Publikationsserver der Universitätsbibliothek Marburg

Titel:Data-driven model development in environmental geography - Methodological advancements and scientific applications
Autor:Meyer, Hanna
Weitere Beteiligte: Nauß, Thomas (Prof. Dr.)
Veröffentlicht:2018
URI:https://archiv.ub.uni-marburg.de/diss/z2018/0082
DOI: https://doi.org/10.17192/z2018.0082
URN: urn:nbn:de:hebis:04-z2018-00820
DDC:550 Geowissenschaften
Titel (trans.):Data-driven model development in environmental geography - Methodological advancements and scientific applications
Publikationsdatum:2018-10-15
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Maschinelles Lernen, Umweltmonitoring

Zusammenfassung:
Die Erfassung räumlich kontinuierlicher Daten und raum-zeitlicher Dynamiken ist ein Forschungsschwerpunkt der Umweltgeographie. Zu diesem Ziel sind Modellierungsmethoden erforderlich, die es ermöglichen, aus limitierten Felddaten raum-zeitliche Aussagen abzuleiten. Die Komplexität von Umweltsystemen erfordert dabei die Verwendung von Modellierungsstrategien, die es erlauben, beliebige Zusammenhänge zwischen einer Vielzahl potentieller Prädiktoren zu berücksichtigen. Diese Anforderung verlangt nach einem Paradigmenwechsel von der parametrischen hin zu einer nicht-parametrischen, datengetriebenen Modellentwicklung, was zusätzlich durch die zunehmende Verfügbarkeit von Geodaten verstärkt wird. In diesem Zusammenhang haben sich maschinelle Lernverfahren als ein wichtiges Werkzeug erwiesen, um Muster in nicht-linearen und komplexen Systemen zu erfassen. Durch die wachsende Popularität maschineller Lernverfahren in wissenschaftlichen Zeitschriften und die Entwicklung komfortabler Softwarepakete wird zunehmend der Fehleindruck einer einfachen Anwendbarkeit erzeugt. Dem gegenüber steht jedoch eine Komplexität, die im Detail nur durch eine umfassende Methodenkompetenz kontrolliert werden kann. Diese Problematik gilt insbesondere für Geodaten, die besondere Merkmale wie vor allem räumliche Abhängigkeit aufweisen, womit sie sich von "gewöhnlichen" Daten abheben, was jedoch in maschinellen Lernanwendungen bisher weitestgehend ignoriert wird. Die vorliegende Arbeit beschäftigt sich mit dem Potenzial und der Sensitivität des maschinellen Lernens in der Umweltgeographie. In diesem Zusammenhang wurde eine Reihe von maschinellen Lernanwendungen in einem breiten Spektrum der Umweltgeographie veröffentlicht. Die einzelnen Beiträge stehen unter der übergeordneten Hypothese, dass datengetriebene Modellierungsstrategien nur dann zu einem Informationsgewinn und zu robusten raum-zeitlichen Ergebnissen führen, wenn die Merkmale von geographischen Daten berücksichtigt werden. Neben diesem übergeordneten methodischen Fokus zielt jede Anwendung darauf ab, durch adäquat angewandte Methoden neue fachliche Erkenntnisse in ihrem jeweiligen Forschungsgebiet zu liefern. Im Rahmen der Arbeit wurde eine Vielzahl relevanter Umweltmonitoring-Produkte entwickelt. Die Ergebnisse verdeutlichen, dass sowohl hohe fachwissenschaftliche als auch methodische Kenntnisse unverzichtbar sind, um den Bereich der datengetriebenen Umweltgeographie voranzutreiben. Die Arbeit demonstriert erstmals die Relevanz räumlicher Überfittung in geographischen Lernanwendungen und legt ihre Auswirkungen auf die Modellergebnisse dar. Um diesem Problem entgegenzuwirken, wird eine neue, an Geodaten angepasste Methode zur Modellentwicklung entwickelt, wodurch deutlich verbesserte Ergebnisse erzielt werden können. Diese Arbeit ist abschließend als Appell zu verstehen, über die Standardanwendungen der maschinellen Lernverfahren hinauszudenken, da sie beweist, dass die Anwendung von Standardverfahren auf Geodaten zu starker Überfittung und Fehlinterpretation der Ergebnisse führt. Erst wenn Eigenschaften von geographischen Daten berücksichtigt werden, bietet das maschinelle Lernen ein leistungsstarkes Werkzeug, um wissenschaftlich verlässliche Ergebnisse für die Umweltgeographie zu liefern.

Bibliographie / References

  1. Warnes, G., B. Bolker, G. Gorjanc, G. Grothendieck, A. Korosec, T. Lumley, D. MacQueen, A. Magnusson, J. Rogers, and et al., 2014: gdata: Various R programming tools for data manipulation. URL http://CRAN.R-project. org/package=gdata, R package version 2.13.3.
  2. Pebesma, E. and B. Gräler, 2013: gstat: spatial and spatio-temporal geostatisti- cal modelling, prediction and simulation. URL http://CRAN.R-project.org/ package=gstat, R package version 1.0-16.
  3. Revolution Analytics and S. Weston, 2014: doParallel: Foreach parallel adap- tor for the parallel package. URL http://CRAN.R-project.org/package= doParallel, R package version 1.0.8.
  4. Wickham, H., 2014: plyr: Tools for splitting, applying and combining data. URL http://CRAN.R-project.org/package=gstat, R package version 1.8.1.
  5. Brenning, A., 2013: RSAGA: SAGA Geoprocessing and Terrain Analysis in R. URL http://CRAN.R-project.org/package=RSAGA, R package version 0.93- 6.
  6. Pebesma, E. and R. Bivand, 2013: sp: classes and methods for spatial data. URL http://CRAN.R-project.org/package=sp, R package version 1.0-5.
  7. Van't Hoff, J., 1898: Lectures on Theoretical and Physical Chemistry. Part I. Chemical Dynamics (translated by R. A. Lehfeldt). Edward Arnold, London.
  8. Peirce, C., 1902: Verification. Dictionary of Philosophy and Psychology, J. Bald- win, Ed., Macmillan, New York, 761-762.
  9. Kaiser, H. F., 1958: The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23 (3), 187-200.
  10. Tricart, J. and A. Cailleux, (Eds.) , 1972: Introduction to Climatic Geomorphol- ogy. Longman, London.
  11. Büdel, J., (Ed.) , 1977: Climatic Geomorphology. Princeton University Press, Princeton, N.J.
  12. Varnes, D., (Ed.) , 1984: Landslide Hazard Zonation: A Review of Principles and Practice. UNESCO, Paris.
  13. Miller, R., (Ed.) , 1994: Mapping the Diversity of Nature. Springer- Science+Business Media, B.V.
  14. Burrough, P., (Ed.) , 1998: Principles of Geographical Information Systems. 2d ed., Oxford University Press, Oxford.
  15. Huang, C., L. S. Davis, and J. R. G. Townshend, 2002: An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 23 (4), 725-749.
  16. Guyon, I. and A. Elisseeff, 2003: An Introduction to Variable and Feature Selec- tion. Journal of Machine Learning Research, 3, 1157-1182.
  17. Karatzoglou, A., T. U. Wien, A. Smola, K. Hornik, and W. Wien, 2004: kernlab -An S4 Package for Kernel Methods in R. Journal of Statistical Software, 11, 1-20.
  18. Hosmer, D. and S. Lemeshow, (Eds.) , 2005: Applied Logistic Regression. John Wiley & Sons, New York.
  19. Fawcett, T., 2006: An introduction to ROC analysis. Pattern Recognition Letters, 27, 861-874.
  20. ESRI, (Ed.) , 2006: ArcGIS 10.1. Environmental System Research Institute, Inc., Redlands, CA.
  21. Liu, Y., N. V. Chawla, M. P. Harper, E. Shriberg, and A. Stolcke, 2006: A study in machine learning from imbalanced data for sentence boundary detection in speech. Computer Speech & Language, 20 (4), 468-494.
  22. Fischer, L., A. Kääb, C. Huggel, and J. Noetzli, 2006: Geology, glacier retreat and permafrost degradation as controlling factors of slope instabilities in a high- mountain rock wall: the Monte Rosa east face. Natural Hazards and Earth System Sciences, 6 (5), 761-772.
  23. Hall, K., 2006: Perceptions of rock weathering in cold regions: a discussion on space and time attributes of scale. Géomorphologie, 3, 187-196.
  24. Diggle, P. and P. J. Ribeiro, 2007: Model-based Geostatistics. Springer Series in Statistics, Springer.
  25. Hales, T. and J. Roering, 2009: A frost "buzzsaw" mechanism for erosion of the eastern Southern Alps, New Zealand. Geomorphology, 107 (3-4), 241-253.
  26. Wang, Y. and S. Hou, 2009: A new interpolation method for Antarctic surface temperature. Progress in Natural Science, 19 (12), 1843-1849.
  27. Roebeling, R. and I. Holleman, 2009: SEVIRI rainfall retrieval and validation us- ing weather radar observations. Journal of Geophysical Research, 114, D21 202. REFERENCES
  28. Ruß, G. and A. Brenning, 2010: Data Mining in Precision Agriculture: Manage- ment of Spatial Information, 350-359. Springer Berlin Heidelberg.
  29. Fava, F., G. Parolo, R. Colombo, F. Gusmeroli, G. Della Marianna, A. Monteiro, and S. Bocchi, 2010: Fine-scale assessment of hay meadow productivity and plant diversity in the European Alps using field spectrometric data. Agriculture, Ecosystems & Environment, 137, 151-157.
  30. Cobo, J. G., G. Dercon, T. Yekeye, L. Chapungu, C. Kadzere, A. Murwira, R. Delve, and G. Cadisch, 2010: Integration of mid-infrared spectroscopy and geostatistics in the assessment of soil spatial variability at landscape level. Geoderma, 158 (3), 398-411.
  31. Kühnlein, M., B. Thies, T. Nauss, and J. Bendix, 2010: Rainfall-Rate Assignment Using MSG SEVIRI Data -A Promising Approach to Spaceborne Rainfall-Rate Retrieval for Midlatitudes. Journal of Applied Meteorology and Climatology, 49 (7), 1477-1495.
  32. Shmueli, G., 2010: To Explain or to Predict? Statistical Science, 25 (3), 289- 310.
  33. Gokaraju, B., S. S. Durbha, R. L. King, and N. H. Younan, 2011: A Ma- chine Learning Based Spatio-Temporal Data Mining Approach for Detection of Harmful Algal Blooms in the Gulf of Mexico. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4 (3), 710-720.
  34. Ravanel, L. and P. Deline, 2011: Climate influence on rockfalls in high-Alpine steep rockwalls: The north side of the Aiguilles de Chamonix (Mont Blanc massif) since the end of the 'Little Ice Age'. The Holocene, 21 (2), 357-365.
  35. Kidd, C. and G. Huffman, 2011: Global precipitation measurement. Meteorolog- ical Applications, 18 (3), 334-353.
  36. Merk, C., J. Cermak, and J. Bendix, 2011: Retrieval of optical and microphysical cloud properties from Meteosat SEVIRI data at night -a feasibility study based on radiative transfer calculations. Remote Sensing Letters, 2 (4), 357-366.
  37. Hengl, T., G. B. M. Heuvelink, M. Perčec Tadić, and E. J. Pebesma, 2011: Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images. Theoretical and Applied Climatology, 107 (1), 265-277.
  38. Shirzadi, A., L. Saro, O. Hyun Joo, and K. Chapi, 2012: A GIS-based logistic regression model in rock-fall susceptibility mapping along a mountainous road: Salavat Abad case study, Kurdistan, Iran. Natural Hazards, 64 (2), 1639-1656. REFERENCES
  39. Rasouli, K., W. W. Hsieh, and A. J. Cannon, 2012: Daily streamflow forecasting by machine learning methods with weather and climate inputs. Journal of Hydrology, 414-415, 284-293.
  40. Lin, S., N. J. Moore, J. P. Messina, M. H. DeVisser, and J. Wu, 2012: Evalua- tion of estimating daily maximum and minimum air temperature with MODIS data in east Africa. International Journal of Applied Earth Observation and Geoinformation, 18, 128-140.
  41. Vorpahl, P., H. Elsenbeer, M. Märker, and B. Schröder, 2012: How can statistical models help to determine driving factors of landslides? Ecological Modelling, 239, 27-39.
  42. Verrelst, J., J. Muñoz, L. Alonso, J. Delegido, J. P. Rivera, G. Camps-Valls, and J. Moreno, 2012: Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3. Remote Sensing of Environment, 118, 127-139.
  43. Sternberg, T., 2012: Piospheres and Pastoralists: Vegetation and Degradation in Steppe Grasslands. Human Ecology, 40 (6), 811-820.
  44. Michoud, C., M.-H. Derron, P. Horton, M. Jaboyedoff, F.-J. Baillifard, A. Loye, P. Nicolet, A. Pedrazzini, and A. Queyrel, 2012: Rockfall hazard and risk assessments along roads at a regional scale: example in Swiss Alps. Natural Hazards and Earth System Sciences, 12 (3), 615-629.
  45. Heuvelink, G., D. Griffith, T. Hengl, and S. Melles, 2012: Sampling Design Optimization for Space-Time Kriging. Spatio-Temporal Design, W. Jorgeteu, Müller, Ed., John Wiley & Sons, Ltd, 207-230.
  46. Pebesma, E., 2012: spacetime: Spatio-Temporal Data in R. Journal of Statistical Software, 51 (1), 1-30.
  47. Hengl, T., G. B. M. Heuvelink, M. Perčec Tadić, and E. J. Pebesma, 2012: Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images. Theoretical and Applied Climatology, 107 (1), 265-277.
  48. Wang, Y., M. Wang, and J. Zhao, 2013: A Comparison of MODIS LST Retrievals with in Situ Observations from AWS over the Lambert Glacier Basin, East Antarctica. International Journal of Geosciences, 4, 611-617.
  49. Giannakos, A. and H. Feidas, 2013: Classification of convective and stratiform rain based on the spectral and textural features of Meteosat Second Generation infrared data. Theoretical and Applied Climatology, 113 (3-4), 495-510.
  50. Emamifar, S., A. Rahimikhoob, and A. A. Noroozi, 2013: Daily mean air tem- perature estimation from MODIS land surface temperature products based on M5 model tree. International Journal of Climatology, 33 (15), 3174-3181.
  51. Tapakis, R. and A. Charalambides, 2013: Equipment and methodologies for cloud detection and classification: A review. Solar Energy, 95, 392-430.
  52. Zhu, W., A. Lü, and S. Jia, 2013: Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products. Remote Sensing of Environment, 130, 62-73.
  53. Lakshmi, V., 2013: Remote Sensing of Soil Moisture. ISRN Soil Science, 2013, 1-33.
  54. Ghosh, A. and P. Joshi, 2014: A comparison of selected classification algorithms for mapping bamboo patches in lower Gangetic plains using very high resolution WorldView 2 imagery. International Journal of Applied Earth Observation and Geoinformation, 26, 298-311.
  55. Lehnert, L., H. Meyer, N. Meyer, C. Reudenbach, and J. Bendix, 2014: A hyper- spectral indicator system for rangeland degradation on the Tibetan Plateau: A case study towards spaceborne monitoring. Ecological Indicators, 39, 54-64.
  56. Kühnlein, M., 2014: A machine learning based 24-h-technique for an area-wide rainfall retrieval using MSG SEVIRI data over Central Europe. Ph.D. thesis, Fachbereich Geographie der Philipps-Universität Marburg.
  57. Carr, D., 2014: hexbin: Hexagonal Binning Routines. URL http://CRAN.R- project.org/package=hexbin, R package version 1.26-2.
  58. Foereid, B., D. S. Ward, N. Mahowald, E. Paterson, and J. Lehmann, 2014: The sensitivity of carbon turnover in the Community Land Model to modified assumptions about soil processes. Earth System Dynamics, 5, 211-221.
  59. Mazzocchi, F., 2015: Could Big Data be the end of theory in science? EMBO Reports, 16 (10), 1250-1255.
  60. Magnin, F., M. Krautblatter, P. Deline, L. Ravanel, E. Malet, and A. Bevington, 2015: Determination of warm, sensitive permafrost areas in near-vertical rock- walls and evaluation of distributed models by electrical resistivity tomography. Journal of Geophysical Research: Earth Surface, 120 (5), 745-762.
  61. Ridgeway, G., 2015: gbm: Generalized Boosted Regression Models. URL https: //CRAN.R-project.org/package=gbm, R package version 2.1.1.
  62. Brungard, C. W., J. L. Boettinger, M. C. Duniway, S. A. Wills, and T. C. E. Jr., 2015: Machine learning for predicting soil classes in three semi-arid landscapes. Geoderma, 239-240, 68-83.
  63. Hengl, T., P. Roudier, D. Beaudette, and E. Pebesma, 2015: plotKML: Scientific Visualization of Spatio-Temporal Data. Journal of Statistical Software, 63 (1), 1-25.
  64. Kaptué, A. T., N. P. Hanan, L. Prihodko, and J. A. Ramirez, 2015: Spatial and temporal characteristics of rainfall in Africa: Summary statistics for temporal downscaling. Water Resources Research, 51 (4), 2668-2679.
  65. Gasch, C. K., T. Hengl, B. Gräler, H. Meyer, T. S. Magney, and D. J. Brown, 2015: Spatio-temporal interpolation of soil water, temperature, and electrical conductivity in 3D + T: The Cook Agronomy Farm data set. Spatial Statistics, 14, Part A, 70-90.
  66. Valentine, A. and L. Kalnins, 2016: An introduction to learning algorithms and potential applications in geomorphometry and Earth surface dynamics. Earth Surface Dynamics, 4 (2), 445-460.
  67. Heung, B., H. C. Ho, J. Zhang, A. Knudby, C. E. Bulmer, and M. G. Schmidt, 2016: An overview and comparison of machine-learning techniques for classifi- cation purposes in digital soil mapping. Geoderma, 265, 62-77.
  68. Lehnert, L. W., K. Wesche, K. Trachte, C. Reudenbach, and J. Bendix, 2016: Climate variability rather than overstocking causes recent large scale cover changes of Tibetan pastures. Scientific Reports, 6, 24 367.
  69. Brevik, E. C., C. Calzolari, B. A. Miller, P. Pereira, C. Kabala, A. Baumgarten, and A. Jordán, 2016: Soil mapping, classification, and pedologic modeling: History and future directions. Geoderma, 264, Part B, 256-274.
  70. Janatian, N., M. Sadeghi, S. H. Sanaeinejad, E. Bakhshian, A. Farid, S. M. Hasheminia, and S. Ghazanfari, 2017: A statistical framework for estimating air temperature using MODIS land surface temperature data. International Journal of Climatology, 37 (3), 1181-1194.
  71. Gray, W. and G. Gray, 2017: Introduction to Environmental Modeling. Cambridge University Press.
  72. Benas, N., S. Finkensieper, M. Stengel, G.-J. van Zadelhoff, T. Hanschmann, R. Hollmann, and J. F. Meirink, 2017: The MSG-SEVIRI based cloud property data record CLAAS-2. Earth System Science Data Discussions, 2017, 1-36.
  73. Hengl, T., G. B. Heuvelink, and D. G. Rossiter, 2007: About regression-kriging: From equations to case studies. Computers & Geosciences, 33 (10), 1301-1315.
  74. Yang, Y., J. Fang, Y. Pan, and C. Ji, 2009: Aboveground biomass in Tibetan grasslands. Journal of Arid Environments, 73 (1), 91-95.
  75. Rosenfield, G. H. and K. Fitzpatrick-Lins, 1986: A coefficient of agreement as a measure of thematic classification accuracy. Photogrammetric Engineering & Remote Sensing, 52 (2), 223-227.
  76. Jarvis, C. H. and N. Stuart, 2001: A Comparison among Strategies for Interpolat- ing Maximum and Minimum Daily Air Temperatures. Part II: The Interaction between Number of Guiding Variables and the Type of Interpolation Method. Journal of Applied Meteorology, 40 (6), 1075-1084.
  77. Jing, W., Y. Yang, X. Yue, and X. Zhao, 2016: A Comparison of Different Regression Algorithms for Downscaling Monthly Satellite-Based Precipitation over North China. Remote Sensing, 8 (10), 835.
  78. Statnikov, A., L. Wang, and C. F. Aliferis, 2008: A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics, 9, 319-319.
  79. Tobler, W. R., 1970: A Computer Movie Simulating Urban Growth in the Detroit Region. Economic Geography, 46, 234-240.
  80. Krinner, G., N. Viovy, N. de Noblet-Ducoudré, J. Ogée, J. Polcher, P. Friedling- stein, P. Ciais, S. Sitch, and I. C. Prentice, 2005: A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeo- chemical Cycles, 19 (1).
  81. Ballantyne, C. K., 2002: A general model of paraglacial landscape response. The Holocene, 12 (3), 371-376.
  82. Fu, P. and P. M. Rich, 2002: A geometric solar radiation model with applica- tions in agriculture and forestry. Computers and Electronics in Agriculture, 37 (1-3), 25-35.
  83. Kavzoglu, T. and I. Colkesen, 2009: A kernel functions analysis for support vector machines for land cover classification. International Journal of Applied Earth Observation and Geoinformation, 11 (5), 352-359.
  84. Gao, Q. Z., Y. F. Wan, H. M. Xu, Y. Li, W. Z. Jiangcun, and A. Borjigidai, 2010: Alpine grassland degradation index and its response to recent climate variability in Northern Tibet, China. Quaternary International, 226 (1-2), 143-150.
  85. Miehe, G., K. Bach, S. Miehe, J. Kluge, Y. Yongping, L. Duo, S. Co, and K. Wesche, 2011a: Alpine steppe plant communities of the Tibetan highlands. Applied Vegetation Science, 14 (4), 547-560.
  86. Messenzehl, K., H. Meyer, J.-C. Otto, T. Hoffmann, and R. Dikau, 2017: Regional-scale controls on the spatial activity of rockfalls (Turtmann Valley, Swiss Alps) -A multivariate modeling approach. Geomorphology, 287, 29-45.
  87. Jost, G., G. Heuvelink, and A. Papritz, 2005: Analysing the space-time distribu- tion of soil water storage of a forest ecosystem using spatio-temporal kriging. Geoderma, 128 (3-4), 258-273.
  88. Liu, Y., D.-G. Xi, Z.-L. Li, and C.-X. Shi, 2014: Analysis and Application of the Relationship between Cumulonimbus (Cb) Cloud Features and Precipitation Based on FY-2C Image. Atmosphere, 5 (2), 211-229.
  89. Rodriguez-Galiano, V., B. Ghimire, J. Rogan, M. Chica-Olmo, and J. Rigol- Sanchez, 2012: An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 93-104.
  90. Grimes, D., E. Coppola, M. Verdecchia, and G. Visconti, 2003: A neural network approach to real-time rainfall estimation for Africa using satellite data. Journal of Hydrometeorology, 4, 1119-1133.
  91. Wichmann, V., T. Heckmann, F. Haas, and M. Becht, 2009: A new modelling approach to delineate the spatial extent of alpine sediment cascades. Geomor- phology, 111 (1-2), 70-78.
  92. Gudmundsson, G., 1994: An order-of-magnitude estimate of the current uplift- rates in Switzerland caused by the Würm alpine deglaciation 545-557. Eclogae Geologicae Helvetiae, 87.
  93. Schneider, D. P. and D. B. Reusch, 2016: Antarctic and Southern Ocean Surface Temperatures in CMIP5 Models in the Context of the Surface Energy Budget. Journal of Climate, 29 (5), 1689-1716.
  94. Lazzara, M. A., G. A. Weidner, L. M. Keller, J. E. Thom, and J. J. Cassano, 2012: Antarctic Automatic Weather Station Program: 30 Years of Polar Observa- tion. Bulletin of the American Meteorological Society, 93 (10), 1519-1537.
  95. Beven, K. J. and M. J. Kirkby, 1979: A physically based, variable contribut- ing area model of basin hydrology / Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant. Hydrological Sciences Bul- letin, 24 (1), 43-69.
  96. Hilhorst, M. A., 2000: A Pore Water Conductivity Sensor. Soil Science Society of America Journal, 64, 1922-1925.
  97. Nordgren, A., 1988: Apparatus for the continuous, long-term monitoring of soil respiration rate in large numbers of samples. Soil Biology and Biochemistry, 20 (6), 955-957.
  98. Corwin, D. and S. Lesch, 2005: Apparent soil electrical conductivity measure- ments in agriculture. Computers and Electronics in Agriculture, 46 (1-3), 11-43.
  99. Caputo, B., K. Sim, F. Furesjo, and A. Smola, 2002: Appearance-based object recognition using SVMs: which kernel should I use? Proc of NIPS workshop on Statitsical methods for computational experiments in visual processing and computer vision.
  100. Li, J., A. D. Heap, A. Potter, and J. J. Daniell, 2011: Application of machine learning methods to spatial interpolation of environmental variables. Environ- mental Modelling & Software, 26 (12), 1647-1659.
  101. Kleinbaum, D., L. Kupper, K. Muller, and A. Nizam, 1998: Applied Regression Analysis and Other Multivariable Methods. Duxbury Press, Pacific Grove.
  102. Paola, J. and R. Schowengerdt, 1995: A review and analysis of backpropagation neural networks for classification of remotely-sensed multi-spectral imagery. International Journal of Remote Sensing, 16 (16), 3033-3058.
  103. Levizzani, V., R. Amorati, and F. Meneguzzo, 2002: A Review of Satellite-based Rainfall Estimation Methods. Tech. rep., European Commission Project MU- SIC Report (EVK1-CT-2000-00058).
  104. Selby, M., 1980: A rock mass strength classification for geomorphic purposes: with tests from Antarctica and New Zealand. Zeitschrift für Geomorphologie, 24, 31-51.
  105. Tebbi, M. and B. Haddad, 2016: Artificial intelligence systems for rainy areas de- tection and convective cells' delineation for the south shore of Mediterranean Sea during day and nighttime using MSG satellite images. Atmospheric Re- search, 178-179, 380-392.
  106. Rivolta, G., F. S. Marzano, E. Coppola, and M. Verdecchia, 2006: Artificial neural-network technique for precipitation nowcasting from satellite imagery. Advances in Geosciences, 7, 97-103.
  107. Adler, R. F. and A. J. Negri, 1988: A Satellite Infrared Technique to Estimate Tropical Convective and Stratiform Rainfall. Journal of Applied Meteorology, 27, 30-51.
  108. Krogh, A. and J. A. Hertz, 1992: A Simple Weight Decay Can Improve Gen- eralization. Advances in Neural Information Processing Systems 4, Morgan Kaufmann, 950-957.
  109. Zha, Y., J. Gao, S. Ni, Y. Liu, J. Jiang, and Y. Wei, 2003: A spectral reflectance- based approach to quantification of grassland cover from Landsat TM imagery. Remote Sensing of Environment, 87 (2-3), 371-375.
  110. Lehnert, L. W., H. Meyer, N. Meyer, C. Reudenbach, and J. Bendix, 2013: As- sessing pasture quality and degradation status using hyperspectral imaging: a case study from western Tibet. Proc. SPIE 8887, Remote Sensing for Agricul- ture, Ecosystems, and Hydrology XV, 88870I (16 October 2013).
  111. Liu, Y., Y. Zha, J. Gao, and S. Ni, 2004: Assessment of grassland degradation near Lake Qinghai, West China, using Landsat TM and in situ reflectance spectra data. International Journal of Remote Sensing, 25 (20), 4177-4189.
  112. Frattini, P., G. Crosta, A. Carrara, and F. Agliardi, 2008: Assessment of rock- fall susceptibility by integrating statistical and physically-based approaches. Geomorphology, 94 (3-4), 419-437.
  113. Zhong, L., Y. Ma, M. S. Salama, and Z. Su, 2010: Assessment of vegetation dynamics and their response to variations in precipitation and temperature in the Tibetan Plateau. Climatic Change, 103 (3-4), 519-535.
  114. Tian, B., M. A. Shaikh, M. R. Azimi-Sadjadi, T. H. V. Haar, and D. L. Reinke, 1999: A study of cloud classification with neural networks using spectral and textural features. IEEE Transactions on Neural Networks, 10 (1), 138-151.
  115. Walder, J. and B. Hallet, 1985: A theoretical model of the fracture of rock during freezing. Geological Society of America Bulletin, 96 (3), 336-346.
  116. Henderson, B., E. Bui, C. Moran, and D. Simon, 2005: Australia-wide predictions of soil properties using decision trees. Geoderma, 124 (3-4), 383-398.
  117. Günther, A., J. Wienhöfer, and H. Konietzky, 2012: Automated mapping of rock slope geometry, kinematics and stability with RSS-GIS. Natural Hazards, 61 (1), 29-49.
  118. Ludwig, A., H. Meyer, and T. Nauss, 2016: Automatic classification of Google Earth images for a larger scale monitoring of bush encroachment in South Africa. International Journal of Applied Earth Observation and Geoinforma- tion, 50, 89-94.
  119. Fretwell, P., et al., 2013: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere, 7 (1), 375-393.
  120. Murton, J. B., R. Peterson, and J.-C. Ozouf, 2006: Bedrock Fracture by Ice Segregation in Cold Regions. Science, 314 (5802), 1127-1129.
  121. Panchal, G., A. Ganatra, Y. P. Kosta, and D. Panchal, 2011: Behaviour Analysis of Multilayer Perceptrons with Multiple Hidden Neurons and Hidden Layers. International Journal of Computer Theory and Engineering, 3 (2), 332-337.
  122. Vaglio Laurin, G., J. C.-W. Chan, Q. Chen, J. A. Lindsell, D. A. Coomes, L. Guer- riero, F. D. Frate, F. Miglietta, and R. Valentini, 2014: Biodiversity Mapping in a Tropical West African Forest with Airborne Hyperspectral Data. PLOS ONE, 9 (6), e97 910.
  123. Eitel, J. U., L. A. Vierling, M. E. Litvak, D. S. Long, U. Schulthess, A. A. Ager, D. J. Krofcheck, and L. Stoscheck, 2011: Broadband, red-edge information from satellites improves early stress detection in a New Mexico conifer woodland. Remote Sensing of Environment, 115 (12), 3640-3646.
  124. Symeonakis, E. and T. P. Higginbottom, 2014: Bush encroachment monitor- ing using multi-temporal Landsat data and random forests. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sci- ences, Vol. XL-2.
  125. Bowden, R. D., K. M. Newkirk, and G. M. Rullo, 1998: Carbon dioxide and methane fluxes by a forest soil under laboratory-controlled moisture and tem- perature conditions. Soil Biology and Biochemistry, 30 (12), 1591-1597.
  126. Borgomeo, E., K. V. Hebditch, A. C. Whittaker, and L. Lonergan, 2014: Charac- terising the spatial distribution, frequency and geomorphic controls on landslide occurrence, Molise, Italy. Geomorphology, 226, 148-161.
  127. Janik, L. and J. Skjemstad, 1995: Characterization and analysis of soils using mid-infrared partial least-squares .2. Correlations with some laboratory data. Soil Res., 33 (4), 637-650.
  128. Dixon, J. C. and C. E. Thorn, 2005: Chemical weathering and landscape devel- opment in mid-latitude alpine environments. Geomorphology, 67 (1), 127-145.
  129. Stengel, M., A. Kniffka, J. F. Meirink, M. Lockhoff, J. Tan, and R. Hollmann, 2014: CLAAS: the CM SAF cloud property data set using SEVIRI. Atmo- spheric Chemistry and Physics, 14 (8), 4297-4311.
  130. Feidas, H. and A. Giannakos, 2012: Classifying convective and stratiform rain using multispectral infrared Meteosat Second Generation satellite data. Theo- retical and Applied Climatology, 108 (3-4), 613-630.
  131. Ceccato, P., K. Fernandes, D. Ruiz, and E. Allis, 2014: Climate and environmen- tal monitoring for decision making. Earth Perspectives, 1 (1), 16.
  132. Hales, T. and J. J. Roering, 2005: Climate-controlled variations in scree produc- tion, Southern Alps, New Zealand. Geology, 33 (9), 701-704.
  133. Hales, T. C. and J. J. Roering, 2007: Climatic controls on frost cracking and implications for the evolution of bedrock landscapes. Journal of Geophysical Research: Earth Surface, 112 (F2).
  134. Ameur, Z., S. Ameur, A. Adane, H. Sauvageot, and K. Bara, 2004: Cloud classi- fication using the textural features of Meteosat images. International Journal of Remote Sensing, 25 (21), 4491-4503.
  135. Welch, R. M., S. K. Sengupta, and D. W. Chen, 1988: Cloud field classifica- tion based upon high spatial resolution textural features: 1. Gray level co- occurrence matrix approach. Journal of Geophysical Research: Atmospheres, 93 (D10), 12 663-12 681.
  136. Eitel, J. U. H., D. S. Long, P. E. Gessler, and E. R. Hunt, 2008: Combined Spec- tral Index to Improve Ground-Based Estimates of Nitrogen Status in Dryland Wheat. Agronomy, 100 (6), 1694-1702.
  137. Steele, B., 2000: Combining multiple classifiers: an application using spatial and remotely sensed information for land cover type mapping. Remote Sensing of Environment, 74 (3), 545-556.
  138. Stahl, K., R. Moore, J. Floyer, M. Asplin, and I. McKendry, 2006: Comparison of approaches for spatial interpolation of daily air temperature in a large region with complex topography and highly variable station density. Agricultural and Forest Meteorology, 139 (3-4), 224-236.
  139. Meyer, H., M. Kühnlein, T. Appelhans, and T. Nauss, 2016b: Comparison of four machine learning algorithms for their applicability in satellite-based optical rainfall retrievals. Atmospheric Research, 169, Part B, 424-433.
  140. Hofstra, N., M. Haylock, M. New, P. Jones, and C. Frei, 2008: Comparison of six methods for the interpolation of daily, European climate data. Journal of Geophysical Research: Atmospheres, 113 (D21), d21110.
  141. Dorren, L. K. and A. C. Seijmonsbergen, 2003: Comparison of three GIS-based models for predicting rockfall runout zones at a regional scale. Geomorphology, 56 (1-2), 49-64.
  142. Graham, M. H., 2003: Confronting Multicollinearity in Ecological Multiple Re- gression. Ecology, 84 (11), 2809-2815.
  143. Prick, A., 1997: Critical Degree of Saturation as a Threshold Moisture Level in Frost Weathering of Limestones. Permafrost and Periglacial Processes, 8 (1), 91-99.
  144. Schlunegger, F. and M. Hinderer, 2001: Crustal uplift in the Alps: why the drainage pattern matters. Terra Nova, 13 (6), 425-432.
  145. Kuhn, M., S. Weston, C. Keefer, and N. C. C. code for Cubist by Ross Quinlan, 2014: Cubist: Rule-and Instance-Based Regression Modeling. URL https: //CRAN.R-project.org/package=Cubist, R package version 0.0.18.
  146. Capacci, D. and B. J. Conway, 2005: Delineation of precipitation areas from MODIS visible and infrared imagery with artificial neural networks. Meteoro- logical Applications, 12 (4), 291-305.
  147. Brenning, A., S. Long, and P. Fieguth, 2012: Detecting rock glacier flow struc- tures using Gabor filters and IKONOS imagery. Remote Sensing of Environ- ment, 125, 227-237.
  148. Giannakos, A. and H. Feidas, 2011: Detection of rainy clouds based on their spectral and textural features on Meteosat multispectral infrared data. EU- METSAT Meteorological Satellite Conference, Oslo, Norway.
  149. Joseph, L. and L. Devadas, 2015: Detection of rooftop regions in rural areas using Support Vector Machine. International Journal of Scientific Research Engineering & Technology, 4 (5), 549-553.
  150. Jung, T., E. Ruprecht, and F. Wagner, 1998: Determination of Cloud Liquid Water Path over the Oceans from Special Sensor Microwave/Imager (SSM/I) Data Using Neural Networks. Journal of Applied Meteorology, 37 (8), 832-844.
  151. Lichtenthaler, H. and A. Wellburn, 1983: Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11 (5), 591-592.
  152. Schrott, L. and T. Hoffmann, 2003: Determing sediment thickness of talus slopes and valley fill deposits using seismic refraction -a comparision of 2D inter- pretation tools. Zeitschrift für Geomorphologie N.F., 132, 71-87.
  153. Escher, H., 1970: Die Bestimmung der klimatischen Schneegrenze in den Schweizer Alpen. Geographica Helvetica, 25 (1), 35-43.
  154. Sass, O., 1998: Die Steuerung von Steinschlagmenge durch Mikroklima, Gesteins- feuchte und Gesteinseigenschaften im westlichen Karwendelgebirge (Bayerische Alpen). Münchner Geographische Abhandlungen. Reihe B. Geobuch-Verlag, München, 175.
  155. Ackerman, S. A., K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, 1998: Discriminating clear sky from clouds with MODIS. Journal of Geophysical Research: Atmospheres, 103 (D24), 32 141-32 157.
  156. Thies, B., T. Nauss, and J. Bendix, 2008a: Discriminating raining from non- raining cloud areas at mid-latitudes using meteosat second generation SEVIRI night-time data. Meteorological Applications, 15 (2), 219-230.
  157. Thies, B., T. Nauss, and J. Bendix, 2008b: Discriminating raining from non- raining clouds at mid-latitudes using meteosat second generation daytime data. Atmospheric Chemistry and Physics, 8 (9), 2341-2349.
  158. Nauss, T. and A. A. Kokhanovsky, 2006: Discriminating raining from non-raining clouds at mid-latitudes using multispectral satellite data. Atmospheric Chem- istry and Physics, 6 (12), 5031-5036.
  159. Matsouka, N., 1994: Matsouka, N., 1994. Diurnal freeze-thaw depth in rockwalls -Field-measurements and theoretical considerations. Earth Surface Processes and Landforms, 19, 423-435.
  160. Ward, D., 2005: Do we understand the causes of bush encroachment in African savannas? African Journal of Range and Forage Science, 22, 101-105.
  161. Im, J., S. Park, J. Rhee, J. Baik, and M. Choi, 2016: Downscaling of AMSR-E soil moisture with MODIS products using machine learning approaches. Envi- ronmental Earth Sciences, 75 (15), 1120.
  162. Ke, Y., J. Im, S. Park, and H. Gong, 2016: Downscaling of MODIS One Kilometer Evapotranspiration Using Landsat-8 Data and Machine Learning Approaches. Remote Sensing, 8 (3), 215.
  163. Tripathi, S., V. Srinivas, and R. S. Nanjundiah, 2006: Downscaling of precipita- tion for climate change scenarios: A support vector machine approach. Journal of Hydrology, 330 (3-4), 621-640.
  164. Roques, K. G., T. G. O'Connor, and A. R. Watkinson, 2001: Dynamics of Shrub Encroachment in an African Savanna: Relative Influences of Fire, Herbivory, Rainfall and Density Dependence. Journal of Applied Ecology, 38 (2), 268-280.
  165. Britz, M.-L. and D. Ward, 2007: Dynamics of woody vegetation in a semi-arid savanna, with a focus on bush encroachment. African Journal of Range and Forage Science, 24 (3), 131-140.
  166. Bonan, G., 2008: Ecological climatology. concepts and applications. 2d ed., Cam- bridge University Press, Cambridge.
  167. Fynn, R. and T. O'Connor, 2000: Effect of stocking rate and rainfall on rangeland dynamics and cattle performance in a semi-arid savanna, South Africa. Journal of Applied Ecology, 37 (3), 491-507.
  168. Thomson, B. C., N. J. Ostle, N. P. McNamara, A. S. Whiteley, and R. I. Griffiths, 2010: Effects of sieving, drying and rewetting upon soil bacterial community structure and respiration rates. Journal of Microbiological Methods, 83 (1), 69-73.
  169. Keith, H., K. Jacobsen, and R. Raison, 1997: Effects of soil phosphorus avail- ability, temperature and moisture on soil respiration in Eucalyptus pauciflora forest. Plant and Soil, 190 (1), 127-141.
  170. Eigenberg, R., J. Doran, J. Nienaber, R. Ferguson, and B. Woodbury, 2002: Electrical conductivity monitoring of soil condition and available N with animal manure and a cover crop. Agriculture, Ecosystems & Environment, 88 (2), 183-193.
  171. Krautblatter, M. and C. Hauck, 2007: Electrical resistivity tomography monitor- ing of permafrost in solid rock walls. Journal of Geophysical Research: Earth Surface, 112 (F2).
  172. Ballantyne, C. K., P. Wilson, D. Gheorghiu, and A. Rodés, 2014: Enhanced rock- slope failure following ice-sheet deglaciation: timing and causes. Earth Surface Processes and Landforms, 39 (7), 900-913.
  173. Girard, L., S. Gruber, S. Weber, and J. Beutel, 2013: Environmental controls of frost cracking revealed through in situ acoustic emission measurements in steep bedrock. Geophysical Research Letters, 40 (9), 1748-1753.
  174. Paine, A. D., 1985: 'Ergodic' reasoning in geomorphology. Progress in Physical Geography, 9 (1), 1-15.
  175. Benali, A., A. Carvalho, J. Nunes, N. Carvalhais, and A. Santos, 2012: Estimating air surface temperature in Portugal using MODIS LST data. Remote Sensing of Environment, 124, 108-121.
  176. Shi, L., P. Liu, I. Kloog, M. Lee, A. Kosheleva, and J. Schwartz, 2016: Es- timating daily air temperature across the Southeastern United States using high-resolution satellite data: A statistical modeling study. Environmental Re- search, 146, 51-58.
  177. Neteler, M., 2010: Estimating Daily Land Surface Temperatures in Mountainous Environments by Reconstructed MODIS LST Data. Remote Sensing, 2, 333- 351.
  178. Xu, Y., A. Knudby, and H. C. Ho, 2014: Estimating daily maximum air tem- perature from MODIS in British Columbia, Canada. International Journal of Remote Sensing, 35 (24), 8108-8121.
  179. Huang, Z., B. J. Turner, S. J. Dury, I. R. Wallis, and W. J. Foley, 2004: Es- timating foliage nitrogen concentration from HYMAP data using continuum removal analysis. Remote Sensing of Environment, 93 (1-2), 18-29.
  180. Beeri, O., R. Phillips, J. Hendrickson, A. B. Frank, and S. Kronberg, 2007: Estimating forage quantity and quality using aerial hyperspectral imagery for northern mixed-grass prairie. Remote Sensing of Environment, 110 (2), 216- 225.
  181. Badreldin, N. and A. Sanchez-Azofeifa, 2015: Estimating Forest Biomass Dy- namics by Integrating Multi-Temporal Landsat Satellite Images with Ground and Airborne LiDAR Data in the Coal Valley Mine, Alberta, Canada. Remote Sensing, 7 (3), 2832-2849.
  182. Rhee, J. and J. Im, 2014: Estimating High Spatial Resolution Air Temperature for Regions with Limited in situ Data Using MODIS Products. Remote Sensing, 6 (8), 7360.
  183. Ahmad, S., A. Kalra, and H. Stephen, 2010: Estimating soil moisture using remote sensing data: A machine learning approach. Advances in Water Re- sources, 33 (1), 69-80.
  184. Blagodatsky, S. A., O. Heinemeyer, and J. Richter, 2000: Estimating the active and total soil microbial biomass by kinetic respiration analysis. Biology and Fertility of Soils, 32 (1), 73-81.
  185. Gessner, U., M. Machwitz, C. Conrad, and S. Dech, 2013: Estimating the frac- tional cover of growth forms and bare surface in savannas. A multi-resolution approach based on regression tree ensembles. Remote Sensing of Environment, 129, 90-102.
  186. Lary, D., F. Faruque, N. Malakar, A. Moore, B. Roscoe, Z. Adams, and Y. Eggel- ston, 2014: Estimating the global abundance of ground level presence of par- ticulate matter (PM2.5). Geospatial Health, 8 (3), 611-630.
  187. Shen, M., Y. Tang, J. Klein, P. Zhang, S. Gu, A. Shimono, and J. Chen, 2008: Estimation of aboveground biomass using in situ hyperspectral measurements in five major grassland ecosystems on the Tibetan Plateau. Journal of Plant Ecology, 1 (4), 247-257.
  188. Colombi, A., C. De Michele, M. Pepe, and A. Rampini, 2007: Estimation of daily mean air temperature from MODIS LST in alpine areas. EARSeL eProceedings, Vol. 6.
  189. Vuolo, F., N. Neugebauer, S. F. Bolognesi, C. Atzberger, and G. D'Urso, 2013: Estimation of Leaf Area Index Using DEIMOS-1 Data: Application and Trans- ferability of a Semi-Empirical Relationship between two Agricultural Areas. Remote Sensing, 5 (3), 1274.
  190. Lensky, I. M. and D. Rosenfeld, 1997: Estimation of Precipitation Area and Rain Intensity Based on the Microphysical Properties Retrieved from NOAA AVHRR Data. Journal of Applied Meteorology, 36 (3), 234-242.
  191. Goetz, J., A. Brenning, H. Petschko, and P. Leopold, 2015: Evaluating machine learning and statistical prediction techniques for landslide susceptibility mod- eling. Computers & Geosciences, 81, 1-11.
  192. Appelhans, T., E. Mwangomo, D. R. Hardy, A. Hemp, and T. Nauss, 2015: Evaluating machine learning approaches for the interpolation of monthly air temperature at Mt. Kilimanjaro, Tanzania. Spatial Statistics, 14, Part A, 91-113.
  193. Behrangi, A., K. Hsu, B. Imam, S. Sorooshian, and R. Kuligowski, 2009b: Evalu- ating the Utility of Multispectral Information in Delineating the Areal Extent of Precipitation. Journal of Hydrometeorology, 10 (3), 684-700.
  194. Miska, L. and H. Jan, 2005: Evaluation of current statistical approaches for predictive geomorphological mapping. Geomorphology, 67 (3-4), 299-315.
  195. Numata, I., D. A. Roberts, O. A. Chadwick, J. P. Schimel, L. S. Galvao, and J. V. Soares, 2008: Evaluation of hyperspectral data for pasture estimate in the Brazilian Amazon using field and imaging spectrometers. Remote Sensing of Environment, 112 (4), 1569-1583.
  196. Vancutsem, C., P. Ceccato, T. Dinku, and S. J. Connor, 2010: Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sensing of Environment, 114 (2), 449-465.
  197. Cattani, E., A. Merino, and V. Levizzani, 2016: Evaluation of Monthly Satellite- Derived Precipitation Products over East Africa. Journal of Hydrometeorology, 17 (10), 2555-2573.
  198. Thenkabail, P. S., R. B. Smith, and E. De Pauw, 2002: Evaluation of narrowband and broadband vegetation indices for determining optimal hyperspectral wave- bands for agricultural crop characterization. Photogrammetric Engineering & Remote Sensing, 68 (6), 607-621.
  199. Gallo, K., R. Hale, D. Tarpley, and Y. Yu, 2011: Evaluation of the Relation- ship between Air and Land Surface Temperature under Clear-and Cloudy-Sky Conditions. Journal of Applied Meteorology and Climatology, 50 (3), 767-775.
  200. Amitrano, D., S. Gruber, and L. Girard, 2012: Evidence of frost-cracking inferred from acoustic emissions in a high-alpine rock-wall. Earth and Planetary Science Letters, 341-344, 86-93.
  201. Allen, S. K., S. Gruber, and I. F. Owens, 2009: Exploring steep bedrock per- mafrost and its relationship with recent slope failures in the Southern Alps of New Zealand. Permafrost and Periglacial Processes, 20 (4), 345-356.
  202. Hu, Q., W. Wu, T. Xia, Q. Yu, P. Yang, Z. Li, and Q. Song, 2013: Exploring the Use of Google Earth Imagery and Object-Based Methods in Land Use/Cover Mapping. Remote Sensing, 5 (11), 6026-6042.
  203. Nogués-Bravo, D., M. Araújo, M. Errea, and J. Martínez-Rica, 2007: Exposure of global mountain systems to climate warming during the 21st Century. Global Environmental Change, 17 (3-4), 420-428.
  204. Allen, S. and C. Huggel, 2013: Extremely warm temperatures as a potential cause of recent high mountain rockfall. Global and Planetary Change, 107, 59-69.
  205. Luan, J., S. Liu, J. Wang, and X. Zhu, 2013: Factors affecting spatial variation of annual apparent Q10 of soil respiration in two warm temperate forests. PLoS ONE, 8, e64 167.
  206. Kerschen, G. and J. Golinval, 2004: Feature extraction using auto-associative neural networks. Smart Materials and Structures, 13 (1), 211.
  207. Long, R. J., S. O. Apori, F. B. Castro, and E. R. Orskov, 1999: Feed value of native forages of the Tibetan Plateau of China. Animal Feed Science and Technology, 80 (2), 101-113.
  208. Porter, J. and D. Demeritt, 2012: Flood-Risk Management, Mapping, and Plan- ning: The Institutional Politics of Decision Support in England. Environment and Planning A, 44 (10), 2359-2378.
  209. Feuillet, T., J. Coquin, D. Mercier, E. Cossart, A. Decaulne, H. P. Jónsson, and þorsteinn Saemundsson, 2014: Focusing on the spatial non-stationarity of land- slide predisposing factors in northern Iceland. Progress in Physical Geography, 38 (3), 354-377.
  210. Meyer, H., L. W. Lehnert, Y. Wang, C. Reudenbach, T. Nauss, and J. Bendix, 2017c: From local spectral measurements to maps of vegetation cover and biomass on the Qinghai-Tibet-Plateau: Do we need hyperspectral information? International Journal of Applied Earth Observation and Geoinformation, 55, 21-31.
  211. Prick, A., 2003: Frost weathering and rock fall in an arctic environment, Longyearbyen, Svalbard. Proceedings of the Eighth International Conference on Permafrost. Balkema, Lisse, M. Phillips, Ed., 907-912.
  212. Odeh, I., A. McBratney, and D. Chittleborough, 1995: Further results on pre- diction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging. Geoderma, 67 (3), 215-226.
  213. Jäckli, H., 1957: Gegenwartsgeologie des bündnerischen Rheingebietes: Ein Beitrag zur exogenen Dynamik alpiner Gebirgslandschaften (Exogene dynam- ics of an Alpine landscape), Beiträge zur Geologie der Schweiz, Geotechnische Serie, Vol. 36. Kümmerly & Frey AG, Bern.
  214. Guyon, I., J. Weston, S. Barnhill, and V. Vapnik, 2002: Gene Selection for Cancer Classification using Support Vector Machines. Machine Learning, 46 (1), 389- 422.
  215. Labhart, T., 2009: Geologie der Schweiz. Ott Verlag, Thun.
  216. Bearth, P., 1980: Geologischer Atlas Schweiz 1:25000. Blatt: 1308 St. Niklaus. Erläuterungen. Kümmerly & Frey AG, Bern.
  217. Reichenbach, P., M. Galli, M. Cardinali, F. Guzzetti, and F. Ardizzone, 2005: Geomorphological Mapping to Assess Landslide Risk: Concepts, Methods and Applications in the Umbria Region of Central Italy, 429-468. John Wiley & Sons, Ltd.
  218. Otto, J. and R. Dikau, 2004: Geomorphologic system analysis of a high mountain valley in the Swiss Alps. Z. Geomorphol. N.F., 48, 323-341.
  219. Wang, J., B. Fu, Y. Qiu, L. Chen, and Z. Wang, 2001: Geostatistical analysis of soil moisture variability on Da Nangou catchment of the loess plateau, China. Environmental Geology, 41 (1), 113-120.
  220. Goovaerts, P., 2000: Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 228 (1-2), 113-129.
  221. Ly, S., C. Charles, and A. Degré, 2011: Geostatistical interpolation of daily rain- fall at catchment scale: the use of several variogram models in the Ourthe and Ambleve catchments, Belgium. Hydrology and Earth System Sciences, 15 (7), 2259-2274.
  222. Bai, S.-B., J. Wang, G.-N. Lü, P.-G. Zhou, S.-S. Hou, and S.-N. Xu, 2010: GIS- based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China. Geomorphology, 115 (1-2), 23-31.
  223. Zhou, T., P. Shi, D. Hui, and Y. Luo, 2009: Global pattern of temperature sen- sitivity of soil heterotrophic respiration (Q10) and its implications for carbon- climate feedback. Journal of Geophysical Research: Biogeosciences, 114 (G2).
  224. Gong Li, S., Y. Harazono, T. Oikawa, H. L. Zhao, Z. Ying He, and X. L. Chang, 2000: Grassland desertification by grazing and the resulting micrometeorologi- cal changes in Inner Mongolia. Agricultural and Forest Meteorology, 102 (2-3), 125-137.
  225. Asner, G., A. Elmore, L. Olander, R. Martin, and A. Harris, 2004: Grazing sys- tems, ecosystem responses, and global change. Annual Review of Environment and Resources, 29, 261-299.
  226. de Boer, D. H., 1992: Hierarchies and spatial scale in process geomorphology: a review. Geomorphology, 4 (5), 303-318.
  227. Lefèvre, R., P. Barré, F. Moyano, B. Christensen, G. Bardoux, T. Eglin, C. Gi- rardin, S. Houot, T. Kätterer, F. van Oort, and C. Chenu, 2014: Higher tem- perature sensitivity for stable than for labile soil organic carbon -Evidence from incubations of long-term bare fallow soils. Global Change Biology, 20, 633-640.
  228. Langella, G., A. Basile, A. Bonfante, and F. Terribile, 2010: High-resolution space-time rainfall analysis using integrated ANN inference systems. Journal of Hydrology, 387 (3-4), 328-342.
  229. André, M.-F., 1997: Holocene Rockwall Retreat in Svalbard: A Triple-Rate Evo- lution. Earth Surface Processes and Landforms, 22 (5), 423-440.
  230. Miehe, G., S. Miehe, K. Kaiser, C. Reudenbach, L. Behrendes, L. Duo, and F. Schluetz, 2009: How old is pastoralism in Tibet? An ecological approach to the making of a Tibetan landscape. Palaeogeography, Palaeoclimatology, Palaeoecology, 276 (1-4), 130-147.
  231. Otto, J.-C., K. Kleinod, O. König, M. Krautblatter, M. Nyenhuis, I. Roer, M. Schneider, B. Schreiner, and R. Dikau, 2007: HRSC-A data: a new high-resolution data set with multipurpose applications in physical geography. Progress in Physical Geography, 31 (2), 179-197.
  232. Lehnert, L. W., H. Meyer, and J. Bendix, 2015a: hsdar: Manage, analyse and simulate hyperspectral data in R. R package version 0.3.0.
  233. Zech, W., F. Ziegler, I. Kögel-Knabner, and L. Haumaier, 1992: Humic sub- stances distribution and transformation in forest soils. Science of The Total Environment, 117, 155-174.
  234. Mutanga, O. and A. K. Skidmore, 2004: Hyperspectral band depth analysis for a better estimation of grass biomass (Cenchrus ciliaris) measured under controlled laboratory conditions. International Journal of Applied Earth Ob- servation and Geoinformation, 5 (2), 87-96.
  235. Psomas, A., 2008: Hyperspectral remote sensing for ecological analyses of grass- land ecosystems -spectral separability and derivation of NPP-related biophys- ical and biochemical parameters. Ph.D. thesis, University of Zürich (UNIZH), Zürich.
  236. Psomas, A., M. Kneubuhler, S. Huber, K. Itten, and N. E. Zimmermann, 2011: Hyperspectral remote sensing for estimating aboveground biomass and for ex- ploring species richness patterns of grassland habitats. International Journal of Remote Sensing, 32 (24), 9007-9031.
  237. Loye, A., M. Jaboyedoff, and A. Pedrazzini, 2009: Identification of potential rockfall source areas at a regional scale using a DEM-based geomorphometric analysis. Natural Hazards and Earth System Sciences, 9 (5), 1643-1653.
  238. Matasci, B., M. Jaboyedoff, A. Loye, A. Pedrazzini, M.-H. Derron, and G. Pe- drozzi, 2015: Impacts of fracturing patterns on the rockfall susceptibility and erosion rate of stratified limestone. Geomorphology, 241, 83-97.
  239. Cossart, E., D. Mercier, A. Decaulne, T. Feuillet, H. P. Jónsson, and p. Saeed Emamifarmundsson, 2014: Impacts of post-glacial rebound on land- slide spatial distribution at a regional scale in northern Iceland (Skagafjörður). Earth Surface Processes and Landforms, 39 (3), 336-350.
  240. Kühnlein, M., T. Appelhans, B. Thies, and T. Nauss, 2014a: Improving the accuracy of rainfall rates from optical satellite sensors with machine learning -A random forests-based approach applied to MSG SEVIRI. Remote Sensing of Environment, 141, 129-143.
  241. Ließ, M., J. Schmidt, and B. Glaser, 2016: Improving the Spatial Prediction of Soil Organic Carbon Stocks in a Complex Tropical Mountain Landscape by Methodological Specifications in Machine Learning Approaches. PLOS ONE, 11 (4), 1-22.
  242. Buitenwerf, R., W. J. Bond, N. Stevens, and W. S. W. Trollope, 2012: Increased tree densities in South African savannas: < 50 years of data suggests CO2 as a driver. Global Change Biology, 18 (2), 675-684.
  243. Loye, A., A. Pedrazzini, J. I. Theule, M. Jaboyedoff, F. Liébault, and R. Met- zger, 2012: Influence of bedrock structures on the spatial pattern of erosional landforms in small alpine catchments. Earth Surface Processes and Landforms, 37 (13), 1407-1423.
  244. Gunzburger, Y., V. Merrien-Soukatchoff, and Y. Guglielmi, 2005: Influence of daily surface temperature fluctuations on rock slope stability: case study of the Rochers de Valabres slope (France). International Journal of Rock Mechanics and Mining Sciences, 42 (3), 331-349.
  245. Moore, J. R., J. W. Sanders, W. E. Dietrich, and S. D. Glaser, 2009: Influence of rock mass strength on the erosion rate of alpine cliffs. Earth Surface Processes and Landforms, 34 (10), 1339-1352.
  246. Lazri, M., S. Ameur, and Y. Mohia, 2014: Instantaneous rainfall estimation using neural network from multispectral observations of SEVIRI radiometer and its application in estimation of daily and monthly rainfall. Advances in Space Research, 53 (1), 138-155.
  247. Heckmann, T., L. Hilger, L. Vehling, and M. Becht, 2016: Integrating field mea- surements, a geomorphological map and stochastic modelling to estimate the spatially distributed rockfall sediment budget of the Upper Kaunertal, Austrian Central Alps. Geomorphology, 260, 16-31.
  248. Draebing, D., M. Krautblatter, and R. Dikau, 2014: Interaction of thermal and mechanical processes in steep permafrost rock walls: A conceptual approach. Geomorphology, 226, 226-235.
  249. Kidd, C., P. Bauer, J. Turk, G. J. Huffman, R. Joyce, K.-L. Hsu, and D. Braith- waite, 2011: Intercomparison of High-Resolution Precipitation Products over Northwest Europe. Journal of Hydrometeorology, 13 (1), 67-83.
  250. Gritsch, C., M. Zimmermann, and S. Zechmeister-Boltenstern, 2015: Interde- pendencies between temperature and moisture sensitivities of CO 2 emissions in European land ecosystems. Biogeosciences, 12 (20), 5981-5993.
  251. Jin, M. and R. E. Dickinson, 1999: Interpolation of surface radiative temperature measured from polar orbiting satellites to a diurnal cycle: 1. Without clouds. Journal of Geophysical Research: Atmospheres, 104 (D2), 2105-2116.
  252. Huggel, C., J. J. Clague, and O. Korup, 2012: Is climate change responsible for changing landslide activity in high mountains? Earth Surface Processes and Landforms, 37 (1), 77-91.
  253. Gerber, E., 1974: Klassifikation von Schutthalden. Geographica Helvetica, 29 (2- 3), 73-82.
  254. Otukei, J. and T. Blaschke, 2010: Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algo- rithms. International Journal of Applied Earth Observation and Geoinforma- tion, 12, Supplement 1, S27-S31.
  255. Curatola Fernández, G. F., W. A. Obermeier, A. Gerique, M. F. L. Sandoval, L. W. Lehnert, B. Thies, and J. Bendix, 2015: Land Cover Change in the Andes of Southern Ecuador -Patterns and Drivers. Remote Sensing, 7 (3), 2509-2542.
  256. Cossart, E. E., 2008: Landform connectivity and waves of negative feedbacks during the paraglacial period, a case study : the Tabuc subcatchment since the end of the Little Ice Age (massif des Écrins, France). Géomorphologie : relief, processus, environnement, 4, 249-260.
  257. U.S Geological Survey, 2007: Landsat Image Mosaic of Antarctica (LIMA): U.S Geological Survey Fact Sheet 2007 -3116.
  258. Guzzetti, F., A. Carrara, M. Cardinali, and P. Reichenbach, 1999: Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31 (1-4), 181-216.
  259. Cruden, D. M. and X. Q. Hu, 1998: Landslides in the Rocky Mountains of Canada, 133-148. Springer Netherlands, Dordrecht.
  260. Catani, F., D. Lagomarsino, S. Segoni, and V. Tofani, 2013: Landslide suscep- tibility estimation by random forests technique: sensitivity and scaling issues. Natural Hazards and Earth System Sciences, 13 (11), 2815-2831.
  261. Lee, S. and T. Sambath, 2006: Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environmental Geology, 50 (6), 847-855.
  262. Curry, A. M. and C. J. Morris, 2004: Lateglacial and Holocene talus slope devel- opment and rockwall retreat on Mynydd Du, UK. Geomorphology, 58 (1-4), 85-106.
  263. Ivy-Ochs, S., H. Kerschner, M. Maisch, M. Christl, P. W. Kubik, and C. Schlüchter, 2009: Latest Pleistocene and Holocene glacier variations in the European Alps. Quaternary Science Reviews, 28 (21-22), 2137-2149.
  264. Sarkar, D., 2008: Lattice: multivariate data visualization with R. Springer.
  265. Carter, G. A. and A. K. Knapp, 2001: Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration. Amer- ican Journal of Botany, 88 (4), 677-684.
  266. Vanacker, V., M. Vanderschaeghe, G. Govers, E. Willems, J. Poesen, J. Deckers, and B. D. Bievre, 2003: Linking hydrological, infinite slope stability and land- use change models through GIS for assessing the impact of deforestation on slope stability in high Andean watersheds. Geomorphology, 52 (3-4), 299-315.
  267. Viles, H. A., 2013: Linking weathering and rock slope instability: non-linear perspectives. Earth Surface Processes and Landforms, 38 (1), 62-70.
  268. Allison, P., 2001: Logistic Regression Using the SAS System: Theory and Appli- cation. SAS Publishing, North Carolina.
  269. Camps-Valls, G., 2009: Machine learning in remote sensing data processing. IEEE International Workshop on Machine Learning for Signal Processing, 1-6.
  270. Shortridge, J. E., S. D. Guikema, and B. F. Zaitchik, 2016: Machine learning methods for empirical streamflow simulation: a comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds. Hydrology and Earth System Sciences, 20 (7), 2611-2628.
  271. Srivastava, P. K., D. Han, M. R. Ramirez, and T. Islam, 2013: Machine Learning Techniques for Downscaling SMOS Satellite Soil Moisture Using MODIS Land Surface Temperature for Hydrological Application. Water Resources Manage- ment, 27 (8), 3127-3144.
  272. Hungr, O., S. G. Evans, and J. Hazzard, 1999: Magnitude and frequency of rock falls and rock slides along the main transportation corridors of southwestern British Columbia. Canadian Geotechnical Journal, 36 (2), 224-238.
  273. Global Carex Group, 2015: Making Carex monophyletic (Cyperaceae, tribe Cariceae): a new broader circumscription. Botanical Journal of the Linnean Society, 179 (1), 1-42.
  274. Gizachew, B., S. Solberg, E. Naesset, T. Gobakken, O. M. Bollandsås, J. Breiden- bach, E. Zahabu, and E. W. Mauya, 2016: Mapping and estimating the total living biomass and carbon in low-biomass woodlands using Landsat 8 CDR data. Carbon Balance and Management, 11, 13.
  275. Malone, B., A. McBratney, B. Minasny, and G. Laslett, 2009: Mapping con- tinuous depth functions of soil carbon storage and available water capacity. Geoderma, 154 (1-2), 138-152.
  276. Meyer, H., M. Katurji, T. Appelhans, M. U. Müller, T. Nauss, P. Roudier, and P. Zawar-Reza, 2016a: Mapping Daily Air Temperature for Antarctica Based on MODIS LST. Remote Sensing, 8 (9), 732.
  277. Lawrence, R. L., S. D. Wood, and R. L. Sheley, 2006: Mapping invasive plants us- ing hyperspectral imagery and Breiman Cutler classifications (randomForest). Remote Sensing of Environment, 100 (3), 356-362.
  278. Wessels, K., S. Prince, and I. Reshef, 2008: Mapping land degradation by com- parison of vegetation production to spatially derived estimates of potential production. Journal of Arid Environments, 72 (10), 1940-1949.
  279. Ho, H. C., A. Knudby, P. Sirovyak, Y. Xu, M. Hodul, and S. B. Henderson, 2014: Mapping maximum urban air temperature on hot summer days. Remote Sensing of Environment, 154, 38-45.
  280. Huang, R., C. Zhang, J. Huang, D. Zhu, L. Wang, and J. Liu, 2015: Map- ping of Daily Mean Air Temperature in Agricultural Regions Using Daytime and Nighttime Land Surface Temperatures Derived from TERRA and AQUA MODIS Data. Remote Sensing, 7 (7), 8728.
  281. Waske, B., J. A. Benediktsson, K. Árnason, and J. R. Sveinsson, 2009: Mapping of hyperspectral AVIRIS data using machine-learning algorithms. Canadian Journal of Remote Sensing, 35 (sup1), S106-S116.
  282. Vogt, J. V., A. A. Viau, and F. Paquet, 1997: Mapping regional air temperature fields using satellite-derived surface skin temperatures. International Journal of Climatology, 17 (14), 1559-1579.
  283. Veronesi, F., R. Corstanje, and T. Mayr, 2012: Mapping soil compaction in 3D with depth functions. Soil and Tillage Research, 124, 111-118.
  284. Ferrier, S., 2002: Mapping Spatial Pattern in Biodiversity for Regional Conser- vation Planning: Where to from Here? Systematic Biology, 51 (2), 331-363.
  285. Doran, P. T., G. Dana, J. T. Hastings, and R. A. Wharton, 1995: McMurdo Dry Valleys Long-Term Ecological Research (LTER): LTER automatic weather network (LAWN). Antarctic Journal of the U.S., 30 (5), 276-280.
  286. Swets, J., 1988: Measuring the accuracy of diagnostic systems. Science, 240 (4857), 1285-1293.
  287. Matsuoka, N., 2001: Microgelivation versus macrogelivation: towards bridg- ing the gap between laboratory and field frost weathering. Permafrost and Periglacial Processes, 12 (3), 299-313.
  288. Reeves, J. B., G. W. McCarty, and V. B. Reeves, 2001: Mid-infrared Diffuse Reflectance Spectroscopy for the Quantitative Analysis of Agricultural Soils. Journal of Agricultural and Food Chemistry, 49 (2), 766-772.
  289. Hamel, L., 2009: Model Assessment with ROC Curves, chap. 204, 1316-1323. 2d ed., Information Science Reference (an imprint of IGI Global), Hershey.
  290. Bossel, H., 1994: Modeling and Simulation. Springer.
  291. Escabias, M., A. M. Aguilera, and M. J. Valderrama, 2005: Modeling environmen- tal data by functional principal component logistic regression. Environmetrics, 16 (1), 95-107.
  292. Janke, J. R., 2005: Modeling past and future alpine permafrost distribution in the Colorado Front Range. Earth Surface Processes and Landforms, 30 (12), 1495-1508.
  293. Reichstein, M., et al., 2003: Modeling temporal and large-scale spatial variabil- ity of soil respiration from soil water availability, temperature and vegetation productivity indices. Global Biogeochemical Cycles, 17 (4).
  294. Palmborg, C. and A. Nordgren, 1993: Modelling microbial activity and biomass in forest soil with substrate quality measured using near infrared reflectance spectroscopy. Soil Biology and Biochemistry, 25 (12), 1713-1718.
  295. Knox, N., S. Grunwald, M. McDowell, G. Bruland, D. Myers, and W. Harris, 2015: Modelling soil carbon fractions with visible near-infrared (VNIR) and mid-infrared (MIR) spectroscopy. Geoderma, 239, 229-239.
  296. Heuvelink, G. and R. Webster, 2001: Modelling soil variation: past, present, and future. Geoderma, 100 (3-4), 269-301, developments and Trends in Soil Science.
  297. Santi, P. M., C. P. Russell, J. D. Higgins, and J. I. Spriet, 2009: Modification and statistical analysis of the Colorado Rockfall Hazard Rating System. Engineering Geology, 104 (1-2), 55-65.
  298. Simmer, C., et al., 2015: Monitoring and Modeling the Terrestrial System from Pores to Catchments: The Transregional Collaborative Research Center on Patterns in the Soil-Vegetation-Atmosphere System. Bulletin of the American Meteorological Society, 96 (10), 1765-1787.
  299. Huisman, J. A., J. J. J. C. Snepvangers, W. Bouten, and G. B. M. Heuvelink, 2003: Monitoring Temporal Development of Spatial Soil Water Content Vari- ation. Vadose Zone Journal, 2, 519-529.
  300. Zhang, X., M. A. Friedl, C. B. Schaaf, A. H. Strahler, J. C. Hodges, F. Gao, B. C. Reed, and A. Huete, 2003: Monitoring vegetation phenology using MODIS. Remote Sensing of Environment, 84 (3), 471-475.
  301. Noetzli, J., M. Hoelzle, and W. Haeberli, 2003: Mountain permafrost and re- cent Alpine rockfall events: a GIS-based approach to determine critical fac- tors. Proceedings of the 8th International Conference on Permafrost, Zürich., M. Phillips, S. Springman, and L. Arenson, Eds., 827-832.
  302. Gruber, S., 2005: Mountain Permafrost: Transient Spatial Modelling, Model Verification and the Use of Remote Sensing. Ph.D. thesis, University of Zurich, Switzerland. REFERENCES
  303. Christodoulou, C. I., S. C. Michaelides, and C. S. Pattichis, 2003: Multifeature Texture Analysis for the Classification of Clouds in Satellite Imagery. IEEE Transactions on Geoscience and Remote Sensing, 41.
  304. Wiegand, K., D. Ward, and D. Saltz, 2005: Multi-scale patterns and bush en- croachment in an arid savanna with a shallow soil layer. Journal of Vegetation Science, 16 (3), 311-320.
  305. Asefa, T., M. Kemblowski, M. McKee, and A. Khalil, 2006: Multi-time scale stream flow predictions: The support vector machines approach. Journal of Hydrology, 318 (1-4), 7-16.
  306. Pebesma, E. J., 2004: Multivariable geostatistics in S: the gstat package. Com- puters & Geosciences, 30 (7), 683-691.
  307. Viscarra Rossel, R. A., H. J. Taylor, and A. B. McBratney, 2007: Multivari- ate calibration of hyperspectral γ-ray energy spectra for proximal soil sensing. European Journal of Soil Science, 58 (1), 343-353.
  308. Chang, C.-W., D. Laird, M. Mausbach, and C. R. Hurburgh Jr., 2001: Near- Infrared Reflectance Spectroscopy-Principal Components Regression Analyses of Soil Properties. Soil Science Society of America Journal 5:480-490. Soil Sci- ence Society of America Journal, 65 (2), 480-490.
  309. Ludwig, B., P. Khanna, J. Bauhus, and P. Hopmans, 2002: Near infrared spec- troscopy of forest soils to determine chemical and biological properties related to soil sustainability. Forest Ecology and Management, 171 (1), 121-132.
  310. Reeves, J. B., 2010: Near-versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: Where are we and what needs to be done? Geoderma, 158 (1), 3-14.
  311. Hall, K. and M.-F. André, 2001: New insights into rock weathering from high- frequency rock temperature data: an Antarctic study of weathering by thermal stress. Geomorphology, 41 (1), 23-35.
  312. Wan, Z., 2008: New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products. Remote Sensing of Environment, 112 (1), 59-74.
  313. Linker, R., M. Weiner, I. Shmulevich, and A. Shaviv, 2006: Nitrate Determi- nation in Soil Pastes using Attenuated Total Reflectance Mid-infrared Spec- troscopy: Improved Accuracy via Soil Identification. Biosystems Engineering, 94 (1), 111-118.
  314. Islam, T., M. A. Rico-Ramirez, P. K. Srivastava, and Q. Dai, 2014: Non- parametric rain/no rain screening method for satellite-borne passive microwave radiometers at 19-85 GHz channels with the Random Forests algorithm. In- ternational Journal of Remote Sensing, 35 (9), 3254-3267.
  315. Martz, L. and J. Garbrecht, 1992: Numerical definition of drainage network and subcatchment areas from Digital Elevation Models. Computers & Geosciences, 18 (6), 747-761.
  316. Stumpf, A. and N. Kerle, 2011: Object-oriented mapping of landslides using Random Forests. Remote Sensing of Environment, 115 (10), 2564-2577.
  317. Wöllauer, S., S. Forteva, and T. Nauss, 2015: On demand processing of climate station sensor data. EGU General Assembly Conference Abstracts, EGU Gen- eral Assembly Conference Abstracts, Vol. 17, 5231.
  318. McBratney, A., M. M. Santos, and B. Minasny, 2003: On digital soil mapping. Geoderma, 117 (1-2), 3-52.
  319. Harrison, S., 2001: On reductionism and emergence in geomorphology. Transac- tions of the Institute of British Geographers, 26 (3), 327-339.
  320. Fischer, L., R. S. Purves, C. Huggel, J. Noetzli, and W. Haeberli, 2012: On the influence of topographic, geological and cryospheric factors on rock avalanches and rockfalls in high-mountain areas. Natural Hazards and Earth System Sci- ences, 12 (1), 241-254.
  321. Vereecken, H., Y. Pachepsky, C. Simmer, J. Rihani, A. Kunoth, W. Korres, A. Graf, H.-H. Franssen, I. Thiele-Eich, and Y. Shao, 2016: On the role of pat- terns in understanding the functioning of soil-vegetation-atmosphere systems. Journal of Hydrology, 542, 63-86.
  322. Sun, J., G. W. Cheng, W. P. Li, Y. K. Sha, and Y. C. Yang, 2013: On the Vari- ation of NDVI with the Principal Climatic Elements in the Tibetan Plateau. Remote Sensing, 5 (4), 1894-1911.
  323. Baldeck, C. A., G. P. Asner, R. E. Martin, C. B. Anderson, D. E. Knapp, J. R. Kellner, and S. J. Wright, 2015: Operational Tree Species Mapping in a Di- verse Tropical Forest with Airborne Imaging Spectroscopy. PLoS ONE, 10 (7), e0118 403.
  324. Gómez, C., J. C. White, and M. A. Wulder, 2016: Optical remotely sensed time series data for land cover classification: A review. ISPRS Journal of Pho- togrammetry and Remote Sensing, 116, 55-72.
  325. Kuhn, M., 2014b: Optimizing probability thresholds for class imbalances. URL http://www.r-bloggers.com/optimizing-probability-thresholds- for-class-imbalances/.
  326. Church, M. and J. Ryder, 1972: Paraglacial Sedimentation: A Consideration of Fluvial Processes Conditioned by Glaciation. Geological Society of America Bulletin, 83 (10), 3059-3072.
  327. Bornemann, L., G. Welp, and W. Amelung, 2010: Particulate organic matter at the field scale: Rapid acquisition using mid-infrared spectroscopy. Soil Science Society of America Journal, 74, 1147-1156.
  328. van Tatenhove, F. and R. Dikau, 1990: Past and Present Permafrost Distribution in the Turtmanntal, Wallis, Swiss Alps. Arctic and Alpine Research, 22 (3), 302-316.
  329. Babel, W., et al., 2014: Pasture degradation modifies the water and carbon cycles of the Tibetan highlands. Biogeosciences, 11, 8861-8923.
  330. Gruber, S. and W. Haeberli, 2007: Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change. Journal of Geo- physical Research: Earth Surface, 112 (F2).
  331. Nyenhuis, M., 2006: Permafrost und Sedimenthaushalt in einem alpinen Geosys- tem. Bonner Geographische Abhandlungen, 116, 142.
  332. Behrangi, A., K. Hsu, B. Imam, S. Sorooshian, G. Huffman, and R. Kuligowski, 2009a: PERSIANN-MSA: A Precipitation Estimation Method from Satellite- Based Multispectral Analysis. Journal of Hydrometeorology, 10 (6), 1414- 1429.
  333. Jin, Z. N., Q. L. Zhuang, J. S. He, T. X. Luo, and Y. Shi, 2013: Phenology shift from 1989 to 2008 on the Tibetan Plateau: an analysis with a process-based soil physical model and remote sensing data. Climatic Change, 119 (2), 435-449.
  334. Sandmeier, S., C. Müller, B. Hosgood, and G. Andreoli, 1998: Physical Mecha- nisms in Hyperspectral BRDF Data of Grass and Watercress. Remote Sensing of Environment, 66 (2), 222-233.
  335. Miehe, G., S. Miehe, K. Bach, J. Nölling, J. Hanspach, C. Reudenbach, K. Kaiser, K. Wesche, V. Mosbrugger, Y. Yang, and Y. Ma, 2011b: Plant communities of central Tibetan pastures in the alpine steppe/Kobresia pygmaea ecotone. Journal of Arid Environments, 75 (8), 711-723.
  336. Hoffmann, T., T. Müller, E. A. Johnson, and Y. E. Martin, 2013: Postglacial adjustment of steep, low-order drainage basins, Canadian Rocky Mountains. Journal of Geophysical Research: Earth Surface, 118 (4), 2568-2584.
  337. Hoek, E. and E. Brown, 1997: Practical estimates of rock mass strength. Inter- national Journal of Rock Mechanics and Mining Sciences, 34 (8), 1165-1186.
  338. Hengl, T., 2009: Practical Guide to Geostatistical Mapping. Lulu.com, Amster- dam, Netherlands.
  339. Kühnlein, M., T. Appelhans, B. Thies, and T. Nauss, 2014b: Precipitation Esti- mates from MSG SEVIRI Daytime, Nighttime, and Twilight Data with Ran- dom Forests. Journal of Applied Meteorology and Climatology, 53 (11), 2457- 2480.
  340. Giannakos, A. and H. Feidas, 2012: Precipitation estimation based on spectral and textural features of Meteosat multispectral infrared data. EUMETSAT Meteorological Satellite Conference, Sopot, Poland.
  341. Hong, Y., K.-L. Hsu, S. Sorooshian, and X. Gao, 2004: Precipitation Estima- tion from Remotely Sensed Imagery Using an Artificial Neural Network Cloud Classification System. Journal of Applied Meteorology, 43 (12), 1834-1853.
  342. Hsu, K., X. Gao, S. Sorooshian, and H. Gupta, 1997: Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks. Journal of Applied Meteorology, 36 (9), 1176-1190.
  343. Levizzani, V., J. Schmetz, H. J. Lutz, J. Kerkmann, P. P. Alberoni, and M. Cervino, 2001: Precipitation estimations from geostationary orbit and prospects for METEOSAT Second Generation. Meteorological Applications, 8 (1), 23-41.
  344. Thies, B., T. Nauss, and J. Bendix, 2008c: Precipitation process and rainfall in- tensity differentiation using Meteosat Second Generation Spinning Enhanced Visible and Infrared Imager data. Journal of Geophysical Research: Atmo- spheres, 113 (D23).
  345. Prigent, C., 2010: Precipitation retrieval from space: An overview. Comptes Rendus Geoscience, 342, 380-389.
  346. Garzón, M. B., R. Blazek, M. Neteler, R. S. de Dios, H. S. Ollero, and C. Furlanello, 2006: Predicting habitat suitability with machine learning mod- els: The potential area of Pinus sylvestris L. in the Iberian Peninsula. Ecological Modelling, 197 (3-4), 383-393.
  347. Veldkamp, A. and E. Lambin, 2001: Predicting land-use change. Agriculture, Ecosystems and Environment, 85, 1-6.
  348. Fierer, N., B. P. Colman, J. P. Schimel, and R. B. Jackson, 2006: Predicting the temperature dependence of microbial respiration in soil: A continental-scale analysis. Global Biogeochemical Cycles, 20 (3).
  349. Stevens, A., M. Nocita, G. Tóth, L. Montanarella, and B. van Wesemael, 2013: Prediction of Soil Organic Carbon at the European Scale by Visible and Near InfraRed Reflectance Spectroscopy. PLOS ONE, 8 (6), 1-13.
  350. Marquínez, J., R. Menéndez Duarte, P. Farias, and M. JiméNez Sánchez, 2003: Predictive GIS-Based Model of Rockfall Activity in Mountain Cliffs. Natural Hazards, 30 (3), 341-360.
  351. Baltensperger, A. P. and F. Huettmann, 2015: Predictive spatial niche and bio- diversity hotspot models for small mammal communities in Alaska: applying machine-learning to conservation planning. Landscape Ecology, 30 (4), 681- 697.
  352. Lewis, W. V., 1954: Pressure Release and Glacial Erosion. Journal of Glaciology, 2 (16), 417-422.
  353. Thies, B., H. Meyer, T. Nauss, and J. Bendix, 2014: Projecting land-use and land-cover changes in a tropical mountain forest of Southern Ecuador. Journal of Land Use Science, 9 (1), 1-33.
  354. Rumpel, C., L. Janik, J. Skjemstad, and I. Kögel-Knabner, 2001: Quantification of carbon derived from lignite in soils using mid-infrared spectroscopy and partial least squares. Organic Geochemistry, 32 (6), 831-839.
  355. Vehling, L., J. Rohn, and M. Moser, 2016: Quantification of small magnitude rockfall processes at a proglacial high mountain site, Gepatsch glacier (Tyrol, Austria). Zeitschrift für Geomorphologie, Supplementary Issues, 60 (1), 93- 108.
  356. Otto, J.-C., L. Schrott, M. Jaboyedoff, and R. Dikau, 2009: Quantifying sedi- ment storage in a high alpine valley (Turtmanntal, Switzerland). Earth Surface Processes and Landforms, 34 (13), 1726-1742.
  357. Zimmermann, M., J. Leifeld, and J. Fuhrer, 2007: Quantifying soil organic carbon fractions by infrared-spectroscopy. Soil Biology and Biochemistry, 39 (1), 224- 231.
  358. Dreber, N., C. J. Harmse, A. Götze, W. S. W. Trollope, and K. Kellner, 2014: Quantifying the woody component of savanna vegetation along a density gra- dient in the Kalahari Bushveld: a comparison of two adapted point-centered quarter methods. Rangeland Journal, 36 (1), 91-103.
  359. Böhme, M., M.-H. Derron, and M. Jaboyedoff, 2014: Quantitative spatial anal- ysis of rockfalls from road inventories: a combined statistical and physical susceptibility model. Natural Hazards and Earth System Sciences Discussions, 2, 81-121.
  360. Schlüchter, C., 2004: The Swiss glacial record -a schematic summary. Quater- nary Glaciations Extent and ChronologyPart I: Europe, J. Ehlers and P. Gib- bard, Eds., Elsevier, Developments in Quaternary Sciences, Vol. 2, Part 1, 413 -418.
  361. R Core Team, 2013: R: A Language and Environment for Statistical Computing. Vienna, Austria, R Foundation for Statistical Computing, URL http://www. R-project.org/.
  362. R Core Team, 2014: R: A Language and Environment for Statistical Computing. Vienna, Austria, R Foundation for Statistical Computing, URL http://www. R-project.org/.
  363. R Core Team, 2016: R: A Language and Environment for Statistical Computing. Vienna, Austria, R Foundation for Statistical Computing, URL https://www. R-project.org/.
  364. Pal, M., 2005: Random forest classifier for remote sensing classification. Interna- tional Journal of Remote Sensing, 26 (1), 217-222.
  365. Gislason, P. O., J. A. Benediktsson, and J. R. Sveinsson, 2006: Random Forests for land cover classification. Pattern Recognition Letters, 27 (4), 294-300.
  366. Harris, R. B., 2010: Rangeland degradation on the Qinghai-Tibetan plateau: A review of the evidence of its magnitude and causes. Journal of Arid Environ- ments, 74 (1), 1-12.
  367. Bornemann, L., G. Welp, S. Brodowski, A. Rodionov, and W. Amelung, 2008: Rapid assessment of black carbon in soil organic matter using mid-infrared spectroscopy. Organic Geochemistry, 39 (11), 1537-1544.
  368. André, M., 2002: Rates of postglacial rock weathering on glacially scoured out- crops (Abisko-Riksgränsen area, 68°N). Geografiska Annaler, A84, 139-150.
  369. Obanawa, H., Y. S. Hayakawa, and Y. Matsukura, 2009: Rates of Slope Decline, Talus Growth and Cliff Retreat along the Shomyo River in Central Japan: A Space-Time Substitution Approach. Geografiska Annaler. Series A, Physical Geography, 91 (4), 269-278.
  370. Evans, S. G. and J. J. Clague, 1994: Recent climatic change and catastrophic geomorphic processes in mountain environments. Geomorphology, 10 (1), 107- 128.
  371. Tucker, C. J., 1979: Red and photographic infrared linear combinations for mon- itoring vegetation. Remote Sensing of Environment, 8 (2), 127-150.
  372. Mutanga, O. and A. K. Skidmore, 2007: Red edge shift and biochemical content in grass canopies. ISPRS Journal of Photogrammetry and Remote Sensing, 62 (1), 34-42.
  373. Itano, S. and H. Tomimatsu, 2011: Reflectance spectra for monitoring green herbage mass in Zoysia-dominated pastures. Grassland Science, 57 (1), 9-17.
  374. Pierce, F. and T. Elliott, 2008: Regional and on-farm wireless sensor networks for agricultural systems in Eastern Washington. Computers and Electronics in Agriculture, 61 (1), 32-43.
  375. Orchard, V. A. and F. Cook, 1983: Relationship between soil respiration and soil moisture. Soil Biology and Biochemistry, 15 (4), 447-453.
  376. Wang, W., R. Dalal, P. Moody, and C. Smith, 2003: Relationships of soil respira- tion to microbial biomass, substrate availability and clay content. Soil Biology and Biochemistry, 35 (2), 273-284.
  377. Hamann, U., et al., 2014: Remote sensing of cloud top pressure/height from SEVIRI: analysis of ten current retrieval algorithms. Atmospheric Measurement Techniques, 7 (9), 2839-2867.
  378. Qiu, H., D. Huggins, J. Wu, M. Barber, D. Mccool, and S. Dun, 2011: Residue management impacts on field-scale snow distribution and soil water storage. Transactions of the ASABE, 54, 1639-1647.
  379. Lehnert, L. W., H. Meyer, Y. Wang, G. Miehe, B. Thies, C. Reudenbach, and J. Bendix, 2015b: Retrieval of grassland plant coverage on the Tibetan Plateau based on a multi-scale, multi-sensor and multi-method approach. Remote Sens- ing of Environment, 164, 197-207.
  380. Miehe, G., K. Kaiser, S. Co, Z. Xinquan, and L. Jianquan, 2008a: Geo-ecological transect studies in northeast Tibet (Qinghai, China) reveal human-made mid- Holocene environmental changes in the upper Yellow River catchment changing forest to grassland. Erdkunde, 62 (3), 187-199.
  381. Meyer, H., M. Kühnlein, C. Reudenbach, and T. Nauss, 2017b: Revealing the potential of spectral and textural predictor variables in a neural network-based rainfall retrieval technique. Remote Sensing Letters, 8 (7), 647-656.
  382. Gevrey, M., I. Dimopoulos, and S. Lek, 2003: Review and comparison of meth- ods to study the contribution of variables in artificial neural network models. Ecological Modelling, 160 (3), 249-264.
  383. Bruzzone, L. and F. Melgani, 2005: Robust multiple estimator systems for the analysis of biophysical parameters from remotely sensed data. IEEE Transac- tions on Geoscience and Remote Sensing, 43 (1), 159-174.
  384. Matsuoka, N. and H. Sakai, 1999: Rockfall activity from an alpine cliff during thawing periods. Geomorphology, 28 (3-4), 309-328.
  385. Nyenhuis, M., M. Hoelzle, and R. Dikau, 2005: Rock glacier mapping and permafrost distribution modelling in the Turtmanntal, Valais, Switzerland. Zeitschrift für Geomorphologie, NF, 49 (3), 275-292.
  386. Augustinus, P., 1995: Rock mass strength and the stability of some glacial valley slopes. Zeitschrift für Geomorphologie, 39, 55-68.
  387. Sass, O., 2004: Rock Moisture Fluctuations During Freeze-thaw Cycles: Pre- liminary Results from Electrical Resistivity Measurements. Polar Geography, 28 (1), 13-31.
  388. Sass, O., 2005a: Rock moisture measurements: techniques, results, and implica- tions for weathering. Earth Surface Processes and Landforms, 30 (3), 359-374.
  389. Bovis, M. J., 1990: Rock-slope deformation at Affliction Creek, southern Coast Mountains, British Columbia. Canadian Journal of Earth Sciences, 27 (2), 243-254.
  390. Krautblatter, M. and J. R. Moore, 2014: Rock slope instability and erosion: to- ward improved process understanding. Earth Surface Processes and Landforms, 39 (9), 1273-1278.
  391. Coutard, J.-P. and B. Francou, 1989: Rock Temperature Measurements in Two Alpine Environments: Implications for Frost Shattering. Arctic and Alpine Research, 21 (4), 399-416.
  392. Meyer, H., J. Drönner, and T. Nauss, 2017a: Satellite-based high-resolution map- ping of rainfall over southern Africa. Atmospheric Measurement Techniques, 10 (6), 2009-2019.
  393. Rosenfeld, D. and I. M. Lensky, 1998: Satellite-Based Insights into Precipitation Formation Processes in Continental and Maritime Convective Clouds. Bulletin of the American Meteorological Society, 79 (11), 2457-2476.
  394. Thies, B. and J. Bendix, 2011: Satellite based remote sensing of weather and climate: recent achievements and future perspectives. Meteorological Applica- tions, 18 (3), 262-295.
  395. Uddstrom, M. J. and W. R. Gray, 1996: Satellite Cloud Classification and Rain- Rate Estimation Using Multispectral Radiances and Measures of Spatial Tex- ture. Journal of Applied Meteorology, 35 (6), 839-858.
  396. Messenzehl, K., T. Hoffmann, and R. Dikau, 2014: Sediment connectivity in the high-alpine valley of Val Müschauns, Swiss National Park -linking geo- morphic field mapping with geomorphometric modelling. Geomorphology, 221, 215-229.
  397. Verleysdonk, S., M. Krautblatter, and R. Dikau, 2011: Sensitivity and path dependence of mountain permafrost systems. Geografiska Annaler: Series A, Physical Geography, 93 (2), 113-135.
  398. Eitel, J., D. Long, P. Gessler, E. Hunt, and D. Brown, 2009: Sensitivity of ground- based remote sensing estimates of wheat chlorophyll content to variation in soil reflectance. Soil Science Society of America, 73, 1715-1723.
  399. Plante, J. Six, and J. M. Steinweg, 2008: Sensitivity of organic matter decom- position to warming varies with its quality. Global Change Biology, 14 (4), 868-877.
  400. Kniffka, A., M. Stengel, and R. Hollmann, 2014: SEVIRI cloud mask dataset -Edition 1 -15 minutes resolution. Satellite Application Facility on Climate Monitoring. EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF).
  401. Breulmann, M., N. P. Masyutenko, B. M. Kogut, R. Schroll, U. Dörfler, F. Bus- cot, and E. Schulz, 2014: Short-term bioavailability of carbon in soil organic matter fractions of different particle sizes and densities in grassland ecosystems. Science of The Total Environment, 497, 29-37.
  402. Krautblatter, M., M. Moser, L. Schrott, J. Wolf, and D. Morche, 2012: Signif- icance of rockfall magnitude and carbonate dissolution for rock slope erosion and geomorphic work on Alpine limestone cliffs (Reintal, German Alps). Geo- morphology, 167-168, 21-34.
  403. Brunsden, D. and R. H. Kesel, 1973: Slope Development on a Mississippi River Bluff in Historic Time. The Journal of Geology, 81 (5), 576-598.
  404. Allen Jr., R., P. A. Durkee, and C. H. Wash, 1990: Snow/Cloud Discrimination with Multispectral Satellite Measurements. Journal of Applied Meteorology, 29 (10), 994-1004.
  405. Seybold, C. A., D. S. Harms, M. Balks, J. Aislabie, R. F. Paetzold, J. Kimble, and R. Sletten, 2009: Soil Climate Monitoring Projectin the Ross Island Region of Antarctica. Soil Survey Horizons, 52-57.
  406. Craine, J. M. and T. M. Gelderman, 2011: Soil moisture controls on temperature sensitivity of soil organic carbon decomposition for a mesic grassland. Soil Biology and Biochemistry, 43 (2), 455-457.
  407. Margenot, A. J., F. J. Calderón, T. M. Bowles, S. J. Parikh, and L. E. Jack- son, 2015: Soil Organic Matter Functional Group Composition in Relation to Organic Carbon, Nitrogen, and Phosphorus Fractions in Organically Managed Tomato Fields. Soil Science Society of America Journal, 79, 772-782.
  408. Bosatta, E. and G. Agren, 1999: Soil organic matter quality interpreted thermo- dynamically. Soil Biology and Biochemistry, 31 (13), 1889-1891.
  409. Friedman, S. P., 2005: Soil properties influencing apparent electrical conductivity: a review. Computers and Electronics in Agriculture, 46 (1-3), 45-70.
  410. D'Acqui, L. P., A. Pucci, and L. J. Janik, 2010: Soil properties prediction of western Mediterranean islands with similar climatic environments by means of mid-infrared diffuse reflectance spectroscopy. European Journal of Soil Science, 61 (6), 865-876.
  411. ISO 10694, 1995: Soil quality-determination of organic and total carbon after dry combustion (elemental analysis). ISO-Secretariat, Geneva, Switzerland.
  412. Al-Mulla, Y., J. Wu, P. Singh, M. Flury, W. Schillinger, D. Huggins, and C. Stöckle, 2009: Soil water and temperature in chemical versus reduced-tillage fallow in a mediterranean climate. Applied Engineering in Agriculture, 25, 45- 54.
  413. Snepvangers, J., G. Heuvelink, and J. Huisman, 2003: Soil water content interpo- lation using spatio-temporal kriging with external drift. Geoderma, 112 (3-4), 253-271.
  414. Phillips, J. D., 2003: Sources of nonlinearity and complexity in geomorphic sys- tems. Progress in Physical Geography, 27 (1), 1-23.
  415. Pickett, S. T. A., 1989: Space-for-Time Substitution as an Alternative to Long- Term Studies, 110-135. Springer New York, New York, NY.
  416. Church, M., 1996: Space, time and the mountain: how do we order what we see? The Scientific Nature of Geomorphology, B. Rhoads and C. Thorn, Eds., Wiley, Chichester, 147-170.
  417. Vanwalleghem, T., M. V. D. Eeckhaut, J. Poesen, G. Govers, and J. Deckers, 2008: Spatial analysis of factors controlling the presence of closed depressions and gullies under forest: Application of rare event logistic regression. Geomor- phology, 95 (3-4), 504-517.
  418. Sass, O., 2010: Spatial and temporal patterns of talus activity -a lichenomet- ric approach in the Stubaier Alps, Austria. Geografiska Annaler: Series A, Physical Geography, 92 (3), 375-391.
  419. Bárdossy, A. and W. Lehmann, 1998: Spatial distribution of soil moisture in a small catchment. Part 1: geostatistical analysis. Journal of Hydrology, 206 (1), 1-15.
  420. Wilson, D. J., A. W. Western, R. B. Grayson, A. A. Berg, M. S. Lear, M. Rodell, J. S. Famiglietti, R. A. Woods, and T. A. McMahon, 2003: Spatial distribution of soil moisture over 6 and 30 cm depth, Mahurangi river catchment, New Zealand. Journal of Hydrology, 276 (1-4), 254-274.
  421. Skarpe, C., 1991: Spatial patterns and dynamics of woody vegetation in an arid savanna. Journal of Vegetation Science, 2 (4), 565-572.
  422. Sass, O., 2005b: Spatial patterns of rockfall intensity in the northern Alps. Z. Geomorphol. N.F, 138, 51-65.
  423. Brenning, A., 2005: Spatial prediction models for landslide hazards: review, comparison and evaluation. Natural Hazards and Earth System Sciences, 5 (6), 853-862.
  424. McKenzie, N. J. and P. J. Ryan, 1999: Spatial prediction of soil properties using environmental correlation. Geoderma, 89 (1-2), 67-94.
  425. Sohrabinia, M., P. Zawar-Reza, and W. Rack, 2014: Spatio-temporal analysis of the relationship between LST from MODIS and air temperature in New Zealand. Theoretical and Applied Climatology, 119 (3), 567-583.
  426. Shen, C., C. Li, and Y. Si, 2016: Spatio-temporal autocorrelation measures for nonstationary series: A new temporally detrended spatio-temporal Moran's index. Physics Letters A, 380 (1), 106-116.
  427. Hébrard, O., M. Voltz, P. Andrieux, and R. Moussa, 2006: Spatio-temporal distribution of soil surface moisture in a heterogeneously farmed Mediterranean catchment. Journal of Hydrology, 329 (1-2), 110-121.
  428. Kilibarda, M., T. Hengl, G. B. M. Heuvelink, B. Gräler, E. Pebesma, M. Perčec Tadić, and B. Bajat, 2014: Spatio-temporal interpolation of daily temperatures for global land areas at 1 km resolution. Journal of Geophysical Research: Atmospheres, 119 (5), 2294-2313.
  429. Kokaly, R. F. and R. N. Clark, 1999: Spectroscopic determination of leaf bio- chemistry using band-depth analysis of absorption features and stepwise mul- tiple linear regression. Remote Sensing of Environment, 67 (3), 267-287.
  430. Mostovoy, G. V., R. L. King, K. R. Reddy, V. G. Kakani, and M. G. Filippova, 2006: Statistical Estimation of Daily Maximum and Minimum Air Tempera- tures from MODIS LST Data over the State of Mississippi. GIScience & Remote Sensing, 43 (1), 78-110.
  431. Breiman, L., 2001b: Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author). Statistical Science, 16 (3), 199-231.
  432. Gerber, E. and A. Scheidegger, 1969: Stress-induced weathering of rock masses. Eclogae Geologicae Helvetiae, 62, 401-416.
  433. Xu, Y., Z. Qin, and Y. Shen, 2012: Study on the estimation of near-surface air temperature from MODIS data by statistical methods. International Journal of Remote Sensing, 33 (24), 7629-7643.
  434. Leith, K., J. R. Moore, F. Amann, and S. Loew, 2014: Subglacial extensional fracture development and implications for Alpine Valley evolution. Journal of Geophysical Research: Earth Surface, 119 (1), 62-81.
  435. Brown, D. G., D. P. Lusch, and K. A. Duda, 1998: Supervised classification of types of glaciated landscapes using digital elevation data. Geomorphology, 21 (3), 233-250.
  436. Mountrakis, G., J. Im, and C. Ogole, 2011: Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66 (3), 247-259.
  437. Kelly, M. A., P. W. Kubik, F. Von Blanckenburg, and C. SchlÜchter, 2004: Surface exposure dating of the Great Aletsch Glacier Egesen moraine system, western Swiss Alps, using the cosmogenic nuclide 10Be. Journal of Quaternary Science, 19 (5), 431-441.
  438. Hamdi, S., F. Moyano, S. Sall, M. Bernoux, and T. Chevallier, 2013: Synthe- sis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions. Soil Biology and Biochemistry, 58, 115-126.
  439. Westermann, S., M. Langer, and J. Boike, 2012: Systematic bias of average winter-time land surface temperatures inferred from MODIS at a site on Sval- bard, Norway. Remote Sensing of Environment, 118, 162-167.
  440. Rapp, A., 1960: Talus Slopes and Mountain Walls at Tempelfjorden, Spitsbergen. A geomorphological Study of the Denudation of Slopes in an Arctic Locality. Oslo University Press, Uppsala, 96.
  441. Koch, O., D. Tscherko, and E. Kandeler, 2007: Temperature sensitivity of micro- bial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils. Global Biogeochemical Cycles, 21 (4).
  442. Vanhala, P., K. Karhu, M. Tuomi, K. Björklöf, H. Fritze, and J. Liski, 2008: Temperature sensitivity of soil organic matter decomposition in southern and northern areas of the boreal forest zone. Soil Biology and Biochemistry, 40 (7), 1758-1764.
  443. Zheng, Z.-M., G.-R. Yu, Y.-L. Fu, Y.-S. Wang, X.-M. Sun, and Y.-H. Wang, 2009: Temperature sensitivity of soil respiration is affected by prevailing climatic conditions and soil organic carbon content: A trans-China based case study. Soil Biology and Biochemistry, 41 (7), 1531-1540.
  444. Hasler, A., S. Gruber, and W. Haeberli, 2011b: Temperature variability and offset in steep alpine rock and ice faces. The Cryosphere, 5 (4), 977-988.
  445. Cantón, Y., A. Solé-Benet, and F. Domingo, 2004: Temporal and spatial pat- terns of soil moisture in semiarid badlands of SE Spain. Journal of Hydrology, 285 (1-4), 199-214.
  446. Sass, O., 2005c: Temporal Variability of Rockfall in the Bavarian Alps, Germany. Arctic, Antarctic, and Alpine Research, 37 (4), 564-573.
  447. Potter, C. S., J. T. Randerson, C. B. Field, P. A. Matson, P. M. Vitousek, H. A. Mooney, and S. A. Klooster, 1993: Terrestrial ecosystem production: A process model based on global satellite and surface data. Global Biogeochemical Cycles, 7 (4), 811-841.
  448. Hudak, A. T. and C. A. Wessman, 2001: Textural analysis of high resolution imagery to quantify bush encroachment in Madikwe Game Reserve, South Africa, 1955-1996. International Journal of Remote Sensing, 22, 2731-2740.
  449. Hudak, A. T. and C. A. Wessman, 1998: Textural Analysis of Historical Aerial Photography to Characterize Woody Plant Encroachment in South African Savanna. Remote Sensing of Environment, 66 (3), 317-330.
  450. Haralick, R., K. Shanmugam, and I. Dinstein, 1973: Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics, 3, 610- 621.
  451. Evans, S. and O. Hungr, 1993: The assessment of rockfall hazard at the base of talus slopes. Canadian Geotechnical Journal, 30 (4), 620-636.
  452. EUMETSAT, 2012b: The Conversion from Effective Radiances to Equivalent Brightness Temperatures.
  453. Davies, M. C. R., O. Hamza, and C. Harris, 2001: The effect of rise in mean annual temperature on the stability of rock slopes containing ice-filled discon- tinuities. Permafrost and Periglacial Processes, 12 (1), 137-144.
  454. Anderson, C., 2008: The end of theory: The data deluge makes the scientific method obsolete. Wired, 16 (7).
  455. Carson, M. A. and D. J. Petley, 1970: The Existence of Threshold Hillslopes in the Denudation of the Landscape. Transactions of the Institute of British Geographers, (49), 71-95.
  456. Caine, N., 1974: The geomorphic processes of the alpine environment. Arctic and Alpine Environments, J. D. Ives and R. G. Barry, Eds., Methuen, London, 721-748.
  457. Hou, A. Y., R. K. Kakar, S. Neeck, A. Azarbarzin, C. D. Kummerow, M. Kojima, R. Oki, K. Nakamura, and T. Iguchi, 2014: The Global Precipitation Measure- ment Mission. Bulletin of the American Meteorological Society, 95, 701-722.
  458. Hall, K. and C. Thorn, 2011: The historical legacy of spatial scales in freeze-thaw weathering: Misrepresentation and resulting misdirection. Geomorphology, 130 (1-2), 83-90.
  459. Herbst, M., W. Tappe, S. Kummer, and H. Vereecken, 2016: The impact of sieving on heterotrophic respiration response to water content in loamy and sandy topsoils. Geoderma, 272, 73-82.
  460. Duarte, R. and J. Marquinez, 2002: The influence of environmental and lithologic factors on rockfall at a regional scale: an evaluation using GIS. Geomorphology, 43 (1-2), 117-136.
  461. Augustinus, P. C., 1992: The influence of rock mass strength on glacial valley cross-profile morphometry: A case study from the Southern Alps, New Zealand. Earth Surface Processes and Landforms, 17 (1), 39-51.
  462. Vicente, G. a., R. a. Scofield, W. P. Menzel, and G. A. Vincente, 1998: The Opera- tional GOES Infrared Rainfall Estimation Technique. Bulletin of the American Meteorological Society, 79 (9), 1883-1898.
  463. Arkin, P. A. and B. N. Meisner, 1987: The Relationship between Large-Scale Convective Rainfall and Cold Cloud over the Western Hemisphere during 1982- 84. Monthly Weather Review, 115 (1), 51-74.
  464. Hall, K. and C. E. Thorn, 2014: Thermal fatigue and thermal shock in bedrock: An attempt to unravel the geomorphic processes and products. Geomorphology, 206, 1-13.
  465. Vicente, G. A., J. C. Davenport, and R. A. Scofield, 2002: The role of orographic and parallax corrections on real time high resolution satellite rainfall rate dis- tribution. International Journal of Remote Sensing, 23 (2), 221-230.
  466. Phillips, J., 1988: The role of spatial scale in geomorphic systems. Geographical Analysis, 20, 308-317.
  467. Convey, P., et al., 2014: The spatial structure of Antarctic biodiversity. Ecological Monographs, 84 (2), 203-244.
  468. Kirschbaum, M. U. F., 2006: The temperature dependence of organic-matter decomposition-still a topic of debate. Soil Biology and Biochemistry, 38 (9), 2510-2518.
  469. Kirschbaum, M. U., 1995: The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biology and Biochemistry, 27 (6), 753-760.
  470. Bradley, A. P., 1997: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30 (7), 1145-1159.
  471. Cozzolino, D., F. Montossi, and R. San Julian, 2005: The use of visible (VIS) and near infrared (NIR) reflectance spectroscopy to predict fibre diameter in both clean and greasy wool samples. Animal Science, 80 (3), 333-337.
  472. Ballantyne, C. K. and J. O. Stone, 2013: Timing and periodicity of paraglacial rock-slope failures in the Scottish Highlands. Geomorphology, 186, 150-161.
  473. Krautblatter, M. and R. Dikau, 2007: Towards a uniform Concept for the Comparison and Extrapolation of Rockwall Retreat and Rockfall Supply. Ge- ografiska Annaler: Series A, Physical Geography, 89 (1), 21-40.
  474. Gudmundsson, L. and S. I. Seneviratne, 2015: Towards observation-based grid- ded runoff estimates for Europe. Hydrology and Earth System Sciences, 19 (6), 2859-2879.
  475. Noetzli, J. and S. Gruber, 2009: Transient thermal effects in Alpine permafrost. The Cryosphere, 3 (1), 85-99.
  476. Kuhn, M., 2016a: caret: Classification and Regression Training. URL https: //CRAN.R-project.org/package=caret, R package version 6.0-71.
  477. Kuhn, M., 2016b: caret: Classification and Regression Training. URL https: //CRAN.R-project.org/package=caret, R package version 6.0-68.
  478. Kuhn, M., 2017: caret: Classification and Regression Training. URL https: //CRAN.R-project.org/package=caret, R package version 6.0-76.
  479. Fryirs, K., G. J. Brierley, and W. D. Erskine, 2012: Use of ergodic reasoning to reconstruct the historical range of variability and evolutionary trajectory of rivers. Earth Surface Processes and Landforms, 37 (7), 763-773.
  480. Carrara, A., F. Guzzetti, M. Cardinali, and P. Reichenbach, 1999: Use of GIS Technology in the Prediction and Monitoring of Landslide Hazard. Natural Hazards, 20 (2), 117-135.
  481. Ludwig, B., R. Nitschke, T. Terhoeven-Urselmans, K. Michel, and H. Flessa, 2008: Use of mid-infrared spectroscopy in the diffuse-reflectance mode for the prediction of the composition of organic matter in soil and litter. Journal of Plant Nutrition and Soil Science, 171 (3), 384-391.
  482. Eitel, J., D. Long, P. Gessler, and A. Smith, 2007: Using in-situ measurements to evaluate the new rapideye satellite series for prediction of wheat nitrogen status. International Journal of Remote Sensing, 28 (18), 4183-4190.
  483. Ohlmacher, G. C. and J. C. Davis, 2003: Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Engi- neering Geology, 69 (3-4), 331-343.
  484. Aguilera, A. M., M. Escabias, and M. J. Valderrama, 2006: Using principal com- ponents for estimating logistic regression with high-dimensional multicollinear data. Computational Statistics & Data Analysis, 50 (8), 1905-1924.
  485. Munyati, C., P. Shaker, and M. Phasha, 2011: Using remotely sensed imagery to monitor savanna rangeland deterioration through woody plant proliferation: a case study from communal and biodiversity conservation rangeland sites in Mokopane, South Africa. Environmental Monitoring and Assessment, 176 (1- 4), 293-311.
  486. De Neve, S., J. Van de Steene, R. Hartmann, and G. Hofman, 2000: Using time domain reflectometry for monitoring mineralization of nitrogen from soil organic matter. European Journal of Soil Science, 51 (2), 295-304.
  487. Kotchenova, S. Y., E. F. Vermote, R. Matarrese, and J. Frank J. Klemm, 2006: Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance. Applied Optics, 45 (26), 6762-6774.
  488. Černohlávková, J., J. Jarkovský, M. Nešporová, and J. Hofman, 2009: Variability of soil microbial properties: Effects of sampling, handling and storage. Ecotox- icology and Environmental Safety, 72 (8), 2102-2108.
  489. Hou, X., 2001: Vegetation Atlas of China (1: 1,000,000). Beijing, China: Science Press.
  490. Almeer, M. H., 2012: Vegetation extraction from free Google Earth images of deserts using a robust BPNN approach in HSV space. International Journal of Advanced Research in Computer and Communication Engineering, 1, 134-140.
  491. Cammeraat, E., R. van Beek, and A. Kooijman, 2005: Vegetation Succession and its Consequences for Slope Stability in SE Spain. Plant and Soil, 278 (1), 135-147.
  492. Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis, 2005: Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25 (15), 1965-1978.
  493. Hallet, B., J. S. Walder, and C. W. Stubbs, 1991: Weathering by segregation ice growth in microcracks at sustained subzero temperatures: Verification from an experimental study using acoustic emissions. Permafrost and Periglacial Processes, 2 (4), 283-300.
  494. Chen, J., H.-P. Blume, and L. Beyer, 2000: Weathering of rocks induced by lichen colonization -a review. Catena, 39 (2), 121-146.
  495. Krautblatter, M., D. Funk, and F. K. Günzel, 2013: Why permafrost rocks be- come unstable: a rock-ice-mechanical model in time and space. Earth Surface Processes and Landforms, 38 (8), 876-887.
  496. Craine, J. M., N. Fierer, and K. K. McLauchlan, 2010: Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nature Geoscience, 3 (12), 854-857.
  497. Gärtner-Roer, I., I. Heinrich, and H. Gärtner, 2013: Wood anatomical analysis of Swiss willow (Salix helvetica) shrubs growing on creeping mountain permafrost. Dendrochronologia, 31 (2), 97-104.
  498. Decagon Devices, Inc., 2014: 5TE Water Content, EC and Temperature Sensor. Pullman, WA. URL http://manuals.decagon.com/Manuals/13509_ 5TE_Web.pdf.
  499. National Soil Survey Center NRCS USDA, 2011: Field book for describing and sampling soils. 3d ed., U.S. Department of Agriculture, Lincoln, Nebraska. Natural Resource Conservation Service (NRCS), 2013: Whitman county, WA soil survey. URL http://websoilsurvey.sc.egov.usda.gov/App/HomePage. htm.
  500. Bivand, R., T. Keitt, and B. Rowlingson, 2014: rgdal: Bindings for the Geospa- tial Data Abstraction Library. URL https://CRAN.R-project.org/package= rgdal, R package version 0.9-1.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten