Publikationsserver der Universitätsbibliothek Marburg

Titel:Passive ion beam modulation techniques for particle therapy facilities utilizing active pencil beam scanning delivery systems
Autor:Ringbæk, Toke Printz
Weitere Beteiligte: Engenhart-Cabillic, Rita (Prof. Dr.)
Veröffentlicht:2017
URI:https://archiv.ub.uni-marburg.de/diss/z2018/0008
DOI: https://doi.org/10.17192/z2018.0008
URN: urn:nbn:de:hebis:04-z2018-00086
DDC: Naturwissenschaften
Titel (trans.):Passive Ionenstrahlmodulationstechniken für Partikeltherapieanlagen unter Verwendung aktiver Rasterscan-Verfahren
Publikationsdatum:2018-01-10
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Physik, Ripple Filter, Prostatakrebs, Strahlentherapie, Partikeltherapie, Gehirntumore, Particle therapy, Radiation therapy, Krebs <Medizin>, Irraditation time reduction, lungencarcinomen

Summary:
Particle therapy (PT) cancer treatment is an alternative to conventional radiotherapy with the possibility for more conformal and tissue sparing treatments. PT is realized using either passive or active beam delivery methods. With the latter, also coined the scanned beam technique, magnets are used to cover the target laterally and for in-depth variation energy modulation is deployed, making the dose delivery even more conformal. However some of the current limitations of scanned beams are the longer irradiation times and a sensitivity to intra-fractionally moving targets. In PT centers with synchrotrons the irradiation time is directly related to the spot scan size and the width of the Bragg peak (BP), with the time needed from the accelerator to change energy as the bottleneck. The number of energy shifts required to cover a typical tumour in a homogeneous manner can in particular for heavy ions be as large as many hundreds. By broadening the BPs through the use of passive energy modulators, the number of energy shifts can be lowered, which would not only reduce the irradiation time but also results in a higher particle fluence per energy step, leading to higher precision in the beam monitoring systems. This work addresses the implementation of such passive energy modulators, in particular the ripple filter (RiFi). A “first generation” RiFi is currently used in carbon ion treatments in Germany, Italy, China and Japan. This first generation RiFi has 1D groove shapes, which requires a non-modulating base layer of material leading to unnecessary scattering. It is furthermore restricted to a maximum thickness of 3 mm. A new second generation RiFi with two-dimensional cone structures has been designed. Compared to the old design the resolution and the mass distribution are significantly improved, reducing the overall lateral beam width. Using 3D printing for manufacturing, the obtainable RiFi thickness is higher, with further BP widening and shorter irradiation times as a results. The new 2D design is thought to be usable in treatments with protons as well, where RiFis as of now are commonly not used in proton treatments. In this thesis, we show a methodological presentation of planning with the second generation RiFi design. It was found that treatment plans with 2D RiFis with 4 and 6 mm thicknesses yielded for the studied cases comparable dosimetric results to the standard 3 mm thick RiFi in terms of plan homogeneity and conformity but with significantly reduced irradiation times: Compared to the 3 mm RiFi, the 4 and 6 mm RiFis lower the irradiation time by 25-30% and 45-49% respectively. Plan homogeneity and conformity were slightly improved for thinner RiFis but satisfactory results are obtained for all cases with RiFi performances in general increasing with penetration depth due to straggling and scattering effects. Certain plans for 6 mm RiFis indicate that there might be an upper limit on the RiFi thickness in treatments of small and very superficial tumours. The work of this thesis also continues the investigations of the RiFi-induced fluence inhomogeneities and dose range inhomogeneities begun in the author's master thesis and covers new findings in this topic related to the beam spot sizes and the ion optical focusing of the beam. Lastly, during the thesis, plates of porous materials such as foams or lung substitutes will be shown to be usable as passive energy modulators in a manner similar to RiFis and to furthermore function as a range shifter, which placed close to the patients leads to reduced beam penumbras for low penetration depths. This work furthermore contains a short outlook with a perspective on other methods reducing the energy shifts as well as comments on new future designs of energy modulators.

Bibliographie / References

  1. Jongen, Y., et al (2013). Cyclotrons from protons to Carbon for Hadron Therapy [PowerPoint Slides]. PAC2013 at Pasadena. Retrieved from : http://accelconf.web.cern.ch/AccelConf/pac2013/talks/thybb1_talk.pdf
  2. Ringbaek, T.P., Brons, S., Naumann, J., Ackermann, B., Thomsen, B., Bassler, N., Zink, K. and Weber, U. (2014). 059: Evaluation of New 2D Ripple Filters for Particle Therapy Facilities. International Journal of Particle Therapy, 1(2):472-473.
  3. Simeonov, Y., Weber, U., Penchev, P., Ringbaek, T.P., Schuy, S., Brons, S., Engenhart- Cabillic, R., Bliedtner, J. and Zink, K (2017). 3D Range-modulator for scanned particle therapy: Development, Monte Carlo simulations and experimental measurements. Phys.
  4. Graeff, C., Lüchtenborg, R., Eley, J.R., Durante, M. and Bert, C. (2013). A 4D-optimization concept for scanned ion beam therapy . Radiotherapy and Oncology. 109:419-424
  5. Nikoghosyan, A., Schulz-Ertner, D., Herfarth, K., Didinger, B., Münter, M. W., Jensen, A., Jäkel, O., Hoess, A., Haberer, T. & Debus, J. (2011). Acute toxicity of combined photon imrt and carbon ion boost for intermediate-risk prostate cancer -acute toxicity of 12c for pc. Acta Oncol. 50:784-790.
  6. Titt U, Mirkovic D, Sawakuchi G, Perles L, Newhauser W D, Taddei P and Mohan R 2010 Adjustment of the lateral and longitudinal size of scanned proton beam spots using a pre-absorber to optimize penumbrae and delivery efficiency Phys. Med. Biol. 55 7097-106
  7. Titt, U., Mirkovic, D., Sawakuchi, G., Perles, L., Newhauser, W. D., Taddei, P. & Mohan, R. (2010). Adjustment of the lateral and longitudinal size of scanned proton beam spots using a pre-absorber to optimize penumbrae and delivery efficiency. Phys. Med. Biol. 55(23):7097-7106.
  8. Lühr, A., Hansen, D. C., Jäkel, O., Sobolevsky, N. and Bassler, N (2011a). Analytical expressions for water-to-air stopping-power ratios relevant for accurate dosimetry in particle therapy. Phys. Med. Biol. 56:2515-2533.
  9. Weber, U., Bliedtner, J., Schilling, M., Iancu, G., Brick, U., Trautmann, C., Seidl, T., Ringbaek, T.P., Bassler, N. and Zink, K (unpublished). A New Design and Manufacturing Method for the Ripple Filter in Particle Therapy. Will be submitted to PMB in 2018. REFERENCES
  10. Zenklusen, S.M., Pedroni, E. and Meer, D. (2010). A study on repainting strategies for treating moderately moving targets with proton pencil beam scanning at the new Gantry 2 at PSI. Phys. Med. Biol. 55:5103-5121
  11. Low D A, Harms W B, Mutic S and Purdy J A 1998 A technique for the quantitative evaluation of dose distributions Med. Phys. 25 656-61
  12. Lomax, A. J., Bortfeld, T., Goitein, G., Debus, J., Dykstra, C. and Tercier, P. A (1999). A treatment planning inter-comparison of proton and intensity modulated photon radiotherapy.
  13. Goitein, M (1983). Beam scanning for heavy charged particle radiotherapy Med. Phys. 10:831-840 .
  14. Weber U, Kraft G and Zink K 2014 Benefit of reducing the distance between patient and nozzle and usage of a range shifter Int. J. Part. Ther. 1 462-3
  15. Weber, U., Kraft, G. and Zink, K (2014). Benefit of Reducing the Distance between Patient and Nozzle and Usage of a Range Shifter. Internation Journal of Particle Therapy, 1(2):462-463.
  16. Gemmel A, Hasch B, Ellerbrock M, Weyrather W K and Krämer M 2008 Biological dose optimization with multiple ion fields Phys. Med. Biol. 53 6991-7012
  17. Santiago, A., Fritz, P., Mühlnickel, W., Engenhart-Cabilic, R. & Wittig, A. (2015). Changes in the radiological depth correlate with dosimetric deterioration in particle therapy for stage 1 NSCLC patients under high frequency jet ventilation. Acta Oncol. 54(9):1631-7.
  18. Loeffler J.S. and Durante M (2013). Charged particle therapy-optimization, challenges and future directions. Nat Rev Clin Oncol 10:411-24.
  19. Aleksandrov, V., Gursky, S., Karamyshev, O., Karamysheva, G., Kazarinov, N., Kostromin, S., Morozov, N., Samsonov, E., Shirkov, G., Shevtsov, V., Syresin, E. and Tuzikov, A. (2010). Compact superconducting cyclotron C400 for hadron therapy . Nuclear Instruments and Methods in Physics Research A 624:47-53 .
  20. Comparison of carbon-ion passive and scanning irradiation for pancreatic cancer . Radiotherapy and Oncology 119:326-330 .
  21. Bassler N, Kantemiris I, Engelke J, Holzscheiter M and Petersen J B 2010 Comparison of optimized single and multifield irradiation plans of antiproton, proton and carbon ion beams Radiother. Oncol. 95 87-93
  22. Comparison of optimized single and multifield irradiation plans of antiproton, proton and carbon ion beams. Radiother. Oncol. 95:87-93.
  23. Weber, U. and Kraft, G (2009). Comparisons of carbon ions vs protons. Cancer J. 15:325- 332.
  24. Feuvret L, Noël G and Mazeron J 2006 Conformity index: a review Int. J. Radiat. Oncol. Biol. Phys. 64 333-42
  25. Boda-Heggemann J, Knopf AC, Simeonova-Chergou A, Wertz H, Stieler F, Jahnke A, Jahnke L, Fleckenstein J, Vogel L, Arns A, Blessing M, Wenz F, Lohr F (2016). Deep inspiration breath hold-based radiation therapy: A clinical review. Int J Radiat Oncol Biol Phys. 94:478-92.
  26. McGowan, S.E., Albertini, F., Thomas, S.J. and Lomax, A.J. (2015). Defining robustness protocols: a method to include and evaluate robustness in clinical plans. Phys. Med. Biol. 60: 2671-2684
  27. Titt U, Sell M, Unkelbach J, Bangert M, Mirkovic D, Oelfke U and Mohan R 2015 Degradation of proton depth dose distributions attributable to microstructures in lung-equivalent material Med. Phys. 42 6425
  28. Titt, U., Sell, M., Unkelbach, J., Bangert, M., Mirkovic, D., Oelfke, U. & Mohan, R. (2015). Degradation of proton depth dose distributions attributable to microstructures in lung-equivalent material. Med. Phys. 42:6425.
  29. Sawakuchi G O, Titt U, Mirkovic D and Mohan R 2008 Density heterogeneities and the influence of multiple coulomb and nuclear scatterings on the Bragg-peak distal edge of proton therapy beams Phys. Med. Biol. 53 4605-19
  30. Sawakuchi, G. O., Titt, U., Mirkovic, D. & Mohan, R. (2008). Density heterogeneities and the influence of multiple coulomb and nuclear scatterings on the Bragg-peak distal edge of proton therapy beams. Phys. Med. Biol. 53:4605-4619.
  31. Weber, U., Becher W. and Kraft, G (2000). Depth scanning for a conformal ion beam treatment of deep seated tumours . Phys. Med. Biol. 45:3627-3641.
  32. Weber U and Kraft G 1999 Design and construction of a ripple filter for a smoothed depth dose distribution in conformal particle therapy Phys. Med. Biol. 44 2765-75
  33. Weber, U. & Kraft, G. (1999). Design and construction of a ripple filter for a smoothed depth dose distribution in conformal particle therapy. Phys. Med. Biol. 44:2765-2775.
  34. Design study of a raster scanning system for moving target irradiation in heavy-ion radiotherapy. Med. Phys. 34:1085-1097 .
  35. Weber, U., Bliedtner, J., Brick, U., Bauch, U., Möhwald, M., Schilling, M., Ringbaek, T.P., Simeonov, Y., Trautmann, C. and Zink, K. (2015). Design und 3D-Druck von Ripple-Filtern für die Rasterscan-Bestrahlung in der Partikeltherapie [PowerPoint Slides]. 3D-Druck in der Anwendung Konferenz-Targungsband.
  36. Bassler, N., Jäkel, O., Soendergaard, C. S. & Petersen, J. B. (2010). Dose-and let-painting with particle therapy. Acta Oncol. 49:1170-1176.
  37. Bassler N, Jäkel O, Soendergaard C S and Petersen J B 2010 Dose-and let-painting with particle therapy Acta Oncol. 49 1170-6
  38. Ringbaek T P, Weber U, Santiago A, Simeonov Y, Fritz P, Krämer M, Wittig A, Bassler N, Cabillic- Engenhart R and Zink K 2016 Dosimetric comparisons of carbon ion treatment plans for 1d and 2d ripple filters with variable thicknesses Phys. Med. Biol. 61 4327-41
  39. Jelen, U., Bubula, M.E., Ammazzalors, F., Engenhart-Cabillic, R., Weber, U. and Witting, A (2013). Dosimetric impact of reduzed nozzle-to-isocenter distance in intensity-modulated proton therapy of intracranial tumors in combined proton-carbon fixed-nozzle treatment facilities. Radiat. Oncol. 8: 218.
  40. Schulz-Ertner, D., Karger, C. P., Feuerhake, A., Nikoghosyan, A., Combs, S. E., Jäkel, O., Edler, L., Scholz, M., Thilmann, C. & Debus, J. (2007). Effectiveness of carbon ion radiotherapy in the treatment of skull-base chordomas. Int. J. Radiat. Oncol. Biol. Phys. 68(2):449-457.
  41. Schippers, J. M. and Lomax, A. J (2011). Emerging technologies in proton therapy. Acta Oncol. 50: 838-850.
  42. Lindhard, J. and Scharff, M (1961). Energy dissipation by ions in the keV region. Phys. Rev. 124: 128-1301.
  43. Gevillot L, Stock M and Vatnitsky S 2015 Evaluation of beam delivery and ripple filter design for non- isocentric proton and carbon ion therapy Phys. Med. Biol. 60 7985-8005
  44. Gevillot, L., Stock, M. & Vatnitsky, S. (2015). Evaluation of beam delivery and ripple filter design for non-isocentric proton and carbon ion therapy. Phys. Med. Biol. 60:7985-8005.
  45. Ringbaek T P et al 2015 Fluence inhomogeneities due to a ripple filter induced moiré effect Phys. Med. Biol. 60 N59-69
  46. Fassò, A.; Ferrari, A.; Ranft, J., and Sala, P. R (2005). FLUKA: a multi-particle transport code. CERN-2005-10, 49:1933-1958.
  47. Geant4 -a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A. 506(3):250-303.
  48. Geant4 developments and applications. IEEE Transactions on Nuclear Science. 53(1):270- 278.
  49. Jia, X., Schümann, J., Paganetti, H. and Jiang, S.B (2012). GPU-based fast Monte Carlo dose calculation for proton therapy. Phys Med Biol. 7;57(23)7783-7797.
  50. Schardt D, Elsässer T and Schulz-Ertner D (2010). Heavy-ion tumor therapy: Physical and radiobiological benefits. Rev Mod Phys 82:383-425.
  51. Iancu, G., Krämer, M., Zink, K., Durante, M. and Weber, U. (2015). Implementation of an efficient Monte Carlo algorithm in TRiP: Physical Dose Calculation. International journal of particle therapy 2(2):415-425.
  52. Wilkens, J.J. (2015). Improved normal tissue protection by proton and X-ray microchannels compared to homogeneous field irradiation . Physica Medica. 31: 615-620.
  53. Toftegaard, J., Lühr, A., Sobolevsky, N. & Bassler, N. (2014). Improvements in the stopping power library libdedx and release of the web gui dedx.au.dk. J. Phys.: Conf. Ser. 489. (1).
  54. Ma, N. Y., Tinganelli, W., Maier, A., Durante, M. & Kraft-Weyrather, W (2013). Influence of chronic hypoxia and radiation quality on cell survival. J. Radiat. Res. 54(Suppl. 1):i13- i22.
  55. Hollmark, M., Uhrdin, J., Belkic, D., Gudowska, I. & Brahme, A. (2004). Influence of multiple scattering and energy loss straggling on the absorbed dose distributions of therapeutic light ion beams: I. analytical pencil beam model. Phys. Med. Biol. 49:3247- 3265.
  56. Chu W, Ludewigt B and Renner T 1993 Instrumentation for treatment of cancer using proton and light- ion beams Rev. Sci. Instrum. 64 2055-122
  57. Chu, W. T., B. A. Ludewigt, and T. R. Renner (1993). Instrumentation for treatment of cancer using proton and light-ion beams. Rev. Sci. Instrum. 64:2055-2122.
  58. Lomax, A.J (2008). Intensity modulated proton therapy and its sensitivity to treatment uncertainties 1: The potential effects of calculational uncertainties. Phys Med Biol 53:1027- 1042.
  59. Nill, S., T. Bortfeld, and U. Oelfke (2004). Inverse planning of intensity modulated proton therapy. Z. Med. Phys. 14:35-40.
  60. Krämer M and Durante M 2010 Ion beam transport calculations and treatment plans in particle therapy Eur. Phys. J. D 60 195-202
  61. Krämer, M. & Durante, M. (2010). Ion beam transport calculations and treatment plans in particle therapy. Eur. Phys. J. D. 60:195-202.
  62. Vavilov, P. V. (1957). Ionization losses of high energy heavy particles. Soviet Physics JETP 5:749.
  63. Ohara K., Okumura T., Akisada M., Inada T., Mori T., Yokota H. and Calaguas M.J. (1989). Irradiation synchronized with respiration gate. Int. J. Rad. Oncol. Biol. Phys. 17:853-7
  64. Haberer T, Becher W, Schardt D and Kraft G 1993 Magnetic scanning system for heavy ion therapy Nucl. Instrum. Methods A 330 296
  65. Haberer T, Becher W, Schardt D and Kraft G 1993 Magnetic scanning system for heavy ion therapy Nucl. Instrum. Methods A 330 296
  66. Haberer, T., Becher, W., Schardt, D. & Kraft, G. (1993). Magnetic scanning system for heavy ion therapy. Nucl. Instr. and Meth. A330, 296. REFERENCES
  67. Baumann, K. (2015). Master Thesis: Modellierung der patientennahen Strahlführung einer REFERENCES Partikeltherapieanlage mit Hilfe des Monte-Carlo-Codes FLUKA unter exakter Berücksichtigung modulierender Elemente . Technische Hochschule Mittelhessen (University of Applied Sciences).
  68. Dilmanian, F. A., Eley, J. G. and Krishnan, S. (2015). Minibeam therapy with protons and light ions: Physical feasibility and the potential to reduce radiation side effects and to facilitate hypofractionation . Int J Radiat Oncol Biol Phys. 1;92(2): 469-474.
  69. Bethe, H. A (1953). Moliére's theory of multiple scattering. Rev. Mod. Phys. 89:1256-1266.
  70. Parodi, K., Mairani, A. and Sommerer, F (2013). Monte Carlo-based parametrization of the
  71. Monte Carlo simulations of new 2d ripple filters for particle therapy facilities Acta Oncol. 53 40-9
  72. Ringbaek, T. P., Weber, U., Thomsen, B., Petersen, J. B. B. & Bassler, N. (2014). Monte carlo simulations of new 2d ripple filters for particle therapy facilities. Acta Oncol. 53:40- 49.
  73. Monte Carlo simulations of ripple filters designed for proton and carbon ion beams in hadrontherapy with active scanning technique. J Phys Conf Ser 2.
  74. Bert C and Durante M 2011 Motion in radiotherapy: particle therapy Phys. Med. Biol. 56 R113-44
  75. Bert, C. & Durante, M. (2011). Motion in radiotherapy: particle therapy. Phys. Med. Biol. 56, R113-R144.
  76. Graeff, C (2014). Motion mitigation in scanned ion beam therapy through 4D-optimization.
  77. Furukawa T, Inaniwa T, Sato S, Shirai T, Mori S, Takeshita E, Mizushima K, Himukai T and Noda K 2010 Moving target irradiation with fast rescanning and gating in particle therapy Med. Phys. 37 4874-9
  78. Sakae, T., Nohtomi, A., Maruhashi, A., Sato, M., Toshiyuki, T., Kohno, R., Akine, Y. Aoba- ku, C. and Koike, Y (2000). Multi-layer energy filter for realizing conformal irradiation in charged particle therapy . Med. Phys. 27:2.
  79. Gottschalk B, Koehler A M, Schneider R J, Sisterson J M and Wagner S M 1993 Multiple coulomb scattering of 160 mev protons Nucl. Instrum. Methods B 74 467-90
  80. Iwata, Y., Furukawa, T., Mizushima, K., Noda, K., Shirai, T., Takeshita,E. and Takada, E (2010). Multiple-energy operation with quasi-DC extension of FLATTOPS at HIMAC. Proceedings of IPAC10, Kyoto, MOPEA008.
  81. Eyges I 1948 Multiple scattering with energy loss Phys. Rev. Lett. 74 1534-5
  82. Eyges, I. (1948). Multiple scattering with energy loss. Phys. Rev. Lett. 74(1-4):1534-1535.
  83. Gottschalk, B. (2006). Neutron dose in scattered and scanned proton beams: In regard to
  84. Battermann J, Breur K, Hart G and van Preperzeel H A 1981 Observations on pulmonary metastases in patients after single doses and multiple fractions of fast neutrons and Co-60 gamma rays Eur. J. Cancer 17 539-48
  85. Böhlen, T. T., Cerutti, F., Chin, M. P. W., Fasso, A. amd Ferrari, A., Ortega, P. G., Mairani, Bragg, W. (1905). On the a-particles of radium and their loss of range in passing through various atoms and molecules. Philos. Mag. 10:318-340.
  86. Witt M, Weber U, Kellner D, Engenhart-Cabillic R and Zink K 2015a Optimization of the stopping- power-ratio to hounsfield-value calibration curve in proton and heavy ion therapy Z. Med. Phys. 25 251-63
  87. Courneyea L, Beltran C, Tseung H S W C, Yu J and Herman M G 2014 Optimizing mini-ridge filter thickness to reduce proton treatment times in a spot-scanning synchrotron system Med. Phys. 41 061713
  88. Optimizing mini-ridge filter thickness to reduce proton treatment times in a spot-scanning synchrotron system. Med. Phys. 41.
  89. Hansen D C, Lühr A, Sobolevsky N and Bassler N 2012b Optimizing shield-hit for carbon ion treatment Phys. Med. Biol. 57 2393-409
  90. Hansen, D. C., Lühr, A., Sobolevsky, N. M. and Bassler, N (2012b). Optimizing SHIELD- HIT for carbon ion treatment. Phys. Med. Biol. 57:2393-2409.
  91. Pedroni, E., Meer, D., Bula, C., Safai, S. and Zenklusen, S (2011). Pencil beam characteristics of the next-generation proton scanning gantry of PSI: design issues and initial commissioning results. Eur. Phys. J. Plus 126:66.
  92. Performance of the NIRS fast scanning system for heavy-ion radiotherapy. Med Phys. 37:5672-82.
  93. Toftegaard, J., Petersen, J. P. & Bassler, N. (2014). PyTRiP -a toolbox and gui for the proton/ion therapy planning system trip. J. Phys.: Conf. Ser. 489.
  94. Bert C, Grözinger S O and Rietzel E 2008 Quantification of interplay effects on scanned particle beams and moving targets Phys. Med. Biol. 53 2253-65
  95. Bert, C., Grözinger, S. O. & Rietzel, E. (2008). Quantification of interplay effects on scanned particle beams and moving targets. Phys. Med. Biol. 53.
  96. Baumann, M., Krause, M., Overgaard, J., Debus, J., Bentzen, S., Daartz, J., Ricther, C., Zips, D. and Bortfield, T (2016). Radiation oncology in the era of precision medicine. Nature Reviews Cancer 16:234-249.
  97. Wilson RR (1946). Radiological use of fast protons. Radiology 47:487-91.
  98. Schulz-Ertner, D., Haberer, T., Jäkel, O., Thilmann, C., Krämer, M., Enghardt, W., Kraft, G., Wannenmacher, M. & Debus, J. (2002). Radiotherapy for chordomas and low-grade chondrosarcomas of the skull base with carbon ions. Int. J. Radiat. Oncol. Biol. Phys. 53(1):36-42.
  99. Schömers, C., Cee, R., Feldmeier, E., Galonska, M., Peters, A., Scheloske, S. and Haberer, T (2014). Reacceleration of ion beams for particle therapy. Proceedings of IPAC2014, Dresden. WEPRO062 .
  100. Hansen, D. C., Lühr, A., Herrman, R., Sobolevsky, N. M. and Bassler, N (2012a). Recent improvements in the SHIELD-HIT code. Int. J. Radiat. Biol. 88:195-199.
  101. IAEA (2008). Relative biological effectiveness in ion beam therapy, Technical reports series no. 461, Technical Report 46 (Vienna: International Atomic Energy Agency)
  102. Wittig, A. (2013). Reproducibility of target coverage in stereotactic spot scanning proton lung irradiation under high frequency jet ventilation. Radiother. Oncol. 109:45-50. REFERENCES
  103. Richter, D., Graeff, C., Jäkel, O. and Bert, C (2014). Residual motion mitigation in scanned
  104. Safai, S., Bula, C., Meer, D. and Pedroni, E. (2012). Review Article: Improving the precision and performance of proton pencil beam scanning. Translational Cancer Research. 1(3).
  105. Lui, W., Zhang, X., Li, Y. and Mohan, R (2012). Robust optimization of intensity modulated proton therapy. Med Phys. 39(2):1079-91.
  106. Agosteo, S., C. Birattari, M. Caravaggio, M. Silari, and G. Tosi (1998). Secondary neutron and photon dose in proton therapy. Radiother. Oncol. 48:293-305.
  107. References Bassler N, Hansen D C, Lühr A, Thomsen B, Petersen J P and Sobolevsky N 2014 SHIELD-HIT12A: a Monte Carlo particle transport program for ion therapy research J. Phys.: Conf. Ser. 489 012004
  108. Bassler N, Hansen D C, Lühr A, Thomsen B, Petersen J P and Sobolevsky N 2014 SHIELD-HIT12A-a Monte Carlo particle transport program for ion therapy research J. Phys.: Conf. Ser. 489 012004
  109. SHIELD-HIT12A -a Monte Carlo particle transport program for ion therapy research. Journal of Physics: Conference Series 489(1).
  110. Dementyev, A. V. and Sobolevsky, N. M (1999). SHIELD -universal Monte Carlo hadron transport code: scope and applications. Radiat. Meas. 30:553-557.
  111. Dementyev A V and Sobolevsky N M 1999 SHIELD: universal Monte Carlo hadron transport code: scope and applications Radiat. Meas. 30 553-7
  112. Van de Water, S., Kooy, H. M., Heijmen, B. J. M. and Hoogeman, M. S (2015). Shortening Delivery Times of Intensity Modulated Proton Therapy by Reducing Proton Energy Layers During Treatment Plan Optimization. Int J Radiation Oncol Biol Phys, 92(2);
  113. Wu, Q., Mohan, R., Morris, M., Lauve, A. & Schmidt-Ullrich, R. (2003). Simulations integrated boost intensity-modulated radiotherapy for locally advanced head-and-neck squamos cell carcinomas 1: Dosimetric results. Int. J. Radiat. Oncol., Biol. 56:573-585.
  114. Highland, V. L (1975). Some practical remarks on multiple scattering. Nucl. Instrum. Methods 129.
  115. Kanai, T., Kawachi, K., Kumamoto, Y., Ogawa, H., Yamada, T., Matsuzawa, H. and Inada, T (1980). Spot scanning system for proton radiotherapy. Med Phys. 7;365
  116. Lühr, A., Toftegaard, J., Kantemiris, I., Hansen, D. C. and Bassler, N (2012). Stopping power for particle therapy: the generic library libdEdx and clinically relevant stopping- power ratios for light ions. Int. J. Radiat. Biol. 88:209-212.
  117. Mason D 2011 Su-e-t-33: Pydicom: an open source dicom library Med. Phys. 38 3493
  118. Mason, D. (2011), Su-e-t-33: Pydicom: An open source dicom library. Med Phys. 38:3493.
  119. Simeonov, Y., Penchev, P., Ringbaek, T.P., Brons, S., Weber, U. and Zink, K (2016). SU-F- T-184: 3D Range-Modulator for Scanned Particle Therapy: Development, Monte Carlo Simulations and Measurements. Med. Phys. 43:3504.
  120. Liu, W., Schild, S., Chang, J., Liao, Z., Ding, X., Hu, Y., Shen, J., Korte, S., Sahoo, N., Wong, W., Herman, M. and Bues, M. (2016). TH-CD-209-05: Impact of Spot Size and Spacing On the Quality of Robustly-Optimized Intensity-Modulated Proton Therapy Plans for Lung Cancer. Med. Phys. 43:3886.
  121. Bassler N, Holzscheiter M H, Jäkel O, Kovacevic S K, Knudsen H V and The AD-4/ACE Collaboration 2008 The antiproton depth-dose curve in water Phys. Med. Biol. 53 793-805
  122. Bassler, N., Hansen, J. W., Palmans, H., Holzscheiter, M. H., and Kovacevic, S (2008). The antiproton depth-dose curve measured with alanine detectors. Nucl. Instrum. Methods Phys. B., 266:929-936.
  123. Enghardt W., Debus J., Haberer T., Hasch B.G., Hinz R., Jäkel O. et al (1999). The application of PET to quality assurance of heavy-ion tumor therapy. Strahlenther Onkol. 175, Suppl 2:33-6.
  124. Böhlen T T, Cerutti F, Chin M P W, Fasso A, Ferrari A, Ortega P G, Mairani A, Sala P R, Smirnov G and Vlachoudis V 2014 The fluka code: developments and challenges for high energy and medical applications Nucl. Data Sheets 120 211-4
  125. Metropolis, N. and Ulam, S (1949). The Monte Carlo method. Journal of the American Statistical Association 44:335-341.
  126. Ahlen, S. P (1980). Theoretical and experimental aspects of the energy loss of relativistic heavily ionizing particles. Rev. Mod. Phys. 52:121-173.
  127. Moliére, G (1948). Theorie der Streuung schneller geladener Teilchen ii. Mehrfach-und Vielfachstreuung. Z. Naturforsch. 3a:78. REFERENCES
  128. Bohr, N (1915). The penetration of atomic particles through matter. Radiother. Oncol. 30:581.
  129. Bohr N 1915 The penetration of atomic particles through matter Phil. Mag. 6 581
  130. Ziegler, J. F (1999). The stopping of energetic light ions in elemental matter. J. Appl. Phys / Rev. Appl. Phys. 85:1249-1272.
  131. Castro J., Saunders W. and Tobias C (1982). Treatment of cancer with heavy charged particles. Int J Radiat Oncol 8:2191-8.
  132. Lomax, A. J., Böhringer, T., Bolsi, A., Coray, D., Emert, F., Goitein, G., Jermann, M., Lin, S., Pedroni, E., Rutz, H., Stadelmann, O., Timmermann, B., Verwey, J. and Weber, D. C (2004). Treatment planning and verification of proton therapy using spot scanning: Initial experiences. Med Phys. 31:3150.
  133. Krämer M and Scholz M 2000 Treatment planning for heavy-ion radiotherapy: calculation and optimization of biologically effective dose Phys. Med. Biol. 45 3319-30
  134. Krämer, M. & Scholz, M. (2000). Treatment planning for heavy-ion radiotherapy: calculation and optimization of biologically effective dose. Phys. Med. Biol. 45:3319-3330.
  135. Krämer M, Jäkel O, Haberer T, Kraft G, Schardt D and Weber U 2000 Treatment planning for heavy-ion radiotherapy: physical beam model and dose optimization Phys. Med. Biol. 45 3299-317
  136. Krämer, M., Jäkel, O., Haberer, T., Kraft, G., Schardt, D. & Weber, U. (2000). Treatment planning for heavy-ion radiotherapy: physical beam model and dose optimization. Phys.
  137. Withers, H. R., Taylor, J.M.G., Maciejewski, B. (1998). Treatment volume and tissue tolerance. Int J Rad Oncol Biol Phys. 14:751-759.
  138. Kraft, G. (2000). Tumor therapy with heavy charged particles. Prog. Part. Nucl. Phys. 45:473-544.
  139. Kraft G and Weber U 2011 Tumor therapy with ion beams Handbook of Particle Detection and Imaging vol 1, ed C Grupen and I Buvat (Berlin: Springer) ch 47, p 1179
  140. Witt, M., Weber, U., Simeonov, Y. & Zink, K. (2015). U-e-t-671: Range-modulation effects of carbon ion beams in lung tissue. Med. Phys. 42:3491.
  141. Van de Water, T. A., Lomax, A.J., Bijl, H.P., Schilstra, C., Hug, E.B. And Langendijk, J.A. (2012).Using a reduced spot size for intensity-modulated proton therapy potentially improves salivary gland-sparing in oropharyngeal cancer. Int. J. Radiation Oncology Biol. Phys. 82(2):313-319.
  142. Bethe, H. A (1930). Zur Theorie des durchgangs schneller Korpuskularstrahlen durch Materie. Ann. Phys. 5.
  143. Ringbaek, T.P., Weber, U., Bassler, N. and Zink, K (2014). Evaluation of New 2D Ripple Filters for Particle Therapy Facilities [PowerPoint Slides]. PTCOG 53 Shanghai. Retrieved from: http://ptcog.ch/archive/conference_p&t&v/PTCOG53/PresentationsSM/59_Ringbaek.pdf


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten