Publikationsserver der Universitätsbibliothek Marburg

Titel:Supersymmetry in Conformal Geometric and Number-Theoretical Quantum Mechanics
Autor:Yam, Kevin
Weitere Beteiligte: Lenz, Peter (Prof. Dr.)
Veröffentlicht:2018
URI:https://archiv.ub.uni-marburg.de/diss/z2018/0092
URN: urn:nbn:de:hebis:04-z2018-00926
DOI: https://doi.org/10.17192/z2018.0092
DDC: Physik
Titel (trans.):Supersymmetrie in Konform-Geometrischer und Zahlentheoretischer Quantenmechanik
Publikationsdatum:2018-02-28
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Zahlentheorie, Hagedorn temperature, spin chain, Statistische Physik, Supersymmetrie, Quantenmechanik, Spektralgeometrie, Topologie, Witten index, conformal manifold, Riemann hypothesis

Summary:
In this dissertation I work out a supersymmetric formulation of conformal geometric quantum mechanics, which based on ideas I started to develop in my Master’s thesis [77]. In this approach, supersymmetry provides a fundamental connection between conformal geometric quantum mechanics, the spectral geometry of Schrödinger operators and topology. I use these links to give a physics proof of the famous Yang-Yau estimate for the first eigenvalue of the Laplacian on compact Riemann surfaces [80] and to generalize this physics-based proof to Schrödinger operators. Furthermore, I apply the derived eigenvalue estimate to the Coulomb problem and the harmonic oscillator. Moreover, I motivate the application of supersymmetry to spin chain models by describing some properties of the 1D nearest neighbor Ising model in terms of supercharges [74]. By doing so, some important concepts are explained, which are necessary for the further work. Motivated by Ref. [53], I introduce the Witten index [74] for spin chains, which is an object on dual configuration spaces corresponding to Boltzmann weights. I establish a connection between Witten indices and n-point correlation functions. Thus, the spin-spin interactions can be interpreted by considering the Witten index of spin chains. Finally, by transferring the results to subspaces I obtain a rigorous expression of the vacuum expectation value for the density matrix of an arbitrary spin chain model in terms of correlation functions. Moreover, the special case of supersymmetric theories is analyzed and it is shown that no phase transitions can occur in spin chain models with supersymmetry. Furthermore, it is shown that my results are invariant under unitary transformations. There exist numerous approaches to the Riemann zeta function and the Riemann hypothesis using different concepts from physics, see, e.g., Ref. [69]. A promising and well-known approach is the primon gas, also called Riemann gas, which is a toy model combining concepts of number theory, quantum field theory and statistical physics, introduced by Julia [49] and Spector [70] . More precisely, the primon gas describes a canonical ensemble with the Riemann zeta function �(�) as partition function, where � = T−1 is the inverse temperature. Since the Riemann zeta function has a singularity at � = 1, see, e.g., Ref. [6], the primon gas reaches its Hagedorn temperature [36–40] at this point, see Refs. [49, 70]. The behavior of the primon gas beyond the Hagdorn temperature is still not clear, but there are investigations concerning this point [23, 50]. Generally, it is well-known in condensed matter physics that hadronic matter becomes unstable at the Hagedorn temperature [36–40]. A similar situation exists in string theory [7] and there are observations in this direction in the context of number-theoretical gases [50]. Here, I use Spector’s theory of the supersymmetric primon gas [70, 71] to analyze the behavior of a canonical ensemble, which is closely related to the primon gas. By doing so, I interpret the transition at the Hagedorn temperature as a coupling of the fermions of the supersymmetric primon gas and the fermions of an ensemble of harmonic oscillator states to boson-like pairs comparable with the formation of Cooper pairs in the BCS theory [9, 10, 21]. Based on this, I work out a novel link to the Riemann hypothesis.

Bibliographie / References

  1. Henle, M. (1979). A combinatorial introduction to topology. Courier Corporation.
  2. Hatcher, A. (2002). Algebraic topology. Cambridge University Press.
  3. Nahm, W. (1972). Analytical solution of the statistical bootstrap model. Nuclear Physics B, 45(2), 525-553.
  4. Agarwal, R. P., Perera, K. and Pinelas, S. (2011). An introduction to complex analysis. Springer Science & Business Media.
  5. Wolf, M. (1999). Applications of statistical mechanics in number theory. Physica A: Sta- tistical Mechanics and its Applications, 274(1), 149-157.
  6. Getzler, E. (1986). A short proof of the local Atiyah-Singer index theorem. Topology, 25(1), 111-117.
  7. Ising, E. (1925). Beitrag zur Theorie des Ferromagnetismus. Zeitschrift für Physik A Hadrons and Nuclei, 31(1), 253-258.
  8. Cooper, L. N. (1956). Bound electron pairs in a degenerate Fermi gas. Physical Review, 104(4), 1189-1190.
  9. Colbois, B., Dryden, E. B. and El Soufi, A. (2009). Bounding the eigenvalues of the Laplace-Beltrami operator on compact submanifolds. Bulletin of the London Mathemat- ical Society, 42(1), 96-108.
  10. Di Vecchia, P. and Ferrara, S. (1977). Classical solutions in two-dimensional supersym- metric field theories. Nuclear Physics B, 130(1), 93-104.
  11. Gazeau, J. P. (2009). Coherent states in quantum physics. Wiley.
  12. Schumayer, D. and Hutchinson, D. A. (2011). Colloquium: Physics of the Riemann hy- pothesis. Reviews of Modern Physics, 83(2), 307.
  13. Altland, A. and Simons, B. D. (2010). Condensed matter field theory. Cambridge Univer- sity Press.
  14. Witten, E. (1982). Constraints on supersymmetry breaking. Nuclear Physics B, 202(2), 253-316.
  15. Bakas, I. and Bowick, M. J. (1991). Curiosities of arithmetic gases. Journal of Mathemat- ical Physics, 32(7), 1881-1884.
  16. Spector, D. (1998). Duality, partial supersymmetry, and arithmetic number theory. Jour- nal of Mathematical Physics, 39(4), 1919-1927.
  17. Colbois, B. and El Soufi, A. (2006). Eigenvalues of the Laplacian acting on p-forms and metric conformal deformations. Proceedings of the American Mathematical Society, 134(3), 715-721.
  18. Yang, P. C. and Yau, S. T. (1980). Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 7(1), 55-63.
  19. Schulze-Pillot, R. (2008). Einführung in Algebra und Zahlentheorie. Springer.
  20. Osheroff, D. D., Richardson, R. C. and Lee, D. M. (1972). Evidence for a new phase of solid He 3. Physical Review Letters, 28(14), 885-888.
  21. Baxter, R. J. (1982). Exactly solved models in statistical mechanics. Academic Press.
  22. Colbois, B. and El Soufi, A. (2003). Extremal eigenvalues of the Laplacian in a conformal class of metrics: The "conformal spectrum". Annals of Global Analysis and Geometry, 24(4), 337-349.
  23. Romero, C., Fonseca-Neto, J. B. and Pucheu, M. L. (2012). General relativity and Weyl geometry. Classical and Quantum Gravity, 29(15), 155015.
  24. Alvarez-Gaumé, L. and Freedman, D. Z. (1981). Geometrical structure and ultraviolet finiteness in the supersymmetric σ-model. Communications in Mathematical Physics, 80(3), 443-451.
  25. Karamatskou, A. and Kleinert, H. (2014). Geometrization of the Schrödinger equation: Application of the Maupertuis Principle to quantum mechanics. International Journal of Geometric Methods in Modern Physics, 11(08), 1450066.
  26. Jost, J. (2009). Geometry and physics. Springer Science & Business Media.
  27. Fendley, P. and Hagendorf, C. (2011). Ground-state properties of a supersymmetric fermion chain. Journal of Statistical Mechanics: Theory and Experiment, 2011(02), P02014.
  28. Hagedorn, R. (1968). Hadronic matter near the boiling point. Il Nuovo Cimento A (1965- 1970), 56(4), 1027-1057.
  29. Bost, J. B. and Connes, A. (1995). Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory. Selecta Mathematica, New Series, 1(3), 411-457.
  30. Apostol, T. M. (1976). Introduction to analytic number theory. Springer.
  31. Cecotti, S. and Vafa, C. (1993). Ising model and N = 2 supersymmetric theories. Com- munications in mathematical physics, 157(1), 139-178.
  32. Yang, D. (1999). Lower bound estimates of the first eigenvalue for compact manifolds with positive Ricci curvature. Pacific Journal of Mathematics, 190(2), 383-398.
  33. Bardeen, J., Cooper, L. N. and Schrieffer, J. R. (1957). Microscopic theory of supercon- ductivity. Physical Review, 106(1), 162-164.
  34. Knauf, A. (1993). On a ferromagnetic spin chain. Communications in mathematical physics, 153(1), 77-115.
  35. Knauf, A. (1994). On a ferromagnetic spin chain. II. Thermodynamic limit. Journal of Mathematical Physics, 35(1), 228-236.
  36. Zhong, J. Q. and Yang, H. C. (1984). On the estimate of the first eigenvalue of a compact Riemannian manifold. Science in China Series A-Mathematics, Physics, Astronomy & Technological Science, 27(12), 1265-1273.
  37. Hagendorf, C. and Liénardy, J. (2017). Open spin chains with dynamic lattice supersym- metry. Journal of Physics A: Mathematical and Theoretical, 50(18), 185202.
  38. Knauf, A (1993). Phases of the Number-Theoretical Spin Chain. Journal of Statistical Physics, 73, 423-431.
  39. Grossmann, S. and Lehmann, V. (1969). Phase transition and the distribution of tem- perature zeros of the partition Function, II. Applications and Examples, Zeitschrift für Physik A Hadrons and nuclei, 218(5), 449-459.
  40. Grossmann, S. and Rosenhauer, W. (1969). Phase transitions and the distribution of temperature zeros of the partition function. Zeitschrift für Physik A Hadrons and nuclei, 218(5), 437-448.
  41. Sanchis-Lozano, M. A., Barbero G, J. F. and Navarro-Salas, J. (2012). Prime numbers, quantum field theory and the Goldbach conjecture. International Journal of Modern Physics A, 27(23), 1250136.
  42. Getzler, E. (1983). Pseudodifferential operators on supermanifolds and the Atiyah-Singer index theorem. Communications in mathematical physics, 92(2), 163-178.
  43. Collas, P. (1990). Quantum mechanics versus spectral differential geometry. Physics Let- ters A, 149(4), 179-183.
  44. Hersch, J. (1970). Quatre propriétés isopérimétriques de membranes sphériques homo- genes. CR Acad. Sci. Paris Sér. AB, 270(A1645-A1648), 5.
  45. Colbois, B. and Dodziuk, J. (1994). Riemannian metrics with large λ 1 . Proceedings of the American Mathematical Society, 122(3), 905-906.
  46. El Soufi, A. and Ilias, S. (2000). Second eigenvalue of Schrödinger operators and mean curvature. Communications in Mathematical Physics, 208(3), 761-770.
  47. Weyl, H. (1952). Space, Time, Matter. Dover Publications.
  48. Hagendorf, C. (2013). Spin chains with dynamical lattice supersymmetry. Journal of Sta- tistical Physics, 150(4), 609-657.
  49. Frautschi, S. (1971). Statistical bootstrap model of hadrons. Physical Review D, 3(11), 2821.
  50. Lee, T. D. and Yang, C. N. (1952). Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model. Physical Review, 87(3), 410-419.
  51. Yang, C. N. and Lee, T. D. (1952). Statistical theory of equations of state and phase transitions. I. Theory of condensation. Physical Review, 87(3), 404-409.
  52. Julia, B. (1990). Statistical theory of numbers, in "Number Theory and Physics", J.-M.
  53. Hagedorn, R. (1965). Statistical thermodynamics of strong interactions at high energies. Nuovo Cimento, Suppl., 3(CERN-TH-520), 147-186.
  54. Hagedorn, R. and Ranft, J. (1968). Statistical thermodynamics of strong interactions at high-energies. 2. Momentum spectra of particles produced in pp-collisions. Nuovo Cim. Suppl., 6(CERN-TH-851), 169-354.
  55. Hagedorn, R. and Ranft, J. (1968). Statistical thermodynamics of strong interactions at high energies. 3. Heavy-pair (quark) production rates. Nuovo Cim. Suppl., 6(CERN-TH- 751), 311-354.
  56. Friedan, D. and Windey, P. (1984). Supersymmetric derivation of the Atiyah-Singer index and the chiral anomaly. Nuclear Physics B, 235(3), 395-416.
  57. Witten, E. (1977). Supersymmetric form of the nonlinear σ model in two dimensions. Physical Review D, 16(10), 2991.
  58. Kalka, H. and Soff, G. (1997). Supersymmetrie. Series: Teubner Studienbücher Physik. Vieweg+ Teubner Verlag (Wiesbaden).
  59. Friedan, D. and Windey, P. (1985). Supersymmetry and index theorems. Physica D: Non- linear Phenomena, 15(1-2), 71-74.
  60. Witten, E. (1982). Supersymmetry and Morse theory. J. diff. geom, 17(4), 661-692.
  61. Alvarez-Gaumé, L. (1983). Supersymmetry and the Atiyah-Singer index theorem. Com- munications in Mathematical Physics, 90(2), 161-173.
  62. Spector, D. (1990). Supersymmetry and the Möbius inversion function. Communications in mathematical physics, 127(2), 239-252.
  63. Grossmann, S. and Rosenhauer, W. (1967). Temperature dependence near phase tran- sitions in classical and quant. mech. canonical statistics. Zeitschrift für Physik, 207(2), 138-152.
  64. Hagendorf, C. and Fendley, P. (2012). The eight-vertex model and lattice supersymmetry. Journal of Statistical Physics, 146(6), 1122-1155.
  65. Blanchard, P., Fortunato, S. and Satz, H. (2004). The Hagedorn temperature and partition thermodynamics. The European Physical Journal C-Particles and Fields, 34(3), 361-366.
  66. Atick, J. J. and Witten, E. (1988). The Hagedorn transition and the number of degrees of freedom of string theory. Nuclear Physics B, 310(2), 291-334.
  67. Rosenberg, S. (1997). The Laplacian on a Riemannian manifold: an introduction to anal- ysis on manifolds. Cambridge University Press.
  68. Knauf, A. (1998). The number-theoretical spin chain and the Riemann zeroes. Communi- cations in mathematical physics, 196(3), 703-731.
  69. Bardeen, J., Cooper, L. N. and Schrieffer, J. R. (1957). Theory of superconductivity. Physical Review, 108(5), 1175.
  70. Julia, B. L. (1994). Thermodynamic limit in number theory: Riemann-Beurling gases. Physica A: Statistical Mechanics and its Applications, 203(3-4), 425-436.
  71. Dueñas, J. G. and Svaiter, N. F. (2015). Thermodynamics of the bosonic randomized Riemann gas. Journal of Physics A: Mathematical and Theoretical, 48(31), 315201.
  72. El Soufi, A., Harrell, E. and Ilias, S. (2009). Universal inequalities for the eigenvalues of Schrödinger operators on submanifolds. Transactions of the American Mathematical Society, 361(5), 2337-2350.
  73. Yam, K. (2014). Quantum Mechanics on Conformal Manifolds and Applications. (Unpub- lished Master's thesis). Fachbereich Physik der Philipps-Universität Marburg, Marburg, Germany.
  74. Korevaar, N. (1993). Upper bounds for eigenvalues of conformal metrics. Journal of Dif- ferential Geometry, 37(1), 73-93.
  75. Agricola, I. and Friedrich, T. (2010). Vektoranalysis: Differentialformen in Analysis, Ge- ometrie und Physik. Springer-Verlag.
  76. Poulis, F. P. and Salim, J. M. (2014). Weyl geometry and gauge-invariant gravitation. International Journal of Modern Physics D, 23(11), 1450091.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten