Publikationsserver der Universitätsbibliothek Marburg

Titel:Meiotic targets of the Ras/cAMP/PKA pathway during regulation of spore formation in Saccharomyces cerevisiae
Autor:Muscó, Massimiliano
Weitere Beteiligte: Taxis, Christof (PD Dr.)
Veröffentlicht:2017
URI:https://archiv.ub.uni-marburg.de/diss/z2017/0777
DOI: https://doi.org/10.17192/z2017.0777
URN: urn:nbn:de:hebis:04-z2017-07775
DDC: Biowissenschaften, Biologie
Titel (trans.):Meiotische Ziele ded Ras/cAMP/PKA Pfades während der Regulation der Sporenbildung in Saccharomyces cerevisiae
Publikationsdatum:2017-12-19
Lizenz:https://creativecommons.org/licenses/by-nc-sa/4.0

Dokument

Schlagwörter:
Die Untersuchung der Regulierung der Sporenbildung durch PKA auf eine Ernährungs-Ebene, bPAC photoaktiviert Adenylyl Cyclase aus Bakterien cAMP zyklische Adenosin Monophosphate Meiose PKA Protein Kinase A MP meiotische Plaque SPO, Sporul, bPAC photoactivated adenylyl cyclase from bacteria cAMP cyclic adenosine monophosphate Meiosis PKA Protein Kinase A MP Meiotic plaque SPO

Summary:
Sporulation in Saccharomyces cerevisiae occurs in response to starvation for nutrients and in presence of a non-fermentable carbon source like potassium acetate which lead diploid yeast cells to undergo meiosis and subsequently to package the haploid nuclei in ascospores. The number of formed spores is between one and four and depends on the availability of nutrients, the more nutrients are available the higher is the number of spores per ascus. This regulation of the spore numbers is called spore number control (SNC) and occurs at the yeast centrosome called spindle pole body (SPB). A meiotic placque (MP) which works as scaffold to initiate the synthesis of the prosporemembrane, is composed by three essential proteins Mpc54, Mpc70 and Spo74. The regulation of spore number is controlled by nutrients which according to the concentration of potassium acetate (KOAc) regulate the amount of MP proteins and by the spindle polarity which is the basis for adaptation of gamete numbers during meiosis, the age of the SPBs indeed is crucial for the selection of the SPBs to modify and that will become spores. The protein Ady1 is phosphorylated by the kinase PKA in vitro. Ady1 has a genetic interaction with the SPB components and localizes all the MP components to the SPBs, it is responsible then of the formation and the activity of the MP. The nutrient-responsive Ras/cyclic AMP (cAMP)/protein kinase A (PKA) pathway influences proliferation, carbohydrate metabolism, entry into meiosis and gamete numbers in response to nutrients in Saccharomyces cerevisiae. In this study, it was shown how Ras/cAMP/PKA signal transduction pathway influences the adjustment of spore numbers to external nutrients. Specifically, low PKA activity increased the spore formation by increasing the abundance of two MP proteins Mpc70 and Spo74 plus Ady1 when the source of potassium acetate is poor. The approach which has been used to induce high PKA prevented spore formation, many cells did not reach the meiotic divisions. Nevertheless, by this method it was possible to see that the Mpc54 protein encoded by the early gene MPC54 is affected in its abundance as well. My assays revealed that all these players are in vivo targets of PKA. Mpc54, Mpc70 as well as the meiotic protein Ady1 could be indirectly targets of PKA. The data suggested that Spo74, is a direct target of PKA and this direct regulation contributed to spore number control. PKA activity as well affected the timing of meiotic entry, cells entered meiosis earlier when PKA was reduced. The collected data indicated that inactivation of the transcription factor Nrg1 reduces spore formation. Yet, high PKA activity affected negatively the plasma membrane localization of Ras proteins during vegetative growth and sporulation. Finally, it has been shown that the activity of PKA controls the activity of other components like the nucleolar protein Fob1, the regulatory subunit of Snf1 called Snf4 and the nicotinamidase Pnc1. Overall, the findings imply the involvement of the Ras/cAMP/PKA pathway in the regulation of gamete numbers during yeast meiosis.

Bibliographie / References

  1. Kondrashov, F. A., Koonin, E. V., Morgunov, I. G., Finogenova, T. V., & Kondrashova, M. N. (2006). Evolution of glyoxylate cycle enzymes in Metazoa: evidence of multiple horizontal transfer events and pseudogene formation. Biology Direct, 1, 31. http://doi.org/10.1186/1745- 6150-1-31
  2. Renicke, C., Allman, A.K., Lutz, A., Heimerl, T., Taxis, C. (2017). The mitotic exit network regulates spindle pole body inheritance during sporulation of budding yeast. Genetics: Early Online, published on April 26, 2017 as 10.1534/genetics.116.194522
  3. Dickinson, J.R., Dawes, I.W., Boyd, A.S., and Baxter, R.L. (1983). 13C NMR studies of acetate metabolism during sporulation of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 80, 58475851.
  4. Johnston, M., and Carlson, M. (1992). 5 Regulation of Carbon and Phosphate Utilization.
  5. Jungbluth, M., Moesch, H.U., and Taxis, C. (2012). Acetate regulation of spore formation is under the control of the Ras/cyclic AMP/protein kinase A pathway and carbon dioxide in Saccharomyces cerevisiae. Eukaryot Cell 11, 1021-1032
  6. Hong, S.P., Leiper, F.C., Woods, A., Carling, D., and Carlson, M. (2003). Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc Natl Acad Sci U S A 100, 88398843.
  7. Gorner, W., Durchschlag, E., Wolf, J., Brown, E.L., Ammerer, G., Ruis, H., and Schuller, C. (2002). Acute glucose starvation activates the nuclear localization signal of a stress-specific yeast transcription factor. EMBO J 21, 135-144.
  8. Cann, M.J., Hammer, A., Zhou, J., Kanacher, T. (2003). A defined subset of adenylyl cyclases is regulated by bicarbonate ion. J. Biol. Chem. 278, 35033-35038.
  9. De Wever, V., Reiter, W., Ballarini, A., Ammerer, G., and Brocard, C. (2005). A dual role for PP1 in shaping the Msn2-dependent transcriptional response to glucose starvation. EMBO J 24, 4115-4123
  10. Deng, C., and Saunders, W.S. (2001). ADY1, a novel gene required for prospore membrane formation at selected spindle poles in Saccharomyces cerevisiae. Mol Biol Cell 12, 2646- 2659.
  11. Paiva, S., Devaux, F., Barbosa, S., Jacq, C., Casal, M. (2004). Ady2p is essential for the acetate permease activity in the yeast Saccharomyces cerevisiae. Yeast 21, 201-210
  12. Nickas, M.E., Schwartz, C., and Neiman, A.M. (2003). Ady4p and Spo74p are components of the meiotic spindle pole body that promote growth of the prospore membrane in Saccharomyces cerevisiae. Eukaryot Cell 2, 431-445.
  13. Lamb, T.M., Xu, W., Diamond, A., and Mitchell, A.P. (2001). Alkaline response genes of Saccharomyces cerevisiae and their relationship to the RIM101 pathway. J Biol Chem 276, 1850-1856.
  14. Granot, D., Margolskee, J.P., and Simchen, G. (1989). A long region upstream of the IME1 gene regulates meiosis in yeast. Mol Gen Genet 218, 308-314.
  15. Causier, B., and Davies, B. (2002). Analysing protein-protein interactions with the yeast two- hybrid system. Plant Mol Biol 50, 855-870.
  16. Hayashi, M., Ohkuni, K., and Yamashita, I. (1998b). An extracellular meiosis-promoting factor in Saccharomyces cerevisiae. Yeast 14, 617-622.
  17. Fields, S., and Song O. (1989). A novel genetic system to detect protein-protein interactions. Nature 340 245-246
  18. Friesen, H., Hepworth, S.R., and Segall, J. (1997). An Ssn6-Tup1-dependent negative regulatory element controls sporulation-specific expression of DIT1 and DIT2 in Saccharomyces cerevisiae. Mol Cell Biol 17, 123-134.
  19. Toone, W.M. and Jones, N. (1999). AP-1 transcription factors in yeast. Curr Opin Genet Dev. 9, 55-61.
  20. Shenhar, G. and Kassir, Y. (2001). A Positive Regulator of Mitosis, Sok2, Functions as a Negative Regulator of Meiosis in Saccharomyces cerevisiae. Mol Cell Biol 21, 1603-1612.
  21. Neiman, A.M. (2005). Ascospore formation in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69, 565-584.
  22. Rabitsch, K.P., Tóth, A., Gálová, M., Schleiffer, A., Schaffner, G., Aigner, E., Rupp, C., Penkner, A.M., Moreno-Borchart, A.C., Primig, M., Esposito, R.E., Klein, F., Knop, M., Nasmyth, K. (2001). A screen for genes required for meiosis and spore formation based on whole-genome expression. Curr. Biol. 11, 1001-1009.
  23. Ohkuni, K., and Yamashita, I. (2000). A transcriptional autoregulatory loop for KIN28-CCL1 and SRB10-SRB11, each encoding RNA polymerase II CTD kinase-cyclin pair, stimulates the meiotic development of S. cerevisiae. Yeast 16, 829-846.
  24. Smith, H.E., Mitchell, A.P. (1989). A transcriptional cascade governs entry into meiosis in Saccharomyces cerevisiae. Mol Cell Biol. 9, 2142-2152
  25. Janke, C., Magiera, M.M., Rathfelder, N., Taxis, C., Reber, S., Maekawa, H., Moreno- Borchart, A., Doenges, G., Schwob, E., Schiebel, E., et al. (2004). A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947-962.
  26. Kobayashi, T., Horiuchi, T. (1996). A yeast gene product, Fob1 protein, required for both replication fork blocking and recombinational hotspot activities. Genes Cells 1, 465-474.
  27. Byers, B., and Goetsch, L. (1975). Behavior of spindles and spindle plaques in the cell cycle and conjugation of Saccharomyces cerevisiae. J Bacteriol 124, 511-523.
  28. Steegborn, C., Litvin, T.N., Levin, L.R., Buck, J., Wu. H. (2005). Bicarbonate activation of adenylyl cyclase via promotion of catalytic active site closure and metal recruitment. Nat Struct Mol Biol 12, 32-37
  29. Ohkuni, K., Hayashi, M., and Yamashita, I. (1998). Bicarbonate-mediated social communication stimulates meiosis and sporulation of Saccharomyces cerevisiae. Yeast 14, 623-631.
  30. Pasula, S., Jouandot, D., Kim, J.H. (2007). Biochemical evidence for glucose-independent induction of HXT expression in Saccharomyces cerevisiae. FEBS Lett 581, 3230-3234.
  31. Leadsham, J.E., and Gourlay, C.W. (2010). cAMP/PKA signaling balances respiratory activity with mitochondria dependent apoptosis via transcriptional regulation. BMC Cell Biol 11, 92.
  32. Bahn, Y.S., Cox, G.M., Perfect, J.R., and Heitman, J. (2005). Carbonic anhydrase and CO 2 sensing during Cryptococcus neoformans growth, differentiation, and virulence. Curr Biol 15, 2013-2020.
  33. Bremer, J. (1983). Carnitine--metabolism and functions. Physiol Rev 63, 1420-1480.
  34. Arguello-Miranda, O., Zagoriy, L., Mengoli, V., Rojas, J., Jonak, K., Oz. T., Graf, P., Zachariae, W. (2016). Casein Kinase 1 Coordinates Cohesin Cleavage, Gametogenesis, and Exit from M Phase in Meiosis II. Dev Cell 40, 37-52.
  35. De Virgilio, C., and Loewith, R. (2006). Cell growth control: little eukaryotes make big contributions. Oncogene 25, 6392-6415
  36. Galello, F., Portela, P., Moreno, S., Rossi, S. (2010). Characterization of substrates that have a differential effect on Saccharomyces cerevisiae protein kinase A holoenzyme activation. J Biol Chem 285, 29770-29779.
  37. Ptacek, J., and Snyder, M. (2006). Charging it up: global analysis of protein phosphorylation. Trends Genet 22, 545-554.
  38. Briza, P., Ellinger, A., Winkler, G., and Breitenbach, M. (1988). Chemical composition of the yeast ascospore wall. The second outer layer consists of chitosan. J Biol Chem 263, 11569- 11574.
  39. Toda, T., Cameron, S., Sass, P., Zoller, M., Scott, J.D., McMullen, B., Hurwitz, M., Krebs, E.G., and Wigler, M. (1987a). Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae. Mol Cell Biol 7, 1371-1377.
  40. Sass, P., Field, J., Nikawa, J., Toda, T., and Wigler, M. (1986). Cloning and characterization of the high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 83, 9303-9307.
  41. Nikawa, J., Sass, P., and Wigler, M. (1987). Cloning and characterization of the low-affinity cyclic AMP phosphodiesterase gene of Saccharomyces cerevisiae. Mol Cell Biol 7, 3629- 3636.
  42. Hall, R.A., De Sordi, L., Maccallum, D.M., Topal, H., Eaton, R., Bloor, J.W., Robinson, G.K., Levin, L.R., Buck, J., Wang, Y., et al. (2010). CO 2 acts as a signalling molecule in populations of the fungal pathogen Candida albicans. PLoS Pathog 6, e1001193.
  43. Rothfels, K., Tanny, J.C., Molnar, E., Friesen, H., Commisso, C., and Segall, J. (2005). Components of the ESCRT pathway, DFG16, and YGR122w are required for Rim101 to act 125
  44. Hughes, J.D., Estep, P.W., Tavazoie, S., and Church, G.M. (2000). Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. J Mol Biol 296, 1205-1214.
  45. Wesp, A., Prinz, S., and Fink, G.R. (2001). Conservative duplication of spindle poles during meiosis in Saccharomyces cerevisiae. J Bacteriol 183, 2372-2375.
  46. Hayashi, M., Ohkuni, K., and Yamashita, I. (1998a). Control of division arrest and entry into meiosis by extracellular alkalisation in Saccharomyces cerevisiae. Yeast 14, 905-913.
  47. Benjamin, K.R., Zhang, C., Shokat, K.M., and Herskowitz, I. (2003). Control of landmark events in meiosis by the CDK Cdc28 and the meiosis-specific kinase Ime2. Genes Dev 17, 1524-1539.
  48. Mitchell, A.P. (1994). Control of meiotic gene expression in Saccharomyces cerevisiae. Microbiol Rev 58, 56-70.
  49. Weber, J.M., Irlbacher, H., and Ehrenhofer-Murray, A.E. (2008). Control of replication initiation by the Sum1/Rfm1/Hst1 histone deacetylase. BMC Mol Biol 9, 100.
  50. Kuge, S., Toda, T., Iizuka, N., and Nomoto, A. (1998). Crm1 (XpoI) dependent nuclear export of the budding yeast transcription factor yAP-1 is sensitive to oxidative stress. Genes Cells 3, 521-532
  51. Cryptococcus neoformans senses CO 2 through the carbonic anhydrase Can2 and the adenylyl cyclase Cac1. Eukaryot Cell 5, 103-111.
  52. Cherry, J.R., Johnson, T.R., Dollard, C., Shuster, J.R., and Denis, C.L. (1989). Cyclic AMP- dependent protein kinase phosphorylates and inactivates the yeast transcriptional activator Adr1. Cell 56, 409-419.
  53. Hedbacker, K., Townley, R., and Carlson, M. (2004). Cyclic AMP-dependent protein kinase regulates the subcellular localization of Snf1-Sip1 protein kinase. Mol Cell Biol 24, 1836- 1843.
  54. Smits, G.J., van den Ende, H., and Klis, F.M. (2001). Differential regulation of cell wall biogenesis during growth and development in yeast. Microbiology 147, 781-794.
  55. Briza, P., Winkler, G., Kalchhauser, H., and Breitenbach, M. (1986). Dityrosine is a prominent component of the yeast ascospore wall. A proof of its structure. J Biol Chem 261, 4288-4294.
  56. Kataoka, T., Broek, D., and Wigler, M. (1985). DNA sequence and characterization of the S. cerevisiae gene encoding adenylate cyclase. Cell 43, 493-505.
  57. MacKay L., Mai, B., Waters, L., Breeden L.L. (2001). Early Cell Cycle Box-Mediated Transcription of CLN3 and SWI4 Contributes to the Proper Timing of the G1-to-S Transition in Budding Yeast. Mol Cell Biol 21, 4140-4148.
  58. Wade, C., Shea, K.A., Jensen, R.V., and McAlear, M.A. (2001). EBP2 is a member of the yeast RRB regulon, a transcriptionally coregulated set of genes that are required for ribosome and rRNA biosynthesis. Mol Cell Biol 21, 8638-8650.
  59. Taxis, C., Stier, G., Spadaccini, R., and Knop, M. (2009). Efficient protein depletion by genetically controlled deprotection of a dormant N-degron. Mol Syst Biol 5, 267.
  60. Thomson, E., Ferreira-Cerca, S., Hurt, E. (2013). Eukaryotic ribosome biogenesis at a glance. J Cell Sci 126, 4815-4821
  61. Griffioen, G., Swinnen, S., and Thevelein, J.M. (2003). Feedback inhibition on cell wall integrity signaling by Zds1 involves Gsk3 phosphorylation of a cAMP-dependent protein kinase regulatory subunit. J Biol Chem 278, 23460-23471.
  62. Thevelein, J.M. (1991). Fermentable sugars and intracellular acidification as specific activators of the RAS-adenylate cyclase signalling pathway in yeast: the relationship to nutrient-induced cell cycle control. Mol Microbiol 5, 1301-1307.
  63. Moens, P.B. (1971). Fine structure of ascospore development in the yeast Saccharomyces cerevisiae. Can J Microbiol 17, 507-510.
  64. Shimoda, C. (2004). Forespore membrane assembly in yeast: coordinating SPBs and membrane trafficking. J Cell Sci 117, 389-396.
  65. Klengel, T., Liang, W.J., Chaloupka, J., Ruoff, C., Schroppel, K., Naglik, J.R., Eckert, S.E., Mogensen, E.G., Haynes, K., Tuite, M.F., et al. (2005). Fungal adenylyl cyclase integrates CO 2 sensing with cAMP signaling and virulence. Curr Biol 15, 2021-2026.
  66. Chu, S., and Herskowitz, I. (1998). Gametogenesis in yeast is regulated by a transcriptional cascade dependent on Ndt80. Mol Cell 1, 685-696.
  67. Neigeborn, L. Carlson, M. (1984). Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics 108, 845-58
  68. Kataoka, T., Powers, S., McGill, C., Fasano, O., Strathern, J., Broach, J., and Wigler, M. (1984). Genetic analysis of yeast RAS1 and RAS2 genes. Cell 37, 437-445.
  69. Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein, D., and Brown, P.O. (2000). Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11, 4241-4257
  70. Ptacek, J., Devgan, G., Michaud, G., Zhu, H., Zhu, X., Fasolo, J., Guo, H., Jona, G., Breitkreutz, A., Sopko, R., et al. (2005). Global analysis of protein phosphorylation in yeast. Nature 438, 679-684.
  71. Randez-Gil, F., Bojunga, N., Proft, M., and Entian, K.D. (1997). Glucose derepression of gluconeogenic enzymes in Saccharomyces cerevisiae correlates with phosphorylation of the gene activator Cat8p. Mol Cell Biol 17, 2502-2510.
  72. Ordiz, I., Herrero, P., Rodicio, R., and Moreno, F. (1996). Glucose-induced inactivation of isocitrate lyase in Saccharomyces cerevisiae is mediated by the cAMP-dependent protein kinase catalytic subunits Tpk1 and Tpk2. FEBS Lett 385, 43-46.
  73. Gray, M., Piccirillo, S., Purnapatre, K., Schneider, B.L., and Honigberg, S.M. (2008). Glucose induction pathway regulates meiosis in Saccharomyces cerevisiae in part by controlling turnover of Ime2p meiotic kinase. FEMS Yeast Res 8, 676-684.
  74. Wilson, W.A., Hawley, S.A., and Hardie, D.G. (1996). Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio. Curr Biol 6, 1426-1434.
  75. Ronne, H. (1995). Glucose repression in fungi. Trends Genet 11, 12-17.
  76. Carlson, M. (1999). Glucose repression in yeast. Curr Opin Microbiol 2, 202-207.
  77. Ozcan, S., Dover, J., Johnston, M. (1998). Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae. EMBO J 17, 2566-2573.
  78. Moriya, H., Johnston, M. (2004). Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I. Proc Natl Acad Sci USA 101, 1572- 1577.
  79. Xue, Y., Batlle, M., and Hirsch, J.P. (1998). GPR1 encodes a putative G protein-coupled receptor that associates with the Gpa2p Galpha subunit and functions in a Ras-independent pathway. EMBO J 17, 1996-2007.
  80. Flick, K.M., Spielewoy, N., Kalashnikova, T.I., Guaderrama, M., Zhu, Q., Chang, H.C., Wittenberg, C. (2003). Grr1-dependent inactivation of Mth1 mediates glucose-induced dissociation of Rgt1 from HXT gene promoters. Mol Biol Cell 14, 3230-3241.
  81. Dohmen, R.J., Wu, P., Varshavsky, A. (1994). Heat-inducible degron: a method for constructing temperature-sensitive mutants. Science 263, 1273-1276
  82. Kadosh, D., and Struhl, K. (1998). Histone deacetylase activity of Rpd3 is important for transcriptional repression in vivo. Genes Dev 12, 797-805.
  83. Mollapour, M., and Piper, P.W. (2007). Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol Cell Biol 27, 6446-6456.
  84. Polish, J.A., Kim, J.H., Johnston, M. (2005). How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose. Genetics 169, 583-594
  85. Hyperphosphorylation of Msn2p and Msn4p in response to heat shock and the diauxic shift is inhibited by cAMP in Saccharomyces cerevisiae. Microbiology 146 (Pt 9), 2113-2120.
  86. Ghislain, M., Talla, E., and Francois, J.M. (2002) Identification and functional analysis of the Saccharomyces cerevisiae nicotinamidase gene, PNC1. Yeast 19, 215-224.
  87. Su, S.S., and Mitchell, A.P. (1993). Identification of functionally related genes that stimulate early meiotic gene expression in yeast. Genetics 133, 67-77.
  88. Kassir, Y., Granot, D., and Simchen, G. (1988). IME1, a positive regulator gene of meiosis in S. cerevisiae. Cell 52, 853-862.
  89. Guttmann-Raviv, N., Martin, S., and Kassir, Y. (2002). Ime2, a meiosis-specific kinase in yeast, is required for destabilization of its transcriptional activator, Ime1. Mol Cell Biol 22, 2047-2056.
  90. Freese, E.B., Olempska-Beer, Z., Hartig, A., and Freese, E. (1984). Initiation of meiosis and sporulation of Saccharomyces cerevisiae by sulfur or guanine deprivation. Dev Biol 102, 438- 451.
  91. Freese, E.B., Chu, M.I., and Freese, E. (1982). Initiation of yeast sporulation of partial carbon, nitrogen, or phosphate deprivation. J Bacteriol 149, 840-851.
  92. Willis, I.M., and Moir, R.D. (2007). Integration of nutritional and stress signaling pathways by Maf1. Trends Biochem Sci 32, 51-53.
  93. Vyas, V.K., Kuchin, S., and Carlson M. (2001). Interaction of the repressors Nrg1 and Nrg2 with the Snf1 protein kinase in Saccharomyces cerevisiae. Genetics 158, 563-572.
  94. Strijbis, K., and Distel, B. (2010). Intracellular acetyl unit transport in fungal carbon metabolism. Eukaryot Cell 9, 1809-1815.
  95. Toda, T., Uno, I., Ishikawa, T., Powers, S., Kataoka, T., Broek, D., Cameron, S., Broach, J., Matsumoto, K., and Wigler, M. (1985). In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 40, 27-36.
  96. Matsumoto, K., Uno, I., Oshima, Y., and Ishikawa, T. (1982). Isolation and characterization of yeast mutants deficient in adenylate cyclase and cAMP-dependent protein kinase. Proc Natl Acad Sci U S A 79, 2355-2359.
  97. Enyenihi, A.H. and Saunders, W.S. (2003). Large-scale functional genomic analysis of sporulation and meiosis in Saccharomyces cerevisiae. Genetics 163, 47-54
  98. Lorenz, M.C., and Fink, G.R. (2002). Life and death in a macrophage: role of the glyoxylate cycle in virulence. Eukaryot Cell. 1, 657-662.
  99. Smets, B., Ghillebert, R., De Snijder, P., Binda, M., Swinnen, E., De Virgilio, C., and Winderickx, J. (2010). Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae. Curr Genet 56, 1-32.
  100. Goffeau, A., Barrell, B.G., Bussey, H., Davis, R.W., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J.D., Jacq, C., Johnston, M., et al. (1996). Life with 6000 genes. Science 274, 546, 563-547.
  101. Fatica, A. and Tollervey, D. (2002). Making ribosomes. Curr Opin Cell Biol 14, 313-318
  102. Casal, M., Cardoso, H., and Leao, C. (1996). Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae. Microbiology 142 (Pt 6), 1385-1390.
  103. Heywood, P., and Magee, P.T. (1976). Meiosis in protists. Some structural and physiological aspects of meiosis in algae, fungi, and protozoa. Bacteriol Rev 40, 190-240.
  104. Peterson, J.B., Gray, R.H., and Ris, H. (1972). Meiotic spindle plaques in Saccharomyces cerevisiae. J Cell Biol 53, 837-841.
  105. Stewart-Ornstein, J., Chen, S., Bhatnagar, R., Weissman, J., El-Samad, H. (2017). Model- guided optogenetic study of PKA signaling in budding yeast. Mol Biol Cell. 28, 221-227
  106. Friedlander, G., Joseph-Strauss, D., Carmi, M., Zenvirth, D., Simchen, G., and Barkai, N. (2006). Modulation of the transcription regulatory program in yeast cells committed to sporulation. Genome Biol 7, R20.
  107. Celenza, J.L., Eng, F.J., and Carlson, M. (1989). Molecular analysis of the SNF4 gene of Saccharomyces cerevisiae: evidence for physical association of the Snf4 protein with the Snf1 protein kinase. Mol Cell Biol 9, 5045-5054.
  108. Schuller, H.J. and Entian, K.D. (1988) Molecular characterization of yeast regulatory gene CAT3 necessary for glucose derepression and nuclear localization of its product. Gene 67, 247-57
  109. Petronczki, M., Matos, J., Mori, S., Gregan, J., Bogdanova, A., Schwickart, M., Mechtler, K., Shirahige, K., Zachariae, W., Nasmyth, K. (2006). Monopolar attachment of sister kinetochores at meiosis I requires casein kinase 1. Cell 126, 1049-1064.
  110. Medvedik, O., Lamming, D.W., Kim, K.D., and Sinclair, D.A. (2007) MSN2 and MSN4 Link Calorie Restriction and TOR to Sirtuin-Mediated Lifespan Extension in Saccharomyces cerevisiae. PLoS Biol 5, e261
  111. Schmitt, A.P., and McEntee, K. (1996). Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 93, 5777-5782.
  112. Sagee, S., Sherman, A., Shenhar, G., Robzyk, K., Ben-Doy, N., Simchen, G., and Kassir, Y. (1998). Multiple and distinct activation and repression sequences mediate the regulated transcription of IME1, a transcriptional activator of meiosis-specific genes in Saccharomyces cerevisiae. Mol Cell Biol 18, 1985-1995.
  113. Kuret, J., Johnson, K.E., Nicolette, C., and Zoller, M.J. (1988). Mutagenesis of the regulatory subunit of yeast cAMP-dependent protein kinase. Isolation of site-directed mutants with altered binding affinity for catalytic subunit. J Biol Chem 263, 9149-9154.
  114. Pichova, A., Vondrakova, D., and Breitenbach, M. (1997). Mutants in the Saccharomyces cerevisiae RAS2 gene influence life span, cytoskeleton, and regulation of mitosis. Can J Microbiol 43, 774-781.
  115. van Riggelen, J., Yetil, A., and Felsher, D.W. (2010). MYC as a regulator of ribosome biogenesis and protein synthesis. Nat Rev Cancer 10, 301-309.
  116. Entian, K.D. and Zimmermann, F.K. (1982). New genes involved in carbon catabolite repression and derepression in the yeast Saccharomyces cerevisiae. J Bacteriol 151, 1123- 1128
  117. Next-Generation Optical Technologies for Illuminating Genetically Targeted Brain Circuits. J Neurosci 26, 10380-10386.
  118. Lin, S.J., and Guarente, L. (2003). Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr Opin Cell Biol 15, 241-246.
  119. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 423, 181-185.
  120. Gallo, C.M., Smith, D.L. Jr, and Smith, J.S. (2004). Nicotinamide clearance by Pnc1 directly regulates Sir2-mediated silencing and longevity. Mol Cell Biol 24, 1301-1312.
  121. Thevelein, J.M., and de Winde, J.H. (1999). Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 33, 904-918.
  122. Berkey, C.D., Vyas, V.K., and Carlson, M. (2004). Nrg1 and nrg2 transcriptional repressors are differently regulated in response to carbon source. Eukaryot Cell 3, 311-317.
  123. Lee, S.B., Kang, H.S. and Kim, T. (2013) Nrg1 functions as a global transcriptional repressor of glucose-repressed genes through its direct binding to the specific promoter regions. Biochem Biophys Res Commun 439, 501-505
  124. Park, S. H., Koh, S. S., Chun, J. H., Hwang, H. J., and Kang, H. S. (1999). Nrg1 Is a Transcriptional Repressor for Glucose Repression of STA1 Gene Expression in Saccharomyces cerevisiae. Molecular and Cellular Biology 19, 2044-2050.
  125. Bakhrat, A., Baranes-Bachar, K., Reshef, D., Voloshin, O., Krichevsky, O., Raveh, D. (2008). Nuclear export of Ho endonuclease of yeast via Msn5. Curr Genet 54, 271-281
  126. Gorner, W., Durchschlag, E., Martinez-Pastor, M.T., Estruch, F., Ammerer, G., Hamilton, B., Ruis, H., and Schuller, C. (1998). Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev 12, 586-597.
  127. Griffioen, G., Branduardi, P., Ballarini, A., Anghileri, P., Norbeck, J., Baroni, M.D., and Ruis, H. (2001). Nucleocytoplasmic distribution of budding yeast protein kinase A regulatory subunit Bcy1 requires Zds1 and is regulated by Yak1-dependent phosphorylation of its targeting domain. Mol Cell Biol 21, 511-523.
  128. Gordon, O., Taxis, C., Keller, P.J., Benjak, A., Stelzer, E.H., Simchen, G., and Knop, M. (2006). Nud1p, the yeast homolog of Centriolin, regulates spindle pole body inheritance in meiosis. Embo J 25, 3856-3868.
  129. Conrad, M., Schothorst, J., Kankipati, H.N., Van Zeebroeck, G., Rubio-Texeira, M., Thevelein, J.M. (2014). Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev. 2, 254-299
  130. Thevelein, J.M., Gelade, R., Holsbeeks, I., Lagatie, O., Popova, Y., Rolland, F., Stolz, F., Van de Velde, S., Van Dijck, P., Vandormael, P., et al. (2005). Nutrient sensing systems for rapid activation of the protein kinase A pathway in yeast. Biochem Soc Trans 33, 253-256.
  131. Winge, O., Laustsen, O., (1937). On two types of spore germination, and on genetic segregations in Saccharomyces cerevisiae, demonstrated through single-spore cultures.
  132. Uno, I., Matsumoto, K., Hirata, A., and Ishikawa, T. (1985). Outer plaque assembly and spore encapsulation are defective during sporulation of adenylate cyclase-deficient mutants of Saccharomyces cerevisiae. J Cell Biol 100, 1854-1862.
  133. Gulshan, K, Rovinsky, S.A., Coleman, S.T., and Moye-Rowley W.S. (2005). Oxidant-specific folding of Yap1p regulates both transcriptional activation and nuclear localization. J Biol Chem. 280, 40524-40533
  134. Leberer, E., Thomas, D.Y., and Whiteway, M. (1997). Pheromone signalling and polarized morphogenesis in yeast. Curr Opin Genet Dev 7, 59-66.
  135. Sopko, R., Raithatha, S., and Stuart, D. (2002). Phosphorylation and maximal activity of Saccharomyces cerevisiae meiosis-specific transcription factor Ndt80 is dependent on Ime2. Mol Cell Biol 22, 70247040.
  136. Roosen, J., Engelen, K., Marchal, K., Mathys, J., Griffioen, G., Cameroni, E., Thevelein, J.M., De Virgilio, C., De Moor, B., and Winderickx, J. (2005). PKA and Sch9 control a molecular switch important for the proper adaptation to nutrient availability. Mol Microbiol 55, 862-880.
  137. Mitchell, A.P., Driscoll, S.E., and Smith, H.E. (1990). Positive control of sporulation-specific genes by the IME1 and IME2 products in Saccharomyces cerevisiae. Mol Cell Biol 10, 2104- 2110.
  138. Davidow, L.S., Goetsch, L., and Byers, B. (1980). Preferential Occurrence of Nonsister Spores in TwoSpored Asci of Saccharomyces cerevisiae: Evidence for Regulation of Spore- Wall Formation by the Spindle Pole Body. Genetics 94, 581-595.
  139. Neiman, A.M. (1998). Prospore membrane formation defines a developmentally regulated branch of the secretory pathway in yeast. J Cell Biol 140, 29-37.
  140. Moreno-Borchart, A.C., and Knop, M. (2003). Prospore membrane formation: how budding yeast gets shaped in meiosis. Microbiol Res 158, 83-90.
  141. Lippman, S.I., and Broach, J.R. (2009). Protein kinase A and TORC1 activate genes for ribosomal biogenesis by inactivating repressors encoded by Dot6 and its homolog Tod6. Proc Natl Acad Sci U S A 106, 19928-19933.
  142. Barrett, L., Orlova, M., Maziarz, M., and Kuchin, S. (2012). Protein Kinase A Contributes to the Negative Control of Snf1 Protein Kinase in Saccharomyces cerevisiae. Eukaryotic Cell 11, 119-128.
  143. Vaidyanathan, P.P., Zinshteyn, B., Thompson, M.K., Gilbert W.V. Protein kinase A regulates gene-specific translational adaptation in differentiating yeast. RNA 20, 912-922
  144. Moir, R.D., Lee, J., Haeusler, R.A., Desai, N., Engelke, D.R., and Willis, I.M. (2006). Protein kinase A regulates RNA polymerase III transcription through the nuclear localization of Maf1. Proc Natl Acad Sci U S A 103, 15044-15049.
  145. Wang, Y., Pierce, M., Schneper, L., Guldal, C.G., Zhang, X., Tavazoie, S., and Broach, J.R. (2004). Ras and Gpa2 mediate one branch of a redundant glucose signaling pathway in yeast. PLoS Biol 2, E128.
  146. Zhang, Z., and Reese, J.C. (2004). Redundant mechanisms are used by Ssn6-Tup1 in repressing chromosomal gene transcription in Saccharomyces cerevisiae. J Biol Chem 279, 39240-39250.
  147. Spielewoy, N., Flick, K., Kalashnikova, T.I., Walker, J.R., Wittenberg, C. (2004). Regulation and recognition of SCFGrr1 targets in the glucose and amino acid signaling pathways. Mol Cell Biol 24, 8994-9005.
  148. Traut, J. (2016). Regulation der Proteinkinase A Aktivität in Saccharomyces cerevisiae durch eine lichtregulierbare Adenylatzyklase aus Beggiatoa. Bachelor thesis.
  149. Swiegers, J.H., Pretorius, I.S., and Bauer, F.F. (2006). Regulation of respiratory growth by Ras: the glyoxylate cycle mutant, cit2Delta, is suppressed by RAS2. Curr Genet 50, 161-171.
  150. Martin, D.E., Powers, T., Hall, M.N. (2006). Regulation of ribosome biogenesis: where is TOR? Cell Metab 4 259-260.
  151. McCartney, R.R., and Schmidt, M.C. (2001). Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit. J Biol Chem 276, 36460-36466.
  152. Nickas, M.E., Diamond, A.E., Yang, M.J., and Neiman, A.M. (2004). Regulation of spindle pole function by an intermediary metabolite. Mol Biol Cell 15, 2606-2616.
  153. Piekarska, I., Rytka, J., and Rempola, B. (2010). Regulation of sporulation in the yeast Saccharomyces cerevisiae. Acta Biochim Pol 57, 241-250.
  154. Pak, J., and Segall, J. (2002a). Regulation of the premiddle and middle phases of expression of the NDT80 gene during sporulation of Saccharomyces cerevisiae. Mol Cell Biol 22, 6417- 6429.
  155. Kuge, S., Arita, M., Murayama, A., Maeta, K., Izawa, S., Inoue, Y., and Nomoto, A. (2001). Regulation of the yeast Yap1p nuclear export signal is mediated by redox signal-induced reversible disulfide bond formation. Mol Cell Biol. 21, 6139-6150.
  156. Kuge, S, Jones, N., Nomoto, A. (1997). Regulation of yAP-1 nuclear localization in response to oxidative stress. EMBO J 16, 1710-1720.
  157. Marshall, M.S., Gibbs, J.B., Scolnick, E.M., and Sigal, I.S. (1987). Regulatory function of the Saccharomyces cerevisiae RAS C-terminus. Mol Cell Biol 7, 2309-2315.
  158. Kaniak, A., Xue, Z., Macool, D., Kim, J.H., Johnston, M. (2004). Regulatory network connecting two glucose signal transduction pathways in Saccharomyces cerevisiae. Eukaryot Cell 3, 221-231.
  159. Causton, H.C., Ren, B., Koh, S.S., Harbison, C.T., Kanin, E., Jennings, E.G., Lee, T.I., True, H.L., Lander, E.S., and Young, R.A. (2001). Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12, 323-337.
  160. Vyas, V.K., Berkey, C.D., Miyao, T., and Carlson, M. (2005). Repressors Nrg1 and Nrg2 Regulate a Set of Stress-Responsive Genes in Saccharomyces cerevisiae. Eukaryot Cell 4, 1882-1891.
  161. McCord, R., Pierce, M., Xie, J., Wonkatal, S., Mickel, C., and Vershon, A.K. (2003). Rfm1, a novel tethering factor required to recruit the Hst1 histone deacetylase for repression of middle sporulation genes. Mol Cell Biol 23, 2009-2016.
  162. Oesterhelt, D., Stoeckenius, W. (1971). Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol. 233, 149-52.
  163. Harz, H. and Hegemann, P. (1991). Rhodopsin-regulated calcium currents in Chlamydomonas. Nature 351, 489-491.
  164. Swinnen, E., Wanke, V., Roosen, J., Smets, B., Dubouloz, F., Pedruzzi, I., Cameroni, E., De Virgilio, C., Winderickx, J. (2006). Rim15 and the crossroads of nutrient signalling pathways in Saccharomyces cerevisiae. Cell Div 3, 1-3.
  165. Pak, J., and Segall, J. (2002b). Role of Ndt80, Sum1, and Swe1 as targets of the meiotic recombination checkpoint that control exit from pachytene and spore formation in Saccharomyces cerevisiae. Mol Cell Biol 22, 6430-6440.
  166. Knop, M., and Strasser, K. (2000). Role of the spindle pole body of yeast in mediating assembly of the prospore membrane during meiosis. EMBO J 19, 3657-3667.
  167. Cooper, K.F., and Strich, R. (2002). Saccharomyces cerevisiae C-type cyclin Ume3p/Srb11p is required for efficient induction and execution of meiotic development. Eukaryot Cell 1, 66- 74.
  168. Levine, K., Huang, K., and Cross, F.R. (1996). Saccharomyces cerevisiae G1 cyclins differ in their intrinsic functional specificities. Mol Cell Biol 16, 6794-6803.
  169. Iwamoto, M.A., Fairclough, S.R., Rudge, S.A., Engebrecht, J. (2005). Saccharomyces cerevisiae Sps1p regulates trafficking of enzymes required for spore wall synthesis. Eukaryot Cell 4, 536-544.
  170. Toda, T., Cameron, S., Sass, P., and Wigler, M. (1988). SCH9, a gene of Saccharomyces cerevisiae that encodes a protein distinct from, but functionally and structurally related to, cAMP-dependent protein kinase catalytic subunits. Genes Dev 2, 517-527.
  171. Schneper, L., Duvel, K., and Broach, J.R. (2004). Sense and sensibility: nutritional response and signal integration in yeast. Curr Opin Microbiol 7, 624-630.
  172. Marion, R.M., Regev, A., Segal, E., Barash, Y., Koller, D., Friedman, N., and O'Shea, E.K. (2004). Sfp1 is a stress-and nutrient-sensitive regulator of ribosomal protein gene expression. Proc Natl Acad Sci U S A 101, 14315-14322.
  173. Honigberg, S.M., and Purnapatre, K. (2003). Signal pathway integration in the switch from the mitotic cell cycle to meiosis in yeast. J Cell Sci 116, 2137-2147.
  174. Pan, X., Harashima, T., and Heitman, J. (2000). Signal transduction cascades regulating pseudohyphal differentiation of Saccharomyces cerevisiae. Curr Opin Microbiol 3, 567-572.
  175. Thevelein, J.M. (1994). Signal transduction in yeast. Yeast 10, 1753-1790.
  176. Vincent, O., and Carlson, M. (1998). Sip4, a Snf1 kinase-dependent transcriptional activator, binds to the carbon source-responsive element of gluconeogenic genes. EMBO J 17, 7002- 7008.
  177. Gray, J.V., Petsko, G.A., Johnston, G.C., Ringe, D., Singer, R.A., and Werner-Washburne, M. (2004). "Sleeping beauty": quiescence in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 68, 187-206.
  178. Krisak, L., Strich, R., Winters, R.S., Hall, J.P., Mallory, M.J., Kreitzer, D., Tuan, R.S., and Winter, E. (1994). SMK1, a developmentally regulated MAP kinase, is required for spore wall assembly in Saccharomyces cerevisiae. Genes Dev 8, 2151-2161
  179. Ratnakumar, S., Kacherovsky, N., Arms, E., and Young, E.T. (2009). Snf1 controls the activity of Adr1 through dephosphorylation of Ser230. Genetics 182, 735-745
  180. Honigberg, S.M., and Lee, R.H. (1998). Snf1 kinase connects nutritional pathways controlling meiosis in Saccharomyces cerevisiae. Mol Cell Biol 18, 4548-4555.
  181. Moens, P.B., and Rapport, E. (1971). Spindles, spindle plaques, and meiosis in the yeast Saccharomyces cerevisiae (Hansen). J Cell Biol 50, 344-361.
  182. McCarroll R.M., and Esposito, R.E. (1994) Spo13 negatively regulates the progression of mitotic and meiotic nuclear division in Saccharomyces cerevisiae. Genetics 138, 47-60.
  183. Bajgier, B.K., Malzone, M., Nickas, M., and Neiman, A.M. (2001). SPO21 is required for meiosis specific modification of the spindle pole body in yeast. Mol Biol Cell 12, 1611-1621.
  184. Taxis, C., Keller, P., Kavagiou, Z., Jensen, L.J., Colombelli, J., Bork, P., Stelzer, E.H., and Knop, M. (2005). Spore number control and breeding in Saccharomyces cerevisiae: a key role for a self-organizing system. J Cell Biol 171, 627-640.
  185. Simchen, G., Pinon, R., and Salts, Y. (1972). Sporulation in Saccharomyces cerevisiae: premeiotic DNA synthesis, readiness and commitment. Exp Cell Res 75, 207-218.
  186. Celenza, J.L., and Carlson, M. (1984). Structure and expression of the SNF1 gene of Saccharomyces cerevisiae. Mol Cell Biol 4, 54-60.
  187. Sum1 and Hst1 repress middle sporulation-specific gene expression during mitosis in Saccharomyces cerevisiae. EMBO J 18, 6448-6454.
  188. Pierce, M., Benjamin, K.R., Montano, S.P., Georgiadis, M.M., Winter, E., and Vershon, A.K. (2003). Sum1 and Ndt80 proteins compete for binding to middle sporulation element sequences that control meiotic gene expression. Mol Cell Biol 23, 4814-4825.
  189. Vallier, L.G., and Carlson, M. (1994). Synergistic release from glucose repression by mig1 and ssn mutations in Saccharomyces cerevisiae. Genetics 137, 49-54.
  190. Jorgensen, P., Nishikawa, J.L., Breitkreutz, B.J., and Tyers, M. (2002). Systematic identification of pathways that couple cell growth and division in yeast. Science 297, 395- 400.
  191. Jungbluth, M., Renicke, C., and Taxis, C. (2010). Targeted protein depletion in Saccharomyces cerevisiae by activation of a bidirectional degron. BMC Syst Biol 4, 176.
  192. Packer, A.M., Roska, B., Häusser, M. (2013) Targeting neurons and photons for optogenetics. Nat Neurosci 16, 805-815.
  193. Loewith, R. and Hall, M.N. (2011). Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 4, 1177-1201
  194. Heitman, J., Movva, N.R., and Hall, M.N. (1991). Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253, 905-909.
  195. Ha, C.W., Kim, K.1., Chang, Y.J., Kim, B., Huh, W.K. (2014). The β-1,3- glucanosyltransferase Gas1 regulates Sir2-mediated rDNA stability in Saccharomyces cerevisiae. Nucleic Acids Res 42, 8486-8499.
  196. Matsuura, A., Treinin, M., Mitsuzawa, H., Kassir, Y., Uno, I., and Simchen, G. (1990). The adenylate cyclase/protein kinase cascade regulates entry into meiosis in Saccharomyces cerevisiae through the gene IME1. EMBO J 9, 3225-3232.
  197. Zhang, J., Olsson, L., Nielsen, J. (2010). The beta-subunits of the Snf1 kinase in Saccharomyces cerevisiae, Gal83 and Sip2, but not Sip1, are redundant in glucose derepression and regulation of sterol biosynthesis. Mol Microbiol 77, 371-383.
  198. Linder, J.U., and Schultz, J.E. (2003). The class III adenylyl cyclases: multi-purpose signalling modules. Cell Signal. 15,1081-1089.
  199. Tyers, M., Tokiwa, G., Nash, R., and Futcher, B. (1992). The Cln3-Cdc28 kinase complex of S. cerevisiae is regulated by proteolysis and phosphorylation. EMBO J 11, 1773-1784.
  200. Purnapatre, K., Piccirillo, S., Schneider, B.L., and Honigberg, S.M. (2002). The CLN3/SWI6/CLN2 pathway and SNF1 act sequentially to regulate meiotic initiation in Saccharomyces cerevisiae. Genes Cells 7, 675-691.
  201. Primig, M., Williams, R.M., Winzeler, E.A., Tevzadze, G.G., Conway, A.R., Hwang, S.Y., Davis, R.W., Esposito, R.E. (2000). The core meiotic transcriptome in budding yeasts. Nat Genet 26, 415-423.
  202. Wijnen, H., Landman. A., Futcher, B. (2002). The G(1) cyclin Cln3 promotes cell cycle entry via the transcription factor Swi6. Mol Cell Biol 22, 4402-18.
  203. Lorenz, M.C., and Fink, G.R. (2001). The glyoxylate cycle is required for fungal virulence. Nature 412, 83-86.
  204. Goldmark, J.P., Fazzio, T.G., Estep, P.W., Church, G.M., and Tsukiyama, T. (2000). The Isw2 chromatin remodeling complex represses early meiotic genes upon recruitment by Ume6p. Cell 103, 423-433.
  205. Zhang, F., Vierock, J., Yizhar, O., Fenno, L.E., Tsunoda, S., Kianianmomeni, A., Prigge, M., Berndt, A., Cushman, J., Polle, J., Magnuson, J., Hegemann, P., Deisseroth, K. (2011). The microbial opsin family of optogenetic tools. Cell. 147, 1446-57
  206. Varshavsky, A. (2011). The N-end rule pathway and regulation by proteolysis. Protein Sci. 20, 1298-1345
  207. Makuc, J., Paiva, S., Schauen, M., Kramer, R., Andre, B., Casal, M., Leao, C., and Boles, E. (2001). The putative monocarboxylate permeases of the yeast Saccharomyces cerevisiae do not transport monocarboxylic acids across the plasma membrane. Yeast 18, 1131-1143.
  208. The Ras/cAMP pathway and the CDK-like kinase Ime2 regulate the MAPK Smk1 and spore morphogenesis in Saccharomyces cerevisiae. Genetics 181, 511-523.
  209. Kobayashi, T. The replication fork barrier site forms a unique structure with Fob1p and inhibits the replication fork. (2003). Mol Cell Biol 23, 9178-9188.
  210. Gancedo, J.M., Flores, C.L., Gancedo, C. The repressor Rgt1 and the cAMP-dependent protein kinases control the expression of the SUC2 gene in Saccharomyces cerevisiae. Biochim Biophys Acta 1850, 1362-1367.
  211. Kornberg, H.L. (1966). The role and control of the glyoxylate cycle in Escherichia coli. Biochem J 99, 1-11.
  212. Alepuz, P.M., Matheos, D., Cunningham, K.W., and Estruch, F. (1999). The Saccharomyces cerevisiae RanGTP-binding protein Msn5p is involved in different signal transduction pathways. Genetics 153, 1219-1231.
  213. Martinez-Pastor, M.T., Marchler, G., Schuller, C., Marchler-Bauer, A., Ruis, H., and Estruch, F. (1996). The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15, 2227- 2235.
  214. Kaeberlein, M., McVey, M., & Guarente, L. (1999). The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes & Development 19, 2570-2580.
  215. Huang, L.S., Doherty, H.K., and Herskowitz, I. (2005). The Smk1p MAP kinase negatively regulates Gsc2p, a 1,3-beta-glucan synthase, during spore wall morphogenesis in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 102, 12431-12436.
  216. Jiang, R., and Carlson, M. (1997). The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex. Mol Cell Biol 17, 20992106.
  217. Winter, E. (2012). The Sum1/Ndt80 transcriptional switch and commitment to meiosis in Saccharomyces cerevisiae. Microbiol Mol Biol 76, 1-15
  218. Chu, S., DeRisi, J., Eisen, M., Mulholland, J., Botstein, D., Brown, P.O., and Herskowitz, I. (1998). The transcriptional program of sporulation in budding yeast. Science 282, 699-705.
  219. The Tup1-Ssn6 general repressor is involved in repression of IME1 encoding a transcriptional activator of meiosis in Saccharomyces cerevisiae. Curr Genet 33, 239-247.
  220. Cross, F.R., and Blake, C.M. (1993). The yeast Cln3 protein is an unstable activator of Cdc28. Mol Cell Biol 13, 3266-3271.
  221. Coluccio, A.E., Rodriguez, R.K., Kernan, M.J., and Neiman, A.M. (2008). The yeast spore wall enables spores to survive passage through the digestive tract of Drosophila. PLoS One 3, e2873.
  222. Toda, T., Cameron, S., Sass, P., Zoller, M., and Wigler, M. (1987b). Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell 50, 277-287.
  223. Barbet, N.C., Schneider, U., Helliwell, S.B., Stansfield, I., Tuite, M.F., and Hall, M.N. (1996). TOR controls translation initiation and early G1 progression in yeast. Mol Biol Cell 7, 25-42.
  224. Martin, D.E., Soulard, A., and Hall, M.N. (2004). TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor Fhl1. Cell 119, 969-979.
  225. Bailey, C.H., Bartsch, D., Kandel, E.R. (1996). Toward a molecular definition of long-term memory storage. Proc Natl Acad Sci USA 93: 13445-13452
  226. Palomino, A., Herrero, P., Moreno, F. (2006). Tpk3 and Snf1 protein kinases regulate Rgt1 association with Saccharomyces cerevisiae HXK2 promoter. Nucleic Acids Res 34, 1427- 1438.
  227. Schuller, H.J. (2003). Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr Genet 43, 139-160.
  228. Vershon, A.K., and Pierce, M. (2000). Transcriptional regulation of meiosis in yeast. Curr Opin Cell Biol 12, 334-339.
  229. Lee, T.I., Rinaldi, N.J., Robert, F., Odom, D.T., Bar-Joseph, Z., Gerber, G.K., Hannett, N.M., Harbison, C.T., Thompson, C.M., Simon, I., et al. (2002). Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799-804.
  230. Ronen, M., Botstein, D. (2006). Transcriptional response of steady-state yeast cultures to transient perturbations in carbon source. Proc Natl Acad Sci USA 103, 389-394.
  231. Kim, J.H., Johnston, M. (2006). Two glucose-sensing pathways converge on Rgt1 to regulate expression of glucose transporter genes in Saccharomyces cerevisiae. J Biol Chem 281, 26144-26149.
  232. Jiang, H., Medintz, I., Michels, C.A. (1997). Two glucose sensing/signaling pathways stimulate glucose-induced inactivation of maltose permease in Saccharomyces. Mol Biol Cell. 8, 1293-1304.
  233. Ozcan, S., Dover, J., Rosenwald, A.G., Wolfl, S., Johnston, M. (1996). Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression. Proc Natl Acad Sci USA 9, 12428-12432.
  234. Matsuno-Yagi, A., Mukohata, Y. (1977). Two possible roles of bacteriorhodopsin; a comparative study of strains of Halobacterium halobium differing in pigmentation. Biochem Biophys Res Commun. 78, 237-43.
  235. Loewith, R., Jacinto, E., Wullschleger, S., Lorberg, A., Crespo, J.L., Bonenfant, D., Oppliger, W., Jenoe, P., and Hall, M.N. (2002). Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10, 457-468.
  236. Anderson, S.F., Steber, C.M., Esposito, R.E., and Coleman, J.E. (1995). UME6, a negative regulator of meiosis in Saccharomyces cerevisiae, contains a C-terminal Zn 2 Cys 6 binuclear cluster that binds the URS1 DNA sequence in a zinc-dependent manner. Protein Sci 4, 1832- 1843.
  237. Steber, C.M., and Esposito, R.E. (1995). UME6 is a central component of a developmental regulatory switch controlling meiosis-specific gene expression. Proc Natl Acad Sci U S A 92, 12490-12494.
  238. UME6 is a key regulator of nitrogen repression and meiotic development. Genes Dev 8, 796- 810.
  239. Fazzio, T.G., Kooperberg, C., Goldmark, J.P., Neal, C., Basom, R., Delrow, J., and Tsukiyama, T. (2001). Widespread collaboration of Isw2 and Sin3-Rpd3 chromatin remodeling complexes in transcriptional repression. Mol Cell Biol 21, 6450-6460.
  240. Botstein, D., Fink, G.R. (2011). Yeast: an experimental organism for 21st Century biology. Genetics 189, 695-704.
  241. Steffen, K. K., MacKay, V. L., Kerr, E. O., Tsuchiya, M., Hu, D., Fox, L. A., Dang, N., Johnston, E. D., Oakes, J. A., Tchao, B. N., Pak, D. N., Fields, S., Kennedy, B. K., Kaeberlein, M. (2008). Yeast lifespan extension by depletion of 60S ribosomal subunits is mediated by Gcn4. Cell 2, 292-302.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten