Publikationsserver der Universitätsbibliothek Marburg

Titel:Einfluss von ATP auf die biologische Aktivität von Cryptochrom 2 aus Arabidopsis thaliana
Autor:Eckel, Maike
Weitere Beteiligte: Batschauer, Alfred (Prof. Dr.)
Veröffentlicht:2018
URI:https://archiv.ub.uni-marburg.de/diss/z2018/0102
DOI: https://doi.org/10.17192/z2018.0102
URN: urn:nbn:de:hebis:04-z2018-01026
DDC:570 Biowissenschaften, Biologie
Publikationsdatum:2018-10-15
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Photorezeptor, Cryptochrom 2, Arabidopsis thaliana, Photorezeptor, ATP,, Light perception, Lichtperzeption, photoreceptor, ATP, ATP

Zusammenfassung:
Im Zuge dieser Arbeit wurden diverse in planta- und in vitro- Ansätze gewählt, um die Metabolit-Bindung des Blaulichtrezeptors Cryptochrom 2 aus Arabidopsis thaliana näher zu charakterisieren. Obwohl seit 2003 die ATP-Bindefähigkeit pflanzlicher Cryptochrome bekannt ist (Bouly et al., 2003), gab es bisher keine Analyse darüber, welchen Einfluss die ATPBindung von Cryptochromen auf deren Funktion in planta hat. Die Bindestelle für ATP war für Cryptochrom 1 aufgrund von Strukturdaten bekannt, nicht aber für cry2. Ebenfalls war unbekannt, welche Aminosäureaustausche in cry2 zu einem Verlust der ATP-Bindung führen könnten. Im Rahmen dieser Arbeit konnte zunächst Tyr-399 als essentiell für die ATP-Bindung von cry2 identifiziert werden. Komplementationsstudien der Arabidopsis cry2 Mutante zeigten, dass die ATP-Bindung für cry2 nicht essentiell ist, diese aber eine deutlich verstärkende Wirkung auf die biologische Aktivität dieses Photorezeptors hat. Unter Einbeziehung der Analyse einer Trp- Triade Mutante konnte die biologische Funktion der ATP-Bindung genauer charakterisiert werden. Es zeigte sich, dass es aufgrund der ATP-Bindung zu strukturellen Änderungen des Proteins sowie zu einer Verstärkung der Photoreduktion und einer Verzögerung der Dunkelreversion kommt. Die ATP-induzierten strukturellen Änderungen sind dabei unabhängig von Licht sowie der C-terminalen Extension des Proteins. Da die zuvor in vitro nicht photoreduzierbare Trp-Triade-Mutante durch die Bindung von ATP bei Bestrahlung zumindest partiell FADH° anzureichern kann, ist wahrscheinlich, dass es durch die ATPinduzierten Konformationsänderungen zur Nutzung alternativer Elektronentransportwege in cry2 kommt. Dennoch kann ATP-Bindung die Unterbrechung des Elektronentransfers über die Trp-Triade nicht vollständig kompensieren, da die entsprechende Mutante ebenfalls biologisch weniger aktiv ist, wie hier gezeigt werden konnte. Weitere Arbeiten sind erforderlich, um die an alternativen Elektronentransferwegen beteiligten Aminosäuren zu identifizieren. Zudem wurde 3-Bromo-7-nitroindazol (3B7N) als Inhibitor von cry2 charakterisiert. Hierbei konnte gezeigt werden, dass der Austausch von Tyr-399 zu einer verminderten Bindung von 3B7N führt, sodass ATP und 3B7N vermutlich an der gleichen Stelle von cry2 binden. Der genaue Wirkmechanismus von 3B7N muss in zukünftigen Arbeiten geklärt werden.

Bibliographie / References

  1. Payne, G., Sancar, A. (1990). Absolute action spectrum of E-FADH2 and E-FADH2-MTHF forms of Escherichia coli DNA photolyase. Biochemistry (Mosc.) 29, 7715-7727.
  2. Faigón-Soverna, A., Harmon, F.G., Storani, L., Karayekov, E., Staneloni, R.J., Gassmann, W., Más, P., Casal, J.J., Kay, S.A., Yanovsky, M.J. (2006). A constitutive shade-avoidance mutant implicates TIR-NBS-LRR proteins in Arabidopsis photomorphogenic development. Plant Cell 18, 2919-2928.
  3. Veluchamy S. and Rollins J.A. (2008). A CRY-DASH-type photolyase/cryptochrome from Sclerotinia sclerotiorum mediates minor UV-A-specific effects on development. Fungal Genet Biol. 45, 1265-76.
  4. Selby, C.P., Sancar, A. (2006). A cryptochrome/photolyase class of enzymes with single- stranded DNA-specific photolyase activity. Proc. Natl. Acad. Sci. U. S. A. 103, 17696- 17700.
  5. Jorns, M.S., Baldwin, E.T., Sancar, G.B., Sancar, A. (1987). Action mechanism of Escherichia coli DNA photolyase. II. Role of the chromophores in catalysis. J. Biol. Chem. 262, 486-491.
  6. Shinomura, T., Nagatani, A., Hanzawa, H., Kubota, M., Watanabe, M., Furuya, M. (1996). Action spectra for phytochrome A-and B-specific photoinduction of seed germination in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 93, 8129-8133.
  7. Ahmad, M., Grancher, N., Heil, M., Black, R.C., Giovani, B., Galland, P., Lardemer, D. (2002). Action spectrum for cryptochrome-dependent hypocotyl growth inhibition in Arabidopsis. Plant Physiol. 129, 774-785.
  8. Simon, R., Igeño, M.I., Coupland, G. (1996). Activation of floral meristem identity genes in Arabidopsis. Nature 384, 59-62.
  9. Kardailsky, I., Shukla, V.K., Ahn, J.H., Dagenais, N., Christensen, S.K., Nguyen, J.T., Chory, J., Harrison, M.J., Weigel, D. (1999). Activation tagging of the floral inducer FT. Science 286, 1962-1965.
  10. Li, Y.F., Heelis, P.F., Sancar, A. (1991). Active site of DNA photolyase: tryptophan-306 is the intrinsic hydrogen atom donor essential for flavin radical photoreduction and DNA repair in vitro. Biochemistry (Mosc.) 30, 6322-6329.
  11. Takeda, S., Miyauchi, S., Nakayama, H., Kamo, N. (1997). Adenosine 5'-triphosphate binding to bovine serum albumin. Biophys. Chem. 69, 175-183.
  12. Exner, V., Alexandre, C., Rosenfeldt, G., Alfarano, P., Nater, M., Caflisch, A., Gruissem, W., Batschauer, A., Hennig, L. (2010). A gain-of-function mutation of Arabidopsis cryptochrome1 promotes flowering. Plant Physiol. 154, 1633-1645.
  13. Koornneef, M., Hanhart, C.J., van der Veen, J.H. (1991). A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet. 229, 57-66.
  14. Tzfira, T., Citovsky, V. (2006). Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr. Opin. Biotechnol. 17, 147-154.
  15. Hegemann, P. (2008). Algal sensory photoreceptors. Annu. Rev. Plant Biol. 59, 167-189.
  16. Wagner, M. (1964). A Method for the direct determination of Desoxyribonuclease following agar gel electrophoresis. J. Chromatogr. 14, 107-108.
  17. Ritz, T., Adem, S., Schulten, K. (2000). A model for photoreceptor-based magnetoreception in birds. Biophys. J. 78, 707-718.
  18. Ozgür, S., Sancar, A. (2006). Analysis of autophosphorylating kinase activities of Arabidopsis and human cryptochromes. Biochemistry (Mosc.) 45, 13369-13374.
  19. Engen, J.R., Wales, T.E. (2015). Analytical Aspects of Hydrogen Exchange Mass Spectrometry. Annu. Rev. Anal. Chem. Palo Alto Calif 8, 127-148.
  20. Kleine, T., Lockhart, P., Batschauer, A. (2003). An Arabidopsis protein closely related to Synechocystis cryptochrome is targeted to organelles. Plant J. Cell Mol. Biol. 35, 93- 103.
  21. Voinnet, O., Rivas, S., Mestre, P., Baulcombe, D. (2003). An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J. Cell Mol. Biol. 33, 949-956.
  22. Yasui, A., Eker, A.P., Yasuhira, S., Yajima, H., Kobayashi, T., Takao, M., Oikawa, A. (1994). A new class of DNA photolyases present in various organisms including aplacental mammals. EMBO J. 13, 6143-6151.
  23. Pfaffl, M.W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45.
  24. Mockler, T.C., Guo, H., Yang, H., Duong, H., Lin, C. (1999). Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction. Dev. Camb. Engl. 126, 2073-2082.
  25. Smith, H., Xu, Y., Quail, P.H. (1997). Antagonistic but complementary actions of phytochromes A and B allow seedling de-etiolation. Plant Physiol. 114, 637-641.
  26. Oberpichler, I., Pierik, A.J., Wesslowski, J., Pokorny, R., Rosen, R., Vugman, M., Zhang, F., Neubauer, O., Ron, E.Z., Batschauer, A., Lamparter, T. (2011). A Photolyase-Like Protein from Agrobacterium tumefaciens with an Iron-Sulfur Cluster. PLoS ONE 6.
  27. Yu, X., Lin, C. (2008). A photoreceptor going nowhere but the nucleus. Plant Signal. Behav. 3, 331-332.
  28. Batschauer, A. (1993). A plant gene for photolyase: an enzyme catalyzing the repair of UV- light-induced DNA damage. Plant J. Cell Mol. Biol. 4, 705-709.
  29. El-Din El-Assal, S., Alonso-Blanco, C., Peeters, A.J., Raz, V., Koornneef, M. (2001). A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nat. Genet. 29, 435-440.
  30. Chattopadhyay, S., Ang, L.H., Puente, P., Deng, X.W., Wei, N. (1998). Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. Plant Cell 10, 673-683.
  31. Tan, S.-T., Dai, C., Liu, H.-T., Xue, H.-W. (2013). Arabidopsis casein kinase1 proteins CK1.3 and CK1.4 phosphorylate cryptochrome2 to regulate blue light signaling. Plant Cell 25, 2618-2632.
  32. Jang, S., Marchal, V., Panigrahi, K.C.S., Wenkel, S., Soppe, W., Deng, X.-W., Valverde, F., Coupland, G. (2008). Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. EMBO J. 27, 1277-1288.
  33. Arabidopsis CRY2 and ZTL mediate blue-light regulation of the transcription factor CIB1 by distinct mechanisms. Proc. Natl. Acad. Sci. U. S. A. 110, 17582-17587.
  34. Lin, C., Ahmad, M., Cashmore, A.R. (1996). Arabidopsis cryptochrome 1 is a soluble protein mediating blue light-dependent regulation of plant growth and development. Plant J. Cell Mol. Biol. 10, 893-902.
  35. Yu, X., Klejnot, J., Zhao, X., Shalitin, D., Maymon, M., Yang, H., Lee, J., Liu, X., Lopez, J., Lin, C. (2007). Arabidopsis cryptochrome 2 completes its posttranslational life cycle in the nucleus. Plant Cell 19, 3146-3156.
  36. Li, X., Wang, Q., Yu, X., Liu, H., Yang, H., Zhao, C., Liu, X., Tan, C., Klejnot, J., Zhong, D., Lin, C. (2011). Arabidopsis cryptochrome 2 (CRY2) functions by the photoactivation mechanism distinct from the tryptophan (trp) triad-dependent photoreduction. Proc. Natl. Acad. Sci. U. S. A. 108, 20844-20849.
  37. Fornara, F., Panigrahi, K.C.S., Gissot, L., Sauerbrunn, N., Rühl, M., Jarillo, J.A., Coupland, G. (2009). Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Dev. Cell 17, 75- 86.
  38. Christie, J.M., Reymond, P., Powell, G.K., Bernasconi, P., Raibekas, A.A., Liscum, E., Briggs, W.R. (1998). Arabidopsis NPH1: a flavoprotein with the properties of a photoreceptor for phototropism. Science 282, 1698-1701.
  39. Sakai, T., Kagawa, T., Kasahara, M., Swartz, T.E., Christie, J.M., Briggs, W.R., Wada, M., Okada, K. (2001). Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc. Natl. Acad. Sci. U. S. A. 98, 6969-6974.
  40. Huala, E., Oeller, P.W., Liscum, E., Han, I.S., Larsen, E., Briggs, W.R. (1997). Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. Science 278, 2120- 2123.
  41. Laubinger, S., Marchal, V., Le Gourrierec, J., Gentilhomme, J., Wenkel, S., Adrian, J., Jang, S., Kulajta, C., Braun, H., Coupland, G., Hoecker, U. (2006). Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability. Dev. Camb. Engl. 133, 3213-3222.
  42. Kliebenstein, D.J., Lim, J.E., Landry, L.G., Last, R.L. (2002). Arabidopsis UVR8 Regulates Ultraviolet-B Signal Transduction and Tolerance and Contains Sequence Similarity to Human Regulator of Chromatin Condensation 1. Plant Physiol. 130, 234-243.
  43. Schultz, T.F., Kiyosue, T., Yanovsky, M., Wada, M., Kay, S.A. (2001). A role for LKP2 in the circadian clock of Arabidopsis. Plant Cell 13, 2659-2670.
  44. Hamilton, A.J., Baulcombe, D.C. (1999). A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950-952.
  45. Lin, C., Robertson, D.E., Ahmad, M., Raibekas, A.A., Jorns, M.S., Dutton, P.L., Cashmore, A.R. (1995b). Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1. Science 269, 968-970.
  46. Blázquez, M.A., Ahn, J.H., Weigel, D. (2003). A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nat. Genet. 33, 168-171.
  47. Cailliez, F., Müller, P., Gallois, M., de la Lande, A. (2014). ATP binding and aspartate protonation enhance photoinduced electron transfer in plant cryptochrome. J. Am. Chem. Soc. 136, 12974-12986.
  48. Bauer, M., Baumann, J., Trommer, W.E. (1992). ATP binding to bovine serum albumin. FEBS Lett. 313, 288-290.
  49. Müller, P., Bouly, J.-P., Hitomi, K., Balland, V., Getzoff, E.D., Ritz, T., Brettel, K. (2014). ATP binding turns plant cryptochrome into an efficient natural photoswitch. Sci. Rep. 4, 5175.
  50. Brown, B.A., Cloix, C., Jiang, G.H., Kaiserli, E., Herzyk, P., Kliebenstein, D.J., Jenkins, G.I. (2005). A UV-B-specific signaling component orchestrates plant UV protection. Proc. Natl. Acad. Sci. U. S. A. 102, 18225-18230.
  51. Huang, X., Ouyang, X., Deng, X.W. (2014). Beyond repression of photomorphogenesis: role switching of COP/DET/FUS in light signaling. Curr. Opin. Plant Biol., SI: Cell signalling and gene regulation 21, 96-103.
  52. Husain, I., Sancar, A. (1987). Binding of E. coli DNA photolyase to a defined substrate containing a single T mean value of T dimer. Nucleic Acids Res. 15, 1109-1120.
  53. Kinoshita, T., Shimazaki, K. (2002). Biochemical evidence for the requirement of 14-3-3 protein binding in activation of the guard-cell plasma membrane H+-ATPase by blue light. Plant Cell Physiol. 43, 1359-1365.
  54. Zuo, Z., Liu, H., Liu, B., Liu, X., Lin, C. (2011). Blue light-dependent interaction of CRY2 with SPA1 regulates COP1 activity and floral initiation in Arabidopsis. Curr. Biol. 21, 841- 847.
  55. Inoue, S., Kinoshita, T., Matsumoto, M., Nakayama, K.I., Doi, M., Shimazaki, K. (2008). Blue light-induced autophosphorylation of phototropin is a primary step for signaling. Proc. Natl. Acad. Sci. U.S.A. 105, 5626-5631.
  56. Immeln, D., Schlesinger, R., Heberle, J., Kottke, T. (2007). Blue light induces radical formation and autophosphorylation in the light-sensitive domain of Chlamydomonas cryptochrome. J. Biol. Chem. 282, 21720-21728.
  57. Gressel, J., (1979). Blue Light Photoreception. Photochem. Photobiol. 30, 749-754.
  58. Bagnall, D.J., King, R.W., Hangarter, R.P. (1996). Blue-light promotion of flowering is absent in hy4 mutants of Arabidopsis. Planta 200, 278-280.
  59. Lin, C. (2002). Blue light receptors and signal transduction. Plant Cell 14 Suppl, S207-225.
  60. Bernard, P., Couturier, M. (1992). Cell killing by the F plasmid CcdB protein involves poisoning of DNA-topoisomerase II complexes. J. Mol. Biol. 226, 735-745.
  61. Sakamoto, K., Briggs, W.R. (2002). Cellular and subcellular localization of phototropin 1. Plant Cell 14, 1723-1735.
  62. Engelhard, C., Wang, X., Robles, D., Moldt, J., Essen, L.-O., Batschauer, A., Bittl, R., Ahmad, M. (2014). Cellular metabolites enhance the light sensitivity of Arabidopsis cryptochrome through alternate electron transfer pathways. Plant Cell 26, 4519-4531.
  63. El-Esawi, M., Glascoe, A., Engle, D., Ritz, T., Link, J., Ahmad, M. (2015). Cellular metabolites modulate in vivo signaling of Arabidopsis cryptochrome-1. Plant Signal. Behav. 10, e1063758.
  64. Rosenfeldt, G., Viana, R.M., Mootz, H.D., von Arnim, A.G., Batschauer, A. (2008). Chemically induced and light-independent cryptochrome photoreceptor activation. Mol. Plant 1, 4- 14.
  65. Ahmad, M., Jarillo, J.A., Cashmore, A.R. (1998). Chimeric proteins between cry1 and cry2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein stability. Plant Cell 10, 197-207.
  66. Rüdiger, W., Thümmler, F., Cmiel, E., Schneider, S. (1983). Chromophore structure of the physiologically active form (P(fr)) of phytochrome. Proc. Natl. Acad. Sci. U. S. A. 80, 6244-6248.
  67. Tóth, R., Kevei, E., Hall, A., Millar, A.J., Nagy, F., Kozma-Bognár, L. (2001). Circadian clock- regulated expression of phytochrome and cryptochrome genes in Arabidopsis. Plant Physiol. 127, 1607-1616.
  68. Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.
  69. Stanewsky, R. (2002). Clock mechanisms in Drosophila. Cell Tissue Res. 309, 11-26.
  70. Sancar, A., Rupert, C.S. (1978). Cloning of the phr gene and amplification of photolyase in Escherichia coli. Gene 4, 295-308.
  71. Casal, J.J., Boccalandro, H. (1995). Co-action between phytochrome B and HY4 in Arabidopsis thaliana. Planta 197, 213-218.
  72. Holtorf, S., Apel, K., Bohlmann, H. (1995). Comparison of different constitutive and inducible promoters for the overexpression of transgenes in Arabidopsis thaliana. Plant Mol. Biol. 29, 637-646.
  73. Burney, S., Hoang, N., Caruso, M., Dudkin, E.A., Ahmad, M., Bouly, J.-P. (2009). Conformational change induced by ATP binding correlates with enhanced biological function of Arabidopsis cryptochrome. FEBS Lett. 583, 1427-1433.
  74. Brocchieri, L., Karlin, S. (2000). Conservation among HSP60 sequences in relation to structure, function, and evolution. Protein Sci. Publ. Protein Soc. 9, 476-486.
  75. Akasaka, S., Yamamoto, K. (1991). Construction of Escherichia coli K12 phr deletion and insertion mutants by gene replacement. Mutat. Res. 254, 27-35.
  76. Deng, X.W., Matsui, M., Wei, N., Wagner, D., Chu, A.M., Feldmann, K.A., Quail, P.H. (1992). COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a G beta homologous domain. Cell 71, 791-801.
  77. Yi, C., Deng, X.W. (2005). COP1 -from plant photomorphogenesis to mammalian tumorigenesis. Trends Cell Biol. 15, 618-625.
  78. Emery, P., So, W.V., Kaneko, M., Hall, J.C., Rosbash, M. (1998). CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95, 669-679.
  79. Wu, L., Yang, H.-Q. (2010). Cryptochrome 1 is implicated in promoting R protein-mediated plant resistance to Pseudomonas syringae in Arabidopsis. Mol. Plant 3, 539-548.
  80. Endo, M., Mochizuki, N., Suzuki, T., Nagatani, A. (2007). Cryptochrome 2 in vascular bundles regulates flowering in Arabidopsis. Plant Cell 19, 84-93.
  81. Klar, T., Pokorny, R., Moldt, J., Batschauer, A., Essen, L.-O. (2007). Cryptochrome 3 from Arabidopsis thaliana: structural and functional analysis of its complex with a folate light antenna. J. Mol. Biol. 366, 954-964.
  82. Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states. J. Biol. Chem. 282, 9383-9391.
  83. Gegear, R.J., Casselman, A., Waddell, S., Reppert, S.M. (2008). Cryptochrome mediates light- dependent magnetosensitivity in Drosophila. Nature 454, 1014-1018.
  84. Devlin, P.F., Kay, S.A. (2000). Cryptochromes are required for phytochrome signaling to the circadian clock but not for rhythmicity. Plant Cell 12, 2499-2510.
  85. Cashmore, A.R., Jarillo, J.A., Wu, Y.J., Liu, D. (1999). Cryptochromes: blue light receptors for plants and animals. Science 284, 760-765.
  86. Kang, C.-Y., Lian, H.-L., Wang, F.-F., Huang, J.-R., Yang, H.-Q. (2009). Cryptochromes, phytochromes, and COP1 regulate light-controlled stomatal development in Arabidopsis. Plant Cell 21, 2624-2641.
  87. Pokorny, R., Klar, T., Essen, L.-O., Batschauer, A. (2005). Crystallization and preliminary X- ray analysis of cryptochrome 3 from Arabidopsis thaliana. Acta Crystallograph. Sect. F Struct. Biol. Cryst. Commun. 61, 935-938.
  88. Maul, M.J., Barends, T.R.M., Glas, A.F., Cryle, M.J., Domratcheva, T., Schneider, S., Schlichting, I., Carell, T. (2008). Crystal structure and mechanism of a DNA (6-4) photolyase. Angew. Chem. Int. Ed Engl. 47, 10076-10080.
  89. Mees, A., Klar, T., Gnau, P., Hennecke, U., Eker, A.P.M., Carell, T., Essen, L.-O. (2004). Crystal structure of a photolyase bound to a CPD-like DNA lesion after in situ repair. Science 306, 1789-1793.
  90. Park, H.W., Kim, S.T., Sancar, A., Deisenhofer, J. (1995). Crystal structure of DNA photolyase from Escherichia coli. Science 268, 1866-1872.
  91. Fedorov, R., Schlichting, I., Hartmann, E., Domratcheva, T., Fuhrmann, M., Hegemann, P., (2003). Crystal structures and molecular mechanism of a light-induced signaling switch: The Phot-LOV1 domain from Chlamydomonas reinhardtii. Biophys. J. 84, 2474-2482.
  92. Kiontke, S., Geisselbrecht, Y., Pokorny, R., Carell, T., Batschauer, A., Essen, L.-O. (2011). Crystal structures of an archaeal class II DNA photolyase and its complex with UV- damaged duplex DNA. EMBO J. 30, 4437-4449.
  93. Weidler, G., Zur Oven-Krockhaus, S., Heunemann, M., Orth, C., Schleifenbaum, F., Harter, K., Hoecker, U., Batschauer, A. (2012). Degradation of Arabidopsis Cry2 is regulated by SPA proteins and phytochrome A. Plant Cell 24, 2610-2623.
  94. Der stimulierende Effekt von ATP auf die ansonsten fehlende Photoreduktion der cry2 Trp- Triade-Mutante W321A wurde auch schon von Engelhard et al. (Engelhard et al., 2014) beschrieben. Es kann keine Aussage darüber getroffen werden, wie sich Wildtyp-cry2 in
  95. Butler, W.L., Norris, K.H., Siegelman, H.W., Hendricks, S.B. (1959). Detection asaay and preliminary purification of the pigment controlling photoresponsive development of plants. Proc. Natl. Acad. Sci. U. S. A. 45, 1703-1708.
  96. Christian Michalski (2017). Die Rolle von AGD12 bei phototroper und gravitroper Signaltransduktion in Arabidopsis thaliana. Dissertation.
  97. Vitaterna, M.H., Selby, C.P., Todo, T., Niwa, H., Thompson, C., Fruechte, E.M., Hitomi, K., Thresher, R.J., Ishikawa, T., Miyazaki, J., Takahashi, J.S., Sancar, A. (1999). Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc. Natl. Acad. Sci. U. S. A. 96, 12114-12119.
  98. Lucas, R.J., Hattar, S., Takao, M., Berson, D.M., Foster, R.G., Yau, K.-W. (2003). Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299, 245-247.
  99. Wang, H., Ma, L.G., Li, J.M., Zhao, H.Y., Deng, X.W. (2001). Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science 294, 154-158.
  100. Song, Y.H., Estrada, D.A., Johnson, R.S., Kim, S.K., Lee, S.Y., MacCoss, M.J., Imaizumi, T. (2014). Distinct roles of FKF1, Gigantea, and Zeitlupe proteins in the regulation of Constans stability in Arabidopsis photoperiodic flowering. Proc. Natl. Acad. Sci. U. S. A. 111, 17672-17677.
  101. Hsieh, Y.-C., Omarov, R.T., Scholthof, H.B. (2009). Diverse and newly recognized effects associated with short interfering RNA binding site modifications on the Tomato bushy stunt virus p19 silencing suppressor. J. Virol. 83, 2188-2200.
  102. Sancar, G.B. (1990). DNA photolyases: physical properties, action mechanism, and roles in dark repair. Mutat. Res. 236, 147-160.
  103. Friedberg, E.C., Walker, G.C., Siede, W. (1995). DNA Repair and Mutagenesis. ASM Press.
  104. Medvedev, D., Stuchebrukhov, A.A. (2001). DNA repair mechanism by photolyase: electron transfer path from the photolyase catalytic cofactor FADH(-) to DNA thymine dimer. J. Theor. Biol. 210, 237-248.
  105. Landy, A. (1989). Dynamic, structural, and regulatory aspects of lambda site-specific recombination. Annu. Rev. Biochem. 58, 913-949.
  106. Harris, S.-R., Henbest, K.B., Maeda, K., Pannell, J.R., Timmel, C.R., Hore, P.J., Okamoto, H. (2009). Effect of magnetic fields on cryptochrome-dependent responses in Arabidopsis thaliana. J. R. Soc. Interface 6, 1193-1205.
  107. Kelner, A. (1949). Effect of Visible Light on the Recovery of Streptomyces Griseus Conidia from Ultra-violet Irradiation Injury. Proc. Natl. Acad. Sci. U. S. A. 35, 73-79.
  108. Blatt, M.R. (1987). Electrical characteristics of stomatal guard cells: The contribution of ATP- dependent, "Electrogenic" transport revealed by current-voltage and difference- current-voltage analysis. J. Membr. Biol. 98, 257-274.
  109. Shinomura, T., Uchida, K., Furuya, M. (2000). Elementary processes of photoperception by phytochrome A for high-irradiance response of hypocotyl elongation in Arabidopsis. Plant Physiol. 122, 147-156.
  110. Noh, B., Bandyopadhyay, A., Peer, W.A., Spalding, E.P., Murphy, A.S. (2003). Enhanced gravi-and phototropism in plant mdr mutants mislocalizing the auxin efflux protein PIN1. Nature 423, 999-1002.
  111. Lin, C., Yang, H., Guo, H., Mockler, T., Chen, J., Cashmore, A.R. (1998). Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc. Natl. Acad. Sci. U. S. A. 95, 2686-2690.
  112. Sancar, A., Sancar, G.B. (1984). Escherichia coli DNA photolyase is a flavoprotein. J. Mol. Biol. 172, 223-227.
  113. Shin, A.-Y., Han, Y.-J., Baek, A., Ahn, T., Kim, S.Y., Nguyen, T.S., Son, M., Lee, K.W., Shen, Y., Song, P.-S., Kim, J.-I. (2016). Evidence that phytochrome functions as a protein kinase in plant light signalling. Nat. Commun. 7, 11545.
  114. Suetsugu, N., Wada, M. (2013). Evolution of Three LOV Blue Light Receptor Families in Green Plants and Photosynthetic Stramenopiles: Phototropin, ZTL/FKF1/LKP2 and Aureochrome. Plant Cell Physiol. 54, 8-23.
  115. Lin, C., Ahmad, M., Gordon, D., Cashmore, A.R. (1995a). Expression of an Arabidopsis cryptochrome gene in transgenic tobacco results in hypersensitivity to blue, UV-A, and green light. Proc. Natl. Acad. Sci. U. S. A. 92, 8423-8427.
  116. Nelson, D.C., Lasswell, J., Rogg, L.E., Cohen, M.A., Bartel, B. (2000). FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell 101, 331-340.
  117. Sawa, M., Nusinow, D.A., Kay, S.A., Imaizumi, T. (2007). FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318, 261- 265.
  118. Vaidya, A.T., Top, D., Manahan, C.C., Tokuda, J.M., Zhang, S., Pollack, L., Young, M.W., Crane, B.R. (2013). Flavin reduction activates Drosophila cryptochrome. Proc. Natl. Acad. Sci. U. S. A 110, 20455-20460.
  119. Clough, S.J., Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. Cell Mol. Biol. 16, 735-743.
  120. Song, Y.H., Ito, S., Imaizumi, T. (2013). Flowering time regulation: photoperiod-and temperature-sensing in leaves. Trends Plant Sci. 18, 575-583.
  121. Yu, X., Sayegh, R., Maymon, M., Warpeha, K., Klejnot, J., Yang, H., Huang, J., Lee, J., Kaufman, L., Lin, C. (2009). Formation of nuclear bodies of Arabidopsis cry2 in response to blue light is associated with its blue light-dependent degradation. Plant Cell 21, 118-130.
  122. Mao, J., Zhang, Y.-C., Sang, Y., Li, Q.-H., Yang, H.-Q. (2005). From The Cover: A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc. Natl. Acad. Sci. U. S. A. 102, 12270-12275.
  123. Inoue, S., Matsushita, T., Tomokiyo, Y., Matsumoto, M., Nakayama, K.I., Kinoshita, T., Shimazaki, K. (2011). Functional analyses of the activation loop of phototropin2 in Arabidopsis. Plant Physiol. 156, 117-128.
  124. Ohgishi, M., Saji, K., Okada, K., Sakai, T. (2004). Functional analysis of each blue light receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 101, 2223-2228.
  125. Todo, T. (1999). Functional diversity of the DNA photolyase/blue light receptor family. Mutat. Res. 434, 89-97.
  126. Fehér, B., Kozma-Bognár, L., Kevei, É., Hajdu, A., Binkert, M., Davis, S.J., Schäfer, E., Ulm, R., Nagy, F. (2011). Functional interaction of the circadian clock and UV RESISTANCE LOCUS 8-controlled UV-B signaling pathways in Arabidopsis thaliana. Plant J. 67, 37- 48.
  127. Tagua, V.G., Pausch, M., Eckel, M., Gutiérrez, G., Miralles-Durán, A., Sanz, C., Eslava, A.P., Pokorny, R., Corrochano, L.M., Batschauer, A. (2015). Fungal cryptochrome with DNA repair activity reveals an early stage in cryptochrome evolution. Proc. Natl. Acad. Sci. U. S. A. 112, 15130-15135.
  128. Karimi, M., Inzé, D., Depicker, A. (2002). GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7, 193-195.
  129. von Arnim, A.G., Osterlund, M.T., Kwok, S.F., Deng, X.W. (1997). Genetic and developmental control of nuclear accumulation of COP1, a repressor of photomorphogenesis in Arabidopsis. Plant Physiol. 114, 779-788.
  130. Froehlich, A.C., Chen, C.-H., Belden, W.J., Madeti, C., Roenneberg, T., Merrow, M., Loros, J.J., Dunlap, J.C. (2010). Genetic and molecular characterization of a cryptochrome from the filamentous fungus Neurospora crassa. Eukaryot. Cell 9, 738-750.
  131. Koornneef, M., Rolff, E., Spruit, C.J.P. (1980). Genetic Control of Light-inhibited Hypocotyl Elongation in Arabidopsis thaliana (L.) Heynh. Z. Für Pflanzenphysiol. 100, 147-160.
  132. Kleine, T., Kindgren, P., Benedict, C., Hendrickson, L., Strand, A. (2007). Genome-wide gene expression analysis reveals a critical role for Cryptochrome 1 in the response of Arabidopsis to high irradiance. Plant Physiol. 144, 1391-1406.
  133. Sharrock, R.A., Clack, T. (2004). Heterodimerization of type II phytochromes in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 101, 11500-11505.
  134. Hoang, N., Schleicher, E., Kacprzak, S., Bouly, J.-P., Picot, M., Wu, W., Berndt, A., Wolf, E., Bittl, R., Ahmad, M. (2008). Human and Drosophila cryptochromes are light activated by flavin photoreduction in living cells. PLoS Biol. 6, e160.
  135. Ahmad, M. Cashmore, A.R., (1993). HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366, 162-166.
  136. Parks, B.M., Quail, P.H. (1993). hy8, a new class of arabidopsis long hypocotyl mutants deficient in functional phytochrome A. Plant Cell 5, 39-48.
  137. Englander, S.W., Mayne, L., Bai, Y., Sosnick, T.R. (1997). Hydrogen exchange: the modern legacy of Linderstrøm-Lang. Protein Sci. Publ. Protein Soc. 6, 1101-1109.
  138. Orth, C., Niemann, N., Hennig, L., Essen, L.-O., Batschauer, A. (2017). Hyperactivity of the Arabidopsis cryptochrome (cry1) L407F mutant is caused by a structural alteration close to the cry1 ATP-binding site. J. Biol. Chem. 292, 12906-12920.
  139. Daiyasu, H., Ishikawa, T., Kuma, K., Iwai, S., Todo, T., Toh, H. (2004). Identification of cryptochrome DASH from vertebrates. Genes Cells Devoted Mol. Cell. Mech. 9, 479- 495.
  140. Li, B., Fields, S. (1993). Identification of mutations in p53 that affect its binding to SV40 large T antigen by using the yeast two-hybrid system. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 7, 957-963.
  141. Favory, J.-J., Stec, A., Gruber, H., Rizzini, L., Oravecz, A., Funk, M., Albert, A., Cloix, C., Jenkins, G.I., Oakeley, E.J., Seidlitz, H.K., Nagy, F., Ulm, R. (2009). Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J. 28, 591-601.
  142. Harbach, P.H.P., Schneider, M., Faraji, S., Dreuw, A. (2013). Intermolecular Coulombic Decay in Biology: The Initial Electron Detachment from FADH(-) in DNA Photolyases. J. Phys. Chem. Lett. 4, 943-949.
  143. Aubert, C., Vos, M.H., Mathis, P., Eker, A.P., Brettel, K. (2000). Intraprotein radical transfer during photoactivation of DNA photolyase. Nature 405, 586-590.
  144. Minervini, G., Mazzotta, G.M., Masiero, A., Sartori, E., Corrà, S., Potenza, E., Costa, R., Tosatto, S.C.E. (2015). Isoform-specific interactions of the von Hippel-Lindau tumor suppressor protein. Sci. Rep. 5, 12605.
  145. Monte, E., Alonso, J.M., Ecker, J.R., Zhang, Y., Li, X., Young, J., Austin-Phillips, S., Quail, P.H. (2003). Isolation and characterization of phyC mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways. Plant Cell 15, 1962- 1980.
  146. van Wilderen, L.J.G.W., Silkstone, G., Mason, M., van Thor, J.J., Wilson, M.T. (2015). Kinetic studies on the oxidation of semiquinone and hydroquinone forms of Arabidopsis cryptochrome by molecular oxygen. FEBS Open Bio 5, 885-892.
  147. Friml, J., Wiśniewska, J., Benková, E., Mendgen, K., Palme, K. (2002). Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415, 806-809.
  148. Herbel, V., Orth, C., Wenzel, R., Ahmad, M., Bittl, R., Batschauer, A., (2013). Lifetimes of Arabidopsis cryptochrome signaling states in vivo. Plant J. Cell Mol. Biol. 74, 583-592.
  149. Müller, P., Ahmad, M. (2011). Light-activated cryptochrome reacts with molecular oxygen to form a flavin-superoxide radical pair consistent with magnetoreception. J. Biol. Chem. 286, 21033-21040.
  150. Ma, L., Li, J., Qu, L., Hager, J., Chen, Z., Zhao, H., Deng, X.W. (2001). Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell 13, 2589-2607.
  151. McNellis, T.W., Deng, X.W. (1995). Light control of seedling morphogenetic pattern. Plant Cell 7, 1749-1761.
  152. Castrillo, M., García-Martínez, J., Avalos, J. (2013). Light-dependent functions of the Fusarium fujikuroi CryD DASH cryptochrome in development and secondary metabolism. Appl. Environ. Microbiol. 79, 2777-2788.
  153. Wiltschko, R., Ahmad, M., Nießner, C., Gehring, D., Wiltschko, W. (2016). Light-dependent magnetoreception in birds: the crucial step occurs in the dark. J. R. Soc. Interface 13.
  154. Kondoh, M., Shiraishi, C., Müller, P., Ahmad, M., Hitomi, K., Getzoff, E.D., Terazima, M. (2011). Light-induced conformational changes in full-length Arabidopsis thaliana cryptochrome. J. Mol. Biol. 413, 128-137.
  155. Giovani, B., Byrdin, M., Ahmad, M., Brettel, K. (2003). Light-induced electron transfer in a cryptochrome blue-light photoreceptor. Nat. Struct. Biol. 10, 489-490.
  156. Zeugner, A., Byrdin, M., Bouly, J.-P., Bakrim, N., Giovani, B., Brettel, K., Ahmad, M. (2005). Light-induced electron transfer in Arabidopsis cryptochrome-1 correlates with in vivo function. J. Biol. Chem. 280, 19437-19440.
  157. Takayama, Y., Nakasako, M., Okajima, K., Iwata, A., Kashojiya, S., Matsui, Y., Tokutomi, S., (2011). Light-induced movement of the LOV2 domain in an Asp720Asn mutant LOV2- kinase fragment of Arabidopsis phototropin 2. Biochemistry 50, 1174-1183.
  158. Chory, J. (1997). Light modulation of vegetative development. Plant Cell 9, 1225-1234.
  159. Batschauer, A. (1999). Light perception in higher plants. Cell. Mol. Life Sci. 55, 153-166.
  160. Kevei, E., Schafer, E., Nagy, F. (2007). Light-regulated nucleo-cytoplasmic partitioning of phytochromes. J. Exp. Bot. 58, 3113-3124.
  161. Kami, C., Lorrain, S., Hornitschek, P., Fankhauser, C. (2010). Light-regulated plant growth and development. Curr. Top. Dev. Biol. 91, 29-66.
  162. Shimazaki, K., Doi, M., Assmann, S.M., Kinoshita, T. (2007). Light regulation of stomatal movement. Annu. Rev. Plant Biol. 58, 219-247.
  163. Halliday, K.R., Stein, P.J., Chernoff, N., Wheeler, G.L., Bitensky, M.W. (1984). Limited trypsin proteolysis of photoreceptor GTP-binding protein. Light-and GTP-induced conformational changes. J. Biol. Chem. 259, 516-525.
  164. Wiltschko, W., Wiltschko, R. (2002). Magnetic compass orientation in birds and its physiological basis. Naturwissenschaften 89, 445-452.
  165. Ahmad, M., Galland, P., Ritz, T., Wiltschko, R., Wiltschko, W. (2007). Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana. Planta 225, 615-624.
  166. van der Horst, G.T., Muijtjens, M., Kobayashi, K., Takano, R., Kanno, S., Takao, M., de Wit, J., Verkerk, A., Eker, A.P., van Leenen, D., Buijs, R., Bootsma, D., Hoeijmakers, J.H., Yasui, A. (1999). Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398, 627-630.
  167. Sancar, A. (2016). Mechanisms of DNA Repair by Photolyase and Excision Nuclease (Nobel Lecture). Angew. Chem. Int. Ed Engl. 55, 8502-8527.
  168. Semo, M., Peirson, S., Lupi, D., Lucas, R.J., Jeffery, G., Foster, R.G. (2003). Melanopsin retinal ganglion cells and the maintenance of circadian and pupillary responses to light in aged rodless/coneless (rd/rd cl) mice. Eur. J. Neurosci. 17, 1793-1801.
  169. Thöing, C., Oldemeyer, S., Kottke, T. (2015). Microsecond Deprotonation of Aspartic Acid and Response of the α/β Subdomain Precede C-Terminal Signaling in the Blue Light Sensor Plant Cryptochrome. J. Am. Chem. Soc. 137, 5990-5999.
  170. Mit der durch Metabolitbindung gesteigerten Menge an Photorezeptor mit neutralem Flavin- Semichinon im Licht ist gleichzeitig eine Erklärung für die verringerte biologische Aktivität der Y399A Mutante gegeben. Aufgrund der relativ starken Affinität von cry2 zu ATP (KD = 1,09 µM)
  171. Stacey, M.G., Kopp, O.R., Kim, T.H., von Arnim, A.G. (2000). Modular domain structure of Arabidopsis COP1. Reconstitution of activity by fragment complementation and mutational analysis of a nuclear localization signal in planta. Plant Physiol. 124, 979- 990.
  172. Liu, Q., Wang, Q., Deng, W., Wang, X., Piao, M., Cai, D., Li, Y., Barshop, W.D., Yu, X., Zhou, T., Liu, B., Oka, Y., Wohlschlegel, J., Zuo, Z., Lin, C. (2017). Molecular basis for blue light-dependent phosphorylation of Arabidopsis cryptochrome 2. Nat. Commun. 8, 15234.
  173. Aihara, Y., Tabata, R., Suzuki, T., Shimazaki, K.-I., Nagatani, A. (2008). Molecular basis of the functional specificities of phototropin 1 and 2. Plant J. Cell Mol. Biol. 56, 364-375.
  174. Ko, C.H., Takahashi, J.S. (2006). Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 15, 271-277.
  175. Kanai, S., Kikuno, R., Toh, H., Ryo, H., Todo, T. (1997). Molecular evolution of the photolyase- blue-light photoreceptor family. J. Mol. Evol. 45, 535-548.
  176. Liu, Y., Li, X., Li, K., Liu, H., Lin, C. (2013). Multiple bHLH proteins form heterodimers to mediate CRY2-dependent regulation of flowering-time in Arabidopsis. PLoS Genet. 9, e1003861.
  177. Liscum, E., Briggs, W.R. (1995). Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. Plant Cell 7, 473-485.
  178. Liscum, E., Briggs, W.R. (1996). Mutations of Arabidopsis in potential transduction and response components of the phototropic signaling pathway. Plant Physiol. 112, 291- 296.
  179. Halavaty, A.S., Moffat, K. (2007). N-and C-terminal flanking regions modulate light-induced signal transduction in the LOV2 domain of the blue light sensor phototropin 1 from Avena sativa. Biochemistry (Mosc.) 46, 14001-14009.
  180. Bouly, J.-P., Giovani, B., Djamei, A., Mueller, M., Zeugner, A., Dudkin, E.A., Batschauer, A., Ahmad, M. (2003). Novel ATP-binding and autophosphorylation activity associated with Arabidopsis and human cryptochrome-1. Eur. J. Biochem. 270, 2921-2928.
  181. Sharrock, R.A., Quail, P.H. (1989). Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Dev. 3, 1745-1757.
  182. Sang, Y., Li, Q.-H., Rubio, V., Zhang, Y.-C., Mao, J., Deng, X.-W., Yang, H.-Q. (2005). N- terminal domain-mediated homodimerization is required for photoreceptor activity of Arabidopsis Cryptochrome 1. Plant Cell 17, 1569-1584.
  183. Sakamoto, K. & Nagatani, A. (1996). Nuclear localization activity of phytochrome B. Plant J. 10, 859-868.
  184. Kleiner, O., Kircher, S., Harter, K., Batschauer, A. (1999). Nuclear localization of the Arabidopsis blue light receptor cryptochrome 2. Plant J. Cell Mol. Biol. 19, 289-296.
  185. Kircher, S., Gil, P., Kozma-Bognár, L., Fejes, E., Speth, V., Husselstein-Muller, T., Bauer, D., Adám, E., Schäfer, E., Nagy, F. (2002). Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm. Plant Cell 14, 1541-1555.
  186. Li et al., 2011; Zeugner et al., 2005). Ob die Trp-Triade auch für die biologische Funktion der Cryptochrome erforderlich ist, wird kontrovers diskutiert (Zeugner et al., 2005; Li et al., 2011;
  187. Bugaj, L.J., Choksi, A.T., Mesuda, C.K., Kane, R.S., and Schaffer, D.V. (2013). Optogenetic protein clustering and signaling activation in mammalian cells. Nat. Methods 10, 249- 252.
  188. Harmer, S.L., Hogenesch, J.B., Straume, M., Chang, H.S., Han, B., Zhu, T., Wang, X., Kreps, J.A., Kay, S.A. (2000). Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290, 2110-2113.
  189. Rizzini, L., Favory, J.-J., Cloix, C., Faggionato, D., O'Hara, A., Kaiserli, E., Baumeister, R., Schäfer, E., Nagy, F., Jenkins, G.I., Ulm, R. (2011). Perception of UV-B by the Arabidopsis UVR8 protein. Science 332, 103-106.
  190. Hoffman, P.D., Batschauer, A., Hays, J.B. (1996). PHH1, a novel gene from Arabidopsis thaliana that encodes a protein similar to plant blue-light photoreceptors and microbial photolyases. Mol. Gen. Genet. 253, 259-265.
  191. Takemiya, A., Sugiyama, N., Fujimoto, H., Tsutsumi, T., Yamauchi, S., Hiyama, A., Tada, Y., Christie, J.M., Shimazaki, K. (2013). Phosphorylation of BLUS1 kinase by phototropins is a primary step in stomatal opening. Nat. Commun. 4, 2094.
  192. Okamura, H., Miyake, S., Sumi, Y., Yamaguchi, S., Yasui, A., Muijtjens, M., Hoeijmakers, J.H., van der Horst, G.T. (1999). Photic induction of mPer1 and mPer2 in cry-deficient mice lacking a biological clock. Science 286, 2531-2534.
  193. Wang, Q., Zuo, Z., Wang, X., Gu, L., Yoshizumi, T., Yang, Z., Yang, L., Liu, Q., Liu, W., Han, Y.-J., Kim, J.-I., Liu, B., Wohlschlegel, J.A., Matsui, M., Oka, Y., Lin, C. (2016). Photoactivation and inactivation of Arabidopsis cryptochrome 2. Science 354, 343- 347.
  194. Salomon, M., Christie, J.M., Knieb, E., Lempert, U., Briggs, W.R. (2000). Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. Biochemistry (Mosc.) 39, 9401-9410.
  195. Partch, C.L., Sancar, A. (2005). Photochemistry and photobiology of cryptochrome blue-light photopigments: the search for a photocycle. Photochem. Photobiol. 81, 1291-1304.
  196. Ahmad, M. (2016). Photocycle and signaling mechanisms of plant cryptochromes. Curr. Opin. Plant Biol. 33, 108-115.
  197. Rupert, C.S. (1962b). Photoenzymatic repair of ultraviolet damage in DNA. II. Formation of an enzyme-substrate complex. J. Gen. Physiol. 45, 725-741.
  198. Rupert, C.S. (1962a). Photoenzymatic repair of ultraviolet damage in DNA. I. Kinetics of the reaction. J. Gen. Physiol. 45, 703-724.
  199. Liu, H., Yu, X., Li, K., Klejnot, J., Yang, H., Lisiero, D., Lin, C. (2008). Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science 322, 1535-1539.
  200. Crosson, S., Moffat, K. (2002). Photoexcited structure of a plant photoreceptor domain reveals a light-driven molecular switch. Plant Cell 14, 1067-1075.
  201. Essen, L.-O. (2006). Photolyases and cryptochromes: common mechanisms of DNA repair and light-driven signaling? Curr. Opin. Struct. Biol. 16, 51-59.
  202. Bedrosian, T.A., Fonken, L.K., Demas, G.E., Nelson, R.J. (2012). Photoperiod-dependent effects of neuronal nitric oxide synthase inhibition on aggression in Siberian hamsters. Horm. Behav. 61, 176-180.
  203. Davis, S.J. (2002). Photoperiodism: the coincidental perception of the season. Curr. Biol. 12, 841-843.
  204. Ritz, T., Ahmad, M., Mouritsen, H., Wiltschko, R., Wiltschko, W. (2010). Photoreceptor-based magnetoreception: optimal design of receptor molecules, cells, and neuronal processing. J. R. Soc. Interface 7, 135-146.
  205. van der Horst, M.A., Hellingwerf, K.J. (2004). Photoreceptor proteins, "star actors of modern times": a review of the functional dynamics in the structure of representative members of six different photoreceptor families. Acc. Chem. Res. 37, 13-20.
  206. Valverde, F., Mouradov, A., Soppe, W., Ravenscroft, D., Samach, A., Coupland, G. (2004). Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303, 1003-1006.
  207. Johnson, E., Bradley, M., Harberd, N.P., Whitelam, G.C. (1994). Photoresponses of Light- Grown phyA Mutants of Arabidopsis (Phytochrome A Is Required for the Perception of Daylength Extensions). Plant Physiol. 105, 141-149.
  208. Christie, J.M. (2007). Phototropin blue-light receptors. Annu. Rev. Plant Biol. 58, 21-45.
  209. Whitelam, G.C., Johnson, E., Peng, J., Carol, P., Anderson, M.L., Cowl, J.S., Harberd, N.P. (1993). Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell 5, 757-768.
  210. Kevei, E., Nagy, F. (2003). Phytochrome controlled signalling cascades in higher plants. Physiol. Plant. 117, 305-313.
  211. Shikata, H., Hanada, K., Ushijima, T., Nakashima, M., Suzuki, Y., Matsushita, T. (2014). Phytochrome controls alternative splicing to mediate light responses in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 111, 18781-18786.
  212. Chen, A., Li, C., Hu, W., Lau, M.Y., Lin, H., Rockwell, N.C., Martin, S.S., Jernstedt, J.A., Lagarias, J.C., Dubcovsky, J. (2014). Phytochrome C plays a major role in the acceleration of wheat flowering under long-day photoperiod. Proc. Natl. Acad. Sci. U. S. A. 111, 10037-10044.
  213. Hennig, L., Stoddart, W.M., Dieterle, M., Whitelam, G.C., Schäfer, E. (2002). Phytochrome E controls light-induced germination of Arabidopsis. Plant Physiol. 128, 194-200.
  214. Sakuraba, Y., Jeong, J., Kang, M.-Y., Kim, J., Paek, N.-C., Choi, G. (2014). Phytochrome- interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis. Nat. Commun. 5, 4636.
  215. Lariguet, P., Schepens, I., Hodgson, D., Pedmale, U.V., Trevisan, M., Kami, C., de Carbonnel, M., Alonso, J.M., Ecker, J.R., Liscum, E., Fankhauser, C. (2006). PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin 1 binding protein required for phototropism. Proc. Natl. Acad. Sci. U. S. A. 103, 10134-10139.
  216. Quail, P.H. (2002). Phytochrome photosensory signalling networks. Nat. Rev. Mol. Cell Biol. 3, 85-93.
  217. Burgie, E.S., Vierstra, R.D. (2014). Phytochromes: An Atomic Perspective on Photoactivation and Signaling. Plant Cell Online 26, 4568-4583.
  218. Somers, D.E., Devlin, P.F., Kay, S.A. (1998). Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282, 1488-1490.
  219. Franklin, K.A., Whitelam, G.C. (2005). Phytochromes and shade-avoidance responses in plants. Ann. Bot. 96, 169-175.
  220. Franklin, K.A., Praekelt, U., Stoddart, W.M., Billingham, O.E., Halliday, K.J., Whitelam, G.C. (2003). Phytochromes B, D, and E act redundantly to control multiple physiological responses in Arabidopsis. Plant Physiol. 131, 1340-1346.
  221. Rockwell, N.C., Su, Y.-S., Lagarias, J.C. (2006). Phytochrome structure and signaling mechanisms. Annu. Rev. Plant Biol. 57, 837-858.
  222. Leivar, P., Monte, E. (2014). PIFs: systems integrators in plant development. Plant Cell 26, 56-78.
  223. Christie, J.M., Blackwood, L., Petersen, J., Sullivan, S. (2015). Plant flavoprotein photoreceptors. Plant Cell Physiol. 56, 401-413.
  224. Christie, J.M., Arvai, A.S., Baxter, K.J., Heilmann, M., Pratt, A.J., O'Hara, A., Kelly, S.M., Hothorn, M., Smith, B.O., Hitomi, K., Jenkins, G.I., Getzoff, E.D. (2012). Plant UVR8 Photoreceptor Senses UV-B by Tryptophan-Mediated Disruption of Cross-Dimer Salt Bridges. Science 335, 1492-1496.
  225. Bernard, P., Gabant, P., Bahassi, E.M., Couturier, M. (1994). Positive-selection vectors using the F plasmid ccdB killer gene. Gene 148, 71-74.
  226. Celej, M.S., Montich, G.G., Fidelio, G.D. (2003). Protein stability induced by ligand binding correlates with changes in protein flexibility. Protein Sci. Publ. Protein Soc. 12, 1496- 1506.
  227. Kneip, C., Hildebrandt, P., Schlamann, W., Braslavsky, S.E., Mark, F., Schaffner, K. (1999). Protonation state and structural changes of the tetrapyrrole chromophore during the Pr --> Pfr phototransformation of phytochrome: a resonance Raman spectroscopic study. Biochemistry (Mosc.) 38, 15185-15192.
  228. Oztürk, N., Kao, Y.-T., Selby, C.P., Kavakli, I.H., Partch, C.L., Zhong, D., Sancar, A. (2008). Purification and characterization of a type III photolyase from Caulobacter crescentus. Biochemistry (Mosc.) 47, 10255-10261.
  229. Malhotra, K., Kim, S.T., Batschauer, A., Dawut, L., Sancar, A. (1995). Putative blue-light photoreceptors from Arabidopsis thaliana and Sinapis alba with a high degree of sequence homology to DNA photolyase contain the two photolyase cofactors but lack DNA repair activity. Biochemistry (Mosc.) 34, 6892-6899.
  230. Hsu, D.S., Zhao, X., Zhao, S., Kazantsev, A., Wang, R.P., Todo, T., Wei, Y.F., Sancar, A. (1996). Putative human blue-light photoreceptors hCRY1 and hCRY2 are flavoproteins. Biochemistry (Mosc.) 35, 13871-13877.
  231. Kennedy, M.J., Hughes, R.M., Peteya, L.A., Schwartz, J.W., Ehlers, M.D., Tucker, C.L. (2010). Rapid blue-light-mediated induction of protein interactions in living cells. Nat. Methods 7, 973-975.
  232. Vandenbussche, F., Pierik, R., Millenaar, F.F., Voesenek, L.A.C.J., Van Der Straeten, D. (2005). Reaching out of the shade. Curr. Opin. Plant Biol. 8, 462-468.
  233. Ozturk, N., Selby, C.P., Annayev, Y., Zhong, D., Sancar, A. (2011). Reaction mechanism of Drosophila cryptochrome. Proc. Natl. Acad. Sci. U. S. A. 108, 516-521.
  234. Dulbecco, R. (1949). Reactivation of ultra-violet-inactivated bacteriophage by visible light. Nature 163, 949.
  235. Pokorny, R., Klar, T., Hennecke, U., Carell, T., Batschauer, A., Essen, L.-O. (2008). Recognition and repair of UV lesions in loop structures of duplex DNA by DASH-type cryptochrome. Proc. Natl. Acad. Sci. U. S. A. 105, 21023-21027.
  236. Ruddat, A., Schmidt, P., Gatz, C., Braslavsky, S.E., Gärtner, W., Schaffner, K. (1997). Recombinant type A and B phytochromes from potato. Transient absorption spectroscopy. Biochemistry (Mosc.) 36, 103-111.
  237. Shalitin, D., Yang, H., Mockler, T.C., Maymon, M., Guo, H., Whitelam, G.C., Lin, C. (2002). Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation. Nature 417, 763-767.
  238. Guo, H., Yang, H., Mockler, T.C., Lin, C. (1998). Regulation of flowering time by Arabidopsis photoreceptors. Science 279, 1360-1363.
  239. Mockler, T., Yang, H., Yu, X., Parikh, D., Cheng, Y., Dolan, S., Lin, C. (2003). Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proc. Natl. Acad. Sci. U. S. A. 100, 2140-2145.
  240. Popov, N., Schmitt, M., Schulzeck, S., Matthies, H. (1975). Reliable micromethod for determination of the protein content in tissue homogenates. Acta Biol. Med. Ger. 34, 1441-1446.
  241. Blakeslee, J.J., Bandyopadhyay, A., Peer, W.A., Makam, S.N., Murphy, A.S. (2004). Relocalization of the PIN1 auxin efflux facilitator plays a role in phototropic responses. Plant Physiol. 134, 28-31.
  242. Downes, A., Blunt, T.P. (1877). Researches on the Effect of Light upon Bacteria and other Organisms. Proc. R. Soc. Lond. 26, 488-500.
  243. Yanovsky, M.J., Mazzella, M.A., Whitelam, G.C., Casal, J.J. (2001). Resetting of the circadian clock by phytochromes and cryptochromes in Arabidopsis. J. Biol. Rhythms 16, 523- 530.
  244. Spudich, J.L., Yang, C.S., Jung, K.H., Spudich, E.N. (2000). Retinylidene proteins: structures and functions from archaea to humans. Annu. Rev. Cell Dev. Biol. 16, 365-392.
  245. von Zadow, A., Ignatz, E., Pokorny, R., Essen, L.-O., Klug, G. (2016). Rhodobacter sphaeroides CryB is a bacterial cryptochrome with (6-4) photolyase activity. FEBS J. 283, 4291-
  246. Hamm-Alvarez, S., Sancar, A., Rajagopalan, K.V. (1989). Role of enzyme-bound 5,10- methenyltetrahydropteroylpolyglutamate in catalysis by Escherichia coli DNA photolyase. J. Biol. Chem. 264, 9649-9656.
  247. Partch, C.L., Clarkson, M.W., Ozgür, S., Lee, A.L., Sancar, A. (2005). Role of structural plasticity in signal transduction by the cryptochrome blue-light photoreceptor. Biochemistry (Mosc.) 44, 3795-3805.
  248. Liu, B., Liu, H., Zhong, D., Lin, C. (2010). Searching for a photocycle of the cryptochrome photoreceptors. Curr. Opin. Plant Biol. 13, 578-586.
  249. Park, S.-Y., Tame, J.R.H. (2017). Seeing the light with BLUF proteins. Biophys. Rev. 9, 169- 176.
  250. Galvão, V.C., Fankhauser, C. (2015). Sensing the light environment in plants: photoreceptors and early signaling steps. Curr. Opin. Neurobiol. 34, 46-53.
  251. Wu, G., Spalding, E.P. (2007). Separate functions for nuclear and cytoplasmic cryptochrome 1 during photomorphogenesis of Arabidopsis seedlings. Proc. Natl. Acad. Sci. U. S. A. 104, 18813-18818.
  252. Sancar, G.B., Smith, F.W., Lorence, M.C., Rupert, C.S., Sancar, A. (1984). Sequences of the Escherichia coli photolyase gene and protein. J. Biol. Chem. 259, 6033-6038.
  253. Schubert, D., Lechtenberg, B., Forsbach, A., Gils, M., Bahadur, S., Schmidt, R. (2004). Silencing in Arabidopsis T-DNA Transformants: The Predominant Role of a Gene- Specific RNA Sensing Mechanism versus Position Effects. Plant Cell 16, 2561-2572.
  254. Todo, T., Ryo, H., Yamamoto, K., Toh, H., Inui, T., Ayaki, H., Nomura, T., Ikenaga, M. (1996). Similarity among the Drosophila (6-4)photolyase, a human photolyase homolog, and the DNA photolyase-blue-light photoreceptor family. Science 272, 109-112.
  255. Burney, S., Wenzel, R., Kottke, T., Roussel, T., Hoang, N., Bouly, J.-P., Bittl, R., Heberle, J., Ahmad, M. (2012). Single amino acid substitution reveals latent photolyase activity in Arabidopsis cry1. Angew. Chem. Int. Ed Engl. 51, 9356-9360.
  256. Mullis, K.B., Faloona, F.A. (1987). Specific synthesis of DNA in vitro via a polymerase- catalyzed chain reaction. Methods Enzymol. 155, 335-350.
  257. Wu, D., Hu, Q., Yan, Z., Chen, W., Yan, C., Huang, X., Zhang, J., Yang, P., Deng, H., Wang, J., Deng, X., Shi, Y. (2012). Structural basis of ultraviolet-B perception by UVR8. Nature 484, 214-219.
  258. Holm, M., Deng, X.W. (1999). Structural organization and interactions of COP1, a light- regulated developmental switch. Plant Mol. Biol. 41, 151-158.
  259. Sancar, A. (2003). Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem. Rev. 103, 2203-2237.
  260. Möglich, A., Yang, X., Ayers, R.A., Moffat, K. (2010). Structure and Function of Plant Photoreceptors. Annu. Rev. Plant Biol. 61, 21-47.
  261. Brautigam, C.A., Smith, B.S., Ma, Z., Palnitkar, M., Tomchick, D.R., Machius, M., Deisenhofer, J. (2004). Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 101, 12142-12147.
  262. Brandts, J.F., Lin, L.N. (1990). Study of strong to ultratight protein interactions using differential scanning calorimetry. Biochemistry (Mosc.) 29, 6927-6940.
  263. Más, P., Kim, W.-Y., Somers, D.E., Kay, S.A. (2003). Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature 426, 567-570.
  264. Osterlund, M.T., Hardtke, C.S., Wei, N., Deng, X.W. (2000). Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405, 462-466.
  265. Koncz, C., Schell, J., and Rédei, G. P. (1992). T-DNA transformation and insertion mutagenesis. Plant Mol Biol. 20, 963-976.
  266. Hellens, R., Mullineaux, P., Klee, H. (2000). Technical Focus: a guide to Agrobacterium binary Ti vectors. Trends Plant Sci. 5, 446-451.
  267. Payne, G., Heelis, P.F., Rohrs, B.R., Sancar, A. (1987). The active form of Escherichia coli DNA photolyase contains a fully reduced flavin and not a flavin radical, both in vivo and in vitro. Biochemistry (Mosc.) 26, 7121-7127.
  268. Jones, A.M., Edgerton, M.D. (1994). The anatomy of phytochrome, a unique photoreceptor in plants. Semin. Cell Biol. 5, 295-302.
  269. Guo, H., Duong, H., Ma, N., Lin, C. (1999). The Arabidopsis blue light receptor cryptochrome 2 is a nuclear protein regulated by a blue light-dependent post-transcriptional mechanism. Plant J. Cell Mol. Biol. 19, 279-287.
  270. Zagotta, M.T., Hicks, K.A., Jacobs, C.I., Young, J.C., Hangarter, R.P., Meeks-Wagner, D.R. (1996). The Arabidopsis ELF3 gene regulates vegetative photomorphogenesis and the photoperiodic induction of flowering. Plant J. Cell Mol. Biol. 10, 691-702.
  271. Oyama, T., Shimura, Y., Okada, K. (1997). The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev. 11, 2983-2995.
  272. Subramanian, C., Kim, B.-H., Lyssenko, N.N., Xu, X., Johnson, C.H., von Arnim, A.G. (2004). The Arabidopsis repressor of light signaling, COP1, is regulated by nuclear exclusion: mutational analysis by bioluminescence resonance energy transfer. Proc. Natl. Acad. Sci. U. S. A. 101, 6798-6802.
  273. Wang, Q., Barshop, W.D., Bian, M., Vashisht, A.A., He, R., Yu, X., Liu, B., Nguyen, P., Liu, X., Zhao, X., Wohlschlegel, J.A., Lin, C. (2017). The Blue Light-Dependent Phosphorylation of the CCE Domain Determines the Photosensitivity of Arabidopsis Cry2. Mol. Plant 10, 357.
  274. He, S.-B., Wang, W.-X., Zhang, J.-Y., Xu, F., Lian, H.-L., Li, L., Yang, H.-Q. (2015). The CNT1 Domain of Arabidopsis CRY1 Alone Is Sufficient to Mediate Blue Light Inhibition of Hypocotyl Elongation. Mol. Plant 8, 822-825.
  275. Putterill, J., Robson, F., Lee, K., Simon, R., Coupland, G. (1995). The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80, 847-857.
  276. Stanewsky, R., Kaneko, M., Emery, P., Beretta, B., Wager-Smith, K., Kay, S.A., Rosbash, M., Hall, J.C. (1998). The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95, 681-692.
  277. Chaves, I., Pokorny, R., Byrdin, M., Hoang, N., Ritz, T., Brettel, K., Essen, L.-O., van der Horst, G.T.J., Batschauer, A., Ahmad, M. (2011). The cryptochromes: blue light photoreceptors in plants and animals. Annu. Rev. Plant Biol. 62, 335-364.
  278. Yang, H.Q., Wu, Y.J., Tang, R.H., Liu, D., Liu, Y., Cashmore, A.R. (2000). The C termini of Arabidopsis cryptochromes mediate a constitutive light response. Cell 103, 815-827.
  279. Pittendrigh, C.S. (1964). The Entrainment of Circadian Oscillations by Skeleton Photoperiods. Science 144, 565.
  280. Shinomura, T., Nagatani, A., Chory, J., Furuya, M. (1994). The Induction of Seed Germination in Arabidopsis thaliana Is Regulated Principally by Phytochrome B and Secondarily by Phytochrome A. Plant Physiol. 104, 363-371.
  281. Clack, T., Mathews, S., Sharrock, R.A. (1994). The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE. Plant Mol. Biol. 25, 413-427.
  282. Darwin, C. (1880). The Power of movements in Plants. Capo Press Repr.
  283. Matulis, D., Kranz, J.K., Salemme, F.R., Todd, M.J. (2005). Thermodynamic stability of carbonic anhydrase: measurements of binding affinity and stoichiometry using ThermoFluor. Biochemistry (Mosc.) 44, 5258-5266.
  284. Forneris, F., Orru, R., Bonivento, D., Chiarelli, L.R., Mattevi, A. (2009). ThermoFAD, a Thermofluor-adapted flavin ad hoc detection system for protein folding and ligand binding. FEBS J. 276, 2833-2840.
  285. Wei, N., Deng, X.W. (1996). The role of the COP/DET/FUS genes in light control of arabidopsis seedling development. Plant Physiol. 112, 871-878.
  286. Yang, H.Q., Tang, R.H., Cashmore, A.R. (2001). The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1. Plant Cell 13, 2573-2587.
  287. Banerjee, R., Schleicher, E., Meier, S., Viana, R.M., Pokorny, R., Ahmad, M., Bittl, R., Batschauer, A. (2007). The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone. J. Biol. Chem. 282, 14916-14922.
  288. Perrotta, G., Yahoubyan, G., Nebuloso, E., Renzi, L., Giuliano, G. (2001). Tomato and barley contain duplicated copies of cryptochrome 1. Plant Cell Environ. 24, 991-998.
  289. Sijen, T., Vijn, I., Rebocho, A., van Blokland, R., Roelofs, D., Mol, J.N., Kooter, J.M. (2001). Transcriptional and posttranscriptional gene silencing are mechanistically related. Curr. Biol. 11, 436-440.
  290. Mette, M.F., Aufsatz, W., van der Winden, J., Matzke, M.A., Matzke, A.J. (2000). Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J. 19, 5194-5201.
  291. Peach, C., Velten, J. (1991). Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Mol. Biol. 17, 49- 60.
  292. Vaucheret, H., Béclin, C., Elmayan, T., Feuerbach, F., Godon, C., Morel, J.B., Mourrain, P., Palauqui, J.C., Vernhettes, S. (1998). Transgene-induced gene silencing in plants. Plant J. Cell Mol. Biol. 16, 651-659.
  293. Canto, T., Uhrig, J.F., Swanson, M., Wright, K.M., MacFarlane, S.A. (2006). Translocation of Tomato bushy stunt virus P19 protein into the nucleus by ALY proteins compromises its silencing suppressor activity. J. Virol. 80, 9064-9072.
  294. Gao, J., Wang, X., Zhang, M., Bian, M., Deng, W., Zuo, Z., Yang, Z., Zhong, D., Lin, C. (2015). Trp triad-dependent rapid photoreduction is not required for the function of Arabidopsis CRY1. Proc. Natl. Acad. Sci. U. S. A. 112, 9135-9140.
  295. Iwabuchi, K., Li, B., Bartel, P., Fields, S. (1993). Use of the two-hybrid system to identify the domain of p53 involved in oligomerization. Oncogene 8, 1693-1696.
  296. Yang, L., Wang, X., Deng, W., Mo, W., Gao, J., Liu, Q., Zhang, C., Wang, Q., Lin, C., Zuo, Z., (2016). Using HEK293T Expression System to Study Photoactive Plant Cryptochromes. Front Plant Sci. 7, 940.
  297. Pang, Q., Hays, J.B. (1991). UV-B-Inducible and Temperature-Sensitive Photoreactivation of Cyclobutane Pyrimidine Dimers in Arabidopsis thaliana. Plant Physiol. 95, 536-543.
  298. Heijde, M., Ulm, R. (2012). UV-B photoreceptor-mediated signalling in plants. Trends Plant Sci. 17, 230-237.
  299. Kaiserli, E., Jenkins, G.I. (2007). UV-B promotes rapid nuclear translocation of the Arabidopsis UV-B specific signaling component UVR8 and activates its function in the nucleus. Plant Cell 19, 2662-2673.
  300. Wargent, J.J., Gegas, V.C., Jenkins, G.I., Doonan, J.H., Paul, N.D. (2009). UVR8 in Arabidopsis thaliana regulates multiple aspects of cellular differentiation during leaf development in response to ultraviolet B radiation. New Phytol. 183, 315-326.
  301. Demkura, P.V., Ballaré, C.L. (2012). UVR8 Mediates UV-B-Induced Arabidopsis Defense Responses against Botrytis cinerea by Controlling Sinapate Accumulation. Mol. Plant 5, 642-652.
  302. Gebhard Kaiser (2012). Verbesserte in vitro und in planta DNA-Reparatur durch CPD- Photolyasen., Dissertation.
  303. Somers, D.E., Schultz, T.F., Milnamow, M., Kay, S.A. (2000). ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101, 319-329.
  304. Kim, W.-Y., Fujiwara, S., Suh, S.-S., Kim, J., Kim, Y., Han, L., David, K., Putterill, J., Nam, H.G., Somers, D.E. (2007). ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449, 356-360.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten