Publikationsserver der Universitätsbibliothek Marburg

Titel:The Information Gathering Framework. A Cognitive Model of Regressive Eye Movements during Reading
Autor:Weiß, Anna Fiona
Weitere Beteiligte: Bornkessel-Schlesewsky, Ina (Prof. Dr.)
Veröffentlicht:2017
URI:https://archiv.ub.uni-marburg.de/diss/z2017/0719
DOI: https://doi.org/10.17192/z2017.0719
URN: urn:nbn:de:hebis:04-z2017-07192
DDC: Deutsche Literatur
Titel (trans.):Das Information Gathering Framework. Ein kognitives Modell zur Erklärung von regressiven Blickbewegungen während des Lesens.
Publikationsdatum:2017-12-07
Lizenz:https://creativecommons.org/licenses/by-nc-sa/4.0

Dokument

Schlagwörter:
eye movements, reading, Eyetracking, eye tracking, Lesen, Blickbewegungen, Satzverarbeitung, semantic reversal anomalies, sentence processing, fmri, neurobiology of reading, Regressionen, regressions

Summary:
During reading the eyes do not smoothly slide trough the sentence, they rather show an alternating pattern of stable phases (so called fixations) and jumps (so called saccades). Whereas most of the saccades are in the direction of reading (i.e., from left to right in most Western European writing systems), some of the saccades go in the opposite direction, moving the eyes back to sentence material that has been fixated earlier. These so called regressive saccades occur frequently in the context of difficulties in language processing but their exact functional role in reading is largely unclear. Especially, it is still an open question in which cases the eyes just show increased fixation durations and in which cases the eyes actually regress. The present thesis focuses on the functional role of regressive eye movements during reading. In the first part, the limitations of the existing literature in the field of regressive eye movements are discussed. After that, a new account is presented which is called the Information Gathering Framework. This framework postulates at its core that each regressive eye movement has a function, namely to gather additional information about a word that has been processed earlier. Based on this hypothesis a detailed architecture of the model is outlined and it is shown how the model may account for empirical findings from reading research that have been reported in the literature. Also further predictions of the model are discussed. In the second part of the thesis, 2 experiments are presented that were developed to explicitly test the predictions of the Information Gathering Model. The first experiment focuses on the influence of different tasks on regression behavior using eyetracking. The second experiment (consisting of two sub experiments) focuses on the neural correlates of regressive eye movements using combined fMRI / eyetracking measurements. The results of both experiments provide clear empirical evidence in favor of the assumptions of the presented model. In particular, they clearly suggest that increased fixation durations and a higher probability to regress have to be viewed as functional different strategies in reading. In sum, the Information Gathering Framework is the first model of regressive eye movements during reading that may explain the interplay between increased fixation durations and regressive eye movements and that may account for human reading behavior as well.

Bibliographie / References

  1. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear mixed-effects models using lme4. arXiv Preprint arXiv:1406.5823. Retrieved from http://arxiv.org/abs/1406.5823
  2. Bicknell, K., & Levy, R. (2010). A rational model of eye movement control in reading. In Proceedings of the 48th annual meeting of the Association for Computational Linguistics (pp. 1168-1178). Association for Com- putational Linguistics. Retrieved from http://dl.acm.org/citation.cfm?id=1858800
  3. Grosbras, M.-H., Laird, A. R., & Paus, T. (2005). Cortical regions involved in eye movements, shifts of attention, and gaze perception. Human Brain Mapping, 25(1), 140-154. https://doi.org/10.1002/hbm.20145
  4. Lewis, R. L. (1998). Reanalysis and limited repair parsing: Leaping off the garden path. In Reanalysis in sentence processing (pp. 247-285). Springer. Retrieved from http://link.springer.com/chapter/10.1007/978-94- 015-9070-9_8
  5. Radach, R., Huestegge, L., & Reilly, R. (2008). The role of global top-down factors in local eye-movement control in reading. Psychological Research, 72(6), 675-688. https://doi.org/10.1007/s00426-008-0173-3
  6. Lewis, S., & Phillips, C. (2015). Aligning Grammatical Theories and Language Processing Models. Journal of Psycholinguistic Research, 44(1), 27-46. https://doi.org/10.1007/s10936-014-9329-z
  7. Yang, Y., Liang, P., Lu, S., Li, K., & Zhong, N. (2009). The role of the DLPFC in inductive reasoning of MCI patients and normal agings: An fMRI study. Science in China Series C: Life Sciences, 52(8), 789-795. https://doi.org/10.1007/s11427-009-0089-1
  8. Müri, R. M., & Nyffeler, T. (2008). Neurophysiology and neuroanatomy of reflexive and volitional saccades as revealed by lesion studies with neurological patients and transcranial magnetic stimulation (TMS). Brain and Cognition, 68(3), 284-292. https://doi.org/10.1016/j.bandc.2008.08.018
  9. Luna, B., Velanova, K., & Geier, C. F. (2008). Development of eye-movement control. Brain and Cognition, 68(3), 293-308. https://doi.org/10.1016/j.bandc.2008.08.019
  10. Wells, J., Christiansen, M., Race, D., Acheson, D., & Macdonald, M. (2009). Experience and sentence processing: Statistical learning and relative clause comprehension. Cognitive Psychology, 58(2), 250-271. https://doi.org/10.1016/j.cogpsych.2008.08.002
  11. Reingold, E. M., Reichle, E. D., Glaholt, M. G., & Sheridan, H. (2012). Direct lexical control of eye movements in reading: Evidence from a survival analysis of fixation durations. Cognitive Psychology, 65(2), 177- 206. https://doi.org/10.1016/j.cogpsych.2012.03.001
  12. Yang, S. (2006). An oculomotor-based model of eye movements in reading: The competition/interaction model. Cognitive Systems Research, 7(1), 56-69. https://doi.org/10.1016/j.cogsys.2005.07.005
  13. Friedman, N. P., & Miyake, A. (2004). The reading span test and its predictive power for reading comprehension ability. Journal of Memory and Language, 51(1), 136-158. https://doi.org/10.1016/j.jml.2004.03.008
  14. Hirotani, M., Frazier, L., & Rayner, K. (2006). Punctuation and intonation effects on clause and sentence wrap-up: Evidence from eye movements. Journal of Memory and Language, 54(3), 425-443. https://doi.org/10.1016/j.jml.2005.12.001
  15. Fedorenko, E., Gibson, E., & Rohde, D. (2006). The nature of working memory capacity in sentence comprehen- sion: Evidence against domain-specific working memory resources? Journal of Memory and Language, 54(4), 541-553. https://doi.org/10.1016/j.jml.2005.12.006
  16. Mitchell, D. C., Shen, X., Green, M. J., & Hodgson, T. L. (2008). Accounting for regressive eye-movements in models of sentence processing: A reappraisal of the Selective Reanalysis hypothesis. Journal of Memory and Language, 59(3), 266-293. https://doi.org/10.1016/j.jml.2008.06.002
  17. von der Malsburg, T., & Vasishth, S. (2011). What is the scanpath signature of syntactic reanalysis? Journal of Memory and Language, 65(2), 109-127. https://doi.org/10.1016/j.jml.2011.02.004
  18. Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3), 255-278. https://doi.org/10.1016/j.jml.2012.11.001
  19. Nachev, P., Wydell, H., O'Neill, K., Husain, M., & Kennard, C. (2007). The role of the pre-supplementary motor area in the control of action. NeuroImage, 36, T155-T163. https://doi.org/10.1016/j.neu- roimage.2007.03.034
  20. Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage, 53(1), 1-15. https://doi.org/10.1016/j.neu- roimage.2010.06.010
  21. Henderson, J. M., Choi, W., Luke, S. G., & Desai, R. H. (2015). Neural correlates of fixation duration in natural reading: Evidence from fixation-related fMRI. NeuroImage, 119, 390-397. https://doi.org/10.1016/j.neu- roimage.2015.06.072
  22. Wang, Y., Isoda, M., Matsuzaka, Y., Shima, K., & Tanji, J. (2005). Prefrontal cortical cells projecting to the sup- plementary eye field and presupplementary motor area in the monkey. Neuroscience Research, 53(1), 1- 7. https://doi.org/10.1016/j.neures.2005.05.005
  23. Majerus, S., Poncelet, M., Van der Linden, M., Albouy, G., Salmon, E., Sterpenich, V., … Maquet, P. (2006). The left intraparietal sulcus and verbal short-term memory: Focus of attention or serial order? NeuroImage, 32(2), 880-891. https://doi.org/10.1016/j.neuroimage.2006.03.048
  24. Price, C. J. (2012). A review and synthesis of the first 20years of PET and fMRI studies of heard speech, spoken language and reading. NeuroImage, 62(2), 816-847. https://doi.org/10.1016/j.neuroimage.2012.04.062
  25. Eichenbaum, H. (2013). Erratum: Memory on time. Trends in Cognitive Sciences, 17(5), 255. https://doi.org/10.1016/j.tics.2013.04.002
  26. Rayner, K., Li, X., Williams, C. C., Cave, K. R., & Well, A. D. (2007). Eye movements during information pro- cessing tasks: Individual differences and cultural effects. Vision Research, 47(21), 2714-2726. https://doi.org/10.1016/j.visres.2007.05.007
  27. Garavan, H., Ross, T. ., Kaufman, J., & Stein, E. . (2003). A midline dissociation between error-processing and response-conflict monitoring. NeuroImage, 20(2), 1132-1139. https://doi.org/10.1016/S1053- 8119(03)00334-3
  28. MacDonald, M. C., & Christiansen, M. H. (2002). Reassessing working memory: Comment on Just and Carpenter (1992) and Waters and Caplan (1996). Psychological Review, 109(1), 35-54. https://doi.org/10.1037//0033-295X.109.1.35
  29. Engbert, R., Nuthmann, A., Richter, E. M., & Kliegl, R. (2005). SWIFT: A Dynamical Model of Saccade Genera- tion During Reading. Psychological Review, 112(4), 777-813. https://doi.org/10.1037/0033- 295X.112.4.777
  30. Bornkessel, I., & Schlesewsky, M. (2006). The extended argument dependency model: A neurocognitive approach to sentence comprehension across languages. Psychological Review, 113(4), 787-821. https://doi.org/10.1037/0033-295X.113.4.787
  31. Kliegl, R., Nuthmann, A., & Engbert, R. (2006). Tracking the Mind During Reading: The Influence of Past, Present, and Future Words on Fixation Durations. Journal of Experimental Psychology: General, 135(1), 12-35. https://doi.org/10.1037/0096-3445.135.1.12
  32. Rayner, K., Warren, T., Juhasz, B. J., & Liversedge, S. P. (2004). The Effect of Plausibility on Eye Movements in Reading. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(6), 1290-1301. https://doi.org/10.1037/0278-7393.30.6.1290
  33. Staub, A. (2007). The parser doesn't ignore intransitivity, after all. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(3), 550-569. https://doi.org/10.1037/0278-7393.33.3.550
  34. Rayner, K., Castelhano, M. S., & Yang, J. (2010). Preview benefit during eye fixations in reading for older and younger readers. Psychology and Aging, 25(3), 714-718. https://doi.org/10.1037/a0019199
  35. Kaakinen, J. K., & Hyönä, J. (2010). Task effects on eye movements during reading. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(6), 1561-1566. https://doi.org/10.1037/a0020693
  36. Henderson, J. M., & Luke, S. G. (2014). Stable individual differences in saccadic eye movements during reading, pseudoreading, scene viewing, and scene search. Journal of Experimental Psychology: Human Percep- tion and Performance, 40(4), 1390-1400. https://doi.org/10.1037/a0036330
  37. MacGregor, L. J., Pulvermüller, F., van Casteren, M., & Shtyrov, Y. (2012). Ultra-rapid access to words in the brain. Nature Communications, 3, 711. https://doi.org/10.1038/ncomms1715
  38. Vogt, B. A. (2005). Pain and emotion interactions in subregions of the cingulate gyrus. Nature Reviews Neurosci- ence, 6(7), 533-544. https://doi.org/10.1038/nrn1704
  39. Nachev, P., Kennard, C., & Husain, M. (2008). Functional role of the supplementary and pre-supplementary motor areas. Nature Reviews Neuroscience, 9(11), 856-869. https://doi.org/10.1038/nrn2478
  40. Kliegl, R., Grabner, E., Rolfs, M., & Engbert, R. (2004). Length, frequency, and predictability effects of words on eye movements in reading. European Journal of Cognitive Psychology, 16(1-2), 262-284. https://doi.org/10.1080/09541440340000213
  41. Yang, S. -N., & McConkie, G. W. (2004). Saccade generation during reading: Are words necessary? European Journal of Cognitive Psychology, 16(1-2), 226-261. https://doi.org/10.1080/09541440340000231
  42. Perfetti, C. (2007). Reading Ability: Lexical Quality to Comprehension. Scientific Studies of Reading, 11(4), 357- 383. https://doi.org/10.1080/10888430701530730
  43. Rayner, K. (2014). The gaze-contingent moving window in reading: Development and review. Visual Cognition, 22(3-4), 242-258. https://doi.org/10.1080/13506285.2013.879084
  44. Rayner, K. (2009). Eye movements and attention in reading, scene perception, and visual search. The Quarterly Journal of Experimental Psychology, 62(8), 1457-1506. https://doi.org/10.1080/17470210902816461
  45. Veldre, A., & Andrews, S. (2014). Lexical quality and eye movements: Individual differences in the perceptual span of skilled adult readers. The Quarterly Journal of Experimental Psychology, 67(4), 703-727. https://doi.org/10.1080/17470218.2013.826258
  46. Christianson, K. (2016). When language comprehension goes wrong for the right reasons: Good-enough, under- specified, or shallow language processing. The Quarterly Journal of Experimental Psychology, 69(5), 817-828. https://doi.org/10.1080/17470218.2015.1134603
  47. Christianson, K., Luke, S. G., Hussey, E. K., & Wochna, K. L. (2017). Why reread? Evidence from garden-path and local coherence structures. The Quarterly Journal of Experimental Psychology, 70(7), 1380-1405. https://doi.org/10.1080/17470218.2016.1186200
  48. Weiss, A. F., Kretzschmar, F., Schlesewsky, M., Bornkessel-Schlesewsky, I., & Staub, A. (2017). Comprehension demands modulate re-reading, but not first pass reading behavior. The Quarterly Journal of Experimental Psychology, 1-37. https://doi.org/10.1080/17470218.2017.1307862
  49. Sperlich, A., Schad, D. J., & Laubrock, J. (2015). When preview information starts to matter: Development of the perceptual span in German beginning readers. Journal of Cognitive Psychology, 27(5), 511-530. https://doi.org/10.1080/20445911.2014.993990
  50. Waters, G. S. (1996). The Measurement of Verbal Working Memory Capacity and Its Relation to Reading Com- prehension. The Quarterly Journal of Experimental Psychology Section A, 49(1), 51-79. https://doi.org/10.1080/713755607
  51. Rayner, K., Kambe, G., & Duffy, S. A. (2000). The effect of clause wrap-up on eye movements during reading. The Quarterly Journal of Experimental Psychology Section A, 53(4), 1061-1080. https://doi.org/10.1080/713755934
  52. Ferreira, F., & Patson, N. D. (2007). The "Good Enough" Approach to Language Comprehension. Language and Linguistics Compass, 1(1-2), 71-83. https://doi.org/10.1111/j.1749-818X.2007.00007.x
  53. Bornkessel-Schlesewsky, I., & Schlesewsky, M. (2009). The Role of Prominence Information in the Real-Time Comprehension of Transitive Constructions: A Cross-Linguistic Approach. Language and Linguistics Compass, 3(1), 19-58. https://doi.org/10.1111/j.1749-818X.2008.00099.x
  54. Staub, A. (2015). The Effect of Lexical Predictability on Eye Movements in Reading: Critical Review and Theo- retical Interpretation: Predictability and Eye Movements. Language and Linguistics Compass, 9(8), 311- 327. https://doi.org/10.1111/lnc3.12151
  55. Schutz, A. C., Braun, D. I., & Gegenfurtner, K. R. (2011). Eye movements and perception: A selective review. Journal of Vision, 11(5), 9-9. https://doi.org/10.1167/11.5.9
  56. Schotter, E. R., Tran, R., & Rayner, K. (2014). Don't Believe What You Read (Only Once): Comprehension Is Supported by Regressions During Reading. Psychological Science, 25(6), 1218-1226. https://doi.org/10.1177/0956797614531148
  57. Friston, K., Adams, R. A., Perrinet, L., & Breakspear, M. (2012). Perceptions as Hypotheses: Saccades as Experi- ments. Frontiers in Psychology, 3. https://doi.org/10.3389/fpsyg.2012.00151
  58. Hagoort, P. (2013). MUC (Memory, Unification, Control) and beyond. Frontiers in Psychology, 4. https://doi.org/10.3389/fpsyg.2013.00416
  59. Reichle, E. D., Warren, T., & McConnell, K. (2009). Using E-Z Reader to model the effects of higher level language processing on eye movements during reading. Psychonomic Bulletin & Review, 16(1), 1-21. https://doi.org/10.3758/PBR.16.1.1
  60. Apel, J. K., Henderson, J. M., & Ferreira, F. (2012). Targeting regressions: Do readers pay attention to the left? Psychonomic Bulletin & Review, 19(6), 1108-1113. https://doi.org/10.3758/s13423-012-0291-1
  61. McElree, B. (2006). Accessing recent events. Psychology of Learning and Motivation, 46, 155-200.
  62. Risse, S., & Kliegl, R. (2011). Adult age differences in the perceptual span during reading. Psychology and Aging, 26(2), 451.
  63. Engbert, R., Longtin, A., & Kliegl, R. (2002). A dynamical model of saccade generation in reading based on spa- tially distributed lexical processing. Vision Research, 42(5), 621-636.
  64. Lewis, R. L., & Vasishth, S. (2005). An activation-based model of sentence processing as skilled memory retrieval. Cognitive Science, 29(3), 375-419.
  65. Bornkessel-Schlesewsky, I., & Schlesewsky, M. (2008). An alternative perspective on "semantic P600" effects in language comprehension. Brain Research Reviews, 59(1), 55-73.
  66. Andriessen, J. J. & A. H. De Voogd. (1973). Analysis of eye movement patterns in silen reading. IPO Annual Progress Report, 8, 29-34.
  67. Becker, W., & Jürgens, R. (1979). An analysis of the saccadic system by means of double step stimuli. Vision Research, 19, 967-983.
  68. Rayner, K., Well, A. D., & Pollatsek, A. (1980). Asymmetry of the effective visual field in reading. Perception & Psychophysics, 27, 537-544.
  69. McConkie, G. W., & Rayner, K. (1976). Asymmetry of the perceptual span in reading. Bulletin of the Psychonomic Society, 8, 365-368.
  70. Just, M. A., & Carpenter, P. A. (1980). A theory of reading: From eye fixations to comprehension. Psychological Review, 87, 329-354.
  71. Altmann, G. T., Garnham, A., & Dennis, Y. (1992). Avoiding the garden path: Eye movements in context. Journal of Memory and Language, 31(5), 685-712.
  72. McConkie, G. W., Zola, D., Grimes, J., Kerr, P. W., Bryant, N. R., & Wolff, P. M. (1991). Children's eye movement during reading. In Vision and visual dyslexia (pp. 251-262). London: Macmillan Press.
  73. Morecraft, R. J., & Van Hoesen, G. W. (1992). Cingulate Input to the Primary and Supplementary Motor Cortices in the Rhesus Monkey: Evidence for Somatotopy in Areas 24c and 23c. The Journal of Comparative Neurology, 322, 471-489.
  74. Marslen-Wilson, W. (1990). Activation, competition, and frequency in lexical access. In ACL-MIT Press series in natrual language processing. Cognitive models of speech processing: Psycholinguistic and computa- tional perspectives. (pp. 148-172). Cambridge, MA: MIT Press.
  75. Friedman, N. P., & Miyake, A. (2005). Comparison of four scoring methods for the reading span test. Behavior Research Methods, 37(4), 581-590.
  76. Corbetta, M., & Shulman, G. L. (2002). CONTROL OF GOAL-DIRECTED AND STIMULUS-DRIVEN AT- TENTION IN THE BRAIN. Nature Reviews Neuroscience, 3(3), 215-229.
  77. Luppino, G., Matelli, M., Camarda, R., & Rizzolatti, G. (1993). Corticocortical connections of area F3 (SMA- proper) and area F6 (pre-SMA) in the macaque monkey. Journal of Comparative Neurology, 338(1), 114-140.
  78. MacWhinney, B., Bates, E., & Kliegl, R. (1984). Cue validity and sentence interpretation in English, German, and Italian. Journal of Verbal Learning and Verbal Behavior, 23(2), 127-150.
  79. Weekes, B. S. (1997). Differential Effects of Number of Letters on Word and Nonword Naming Latency. The Quarterly Journal of Experimental Psychology Section A, 50(2), 439-456.
  80. Friederici, A. D., Hahne, A., & Saddy, D. (2002). Distinct neurophysiological patterns reflecting aspects of syntac- tic complexity and syntactic repair. Journal of Psycholinguistic Research, 31(1), 45-63.
  81. Dürscheid, C. (2012). Einführung in die Schriftlinguistik (4., überarbeitete und aktualisierte Auflage). Göttingen (Germany): Vandenhoeck & Ruprecht.
  82. Kuperberg, G. R., Sitnikova, T., Caplan, D., & Holcomb, P. J. (2003). Electrophysiological distinctions in pro- cessing conceptual relationships within simple sentences. Cognitive Brain Research, 17(1), 117-129.
  83. Fodor, J. D. (1989). Empty categories in sentence processing. Language and Cognitive Processes, 4(3-4), SI155- SI209.
  84. Pierrot-Deseilligny, C., Milea, D., & Müri, R. M. (2004). Eye movement control by the cerebral cortext. Current Opinion in Neurology, 17, 17-25.
  85. McConkie, G. W., Kerr, P. W., Reddix, M. D., Zola, D., & Jacobs, A. M. (1989). Eye movement control during reading: II. Frequency of refixating a word. Attention, Perception, & Psychophysics, 46(3), 245-253.
  86. McConkie, G. W., Kerr, P. W., Reddix, M. D., & Zola, D. (1988). Eye movement control during reading: I. The location of initial eye fixation on words. Vision Research, 28(10), 1107-1118.
  87. Rayner, K., Sereno, S. C., & Raney, G. E. (1996). Eye movement control in reading: a comparison of two types of models. Journal of Experimental Psychology: Human Perception and Performance, 22(5), 1188.
  88. Rayner, K. (1978). Eye movement latencies for parafoveally presented words. Bulletin of the Psychonomic Society, 11(1), 13-16.
  89. Pollatsek, A., & Rayner, K. (1990). Eye Movements and Lexical Access in Reading. In Comprehension processes in reading (pp. 143-163).
  90. Rayner, K., Sereno, S. C., Morris, R. K., Schmauder, A. R., & Clifton, C. (1989). Eye movements and on-line language comprehension processes [special issue]. Language and Cognition Processes, 4, 21-49.
  91. Rayner, K. (1986). Eye Movements and the Perceptual Span in Beginning and Skilled Readers. Journal of Exper- imental Child Psychology, 41, 211-236.
  92. Yang, S. -N., & McConkie, G. W. (2001). Eye movements during reading: a theory of saccade initiation times. Vision Research, 41, 3567-3585.
  93. O'Regan, J. K. (1990). Eye movements in reading. Reviews of Oculomotor Research, 4, 395-453.
  94. Rayner, K. (1998). Eye Movements in Reading and Information Processing: 20 Years of Research. Psychological Bulletin, 124(3), 372-422.
  95. Rayner, K., Yang, J., Castelhano, M. S., & Liversedge, S. P. (2011). Eye movements of older and younger readers when reading disappearing text. Psychology and Aging, 26(1), 214-223.
  96. O'Regan, J. K., & Lévy-Schoen, A. (1987). Eye-movements strategy and tactics in word recognition and reading. In Attention and performance 12: The pychology of reading (pp. 363-383). Hillsdale, NJ, US: Lawrence Erlbaum Assoc.
  97. Reichle, E. D., Pollatsek, A., & Rayner, K. (2006). E-Z Reader: A cognitive-control, serial-attention model of eye- movement behavior during reading. Cognitive Systems Research, 7(1), 4-22.
  98. Buswell, G. T. (1922). Fundamental reading habits, a study of their development. Chicago: Chicago University Press.
  99. Ferreira, F., Bailey, K. G. D., & Ferraro, V. (2002). Good-Enough Representations in Language Comprehension. Current Directions in Psychological Science, 11, 11-15.
  100. Binder, J. R., Frost, J. A., Hammeke, T. A., Cox, R. W., Rao, S. M., & Prieto, T. (1997). Human brain language areas identified by functional magnetic resonance imaging. Journal of Neuroscience, 17(1), 353-362.
  101. Glenn, A. L., Raine, A., Schug, R. A., Young, L., & Hauser, M. (2009). Increased DLPFC activity during moral decision-making in psychopathy. Molecular Psychiatry, 14(10), 909-911.
  102. King, J., & Just, M. A. (1991). Individual Differences in Syntactic Processing: The Role of Working Memory. Journal of Memory and Language, 30(5), 580-602.
  103. Lu, M.-T., Preston, J. B., & Strick, P. L. (1994). Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe. Journal of Comparative Neurology, 341(3), 375-392.
  104. Rayner, K., Slowiaczek, M. L., Clifton, C., & Bertera, J. H. (1983). Latency of sequential eye movements: impli- cations for reading. Journal of Experimental Psychology: Human Perception and Performance, 9(6), 912.
  105. Bader, M. (2015). Leseverstehen und Sprachverarbeitung. In Lesen. Ein interdisziplinäres Handbuch. (pp. 141- 168). Berlin / Boston: de Gruyter.
  106. Forster, K. I., & Chambers, S. M. (1973). Lexical Access and Naming Time. Journal of Verbal Learning and Verbal Behavior, 12, 627-635.
  107. Rayner, K., & Duffy, S. A. (1986). Lexical complexity and fixation times in reading: Effects of word frequency, verb complexity, and lexical ambiguity. Memory & Cognition, 14, 191-201.
  108. Rayner, K., & Liversedge, S. P. (2011). Linguistic and cognitive influences on eye movements during reading. In The Oxford handbook of eye movements (pp. 751-766). Oxford University Press.
  109. Gibson, E. (1998). Linguistic complexity: Locality of syntactic dependencies. Cognition, 68(1), 1-76.
  110. Weger, U. W., & Inhoff, A. W. (2007). Long-range regressions to previously read words are guided by spatial and verbal memory. Memory & Cognition, 35(6), 1293-1306.
  111. Frazier, L., & Rayner, K. (1982). Making and Correcting Errors during Sentence Comprehension: Eye Movements in the Analysis of Structurally Ambiguous Sentences. Cognitive Psychology, 14, 178-210.
  112. Inhoff, A. W., & Weger, U. W. (2005). Memory for word location during reading: Eye movements to previously read words are spatially selective but not precise. Memory & Cognition, 33(3), 447-461.
  113. McElree, B. (2015). Memory Processes Underlying Real-Time Language Comprehension. In Remembering: At- tributions, Processes, and Control in Human Memory (pp. 133-152). New York and London: Psychology Press.
  114. Picard, N., & Strick, P. L. (1996). Motor areas of the medial wall: a review of their location and functional activa- tion. Cerebral Cortex, 6(3), 342-353.
  115. Bouma, H., & De Voogd, A. H. (1974). On the control of eye saccades in reading. Vision Research, 14, 273-284.
  116. Vitu, F. (2011). On the role of visual and oculomotor processes in reading. In The Oxford Handbook of Eye Move- ments (pp. 731-749). Oxford University Press.
  117. O'Regan, J. K. (1992). Optimal viewing position in words and the strategy-tactics theory of eye movements in reading. Eye Movements and Visual Cognition, 333-354.
  118. Meseguer, E., Carreiras, M., & Clifton, C. (2002). Overt reanalysis strategies and eye movements during the read- ing of mild garden path sentences. Memory & Cognition, 30(4), 551-561.
  119. Miellet, S., O'Donnell, P. J., & Sereno, S. C. (2009). Parafoveal magnification: Visual acuity does not modulate the perceptual span in reading. Psychological Science, 20(6), 721-728.
  120. Newell, A. (1973). Production systems: Models of control structures. In Visual information processing. New York: Academic Press.
  121. Seassau, M., & Bucci, M.-P. (2013). Reading and visual search: a developmental study in normal children. PloS One, 8(7), e70261.
  122. Rayner, K., Liversedge, S. P., White, S. J., & Vergilino-Perez, D. (2003). Reading disappearing text: Cognitive control of eye movements. Psychological Science, 14(4), 385-388.
  123. Wotschack, C., & Kliegl, R. (2013). Reading strategy modulates parafoveal-on-foveal effects in sentence reading. The Quarterly Journal of Experimental Psychology, 66(3), 548-562.
  124. Rayner, K., & Bertera, J. H. (1979). Reading without a fovea. Science, 206, 468-469.
  125. Vitu, F., & McConkie, G. W. (2000). Regressive Saccades and Word Perception in Adult Reading. In Reading as a Perceptual Process (pp. 301-326). Elsevier Science Ltd.
  126. Miller, S. D., & Smith, D. E. P. (1989). Relations among oral reading, silent reading and listening comprehension of students at differing competency levels. Reading Research and Instruction, 29(2), 73-84.
  127. Matin, E. (1974). Saccadic suppression: a review and an analysis. Psychological Bulletin, 81(12), 899.
  128. von der Malsburg, T., & Vasishth, S. (2013). Scanpaths reveal syntactic underspecification and reanalysis strate- gies. Language and Cognitive Processes, 28(10), 1545-1578.
  129. Rayner, K., Schotter, E. R., Masson, M. E., Potter, M. C., & Treiman, R. (2016). So Much to Read, So Little Time How Do We Read, and Can Speed Reading Help? Psychological Science in the Public Interest, 17(1), 4- 34.
  130. Abrams, R. A., Meyer, D. E., & Kornblum, S. (1989). Speed and accuracy of saccadic eye movements: character- istics of impulse variability in the oculomotor system. Journal of Experimental Psychology: Human Per- ception and Performance, 15(3), 529.
  131. Ishida, T., & Ikeda, M. (1989). Temporal properties of information extraction in reading studied by a text-mask replacement technique. Journal of the Optical Society of America, 6(10), 1624-1632.
  132. Reichle, E. D., Tokowicz, N., Liu, Y., & Perfetti, C. A. (2011). Testing an assumption of the E-Z Reader model of eye-movement control during reading: Using event-related potentials to examine the familiarity check: E-Z Reader and event-related potentials. Psychophysiology, 48(7), 993-1003.
  133. Oldfield, R. C. (1971). The Assessment and Analysis of Handedness: The Edinburgh Inventory. Neuropsychologia, 9, 97-113.
  134. Fodor, J. D., & Inoue, A. (1994). The diagnosis and cure of garden paths. Journal of Psycholinguistic Research, 23(5), 407-434.
  135. Metzner, P., von der Malsburg, T., Vasishth, S., & Rösler, F. (2016). The Importance of Reading Naturally: Evi- dence from Combined Recordings of Eye Movements and Electric Brain Potentials. Cognitive Science.
  136. Kim, A., & Osterhout, L. (2005). The independence of combinatory semantic processing: Evidence from event- related potentials. Journal of Memory and Language, 52(2), 205-225.
  137. Rayner, K., Carlson, M., & Frazier, L. (1983). The Interaction of Syntax and Semantics During Sentence Pro- cessing: Eye Movements in the Analysis of Semantically Biased Sentences. Journal of Verbal Learning and Verbal Behavior, 22, 358-374.
  138. Dum, R. P., & Strick, P. L. (1991). The origin of corticospinal projections from the premotor areas in the frontal lobe. Journal of Neuroscience, 11(3), 667-689.
  139. McDonald, S. A., & Shillcock, R. C. (2004). The potential contribution of preplanned refixations to the preferred viewing location. Attention, Perception, & Psychophysics, 66(6), 1033-1044.
  140. Rayner, K., & Pollatsek, A. (1989). The Psychology of Reading. London: Prentice-Hall.
  141. Rayner, K. (1985). The role of eye movements in learning to read and reading disability. Remedial and Special Education, 6(6), 53-60.
  142. McConkie, G. W., & Rayner, K. (1975). The span of the effective stimulus during a fixation in reading. Perception & Psychophysics, 17, 578-586.
  143. Bicknell, K., & Levy, R. (2012). The utility of modelling word identification from visual input within models of eye movements in reading. Visual Cognition, 20(4-5), 422-456.
  144. Seidenberg, M. S. (2012). Computational models of reading. The Cambridge Handbook of Psycholinguistics, 186. Simon, O., Mangin, J.-F., Cohen, L., Le Bihan, D., & Dehaene, S. (2002). Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron, 33(3), 475-487.
  145. Reichle, E. D., Pollatsek, A., Fisher, D. L., & Rayner, K. (1998). Toward a model of eye movement control in reading. Psychological Review, 105(1), 125.
  146. LaBerge, D., & Samuels, S. J. (1974). Toward a theory of automatic information processing in reading. Cognitive Psychology, 6(2), 293-323.
  147. Just, M. A., & Carpenter, P. A. (1984). Using eye fixations to study reading comprehension. In New methods in reading comprehension research (pp. 151-182). Hillsdale, NJ, US: Erlbaum.
  148. Bouma, H. (1978). Visual Search and Reading: Eye Movements and Functional Visual Field: A Tutorial Review. In Attention and performance VII: Proceedings of the seventh international symposium on attention and performance, Sénaque, France, August1-6, 1976 (pp. 115-147). London: Erlbaum.
  149. Rayner, K., & McConkie, G. W. (1976). What guides a reader's eye movements? Pergamon Press, 16, 829-837.
  150. Bicknell, K., & Levy, R. (2011). Why readers regress to previous words: A statistical analysis. In Proceedings of the 33rd annual meeting of the Cognitive Science Society (pp. 931-936). Retrieved from https://mind- modeling.org/cogsci2011/papers/0210/paper0210.pdf
  151. Gunter, T. C., Wagner, S., & Friederici, A. D. (2003). Working memory and lexical ambiguity resolution as re- vealed by ERPs: A difficult case for activation theories. Journal of Cognitive Neuroscience, 15(5), 643- 657.
  152. Baddeley, A. (2003). Working memory and language: an overview. Journal of Communication Disorders, 36(3), 189-208. https://doi.org/10.1016/S0021-9924(03)00019-4
  153. Kolk, H. H. J., Chwilla, D. J., van Herten, M., & Oor, P. J. W. (2003). Structure and limited capacity in verbal working memory: A study with event-related potentials. Brain and Language, 85(1), 1-36. https://doi.org/10.1016/S0093-934X(02)00548-5


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten