribute 

in complementary as well as interchangeable manners, suggesting that biological motion should not be 

treated as a single phenomenon but rather as a combination of many different aspects (Troje, 2008; 

Troje, 2013). 

Indeed, elements to consider seem plentiful. Aside from recognition, rapid detection, and evocation of 

attentional orienting, biological motion cues are related to a host of detailed information that observers 

can correctly identify about the actor. Only a couple of examples are the detection of gender from the 

motion of faces (Hill & Johnston, 2001) and from the motion of other parts of the body (Kozlowski & 

Cutting, 1977; Mather & Murdoch, 1994; although see also Pollick, Lestou, Ryu, & Cho, 2002), 

identification of affect (Atkinson, Tunstall, & Dittrich, 2007; Ikeda & Watanabe, 2009; Pollick, 

Paterson, Bruderlin, & Sanford, 2001) and identity (Loula, Prasad, Harber, & Shiffrar, 2005; Troje, 

Westhoff, & Lavrov, 2005). 

This multiplicity makes it difficult to give an overarching explanation for the phenomenon. Where do 

these complex skills originate from? One approach is perceptual: since comprehension of the actions of 

other animals around us is paramount, we evolved to have outstanding visual abilities in this regard, 

already from an early age (Fox & McDaniel, 1982; Pavlova, Krageloh-Mann, Sokolov, & Birbaumer, 

2001), maybe even from birth (Simion, Regolin, & Bulf, 2008; Vallortigara, Regolin, & Marconato, 

2005). Some basic cues in biological motion draw attention in an incidental fashion and lead the 

observer to quickly recognize an animate agent. Then, action-specific details are recognized through a 

slower perceptual mechanism, where bottom-up processing of distinctive traits and top-down effects of 
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knowledge interact (Troje, 2008; Zacks, 2004) likely in a hierarchical manner (e.g. Ahissar & 

Hochstein, 2004; Hemeren, 2008). 

Another possible explanation might be related to our own experience with similar actions. Note that 

this explanation is not necessarily at odds with the one outlined in the previous paragraph, but 

depending on the theoretical viewpoint, may involve crucial differences. Biological movement patterns 

are largely governed by the principles of biomechanics and physics. For example, the two-thirds power 

law, first reported for handwriting and drawing movements (Lacquaniti, Terzuolo, & Viviani, 1983), 

describes that the velocity of movements increases with the radius of curvature, and applies to the 

motion of walking (Ivanenko, Grasso, Macellari, & Lacquaniti, 2002) as well as to motion perception 

(Flach, Knoblich, & Prinz, 2004). Also, Fitts’s law, which describes a speed/accuracy trade-off in 

movement, can be observed in perceptual decisions too (Grosjean, Shiffrar, & Knoblich, 2007). 

Similarly, the perceptual advantage in recognizing one’s own movements (e.g. Knoblich & Flach, 

2001; Loula et al., 2005) and in recognizing movements that the observer is experienced in executing 

(Beets, Rösler, & Fiehler, 2010; Casile & Giese, 2006; Hecht, Vogt, & Prinz, 2001) suggests that 

knowledge about the kinematics of a specific movement can carry over from execution to perception. 

Most interestingly, the inverse of this statement also appears to be true: a lack of (recent) experience in 

locomotion impairs its perception (Arrighi, Cartocci, & Burr, 2011). 
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Practical outlook I – representation of gravity 

The importance of gravity in the perception of biological motion displays seems clear from the 

inversion effect (Sumi, 1984) – when point-light walkers are inverted, the amount of represented 

visual information remains equal compared to that in upright displays, yet many of the 

previously listed perceptual abilities related to these figures disappear. The reason might be that 

the acceleration patterns of the inverted movements (Troje & Westhoff, 2006) represent a 

situation (negative gravity) that is never observed in reality. Experimental data on imagery of 

biological motion are scarce (but for some related findings, see Deen & McCarthy, 2010; 

Grosman & Blake, 2001; Miller & Saygin, 2013), and it would be particularly difficult to design 

a study where the gravity-related visual cues could be studied separately in imagery. In the 

perception of the movements of external objects, we seem to incorporate the effects of gravity 

accurately (e.g. Jörges & López-Moliner, 2017; Lacquaniti, Carrozzo, & Borghese, 1993), 

suggesting that we might have a fairly precise internal model of it. However, the recent study of 

Gravano, Zago, and Lacquaniti (2017) shows that in imagery, we do not account for gravity, as 

if this internal model was not functioning appropriately, or was detached from imagery. This 

may well explain some of the differences in efficiency of imagery training in various sports 

(Hall, Rodgers, & Barr, 1990; Sheikh & Korn, 1994), and the accounts of gymnasts where skills 

with prolonged air-time regularly fail in imagery while they succeed in reality. This is in 

contrast with the finding that athletes often imagine winning and rarely imagine losing (Hall et 

al., 1990) – suggesting that there is indeed more to the phenomenon than pessimism. Repeated 

failures in imagery might in turn affect the confidence of the athlete and studies like that of 

Gravano and colleagues (2017) might help to understand why this experience is to be expected. 

Similarly, coaches usually instruct athletes to “use all senses” in imagery practice, while this 

may not always be appropriate. Mentally practicing a sequence that tends to fail in imagery but 

succeed in reality might nevertheless be effective in a modality-specific manner: the landing 

inevitably fails as gravity and the related timing is not incorporated properly in the imagery – 

but in all other respects, the sequence of the movements can be practiced correctly if the athlete 

understands that the purpose of this practice is not the timing of the landing but everything else. 
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Undeniably, the kinematic cues that help us quickly recognize the locomotion of legged animals from 

their visual appearance are the ones that we have most behavioral experience with. The ballistic 

acceleration pattern of the feet allows us to identify legged animals of all kinds (Troje & Westhoff, 

2006), and we also effectively guess the size of an animal from its stride frequency (Jokisch & Troje, 

2003), thanks to the universal physical properties of pendulums under constant gravity. Practicing this 

very same movement several thousand times a day (Althoff et al., 2017; Bassett et al., 2010) might be 

an explanation for the generalized filter-like properties of our perceptual “life-detector” (Troje & 

Westhoff, 2006). 

 

2. Mechanisms of motor and perceptual resonance 

The existence of our remarkable perceptual abilities regarding biological motion stimuli does not 

explain, however, how a motor experience transfers to perception. So far we have seen that the actions 

of animate beings are perceived with high efficiency and I argued that one possible reason behind this 

is that we have much experience with similar movements. Furthermore, there is ample evidence that 

such effects are not even restricted to biological types of motion. Action (or planned action, see e.g. 

Fagioli, Hommel, & Schubotz, 2007) can increase sensitivity to perceptual events that share some 

features with the action both concurrently (on-line) and with temporal difference (off-line). This has 

been demonstrated with ambiguous stimuli in the visual (Beets, et al., 2010; Mitsumatsu, 2009; 

Wohlschläger, 2000) and auditory (e.g. Repp & Knoblich, 2007) domains, as well as in imagery 

(Wexler, Kosslyn, & Berthoz, 1998; Wohlschläger & Wohlschläger, 1998). While binocular rivalry 

shows some differences from tasks with ambiguous displays, the on-line action-to-perception transfer 

effect appears similarly in that paradigm, too (Di Pace & Saracini, 2014; Maruya, Yang, & Blake, 

2007), or even with unambiguous stimuli that show high perceptual uncertainty (Keetels & 

Stekelenburg, 2014). 

The theories of common coding (Prinz, 1997) and event coding (Müsseler, 1999; Hommel, Müsseler, 

Aschersleben, & Prinz, 2001) provide a framework for these findings. Since data suggest that there is a 

generalized connection (with varying specificity, depending on the task and stimulus) between the 

motor and perceptual domains, these theories imply that both motor and perceptual events are coded in 

a common representation. This representation only applies to the events’ most substantial actuality; 

their details are coded peripherally, allowing for the varying degree of generalization that we have 

found in the available experimental evidence. Thus, the theories do not elaborate on the distal part of 
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possible mechanisms (i.e., early sensory processes and late motor processes), but define the connection 

between domains as a bidirectional flow of information at a central level (theory of event coding), 

where late stages of perception and early stages of action share a common representational domain 

(common coding). 

So far, our best evidence about the mechanisms that lie behind the information transfer comes from 

studies on the mirror neuron system (di Pellegrino, Fadiga, Fogassi, Gallese, & Rizzolatti, 1992) and 

show similar activation of premotor cortical areas in macaques both when an action is observed and 

when it is performed. Although more debatable, humans might function similarly (Calvo-Merino, 

Glaser, Grezes, Passingham, & Haggard, 2005; Calvo-Merino, Grezes, Glaser, Passingham, & 

Haggard, 2006). These studies led to a wide, though not very accurately defined (Uithol, Rooij, 

Bekkering, & Haselager, 2011), use of the term “motor resonance”, which entails that observation of 

actions leads to an internal mirroring that underlies action understanding. This same process, on the 

other hand, is not unidirectional and so, “perceptual resonance” (the way self-generated action leads to 

an influence on perception; Schütz-Bosbach & Prinz, 2007) can be viewed in a similar framework.  

 

3. On what level of processing is the connection between action and perception? 

While early theories in cognitive psychology treated cognitive processes as linear series of stages (e.g. 

Sternberg, 1969), where each stage has to end before the next stage would begin, the common coding 

and event coding approach allows interaction between (partially) linear processes at their highest 

levels. But where exactly are these levels in a functional sense? The picture we get from the literature is 

not conclusive. Many studies agree that performed (or imagined) action and the perceptual task need to 

have a shared dimension for the transfer to take place (e.g. Beets et al., 2010; Keetels & Stekelenburg, 

2014; Wexler et al., 1998; Wohlschläger, 2000; Wohlschläger & Wohlschläger, 1998). In case of 

studies using mental tasks, there is no kinesthetic information to possibly bias perception; furthermore, 

due to the necessity of a shared dimension, top-down control likely plays a role. This is interpreted as a 

process that is similar to attentional capture and named “action capture” by Wohlschläger (2000). 

However, the shared dimensions in these studies could as well be due to a low-level matching (e.g., the 

direction or orientation of the events). In the study of Beets and colleagues (2010), participants reported 

their percept of an ambiguous rotating cylinder by either button presses, or by rotating a manipulandum 

lever congruently or incongruently to the percept. Results from the manipulandum rotation conditions 

revealed a congruency effect (stabilization of the percept with congruent motion as compared to 
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incongruent motion), which replicated the findings of Wohlschläger (2000). More interestingly, in an 

additional condition where percept was reported by button presses while concurrent manual rotation 

was performed, the action with the manipulandum in a predefined direction did not affect the stability 

of the percept. This control condition of concurrent, but task-irrelevant, action could give stronger 

support for the idea that a low-level information flow cannot account for the findings. A possible issue 

though is that this study used a dual-task for task-irrelevant action conditions only and not for task-

relevant action conditions. In the study of Maruya and colleagues (2007), the binocular rivalry 

paradigm allowed for separately testing effects when the stimulus was dominant vs when it was 

suppressed from awareness. Their results, showing an effect of action also on the suppressed stimulus, 

strongly argue for the possibility of a low-level action-to-perception transfer that is outside of top-down 

control. 

So far, no study has shown a clear dissociation between higher and lower relative levels of processing 

that could unequivocally point to the stage where the shared representations of the common coding 

theory take place, leaving this part of the model relatively speculative. 

 

4. Experimental studies 

All three studies included in this thesis measure perceptual biases, which are caused by action. In all 

the presented experiments, visual stimulation remains unchanged (or matched in its physical properties, 

as in Study I) between conditions, supplying a control that unequivocally points to the internal nature 

of the measured biases. 

Here, I introduce the three studies on a basic level, including their results and the immediate aspects of 

their interpretations. Also included are some considerations, which did not make part of the articles, but 

may be relevant to the conclusions of the dissertation. Aside from these latter points, the article 

manuscripts in Part II should be consulted for detailed descriptions. General conclusions regarding 

what the studies reveal about the inner workings behind the effects are given in the final section of Part 

I. 

Study I (Veto, Einhäuser, & Troje, 2017) demonstrates that an abstract depiction of the most basic form 

of locomotive action in human life, bipedal walking, is perceived as taking up more physical space than 

an ecologically invalid depiction of the very same movement. In three experiments, we (i) quantified 

the phenomenon, (ii) offered a controlled replication to verify that it is indeed the motion and not any 
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static aspect of the stimulus that drives the perceptual bias, and (iii) showed that the perceptual 

distortion can also be measured indirectly, through a carry-over to simple stimuli. 

Study II (Veto, Schütz, & Einhäuser, in press) assesses the effects of the viewer’s own movement on 

the perception of a stimulus that is more or less related to the performed action. A continuous flash-

suppression paradigm with eye-tracking allowed us to capture not only the conscious percept of the 

observers, as expressed in their subjective self-reports, but also the objective measure of their eye-

movements which were directly related to the target stimulus. By using this paradigm, we tackled a 

lower level of action-perception coupling than earlier studies which showed effects of an on-line 

action-to-perception transfer. The finding that in our paradigm, action only affected eye-movements but 

not the reported percept, gives novel insight into how action can affect perception on different levels of 

processing and demonstrates a dissociation between various courses of the transfer. 

In Study III (Veto, Uhlig, Troje, & Einhäuser, submitted manuscript), we manipulated our test 

participants’ cognitive models of the coupling between their own actions and the actions’ perceivable 

outcomes. By inducing the assumption of different coupling mechanisms, we measured whether the on-

line action-to-perception transfer was merely a result of a direct information flow from one domain to 

the other or if cognition could penetrate this process. Results showed that the internal model of the 

viewer plays a significant role in the action-to-perception transfer, which further supports the notion 

that the transfer does not take place on one specific level, but rather on several different levels of 

processing. 

 

Study I: Veto, P., Einhäuser, W., & Troje, N. F. (2017). Biological motion distorts size perception. 

Scientific Reports, 7(10), 42576; doi: 10.1038/srep42576 

 

Rationale – Study I 

Size illusions, where the spatial dimensions of a stimulus are systematically misjudged, can be 

observed in a wide variety of visual scenarios. Classic examples operate by using simple stimuli to 

exploit the principles of size constancy and size contrast. In the former, an object of a given retinal size 

will be perceived as larger, if the assumed viewing distance of the object is greater, as opposed to when 

it is perceived to be closer to the viewer. Powerful demonstrations of this phenomenon, as e.g. the 

Ponzo illusion, use stimuli that are of the same size, yet they appear different to us due to the 3rd 

dimension that is implied in the image. Size contrast, on the other hand, refers to situations where an 
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object appears in the proximity of another, differently sized object. Here, no depth is apparent in the 

image, but an incidental comparison between the objects leads to the distortion. This comparison can 

happen simultaneously (as in the Ebbinghaus/Titchener illusion) or with a temporal delay between 

presentation of the two objects, creating a size adaptation aftereffect (Polsinelli, Milanesi, & Ganesan, 

1969). 

A less known group of perceptual distortions in size judgments, however, operate on higher levels of 

perception, using object properties that are of internal nature: in sum, an object that is of special interest 

to the viewer tends to look larger, and there is a (sometimes bidirectional) relation between perceived 

size and subjective value (e.g. Blaker & van Vugt, 2014; Dubois, Rucker, & Galinsky, 2011; Duguid & 

Goncalo, 2012; Marsh, Yu, Schechter, & Blair, 2009; Masters, Poolton, & van der Kamp, 2010; Meier, 

Robinson, & Caven, 2008; Murray & Schmitz, 2011; Silvera, Josephs, & Giesler, 2002; Yap, Mason, 

& Ames, 2013; Veltkamp, Aarts, & Custers, 2008). These phenomena would fit the general definition 

of illusions; however, due to reasons explained below, they are usually not referred to as such. 

Although several studies have shown effects of this category, they are typically also not even 

mentioned along with the previous examples that were based on size contrast and constancy. This may 

be due to their subliminal character: instead of a simple demonstration, this category of perceptual 

distortions requires some kind of measurement to become obvious. Furthermore – and theoretically 

more interestingly – while the former group of illusions relies on visual cues that are part of the visual 

scene and, under normal circumstances, help us make better perceptual judgments, the latter group of 

perceptual distortions originate from some internalized property of the stimulus. 

Biological motion stimuli are universally important, as shown by that they are perceived rapidly 

(Johansson, 1976; Jokisch, Daum, Suchan, & Troje, 2005; Wang et al., 2014) and incidentally 

(Thornton & Vuong, 2004; Veto, Thill, & Hemeren, 2013), we have an innate sensitivity to perceiving 

biological motion (Simion et al., 2008; Vallortigara et al., 2005), and human observers are able to 

retrieve nuanced details about the performer of the motion (Barclay, Cutting, & Kozlowski, 1978; 

Montepare, Goldstein, & Clausen, 1987; Troje et al., 2005). Given the above, our hypothesis logically 

follows: if important stimuli tend to seem larger to the observer and biological motion stimuli 

inherently enjoy preferential processing in the visual system, then biological motion stimuli are also 

likely to appear larger than a matched control stimulus. We investigated this question in three 

experiments. 
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Paradigm – Study I 

First, we tested sixteen participants in a paradigm, where for each trial they briefly viewed a target 

figure followed by a mask to prevent reliance on afterimages. Then, in an adjustment task, participants 

indicated the size of the previously seen figure both in width and in height. The target figure varied in 

size (but kept its natural proportions) and consisted of a point-light walker from a frontal view, with 

either upright or inverted orientation. We found that the upright displays were perceived as 

significantly larger than the inverted, but otherwise identical, control stimuli. 

 

 
Figure 2. Paradigm, Study I, Experiment 1. Sequence of a single trial (here with upright point-light 

walker). 

 

Point-light figures present motion stimuli by eliminating the effects of surface cues and also reducing 

the amount of configural information in the display. Local motion cues, particularly of the limbs, play a 

crucial role in detecting biological motion (Hirai, Chang, Saunders, & Troje, 2011; Troje & Chang, 

2013; Troje & Westhoff, 2006). Since acceleration – driven by gravity – is of major importance in the 

detection of these cues (Chang & Troje, 2009), inverted figures present an ecologically impossible and 

thus invalid constellation. Furthermore, the global configuration of the walker also exhibits an 

inversion effect (Troje & Westhoff, 2006). Consequently, inverting the target stimulus serves as ideal 

control, where all physical properties of the stimulus remain equal, but the motion cues lose their 

ecological relevance and do not elicit the same kind of preferential visual processing as upright walkers 

do. However, due to the inversion effect on the global configuration, our results so far left the question 

point-light walker
250 ms

random dot mask 
200 ms

adjustment task 
(width & height)
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open, whether the measured distortion in perceived size was due to the biological motion cues in the 

display, or the configurational difference between upright and inverted figures. 

In a second experiment, we therefore tested twenty-four participants in a similar paradigm, where the 

original stimuli were extended by the additional condition of static displays (with both upright and 

inverted orientations). Here, we found no difference in size judgments on static figures, while the 

dynamic trials replicated the findings of our first experiment. 

In a third experiment, we eliminated the possibility of an unknown response bias that could affect 

upright walkers differently than inverted ones. If the upright displays appear larger indeed, then 

subsequent stimuli should be perceived as smaller due to a size contrast effect, as described earlier. 

Participants viewed a pair of point-light walkers (one of them always upright, the other inverted), 

followed by the target stimuli (a pair of simple discs; see Figure 3). While the point-light figures were 

fixed in size, the relative diameters of the two targets varied in five conditions. Participants were 

explicitly instructed to ignore the point-light figures and only focus on the task, in which they had to 

pick the larger of the two discs. Results showed that target discs were indeed judged less frequently as 

the larger of the pair, when they were preceded by the upright walker. 
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Figure 3. Paradigm and results, Study I, Experiment 3. Paradigm (top): Sequence of a single trial 

(here with upright point-light walker in the lower position and inverted point-light walker in the upper 

position. Results (bottom): Percent of responses indicating that the target preceded by an upright walker 

was larger plotted against the difference between target (disc) sizes. Means per condition with fitted 

psychometric function. Error bars show s.e.m. Asterisks indicate significant difference of point of 

subjective equality at p < 0.01. 
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General results – Study I 

The three experiments together provide evidence of a distortion in size perception caused by biological 

motion cues. This is in line with the literature that shows how biological motion stimuli are processed 

preferentially by the visual system at an early stage (Jokisch et al., 2005; Wang et al., 2014), eliciting 

incidental processing (Thornton & Vuong, 2004) and reflexive attentional orienting (Shi et al., 2010). 

Since our experiments were the first of their kind, some possible vulnerabilities of the interpretation 

still need to be mentioned. 

To avoid a possible effect of hemispatial asymmetries due to an interaction between the attentional 

orienting response and local vs global processing (Van Vleet, Hoang-duc, DeGutis, & Robertson, 

2011) we used a laterally symmetric design, both with regards to the walkers (facing towards or away 

from the viewer, instead being viewed from the side) as well as to the relationship between the displays 

(see Figures 2 & 3). This way, however, our results might be connected to the facing-the-viewer bias 

(Vanrie, Dekeyser, & Verfaillie, 2004), which posits that the depth ambiguity of point-light walkers is 

more likely to be resolved with the interpretation of the walker facing the viewer and translating 

towards him or her than with the interpretation of the walker facing away from the viewer. Our 

experiments cannot answer whether such a connection exists – nevertheless, if it does, the causal 

direction between the two phenomena would also be unclear. 

Results of the first experiment might as well be explained by assuming that the contours of the body are 

‘filled-in’ for the upright walkers, but not for the inverted ones, which would also make the upright 

figures appear larger. Based on this reasoning, on the other hand, results of the second experiment 

would be difficult to interpret, since the human shape is clearly recognizable in the static stimuli as 

well. Further experimentation with spatially scrambled walkers or with the isolated motion of the limbs 

could possibly resolve this issue. 

Finally, one point that we did not yet consider at the time of choosing our stimulus, is the possible role 

of sex differences. Our stimulus was based on the movements of a male actor (Vanrie & Verfaillie, 

2004), while our participant population was dominantly females. Women might be more sensitive to 

perceiving biological motion stimuli (Anderson et al., 2013), and masculine traits and displayed social 

power could also drive an increase in perceived size (e.g. Murray & Schmitz, 2006; Blaker & van 

Vugt, 2014; Yap et al., 2013; Marsch, Yu, Schechter, & Blair, 2009). If this connection would account 

for our findings, a similar experiment using a feminine stimulus should result in an opposite pattern. 
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As long as the above considerations remain unanswered, our best interpretation of the results is that the 

ecological importance of biological motion stimuli creates a positive distortion in its perceived size.  

 

Study II: Veto, P., Schütz, I., & Einhäuser, W. (in press). Continuous flash suppression: Manual 

action affects eye movements but not the reported percept. Journal of Vision 

 

Rationale – Study II 

So far we have seen that the ecological importance of an action can change the way the action is 

perceived. Perception, however, is also influenced by the own actions of the perceiver, particularly 

when those actions are related to an observed motion. Such effects have been demonstrated with 

actions that precede a visual task (off-line effects, see Schütz-Bosbach & Prinz, 2007), or with 

concurrent actions (on-line effects). Studies of this latter group have indicated that performed action 

and observed movement need to share some attributes, or else perception would not be biased by 

performing an action at the same time. For example, studies found effects of manual rotation on mental 

rotation only when the two happened along an axis of the same orientation (Wohlschläger & 

Wohlschläger, 1998), or occurred in the same direction (Wexler et al., 1998). Perception of external 

events (instead of an imaginary visual task) also led to similar findings (see Wohlschläger, 2000; Beets 

et al., 2010; Keetels & Stekelenburg, 2014). To our knowledge though, no study so far has measured 

the effect of the type or degree of coupling between action and perception on the action-to-perception 

transfer. For example, experiments using ambiguous stimuli have either coupled the movement 

dynamics of a stimulus to test participants’ own movements (e.g. Mitsumatsu, 2009), or required that 

participants report on their percept by means of a motor task (as, among others, in the experiment of 

Beets and colleagues, 2010), where the dynamics of the response was independent of stimulus 

dynamics. Since synchronicity seems crucial in our perceptual understanding of the relationships 

between different events in the external world as well as between our own actions and their causes or 

consequences (e.g. Aschersleben & Prinz, 1995; Stephen, Stepp, Dixon, & Turvey, 2008), we created a 

paradigm where an on-line action-to-perception transfer is to be expected, and varied the degree of 

coupling between action and stimulus movement. Using an ambiguous stimulus and testing whether the 

action-to-perception transfer depends on the dynamic relationship between modalities is only possible 

if the action can be connected to one perceptual interpretation of the stimulus independent of the other, 

competing, percept. For example, applying two distinct gratings with opposite motion directions in a 
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classic binocular-rivalry paradigm would be problematic, as coupling an action to the motion of one 

grating would likely be interpreted as a coupling to the other. 

 

Paradigm – Study II 

To this end, we used a continuous flash suppression paradigm, where a drifting grating stimulus was 

presented to one eye and a salient Mondrian suppressor to the other. In this setup, the inter-ocular 

conflict is highly biased due to the low-level saliency of the continuously changing suppressor (novel 

images presented at 10 Hz), and the target stimulus can only be perceived when endogenous attention 

is deployed. Test participants pressed and held a button every time the target (grating) stimulus gained 

perceptual dominance, while in three conditions they (i) rotated a manipulandum device that governed 

the motion dynamics of the grating in a direct manner (coupled action condition), (ii) performed the 

same action, while the grating was only loosely coupled to their hand movement (decoupled action 

condition), or (iii) performed no action, while the grating’s translation followed a similar dynamics as 

in the other conditions (no action condition). 

Aside from participants’ subjective self-report, we also measured their eye-movements: a horizontally 

translating grating elicits an optokinetic nystagmus (OKN) response with varying relation to the 

stimulus velocity (gain). Although the OKN is a motor response per se, these eye-movements only 

appear when the grating is visible; under complete suppression, eye-movement behavior is dominated 

by fixations and their connecting saccades. This way, we gained both a subjective and an objective 

measure of participants’ perception of the target stimulus. Our hypothesis was that due to the action-to-

perception transfer, the overall perceived strength of the grating stimulus would increase when manual 

action is performed as opposed to when no action is required. This would be expressed in an increase in 

the total duration of participants’ button presses as well as in an increase in the overall OKN gain. As 

for the effects of the degree of coupling between action and stimulus, the relationship between the 

decoupled action condition and the other two conditions would show, whether (a) the degree of 

coupling has an absolute importance where only directly coupled action leads to a significant transfer 

effect, (b) the degree of coupling has no effect and the transfer effect can be equally observed with 

either coupled or decoupled action, or (c) the degree of coupling has a gradual effect on the action-to-

perception transfer, and the increase in perceptual strength in the decoupled action condition is between 

that of the coupled action and no action conditions. 
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Figure 4. Stimuli, Study II. Stimulus display. The dashed line was added to indicate the separation 

between the two eyes’ stimuli. 

 

Results – Study II 

We found no effect of action on the reported perception of the grating, while eye-movements revealed 

a significant effect, with a linear correspondence to the degree of coupling between action and stimulus 

dynamics. The implications of these findings are manifold. 

First, there is a clear conflict between the numerous earlier studies to show an action-to-perception 

transfer (as measured by the reported percept) in highly similar tasks and the lack of such an effect in 

our study. This difference is problematic to dismiss by assuming a lack of power in our case. First, 

button-press results do not show any marginal difference between conditions – that case could have 

pointed to the expected pattern simply lacking statistical significance. Second, in a comparable 

paradigm, our study tested 24 participants while in the experiments of Wohlschläger (2000; N = 5), 

Maruya, Yang, and Blake (2007; N = 5) or Beets and colleagues (2010; N = 11) smaller sample sizes 

yielded a clear effect. Third, the eye-movement measurements of our study revealed a significant 

difference. These reasons together make it highly unlikely that the lack of an action-to-perception 

transfer in the conscious percept in this experiment was an accidental result. Instead, the resolution 

might be found in the – so far largely unexplored – differences in how our paradigm affects selective 

attention as opposed to all earlier studies. Selective attentional control is weaker in binocular rivalry 

than in the perception of ambiguous figures (Meng & Tong, 2006) and while continuous flash 

suppression is a case of interocular competition too, it also shows differences that go beyond being 

merely a stronger case of biased binocular rivalry (see Tsuchiya, Koch, Gilroy, & Blake, 2006). 

Although our experiment does not directly test such differences and thus, any detailed conclusion in 
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this regard would be unsubstantiated, our findings on the action-to-perception transfer show that the 

conscious percept is affected differently in continuous flash suppression than in the rivalry paradigms 

used in earlier studies. 

Second, the separation between effects on the conscious percept and on eye-movements alludes to a 

dissociation between how higher and lower levels of processing are affected by the action-to-

perception transfer. This could either mean that different mechanisms are behind the two effects or that 

the same mechanism is affected at different sensitivities. 

Finally, if the reason behind the action-to-perception transfer is the existence of shared representations 

between the motor and perceptual domains (Prinz, 1997), then the dissociation in our results can be 

interpreted as a consequence of the existence of several such representations on different levels. 

 

Study III: Veto, P., Uhlig, M., Troje, N. F., & Einhäuser, W. (submitted manuscript). What you see is 

what you expect: Cognitive assumptions influence the action-to-perception transfer in ambiguous 

perception. 

 

Rationale – Study III 

In everyday life, we often use tools without much thought about how they actually work in order to 

achieve the goal we use them for. Initially though, some kind of understanding has to take place to 

allow expectations to form. One way for this to happen is through trial-and-error exploration of the 

input and output of the device (e.g., “which of the two entangled cords do I have to pull to close the 

window blinds?”). 

Alternatively, knowledge of the coupling between input and output can also come through learning 

about the internal workings of the tool. This is most prominent when the connection is not self-

explanatory at first sight. While understanding the steering mechanics of a bicycle seems obvious to 

most adults, the controls of an airplane may take some learning to master. The handlebars of the 

bicycle and the rudder pedals of the (most simplistic) airplane work in similar ways, but the coupling 

between the operator’s input and the outcome is reversed. In case of the airplane, the reverse coupling 

might be easier to grasp when the connecting wire between the pedals and the ipsilateral side of the 

rudder is kept in mind (Figure 5). With many other common tools too, the connection between action 

and its outcome is arbitrary, e.g. in how the spatial configuration of a rack and pinion defines which 

directional translation a given rotation is mapped to. 
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Figure 5. Illustration of simple mechanical systems. Although the coupling is arbitrary and can 

change from one system to the other, we are able to learn them at a level where finding the right 

direction already at the first movement does not require cognitive effort. However, the learning can be 

facilitated by knowledge of the mechanic layout. 

 

As we have seen earlier, many experimental findings demonstrated that action can affect perception 

and such effects take place with higher likelihood when the perceived motion is related to the action. In 

examples like that of the previous paragraph, action and its perceived outcome are obviously coupled, 

but their mappings are complex, at times even conflicting. So what do we rely on, when we use tools 

correctly, based on decisive predictions? If the shared representations between action and perception 

are on a low level, where top-down effects have no influence, then these predictions must come from 

straightforward contingencies. Indeed, results from Maruya and colleagues (2007) suggest that a direct 

information flow between the modalities is possible, as they found an action-to-perception transfer 

effect even when the action-coupled stimulus was outside of awareness. Similarly, Study II 

demonstrated that in a situation where the conscious percept was unaffected by coupled action, eye-

movements still displayed an effect. Other studies, like those of Wohlschläger (2000) or Beets and 

colleagues (2010), point in the opposite direction and suggest that the transfer should only take place 

when stimulus and action share a cognitively defined dimension, thus requiring cognitive mediation. In 

the present study, we aim to dissolve this contradiction by a paradigm that tests participants’ cognitive 
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model of action-perception coupling without biasing the immediate contingency between stimulus and 

performed action.  

 

Paradigm – Study III 

The internal model of coupling was induced by a rendered depiction of a 3 dimensional rotating 

cylinder, connected to a circulating lever (that resembled the manipulandum handle used by 

participants in the subsequent perceptual task). The connection was either through a belt-drive 

mechanism (“belt” condition; the rotation direction of cylinder and lever were the same) or through 

cogwheels (“gear” condition; opposite rotation directions). After participants had studied the 

mechanical model of the assigned condition, they completed four test-blocks with an ambiguous 

version of the cylinder (Figure 6b). Their task was to report their percept of the cylinder, by rotating the 

manipulandum lever in the same or opposite direction (orders counterbalanced) as the lever of the 

mechanical model would rotate (red bar of Figure 6a). This way, the match between stimulus and 

action direction was either congruent (same direction instruction in the belt and opposite direction 

instruction in the gear condition) or incongruent (opposite direction instruction in the belt and same 

direction instruction in the gear condition) with the perceived cylinder rotation (Figure 6d). The same 

procedure was then repeated with the other mechanical model (order counterbalanced between 

participants; for details, see Table 2 in the article). Perceptual stability was assessed based on the 

lengths of intervals when the reported direction remained unchanged. 
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Figure 6. Stimuli, percept, and task, Study III. a) First, in separate blocks (blocks 1 & 6, see table 

2), participants were introduced to the mechanical model (“belt” or “gear” layout). For 30 seconds, they 

controlled the displayed motion with the manipulandum. Then, 20 seconds of unambiguous motion 

followed (the cylinder and mechanical model rotated with occasional switches in direction), where 

observers had to report the rotation of the red handle in accordance with the subsequent experimental 

block (“same direction instruction” or “opposite direction instruction”). For the last 20 seconds of 

training, the red handle bar disappeared and the mechanics was covered by a virtual desk, while the 

task remained unchanged. b) All test blocks showed the same, ambiguous, motion cylinder for 3 

minutes each. c) Two possible perceptual interpretations of the test stimulus (clockwise and counter-

clockwise). Participants had to respond to the imagined motion of the red lever, as it related to their 

current percept. d) Instruction (manipulandum rotation in the same or opposite direction as that of the 

red lever in the mental model). Note that in the “belt” condition, the same/opposite direction instruction 

leads to congruency/incongruency between perceived and performed rotation, while this relationship is 

reversed in the “gear” condition. 
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If the action-to-perception transfer is dominated by perception (direct information flow between 

domains), then regardless of the induced internal model, the effect of match between perceived 

stimulus direction and performed action will lead to the same congruency effect as found by Beets and 

colleagues (2010). However, if cognition plays a major role in how the transfer is formed, results from 

the two models should diverge: the increase in perceptual stability in congruent directions should 

reflect the instruction on the mechanical model’s lever and not the actually perceived direction. This 

would lead to a reversed pattern in the gear condition and an interaction between factors internal model 

and match in our design (see Figure 7). 

 

Figure 7. Hypotheses, Study III. Expected effects of internal model and match (between percept and 

action) on perceptual stability, if action-perception coupling is not under cognitive influence (left) or 

dominated by the cognitive model (right). 

 

Results – Study III 

A significant interaction between the two factors showed an influence of the cognitive model of 

coupling on the action-to-perception transfer. The reversal of the congruency effect was not complete 

however: the match between perceived direction and performed action only showed a significant 

difference between congruent and incongruent directions in the belt, but not in the gear condition 

(Figure 8). These results together indicate that while cognition significantly influences the action-to-

perception transfer, it is not the sole source of the effect. The lack of a significant effect in the gear 

condition alludes to a cancellation of the natural action-perception congruency effect by an equally 

large influence of the assumed mechanical model. 
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In line with the conflicting results in the literature and with the findings of Study II, we conclude that 

the observed action-to-perception transfer phenomenon cannot be explained by a model that assumes a 

single source of the effect. Study III also shows that when using simple tools, we do not only rely on 

direct sensorimotor contingencies, but may also incorporate internal assumptions that exert top-down 

influence on our perceptual expectations. 

 

 
 

Figure 8. Results, Study III. Perceptual stability for each condition, averaged across participants. 

Error bars show standard errors of the mean. 
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Practical outlook II – perceptual expectations in real life 

It appears so that using tools relies on learned contingencies between action and its outcome, as 

well as on an internal model. These two sources can interfere positively or negatively and in 

case of a positive interference, a stronger expectation is formed. Using a simple tool involves 

such expectations, where repeated practice leads to a solid internal model, which in turn 

increases efficiency by freeing up resources. For example, a child learning to use a screw driver 

might initially have to use trial-and-error to find the correct direction, until the mechanism is 

learned. 

The skill of driving a car is mastered similarly, where up to the 1990s, practically all processes 

were highly predictable under normal circumstances. Since then, more and more controls are 

taking effect through a computerized mediation, leading to less predictability between action 

and perceivable outcome. Although the computer itself may be highly predictable, the user who 

does not understand its workings would not be able to anticipate its reactions. The most simple 

example is how a hybrid powertrain reacts to a given amount of accelerator input differently 

depending on the state of the system, e.g. whether the internal combustion engine is currently on 

or off. With the increase of computerization from traction control through driver assistance 

systems to conditional automation, the uneducated driver is facing increasing unpredictability. 

While initial stages of this trend might only keep enthusiastic drivers away and do not affect 

safety negatively in those who adapt to the new systems, later stages have revealed two sources 

of issues, both of which can be traced back to our logic regarding sensorimotor contingencies. 

First, drivers experiencing a decrease or complete loss in coupling between their actions and the 

actions’ effects might lose trust in the machine (Abraham et al., 2017) and end up not using 

these systems (Kidd, Cicchino, Reagan, & Kerfoot, 2017). Second, and probably more 

importantly, the lack of connection can lead to a decrease in attention and a drastic drop of 

involvement (Geitner et al., 2017; Reimer et al., 2016), where unreasonable trust is given to a 

personified machine (Inagaki & Itoh, 2013; Waytz, Heafner, & Epley, 2014). Study III suggests 

that increasing the knowledge about how the machine operates (building the “internal model of 

coupling”) could help with these issues, which is in line with the findings of studies in the 

applied field (Sonoda & Wada, 2017; Thill, Hemeren, & Nilsson, 2014). 
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5. General discussion 

Study I answers a simple question, which, to my knowledge, has not been asked before. Regardless of 

whether the reason behind our remarkable sensitivity to perceiving the movements of animate entities 

is purely perceptual in nature or comes from the internalized effects of motor practice in the perceiver, 

our widely demonstrated skills in biological motion perception allude to a high ecological importance 

of its visual cues. As studies with other types of stimuli have shown, important objects tend to look 

larger to the observer, and now we have evidence that biological motion displays are no exception. 

Although in the introduction, I argued for the view of considering action-influence as a significant 

factor in the forming of the preferential processing of biological motion, the line of thought as well as 

the empirical evidence presented there only attempt to explain the perceptual abilities around the 

recognition and identification of animate entities. The reason behind the size-distortion effect remains 

just as mysterious as in the earlier studies using different stimuli. Arguments can be made for a 

relationship with an internal representational space, as in the “SNARC” effect and its relation to the 

vertical dimension (Dehaene, Bossini, & Giraux, 1993; Ito & Hatta, 2004), but this connection seems 

more or less plausible only for social stimuli that operate with power and vertical hierarchy. If a similar 

affinity in the use of a male walker and predominantly female observers in Study I is a contributor to 

the results, then the argument might also apply to the case of biological motion perception. Having no 

other speculative alternative, we can assume that with some likelihood, the explanation may lie in that 

all evaluations of subjective importance are organized in a mental space that interacts with the 

representation of physical space. 

Studies II and III test the properties of the on-line action-to-perception transfer. The theories of 

common coding (Prinz, 1997) and event coding (Hommel et al., 2001) suggest that the effect takes 

place on higher levels of processing and involves only the general properties of an event, while the 

details are coded distally and do not interact between domains. While results of many studies support 

these ideas, some raise questions about the level of processing where the transfer might take place and 

about the more or less cognitive nature of the transfer (see Sections 2 & 3). The original aim of Study II 

was to assess the contribution of the degree of coupling between action and perception on the action-to-

perception transfer. To achieve this, we implemented our conditions of variable coupling in a 

continuous flash suppression paradigm that has not been used in a similar context so far. This choice 

was primarily due to the practical considerations of connecting movement to only one state of a 

bistable percept. Incidentally however, it also led to further and unexpected findings. First, seeing a 



Part I. – Cumulus   
 

29 

gradual effect of the degree of coupling on the OKN gain suggests that in our paradigm, the action-to-

perception transfer did not only include the general presence and direction of rotation, but also the 

details of its dynamics. Second, and yet more contrary to the predictions of the common coding 

principle, we found no effects on the experiment’s higher-level measure of percept (the conscious self-

report), possibly due to the selective attentional involvement in the CFS paradigm. This alone would 

talk more to the nature of CFS than support or reject the common coding model; however, 

simultaneously finding significant effects in a lower-level measure means that the assumptions about 

the hierarchical nature of the transfer may need revisiting. In line with the findings of Maruya and 

colleagues (2007), our results also show that a transfer effect outside of awareness seems possible and 

that top-down control is not necessary. 

Wohlschläger (2000) argues, also based on experimental evidence, for “action capture”, where a low-

level, direct, information flow is unlikely to account for the effects. Results of Study III are partly in 

support of his views, as they demonstrate that a cognitive model of the effects of action can change the 

perceptual bias of action, even with a constant visual stimulus and no explicit exposure to the 

sensorimotor contingency that could explain the results on a lower level. However, the pattern was not 

completely reversed by the internal model in Study III, showing that the lower-level coupling between 

concurrent action and perception can also have an effect through a separate mechanism. This, taken 

together with the findings of Study II, paints a picture that is less in favor of the original arguments of 

Wohlschläger (2000). 

It seems as if the more data we have, the tougher it becomes to locate the action-to-perception transfer 

in processing hierarchy. With each new paradigm, the question is asked slightly differently and the 

answers keep pushing the boundaries of the common coding theory as they were originally described. 

One possible resolution is to assume that several levels of processing can create connections between 

action and perception and the model should be flexible in this regard. The common coding theory, in its 

original form, cannot account for all the experimental evidence that has gathered in the two decades 

since its creation. Modifying it by positing that the shared representations do not necessarily have to be 

at the proximal end of the two processing streams but could occur on many levels (even 

independently), would give the ability of explaining the otherwise contradicting results of this thesis as 

well as of earlier studies. This also fits the general trend in cognitive science from rigid models to more 

flexible ones. On the other hand, it would create the necessity of a host of “new” representations, 

possibly one for each new way of testing – and if that was indeed the case, it would challenge the very 
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purpose of modeling. Furthermore, such a liberation of the common coding theory would evidently 

bring up a question, which has in fact been lingering around since the earliest days of the model. While 

the original question was along the lines of “on what level does the transfer take place?”, now we 

should ask “what is the lowest level, where the transfer might occur?” 

So far, I have considered all theoretical questions of this text in a representational framework. Beyond 

being the most common in today’s psychological approaches, this viewpoint seems to formulate the 

questions of my experiments well. However, discarding the assumption that any experience is based on 

an internal representation could eliminate the issues detailed above (and possibly raise other ones). 

While the related debates around the existence or nonexistence of a “Cartesian theater” reach far back 

in the history of philosophy, when it comes to psychology, the non-representational viewpoint is often 

traced back to William James (1912). Oddly enough, the representational framework also finds a 

starting point in his writings (James, 1890), at least for psychologists. One may get a clearer and more 

contemporary picture of what this direction of thought entails from the writings of Gibson (2015), 

where he argues that perception is the starting point that we need to understand first, keeping in mind 

that organisms are mobile and perception operates in service of action. In this functional account of 

perception the two domains are not even really separate from each other, and the perception of 

invariant structures (objects) requires motion through time. Due to this, taking the retinal image at a 

given time point as the basis of visual perception is incorrect and misses the most important, dynamic 

and relational, pieces of information about the environment. Furthermore, if this information is in the 

interaction with the environment, there is no need for complex internal computations to model the 

world from an impoverished input. This way, all my earlier contemplations in this script about how our 

participants’ subjective percepts are biased are misguided, as the individual’s percept is not subjective 

but simply relational to his or her self, and these relations are not inferred but perceived directly. If, for 

example, the stimulus resembles a person, the relationship (or “affordance”) will be very different than 

in the case of meaningless dots. 

This view aims to completely get rid of the issues with representations by positing that perception is an 

interactive process where the external world is used as its own representation, through constant 

interaction with it. This may as well have interesting connections to some puzzling findings, described 

in “Practical outlook I – representation of gravity” (p 8). Gravity is by far the most constant invariant in 

our daily experience, so we can always use it accurately in real-world tasks: in any ballistic movement 

we can detect the cues of gravity and use them for accurate predictions. However, in imagery, these 
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initial cues are missing and the imagined outcomes will be highly unrealistic. Would this also mean 

though that everything else (which we can imagine well) has internal representations – suggesting a 

hybrid model that is not radical in either direction (see below; O’Regan & Noë, 2001)? 

While leaving open a lot of questions as for how direct perception actually happens, there are many 

practical implications of this model, which might be the reason for the current rise in popularity of 

similar ideas where actions is inseparable from perception and cognition (Engel, Maye, Kurthen, & 

König, 2013). 

Note also a common confusion of terms, due to them being vaguely defined. In psychology, we often 

contrast behavioral and neural measures, which serves practical purposes when describing methods. 

But in essence, what is not a behavior? In biology, the term is more clearly defined: on the level of a 

retinal receptor cell, for example, activities induced by light are the cell’s behavior. The lowest possible 

levels of sensation are also behavioral. 

Using a somewhat similar (albeit far wider reaching) logic, O’Regan and Noë (2001) propose a 

framework where “seeing is a way of acting”. The crucial term in their theory is sensorimotor 

contingency: instead of representations based on sensation, they claim that all experience comes from 

an exploratory activity, where sensorimotor contingencies contain the knowledge that mediates in this 

exploration. The argument is that from the perspective of the brain, there is no difference from neural 

input from one source or another. All differentiation comes from previous experience of the structure of 

how motor actions induced (or rather, co-occurred with) changes in the given sensory input; in other 

words, from the sensorimotor contingency. 

This view offers remarkable flexibility. For example, no complicated mechanism is needed to explain 

the differences between senses. The physical relationship between action and sensory input is itself 

very different between the modalities, and the same mechanism that extracts these contingencies would 

uncover the regular relationships (or “laws”, as the authors call them) in both cases, despite the 

differences. In this framework, the interaction between action and perception happens on all levels at 

all times and do not require common coding or representations of any sort – seemingly solving the 

issues that we considered previously. Results of Study III show effects of cognition without any direct 

sensorimotor coupling behind – so how would these results fit the model? According to the authors, the 

knowledge of sensorimotor contingencies can extend to arbitrary levels of abstraction. This does not 

mean that there is an actual, pictorial, model somewhere in the mind, or following the authors’ example 

“… as though, in order to generate letters on one’s screen, the computer had to have little letters 
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floating around in its electronics somewhere” (O’Regan & Noë, 2001). Instead, it means that the 

possible effects of manipulations are considered based on the extraction of “laws” (not necessarily the 

direct effect itself) from previous experience. This theory somehow bridges the nonrepresentational and 

representational frameworks at this point. Conceivably the most authentic definition of radical 

empiricism is in James’ Essays in Radical Empiricism (1912): “To be radical, an empiricism must 

neither admit into its constructions any element that is not directly experienced, nor exclude from them 

any element that is directly experienced.” Taking this definition as a starting point, one might argue 

both for and against the inclusion of sensorimotor contingencies – or even more ambiguously, of the 

knowledge of them – into the category of directly experienced elements, based on the detailed 

interpretations of these terms. 

Ultimately, these questions have crucial importance, as they deliver the most pervasive impact on our 

personal ‘theories of everything’. For the empirical psychologist however, this level of philosophical 

abstraction might seem as a mere collection of terminologies. To this end, I would like to simply close 

my thesis by listing the least insecure conclusions from our experiments: 

1. Perception is a flexible process, allowing for effects of action in a multitude of manners. 

2. Ecologically valid biological motion displays are perceived as larger than similar displays that 

depict ecologically implausible motion cues. 

3. On-line effects of action on ambiguous perception are not restricted to a certain level of 

processing: cognitive effects as well as direct, low-level, connections can both be observed. 
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Abstract 

Visual illusions explore the limits of sensory processing and provide an ideal testbed to study 

perception. Size illusions – stimuli whose size is consistently misperceived – do not only result from 

sensory cues, but can also be induced by cognitive factors, such as social status. Here we investigate, 

whether the ecological relevance of biological motion can also distort perceived size. We asked 

observers to judge the size of point-light walkers (PLWs), configurations of dots whose movements 

induce the perception of human movement, and visually matched control stimuli (inverted PLWs). We 

find that upright PLWs are consistently judged as larger than inverted PLWs, while static point-light 

figures did not elicit the same effect. We also show the phenomenon using an indirect paradigm: 

observers judged the relative size of a disc that followed an inverted PLW larger than a disc following 

an upright PLW. We interpret this as a contrast effect: The upright PLW is perceived larger and thus 

the subsequent disc is judged smaller. Together, these results demonstrate that ecologically relevant 

biological-motion stimuli are perceived larger than visually matched control stimuli. Our findings 

present a novel case of illusory size perception, where ecological importance leads to a distorted 

perception of size.  
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Introduction 

Systematic distortions in the perception of size can be observed in a wide variety of visual scenarios. 

Two mechanisms underlie most of the classic examples. One of them is size constancy, where an object 

that appears farther from the viewer seems to be larger as opposed to a nearer object, even though they 

create an equally large retinal image in the viewer. The other mechanism is size contrast, where the 

apparent size of an object changes inversely with the size of other, related, objects. This can take place 

simultaneously (e.g., a circle among circles in the Ebbinghaus/Titchener illusion), or with a temporal 

delay (size adaptation aftereffect1). Illusions exploiting these mechanisms affect not only the 

“conscious” percept as reported by the viewer, but also the size of afterimages2 or objective measures, 

such as reaction times3-4. 

While the aforementioned size illusions are perceptual in nature, a different class of size illusions 

pertains to social constructs that can also lead to a change in perceived size of a person or an inanimate 

object. A general association between positive subjective value and larger size exists5, and this 

reciprocal connection has been observed in different areas of life. The most palpable example for such 

a relation is between social leadership and physical size6, where it is conspicuous that mechanisms 

described by evolutionary psychology still play a role in today’s society7. Tall men are more likely to 

take managerial positions than short men8, while people with more social power perceive other 

humans9 and objects10 as smaller, as well as they are perceived as taller by others11 and by 

themselves10. A size-status connection also prevails in the case of consumer products12. Aside from 

power, motivation and action goals13 and aesthetic preference judgments14 are likewise related to the 

size of non-animate objects. Altogether, these findings suggest that there is a general, positive, 

association between the importance or value of an object to the viewer and its perceived size. 
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Animate motion patterns are rapidly perceivable15,16,17, visually salient18 and carry numerous types of 

information that are readily retrievable by human observers19,20,21. The perception of biological motion 

is arguably of high ecological importance, making preferential processing by the visual system for such 

stimuli likely, even though direct evidence is scarce. The most commonly used tool to explore this 

question is point-light figures. They eliminate all visual information obtainable from the surface of the 

body by only showing the movements of a few important articulations depicted as dots. With the help 

of point-light stimuli, biological motion has been shown to yield to several perceptual benefits as 

compared to similar non-biological motion. For example, coherent and upright point-light walkers 

(PLWs) are processed incidentally in a flanker paradigm, as opposed to static, scrambled22 or inverted23 

walkers. Upright, scrambled biological motion stimuli lead to faster hits in a search task than similar, 

but inverted figures24, which means that local cues of biological motion act on a preattentive level of 

visual processing. Upright human or terrestrial animal PLWs induce reflexive attentional orienting in a 

central cueing paradigm, while inverted or static figures do not25, showing that incidental effects are 

not specific to stimuli presenting configural information that is typical of humans. Indeed, local motion 

cues, in particular those of the feet, play a crucial role in a “life detector” system: a general filter in 

human vision, tuned to help us detect terrestrial animals26-28. 

Biological-motion stimuli, therefore, seem to be of special importance in visual processing. Also, 

important objects tend to look larger to the viewer. We thus hypothesize that stimuli carrying 

ecologically valid biological motion cues appear larger to observers, as compared to similar motion 

stimuli lacking ecological validity. We tested this hypothesis using human PLWs in three experiments, 

where we compared coherent, upright, PLW figures to inverted ones. In the inverted displays, both 

local and global biological motion cues lack ecological validity, while all other aspects of the stimulus 

remain equal to those in the upright figures. Hence, seeing a difference in perceived size between the 

two conditions can only be due to the effect of the ecological importance of biological motion. 
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Figure 1. Paradigm – Experiment I. Sequence of a single trial (here with upright PLW). 

 

Experiment I 

Perceived sizes of upright and inverted PLWs (see Figure 1) were compared directly in an adjustment 

task. 

Methods 

Participants. Sixteen students from the Queen’s University participant pool (one male, fifteen females, 

mean age = 20.1, SD = 1.8) participated in the study. Experimental protocols of all experiments 

conformed to the World Medical Association Declaration of Helsinki and were approved by the board 

“Ethikkommission FB04, Philipps-University Marburg” and by the Human Ethics committee at 

Queen’s. All participants had normal or corrected-to-normal vision, provided written informed consent 

and received monetary compensation. One participant dropped out after reporting problems with larger 

stimulus sizes. 

Stimuli. Upright and inverted PLWs were depicted from a frontal view, based on the action “Walk” 

from a stimulus set of human actions created by Vanrie and Verfaillie29, based on the actions of a male 

actor. The figure consisted of 13 dots, showing the positions of the head and the main articulations of 

the limbs (Figure 1). Walker size was varied in 10 steps between 2.44˚ x 0.88˚ and 7.86˚ x 2.70˚ (mean: 

point-light walker
250 ms

random dot mask 
200 ms

adjustment task 
(width & height)
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5.24˚ x 1.77˚) at a viewing distance of 75 cm. Each PLW presentation started at a random frame of the 

stride, resulting in slightly varying sizes for each trial. All displays were gray on black background, 

with a red fixation point continuously shown in the center of the screen. Stimuli were presented on a 

17” CRT screen with Matlab and the Psychophysics Toolbox30,31. 

Procedure. For each trial, participants were asked to maintain fixation on the fixation point and viewed 

a centrally displayed PLW for 250 ms, followed by a dynamic random dot mask, lasting for 200 ms. 

After the mask, participants had to move the mouse in order to adjust a rectangle to frame the area 

occupied by the previously seen walker as tightly as possible (Figure 1). The mouse position was 

connected to a corner of the rectangle, starting randomly either from the fixation point, or from well 

outside of the stimulus’ area. The rectangle stayed centrally symmetrical at all times. That way, the 

width and height of the walker were set independently, albeit in a single response. Participants 

confirmed their responses by a mouse click, after which the next trial started following a random 

intertrial interval between 500 and 800 ms. Each participant completed 400 trials. 

Analysis. For each trial, the percentage of overestimation (area of the response rectangle divided by the 

area of the smallest frame containing all dots at any time) was calculated. Outlier responses (cutoff = 

2.5 SD) were removed for each block (2.2% of all trials). A one sample t-test was carried out to 

determine whether the difference between responses to upright and inverted walkers (Distortion Effect 

= OverestimationUpright Walker – OverestimationInverted Walker) was significantly different from zero. 

Results 

The size distortion effect was significantly different from zero (expressed in percentage of walker area: 

mean = 9.07, SD = 5.73; t(14) = 6.12, p < 0.001). This confirms our hypothesis that upright walkers are 

perceived to be larger than inverted walkers. 
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Experiment II 

To control whether the observed size-distortion effect is specific to biological motion (rather than an 

upright/inverted difference per se), we conducted a second experiment similar to Experiment I, with the 

additional condition of static point-light figures. If the effect is caused by configural information alone 

instead of biological motion, static figures should elicit the same pattern of results as dynamic PLWs. 

Methods 

Participants. Twenty-four students from the Chemnitz University of Technology (five males, nineteen 

females, mean age = 21.9, SD = 3.2) participated in the study. 

Stimuli. Stimuli were presented on a 23.6” screen (VPixx Technologies Inc., Saint-Bruno, QC Canada), 

with all other details of the stimulus kept equal to those in Experiment I. In each trial of the additional 

static condition, a randomly selected frame of the PLW was presented for the same duration of time 

(250 ms) as the moving PLW in the dynamic condition. 

Procedure. Each participant completed a total of 640 trials split over four blocks. Two blocks 

contained dynamic PLWs while the other two contained static point-light figures. Static and dynamic 

trials were otherwise identical. The order of the four blocks was counterbalanced across observers. 

Results 

Dynamic blocks showed a replication of results from Experiment I, with a size distortion effect 

significantly different from zero (in percentage of walker area: mean = 7.34, SD = 15.19; t(23) = 2.37, 

p = 0.03). Static blocks on the other hand did not show a significant size-distortion effect (mean = 4.32, 

SD = 17.60; t(23) = 1.20, p = 0.24). 
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Figure 2. Paradigm – Experiment III. Sequence of a single trial (here with upright PLW in the lower 

position and inverted PLW in the upper position). 

 

Experiment III 

Perceived sizes of upright and inverted PLWs were compared indirectly, with a size judgment task on 

targets presented subsequently to PLWs. As upright PLWs are perceived as larger, we expect that 

contrast effects will lead to a subsequent target to appear as smaller. Since participants react to simple 

disc targets and they are instructed to ignore the preceding figures, this experiment further ensures that 

our previous findings are caused by a perceptual distortion of size and not by any unexplored bias 

related to PLWs. 

Methods 

Participants. Sixteen students (five males, eleven females, mean age = 22.1, SD = 1.9) participated in 

the study. Eight (1-8) were measured at Philipps-University Marburg and eight (9-16) at Queen’s 

University, and recruited through the respective participant pools. All participants had normal or 

corrected-to-normal vision, provided written informed consent and received monetary compensation. 

Stimuli. Generation and presentation of stimuli were as described for Experiment I. PLWs (both 

walkers, in all conditions: 5.4˚ x 1.9˚) and target discs (diameters depending on condition: 0.76˚ & 

point-light walkers 
250 ms

inter-stimulus interval 
(17 or 100 ms)

size judgement task
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0.76˚; 0.72˚ & 0.80˚; 0.68˚ & 0.84˚) were presented centered 3.46˚ above and below fixation. All 

displays were gray on black background, and a fixation point was continuously shown in the center of 

the screen. 

Procedure. For each trial, participants were asked to maintain fixation on the fixation point while 

viewing two PLWs (one upright and the other inverted) for 250 ms. Participants were instructed to 

ignore these displays. Following a blank inter-stimulus interval (ISI) of 17 or 100 ms, two target discs 

appeared for 100 ms at the locations of the previously seen walkers (Figure 2). Targets were either 

identical or differed in size (10.5% or 21% larger or smaller than the average size of 0.76˚). Participants 

gave a non-speeded forced choice response by pressing one of two buttons, indicating which of the 

targets was larger than the other. After response, the next trial started following a random intertrial 

interval between 500 and 800 ms. 

Participants 1-8 also completed trials for a temporal judgment task in separate blocks, which are not 

reported here. For participants 1-4, no trials with identical targets were presented. For participants 5-8, 

eye tracking was used to validate that observers maintained fixation throughout stimulus presentation. 

Participants 1-4 each performed 400 trials, participants 5-8 each performed 480 trials and participants 

9-16 each performed 1000 trials in total. 

Analysis. For each participant, the point of subjective equality (PSE) between targets preceded by 

upright and inverted walkers was calculated. To do so, a psychometric function was fitted to the data of 

each individual (fraction of responses “larger” at upright PLW location vs. size difference of discs), 

and the PSE determined analytically from its two fit parameters (cf. Figure 3). A one-sample t-test was 

then used to determine whether PSEs were significantly different from zero. 

Results 

PSEs were shifted towards larger targets at the upright PLW’s location (mean = 2.60, SD = 2.96, in 

percentage of target size). This shift was different from zero (t(15) = 3.51, p = 0.003). There was no 
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difference between trials with long and short ISIs (meanShort ISI = 2.63, SDShort ISI = 3.26; meanLong ISI = 

2.68, SDLong ISI = 3.44; t(15) = 0.06, p = 0.95). This is in line with our hypothesis and shows that targets 

preceded by an upright walker are perceived as smaller than targets preceded by an inverted walker 

(Figure 3). 

 

Figure 3. Results – Experiment III. Percent of responses indicating that the target preceded by an 

upright walker was larger plotted against the difference between target (disc) sizes. Means per 

condition with fitted psychometric function. Error bars show s.e.m. Asterisks indicate significant 

difference of PSE at p < 0.01. Data for both ISIs (17 ms, 100 ms) were aggregated for analysis. 

The functional form of the psychometric function is given by f(x;a,l)=a/(a+exp(-l*x)), and thus the PSE 

by x=-ln[a]/l with fit parameters a and l. Note that the psychometric function for illustration is a fit to 

the average data, while for statistical analysis each individual was fitted with a separate psychometric 

function and analysis was based on the distribution of the individual PSEs. 
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Discussion 

The findings presented here show that stimuli with ecologically valid biological motion cues appear 

larger than similar motion stimuli without ecological validity. Experiment I demonstrates this 

phenomenon. Experiment II replicates the findings and shows that static point-light displays do not 

lead to a similar distortion in perceived size. Experiment III shows that the effect can also be measured 

indirectly, as it extends through a contrast mechanism to subsequently presented, neutral, stimuli. 

Prior studies have demonstrated that discrimination of biological motion stimuli takes place at an early 

stage of visual processing16,17 and induces reflexive attentional orienting25. This suggests that biological 

motion stimuli bear high importance, which is further supported by experiments demonstrating that 

humans32 and other animals33 have an innate sensitivity to visual invariants characteristic to biological 

motion. Our findings lead to similar conclusions, as already a brief presentation (250 ms) of biological 

motion results in a positive distortion of perceived size, which is linked to subjectively important 

stimuli5-14. 

Although a contrast effect seems the most likely mechanism transferring the distortion in perceived size 

from PLWs to the disc targets used in Experiment III, alternative causes are also possible. For example, 

spatial attention might be deployed asymmetrically between upright and inverted walkers, causing an 

inhibition of return34 on responses to subsequent target discs. This, however, would not explain the 

results found in Experiment I & II, where only one, central target is presented at a time. 

While PLWs are useful in eliminating surface information from the body, they thus also take biological 

motion cues out of their natural context. We cannot exclude that from the dots of a point-light figure 

the perceptual system might “fill in” the rest of the body. If that happens more likely for upright than 

for inverted figures, a larger percept would be formed for the former. However, Experiment II offers 
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some hint that this may not be the case in our experiments, as the human figure is also clearly 

recognizable from the frontal view of a static point-light display (cf. Figure 1). 

We cannot exclude that sex differences might also play some role in the results, considering that our 

participant population was dominantly females and it is conceivable that women are more responsive to 

biological motion and its social implications35. Studies on the link between social power and size6-11 

suggest that the sex as well as the displayed power of the stimulus figure can likewise affect the 

outcome. Studying sex differences of the reported effects might therefore be an interesting extension in 

further research. 

As it has been shown with other stimuli already, importance to the viewer makes objects look larger. 

Our data show that biological motion is no exception. It clearly demonstrates a so far unknown 

example of distorted size perception. Unlike previous examples, this phenomenon is neither a low-level 

effect1-4 nor based on social constructs5,7,9,10. Instead, our data suggest that the ecological relevance of a 

biological motion stimulus makes it incidentally appear larger. 
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Abstract 

Diverse paradigms, including ambiguous stimuli and mental imagery, have suggested a shared 

representation between motor and perceptual domains. We examined the effects of manual action on 

ambiguous perception in a continuous flash suppression (CFS) experiment. Specifically, we asked 

participants to try and perceive a suppressed grating, while rotating a manipulandum. In one condition, 

the grating’s motion was fully controlled by the manipulandum movement, in another condition the 

coupling was weak, and in a third condition no movement was executed. We found no effect of the 

movement condition on the subjectively reported visibility of the grating, which is in contrast to 

previous studies that allowed for more top-down influence. However, we did observe an effect on eye 

movements: the gain of the optokinetic nystagmus induced by the grating was modulated by its 

coupling to the manual movement. Our results (i) indicate that action-to-perception transfer can occur 

on different levels of perceptual organization, (ii) support the notion that CFS operates qualitatively 

differently from other ambiguous stimuli, including binocular rivalry, and (iii) highlight the importance 

of objective measures beyond subjective report when studying how action affects perception and 

awareness. 

 

Keywords: event-coding, common coding theory, continuous flash suppression, action-perception 

coupling, action-to-perception transfer, eye-movement, optokinetic nystagmus, ambiguous perception, 

bistable perception, rivalry, binocular rivalry  
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Introduction 

Perception obviously affects action, but there is also mounting evidence for the reverse direction, a 

direct effect of action on perception and perceptual representations. In an effort of determining the 

underlying mechanisms, the common coding theory (Prinz, 1997) suggests that late stages of 

perception and early stages of action use shared representations, which then allow action planning to be 

promptly influenced by a connected percept. Furthermore, while an external influence of action on 

perception is trivial (by moving our eyes, changing location or manipulating the world around us; see 

e.g., Wexler & van Boxtel, 2005), the common coding theory, as well as the theory of event-coding 

(e.g. Müsseler, 1999), also implies an internal influence of action on perception. If the observation of 

an action creates motor resonance, the production of an action should lead to a similar, but perceptual, 

resonance (Schütz-Bosbach & Prinz, 2007). There is some experimental evidence to support this 

notion. Wohlschläger and Wohlschläger (1998) found that concurrent manual rotation led to faster 

performance in a mental rotation task when the directions of action and mental rotation were congruent 

as opposed to when they were incongruent. This, however, was only observed when the two rotations 

occurred about the same axis. Similarly, Wexler, Kosslyn and Berthoz (1998) showed that speed as 

well as accuracy in an imagery mental rotation task can be enhanced by unseen motor rotation, in a 

direction that is congruent with the action. In line with Wohlschläger and Wohlschläger (1998), they 

also found that the facilitating effect of congruent action is dependent on the relative angle and velocity 

of the movements. 

Further evidence for an internal effect of action on perception is provided by paradigms in which action 

leads to a bias in the percept of an external stimulus, instead of the outcome of imagery (for an 

overview of different methods, see Zwickel & Prinz, 2012). Multistable stimuli are ideal tools for 

making internal biases measurable, while the external stimulation stays unchanged. This can be 

achieved through an inherent ambiguity, where the stimulus itself has two or more stable 

interpretations (ambiguous stimuli such as – for example – the Necker cube (Necker, 1832) or Boring’s 

old/young figure (Boring, 1930)), or through the presentation of different stimuli in one eye as opposed 

to the other, leading to a conflict that is resolved by either one or the other eye gaining dominance at a 

time (binocular rivalry, BR, Wheatstone, 1838). 

Using an ambiguous rotating display, Wohlschläger (2000) primed the perceived direction of motion 

by both hand movements and planned actions, and found that either one can be sufficient for biasing 

the percept, if they share a common, cognitively specified dimension with the stimulus. In the case of 
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planned actions, there is no kinesthetic information to bias the visual modality. He argues that this 

makes a direct, low level, motor-to-visual information flow an implausible explanation for why the 

priming – or “action capture” – took place. Instead, he suggests that the phenomenon is more similar to 

attentional capture, where top-down control plays a crucial role, and where effects are object- and 

action-centered. 

For an ambiguous structure-from-motion cylinder, Beets and colleagues (2010) demonstrated that 

rotating a manipulandum congruently with the current percept stabilizes its perceptual state, while an 

opposing rotation yields destabilization. In line with Wohlschläger’s reasoning for the top-down nature 

of action capture, these effects were only observed when the manipulandum was used to report the 

percept, while no effect of action was found when concurrent rotation of the manipulandum was 

unrelated to the task. 

Instead of ambiguous displays, Keetels and Stekelenburg (2014) used an unambiguous stimulus with 

high perceptual uncertainty. With a flashing bar stimulus that was displaced only slightly (or remained 

stationary) at each trial, they found that concurrent, directional, button press actions shifted the point of 

subjective equality of perceptual displacement judgments in the direction of action. 

While both Wohlschläger (2000) and Beets et al. (2010) used ambiguous displays, similar effects were 

also found in BR (Maruya, Yang, & Blake, 2007), where perception of the movement of one eye’s 

stimulus was positively biased by manual control. Interestingly, the effect of action did not only occur 

when the coupled stimulus was dominant, but also when it was suppressed from awareness (i.e., when 

the stimulus of the other eye had exclusive dominance). This argues against an explanation that is 

solely based on top-down control. 

Imitated hand action can also bias perception in BR. Di Pace and Saracini (2014) used a dynamic hand 

action presented in one eye and a checkerboard pattern in the other, and found that dominance 

durations for perceiving the hand action were longer, when the same action was imitated by the 

observer. 

In a stream-bounce display (Metzger, 1934), two identical objects move towards each other until 

reaching a common position, after which they move away from each other following a continuous path. 

The perceptual interpretation of this animation is ambiguous, as the objects may seem to either pass 

through or bounce off of one another. When the motion of the disks is controlled by the hand action of 

the observer, the visual interpretation that is congruent with the performed action is more likely to take 
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place, as shown by Mitsumatsu (2009). Similarly to Beets and colleagues (2010), he also found that the 

mere presence of action is not sufficient for the effect to occur. 

Perceptual resonance may happen simultaneously (on-line effects), or through  motor learning on 

different time scales (off-line effects; Schütz-Bosbach & Prinz, 2007). To our knowledge, only a few 

studies on the on-line effects of action on perception so far have used action as a way of controlling 

concurrent stimulus dynamics, and they only used action as either coupled or not coupled to the 

stimulus. To test whether the action-perception transfer is influenced by the degree of coupling 

between task-relevant hand movement and stimulus velocity dynamics, we used a continuous flash 

suppression (CFS, Tsuchiya & Koch, 2005) paradigm, where a faint, moving grating stimulus, 

presented to one eye, was set against a colorful Mondrian suppressor that was displayed to the other. 

This paradigm constitutes a highly biased variant of inter-ocular conflict, where the strength of one 

stimulus (the suppressor) is maximal and the other stimulus can only be perceived when endogenous 

attention is deployed. We varied the degree of coupling between participants' rotational hand action and 

grating stimulus dynamics (fully coupled action, partially coupled action, no action). Observers were 

asked to report on their subjective percept by pressing and holding a button whenever they perceived 

the grating. In addition to this subjective measure that is prone to subjective criterion and response bias, 

and might only reveal percepts that are clearly suprathreshold, we used an additional measure, which 

might reveal effects on the suppressed stimulus: throughout the experiment we measured eye position. 

When the grating becomes dominant, we expect the drifting grating to induce an optokinetic nystagmus 

(OKN). Unlike the button press, which is an all-or-none report, the gain of the OKN slow phase should 

be related to the degree of dominance (cf. Naber, Frässle & Einhäuser, 2011, for the case of BR). 

Hence, we expect that measuring the gain may reveal subtle changes in the visual representation of the 

grating, even if it is still subjectively suppressed from perception. Consequently, we use the OKN gain 

as a measure of whether concurrent action influences the perceptual representation of the grating, both 

above and below perceptual threshold. 

This paradigm is particularly applicable for studying the effects of action on perception, as only one 

stimulus needs to be coupled with the action, while the other remains constant at all times. Since in our 

case, constant action is required, linear hand movements would not be suitable. For eliciting OKN, 

however, the linear translation of the stimulus is necessary. The coupling between rotational input and 

linear output is always arbitrary: as with a rack and pinion mechanism, the direction of coupling 

depends on the relative spatial configuration of the machine. This renders a traditional BR paradigm 
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with two gratings of opposing directions not applicable for our purposes, as coupling the 

manipulandum rotation to one stimulus would also result in an equal coupling to the other. 

As a form of interocular conflict, CFS has close resemblance to BR, although it shows dissimilarities 

beyond the greater exerted strength of suppression (Tsuchiya & Koch, 2005; Tsuchiya, Koch, Gilroy & 

Blake, 2006). As detailed above, several cases of dynamic multistable stimuli have been reported 

where action influences perception. Based on these results, we hypothesized an increase in perceived 

strength of the grating when action is coupled to the stimulus' dynamics, as compared to when the same 

visual stimuli are presented without action. The type of measure that would grasp the increased 

perceptual strength of the grating stimulus is not yet entirely clear, as CFS has so far not been used 

extensively in similar settings. However, Levelt’s propositions (Levelt, 1965) appear to frequently 

apply also outside of binocular rivalry paradigms (Brascamp, Klink & Levelt, 2015). Based on these 

observations, we can hypothesize that larger perceived strength would be expressed in an increase of 

the grating’s predominance (dominance as proportion of time throughout the experiment) and in a 

decrease of the suppressor’s dominance duration (mean of all the individual dominance periods). If 

viewers perceive the two stimuli as relatively balanced in strength, an increase in the dominance 

duration for the grating stimulus can also be predicted; furthermore, such a change would increase the 

alternation rate between the two stimuli. Besides and in parallel with these changes in subjective 

reports of participants, we also expect to see an increased OKN response to the grating stimulus when it 

is coupled to manual action as opposed to when no action is performed. 

Results from the partially coupled action condition of the experiment will show whether the action-to-

perception transfer depends on the type of coupling. When action is coupled directly to the grating's 

movement, the change in stimulus position is predictable from action. When action is only partially 

coupled, the action remains task-relevant and still has an effect on stimulus dynamics; however, exact 

stimulus parameters cannot be estimated. If such perceptual estimates are not necessary for the action-

to-perception transfer to take place, we would see similar results with partially coupled action as with 

full coupling. If, on the other hand, matching dynamics between action and perception do play a role in 

the expected facilitation, results will be either identical to when no action is required, or somewhere 

between the no action and fully coupled action conditions. 
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Methods 

Participants 

Twenty-four students (15 female, 9 male, 4 left handed, mean age = 24.4 SD = 5.8) took part in the 

experiment. All of them were naïve to the purpose of the experiment, had normal or corrected-to-

normal vision and normal stereo vision, and gave written informed consent to their partaking. All 

procedures conformed to the Declaration of Helsinki and were approved by the applicable board 

("Ethikkommission FB04, Philipps-University Marburg"). 

 

Setup and stimuli 

Manual action was tracked by a custom-built manipulandum device (Fig. 1). The manipulandum 

consisted of a horizontal disk of 9 cm radius, which had an 11.5 cm long handle mounted perpendicular 

to the disk at 5 cm distance from the center. To track the angular position of the handle, the axis of the 

disk operated a Kübler Sendix 5020 incremental rotary encoder. Stimuli were generated using Matlab 

(Mathworks, Natick, MA) and the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). Presentation 

took place at a viewing distance of 30 cm on two 21-inch Syncmaster CRT screens (Samsung, Seoul, 

South Korea), at 1280 × 1024 pixels spatial and 85 Hz temporal resolution. A mirror stereoscope with 

cold (infrared-transparent) mirrors (Naber et al., 2011) allowed for simultaneous dichoptic stimulus 

presentation and noninvasive infrared eye-tracking of one eye at 1000 Hz (EyeLink 2000, SR Research, 

Ottawa, ON, Canada with the Eyelink toolbox, Cornelissen, Peters & Palmer, 2002). Since the eye-

movement characteristics that we needed to analyze for the purpose of this study are equitably carried 

by both eyes (Naber et al., 2011), binocular tracking was not necessary. 
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Figure 1. Experimental setup. The cold mirrors of the stereoscope allowed eye-tracking from a table-

mounted camera position as seen in the image. The manipulandum device (bottom right) was not 

visible to participants during the experiment. The experiment was carried out in a dark room. 

Each eye's stimulus was centrally presented within a red annulus (inner diameter: 34 degrees), to 

ensure fusional vergence. The suppressor stimulus completely filled this ring and consisted of 

overlapping rectangles of random size and color, presented with a refresh rate of 10 Hz. The target 

stimulus was a horizontally transposing, red, sine-wave grating on black background. The grating's 

spatial frequency was 0.18 cycles per degree and its total diameter extended 28 degrees. A Gaussian 

mask, centered within the red annulus, decreased the grating’s luminance towards the edges (Fig. 2). 
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Figure 2. Stimulus. Stimulus display. The dashed line was added to indicate the separation between 

the two eyes’ stimuli. 

 

Procedure 

The experiment consisted of three conditions, presented in separate blocks in an alternating fashion. In 

all conditions, the task of participants was to try and perceive the moving grating stimulus as dominant. 

They were also instructed to indicate their percepts by keeping a button pressed all the time when full 

dominance of the target was achieved, and released when the suppressor was dominant. For all 

participants, button presses were executed with the left hand, while the manipulandum was operated 

with the right. 

In the "coupled action" (CA) condition, participants were instructed to continually rotate the 

manipulandum in the predefined direction at the velocity of their choosing. Grating velocity was 

directly coupled to this action at a fixed rate. 

In the "decoupled action" (DA) condition, participants executed the same task as in the CA condition, 

but their action was largely decoupled from the grating's dynamics. The dynamics of the last completed 

CA block in the experiment was replayed and averaged with the participant's concurrent action with a 

weight of 4:5. By the concurrent action having only a weight of 1:5, no moment-by-moment prediction 

could be made regarding the velocity of the grating, while the participant still had some effect on the 

overall dynamics of the stimulus. 

In action blocks (conditions CA & DA), continuous rotation in the correct direction was invoked. If the 

participant stopped rotating or rotated in the wrong direction, a red rectangle in the center of the stimuli 

on both screens warned them. Block #2 (first DA block) of participant #12 was removed from analysis 

due to a failure of following the rotation instructions for 92.04 % of the total duration of the block. In 
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all other blocks and participants, the ratio of erroneous rotation remained negligible (mean = 0.55 %, 

SD = 0.76 %). 

In the "no action" (NA) condition, participants were instructed to perform no rotation, while keeping 

their hands on the manipulandum lever. Stimulus dynamics were entirely determined by the replay of 

the last completed CA block. 

Experimenter and participant only knew whether action was required or a NA block was conducted, but 

were both blinded to whether a block, in which manual action was required, was CA or DA. 

Participants in addition were naïve to the fact that two different blocks with movement existed. 

The grating's direction was counterbalanced between blocks, while the directional pairing between 

grating translation and manual action was locked: clockwise action was coupled with leftwards and 

counter-clockwise action with rightwards motion of the grating stimulus, such that the grating 

corresponded to the movement when the lever was in front. 

Each participant started the experiment with a training block, where the grating stimulus was first 

introduced separately. This assured that all participants had the same amount of knowledge as for what 

the target looked like, regardless of their subsequent performance in the binocular task. Following the 

training, they completed twelve blocks, with block order following a counterbalanced design between 

the three conditions (four blocks each). Each block was preceded by an eye tracker calibration and 

lasted 200 s. In those cases when the experiment started with DA or NA blocks (thus no action of the 

given participant was recorded yet), stimulus dynamics of the last CA block of the previous participant 

were replayed. For all other DA and NA blocks, recordings of the last CA block of the given 

participant were used. This allowed us to have a counterbalanced design while maximizing the 

similarity in stimulus dynamics between conditions. 

 

Analyses 

Button press responses were analyzed by comparing conditions in the following measures: 

predominance of the grating (overall dominance rate throughout the whole experiment), dominance 

durations (average length of individual dominance periods) for the grating stimulus and for the 

suppressor, and switching frequency between the two stimuli. Eye data were analyzed by similarly 

comparing the mean gain of the OKN slow phase (eye velocity as a portion of stimulus velocity). This 

measure was achieved by, first, removing OKN fast phases and blinks, using the in-built Eyelink 

saccade detection software with the parameters of 30 degrees/s velocity threshold and 8000 degrees/s2 
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acceleration threshold. The average horizontal velocity of OKN slow phases was then calculated by 

least-squares fitting a linear function to each of the remaining sections. Giving this value the 

appropriate sign (positive if the slow phase was in the direction of the stimulus in the given block) and 

dividing it by stimulus velocity yielded the gain of eye movements, at each time point of the 

experiment where no saccade or blink occurred (Fig. 3). Note that the gain is negative, if the slow 

phase of the OKN is directed opposite to the grating’s drift direction, and positive if both are in the 

same direction. Perfect OKN would imply a gain of 100 %. 

 
Figure 3. Example excerpt of participant #6. Button press (green areas across both graphs; indicating 

subjective perceptual dominance of the grating), raw data of horizontal eye movements (blue line), and 

gain (red line; least-squares mean velocity of slow phase eye movements as portion of stimulus 

velocity). 

 

Measures were averaged across blocks for each condition and participant, and compared in a within-

subjects repeated measures ANOVA. In cases where Mauchly’s test indicated a violation of the 

sphericity assumption, Greenhouse-Geisser corrected values were used. Post-hoc t tests were carried 

out between all condition-pairs, if the variance analysis showed a main effect at a 0.05 alpha level. For 

post-hoc tests, significance was asserted only when the p value fell below a Bonferroni-adjusted alpha-

level of 0.05/3 = 0.0167. For analyses on button press measures, blocks with no button press (12 blocks 

altogether across all participants) were treated as missing values. 
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Time-normalized analysis 

For a more detailed view of temporal relationships between eye movements and the reported percept, 

we compared the gain for each condition on a scale of normalized time between button press and 

release. The absolute durations of individual segments from one perceptual switch to the other are 

variable between participants as well as between the two perceptual interpretations (dominance of 

grating or suppressor). In order to compare conditions and perceptual dominance without a bias by the 

absolute duration of the percept, gain data for individual intervals between perceptual switches were 

normalized to unit time (see also Einhäuser, Martin & König, 2004). The gain trace between each 

button release and subsequent button press (and vice versa) was mapped by linear interpolation to 

10000 data-points referred to as interval [0, 1], prior to averaging these segments. In this time frame, 

unit time corresponds to one half cycle between two consecutive button presses. 

To circumvent the multiple comparisons problem in studying a large number of points on the time-

scale, conditions were analyzed in a between-trials cluster-based non-parametric test on the time-

normalized data, separately for intervals where the grating or the suppressor was dominant. Methods 

were based on Maris & Oostenveld (2007). In short, t values were obtained from a pair-wise 

comparison of conditions at all data points of the time normalized scale. Clusters were formed where 

paired t tests resulted in statistics with t > 2. Gaps between clusters were ignored when they did not 

exceed 0.5 % of the normalized time scale (corresponding to an average of 44.2 ms in the real-time 

data). Note that these thresholds do not affect the false alarm rate in the non-parametric test, they only 

set the sensitivity for localizing the clusters. The sum of t values in the largest cluster was recorded as 

the observed test statistic. To form random partitions, trials (averages across blocks per participant) of 

the different conditions were collected in a single data set, and new subsets of equal sizes were formed 

by random draws of trials. Test statistics were calculated on these random subsets similarly to that on 

the actual conditions. By repeating the above method of random partitions 1000 times, Monte Carlo p 

values were calculated by taking the proportion of random partitions that showed a larger test statistic 

than the observed test statistic. 
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Results 

Subjective report and gain 

Button press responses showed no significant difference between conditions in any of the examined 

variables. Gain evinced to be different between conditions when data were considered irrespective of 

button press data (Table 1). Here, pair-wise comparisons revealed a significant difference between CA 

and NA conditions (t(23) = 2.79, p = 0.010) but not between CA and DA (t(23) = 1.72, p = 0.099) or 

DA and NA (t(23) = 1.41, p = 0.173) conditions. In post-hoc contrasts, a linear model showed the best 

fit to the pattern of results (Fig. 4; F(1, 23) = 7.78, ηp
2 = 0.25, p = 0.010). 

 
Figure 4. Means of gain. Groups from left to right: data across the whole experiment, portion of 

experiment when button press report indicated dominance of the grating, and portion of experiment 

when button press report indicated dominance of the suppressor. Error bars show standard errors of the 

mean. 
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Variable Unit Condition df F ηp
2 p 

CA DA NA     
Predominance 
(grating) % 38.47 

(25.93) 
38.82 
(28.80) 

38.05 
(28.56) 2, 46 0.17 0.007 0.844 

Dominance 
duration 
(grating) 

s 7.74 
(11.81) 

8.64 
(14.05) 

8.73 
(14.61) 

1.32, 
30.25 0.39 0.017 0.595 

Dominance 
duration 
(suppressor) 

s 8.61 
(6.45) 

8.49 
(8.28) 

10.04 
(9.97) 2, 46 0.73 0.031 0.486 

Switching 
frequency 1/s 0.21 

(0.15) 
0.20 
(0.15) 

0.21 
(0.17) 

1.40, 
32.24 0.69 0.029 0.459 

Gain (overall) % 10.40 
(7.89) 

9.78 
(7.51) 

9.13 
(7.52) 2, 46 4.40 0.161 0.018* 

Gain (grating 
dominant) % 16.95 

(11.46) 
16.48 
(10.91) 

15.17 
(9.86) 

1.54, 
35.49 2.84 0.110 0.084 

Gain 
(suppressor 
dominant) 

% 7.52 
(5.55) 

7.34 
(6.05) 

6.99 
(6.85) 2, 46 0.86 0.036 0.432 

 
Table 1. Statistical measures of results from perceptual reports and eye movements (gain). Means 

and standard deviations are shown for all variables and conditions (CA: coupled action, DA: decoupled 

action, NA: no action). Predominance of grating: portion of the experiment’s total duration, when 

perceptual dominance of the grating was indicated by button press. Dominance duration: average time 

of dominance between reported perceptual switches. Switching frequency: number of switches per 

second. Gain: slow phase optokinetic nystagmus velocity as portion of stimulus velocity. 

 
Time-normalized analysis 

For periods in which participants reported dominance of the grating, non-parametric test results 

revealed significant differences at a critical alpha-level of p < 0.05 between each condition pair (pCA-DA 

= 0.041; pDA-NA = 0.034; pCA-NA = 0.016). In contrast, for periods in which participants reported the 

flash to be dominant, only the CA-NA comparison reached significance (pCA-DA = 0.103; pDA-NA = 

0.120; pCA-NA = 0.048). More interestingly, the largest clusters of difference occurred at dissimilar 

temporal positions relative to the reported dominance switches (Fig. 5). For comparisons between 

action conditions (CA and DA) and the NA conditions, clusters were found where the gain was highest 

(proximal to when the grating achieved dominance). However, CA and DA conditions differed the 

most during times when gain was low (nearby the end of the grating’s dominance). 
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Figure 5. Means of gain, t values, and largest clusters on a normalized time scale. Left panels: 

intervals during which button presses indicated dominance of the grating, horizontal (time) axes are 

normalized such that this interval is mapped to unit time, with 0 being the time of press and 1 the time 

of release. Right panels: intervals during which button presses indicated dominance of the suppressor, 

time axes normalized to unit time from button release (t=0) to subsequent press (t=1). Means of gain 

are plotted based on individual segments of dominance normalized to this time scale. Conditions are 

compared in paired samples t tests across time. Test statistics are plotted for each condition pair, with 

the largest clusters of difference highlighted in grey (for details, see Analyses). 
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Discussion 

Our results show that reported percept and eye-movement behavior are affected differently by action. 

Although earlier studies with ambiguous displays (Beets et al., 2010; Mitsumatsu, 2009; Wohlschläger, 

2000) and BR (Di Pace & Saracini, 2014; Maruya et al., 2007) have shown a clear effect of concurrent, 

task-related action on perception, we did not find any sign of such an effect in a CFS paradigm. This is 

consistent with the top-down nature of action capture (Wohlschläger, 2000), as the effect of selective 

attention is weaker in CFS compared to BR, and minimal compared to ambiguous figures (Meng & 

Tong, 2006; Tsuchiya & Koch, 2005; Tsuchiya, Koch, Gilroy & Blake, 2006). 

Visually induced eye-movements, on the other hand, were affected by action, pointing to an underlying 

mechanism that is either different from that behind the action-to-perception transfer onto the conscious 

percept, or relies on the same mechanism albeit with diverging sensitivities. While comparing the 

means of the gain during times of dominance of one or the other stimulus did not show clearly whether 

the effect stemmed from intervals of the experiment when dominance of the grating was indicated or 

from the portion when the suppressor was dominant, non-parametric test results showed that the effect 

was not distributed homogeneously across the time of dominance of either stimulus. As opposed to 

binary button press responses, the gain of OKN eye movements showed a gradual transition of 

dominance between suppressor and target stimulus (cf. Fahle, Stemmler, & Spang 2011; Naber et al., 

2011). Relative to these transitions, the effect of (both coupled and decoupled) action as compared to 

no action was most expressed when eye movements elicited by the grating were highest. However, 

coupled and decoupled action conditions differed from one another mostly at times when the gain of 

OKN was at its lowest (Fig. 5). This means that not only were eye movements affected by action 

independently of the reported percept of the stimulus, but also that most of the effect of coupling 

between action and stimulus dynamics took place when the coupled stimulus was least likely to be in 

awareness. 

Our paradigm tackles an earlier stage of competition than all previously reported experiments on the 

action-to-perception transfer. As such, the measures that we used reflect a stronger influence of bottom-

up processes, while selective attention could less readily bias the percept. This is feasible to be 

reflected in the lack of an on-line action to perception effect on the reported percept in our results. Eye 

movements, on the other hand, respond to a lower level of shared processing between action and 

perception, and display a gradual effect of action – the degree of coupling corresponds to the extent of 

OKN response to the grating‘s motion. 
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Although eye movements are a type of motor behavior, in our experiment they are inseparable from the 

visual information that originates from the target stimulus. It remains an open question, to what extent 

the underlying perceptual processes also differ between the tested conditions. Nevertheless, as the 

OKN response is reliably connected to the percept in BR (Naber et al., 2011), we can assume that 

lower level (pre-attentive) perceptual processes are affected by action, similarly to eye movements. The 

difference between our results and those of Maruya et al. (2007) and Di Pace & Saracini (2014), on the 

other hand, further support the notion that BR and CFS are principally different in how they affect 

selective attention and awareness (Tsuchiya & Koch, 2005; Tsuchiya et al., 2006). 

One of the earliest and theoretically most important questions of the study of how action influences 

perception is whether any observed effect is a result of a direct, low level, information flow from the 

motor to the perceptual domain, or if higher level representations or even endogenous attention serve as 

vehicle for the transfer. A collection of results from previous research together indicate that neither side 

can be clearly excluded from an overarching explanation. Our study takes this approach one step 

further. On one hand, it shows that in CFS, a paradigm where selective attention plays less role than in 

ambiguous figures or BR, effects of action on perception can still be observed. On the other hand, it 

also shows that methods most often used in similar studies, which rely on observers’ subjective reports, 

do not capture the effect. This is an indication that conscious perception is not affected at the measured 

level of perceptual organization. 
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Abstract 

Can cognition penetrate action-to-perception transfer? Participants observed a cylinder of ambiguous 

rotation direction. Beforehand, they experienced one of two mechanical models: an unambiguous 

cylinder was connected to a rod by either a belt (cylinder and rod rotating in the same direction) or 

gears (both rotating opposite). During ambiguous cylinder presentation, mechanics and rod were 

invisible. Observers inferred the rod’s direction from their moment-by-moment subjective perceptual 

interpretation of the cylinder. Observers reported the (hidden) rod’s direction by rotating a 

manipulandum in either the same or the opposite direction. For the “belt” model, same-direction report 

induces congruency between cylinder perception and manual action. Here, same-direction movement 

stabilized the perceived direction, replicating a known congruency effect. For the “gear” model, 

opposite-direction report induces congruency between perception and action. Here, no congruency 

effect was found: perceptual congruency and cognitive model nullified each other. Hence, observers’ 

internal models of a machine’s operation guide action-to-perception transfer. 

 

Keywords: vision, action, ambiguous perception, action-perception coupling, cognitive representation, 

action-to-perception transfer 
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Introduction 

Actions typically have perceptual consequences. Pushing a mouse forward makes a pointer go up, 

pulling a control stick backward makes a plane climb, pulling a cord down opens the blinds, turning a 

key releases a lock, turning a screw pushes it forward or backward, etc. These mappings from action to 

outcome are vastly different, sometimes even conflicting, yet, they appear nearly self-evident to us. 

Apparently, we have internalized models of the complex mappings between actions and their effects 

and can recruit them in a context-specific manner. In the present study, we ask whether these cognitive 

models of action consequences penetrate into perception itself. 

Besides affecting perception through changing the external world, action may also directly impact 

internal perceptual representations. Practicing a movement leads to improved visual discrimination of 

the same movement1, action and the perception of action may rely on the same primitives2, and as 

humans, we are all “experts” on biological motion perception3,4. The notion of shared action-perception 

representations has been formalized as the theory of common coding5 and extended into the theory of 

event coding6. 

Ambiguous stimuli present an excellent means of isolating direct effects of action on perception from 

effects that are mediated through changes in the outside world. For example, when two identical disks 

move across the screen on the same trajectory but in the opposite direction7, the direction of a 

concurrently performed hand action biased the percept to either the two disks moving across or 

bouncing off one another8. Wohlschläger9 demonstrated that planning or executing a hand movement 

biased a rotating ambiguous motion display in the direction of manual rotation. Similarly, the 

perceptual interpretation of an ambiguous (bi-stable) rotating cylinder was stabilized, when viewers 

reported their perceived direction with congruent manual rotation10. Comparable results were found 

when instead of ambiguous displays, binocular rivalry11 or unambiguous stimuli with high perceptual 

uncertainty12 were used. These studies describe a congruency effect, whereby a match between action 

and perception (e.g., rotation in the same direction) leads to increased perceptual stability, as compared 

to an incongruent relationship (rotation in the opposite direction). 

Although the theory of common coding5 can accommodate all of the aforementioned findings, it does 

not strictly specify the nature of the information transfer from action to perception. One possibility is 

that the action-to-perception transfer is mediated by cognition. Maruya, Yang and Blake11 found effects 

of action on perception, when the action-coupled stimulus was perceptually suppressed (i.e., outside of 



Part II. – Appendix: Study III.   
 

77 

awareness), arguing against a purely cognitive effect. In contrast, Beets and colleagues10 found effects 

only when the action was used to report the perception, suggesting the need for some cognitive 

component. 

In the present study, we used an ambiguous motion stimulus to assess the impact of cognition on 

action-to-perception transfer. Specifically, we tested whether an observer’s internal model of the 

particular mechanics that link the action to the observed visual consequence modulates the effect of 

action on perception. In all experimental conditions, observers viewed an ambiguous rotating cylinder 

(figure 1b; Beets et al.10) and reported perceived spinning direction by rotating a manipulandum lever 

either in the same or in the opposite direction as the lever of the assumed mechanism would move 

(figure 1c, d). 

 

Figure 1. Stimuli, percept, and task. a) First, in separate blocks (blocks 1 & 6, see table 2), 

participants were introduced to the mechanical model (“belt” or “gear” layout). For 30 seconds, they 

controlled the displayed motion with the manipulandum. Then, 20 seconds of unambiguous motion 

followed (the cylinder and mechanical model rotated with occasional switches in direction), where 

rotation direction in 
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observers had to report the rotation of the red lever (the red rod attached to the wheel) in accordance 

with the subsequent experimental block (“same direction instruction” or “opposite direction 

instruction”). For the last 20 seconds of training, the red lever disappeared and the mechanics was 

covered by a virtual desk, while the task remained unchanged. b) All test blocks showed the same, 

ambiguous, motion cylinder for 3 minutes each. c) Two possible perceptual interpretations of the test 

stimulus (clockwise and counter-clockwise). Participants had to respond to the imagined motion of the 

red lever, as it related to their current percept. d) Instruction (manipulandum rotation in the same or 

opposite direction as that of the red lever in the mental model). Note that in the “belt” condition, the 

same/opposite direction instruction leads to congruency/incongruency between perceived and 

performed rotation, while this relationship is reversed in the “gear” condition. 

 

Ambiguous stimuli evoke a percept that switches back and forth between perceptual interpretations 

(here: one direction of rotation or the other). A more stable percept translates to longer periods between 

these switches. Hence perceptual stability is operationalized as the median duration for which a percept 

(of either rotation direction) was perceived. 

Studies like Wohlschläger9 or Beets and colleagues10, by design, confound two effects: (i) the effect of 

coupling between the perceived direction of the ambiguous motion and the manipulandum rotation and 

(ii) the effect of coupling between the internal model of the rotation and the executed movement. There 

is an implicit assumption that the cognitive model and the perception are closely matched. Here we 

separate these two effects: as in Beets and collagues10, we used an ambiguous cylinder (figure 1b) and 

asked observers to rotate a manipulandum in the same or in a different direction as an ambiguously 

rotating object. However, observers did not report the perceived direction of the ambiguous cylinder 

itself, but of a visual representation of the manipulandum lever. Observers were taught that the 

ambiguous cylinder and the lever were either coupled through a belt or through gears (figure 1a). This 

results in four (2x2) conditions (table 1): the internal model (levels: “gear”, “belt”) and the match 

between perceived cylinder rotation and manipulandum rotation (levels: “congruent”, “incongruent”). 

During testing, the visual representation of the lever is not shown (figure 1b), rendering all four 

conditions visually identical. If the congruency between perceived motion direction and manipulandum 

rotation is decisive for action-perception coupling, the effect of the match between action and 

perception on perceptual stability should be independent of the internal model (figure 2, left). If, 
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however, the cognitive congruency between the invisible representation of the lever and actual lever is 

decisive, we expect the effects to reverse for the gear model (figure 2, right). Even if the effect does not 

reverse completely, any interaction between internal model and perception-action match would point to 

cognitive penetration of action-perception coupling. 

internal 

model 

match (perceived rotation – 

manual action) 

instruction effect if perception 

dominates 

effect if internal model 

dominates 

belt congruent same dir. stabilize stabilize 

belt incongruent opposite dir. destabilize destabilize 

gear incongruent same dir. destabilize stabilize 

gear congruent opposite dir. stabilize destabilize 

Table 1. Conditions. There are 4 (2x2) experimental conditions, defined by the factors internal model 

(“belt”, “gear”) and match (“congruent”, “incongruent”). Note that match and instruction in the belt 

and gear conditions are inversely related. Depending on whether perceptual congruency or internal 

model dominates, different predictions on perceptual (de)stabilization result (right columns). 

 

Figure 2. Hypotheses. Expected effects of internal model and match (between percept and action) on 

perceptual stability, if action-perception coupling is not under cognitive influence (left) or dominated 

by the cognitive model (right). 
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Results 

We measured perceptual stability and tested whether the factors internal model [gear vs. belt] and 

match [congruent vs. incongruent] influenced this measure. We found no significant main effect of 

either factor (internal model: F(1, 31) = 0.517, ηp
2 = 0.016, p = 0.478; match: F(1, 31) = 2.697, ηp

2 = 

0.080, p = 0.111), while the two factors showed a significant interaction (F(1, 31) = 4.763, ηp
2 = 0.133, 

p = 0.037). Paired samples two-sided t-tests revealed that the congruency effect was significant only in 

the “belt” condition (perceptual stability: meanBelt Congruent = 4.40 s; meanBelt Incongruent = 3.24 s; t(31) = 

2.759, p = 0.010), but not in the “gear” condition (meanGear Congruent = 3.39 s; meanGear Incongruent = 3.67 s; 

t(31) = 0.661, p = 0.513; figure 3). 

 

 

Figure 3. Results. Perceptual stability for each condition, averaged across participants (N=32; mean 

perceptual stability across observers, where perceptual stability for each observer is the median 

duration for which a percept was perceived). Error bars show standard errors of the mean. 

5.5

5

4.5

4

3.5

3

congruent incongruent

belt

gear

pe
rc

ep
tu

al
 s

ta
bi

lit
y 

(s
)

match between perceived direction of cylinder
and manipulandum rotation



Part II. – Appendix: Study III.   
 

81 

Discussion 

The interaction between the factors internal model and match revealed that the cognitive model of the 

coupling between an action and its observable effect significantly influenced the action-to-perception 

transfer. Results from the “belt” condition replicated the known congruency effect10, while the lack of 

effect in the “gear” condition (in the presence of an interaction) showed that the influence of the 

assumed mechanical model counteracted the natural congruency bias. Thus, cognition plays a 

significant role in action-to-perception transfer, while it is not the sole source of the effect. 

In the framework of the common-coding theory5, our results can be interpreted as evidence that the 

shared representations between perception and action occur on a cognitively accessible level of 

processing. This is in line with the observation that action-perception transfer can depend on the 

relevance of an action for the perceptual task10. A direct influence of the cognitive model on action-to-

perception transfer might also be of adaptive value in real-life situations, in particular when tools 

similar to the one used here are involved: evoking a cognitive model allows better predictions of an 

action’s consequences and may therefore result in better performance or quicker learning of a complex 

manual task13. Nonetheless, our results do not exclude that on some level shared action-perception 

representations exist that are under less cognitive control and form independently of awareness11. This 

is particularly conceivable for low-level representations, where perception itself may remain unaffected 

by either action or the cognitive expectation of perception-action coupling14. In a representation-based 

framework, the results on action-perception transfer taken together necessitate different 

representational levels, of which only some are penetrable to executive functions, awareness or 

cognition. 

A complementary view posits that the quality of perception arises from the relation between our actions 

and their sensory effects15. Perception, cognition and action then become intimately related through the 

model that is generated by observing the sensory consequences of an action. In this case, perceptual 

qualities and the cognitive model can be viewed as consequences of the action-perception relation. This 

is consistent with a recently proposed action-oriented framework, in which perception and cognition 

are formed together, with action being the key organizing force behind both16. In a simple system like 

the gear/belt mechanics, it would appear conceivable that instruction led the observers to simply learn 

the coupling from action-to-perception without forming a cognitive model. However, we deliberately 

chose an experimental design that reversed the congruency instruction without re-exposing the 

observers to the action-perception coupling; instead, we exposed each observer to their second 
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mechanical model only after he or she had completed all blocks with the first model (order of 

mechanics balanced across observers; table 2). Observers therefore needed to apply their internal 

mechanical model to reverse the instruction without practicing the action-perception contingency. This 

makes it likely that observers indeed have formed a cognitive model during instruction, which they 

consistently applied until a different model became evident through a new, externally available, action-

perception contingency. 

 

Methods 

Participants 

Thirty-two naïve participants (15 males, 17 females; 25 +/- 4.6 years; 4 left- and 28 right-handed) were 

included in the analysis. In one additional observer, no reversal of their rotation occurred in several 

blocks; this was detected when visually inspecting data quality, and the data of this observer was 

excluded prior to any further analysis. One further observer was assigned to a wrong group by technical 

error, which was realized during the experiment and their data was not analyzed or inspected any 

further. Procedures conformed to the Declaration of Helsinki and were approved by the 

Ethikkommission FB04 of Philipps-University Marburg (#2011-04K). Participants gave written 

informed consent prior to their partaking. All participants had normal or corrected-to-normal vision. 

Setup and stimuli 

Stimuli were generated using Unity3D (Unity Technologies, San Francisco, CA) and Matlab 

(Mathworks, Natick, MA) with the Psychophysics Toolbox17,18, and presented on an Asus GL502 

laptop computer (screen resolution: 1920 x 1080 at 60 Hz; viewing distance: 73 cm). Manual responses 

were recorded by a custom-built manipulandum device (figure 1d shows an image of the device), 

measuring the angular position of the rotating handle via a Kübler Sendix 5020 incremental rotary 

encoder. For all participants, the manipulandum was placed on the right side of the chair. 

For training blocks, stimuli were rendered with a perspective camera and other depth-cues present. The 

3-dimensional model of the cylinder consisted of small spheres placed at equal distances from a 

vertical axis, with randomly defined vertical and angular positions relative to the axis. The total size of 

the display extended 14.4 x 11.7 degrees of visual angle, with the diameter of each dot being 0.08 

degrees. The mechanical model consisted of either two wheels connected by a belt, or two adjacent 

cogwheels. The wheels moved according to the type of connection, that is, same direction in the “belt” 
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condition and opposite direction in the “gear” condition. One of the wheels was placed directly below 

the cylinder and always moved together with it, as if they were fastened together. This wheel, as well 

as the cylinder, was shown in the center of the screen. The second wheel was to the right, with a 

vertical red rod attached to the top side (resembling the handle of the manipulandum; see figure 1a). 

For test blocks, the same cylinder object was depicted in the center (6.1 x 12.7 degrees) as an 

orthographic projection, without depth-cues or the attached mechanical model (figure 1b). This way, 

the direction of rotation was completely ambiguous and up to the perceptual interpretation of the 

viewer. The spheres of the cylinder were shown in a homogeneous color (appearing as 2-dimensional 

dots) and their size did not change along their movement trajectory. Thus, the front and rear surfaces of 

the cylinder were identical and showed no cues of occlusion. However, due to the dynamics of the dot 

movements, this cylinder formation is consistently perceived as a 3-dimensional rotating object 

(structure-from-motion), where the apparent direction of rotation is ambiguous and its perception 

alternates (see e.g. Beets et al.10). 

Procedure 

For each participant, the experiment consisted of two halves, one with the “belt” and the other with the 

“gear” stimulus condition (order counterbalanced between participants). Each half of the whole 

experiment started with a training block that introduced the stimulus and mechanical model of the 

applicable condition, followed by four test blocks with the ambiguous stimulus (table 2). 
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 1 2 3 4 5 6 7 8 9 10 

 

mechanics 

training 

(total: 70s) 

test (180s) test (180s) test (180s) test (180s) 

mechanics 

training 

(total: 70s) 

test (180s) test (180s) test (180s) test (180s) 

I belt S O O S gear S O O S 

II gear S O O S belt S O O S 

III belt S O O S gear O S S O 

IV gear S O O S belt O S S O 

V belt O S S O gear S O O S 

VI gear O S S O belt S O O S 

VII belt O S S O gear O S S O 

VIII gear O S S O belt O S S O 

Table 2. Design matrix. Within a sequence of test blocks, order of reporting conditions follows an 

ABBA pattern (either SOOS or OSSO; S: same direction instruction, O: opposite direction instruction). 

The starting of the sequence and all other variables of the design were counterbalanced between 

participants, leading to a total of 8 possible block order combinations; that is, each block order (I-VIII) 

was assigned to four of the 32 observers. 

 

The training blocks were designed to gradually introduce model and task to the participant. In the first 

30 seconds, the movement of the unambiguous cylinder and the attached mechanical model were 

directly connected to the manipulandum lever. Participants were instructed to move the lever as they 

wished and to observe the mechanical workings of the model. Then, for a 20 seconds interval, the 

model rotated at a constant velocity, changing direction every 6 +/- 2 seconds. Participants had to either 

mimic the movement of the red rod on the attached wheel, or rotate in the opposite direction (according 

to what the instruction would be in the subsequent test block). In the last 20 seconds of the training 

block, participants continued with their previous task but the red rod disappeared, and the mechanics 

were occluded by a virtual desk. This way, the movement of the cylinder was still unambiguous, but 

the task of the participant was already identical to what they would do in the subsequent test block. To 

make certain that the correct response was practiced, a salient red rod appeared directly to the left of 
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the cylinder, when the response direction was incorrect. Furthermore, the experimenter was also 

present during the training block and verified that by the end of the instruction, all participants 

understood the current task. 

Test blocks always showed the ambiguous stimulus (figure 1b), moving at a constant velocity (90°/s). 

Depending on the condition of the given block, participants had to move the manipulandum lever in the 

same or opposite direction as the red lever on the mechanics (as seen in the training block) would 

rotate. Test blocks lasted 3 minutes each. Before each block, the starting position of the manipulandum 

lever was set to the 12 o’clock position. 

The order of training stimulus (“belt” or “gear” mechanics) between the two halves of the experiment, 

the order of test block instructions within one half of the experiment (same or opposite direction; 

always in an ABBA order), as well as the order of test block instructions between the two halves of the 

experiment were counterbalanced between participants (table 2). 

Analysis 

Manipulandum rotation velocity data were segmented into periods of rotation in one direction or the 

other, as well as periods with no movement (no change of position for at least two subsequent sample 

points). For each observer and condition, perceptual stability was defined as the median duration of all 

non-zero velocity segments. 

Comparisons between conditions were made using a within-subjects repeated measures ANOVA, with 

factors internal model (“belt” or “gear”) and match (congruent and incongruent, as in the relation 

between stimulus and action). Effects were considered significant at a 0.05 alpha level, while a 

Bonferroni-adjusted alpha-level of 0.05/4 = 0.0125 was used for post-hoc t-tests.  

All reported tests are two-sided, Matlab (R2015a) was used for data processing, SPSS (version 24) for 

statistical analysis.  
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Zusammenfassung 

Diese Dissertationsschrift besteht aus drei Studien, die sich mit komplementären Aspekten der 

Handlungs-Wahrnehmungs-Kopplung beschäftigen. In den letzten Jahrzehnten hat in der kognitiven 

Psychologie ein Paradigmenwechsel begonnen: an die Stelle des traditionellen Zugangs - zuerst kommt 

der Reiz, dann folgt die Handlung als bloße Antwort darauf – tritt mehr und mehr ein weniger 

unidirektionales Bild von Handlung und Wahrnehmung. Handlung beeinflusst Wahrnehmung zunächst 

auf mehr oder weniger triviale Weise durch ihren Effekt auf die Außenwelt – wir bewegen uns oder 

unsere Sinnesorgane im Raum oder wir bewegen Objekte. Interessanter ist der interne Einfluss der 

Handlung auf die Wahrnehmung. Studien II und III dieser Arbeit beschäftigen sich direkt mit diesem 

Thema, indem sie den Einfluss der Handlung auf die Wahrnehmung physisch unveränderliche Reize 

untersuchen. Studie I beschäftigt sich mit biologischer Bewegung. In meiner Arbeit lege ich dar, dass 

die Wahrnehmung biologischer Bewegung einen realitätsnahen Spezialfall direkten Handlungs-

Wahrnehmungs-Transfers darstellt. Die Hinweisreize für belebte Fortbewegung werden schnell und 

aufwandsfrei erkannt und erlauben gleichzeitig eine schnelle Aufnahme detaillierter Information über 

den Handelnden, da wir hierbei unsere immense Erfahrung mit der Bewegung unseres eigenen Körpers 

unter Berücksichtigung physikalischer Gesetze zur Interpretation dieser Hinweisreize nutzen können. 

Zusammengefasst ergeben die Studien dieser Arbeit ein frisches Bild der gemeinsamer 

Repräsentationen von Wahrnehmung und Handlung, ihrer perzeptuellen Folgen und ihrer Beziehung zu 

kognitiven Modellen der Welt. 

In Studie I zeigten wir, dass biologischer Bewegung die Wahrnehmung der Größe des Handelnden 

beeinflusst. Ein Reiz, der biologische Bewegung darstellt, wird größer wahrgenommen als ein visuell 

vergleichbarer Kontrollreiz und lässt nachfolgende Reize kleiner erscheinen. Vor dem Hintergrund der 

Wichtigkeit biologischer Bewegung ist dieses Ergebnis mit anderen Studien im Einklang, die 

Wichtigkeit zu wahrgenommener Größe in Beziehung setzen. Die Verbindung zu biologischer 

Bewegung wurde vor dieser Arbeit noch nicht hergestellt. In Studie II verbanden wir einen Reiz, der 

sich mit einem anderen in Wettstreit befand, mehr oder weniger stark mit einer gleichzeitig 

ausgeführten Handlung. Während der Grad der Kopplung zwischen Handlung und Wahrnehmung den 

Bericht der Versuchsperson über die Sichtbarkeit nicht nachweislich beeinflusste, zeigte sich eine 

deutliche Modulation okulomotorischer Maße. Dieses Ergebnis legt verschiedene Stufen der 

Handlungs-Wahrnehmungs-Kopplung auf verschiedenen Repräsentationsstufen nahe, die wiederum 

unterschiedlichen Zugang zu bewusster Wahrnehmung haben. Beeinflusst umgekehrt das kognitive 
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Modell der Welt den Grad der Handlungs-Wahrnehmungs-Kopplung? In Studie III zeigten wir, dass 

der Effekt der Handlungs-Wahrnehmungs-Kongruenz auf die Wahrnehmungsstabilität kritisch vom 

kognitiven Modell der Handlungs-Wahrnehmungs-Kopplung abhängt. Zusammengenommen zeigen 

Studien II und III, dass kein einzelner Mechanismus und keine einzelne Repräsentation allein für alle 

Befunde zur Handlungs-Wahrnehmungs-Kopplung verantwortlich sein können. In der übergreifenden 

Diskussion werde ich die nötigen Anpassungen existierender Modelle betrachten und alternative 

theoretische Ansätze aufzeigen. 
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