Publikationsserver der Universitätsbibliothek Marburg

Titel:Einfluss gezielter Mutationen auf die biologische Aktivität des Oberflächen-Glykoproteins eines afrikanischen Henipavirus
Autor:Behner, Laura
Weitere Beteiligte: Maisner, Andrea (Prof. Dr.)
Veröffentlicht:2017
URI:https://archiv.ub.uni-marburg.de/diss/z2018/0097
URN: urn:nbn:de:hebis:04-z2018-00971
DOI: https://doi.org/10.17192/z2018.0097
DDC: Biowissenschaften, Biologie
Titel (trans.):Influence of specific mutations on the biological activity of an African henipavirus surface glycoprotein
Publikationsdatum:2018-10-15
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Glykoprotein, Henipavirus, Oligomerisierung, Oligomerisierung, Fusionshelferfunktion, Oberflächenexpression, Oberflächenexpression, Henipavirus, Henipavirus, Fusionshelferfunktion, fusion-helper function, glycoprotein, surface expression, Glykoprotein, oligomerization

Zusammenfassung:
Hendra- und Nipahviren stellen die beiden hochpathogenen Vertreter des Genus Henipavirus dar. Ihr natürlicher Wirt sind Flughunde der Gattung Pteropus. Während die Infektion in Flughunden asymptomatisch verläuft, verursachen Henipaviren in Menschen und anderen Säugetieren, wie Schweinen oder Pferden, schwerwiegende Infektionen und gehören deshalb zu den sogenannten BSL-4 Erregern. Bis vor einigen Jahren ging man davon aus, dass das Vorkommen der Henipaviren auf Südostasien und Australien beschränkt ist. Inzwischen gibt es jedoch immer mehr Hinweise darauf, dass das Verbreitungsgebiet der Henipaviren deutlich größer ist. So wurden beispielsweise in Westafrika (Ghana) Henipavirus-ähnliche RNA-Sequenzen aus Flughunden der Spezies Eidolon helvum isoliert. Eines dieser afrikanischen Henipaviren, Kumasivirus (KV), konnte vollständig sequenziert werden. Da jedoch bis heute kein vermehrungsfähiges Virus aus Flughunden isoliert werden konnte, kann das zoonotische Potential neuer Henipaviren nur durch die funktionelle Charakterisierung einzelner viraler Proteine im Vergleich zu den homologen Proteinen bekannter humanpathogener Henipaviren abgeschätzt werden. Die beiden viralen Oberflächenproteine G und F sind für den Eintritt von Henipaviren in Wirtszellen und ihre Ausbreitung auf Nachbarzellen von zentraler Bedeutung. Nur wenn das G-Protein erfolgreich an seinen zellulären Rezeptor gebunden hat und seine sogenannte Fusionshelferfunktion ausübt, kann das F-Protein die Virus-Zell- oder die Zell-Zell-Fusion einleiten. Es konnte bereits gezeigt werden, dass die Oberflächenexpression und die Fusionshelferaktivität des KV-G Proteins im Vergleich zu anderen Henipavirus Glykoproteinen deutlich reduziert ist. Um die Ursache hierfür aufzuklären, wurde in dieser Arbeit das KV-G Protein im Vergleich zum G-Protein des pathogenen Nipahvirus (NiV-G) auf molekularer Ebene charakterisiert. Dafür wurden verschiedene Mutationen in das Protein eingefügt, die das N-Glykosylierungsmuster, die Oligomerisierung oder die Endozytose des Proteins beeinflussten. Western Blot Analysen, metabolische Markierungen sowie funktionelle Fusionsassays ergaben, dass das KV-G Protein, wie auch das NiV-G, sechs N-Glykane besitzt, die alle für den Oberflächentransport und die biologische Aktivität essentiell sind. Die Oligomerisierung des KV-G Proteins scheint sich jedoch von der des NiV-G Proteins zu unterscheiden. KV-G wird nicht in einem ausgewogenen Dimer-Tetramer-Verhältnis exprimiert, sondern bildet hauptsächlich hocholigomere Formen aus. Cystein-Mutationen in der Stieldomäne des KV-G Proteins führten zwar zu einer Veränderung des Oligomerisierungsmusters, allerdings konnte weder die Oberflächenexpression noch die Fusionshelferfunktion verbessert werden. Interessanterweise führte jedoch die Mutation eines nicht konservierten Cysteins in der Kopfdomäne zu einer signifikant gesteigerten Fusionshelferfunktion des KV-G Proteins. Die Aktivität konnte weiter gesteigert werden, wenn zusätzlich das Endozytose-Motiv in der zytoplasmatischen Domäne zerstört wurde. In dieser Arbeit konnte zum ersten Mal eine signifikant gesteigerte Aktivität (gain of function) eines Glykoproteins eines afrikanischen Henipavirus nachgewiesen werden. Auch wenn die biologische Aktivität des KV-G Proteins im Vergleich zu Glykoproteinen hochpathogener Henipaviren immer noch stark eingeschränkt ist, muss davon ausgegangen werden, dass durch wenige adaptive Punktmutationen afrikanische Henipaviren mit gesteigerter Funktion und damit eventuell höherem zoonotischen Potential entstehen können.

Bibliographie / References

  1. Chen JM, Yu M, Morrissy C, Zhao YG, Meehan G, Sun YX, Wang QH, Zhang W, Wang LF, Wang ZL: A comparative indirect ELISA for the detection of henipavirus antibodies based on a recombinant nucleocapsid protein expressed in Escherichia coli. J Virol Methods 2006, 136:273-276.
  2. Jardetzky TS, Lamb RA: Activation of paramyxovirus membrane fusion and virus entry. Curr Opin Virol 2014, 5:24-33.
  3. Diederich S, Sauerhering L, Weis M, Altmeppen H, Schaschke N, Reinheckel T, Erbar S, Maisner A: Activation of the Nipah virus fusion protein in MDCK cells is mediated by cathepsin B within the endosome-recycling compartment. J Virol 2012, 86:3736-3745.
  4. Hüther J: Activation of the unfolded protein response by henipavirus glycoproteins. 2017. (Masterarbeit, Philipps-Universität Marburg)
  5. Field HE, Barratt PC, Hughes RJ, Shield J, Sullivan ND: A fatal case of Hendra virus infection in a horse in north Queensland: clinical and epidemiological features. Aust Vet J 2000, 78:279-280.
  6. Weis M, Behner L, Drosten C, Drexler JF and Maisner A (2014) African bat henipavirus GH-M74a glycoproteins have impaired fusogenic properties. BatID Meeting 2014, Fort Collins, USA
  7. Präsentationen Poster Behner L and Maisner A (2017) African bat henipavirus G protein contains a functional endocytosis motif. 27th Annual Meeting of the Society for Virology (GfV), Marburg, Germany
  8. Wong KT, Grosjean I, Brisson C, Blanquier B, Fevre-Montange M, Bernard A, Loth P, Georges- Courbot MC, Chevallier M, Akaoka H, et al: A golden hamster model for human acute Nipah virus infection. Am J Pathol 2003, 163:2127-2137.
  9. Pager CT, Craft WW, Patch J, Dutch RE: A mature and fusogenic form of the Nipah virus fusion protein requires proteolytic processing by cathepsin L. Virology 2006, 346:251-257.
  10. Wang Z and Iorio RM: Amino acid substitutions in a conserved region in the stalk of the Newcastle disease virus HN glycoprotein spike impair its neuraminidase activity in the globular domain. J Gen Virol 1999, 80 ( Pt 3):749-753.
  11. Murray K, Selleck P, Hooper P, Hyatt A, Gould A, Gleeson L, Westbury H, Hiley L, Selvey L, Rodwell B: A morbillivirus that caused fatal disease in horses and humans. Science 1995, 268:94-97.
  12. Sarkar SK, Chakravarty AK: Analysis of immunocompetent cells in the bat, Pteropus giganteus: isolation and scanning electron microscopic characterization. Dev Comp Immunol 1991, 15:423-430.
  13. Bossart KN, Zhu Z, Middleton D, Klippel J, Crameri G, Bingham J, McEachern JA, Green D, Hancock TJ, Chan YP, et al: A neutralizing human monoclonal antibody protects against lethal disease in a new ferret model of acute nipah virus infection. PLoS Pathog 2009, 5:e1000642.
  14. Wang Z, Mirza AM, Li J, Mahon PJ, Iorio RM: An oligosaccharide at the C-terminus of the F- specific domain in the stalk of the human parainfluenza virus 3 hemagglutinin- neuraminidase modulates fusion. Virus Res 2004, 99:177-185.
  15. Anonymous: Nipah virus outbreak(s) in Bangladesh, January-April 2004. In Wkly Epidemiol Rec 2004, vol. 79. pp. 168-171; 2004:168-171.
  16. Rockx B, Bossart KN, Feldmann F, Geisbert JB, Hickey AC, Brining D, Callison J, Safronetz D, Marzi A, Kercher L, et al: A novel model of lethal Hendra virus infection in African green monkeys and the effectiveness of ribavirin treatment. J Virol 2010, 84:9831- 9839.
  17. Chua KB, Chua BH, Wang CW: Anthropogenic deforestation, El Niño and the emergence of Nipah virus in Malaysia. Malays J Pathol 2002, 24:15-21.
  18. Hayman DT, Wang LF, Barr J, Baker KS, Suu-Ire R, Broder CC, Cunningham AA, Wood JL: Antibodies to henipavirus or henipa-like viruses in domestic pigs in Ghana, West Africa. PLoS One 2011, 6:e25256.
  19. Li Y, Wang J, Hickey AC, Zhang Y, Wu Y, Zhang H, Yuan J, Han Z, McEachern J, Broder CC, et al: Antibodies to Nipah or Nipah-like viruses in bats, China. Emerg Infect Dis 2008, 14:1974-1976.
  20. Seth RB, Sun L, Chen ZJ: Antiviral innate immunity pathways. Cell Res 2006, 16:141-147.
  21. Kashiwazaki Y, Kanitpun R, Suteeraparp P, Boonchit S: A preliminary comparative study of a dipstick colloidal dye immunoassay and two antigen-detection ELISAs for diagnosis of Trypanosoma evansi infection in cattle. Vet Res Commun 2000, 24:533-544.
  22. Mire CF, Geisbert JB, Agans KN, Feng YR, Fenton KA, Bossart KN, Yan L, Chan YP, Broder CC, Geisbert TW: A Recombinant Hendra Virus G Glycoprotein Subunit Vaccine Protects Nonhuman Primates against Hendra Virus Challenge. J Virol 2014, 88(9): 4624-4631.
  23. Krüger N, Hoffmann M, Drexler JF, Müller MA, Corman VM, Drosten C, Herrler G: Attachment protein G of an African bat henipavirus is differentially restricted in chiropteran and nonchiropteran cells. J Virol 2014, 88:11973-11980.
  24. O'Shea TJ, Cryan PM, Cunningham AA, Fooks AR, Hayman DT, Luis AD, Peel AJ, Plowright RK, Wood JL: Bat flight and zoonotic viruses. Emerg Infect Dis 2014, 20:741-745.
  25. Moratelli R, Calisher CH: Bats and zoonotic viruses: can we confidently link bats with emerging deadly viruses? Mem Inst Oswaldo Cruz 2015, 110:1-22.
  26. Quan PL, Firth C, Conte JM, Williams SH, Zambrana-Torrelio CM, Anthony SJ, Ellison JA, Gilbert AT, Kuzmin IV, Niezgoda M, et al: Bats are a major natural reservoir for hepaciviruses and pegiviruses. Proc Natl Acad Sci U S A 2013, 110:8194-8199.
  27. Brook CE, Dobson AP: Bats as 'special' reservoirs for emerging zoonotic pathogens. Trends Microbiol 2015, 23:172-180.
  28. Drexler JF, Corman VM, Müller MA, Maganga GD, Vallo P, Binger T, Gloza-Rausch F, Rasche A, Yordanov S, Seebens A, et al: Bats host major mammalian paramyxoviruses. Nat Commun 2012, 3:796.
  29. Calisher CH, Childs JE, Field HE, Holmes KV, Schountz T: Bats: important reservoir hosts of emerging viruses. Clin Microbiol Rev 2006, 19:531-545.
  30. O' Brien J: Bats of the Western Indian Ocean Islands. pp. 259-290: Animals; 2011:259-290.
  31. Zimmermann L: Bedeutung von Cysteinen für die Oligomerisierung und den Transport des Glykoproteins eines afrikanischen Henipavirus. 2015. (Bachelorarbeit, Philipps- Universität Marburg)
  32. Bishop KA, Hickey AC, Khetawat D, Patch JR, Bossart KN, Zhu Z, Wang LF, Dimitrov DS, Broder CC: Residues in the stalk domain of the hendra virus g glycoprotein modulate conformational changes associated with receptor binding. J Virol 2008, 82:11398-11409.
  33. Mungall BA, Middleton D, Crameri G, Halpin K, Bingham J, Eaton BT, Broder CC: Vertical transmission and fetal replication of Nipah virus in an experimentally infected cat. J Infect Dis 2007, 196:812-816.
  34. Parashar UD, Sunn LM, Ong F, Mounts AW, Arif MT, Ksiazek TG, Kamaluddin MA, Mustafa AN, Kaur H, Ding LM, et al: Case-control study of risk factors for human infection with a new zoonotic paramyxovirus, Nipah virus, during a 1998-1999 outbreak of severe encephalitis in Malaysia. J Infect Dis 2000, 181:1755-1759.
  35. Pager CT, Dutch RE: Cathepsin L is involved in proteolytic processing of the Hendra virus fusion protein. J Virol 2005, 79:12714-12720.
  36. Marsh GA, de Jong C, Barr JA, Tachedjian M, Smith C, Middleton D, Yu M, Todd S, Foord AJ, Haring V, et al: Cedar virus: a novel Henipavirus isolated from Australian bats. PLoS Pathog 2012, 8:e1002836.
  37. Weis M, Behner L and Maisner A (2014) Characterization of African bat henipavirus GH-M74a fusion protein. Graduate School 1216 "Intra-and intercellular transport and communication", Marburg, Germany
  38. Weis M, Behner L, Hoffmann M, Krüger N, Herrler G, Drosten C, Drexler JF, Dietzel E, Maisner A: Characterization of African bat henipavirus GH-M74a glycoproteins. J Gen Virol 2014, 95:539-548.
  39. Weis M, Behner L, Hoffmann M, Krüger N, Herrler G, Drosten C, Drexler JF, Dietzel E and Maisner A. (2014) Characterization of African bat henipavirus GH-M74a glycoproteins. J Gen Virol. 2014 Mar;95(Pt 3):539-48.
  40. Behner L, Weis M and Maisner A. (2014) Characterization of the African henipavirus-like GH-M74a glycoprotein G. Graduate School 1216 "Intra-and intercellular transport and communication", Marburg, Germany
  41. Lo MK, Miller D, Aljofan M, Mungall BA, Rollin PE, Bellini WJ, Rota PA: Characterization of the antiviral and inflammatory responses against Nipah virus in endothelial cells and neurons. Virology 2010, 404:78-88.
  42. Behner L and Maisner A. (2014) Characterization of the newly identified African henipavirus-like GH-M74a glycoprotein G. Graduate School 1216 Retreat, Rauischholzhausen, Germany
  43. Walpita P, Peters CJ: Cis-acting elements in the antigenomic promoter of Nipah virus. J Gen Virol 2007, 88:2542-2551.
  44. Zhang G, Cowled C, Shi Z, Huang Z, Bishop-Lilly KA, Fang X, Wynne JW, Xiong Z, Baker ML, Zhao W, et al: Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science 2013, 339:456-460.
  45. Chan YP, Chua KB, Koh CL, Lim ME, Lam SK: Complete nucleotide sequences of Nipah virus isolates from Malaysia. J Gen Virol 2001, 82:2151-2155.
  46. Van den Steen P, Rudd PM, Dwek RA, Opdenakker G: Concepts and principles of O-linked glycosylation. Crit Rev Biochem Mol Biol 1998, 33:151-208.
  47. Jansens A, van Duijn E, Braakman I: Coordinated nonvectorial folding in a newly synthesized multidomain protein. Science 2002, 298:2401-2403.
  48. Bowden TA, Crispin M, Harvey DJ, Aricescu AR, Grimes JM, Jones EY, Stuart DI: Crystal structure and carbohydrate analysis of Nipah virus attachment glycoprotein: a template for antiviral and vaccine design. J Virol 2008, 82:11628-11636.
  49. Maar D, Harmon B, Chu D, Schulz B, Aguilar HC, Lee B, Negrete OA: Cysteines in the stalk of the nipah virus G glycoprotein are located in a distinct subdomain critical for fusion activation. J Virol 2012, 86:6632-6642.
  50. Chow VT, Tambyah PA, Yeo WM, Phoon MC, Howe J: Diagnosis of nipah virus encephalitis by electron microscopy of cerebrospinal fluid. J Clin Virol 2000, 19:143-147.
  51. Chakraborty AK, Chakravaty AK: Dichotomy of lymphocyte population and cell-mediated immune responses in a fruit bat., vol. 64. pp. 157-168: J. Ind. Inst. Sci.; 1983:157- 168.
  52. Poliakov A, Cotrina M, Wilkinson DG: Diverse roles of eph receptors and ephrins in the regulation of cell migration and tissue assembly. Dev Cell 2004, 7:465-480.
  53. Popa A, Pager CT, Dutch RE: C-terminal tyrosine residues modulate the fusion activity of the Hendra virus fusion protein. Biochemistry 2011, 50:945-952.
  54. Shental-Bechor D, Levy Y: Effect of glycosylation on protein folding: a close look at thermodynamic stabilization. Proc Natl Acad Sci U S A 2008, 105:8256-8261.
  55. DeFrees SL, Wilson DE: Eidolon helvum. vol. 312. pp. 1-5. Mammalian Species; 1988:1-5.
  56. Kyhse-Andersen J: Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods 1984, 10:203-209.
  57. Goldsmith CS, Whistler T, Rollin PE, Ksiazek TG, Rota PA, Bellini WJ, Daszak P, Wong KT, Shieh WJ, Zaki SR: Elucidation of Nipah virus morphogenesis and replication using ultrastructural and molecular approaches. Virus Res 2003, 92:89-98.
  58. Vogt C, Eickmann M, Diederich S, Moll M, Maisner A: Endocytosis of the Nipah virus glycoproteins. J Virol 2005, 79:3865-3872.
  59. Plattet P and Plemper RK: Envelope protein dynamics in paramyxovirus entry. MBio 2013, 4.
  60. Negrete OA, Levroney EL, Aguilar HC, Bertolotti-Ciarlet A, Nazarian R, Tajyar S, Lee B: EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus. Nature 2005, 436:401-405.
  61. Bonaparte MI, Dimitrov AS, Bossart KN, Crameri G, Mungall BA, Bishop KA, Choudhry V, Dimitrov DS, Wang LF, Eaton BT, Broder CC: Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus. Proc Natl Acad Sci U S A 2005, 102:10652-10657.
  62. Gale NW, Baluk P, Pan L, Kwan M, Holash J, DeChiara TM, McDonald DM, Yancopoulos GD: Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells. Dev Biol 2001, 230:151-160.
  63. Benson MD, Romero MI, Lush ME, Lu QR, Henkemeyer M, Parada LF: Ephrin-B3 is a myelin- based inhibitor of neurite outgrowth. Proc Natl Acad Sci U S A 2005, 102:10694- 10699.
  64. Attwood BK, Patel S, Pawlak R: Ephs and ephrins: emerging therapeutic targets in neuropathology. Int J Biochem Cell Biol 2012, 44:578-581.
  65. Schröder M, Kaufman RJ: ER stress and the unfolded protein response. Mutat Res 2005, 569:29-63.
  66. Guillaume V, Aslan H, Ainouze M, Guerbois M, Wild TF, Buckland R, Langedijk JP: Evidence of a potential receptor-binding site on the Nipah virus G protein (NiV-G): identification of globular head residues with a role in fusion promotion and their localization on an NiV-G structural model. J Virol 2006, 80:7546-7554.
  67. Hayman DT, Suu-Ire R, Breed AC, McEachern JA, Wang L, Wood JL, Cunningham AA: Evidence of henipavirus infection in West African fruit bats. PLoS One 2008, 3:e2739.
  68. Williamson MM, Hooper PT, Selleck PW, Westbury HA, Slocombe RF: Experimental hendra virus infectionin pregnant guinea-pigs and fruit Bats (Pteropus poliocephalus). J Comp Pathol 2000, 122:201-207.
  69. Marsh GA, Haining J, Hancock TJ, Robinson R, Foord AJ, Barr JA, Riddell S, Heine HG, White JR, Crameri G, et al: Experimental infection of horses with Hendra virus/Australia/horse/2008/Redlands. Emerg Infect Dis 2011, 17:2232-2238.
  70. Middleton DJ, Westbury HA, Morrissy CJ, van der Heide BM, Russell GM, Braun MA, Hyatt AD: Experimental Nipah virus infection in pigs and cats. J Comp Pathol 2002, 126:124- 136.
  71. Middleton DJ, Morrissy CJ, van der Heide BM, Russell GM, Braun MA, Westbury HA, Halpin K, Daniels PW: Experimental Nipah virus infection in pteropid bats (Pteropus poliocephalus). J Comp Pathol 2007, 136:266-272.
  72. Remaley AT, Ugorski M, Wu N, Litzky L, Burger SR, Moore JS, Fukuda M, Spitalnik SL: Expression of human glycophorin A in wild type and glycosylation-deficient Chinese hamster ovary cells. Role of N-and O-linked glycosylation in cell surface expression. J Biol Chem 1991, 266:24176-24183.
  73. Chua KB, Goh KJ, Wong KT, Kamarulzaman A, Tan PS, Ksiazek TG, Zaki SR, Paul G, Lam SK, Tan CT: Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet 1999, 354:1257-1259.
  74. O'Sullivan JD, Allworth AM, Paterson DL, Snow TM, Boots R, Gleeson LJ, Gould AR, Hyatt AD, Bradfield J: Fatal encephalitis due to novel paramyxovirus transmitted from horses. Lancet 1997, 349:93-95.
  75. Butler D: Fatal fruit bat virus sparks epidemics in southern Asia. Nature 2004, 429:7.
  76. Richter HV und Cumming GS: First application of satellite telemetry to track African straw- coloured fruit bat migration., vol. 275. pp. 172-176: J. Zool.; 2006:172-176.
  77. Luby SP, Rahman M, Hossain MJ, Blum LS, Husain MM, Gurley E, Khan R, Ahmed BN, Rahman S, Nahar N, et al: Foodborne transmission of Nipah virus, Bangladesh. Emerg Infect Dis 2006, 12:1888-1894.
  78. de Wit E, Prescott J, Falzarano D, Bushmaker T, Scott D, Feldmann H, Munster VJ: Foodborne transmission of nipah virus in Syrian hamsters. PLoS Pathog 2014, 10:e1004001.
  79. Tamin A, Harcourt BH, Ksiazek TG, Rollin PE, Bellini WJ, Rota PA: Functional properties of the fusion and attachment glycoproteins of Nipah virus. Virology 2002, 296:190- 200.
  80. Pernet O, Beaty S, Lee B: Functional rectification of the newly described African henipavirus fusion glycoprotein (Gh-M74a). J Virol 2014, 88:5171-5176.
  81. Bossart KN, Tachedjian M, McEachern JA, Crameri G, Zhu Z, Dimitrov DS, Broder CC, Wang LF: Functional studies of host-specific ephrin-B ligands as Henipavirus receptors. Virology 2008, 372:357-371.
  82. Weis M, Behner L, Binger T, Drexler JF, Drosten C, Maisner A: Fusion activity of African henipavirus F proteins with a naturally occurring start codon directly upstream of the signal peptide. Virus Res 2015, 201:85-93.
  83. Epand RM: Fusion peptides and the mechanism of viral fusion. Biochim Biophys Acta 2003, 1614:116-121.
  84. Weis M, Behner L, Binger T, Drexler JF, Drosten C. and Maisner A. (2015) Fusion the signal peptide. Virus Research 2015 Apr 2; 201:85-93.
  85. Harcourt BH, Lowe L, Tamin A, Liu X, Bankamp B, Bowden N, Rollin PE, Comer JA, Ksiazek TG, Hossain MJ, et al: Genetic characterization of Nipah virus, Bangladesh, 2004. Emerg Infect Dis 2005, 11:1594-1597.
  86. Weis M, Behner L, Drosten C, Drexler JF and Maisner A (2014) Glycoproteins of a novel African bat henipavirus with limited biological activity.ASV Meeting 2014, Fort Collins, USA
  87. Eaton BT, Broder CC, Middleton D, Wang LF: Hendra and Nipah viruses: different and dangerous. Nat Rev Microbiol 2006, 4:23-35.
  88. Field H, de Jong C, Melville D, Smith C, Smith I, Broos A, Kung YH, McLaughlin A, Zeddeman A: Hendra virus infection dynamics in Australian fruit bats. PLoS One 2011, 6:e28678.
  89. Hess IM, Massey PD, Walker B, Middleton DJ, Wright TM: Hendra virus: what do we know? N S W Public Health Bull 2011, 22:118-122.
  90. Iehlé C, Razafitrimo G, Razainirina J, Andriaholinirina N, Goodman SM, Faure C, Georges- Courbot MC, Rousset D, Reynes JM: Henipavirus and Tioman virus antibodies in pteropodid bats, Madagascar. Emerg Infect Dis 2007, 13:159-161.
  91. Eaton BT, Wright PJ, Wang LF, Sergeyev O, Michalski WP, Bossart KN, Broder CC: Henipaviruses: recent observations on regulation of transcription and the nature of the cell receptor. Arch Virol Suppl 2004:122-131.
  92. Steffen DL, Xu K, Nikolov DB, Broder CC: Henipavirus mediated membrane fusion, virus entry and targeted therapeutics. Viruses 2012, 4:280-308.
  93. Peel AJ, Baker KS, Crameri G, Barr JA, Hayman DT, Wright E, Broder CC, Fernández-Loras A, Fooks AR, Wang LF, et al: Henipavirus neutralising antibodies in an isolated island population of African fruit bats. PLoS One 2012, 7:e30346.
  94. Broder CC: Henipavirus outbreaks to antivirals: the current status of potential therapeutics. Curr Opin Virol 2012, 2:176-187.
  95. Pernet O, Wang YE, Lee B: Henipavirus receptor usage and tropism. Curr Top Microbiol Immunol 2012, 359:59-78.
  96. Weiss S, Nowak K, Fahr J, Wibbelt G, Mombouli JV, Parra HJ, Wolfe ND, Schneider BS, Leendertz FH: Henipavirus-related sequences in fruit bat bushmeat, Republic of Congo. Emerg Infect Dis 2012, 18:1536-1537.
  97. Drexler JF, Corman VM, Gloza-Rausch F, Seebens A, Annan A, Ipsen A, Kruppa T, Müller MA, Kalko EK, Adu-Sarkodie Y, et al: Henipavirus RNA in African bats. PLoS One 2009, 4:e6367.
  98. Fogarty R, Halpin K, Hyatt AD, Daszak P, Mungall BA: Henipavirus susceptibility to environmental variables. Virus Res 2008, 132:140-144.
  99. von dem Bussche A, Machida R, Li K, Loevinsohn G, Khander A, Wang J, Wakita T, Wands JR, Li J: Hepatitis C virus NS2 protein triggers endoplasmic reticulum stress and suppresses its own viral replication. J Hepatol 2010, 53:797-804.
  100. Chua KB, Lam SK, Tan CT, Hooi PS, Goh KJ, Chew NK, Tan KS, Kamarulzaman A, Wong KT: High mortality in Nipah encephalitis is associated with presence of virus in cerebrospinal fluid. Ann Neurol 2000, 48:802-805.
  101. George DB, Webb CT, Farnsworth ML, O'Shea TJ, Bowen RA, Smith DL, Stanley TR, Ellison LE, Rupprecht CE: Host and viral ecology determine bat rabies seasonality and maintenance. Proc Natl Acad Sci U S A 2011, 108:10208-10213.
  102. Xu K, Rajashankar KR, Chan YP, Himanen JP, Broder CC, Nikolov DB: Host cell recognition by the henipaviruses: crystal structures of the Nipah G attachment glycoprotein and its complex with ephrin-B3. Proc Natl Acad Sci U S A 2008, 105:9953-9958.
  103. Lam CW, AbuBakar S, Chang LY: Identification of the cell binding domain in Nipah virus G glycoprotein using a phage display system. J Virol Methods 2017, 243:1-9.
  104. Smith I, Broos A, de Jong C, Zeddeman A, Smith C, Smith G, Moore F, Barr J, Crameri G, Marsh G, et al: Identifying Hendra virus diversity in pteropid bats. PLoS One 2011, 6:e25275.
  105. Rissanen I, Ahmed AA, Azarm K, Beaty S, Hong P, Nambulli S, Duprex WP, LeeB, Bowden TA: Idiosyncratic Mòjiāng virus attachment glycoprotein directs a host-cell entry pathway distinct from genetically related henipaviruses. Nat. Commun 2017, 8:16060
  106. Chakravarty AK, Sarkar SK: Immunofluorescence analysis of immunoglobulin bearing lymphocytes in the Indian fruit bat: Pteropus giganteus. Lymphology 1994, 27:97- 104.
  107. Behner L, Weis M, Drosten C, Drexler JF, Maisner A (2014) Impaired biological activities of African bat henipavirus GH-M74a glycoproteins. Joint International Symposium on Mechanisms of cellular compartmentalization Collaborative Research Center SFB 593 and Graduate School GRK 1216, 2014, Marburg, Germany Anhang 141
  108. Zhu Q, Biering SB, Mirza AM, Grasseschi BA, Mahon PJ, Lee B, Aguilar HC, Iorio RM: Individual N-glycans added at intervals along the stalk of the Nipah virus G protein prevent fusion but do not block the interaction with the homologous F protein. J Virol 2013, 87:3119-3129.
  109. Selvey LA, Wells RM, McCormack JG, Ansford AJ, Murray K, Rogers RJ, Lavercombe PS, Selleck P, Sheridan JW: Infection of humans and horses by a newly described morbillivirus. Med J Aust 1995, 162:642-645.
  110. Behner L, Zimmermann L, Ringel M, Weis M and Maisner A. (2017) Influence of oligomerization, glycosylation and endocytosis on the bioactivity of an African bat henipavirus G protein with unkknown zoonotic potential. Manuskript zur Veröffentlichung eingereicht
  111. Weingartl H, Czub S, Copps J, Berhane Y, Middleton D, Marszal P, Gren J, Smith G, Ganske S, Manning L, Czub M: Invasion of the central nervous system in a porcine host by nipah virus. J Virol 2005, 79:7528-7534.
  112. Halpin K, Young PL, Field HE, Mackenzie JS: Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus. J Gen Virol 2000, 81:1927-1932.
  113. Chua KB, Koh CL, Hooi PS, Wee KF, Khong JH, Chua BH, Chan YP, Lim ME, Lam SK: Isolation of Nipah virus from Malaysian Island flying-foxes. Microbes Infect 2002, 4:145-151.
  114. Wang LF, Walker PJ, Poon LL: Mass extinctions, biodiversity and mitochondrial function: are bats 'special' as reservoirs for emerging viruses? Curr Opin Virol 2011, 1:649- 657.
  115. Kullander K, Klein R: Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol 2002, 3:475-486.
  116. Bossart KN, Wang LF, Flora MN, Chua KB, Lam SK, Eaton BT, Broder CC: Membrane fusion tropism and heterotypic functional activities of the Nipah virus and Hendra virus envelope glycoproteins. J Virol 2002, 76:11186-11198.
  117. Wang L, Harcourt BH, Yu M, Tamin A, Rota PA, Bellini WJ, Eaton BT: Molecular biology of Hendra and Nipah viruses. Microbes Infect 2001, 3:279-287.
  118. Harcourt BH, Tamin A, Ksiazek TG, Rollin PE, Anderson LJ, Bellini WJ, Rota PA: Molecular characterization of Nipah virus, a newly emergent paramyxovirus. Virology 2000, 271:334-349.
  119. Harcourt BH, Tamin A, Halpin K, Ksiazek TG, Rollin PE, Bellini WJ, Rota PA: Molecular characterization of the polymerase gene and genomic termini of Nipah virus. Virology 2001, 287:192-201.
  120. Lee B, Pernet O, Ahmed AA, Zeltina A, Beaty SM, Bowden TA: Molecular recognition of human ephrinB2 cell surface receptor by an emergent African henipavirus. Proc Natl Acad Sci U S A 2015, 112:E2156-2165.
  121. Stone JA, Vemulapati BM, Bradel-Tretheway B, Aguilar HC: Multiple Strategies Reveal a Bidentate Interaction between the Nipah Virus Attachment and Fusion Glycoproteins. J Virol 2016, 90:10762-10773.
  122. Bossart KN, McEachern JA, Hickey AC, Choudhry V, Dimitrov DS, Eaton BT, Wang LF: Neutralization assays for differential henipavirus serology using Bio-Plex protein array systems. J Virol Methods 2007, 142:29-40.
  123. Xu K, Chan YP, Rajashankar KR, Khetawat D, Yan L, Kolev MV, Broder CC, Nikolov DB: New insights into the Hendra virus attachment and entry process from structures of the virus G glycoprotein and its complex with Ephrin-B2. PLoS One 2012, 7:e48742.
  124. Halpin K, Young PL, Field H, Mackenzie JS: Newly discovered viruses of flying foxes. Vet Microbiol 1999, 68:83-87.
  125. Enserink M: New virus fingered in Malaysian epidemic. Science 1999, 284:407, 409-410.
  126. Aguilar HC, Matreyek KA, Filone CM, Hashimi ST, Levroney EL, Negrete OA, Bertolotti-Ciarlet A, Choi DY, McHardy I, Fulcher JA, et al: N-glycans on Nipah virus fusion protein protect against neutralization but reduce membrane fusion and viral entry. J Virol 2006, 80:4878-4889.
  127. Biering SB, Huang A, Vu AT, Robinson LR, Bradel-Tretheway B, Choi E, Lee B, Aguilar HC: N- Glycans on the Nipah virus attachment glycoprotein modulate fusion and viral entry as they protect against antibody neutralization. J Virol 2012, 86:11991-12002.
  128. Choi C: Nipah's return. The lethal "flying fox" virus may spread between people. Sci Am 2004, 291:21A, 22.
  129. Ringel M, Halwe S, Heiner A, Behner L, Sauerhering S, Becker N, Weis M, Dietzel E, Kolesnikowa L, Becker S, Von Messling V and Maisner A. (2017) Nipah virus
  130. Liu Q, Bradel-Tretheway B, Monreal AI, Saludes JP, Lu X, Nicola AV, Aguilar HC: Nipah virus attachment glycoprotein stalk C-terminal region links receptor binding to fusion triggering. J Virol 2015, 89:1838-1850.
  131. Halpin K, Bankamp B, Harcourt BH, Bellini WJ, Rota PA: Nipah virus conforms to the rule of six in a minigenome replication assay. J Gen Virol 2004, 85:701-707.
  132. Lamp B, Dietzel E, Kolesnikova L, Sauerhering L, Erbar S, Weingartl H, Maisner A: Nipah virus entry and egress from polarized epithelial cells. J Virol 2013, 87:3143-3154.
  133. Diederich S, Dietzel E, Maisner A: Nipah virus fusion protein: influence of cleavage site mutations on the cleavability by cathepsin L, trypsin and furin. Virus Res 2009, 145:300-306.
  134. Epstein JH, Field HE, Luby S, Pulliam JR, Daszak P: Nipah virus: impact, origins, and causes of emergence. Curr Infect Dis Rep 2006, 8:59-65.
  135. Wong KT, Shieh WJ, Zaki SR, Tan CT: Nipah virus infection, an emerging paramyxoviral zoonosis. Springer Semin Immunopathol 2002, 24:215-228.
  136. Yob JM, Field H, Rashdi AM, Morrissy C, van der Heide B, Rota P, bin Adzhar A, White J, Daniels P, Jamaluddin A, Ksiazek T: Nipah virus infection in bats (order Chiroptera) in peninsular Malaysia. Emerg Infect Dis 2001, 7:439-441.
  137. Mohd Nor MN, Gan CH, Ong BL: Nipah virus infection of pigs in peninsular Malaysia. Rev Sci Tech 2000, 19:160-165.
  138. Dietzel E, Kolesnikova L, Sawatsky B, Heiner A, Weis M, Kobinger GP, Becker S, von Messling V, Maisner A: Nipah Virus Matrix Protein Influences Fusogenicity and Is Essential for Particle Infectivity and Stability. J Virol 2015, 90:2514-2522.
  139. Enserink M: Emerging infectious diseases. Nipah virus (or a cousin) strikes again. Science 2004, 303:1121.
  140. Chua KB: Nipah virus outbreak in Malaysia. J Clin Virol 2003, 26:265-275.
  141. Shirai J, Sohayati AL, Mohamed Ali AL, Suriani MN, Taniguci T, Sharifah SH: Nipah virus survey of flying foxes in Malaysia. vol. 41. pp. 69-78: JARQ; 2007:69-78.
  142. Bradel-Tretheway BG, Liu Q, Stone JA, McInally S, Aguilar HC: Novel Functions of Hendra Virus G N-Glycans and Comparisons to Nipah Virus. J Virol 2015, 89:7235-7247.
  143. Wu Z, Yang L, Yang F, Ren X, Jiang J, Dong J, Sun L, Zhu Y, Zhou H, Jin Q: Novel Henipa- like virus, Mojiang Paramyxovirus, in rats, China, 2012. Emerg Infect Dis 2014, 20:1064-1066.
  144. Baker KS, Todd S, Marsh GA, Crameri G, Barr J, Kamins AO, Peel AJ, Yu M, Hayman DT, Nadjm B, et al: Novel, potentially zoonotic paramyxoviruses from the African straw-colored fruit bat Eidolon helvum. J Virol 2013, 87:1348-1358.
  145. Chung CT, Niemela SL, Miller RH: One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A 1989, 86:2172-2175.
  146. Ching PK, de los Reyes VC, Sucaldito MN, Tayag E, Columna-Vingno AB, Malbas FF, Bolo GC, Sejvar JJ, Eagles D, Playford G, et al: Outbreak of henipavirus infection, Philippines, 2014. Emerg Infect Dis 2015, 21:328-331.
  147. Selvey L, Sheridan J: Outbreak of Severe Respiratory Disease in Humans and Horses Due to a Previously Unrecognized Paramyxovirus. J Travel Med 1995, 2:275.
  148. Lamb RA und Kolakofsky, D.: Paramyxoviridae: The viruses and their replication., vol. 4. pp. 1305-1340: Fields Virology; 2001:1305-1340.
  149. Chang A, Dutch RE: Paramyxovirus fusion and entry: multiple paths to a common end. Viruses 2012, 4:613-636.
  150. Lamb RA, Paterson RG, Jardetzky TS: Paramyxovirus membrane fusion: lessons from the F and HN atomic structures. Virology 2006, 344:30-37.
  151. Gurley ES, Montgomery JM, Hossain MJ, Bell M, Azad AK, Islam MR, Molla MA, Carroll DS, Ksiazek TG, Rota PA, et al: Person-to-person transmission of Nipah virus in a Bangladeshi community. Emerg Infect Dis 2007, 13:1031-1037.
  152. Lisanti MP, Sargiacomo M, Graeve L, Saltiel AR, Rodriguez-Boulan E: Polarized apical distribution of glycosyl-phosphatidylinositol-anchored proteins in a renal epithelial cell line. Proc Natl Acad Sci U S A 1988, 85:9557-9561.
  153. Prevention CfDCa: Outbreak of Hendra-like virus -Malaysia and Singapore, 1998-1999. vol. 281. pp. 1787-1788: JAMA; 1999:1787-1788.
  154. Ploquin A, Szécsi J, Mathieu C, Guillaume V, Barateau V, Ong KC, Wong KT, Cosset FL, Horvat B, Salvetti A: Protection against henipavirus infection by use of recombinant adeno-associated virus-vector vaccines. J Infect Dis 2013, 207:469- 478.
  155. Halpin K, Hyatt AD, Fogarty R, Middleton D, Bingham J, Epstein JH, Rahman SA, Hughes T, Smith C, Field HE, et al: Pteropid bats are confirmed as the reservoir hosts of henipaviruses: a comprehensive experimental study of virus transmission. Am J Trop Med Hyg 2011, 85:946-951.
  156. Rockx B, Winegar R, Freiberg AN: Recent progress in henipavirus research: molecular biology, genetic diversity, animal models. Antiviral Res 2012, 95:135-149.
  157. Weingartl HM, Berhane Y, Caswell JL, Loosmore S, Audonnet JC, Roth JA, Czub M: Recombinant nipah virus vaccines protect pigs against challenge. J Virol 2006, 80:7929-7938.
  158. Luby SP, Hossain MJ, Gurley ES, Ahmed BN, Banu S, Khan SU, Homaira N, Rota PA, Rollin PE, Comer JA, et al: Recurrent zoonotic transmission of Nipah virus into humans, Bangladesh, 2001-2007. Emerg Infect Dis 2009, 15:1229-1235.
  159. Montgomery JM, Hossain MJ, Gurley E, Carroll GD, Croisier A, Bertherat E, Asgari N, Formenty P, Keeler N, Comer J, et al: Risk factors for Nipah virus encephalitis in Bangladesh. Emerg Infect Dis 2008, 14:1526-1532.
  160. Diederich S, Thiel L, Maisner A: Role of endocytosis and cathepsin-mediated activation in Nipah virus entry. Virology 2008, 375:391-400.
  161. McMurray DN, Stroud J, Murphy JJ, Carlomagno MA, Greer DL: Role of immunoglobulin classes in experimental histoplasmosis in bats. Dev Comp Immunol 1982, 6:557- 567.
  162. Parodi AJ: Role of N-oligosaccharide endoplasmic reticulum processing reactions in glycoprotein folding and degradation. Biochem J 2000, 348 Pt 1:1-13.
  163. Vulliémoz D and Roux L: "Rule of six": how does the Sendai virus RNA polymerase keep count? J Virol 2001, 75:4506-4518.
  164. Selvey L, Taylor R, Arklay A, Gerard J: Screening of bat carers for antibodies to equine morbillivirus. vol. 20. pp. 477-478. Commun Dis Intell; 1996:477-478.
  165. Young PL, Halpin K, Selleck PW, Field H, Gravel JL, Kelly MA, Mackenzie JS: Serologic evidence for the presence in Pteropus bats of a paramyxovirus related to equine morbillivirus. Emerg Infect Dis 1996, 2:239-240.
  166. Negrete OA, Chu D, Aguilar HC, Lee B: Single amino acid changes in the Nipah and Hendra virus attachment glycoproteins distinguish ephrinB2 from ephrinB3 usage. J Virol 2007, 81:10804-10814.
  167. Sauerhering L, Zickler M, Elvert M, Behner L, Matrosovich T, Erbar S, Matrosovich M and Maisner A. (2016) Species-specific and individual differences in Nipah virus replication in porcine and human airway epithelial cells. J Gen Virol. 2016
  168. Guillaume V, Lefeuvre A, Faure C, Marianneau P, Buckland R, Lam SK, Wild TF, Deubel V: Specific detection of Nipah virus using real-time RT-PCR (TaqMan). J Virol Methods 2004, 120:229-237.
  169. Plemper RK, Brindley MA, Iorio RM: Structural and mechanistic studies of measles virus illuminate paramyxovirus entry. PLoS Pathog 2011, 7:e1002058.
  170. Krüger N, Hoffmann M, Weis M, Drexler JF, Müller MA, Winter C, Corman VM, Gützkow T, Drosten C, Maisner A, Herrler G: Surface glycoproteins of an African henipavirus induce syncytium formation in a cell line derived from an African fruit bat, Hypsignathus monstrosus. J Virol 2013, 87:13889-13891.
  171. Lawrence P, Escudero Pérez B, Drexler JF, Corman VM, Müller MA, Drosten C, Volchkov V: Surface glycoproteins of the recently identified African Henipavirus promote viral entry and cell fusion in a range of human, simian and bat cell lines. Virus Res 2014, 181:77-80.
  172. Yu M, Hansson E, Langedijk JP, Eaton BT, Wang LF: The attachment protein of Hendra virus has high structural similarity but limited primary sequence homology compared with viruses in the genus Paramyxovirus. Virology 1998, 251:227-233.
  173. Wang L.F., Yu M., Hansson E., Pritchard L.I., Shiell B., Michalski W.P., Eaton B.T.: The exceptionally large genome of Hendra virus: support for creation of a new genuswithin the family Paramyxoviridae. vol. 74. pp. 9972-9979: J Virol.; 2000:9972- 9979.
  174. Field H, Young P, Yob JM, Mills J, Hall L, Mackenzie J: The natural history of Hendra and Nipah viruses. Microbes Infect 2001, 3:307-314.
  175. Diederich S, Moll M, Klenk HD, Maisner A: The nipah virus fusion protein is cleaved within the endosomal compartment. J Biol Chem 2005, 280:29899-29903.
  176. Geisbert TW, Mire CE, Geisbert JB, Chan YP, Agans KN, Feldmann F, Fenton KA, Zhu Z, Dimitrov DS, Scott DP, et al: Therapeutic treatment of Nipah virus infection in nonhuman primates with a neutralizing human monoclonal antibody. Sci Transl Med 2014, 6:242ra282.
  177. Calain P, Roux L: The rule of six, a basic feature for efficient replication of Sendai virus defective interfering RNA. J Virol 1993, 67:4822-4830.
  178. Egelman EH, Wu SS, Amrein M, Portner A, Murti G: The Sendai virus nucleocapsid exists in at least four different helical states. J Virol 1989, 63:2233-2243.
  179. Hetz C: The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 2012, 13:89-102.
  180. Patch JR, Han Z, McCarthy SE, Yan L, Wang LF, Harty RN, Broder CC: The YPLGVG sequence of the Nipah virus matrix protein is required for budding. Virol J 2008, 5:137.
  181. Luby SP, Gurley ES, Hossain MJ: Transmission of human infection with Nipah virus. Clin Infect Dis 2009, 49:1743-1748.
  182. Chong HT, Kamarulzaman A, Tan CT, Goh KJ, Thayaparan T, Kunjapan SR, Chew NK, Chua KB, Lam SK: Treatment of acute Nipah encephalitis with ribavirin. Ann Neurol 2001, 49:810-813.
  183. Weise C, Erbar S, Lamp B, Vogt C, Diederich S, Maisner A: Tyrosine residues in the cytoplasmic domains affect sorting and fusion activity of the Nipah virus glycoproteins in polarized epithelial cells. J Virol 2010, 84:7634-7641.
  184. Wang YE, Park A, Lake M, Pentecost M, Torres B, Yun TE, Wolf MC, Holbrook MR, Freiberg AN, Lee B: Ubiquitin-regulated nuclear-cytoplasmic trafficking of the Nipah virus matrix protein is important for viral budding. PLoS Pathog 2010, 6:e1001186.
  185. Moll M, Diederich S, Klenk HD, Czub M, Maisner A: Ubiquitous activation of the Nipah virus fusion protein does not require a basic amino acid at the cleavage site. J Virol 2004, 78:9705-9712.
  186. Hyatt AD, Zaki SR, Goldsmith CS, Wise TG, Hengstberger SG: Ultrastructure of Hendra virus and Nipah virus within cultured cells and host animals. Microbes Infect 2001, 3:297-306.
  187. Khan MS, Hossain J, Gurley ES, Nahar N, Sultana R, Luby SP: Use of infrared camera to understand bats' access to date palm sap: implications for preventing Nipah virus transmission. Ecohealth 2010, 7:517-525.
  188. Sauerhering L, Müller H, Behner L, Elvert M, Fehling SK, Strecker T and Maisner A. (2017) Variability of Interferon-λ induction and antiviral activity in Nipah virus infected differentiated human bronchial epithelial cells of two human donors.
  189. Sulkin SE, Allen R: Virus infections in bats. Monogr Virol 1974, 8:1-103.
  190. Dutch RE, Jardetzky TS, Lamb RA: Virus membrane fusion proteins: biological machines that undergo a metamorphosis. Biosci Rep 2000, 20:597-612.
  191. Dobson AP: Virology. What links bats to emerging infectious diseases? Science 2005, 310:628-629.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten