Publikationsserver der Universitätsbibliothek Marburg

Titel:Effects of amyloid-beta on homeostatic network plasticity in human iPSC-derived neuronal networks
Autor:Tanriöver, Gaye
Weitere Beteiligte: Nieweg, Katja (Jun Prof.)
Veröffentlicht:2017
URI:https://archiv.ub.uni-marburg.de/diss/z2018/0043
DOI: https://doi.org/10.17192/z2018.0043
URN: urn:nbn:de:hebis:04-z2018-00431
DDC: Pharmakologie, Therapeutik
Titel (trans.):Auswirkungen von Amyloid-beta auf die Plastizität des homöostatischen Netzwerks in menschlichen iPSC-abgeleiteten neuronalen Netzwerken
Publikationsdatum:2018-08-08
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Stammzellen, amyloid-beta, Amyloid-Beta, alzheimers disease, Netzplastizität, Alzheimer-Krankheit, Hyperaktivität, stem cells, Network plasticity, hyperactivity

Summary:
Alzheimer’s disease (AD) is a progressive, neurodegenerative disorder and it is the most common cause of dementia in elderly. The disease is characterized by memory loss, mood swings, and communication problems. This uniquely human disease has been investigated in various mouse models mimicking different pathological hallmarks of AD, which supplied valuable insight into disease mechanisms; however, clinical trials based on these models failed and current treatments are unsatisfactory. To overcome the limitations of animal models of AD, the emerging induced pluripotent stem cell (iPSC) technology promises great potential. It offers the possibility to investigate underlying disease mechanisms, screen for drug targets and validate therapeutic effects in disease-relevant cell types of human origin on a patient-specific background. Current iPSC studies to model AD have been addressing the questions of the pathological hallmarks such as an increase in amyloid beta (Aß) and hyperphosphorylated tau. However, to investigate the AD-related phenomenon of neuronal hyperactivity, mature human neuronal cultures with spontaneously active networks are necessary, and their generation remains a challenge. In this study, to achieve spontaneously firing mature neuronal networks, human iPS cells were differentiated into neurons and were supported with endogenously differentiated human astrocytes or primary cortical astrocytes (PCA) isolated from rat brains. Neuronal activity was recorded by using multi electrode array (MEA) to detect single spikes and network bursts. Calcium imaging of spontaneously firing networks was performed to monitor synchronously active neurons in cultures. To trigger hyperactivity-induced homeostatic plasticity in human networks, iPSC-derived cultures were treated with 4-Aminopyridine (4AP), a non-selective inhibitor of voltage-gated K+ channels. It increased the network activity only in mature (burst firing) cultures. This induced hyperactivity further led to activation of homeostatic plasticity dependent mechanisms to reduce the firing rate. Single spike analysis suggested Na+ channel removal from the axonal membrane as one of these compensatory mechanisms. Moreover, repressor element-1 silencing transcription factor (REST) was identified as a key player in this process. To study AD-related impairments in the established model, cell-derived and synthetic Aß oligomers were prepared and characterized by semi-native western blot. Synthetic Aß oligomers were surprisingly stable when added to neuronal cultures and caused no cell death and no change in spontaneous network activity. However, upon 4AP treatment, Aß-treated networks showed impaired homeostatic plasticity and were not able to reduce the firing rate appropriately. According to the analysis of spike properties, the plasticity-associated reduction of axonal Na+ channels was also impaired. In Aß-treated cultures, nuclear REST expression was diminished at basal levels and after triggering homeostatic plasticity by 4AP. Thus, AD-related hyperactivity may be caused by dysfunctional homeostatic plasticity in a REST-dependent manner. Taken together, the results of this study provided the first hint on a previously unknown impairment of homeostatic plasticity mechanisms in AD and identified REST as a target which might contribute to the hyperactivity phenomenon at early stages of AD. This knowledge of plasticity impairment might expand our understanding of disease development and REST manipulation might be a new target for potential therapeutic strategies.

Bibliographie / References

  1. Zhang, D., Pekkanen-Mattila, M., Shahsavani, M., Falk, A., Teixeira, A. I. & Herland, A. (2014), 'A 3d alzheimer's disease culture model and the induction of p21-activated kinase mediated sensing in ipsc derived neurons', Biomaterials 35(5), 1420-1428.
  2. Palop, J. J., Chin, J., Roberson, E. D., Wang, J., Thwin, M. T., Bien-Ly, N., Yoo, J., Ho, K. O., Yu, G.-Q., Kreitzer, A. et al. (2007), 'Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of alzheimer's disease', Neuron 55(5), 697-711.
  3. Beske, P. H., Scheeler, S. M., Adler, M. & McNutt, P. M. (2015), 'Accelerated intoxication of gabaergic synapses by botulinum neurotoxin a disinhibits stem cell-derived neuron networks prior to network silencing', Frontiers in cellular neuroscience 9.
  4. Glenner, G. G. & Wong, C. W. (1984), 'Alzheimer's disease and down's syndrome: sharing of a unique cerebrovascular amyloid fibril protein', Biochemical and biophysical research communications 122(3), 1131-1135.
  5. Selkoe, D. J. (2001), 'Alzheimer's disease: Genes, proteins, and therapy', Physiological reviews 81(2), 741-766.
  6. Nieweg, K., Andreyeva, A., Van Stegen, B., Tanriöver, G. & Gottmann, K. (2015), 'Alzheimer's disease-related amyloid-β induces synaptotoxicity in human ips cell- derived neurons', Cell death & disease 6(4), e1709.
  7. Holtzman, D. M., Morris, J. C. & Goate, A. M. (2011), 'Alzheimer's disease: the challenge of the second century', Science translational medicine 3(77), 77sr1-77sr1.
  8. Surmeier, D. J. & Foehring, R. (2004), 'A mechanism for homeostatic plasticity', Nature neuroscience 7(7), 691-692.
  9. Hsieh, H., Boehm, J., Sato, C., Iwatsubo, T., Tomita, T., Sisodia, S. & Malinow, R. (2006), 'Ampar removal underlies aβ-induced synaptic depression and dendritic spine loss', Neuron 52(5), 831-843.
  10. Palop, J. J. & Mucke, L. (2010), 'Amyloid-[beta]-induced neuronal dysfunction in alzheimer's disease: from synapses toward neural networks', Nature neuroscience 13(7), 812-818.
  11. Charkhkar, H., Meyyappan, S., Matveeva, E., Moll, J. R., McHail, D. G., Peixoto, N., Cliff, R. O. & Pancrazio, J. J. (2015), 'Amyloid beta modulation of neuronal network activity in vitro', Brain research 1629, 1-9.
  12. Hardy, J. & Allsop, D. (1991), 'Amyloid deposition as the central event in the aetiology of alzheimer's disease', Trends in pharmacological sciences 12, 383-388.
  13. Shankar, G. M., Li, S., Mehta, T. H., Garcia-Munoz, A., Shepardson, N. E., Smith, I., Brett, F. M., Farrell, M. A., Rowan, M. J., Lemere, C. A. et al. (2008), 'Amyloid β-protein dimers isolated directly from alzheimer brains impair synaptic plasticity and memory', Nature medicine 14(8), 837.
  14. Palop, J. J., Chin, J. & Mucke, L. (2006), 'A network dysfunction perspective on neurodegenerative diseases', Nature 443(7113), 768.
  15. Götte, M., Hofmann, G., Michou-Gallani, A.-I., Glickman, J. F., Wishart, W. & Gabriel, D. (2010), 'An imaging assay to analyze primary neurons for cellular neurotoxicity', Journal of neuroscience methods 192(1), 7-16.
  16. Oliva, C. A. & Inestrosa, N. C. (2015), 'A novel function for wnt signaling modulating neuronal firing activity and the temporal structure of spontaneous oscillation in the entorhinal-hippocampal circuit', Experimental neurology 269, 43-55.
  17. Yahata, N., Asai, M., Kitaoka, S., Takahashi, K., Asaka, I., Hioki, H., Kaneko, T., Maruyama, K., Saido, T. C., Nakahata, T. et al. (2011), 'Anti-aβ drug screening platform using human ips cell-derived neurons for the treatment of alzheimer's disease', PloS one 6(9), e25788.
  18. Knobloch, M., Farinelli, M., Konietzko, U., Nitsch, R. M. & Mansuy, I. M. (2007), 'Aβ oligomer-mediated long-term potentiation impairment involves protein phosphatase 1- dependent mechanisms', Journal of Neuroscience 27(29), 7648-7653.
  19. Fu, A. K., Hung, K.-W., Fu, W.-Y., Shen, C., Chen, Y., Xia, J., Lai, K.-O. & Ip, N. Y. (2011), 'Apccdh1 mediates epha4-dependent downregulation of ampa receptors in homeostatic plasticity', Nature neuroscience 14(2), 181-189.
  20. Noebels, J. (2011), 'A perfect storm: converging paths of epilepsy and alzheimer's dementia intersect in the hippocampal formation', Epilepsia 52(s1), 39-46.
  21. Moore, S., Evans, L. D., Andersson, T., Portelius, E., Smith, J., Dias, T. B., Saurat, N., McGlade, A., Kirwan, P., Blennow, K. et al. (2015), 'App metabolism regulates tau proteostasis in human cerebral cortex neurons', Cell reports 11(5), 689-696.
  22. Zhang, Y.-w., Thompson, R., Zhang, H. & Xu, H. (2011), 'App processing in alzheimer's disease', Molecular brain 4(1), 3.
  23. Mertens, J., Stüber, K., Wunderlich, P., Ladewig, J., Kesavan, J. C., Vandenberghe, R., Vandenbulcke, M., Van Damme, P., Walter, J., Brüstle, O. et al. (2013), 'App processing in human pluripotent stem cell-derived neurons is resistant to nsaid-based γ-secretase modulation', Stem Cell Reports 1(6), 491-498.
  24. Oh, H., Steffener, J., Razlighi, Q. R., Habeck, C., Liu, D., Gazes, Y., Janicki, S. & Stern, Y. (2015), 'Aβ-related hyperactivation in frontoparietal control regions in cognitively normal elderly', Neurobiology of aging 36(12), 3247-3254.
  25. Kumar, A., Singh, A. et al. (2015), 'A review on alzheimer's disease pathophysiology and its management: an update', Pharmacological Reports 67(2), 195-203.
  26. Choi, S. H., Kim, Y. H., Hebisch, M., Sliwinski, C., Lee, S., D'Avanzo, C., Chen, J., Hooli, B., Asselin, C., Muffat, J. et al. (2014), 'A three-dimensional human neural cell culture model of alzheimer's disease', Nature 515(7526), 274.
  27. Nägerl, U. V., Eberhorn, N., Cambridge, S. B. & Bonhoeffer, T. (2004), 'Bidirectional activity-dependent morphological plasticity in hippocampal neurons', Neuron 44(5), 759-767.
  28. Kohyama, J., Sanosaka, T., Tokunaga, A., Takatsuka, E., Tsujimura, K., Okano, H. & Nakashima, K. (2010), 'Bmp-induced rest regulates the establishment and maintenance of astrocytic identity', The Journal of cell biology pp. jcb-200908048.
  29. Rossetto, O., Pirazzini, M. & Montecucco, C. (2014), 'Botulinum neurotoxins: genetic, structural and mechanistic insights', Nature reviews Microbiology 12(8), 535-549.
  30. Jankovic, J. (2004), 'Botulinum toxin in clinical practice', Journal of Neurology, Neurosurgery & Psychiatry 75(7), 951-957.
  31. Cai, S., Singh, B. R. & Sharma, S. (2007), 'Botulism diagnostics: from clinical symptoms to in vitro assays', Critical reviews in microbiology 33(2), 109-125.
  32. Zhao, Y., Zhu, M., Yu, Y., Qiu, L., Zhang, Y., He, L. & Zhang, J. (2017), 'Brain rest/nrsf is not only a silent repressor but also an active protector', Molecular neurobiology 54(1), 541-550.
  33. Egelman, D. M. & Montague, P. R. (1999), 'Calcium dynamics in the extracellular space of mammalian neural tissue', Biophysical Journal 76(4), 1856-1867.
  34. LaFerla, F. M. (2002), 'Calcium dyshomeostasis and intracellular signalling in alzheimer's disease', Nature reviews. Neuroscience 3(11), 862.
  35. Levy-Lahad, E., Wasco, W., Poorkaj, P., Romano, D. M., Oshima, J., Pettingell, W. H., Yu, C.-e., Jondro, P. D., Schmidt, S. D., Wang, K. et al. (1995), 'Candidate gene for the chromosome 1 familial alzheimer's disease locus', Science pp. 973-977.
  36. Blennow, K., Hampel, H., Weiner, M. & Zetterberg, H. (2010), 'Cerebrospinal fluid and plasma biomarkers in alzheimer disease', Nature Reviews Neurology 6(3), 131-144.
  37. Cohen, L. (1973), 'Changes in neuron structure during action potential propagation and synaptic transmission.', Physiological reviews 53(2), 373-418.
  38. Sproul, A. A., Jacob, S., Pre, D., Kim, S. H., Nestor, M. W., Navarro-Sobrino, M., Santa-Maria, I., Zimmer, M., Aubry, S., Steele, J. W. et al. (2014), 'Characterization and molecular profiling of psen1 familial alzheimer's disease ipsc-derived neural progenitors', PloS one 9(1), e84547.
  39. Haythornthwaite, A., Stoelzle, S., Hasler, A., Kiss, A., Mosbacher, J., George, M., Brüggemann, A. & Fertig, N. (2012), 'Characterizing human ion channels in induced pluripotent stem cell-derived neurons', Journal of biomolecular screening 17(9), 1264- 1272.
  40. Sherrington, R., Rogaev, E., Liang, Y. a., Rogaeva, E., Levesque, G., Ikeda, M., Chi, H., Lin, C., Li, G., Holman, K. et al. (1995), 'Cloning of a gene bearing missense mutations in early-onset familial alzheimer's disease', Nature 375(6534), 754-760.
  41. Busche, M. A., Eichhoff, G., Adelsberger, H., Abramowski, D., Wiederhold, K.-H., Haass, C., Staufenbiel, M., Konnerth, A. & Garaschuk, O. (2008), 'Clusters of hyperactive neurons near amyloid plaques in a mouse model of alzheimer's disease', Science 321(5896), 1686-1689.
  42. Cai, H., Reinisch, K. & Ferro-Novick, S. (2007), 'Coats, tethers, rabs, and snares work together to mediate the intracellular destination of a transport vesicle', Developmental cell 12(5), 671-682.
  43. Weir, K., Blanquie, O., Kilb, W., Luhmann, H. J. & Sinning, A. (2015), 'Comparison of spike parameters from optically identified gabaergic and glutamatergic neurons in sparse cortical cultures', Frontiers in cellular neuroscience 8, 460.
  44. Hu, X.-L., Cheng, X., Cai, L., Tan, G.-H., Xu, L., Feng, X.-Y., Lu, T.-J., Xiong, H., Fei, J. & Xiong, Z.-Q. (2011), 'Conditional deletion of nrsf in forebrain neurons accelerates epileptogenesis in the kindling model', Cerebral Cortex 21(9), 2158-2165.
  45. Ladiwala, A. R. A., Litt, J., Kane, R. S., Aucoin, D. S., Smith, S. O., Ranjan, S., Davis, J., Van Nostrand, W. E. & Tessier, P. M. (2012), 'Conformational differences between two amyloid β oligomers of similar size and dissimilar toxicity', Journal of Biological Chemistry 287(29), 24765-24773.
  46. Noble, D. (2015), 'Conrad waddington and the origin of epigenetics', Journal of Experimental Biology 218(6), 816-818.
  47. Zhang, S., Smailagic, N., Hyde, C., Han, D., Noel-Storr, A., Takwoingi, Y. & McShane, R. (2013), 'C-pib-pet for the early diagnosis of alzheimer's disease dementia and other dementias in people with mild cognitive impairment (mci)', Cochrane Database Syst
  48. Busche, M. A., Chen, X., Henning, H. A., Reichwald, J., Staufenbiel, M., Sakmann, B. & Konnerth, A. (2012), 'Critical role of soluble amyloid-β for early hippocampal hyperactivity in a mouse model of alzheimer's disease', Proceedings of the National Academy of Sciences 109(22), 8740-8745.
  49. Marder, E. & Prinz, A. A. (2003), 'Current compensation in neuronal homeostasis', Neuron 37(1), 2-4.
  50. Šišková, Z., Justus, D., Kaneko, H., Friedrichs, D., Henneberg, N., Beutel, T., Pitsch, J., Schoch, S., Becker, A., von der Kammer, H. et al. (2014), 'Dendritic structural degeneration is functionally linked to cellular hyperexcitability in a mouse model of alzheimer's disease', Neuron 84(5), 1023-1033.
  51. Llinás, R. R. (1991), 'Depolarization release coupling: an overview', Annals of the New York Academy of Sciences 635(1), 3-17.
  52. Zhang, Z., Hartmann, H., Do, V. M., Abramowski, D. et al. (1998), 'Destabilization of beta-catenin by mutations in presenilin-1 potentiates neuronal apoptosis', Nature 395(6703), 698.
  53. Smetters, D., Majewska, A. & Yuste, R. (1999), 'Detecting action potentials in neuronal populations with calcium imaging', Methods 18(2), 215-221.
  54. Deshpande, A., Mina, E., Glabe, C. & Busciglio, J. (2006), 'Different conformations of amyloid β induce neurotoxicity by distinct mechanisms in human cortical neurons', Journal of Neuroscience 26(22), 6011-6018.
  55. Hanslick, J. L., Lau, K., Noguchi, K. K., Olney, J. W., Zorumski, C. F., Mennerick, S. & Farber, N. B. (2009), 'Dimethyl sulfoxide (dmso) produces widespread apoptosis in the developing central nervous system', Neurobiology of disease 34(1), 1-10.
  56. Maroof, A. M., Keros, S., Tyson, J. A., Ying, S.-W., Ganat, Y. M., Merkle, F. T., Liu, B., Goulburn, A., Stanley, E. G., Elefanty, A. G. et al. (2013), 'Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells', Cell stem cell 12(5), 559-572.
  57. Liu, Y., Liu, H., Sauvey, C., Yao, L., Zarnowska, E. D. & Zhang, S.-C. (2013), 'Directed differentiation of forebrain gaba interneurons from human pluripotent stem cells', Nature protocols 8(9), 1670.
  58. Shi, Y., Kirwan, P. & Livesey, F. J. (2012), 'Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks', Nature protocols 7(10), 1836.
  59. Chiappalone, M., Bove, M., Vato, A., Tedesco, M. & Martinoia, S. (2006), 'Dissociated cortical networks show spontaneously correlated activity patterns during in vitro development', Brain research 1093(1), 41-53.
  60. Saido, T. C., Iwatsubo, T., Mann, D. M., Shimada, H., Ihara, Y. & Kawashima, S. (1995), 'Dominant and differential deposition of distinct β-amyloid peptide species, aβ n3 (pe), in senile plaques', Neuron 14(2), 457-466.
  61. Schantz, E. & Johnson, E. (1990), 'Dose standardisation of botulinum toxin', The Lancet 335(8686), 421.
  62. Fontana, R., Agostini, M., Murana, E., Mahmud, M., Scremin, E., Rubega, M., Sparacino, G., Vassanelli, S. & Fasolato, C. (2017), 'Early hippocampal hyperexcitability in ps2app mice: role of mutant ps2 and app', Neurobiology of aging 50, 64-76.
  63. Spitzer, N. C. (2006), 'Electrical activity in early neuronal development', Nature 444(7120), 707.
  64. Bugaysen, J., Bronfeld, M., Tischler, H., Bar-Gad, I. & Korngreen, A. (2010), 'Electrophysiological characteristics of globus pallidus neurons', PloS one 5(8), e12001.
  65. Wang, X., Zhang, X.-G., Zhou, T.-T., Li, N., Jang, C.-Y., Xiao, Z.-C., Ma, Q.-H. & Li, S. (2016), 'Elevated neuronal excitability due to modulation of the voltage-gated sodium channel nav1. 6 by aβ1-42', Frontiers in neuroscience 10.
  66. Clarke, L. E. & Barres, B. A. (2013), 'Emerging roles of astrocytes in neural circuit development', Nature Reviews. Neuroscience 14(5), 311.
  67. Qiu, C. & Fratiglioni, L. (2017), 'Epidemiology of alzheimer's', Alzheimer's Disease pp. 17- 25.
  68. Palop, J. J. & Mucke, L. (2009), 'Epilepsy and cognitive impairments in alzheimer disease', Archives of neurology 66(4), 435-440.
  69. Vossel, K. A., Tartaglia, M. C., Nygaard, H. B., Zeman, A. Z. & Miller, B. L. (2017), 'Epileptic activity in alzheimer's disease: causes and clinical relevance', The Lancet Neurology 16(4), 311-322.
  70. Imayoshi, I., Sakamoto, M., Yamaguchi, M., Mori, K. & Kageyama, R. (2010), 'Essential roles of notch signaling in maintenance of neural stem cells in developing and adult brains', Journal of Neuroscience 30(9), 3489-3498.
  71. Mertens, J., Marchetto, M. C., Bardy, C. & Gage, F. H. (2016), 'Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience', Nature Reviews Neuroscience 17(7), 424-437.
  72. Ben-Ari, Y. (2002), 'Excitatory actions of gaba during development: the nature of the nurture', Nature Reviews Neuroscience 3(9), 728-739.
  73. Cherubini, E., Gaiarsa, J. L. & Ben-Ari, Y. (1991), 'Gaba: an excitatory transmitter in early postnatal life', Trends in neurosciences 14(12), 515-519.
  74. Weisemann, J., Krez, N., Fiebig, U., Worbs, S., Skiba, M., Endermann, T., Dorner, M. B., Bergström, T., Muñoz, A., Zegers, I. et al. (2015), 'Generation and characterization of six recombinant botulinum neurotoxins as reference material to serve in an international proficiency test', Toxins 7(12), 5035-5054.
  75. Chambers, S. M., Fasano, C. A., Papapetrou, E. P., Tomishima, M., Sadelain, M. & Studer, L. (2009), 'Highly efficient neural conversion of human es and ips cells by dual inhibition of smad signaling', Nature biotechnology 27(3), 275-280.
  76. Güntert, A., Döbeli, H. & Bohrmann, B. (2006), 'High sensitivity analysis of amyloid- beta peptide composition in amyloid deposits from human and ps2app mouse brain', Neuroscience 143(2), 461-475.
  77. O'Leary, T., van Rossum, M. C. & Wyllie, D. J. (2010), 'Homeostasis of intrinsic excitability in hippocampal neurones: dynamics and mechanism of the response to chronic depolarization', The Journal of physiology 588(1), 157-170.
  78. Turrigiano, G. G. (1999), 'Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same', Trends in neurosciences 22(5), 221-227.
  79. Desai, N. S. (2003), 'Homeostatic plasticity in the cns: synaptic and intrinsic forms', Journal of Physiology-Paris 97(4), 391-402.
  80. Turrigiano, G. G. & Nelson, S. B. (2004), 'Homeostatic plasticity in the developing nervous system', Nature reviews. Neuroscience 5(2), 97.
  81. De Gois, S., Schäfer, M. K.-H., Defamie, N., Chen, C., Ricci, A., Weihe, E., Varoqui, H. & Erickson, J. D. (2005), 'Homeostatic scaling of vesicular glutamate and gaba transporter expression in rat neocortical circuits', Journal of Neuroscience 25(31), 7121-7133.
  82. Hu, J.-H., Park, J. M., Park, S., Xiao, B., Dehoff, M. H., Kim, S., Hayashi, T., Schwarz, M. K., Huganir, R. L., Seeburg, P. H. et al. (2010), 'Homeostatic scaling requires group i mglur activation mediated by homer1a', Neuron 68(6), 1128-1142.
  83. Turrigiano, G. (2012), 'Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function', Cold Spring Harbor perspectives in biology 4(1), a005736.
  84. Klunk, W. E., Engler, H., Nordberg, A., Wang, Y., Blomqvist, G., Holt, D. P., Bergström, M., Savitcheva, I., Huang, G.-F., Estrada, S. et al. (2004), 'Imaging brain amyloid in alzheimer's disease with pittsburgh compound-b', Annals of neurology 55(3), 306-319.
  85. Grienberger, C. & Konnerth, A. (2012), 'Imaging calcium in neurons', Neuron 73(5), 862- 885.
  86. Allsop, D., Wong, C. W., Ikeda, S., Landon, M., Kidd, M. & Glenner, G. G. (1988), 'Immunohistochemical evidence for the derivation of a peptide ligand from the amyloid beta-protein precursor of alzheimer disease', Proceedings of the National Academy of Sciences 85(8), 2790-2794.
  87. Van Acker, Z. P., Luyckx, E., Van Leuven, W., Geuens, E., De Deyn, P. P., Dam, D. V. & Dewilde, S. (2017), 'Impaired hypoxic tolerance in app23 mice: A dysregulation of neuroprotective globin levels', FEBS letters .
  88. Hulstaert, F., Blennow, K., Ivanoiu, A., Schoonderwaldt, H., Riemenschneider, M., De Deyn, P., Bancher, C., Cras, P., Wiltfang, J., Mehta, P. et al. (1999), 'Improved discrimination of ad patients using β-amyloid (1-42) and tau levels in csf', Neurology 52(8), 1555-1555.
  89. Dickerson, B., Salat, D., Greve, D., Chua, E., Rand-Giovannetti, E., Rentz, D., Bertram, L., Mullin, K., Tanzi, R., Blacker, D. et al. (2005), 'Increased hippocampal activation in mild cognitive impairment compared to normal aging and ad', Neurology 65(3), 404-411.
  90. Davis, K. E., Fox, S. & Gigg, J. (2014), 'Increased hippocampal excitability in the 3xtgad mouse model for alzheimer's disease in vivo', PLoS One 9(3), e91203.
  91. Leroy, K., Yilmaz, Z. & Brion, J.-P. (2007), 'Increased level of active gsk-3β in alzheimer's disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration', Neuropathology and applied neurobiology 33(1), 43-55.
  92. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K. & Yamanaka, S. (2007), 'Induction of pluripotent stem cells from adult human fibroblasts by defined factors', cell 131(5), 861-872.
  93. Takahashi, K. & Yamanaka, S. (2006), 'Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors', cell 126(4), 663-676.
  94. Verret, L., Mann, E. O., Hang, G. B., Barth, A. M., Cobos, I., Ho, K., Devidze, N., Masliah, E., Kreitzer, A. C., Mody, I. et al. (2012), 'Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in alzheimer model', Cell 149(3), 708-721.
  95. Henze, D. A., Borhegyi, Z., Csicsvari, J., Mamiya, A., Harris, K. D. & Buzsáki, G. (2000), 'Intracellular features predicted by extracellular recordings in the hippocampus in vivo', Journal of neurophysiology 84(1), 390-400.
  96. Sterneckert, J. L., Reinhardt, P. & Schöler, H. R. (2014), 'Investigating human disease using stem cell models', Nature Reviews Genetics 15(9), 625-639.
  97. Hille, B. (1978), 'Ionic channels in excitable membranes. current problems and biophysical approaches', Biophysical Journal 22(2), 283-294.
  98. Lien, C.-C. & Jonas, P. (2003), 'Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons', Journal of Neuroscience 23(6), 2058-2068.
  99. O'brien, J., O'keefe, K., LaViolette, P., DeLuca, A., Blacker, D., Dickerson, B. & Sperling, R. (2010), 'Longitudinal fmri in elderly reveals loss of hippocampal activation with clinical decline', Neurology 74(24), 1969-1976.
  100. Odawara, A., Saitoh, Y., Alhebshi, A., Gotoh, M. & Suzuki, I. (2014), 'Long-term electrophysiological activity and pharmacological response of a human induced pluripotent stem cell-derived neuron and astrocyte co-culture', Biochemical and biophysical research communications 443(4), 1176-1181.
  101. Brown, T. H., Chapman, P. F., Kairiss, E. W. & Keenan, C. L. (1988), 'Long-term synaptic potentiation', Science 242(4879), 724-728.
  102. Caceres, A., Banker, G., Steward, O., Binder, L. & Payne, M. (1984), 'Map2 is localized to the dendrites of hippocampal neurons which develop in culture', Developmental Brain Research 13(2), 314-318.
  103. Portelius, E., Bogdanovic, N., Gustavsson, M. K., Volkmann, I., Brinkmalm, G., Zetterberg, H., Winblad, B. & Blennow, K. (2010), 'Mass spectrometric characterization of brain amyloid beta isoform signatures in familial and sporadic alzheimer's disease', Acta neuropathologica 120(2), 185-193.
  104. Johnson, J. W. & Kotermanski, S. E. (2006), 'Mechanism of action of memantine', Current opinion in pharmacology 6(1), 61-67.
  105. Ito, K., Tatebe, T., Suzuki, K., Hirayama, T., Hayakawa, M., Kubo, H., Tomita, T. & Makino, M. (2017), 'Memantine reduces the production of amyloid-β peptides through modulation of amyloid precursor protein trafficking', European journal of pharmacology 798, 16-25.
  106. Kondo, T., Asai, M., Tsukita, K., Kutoku, Y., Ohsawa, Y., Sunada, Y., Imamura, K., Egawa, N., Yahata, N., Okita, K. et al. (2013), 'Modeling alzheimer's disease with ipscs reveals stress phenotypes associated with intracellular aβ and differential drug responsiveness', Cell stem cell 12(4), 487-496.
  107. Yagi, T., Ito, D., Okada, Y., Akamatsu, W., Nihei, Y., Yoshizaki, T., Yamanaka, S., Okano, H. & Suzuki, N. (2011), 'Modeling familial alzheimer's disease with induced pluripotent stem cells', Human molecular genetics 20(23), 4530-4539.
  108. Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W. K., Anwyl, R., Wolfe, M. S., Rowan, M. J. & Selkoe, D. J. (2002), 'Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo', Nature 416(6880), 535-539.
  109. Bierer, L. M., Hof, P. R., Purohit, D. P., Carlin, L., Schmeidler, J., Davis, K. L. & Perl, D. P. (1995), 'Neocortical neurofibrillary tangles correlate with dementia severity in alzheimer's disease', Archives of neurology 52(1), 81-88.
  110. Pakkenberg, B. & Gundersen, H. J. G. (1997), 'Neocortical neuron number in humans: effect of sex and age', Journal of Comparative Neurology 384(2), 312-320.
  111. Braak, H. & Braak, E. (1991), 'Neuropathological stageing of alzheimer-related changes', Acta neuropathologica 82(4), 239-259.
  112. Salmon, D. P. & Bondi, M. W. (2009), 'Neuropsychological assessment of dementia', Annual review of psychology 60, 257-282.
  113. Bitan, G., Fradinger, E. A., Spring, S. M. & Teplow, D. B. (2005), 'Neurotoxic protein oligomers-what you see is not always what you get', Amyloid 12(2), 88-95.
  114. Ono, K., Li, L., Takamura, Y., Yoshiike, Y., Zhu, L., Han, F., Mao, X., Ikeda, T., Takasaki, J.-i., Nishijo, H. et al. (2012), 'Phenolic compounds prevent amyloid β-protein oligomerization and synaptic dysfunction by site-specific binding', Journal of Biological Chemistry 287(18), 14631-14643.
  115. Terry, R. D., Masliah, E., Salmon, D. P., Butters, N., DeTeresa, R., Hill, R., Hansen, L. A. & Katzman, R. (1991), 'Physical basis of cognitive alterations in alzheimer's disease: synapse loss is the major correlate of cognitive impairment', Annals of neurology 30(4), 572-580.
  116. Müller, U. C. & Zheng, H. (2012), 'Physiological functions of app family proteins', Cold Spring Harbor perspectives in medicine 2(2), a006288.
  117. Odawara, A., Katoh, H., Matsuda, N. & Suzuki, I. (2016), 'Physiological maturation and drug responses of human induced pluripotent stem cell-derived cortical neuronal networks in long-term culture', Scientific reports 6.
  118. Hsia, A. Y., Masliah, E., McConlogue, L., Yu, G.-Q., Tatsuno, G., Hu, K., Kholodenko, D., Malenka, R. C., Nicoll, R. A. & Mucke, L. (1999), 'Plaque-independent disruption of neural circuits in alzheimer's disease mouse models', Proceedings of the National Academy of Sciences 96(6), 3228-3233.
  119. Ashton, N., Hye, A., Leckey, C., Jones, A., Gardner, A., Elliott, C., Wetherell, J., Lenze, E., Killick, R. & Marchant, N. (2017), 'Plasma rest: a novel candidate biomarker of alzheimer's disease is modified by psychological intervention in an at-risk population', Translational Psychiatry 7(6).
  120. Moulder, K. L., Meeks, J. P., Shute, A. A., Hamilton, C. K., de Erausquin, G. & Mennerick, S. (2004), 'Plastic elimination of functional glutamate release sites by depolarization', Neuron 42(3), 423-435.
  121. Desai, N. S., Rutherford, L. C. & Turrigiano, G. G. (1999), 'Plasticity in the intrinsic excitability of cortical pyramidal neurons.', Nature neuroscience 2(6).
  122. Fa, M., Orozco, I. J., Francis, Y. I., Saeed, F., Gong, Y. & Arancio, O. (2010), 'Preparation of oligomeric β-amyloid1-42 and induction of synaptic plasticity impairment on hippocampal slices', Journal of visualized experiments: JoVE (41).
  123. Heinricher, M. M. (2004), 'Principles of extracellular single-unit recording', Microelectrode Recording in Movement Disorder Surgery 8.
  124. Nussbaum, J. M., Schilling, S., Cynis, H., Silva, A., Swanson, E., Wangsanut, T., Tayler, K., Wiltgen, B., Hatami, A., Rönicke, R. et al. (2012), 'Prion-like behavior and tau- dependent cytotoxicity of pyroglutamylated β-amyloid', Nature 485(7400), 651.
  125. Israel, M. A., Yuan, S. H., Bardy, C., Reyna, S. M., Mu, Y., Herrera, C., Hefferan, M. P., Van Gorp, S., Nazor, K. L., Boscolo, F. S. et al. (2012), 'Probing sporadic and familial alzheimer's disease using induced pluripotent stem cells', Nature 482(7384), 216.
  126. Ashe, K. H. & Zahs, K. R. (2010), 'Probing the biology of alzheimer's disease in mice', Neuron 66(5), 631-645.
  127. Mandler, M., Walker, L., Santic, R., Hanson, P., Upadhaya, A. R., Colloby, S. J., Morris, C. M., Thal, D. R., Thomas, A. J., Schneeberger, A. et al. (2014), 'Pyroglutamylated 5. REFERENCES amyloid-β is associated with hyperphosphorylated tau and severity of alzheimer's disease', Acta neuropathologica 128(1), 67-79.
  128. Arancio, O., Zhang, H. P., Chen, X., Lin, C., Trinchese, F., Puzzo, D., Liu, S., Hegde, A., Yan, S. F., Stern, A. et al. (2004), 'Rage potentiates aβ-induced perturbation of neuronal function in transgenic mice', The EMBO journal 23(20), 4096-4105.
  129. Ibata, K., Sun, Q. & Turrigiano, G. G. (2008), 'Rapid synaptic scaling induced by changes in postsynaptic firing', Neuron 57(6), 819-826.
  130. Spencer, E., Chandler, K., Haddley, K., Howard, M., Hughes, D., Belyaev, N., Coulson, J., Stewart, J., Buckley, N., Kipar, A. et al. (2006), 'Regulation and role of rest and rest4 variants in modulation of gene expression in in vivo and in vitro in epilepsy models', Neurobiology of disease 24(1), 41-52.
  131. Misonou, H., Mohapatra, D. P., Park, E. W., Leung, V., Zhen, D., Misonou, K., Anderson, A. E. & Trimmer, J. S. (2004), 'Regulation of ion channel localization and phosphorylation by neuronal activity', Nature neuroscience 7(7), 711.
  132. Song, Z., Zhu, T., Zhou, X., Barrow, P., Yang, W., Cui, Y., Yang, L. & Zhao, D. (2016), 'Rest alleviates neurotoxic prion peptide-induced synaptic abnormalities, neurofibrillary degeneration and neuronal death partially via lrp6-mediated wnt-β-catenin signaling', Oncotarget 7(11), 12035.
  133. Chong, J. A., Tapia-Ramirez, J., Kim, S., Toledo-Aral, J. J., Zheng, Y., Boutros, M. C., Altshuller, Y. M., Frohman, M. A., Kraner, S. D. & Mandel, G. (1995), 'Rest: a mammalian silencer protein that restricts sodium channel gene expression to neurons', Cell 80(6), 949-957.
  134. Lu, T., Aron, L., Zullo, J., Pan, Y., Kim, H., Chen, Y., Yang, T.-H., Kim, H.-M., Drake, D., Liu, X. S. et al. (2014), 'Rest and stress resistance in aging and alzheimer's disease', Nature 507(7493), 448.
  135. Pecoraro-Bisogni, F., Lignani, G., Contestabile, A., Castroflorio, E., Pozzi, D., Rocchi, A., Prestigio, C., Orlando, M., Valente, P., Massacesi, M. et al. (2017), 'Rest- dependent presynaptic homeostasis induced by chronic neuronal hyperactivity', Molecular Neurobiology pp. 1-14.
  136. Pozzi, D., Lignani, G., Ferrea, E., Contestabile, A., Paonessa, F., D'alessandro, R., Lippiello, P., Boido, D., Fassio, A., Meldolesi, J. et al. (2013), 'Rest/nrsf-mediated intrinsic homeostasis protects neuronal networks from hyperexcitability', The EMBO journal 32(22), 2994-3007.
  137. Wu, P., Zuo, X., Deng, H., Liu, X., Liu, L. & Ji, A. (2013), 'Roles of long noncoding rnas in brain development, functional diversification and neurodegenerative diseases', Brain research bulletin 97, 69-80.
  138. Alcamo, E. A., Chirivella, L., Dautzenberg, M., Dobreva, G., Fariñas, I., Grosschedl, R. & McConnell, S. K. (2008), 'Satb2 regulates callosal projection neuron identity in the developing cerebral cortex', Neuron 57(3), 364-377.
  139. Goate, A., Chartier-Harlin, M.-C. et al. (1991), 'Segregation of a missense mutation in the amyloid precursor protein gene with familial alzheimer's disease', Nature 349(6311), 704.
  140. Friedman, D., Honig, L. S. & Scarmeas, N. (2012), 'Seizures and epilepsy in alzheimer's disease', CNS neuroscience & therapeutics 18(4), 285-294.
  141. Vossel, K. A., Beagle, A. J., Rabinovici, G. D., Shu, H., Lee, S. E., Naasan, G., Hegde, M., Cornes, S. B., Henry, M. L., Nelson, A. B. et al. (2013), 'Seizures and epileptiform activity in the early stages of alzheimer disease', JAMA neurology 70(9), 1158-1166.
  142. Maffei, A., Nelson, S. B. & Turrigiano, G. G. (2004), 'Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation', Nature neuroscience 7(12), 1353.
  143. Raja, W. K., Mungenast, A. E., Lin, Y.-T., Ko, T., Abdurrob, F., Seo, J. & Tsai, L.-H. (2016), 'Self-organizing 3d human neural tissue derived from induced pluripotent stem cells recapitulate alzheimer's disease phenotypes', PloS one 11(9), e0161969. 5. REFERENCES
  144. Shew, W. L., Bellay, T. & Plenz, D. (2010), 'Simultaneous multi-electrode array recording and two-photon calcium imaging of neural activity', Journal of neuroscience methods 192(1), 75-82.
  145. Goold, C. P. & Nicoll, R. A. (2010), 'Single-cell optogenetic excitation drives homeostatic synaptic depression', Neuron 68(3), 512-528.
  146. Kirov, S. A., Sorra, K. E. & Harris, K. M. (1999), 'Slices have more synapses than perfusion-fixed hippocampus from both young and mature rats', Journal of Neuroscience 19(8), 2876-2886.
  147. Townsend, M., Mehta, T. & Selkoe, D. J. (2007), 'Soluble aβ inhibits specific signal transduction cascades common to the insulin receptor pathway', Journal of Biological Chemistry 282(46), 33305-33312.
  148. Arbel-Ornath, M., Hudry, E., Boivin, J. R., Hashimoto, T., Takeda, S., Kuchibhotla, K. V., Hou, S., Lattarulo, C. R., Belcher, A. M., Shakerdge, N. et al. (2017), 'Soluble oligomeric amyloid-β induces calcium dyshomeostasis that precedes synapse loss in the living mouse brain', Molecular neurodegeneration 12(1), 27.
  149. Li, S., Hong, S., Shepardson, N. E., Walsh, D. M., Shankar, G. M. & Selkoe, D. (2009), 'Soluble oligomers of amyloid β protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake', Neuron 62(6), 788-801.
  150. Shen, C.-L. & Murphy, R. M. (1995), 'Solvent effects on self-assembly of beta-amyloid peptide', Biophysical journal 69(2), 640-651.
  151. Lin, J.-W. (2012), 'Spatial variation in membrane excitability modulated by 4-ap- sensitive k+ channels in the axons of the crayfish neuromuscular junction', Journal of neurophysiology 107(10), 2692-2702.
  152. Opitz, T., De Lima, A. D. & Voigt, T. (2002), 'Spontaneous development of synchronous oscillatory activity during maturation of cortical networks in vitro', Journal of neurophysiology 88(5), 2196-2206.
  153. Albus, K., Wahab, A. & Heinemann, U. (2008), 'Standard antiepileptic drugs fail to block epileptiform activity in rat organotypic hippocampal slice cultures', British journal of pharmacology 154(3), 709-724.
  154. Arber, C., Lovejoy, C. & Wray, S. (2017), 'Stem cell models of alzheimer's disease: progress and challenges', Alzheimer's Research & Therapy 9(1), 42.
  155. Danjo, T., Eiraku, M., Muguruma, K., Watanabe, K., Kawada, M., Yanagawa, Y., Rubenstein, J. L. & Sasai, Y. (2011), 'Subregional specification of embryonic stem cell- derived ventral telencephalic tissues by timed and combinatory treatment with extrinsic signals', Journal of Neuroscience 31(5), 1919-1933.
  156. Priller, C., Bauer, T., Mitteregger, G., Krebs, B., Kretzschmar, H. A. & Herms, J. (2006), 'Synapse formation and function is modulated by the amyloid precursor protein', Journal of Neuroscience 26(27), 7212-7221.
  157. Chong, S.-A., Benilova, I., Shaban, H., De Strooper, B., Devijver, H., Moechars, D., Eberle, W., Bartic, C., Van Leuven, F. & Callewaert, G. (2011), 'Synaptic dysfunction in hippocampus of transgenic mouse models of alzheimer's disease: A multi-electrode array study', Neurobiology of disease 44(3), 284-291.
  158. Scheff, S. W. & Price, D. A. (2003), 'Synaptic pathology in alzheimer's disease: a review of ultrastructural studies', Neurobiology of aging 24(8), 1029-1046.
  159. Martin, S. J., Grimwood, P. D. & Morris, R. G. (2000), 'Synaptic plasticity and memory: an evaluation of the hypothesis', Annual review of neuroscience 23(1), 649-711.
  160. Abbott, L. F. & Nelson, S. B. (2000), 'Synaptic plasticity: taming the beast', Nature neuroscience 3(11s), 1178.
  161. Klein, W. L. (2013), 'Synaptotoxic amyloid-β oligomers: a molecular basis for the cause, diagnosis, and treatment of alzheimer's disease?', Journal of Alzheimer's disease 33(s1), S49-S65.
  162. Huang, S.-M. A., Mishina, Y. M., Liu, S., Cheung, A., Stegmeier, F., Michaud, G. A., Charlat, O., Wiellette, E., Zhang, Y., Wiessner, S. et al. (2009), 'Tankyrase inhibition stabilizes axin and antagonizes wnt signalling', Nature 461(7264), 614.
  163. Buée, L., Bussière, T., Buée-Scherrer, V., Delacourte, A. & Hof, P. R. (2000), 'Tau protein isoforms, phosphorylation and role in neurodegenerative disorders', Brain Research Reviews 33(1), 95-130.
  164. Bean, B. P. (2007), 'The action potential in mammalian central neurons', Nature reviews. Neuroscience 8(6), 451.
  165. Selkoe, D. J. & Hardy, J. (2016), 'The amyloid hypothesis of alzheimer9s disease at 25 years', EMBO molecular medicine 8(6), 595-608.
  166. Hardy, J. & Selkoe, D. J. (2002), 'The amyloid hypothesis of alzheimer's disease: progress and problems on the road to therapeutics', science 297(5580), 353-356.
  167. Stiles, J. & Jernigan, T. L. (2010), 'The basics of brain development', Neuropsychology review 20(4), 327-348.
  168. Nishihara, S., Tsuda, L. & Ogura, T. (2003), 'The canonical wnt pathway directly regulates nrsf/rest expression in chick spinal cord', Biochemical and biophysical research communications 311(1), 55-63.
  169. De Strooper, B. & Karran, E. (2016), 'The cellular phase of alzheimer's disease', Cell 164(4), 603-615.
  170. Francis, P. T., Palmer, A. M., Snape, M. & Wilcock, G. K. (1999), 'The cholinergic hypothesis of alzheimer's disease: a review of progress', Journal of Neurology, Neurosurgery & Psychiatry 66(2), 137-147.
  171. Moore, K. L., Persaud, T. V. N. & Torchia, M. G. (2011), The Developing Human E-Book, Elsevier Health Sciences.
  172. Muratore, C. R., Rice, H. C., Srikanth, P., Callahan, D. G., Shin, T., Benjamin, L. N., Walsh, D. M., Selkoe, D. J. & Young-Pearse, T. L. (2014), 'The familial alzheimer's disease appv717i mutation alters app processing and tau expression in ipsc-derived neurons', Human molecular genetics 23(13), 3523-3536.
  173. Chen, B., Wang, S. S., Hattox, A. M., Rayburn, H., Nelson, S. B. & McConnell, S. K. (2008), 'The fezf2-ctip2 genetic pathway regulates the fate choice of subcortical projection neurons in the developing cerebral cortex', Proceedings of the National Academy of Sciences 105(32), 11382-11387.
  174. Tombaugh, T. N. & McIntyre, N. J. (1992), 'The mini-mental state examination: a comprehensive review', Journal of the American Geriatrics Society 40(9), 922-935.
  175. Honda, M., Minami, I., Tooi, N., Morone, N., Nishioka, H., Uemura, K., Kinoshita, A., Heuser, J. E., Nakatsuji, N. & Aiba, K. (2016), 'The modeling of alzheimer's disease by the overexpression of mutant presenilin 1 in human embryonic stem cells', Biochemical and biophysical research communications 469(3), 587-592.
  176. Sosa, L. J., Caceres, A., Dupraz, S., Oksdath, M., Quiroga, S. & Lorenzo, A. (2017), 'The physiological role of the amyloid precursor protein (app) as an adhesion molecule in the developing nervous system', Journal of Neurochemistry .
  177. Woodruff, G., Young, J. E., Martinez, F. J., Buen, F., Gore, A., Kinaga, J., Li, Z., Yuan, S. H., Zhang, K. & Goldstein, L. S. (2013), 'The presenilin-1 δe9 mutation results in reduced γ-secretase activity, but not total loss of ps1 function, in isogenic human stem cells', Cell reports 5(4), 974-985.
  178. Hardingham, N. R. & Larkman, A. U. (1998), 'The reliability of excitatory synaptic transmission in slices of rat visual cortex in vitro is temperature dependent', The Journal of Physiology 507(1), 249-256.
  179. Sengupta, U., Nilson, A. N. & Kayed, R. (2016), 'The role of amyloid-β oligomers in toxicity, propagation, and immunotherapy', EBioMedicine 6, 42-49.
  180. Gendron, T. F. & Petrucelli, L. (2009), 'The role of tau in neurodegeneration', Molecular neurodegeneration 4(1), 13.
  181. Turrigiano, G. G. (2008), 'The self-tuning neuron: synaptic scaling of excitatory synapses', Cell 135(3), 422-435.
  182. Stargardt, A., Swaab, D. F. & Bossers, K. (2015), 'The storm before the quiet: neuronal hyperactivity and aβ in the presymptomatic stages of alzheimer's disease', Neurobiology of aging 36(1), 1-11.
  183. Baldelli, P. & Meldolesi, J. (2015), 'The transcription repressor rest in adult neurons: physiology, pathology, and diseases', eNeuro 2(4), ENEURO-0010.
  184. Lee, H.-K., Sanchez, C. V., Chen, M., Morin, P. J., Wells, J. M., Hanlon, E. B. & Xia, W. (2016), 'Three dimensional human neuro-spheroid model of alzheimer's disease based on differentiated induced pluripotent stem cells', PloS one 11(9), e0163072. 5. REFERENCES
  185. Turrigiano, G. (2011), 'Too many cooks? intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement', Annual review of neuroscience 34, 89-103.
  186. Moris, N., Pina, C. & Martinez Arias, A. (2016), 'Transition states and cell fate decisions in epigenetic landscapes'.
  187. Oddo, S., Caccamo, A., Shepherd, J. D., Murphy, M. P., Golde, T. E., Kayed, R., Metherate, R., Mattson, M. P., Akbari, Y. & LaFerla, F. M. (2003), 'Triple-transgenic model of alzheimer's disease with plaques and tangles: intracellular aβ and synaptic dysfunction', Neuron 39(3), 409-421.
  188. Alzheimer, A. (1907), 'Uber eine eigenartige erkrankung der hirnrinde', Allgemeine Zeitschrife Psychiatrie 64, 146-148.
  189. Pozo, K. & Goda, Y. (2010), 'Unraveling mechanisms of homeostatic synaptic plasticity', Neuron 66(3), 337-351.
  190. Scharfman, H. E. (2012), '"untangling" alzheimer's disease and epilepsy', Epilepsy currents 12(5), 178-183.
  191. Marder, E. & Goaillard, J.-M. (2006), 'Variability, compensation and homeostasis in neuron and network function', Nature reviews. Neuroscience 7(7), 563.
  192. AxolBio, E. S. A. P. (2016), 'Whole cell patch clamp recordings for characterizing neuronal electrical properties of ipsc-derive neurons', https://www.axolbio.com/page/whole-cell- patch-clamp-protocol .


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten