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Summary 
Ustilago maydis is a well established model organism for the study of plant-microbe 

interactions although its biosynthetic potential has not been totally explored. Therefore, in this 

work we focused our attention on identifying potential secondary metabolite (SM) gene clusters 

by mining U. maydis genome. The combination of different strategies as manual annotation and 

bioinformatic approaches allowed us the detection of 4 potential SM gene clusters (A-D). The 

further selection of cluster A as a subject of this study, was based on its chromosomal location 

and the analysis of gene expression profiles among members of each cluster. Such analysis was 

possible due to the construction of an excel table in which all available U. maydis gene 

expression data from Gene Expression Omnibus were compiled and normalized. 

Overexpression of the transcription factor Mtf1 in cluster A resulted in the activation of at least 

12 genes including three polyketide synthases (pks3, pks4 and pks5), a cytochrome P450 (cyp4) 

and a versicolorin B synthase (vbs1), among others. Prolonged induction of cluster A triggered 

the production of a black-greenish pigment mainly composed of 1,3,6,8-

tetrahydroxynaphthalene (T4HN), therefore cluster A was named as the melanin-like cluster. 

This result showed that U. maydis synthesizes melanin using an unusual pathway, since most 

fungal melanins are derived from DHN, whose precursor is T4HN. Mutants defective for pks3, 

pks4, pks5 and cyp4 did not accumulate melanin, indicating a crucial role of these genes at the 

first stages of its biosynthesis. Deletion of cyp4 produced orsellinic acid (OA) and two of its 

derivatives. Interestingly, a feeding experiment with OA rescued the melanization defect of 

pks3 and pks4 deletion mutants. Moreover, the simultaneous expression of the pks3 and pks4 

genes produced OA, suggesting that both genes are involved in OA biosynthesis, which is then 

used as a substrate for further chemical conversion into T4HN, a reaction presumably catalyzed 

by Cyp4 and/or Pks5. Overexpression of pks1, a polyketide synthase gene in U. maydis 

previously reported to play a role in melanization together with pks2 and lac1, could rescue the 

phenotype in the strain MB215 Δpks3 Pcrg::mtf1, suggesting that Pks3 and Pks1 have 

complementary functions. Maize seedlings infected with single deletion mutants of the 

melanin-like cluster genes showed no effect on spore coloration and had only a minor effect on 

virulence, supporting the previous finding that pks1 and pks2 are the major contributors of 

melanization during sporulation. On the other hand, SG200 Δpks3, SG200 Δpks4 and SG200 

Δpks5 showed no significant differences compared to the wild type (SG200) when exposed to 

hydrogen peroxide, indicating that melanin-like cluster genes may be involved in other kind of 
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II 
stress responses, hence further experiments need to be performed to understand the conditions 

under which the melanin-like cluster is activated. 
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Zusammenfassung 
Obwohl Ustilago maydis ein gut etablierter Modellorganismus zur Erforschung von 

Interaktionen zwischen Pflanzen und Mikroben ist, ist sein biosynthetisches Potenzial nur 

unvollständig untersucht. Deshalb wurde in dieser Arbeit das Hauptaugenmerk auf die 

Identifizierung potenzieller Sekundärmetabolit (SM)-Gencluster im Genom gelegt. Die 

Kombination von verschiedenen Strategien, wie manuelle Annotation und bioinformatische 

Ansätze, erlaubte die Identifzierung von 4 potentiellen SM Genclustern (A-D). Die Auswahl 

von Cluster A für die weiteren Untersuchungen in dieser Arbeit beruhte auf seiner 

chromosomalen Lokalisation und der Analyse von Genexpressionsprofilen der Clustergene. 

Zur Analyse der Genexpression in U. maydis wurden alle verfügbaren Daten der öffentlich 

zugänglichen Datenbank „Gene Expression Omnibus“  in einer Excel-Tabelle zusammengefügt 

und normalisiert. Die Überexpression des TransKriptionsfaktors Mtf1 in Cluster A führte zu 

einer Aktivierung von mindestens 12 Genen, unter denen sich auch drei Polyketidsynthasen 

(pks3, pks4 und pks5), ein Cytochrom P450 (cyp4) und eine Versicolorin B-Synthase (vbs1) 

waren. Längere Induktion von Cluster A führte zur Produktion eines schwarz-grünen Pigments, 

das hauptsächlich aus 1,3,6,8-Tetrahydroxynaphthalin (T4HN) besteht. Daher wurde Cluster A 

Melanin-ähnlicher Cluster genannt. Dieses Ergebnis zeigte bereits, dass U. maydis Melanin 

über einen ungewöhnlichen Weg synthetisiert, da die meisten pilzlichen Melanine auf DHN, 

dessen Vorstufe T4HN ist, basieren. Mutanten mit fehlenden pks3, pks4, pks5 und cyp4-Genen 

zeigten keine Melaninanreicherung, was auf eine essentielle Funktion dieser Gene bei den 

ersten Schritten der Biosynthese hindeutet. Die Deletion von cyp4 führte zur Produktion von 

Orsellinsäure (OA) und zwei ihrer Derivate. Interessanterweise konnte durch Zugabe von zum 

Medium OA der Melanisierungsdefekt der pks3/pks4-Deletionsmutante ausgeglichen werden. 

Außerdem resultierte die simultane Überexpression der pks3 und pks4-Gene in der Produktion 

von OA, was darauf hindeutet, dass beide Gene an der OA-Synthese beteiligt sind. OA stellt 

daher ein wichtiges Zwischen produkt dar, das in nachfolgenden Reaktionsschritten als Substrat 

für weitere Umwandlungen zu T4HN verwendet wird. Diese Reaktionen werden vermutlich 

von Cpy4 und/oder Pks5 katalysiert. Überexpression von pks1, einer weiteren 

Polyketidsynthase-Gen in U. maydis, für das in früheren Arbeiten  zusammen mit pks2 und lac1 

eine Rolle bei der Melanisierung der Sporen beschrieben wurde, konnte den Phänotyp des 

Stammes MB215 Δpks3 Pcrg::mtf1 ausgleichen. Dies deutet darauf hin, dass Pks3 und Pks1 

eine vergleichbare biochemische Funktion ausüben. Maiskeimlinge, die mit Stämmen mit 

Einzelgendeletionen des Melanin-ähnlichen Clusters infiziert wurden, zeigten keinen Effekt auf 
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IV 
die Sporenfarbe und hatten nur einen geringen Einfluss auf die Virulenz. Dies unterstützt das 

vorherige Ergebnis, wonach pks1 und pks2 hauptsächlich zur Melanisierung während der 

Sporenbildung beitragen. Da die Deletionsmutanten SG200 Δpks3, SG200 Δpks4 und SG200 

Δpks5 bei Wachstum auf Wasserstoffperoxid keine signifikanten Unterschiede zum Wildtyp 

(SG200) aufwiesen, deutet dies darauf hin, dass die Bildung dieses Melanin-ähnlichen 

Farbstoffs vermutlich eine Rolle bei anderen Stressantworten spielen könnte. Daher sind 

weitere Experimente nötig, um Bedingungen zu finden, bei denen die Gene dieses Clusters 

exprimiert sind. 
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1! Introduction 
 

1.1! Secondary metabolism 
Secondary metabolites (SMs) are bioactive molecules, usually of low molecular weight, 

that play nonessential roles in growth, development, and reproduction of a living organism 

(Vining, 1992). They include antibiotics, antitumor agents, cholesterol-lowering drugs, toxins, 

and others. Secondary metabolites are produced in bacteria, fungi and plants often as a result 

of depletion of nutrients, absence of light, development of reproductive structures, or changes 

in ambient pH, just to mention some examples (Calvo et al., 2002, Yu and Keller, 2005). Genes 

involved in the production of secondary metabolites are generally fast-evolving, often clustered, 

and coregulated through common transcription factors or at the level of chromatin organization 

(Brakhage, 2013). In many cases, the biosynthetic potential of secondary metabolite producers 

has been underestimated, since most of those gene clusters remain silent under normal 

laboratory conditions (Chiang et al., 2011). Therefore, one of the biggest challenges is to 

understand where, when and how secondary metabolites are synthesized. 

 

1.2! Secondary metabolites in filamentous fungi 
Sequencing of fungal genomes has revealed that many fungi contain large numbers of 

genes involved in secondary metabolism that are typically arranged in gene clusters (Keller et 

al., 2005). However, the identity, structure and function of most of the metabolites produced 

by enzymes that are encoded by these clusters remain unknown. In the next paragraphs, it will 

be described which types of secondary metabolites have been identified in fungi and some of 

the strategies to elicit the production of these compounds.  

 

1.2.1! Classification of secondary metabolites 
SMs are divided into classes according to their chemical nature and biosynthetic origin: 

polyketides (PKs), synthesized by polyketide synthases (PKSs); nonribosomal peptides 

(NRPs), produced by nonribosomal peptide synthetases (NRPSs); alkaloids and terpenes, which 

are generated by dimethylallyl tryptophan synthases (DMATs) and terpene cyclases (TCs), 

respectively. As a part of the classification, the hybrid metabolites produced by the enzymes 
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PKS-NRPSs are also included. A general description of each class of compounds together with 

the enzymes involved in their biosynthesis is included on the next pages. 

 

1.2.1.1!Polyketides (PKs) 
Polyketides are a remarkably diverse group of secondary metabolites that are 

enzymatically produced by polyketide synthases (PKSs) (Hertweck, 2009). Their structural 

diversity includes macrolides, polyphenols, polyenes, and numerous other structural scaffolds 

(Hertweck, 2009). Analogous to fatty acid synthases (FASs), PKSs catalyze the biosynthesis of 

polyketides through repetitive C-C bond-forming reactions between selected acyl-CoA derived 

building blocks (Cane et al., 1999; Smith et al., 2007). However, polyketide biosynthesis 

deviates in many ways from fatty acid biosynthesis. PKSs clearly differ from FASs not only in 

their ability to use a broader range of biosynthetic building blocks but also in the formation of 

various chain lengths (Hertweck, 2009). In addition, FASs catalyze the full reduction of each 

β-keto moiety prior to further chain extension in every cycle (Cox and Simpson, 2009). In 

contrast, PKSs synthesize polyketides with a higher degree of complexity, since the reduction 

steps following condensation can be fully, or partially omitted, giving a functionalized chain 

(Figure 1). The catalytic process on both FASs and PKSs can be divided into three steps: 

initiation, elongation and termination. Prior the initiation step, the acyl carrier protein (ACP) 

domain needs to be activated by an ACP synthase or 4´-phosphopantetheine transferase (4´-

PPTase), which attaches a phosphopantetheine group from CoA onto the conserved serine of 

ACP to tether the acyl intermediate as thiol ester (Lim et al., 2012). Once activated, the ACP 

domain shuttles the growing polyketide chain between various partner enzymes or catalytic 

domains of the PKS. Afterwards, the acyltransferase (AT) domain catalyzes the transfer of an 

extender unit such as malonyl- or (2S) -methylmalonyl-CoA, from the coenzyme A carrier to 

the phosphopantetheine side chain of the ACP domain (Figure 2). Since structural diversity of 

polyketides is strongly influenced by extender unit choices made by AT domains, these 

enzymes have been obvious targets for engineering of novel polyketides (Dunn et al., 2013). 

After initiation, the ketosynthase (KS) domain carries out the decarboxylative Claisen 

condensation to form carbon-carbon bond between the growing polyketide chain and the ACP-

bound extender unit (Figure 2). At this stage, diversity can be introduced through the 

installation of noncanonical extender units (Kapur et al., 2012). Since KS is the most highly 

conserved domain in PKSs, it is often chosen for building up evolutionary trees of these 

enzymes (Gontang et al., 2010). AT, KS and ACP constitute a minimal set of domains required 

for a functional PKS (Hopwood, 1997). Other domains such as ketoreductase (KR), dehydratase 
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(DH), enoyl reductase (ER), methyltransferase (MT) and cyclase (CYC) may be present to form 

different polyketide structures (Figure 1). 

!
 

Figure 1. Basic mechanism involved in fatty acid and polyketide biosynthesis. (A) Fatty acid biosynthesis. A 
starter unit is condensed with a malonyl unit that undergoes decarboxylative Claisen condensation to furnish the 
electrons for the new carbon-carbon double bond. The resulting β-keto ester is successively reduced to hydroxy, 
dehydrated and finally reduced again to give a saturated chain longer than the original by two methylene units. (B) 
Polyketide biosynthesis. Unlike fatty acids, polyketides show a higher degree of complexity as the reduction steps 
following condensation can fully or partially (via b) or omitted (via a), giving highly functionalized chains. Enz: 
enzyme, KS: ketosynthase; AT: acyltransferase; ACP: acyl carrier protein; ER: enoyl reductase; DH: dehydratase; 
KR: ketoreductase. Adapted from Hertweck, 2009. 
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The termination step of polyketide biosynthesis is carried out by the thioesterase (TE) 

domain once the polyketide chain has reached the desired size. The polyketide product can be 

offloaded by different mechanisms as hydrolysis or macrocyclization (Bok et al., 2009; 

Schroeckh et al., 2009; Argyropoulos et al., 2016).  

 

!
Figure 2. Catalytic cycle of a representative minimal module. Every module of an assembly line PKS catalyzes 
the following sequence reactions: (1) the polyketide chain is translocated from the ACP domain of the preceding 
module onto the KS domain of the target module. (2 and 3) Separately, the AT domain catalyzes transfer of a 
selected extender unit (in this case, a methylmalonyl group) onto the ACP domain. (4) The KS domain then 
catalyzes chain elongation via decarboxylative condensation, leading to the formation of an ACP-tethered β-
ketoacyl product. The oxidation state and stereochemistry of this product is then set by an appropriate combination 
of KR, dehydratase, and enoyl reductase domains (not shown). Eventually, the chain is translocated of the 
downstream KS as in 1, although it is never translocated back to its own KS. AT: acyltransferase; ACP: acyl carrier 
protein; KS: ketosynthase. Adapted from Kapur et al., 2012. 

 

PKSs have been the subject of extensive review and are currently divided into three 

general classes according to their catalytic activities (type I, type II, and type III), although the 

exchange and evolution of genetic information among organisms has led to mixed classes 

(Shen, 2003). Type I PKSs are contained within multidomain polypeptides (Keatinge-Clay, 

2012) and can be divided into iterative and modular PKSs, which are usually associated with 

fungi and bacteria, respectively. In a modular type I PKS each domain of a module corresponds 

to one biosynthetic step and the arrangement of domains in the genome reflects the molecular 

structure of the final product, which is known as the "co-linearity rule" (Staunton and 

Weissman, 2001; Moss et al., 2004). The modules are not necessarily coded in a single gene; 

some are separated into multiple open reading frames, as in the case of the macrolide antibiotic 

erythromycin (Staunton, 1997), whose synthesis is carried out by three PKS genes (eryAI-

eryAIII) (Figure 3A and 4). In some other cases, the complexity of a polyketide can be compared 

with the number of reactions needed for its synthesis, as it was previously reported for the 

ACPKS AT ACPKS AT

ACPKS ATACPKS ATACPKS AT

ACP
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stambomycin gene cluster of Streptomyces ambofaciens, which is composed of 25 genes (nine 

of which encode PKSs), making it one of the largest PKS gene cluster described to date (Laureti 

et al., 2011).  

On the other hand, iterative type I PKSs conduct the synthesis of polyketides in multiple 

rounds of chain extension and appropriate β-ketoprocessing (Moss et al., 2004). Mammalian 

fatty acid synthase (FAS) is an example of an iterative type I PKS, its catalytic domains are 

employed multiple times to condense two-carbon building blocks into the 16-carbon fatty acid 

palmitate (Keatinge-Clay, 2012).  

 

 

!
Figure 3. Three types of PKSs. (A) Type I PKS is a multifunctional peptide that is divided into modules and 
domains. (B) Type II PKS is a complex of discrete enzymes that possess an individual function. (C) Type III PKS 
is a simple homodimer of ketosynthase. AT: acyltransferase; KS: ketosynthase; ACP: acyl carrier protein; CLF: 
chain length factor. Adapted from Katsuyama and Horinouchi, 2010. 
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Iterative PKSs (IPKSs) can be still further subdivided acccording to their architecture and 

the presence or absence of additional β-keto processing domains into: non-reducing or aromatic 

PKSs (NR-PKSs), such as those involved in the production of norsolorinic acid (Zhou and Linz 

1999), tetrahydroxynaphthalene (T4HN) (Wheeler, 1983) and bikaverin (Limón et al., 2010); 

partially reducing PKSs (PR-PKSs), like 6-methylsalicylate (6-MSA) synthase from 

Penicillium patulum (Yalpani et al., 2001), and highly reducing PKSs (HR-PKSs), as LovB and 

LovC for lovastatin biosynthesis (Ma et al., 2009). Figure 5 illustrates the biosynthetic 

mechanism of 6-MSA synthase. 

 

!
 

Figure 4. Domain organization of the erythromycin polyketide synthase. Putative domains are represented as 
circles and the structural residues are ignored. Each module incorporates the essential KS, AT and ACP domains, 
while all but one include optional reductive activities (KR, DH, ER). The one-to-one correspondence between 
domains and biosynthetic transformations explains how programming is achieved in this modular PKS. KS: 
ketosynthase; AT: acyltransferase; ACP: acyl carrier protein. Taken from Staunton and Weissman, 2001. 
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!
 

Figure 5. The biosynthetic pathway of the fungal polyketide 6-methylsalicylic acid (6-MSA). The 6-
methylsalicylic acid synthase (6-MSAS) is an iterative type I PKS responsible for the biosynthesis of 6-MSA in 
Penicillium patulum. 6-MSAS catalyzes the three successive condensations required to make the eight carbon 
molecule. All of the active sites required for a total of 11 transformations are carried on a single multifunctional 
protein, and catalysis involves repeated use of these active sites. Adapted from Staunton and Weissman, 2001. 
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Type II PKSs carry each catalytic domain on separate polypeptides that form multiprotein 

complexes, analogous to type II FASs in bacteria and plants (Jenke-Kodama et al., 2005), 

(Figure 3B). Type II PKSs have been shown to catalyze the biosynthesis of several compounds 

in bacteria, especially in Streptomyces sp., including the blue pigment antibiotic actinorhodin 

in S. coelicolor A3 (2) (Okamoto et al., 2009), the antineoplastic agent dihydrogranaticin from 

S. violaceoruber T-22 (Taguchi et al., 2001) and tetracenomycin, the antitumor antibiotic of S. 

glaucescens (Motamedi et al., 1987) (Figure 6).  

 

!
Figure 6. Products of type II polyketide synthases from Streptomyces sp. (A) Actinorhodin. (B) 
Dihydrogranaticin. (C)Tetracenomycin. 

 

Moreover, type III PKSs (Figure 3C), also known as chalcone synthase-like PKSs, are 

homodimeric enzymes that produce a wide array of compounds as pyrones, acridones, 

phloroglucinols, stilbenes, and resorcinolic lipids. Their single active site in each monomer 

catalyzes the priming, extension, and cyclization reactions iteratively to form polyketide 

products (Yu et al., 2012). Although type III PKSs are widely studied in plants and bacteria, 

their presence in fungi has only been realized in recent years (Hopwood, 1997). A previous 

analysis of PKS conserved domains suggested that most basidiomycetes PKS genes code for 

type I iterative polyketide synthases, putative type III PKS genes were found solely in three 

basidiomycete species (P. brevispora, Dacyropinax sp., and Phanerochate chrysosporium) 

(Lackner et al., 2012). 

Once the polyketides have been synthesized, they can undergo further modifications 

carried out by the so-called tailoring enzymes (TE), whose genes are normally located within 

the same biosynthetic gene cluster (BGC). Those enzymes include (de)hydratases, oxygenases, 

hydrolases, methylases, and others (Andersen et al., 2013). 
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1.2.1.2!Non-ribosomal peptides (NRPs) 
Instead of being synthesized by the rRNA- and tRNA-dependent ribosomal machinery, 

nonribosomal peptides (NRPs) are generated by nonribosomal peptide synthetases (NRPSs) 

(Finking and Marahiel, 2004). In addition to the 20 proteinogenic amino acids, NRPs are built 

from a huge number of nonproteinogenic amino acids, which are often essential for bioactivity 

(Marahiel and Essen, 2009). As it was previously described for PKSs, NRPSs possess a set of 

repetitive catalytic units called modules (Schwarzer and Marahiel, 2001). Mechanisms of NRPs 

biosynthesis are classified into three categories: (i) linear, the number and sequence of the 

modules in the NRPS matches the number and order of amino acids in the peptide; (ii) iterative, 

the modules or domains of the synthetase are used more than once to synthesize the peptide, 

and (iii) nonlinear, the arrangement of the modules does not match the sequence of amino acids 

(Cane and Walsh, 1999). Fungal NRPS pathways tend to be linear, as those involved in the 

biosynthesis of penicillin, cephalosporin, cyclosporin A and gliotoxin (Evans et al., 2011) 

(Figure 7). 

!
!

Figure 7. Fungal nonribosomal peptides. (A) Cyclosporin A, an NRP with a potent anti-inflammatory and 
immunosuppressant activity produced by the fungal species Tolypocladium inflatum. (B) Gliotoxin, an 
immunosuppressive mycotoxin long suspected to be a virulence factor of Aspergillus fumigatus. (C) Penicillin, a 
group of antibiotics which include penicillin G, penicillin V, procaine penicillin, and benzathine penicillin derived 
from Penicillum fungi. R: variable group. 

!
A minimal chain elongation module contains three core domains: the condensation (C) 

domain, the adenylation (A) domain and the peptidyl carrier (PCP) domain (also known as the 

thiolation [T] domain) (Lautru and Challis, 2004). The A domain is responsible for the selection 

of the amino acids that make up the product and thus controls its primary sequence. The small 

peptidyl carrier protein (PCP) domain, located downstream of A-domain, is the site of cofactor 

binding (4´-phosphopantetheine), to which all substrates and intermediates of the NRPS 

assembly line are covalently bound. The condensation domain (C) catalyzes the peptide bond 

formation between two adjacent PCP-bound intermediates (Figure 8).  

A B C
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Several specialized C-terminal domains involved in chain termination and release of the 

final peptide product have also been identified (Keating and Walsh, 1999). Although the chain 

release is mostly carried out by a thioesterase (TE) domain in bacterial NRPSs (Schneider and 

Marahiel, 1998), only few NRPSs in fungi, such as the ACV synthetases, are known to release 

products via a TE domain (Bushley and Turgeon, 2010). Some other mechanisms include: 1) a 

terminal C domain, which catalyzes release by inter- or intramolecular amide bond formation 

(Keating et al., 2001), and 2) a thioesterase NADP(H) dependent reductase (R) domain 

(Pospiech et al., 1996; Silakowski et al., 2000), which catalyzes reduction with NADPH to 

form an aldehyde. 

!
Figure 8. NRP domain organization and NRPS mechanism. (A) Domain organization of nonribosomal peptides 
(NRP). (B) Simplified mechanism of NRP synthesis. (1) The amino acid is activated as aminoacyl-AMP by the 
adenylation domain. (2) Transfer of the amino acid onto the PCP domain. (3) Condensation of PCP-bound amino 
acid. (4) Possibility of amino acid modifications, for example by epimerization domains. (5) Transesterification 
of the peptide chain from the terminal PCP onto the TE domain. (6) TE catalyzed product release by either 
hydrolysis or macrocyclization. The number of modification domains and modules is very variable. A: 
adenylation; PCP: peptidyl carrier protein; C: condensation; MT: methyltransferase; E: epimerization; Cy: 
cyclization; TE: thioesterase. Taken from Strieker et al., 2010. 
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Aside from those enzymatic units required to build up a peptide, NRPSs may contain 

additional domains which modify the substrate during NRPS biosynthesis: 1) the epimerization 

(E) domain, which catalyzes the epimerization of the PCP-bound L-amino acid or C-terminal 

amino acid of the growing polypeptide (Linne et al., 2001), 2) an N- or C-methylation (MT) 

domain (methyltransferase) which catalyzes the transfer of a methyl group from an S-

adenosylmethionine to an α-amino of the amino acid substrate, and 3) the cyclization (Cy) 

domain which catalyzes the formation of oxazoline or thiazoline rings by internal cyclization 

of cysteine, serine, and threonine residues (Finking and Marahiel, 2004; Bushley and Turgeon, 

2010) (Figure 8B). Some other tailoring enzymes (not included within the NRPSs) can further 

modify the nonribosomal peptides by gylcosylation, hydroxylation, acylation or halogenation, 

as an essential contribution to their biological activity (Walsh et al., 2001). 

 
 

1.2.1.3!Hybrid metabolites 
PKS domains also occur fused to NRPS domains, forming a PKS-NRPS hybrid 

(Hertweck, 2009). The interacting NRPS and PKS modules could physically reside on the same 

protein (type I hybrids) or separate proteins (type II hybrids). In order to be functional, both the 

PCP domains of the NRPS modules and the ACP domains of the PKS modules have to be 

converted from the inactive apo-form into the functional holo-form. Fungal PKS-NRPS 

products are produced via the action of two modules. A single type I, highly reducing PKS 

module acts iteratively to synthesize a complex polyketide core (Boettger and Hertweck, 2013), 

while the NRPS module is reponsible for selecting the amino acid, synthesizing the peptide 

bond and, in some cases, conducting some other steps as for example Dieckmann cyclization 

to produce tetramic acids (Collemare et al., 2008; Kakule et al., 2014). An outstanding feature 

of fungal PKS-NRPS hybrid is the lack of an intact ER domain within the PKS module, either 

because the catalytic function is not essential for the product formation or because it is fulfilled 

by trans-acting ER (Boettger and Hertweck, 2013). In figure 9, a simplified mechanism of a 

PKS-NRPS system is described for zwittermicin A (Letzel et al., 2013).  

In fungi, the PKS-NRPS derived metabolites represent an important group of structurally 

complex molecules. Fusarin C constitutes the first PKS-NRPS identified in fungi by the group 

of Simpson and co-workers (Song et al., 2004). Fusarin C is produced by several Fusarium 

species: F. oxysporum, F. poae, F. sporotrichioides, F. acuminatum, F. crookwellense, F. 

dlamini and F. nygamai (Golinski and Chelkowski, 1992). 
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!
Figure 9. Simplified mechanism of action for NRPS and PKS modules within the hybrid synthase involved 
in the biosynthesis of zwittermicin A. The PKS-NRPS used in zwittermicin A synthesis utilizes modified 
extender units such as hydroxylmalonyl-ACP, aminomalonyl-ACP and 2,3-diaminopropionate. Assembly begins 
by the activation of a serine residue, which is carried out by tethering the amino acid to a PCP via an NRPS. 
Subsequently, elongation of an activated malonyl unit covalently attached to an ACP by a ketosynthase occurs 
giving the five carbon unit. The next two elongation steps proceed in a similar manner using aminomalonyl and 
hydroxymalonyl units from a second and third ketosynthase. Finally, the zwittermicin A backbone is generated by 
the condensation of 2,3-diaminopropionate with the carried molecule by a second NRPS. A: adenylation; C: 
condensation; AT: acyltransferase; PCP; peptidyl carrier protein; ACP: acyl carrier protein; KS: ketosynthase; 
KR: ketoreductase. Taken from Letzel et al., 2013. 

 

On the other hand, tenuazonic acid (TeA) is a PKS-NRPS derived product generated by 

the plant pathogenic fungus Alternaria tenius (Figure 9). Some of the biological properties 

described for TeA include antitumor, antibacterial, antiviral and phytotoxic activity (Miller et 

al., 1963; Gitterman, 1965). In contrast to other PKS-NRPS hybrid enzymes, the PKS portion 

of TAS1 (TeA synthetase) has only a single KS domain, which is indispensable for TAS1 

activity (Yun et al., 2015). Important examples from Aspergillus sp. include the cholesterol 

lowering compound lovastatin (Figure 10), aspyridone A and pseurotin (Hendrickson et al., 

1999; Bergmann et al., 2007; Maiya et al., 2007). Other examples constitute equisetin 

synthesized by F. heterosporum (Fleck and Brock, 2010; Sims et al., 2005), and tenellin, a 

PKS-NRPS yellow pigment produced by the insect pathogen Beauveria bassiana (Eley et al., 

2007). 
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Figure 10. Molecular structures of tenuazonic acid and lovastatin. 

 
 

1.2.1.4!Terpenes 
Terpenes represent the largest class of secondary metabolites that are produced as volatile 

organic compounds in fungi by terpene cyclases (TCs) (Christianson, 2008). While polyketides 

and nonribosomal peptides are the major class of secondary metabolites discovered in 

filamentous fungi, terpenes appear to be a predominant class of secondary metabolites in 

Basidiomycota. Terpenes are derived from the basic five-carbon units isopentenyl diphosphate 

and its isomer dimethylallyl diphosphate, which are sequentially coupled via prenyltransferase 

enzymes to produce longer prenyl diphosphates, the direct precursors for terpene biosynthesis 

(Wawrzyn et al., 2012). Terpenes are classified in monoterpenes, which are derived from 

geranyl pyrophosphate (GPP); sesquiterpenes, generated from farnesyl pyrophosphate (FPP); 

diterpenes and carotenoids, produced by geranylgeranyl pyrophosphate (GGPP) (Figure 11). In 

fungi, most of the different classes of terpenes has been observed, except for the monoterpenes 

(Shaw et al., 2015). Botrydial is a sesquiterpenoid considered as the primary phytotoxic 

metabolite of Botrytis cinerea. It is mainly responsible for the development of necrotic lesions 

on tobacco and beans when applied to leaves (González-Collado et al., 2007). Trichothecenes, 

also belonging to the class of sesquiterpenes, contain a common 12,13-epoxytrichothene 

skeleton and an olefinic bond with various side chain substitutions. Fusarium is the major genus 

producing such compounds like diacetoxscirpenol, deoxynivalenol and T2, which are 

considered as potent inhibitors of eukaryotic protein synthesis (Bennett and Klich, 2003). On 

the other hand, aristolochenes, from A. terreus and P. roqueforti, constitute and important group 

of sesquiterpenes (Cane et al., 1993; Proctor and Hohn, 1993), which also likely serve as 

precursors for several sesquiterpenoid toxins produced by filamentous fungi (Hohn et al., 

1991), including PR-toxin produced by P. roqueforti. Related to diterpenes, many Fusarium 

species also synthesize the plant hormones gibberellins (GAs), which act as virulence factors 

for grain infection (Bomke and Tudzynski, 2009). 

Tenuazonic acid Lovastatin
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Figure 11. Terpene biosynthetic pathway. All terpenoids are derived from the basic five-carbon units 
isopentenyl diphosphate and its isomer dimethylallyl diphosphate (DMAPP), which are sequentially coupled via 
prenyltransferase enzymes to yield longer prenyl diphosphates, the direct precursors to terpene biosynthesis. 
Monoterpenes are derived from geranyl diphosphate (GPP, C10), sesquiterpenes from farnesyl diphosphate (FPP, 
C15), and diterpenes from geranylgeranyl diphosphate (GGPP, C20). Adapted from Keller et al., 2005. 

 

Although the primary sequences of terpene cyclases are not well conserved between 

plants and fungi, the tertiary structure is conserved (Carruthers et al., 2000; Fischer et al., 2015). 

Last but not least, carotenoids also represent an important group of terpenoids produced by 

fungi. Best-known examples are those related to the production of β-carotene, astaxanthin and 

neurosporaxanthin. β-carotene has been reported in S. sclerotiorum (Georgiou et al., 2001), U. 

maydis (Estrada et al., 2010) and Penicillium sp. (Han et al., 2005), just to mention some cases. 

Moreover, astaxanthin is synthesized from β-carotene by the basidiomycete yeast X. 

dendrorhous (Johnson, 2003), while the neurosporaxanthin, as the name implies, has been well 

studied in N. crassa mainly by its protective effect against UV irradiation (Schmidhauser et al., 

1990). 
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1.2.1.5!Alkaloids 
Alkaloids have been reported as a group of basic organic substances of plant and 

microbial origin, containing at least one nitrogen atom in a ring structure in the molecule. 

Among these compounds, ergot alkaloids (EA) constitute a large family of fungal specialized 

metabolites derived from prenylated tryptophan with a characteristic ergoline ring system 

(Figure 12) in their structure (Flieger et al., 1997; Hoffmeister and Keller, 2007). EA can be 

divided into 2 major classes: the amides of lysergic acid, which are produced by plant-

associated fungi of the family Clavicipitaceae, and the clavine alkaloids, which are primarily 

produced by members of the fungal order Eurotiales such as Aspergillus fumigatus (Metzger et 

al., 2009). The first committed step of ergot alkaloid biosynthesis is catalyzed by the 4-

dimethylallyl tryptophan synthase (DMATS) (Tsai et al., 1995). In this reaction, DMATS 

condenses L-tryptophan and dimethylallylpyrophosphate (DMAPP) to generate dimethylallyl 

tryptophan (DMAT), as it is shown in Figure 12.  

!
Figure 12. Reaction catalyzed by DMATS and structures of ergot alkaloids. FgaPT2 is a 
dimethylallyltryptophan synthase (DMATS) that catalyzes the first committed step of ergot alkaloid biosynthesis 
in Aspergillus fumigatus. FgaPT2 catalyzes the prenylation of L-tryptophan to generate dimethylallyltryptophan 
(DMAT). Taken from Metzger et al., 2009. 
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The first biosynthetic gene cluster of ergot alkaloids was identified in Claviceps purpurea 

strain P1 by genome walking (Tudzynski et al., 1999). In the same gene cluster, four NRPS 

genes and several putative oxidases were also identified (Haarmann et al., 2005). In 2012, the 

group of Hywel-Jones isolated a new alkaloid, cordylactam, from the spider pathogenic fungus 

Cordyceps sp. BCC 12671 (Isaka et al., 2012). Oxaline, from Penicillium oxalicum, is another 

alkaloid that has been studied due to its ability to arrest the cell cycle by inhibition of tubulin 

polymerization (Koizumi et al., 2004). Moreover, the prenylated indole alkaloids 17-epi-

notoamides Q and M, from Aspergillus sp., were found to have antibacterial activities (Chen et 

al., 2013), while in some other cases, alkaloids as fumigaclavines and fumitremorgens, 

produced by A. fumigatus, showed toxic effects (dos Santo et al., 2003). 

 

1.2.2! Strategies to elicit natural products from silent biosynthetic gene 

clusters  
Despite the large number of known bioactive compounds produced by fungi, the 

biosynthetic potential of these microorganisms is greatly underestimated since many of the 

genes involved in secondary metabolic pathways are silent under standard laboratory 

conditions. Methods to activate these silent biosynthetic pathways are thus of major interest. 

The key issue for the success of this approach is to find ways to induce or enhance the 

expression of cryptic or poorly expressed pathways. In the next paragraphs the most common 

strategies that have been applied in fungi for the production of secondary metabolites will be 

discussed.  

 

1.2.2.1!Cultivation based approaches 
Synthesis of various metabolites is dependent on culture conditions, such as surface or 

shake culture and pH of the fermentation medium. The OSMAC (one strain-many compounds) 

approach is an useful method, which functions under the concept "one fungus for the production 

of diverse secondary metabolites" (Bode et al., 2002). In other words, the modification of 

different culture parameters can lead to the discovery of new metabolites that otherwise are not 

synthesized under standard laboratory conditions. By applying this strategy, six new 

polyketides (calbistrin F-H and dothideomynone A-C) were produced by the endophytic fungus 

Dothideomycete sp. CR17 after changing sources of potato and malt extract in culture media 

(Hewage et al., 2014). Similarly, the cultivation of Myxotrichum sp. in a medium with rice led 

to the activation of three new polyketides myxotritones A-C, together with a new natural 
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product 7, 8-dihydro-7R, 8S-dihydroxy-3,7-dimethyl-2-benzopyran-6-one (Yuan et al., 2016). 

Cultivation of the Halichondria sponge-derived fungus Gymnacella dankaliensis in malt 

extract medium resulted in the production of four unsual steroids (gymnasterones A-D), while 

the cultivation in a modified extract medium containing soluble starch instead of glucose 

synthesized two extremely unusual steroids, dankasterones A and B (Amagata et al., 2007). 

Besides the medium composition, small modifications in the culture medium can bring about 

the discovery of new natural products. For instance, the replacement of the water used to make 

the media from tap water to distilled water resulted in the isolation of six new secondary 

metabolites, cytosporones F-I, quadriseptin A, and 5´-hydroxymonocillin in P. quadriseptata 

(Paranagama et al., 2007). 

Increasing evidence suggests that fungal secondary metabolism is not a stand-alone 

property but is tightly interconnected with morphological differentiation, stress response, and 

biotic interactions. The best understood example of the impact of environmental conditions that 

affect secondary metabolism are the pH-dependent expression of the penicillin/cephalosporin 

gene clusters (Brakhage et al., 2009). The expression of the gliotoxin biosynthesis genes is 

affected by various factors as pH, temperature, the composition and aeration of the culture 

medium, biofilm formation (Bruns et al., 2010), gliotoxin itself and other unknown factors 

(Cramer et al., 2006; McDonagh et al., 2008; Sugui et al., 2008; Bruns et al., 2010; Scharf et 

al., 2012). In line with these findings, the depletion of molecular oxygen triggered the activation 

of the pseurotin A biosynthetic gene cluster A. fumigatus (Vödisch et al., 2011).  

Previous studies have revealed that the encounter of different microorganisms can 

stimulate the production of secondary metabolites and increase the biological activities of 

microbial extracts. However, it is important to take into account some factors before selecting 

cocultivation as a first strategy to uncover secondary metabolites: the optimum timing of 

inoculation of the cultivation partners and of extraction, the selection of the proper media, and 

the cell ratio. Once the experimental setups are ready, this technique can lead to the 

identification of novel compounds. Cocultivation of the marine fungus (strain CNL-365, 

Pestalotia sp.) with an unidentified marine bacterium led to the production of pestalone, a 

chlorinated benzophenone antibiotic (Cueto et al., 2001). Similarly, the isolation of two 

antimicrobial cyclic depsipeptides, emericellamides A and B, occurred when the marine-

derived fungus Emericella sp. and the marine actinomycete Salinispora arenicola were co-

cultured (Oh et al., 2007). In some cases, the microbial interactions are critical for survival and 

fitness, as it was reported for A. fumigatus and Sphingomonas bacterial strain KMK-001, whose 

cocultivation induced the production of glionitrin A (Park et al., 2009).  
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Since both microbes were isolated from an acidic coal mine drainage, it is believed that 

glionitrin A may be synthesized in response to a survival mechanism of any of those strains. In 

another report, a tremendous increase in Monascus pigment production was detected when 

Monascus was co-cultivated in solid medium with either Saccharomyces cerevisiae or 

Aspergillus oryzae (Shin et al., 1998). Further experiments revealed that hydrolytic enzymes 

(e.g., chitinase) from a variety of fungi were effective in enhancing Monascus pigment 

production (Shin et al., 1998). 

 

 

1.2.2.2!Molecular approaches 
 

1.2.2.2.1!Ribosome engineering 
Ribosome engineering is based on two different aspects, modulation of the translational 

apparatus by induction of a str (streptomycin) mutation, and modulation of the transcriptional 

apparatus by induction of a rif (rifampicin) mutation, thus increasing antibiotic productivity 

(Ochi et al., 2004). Such increase is attributed to the ability of the mutants to accumulate ppGpp 

(guanosine 5´-diphosphate 3´-diphosphate), which is an important signaling molecule for the 

onset of antibiotic production (Hosoya et al., 1998). Ribosome engineering is described as a 

new method for screening secondary metabolites with several advantages, including the ability 

to screen for drug resistance mutations by simple selection on drug-containing plates, even if 

the mutation frequency is extremely low, and the ability to select for mutations without prior 

genetic information (Tanaka et al., 2013). The concept of ribosome engineering was first 

applied to bacteria but now it has been expanding to fungi (Ochi and Hosaka, 2013). 

Introduction of gentamycin resistance (GenR) into the marine-derived fungal strain Penicillium 

purpurogenum G59 activated the gene clusters responsible for the production of four antitumor 

secondary metabolites: janthinone, fructigenine A, aspterric acid methyl ester and citrinin (Chai 

et al., 2012). In addition, the hygromycin B-resistant mutants of Monascus pilosus NBRC 4520 

exhibited enhanced production of secondary metabolites (Ochi and Hosaka, 2013). Since 

hygromycin and gentamycin inhibit the synthesis of proteins, these studies suggest that by 

modulating the ribosomal function (ribosomal proteins or rRNA) it is possible to explore the 

biosynthetic potential in fungi. Even though this strategy has not been totally explored, it 

represents an alternative way to study the secondary metabolite potential in fungi. 
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1.2.2.2.2!Manipulation of global and cluster-specific regulators 
A large number of known fungal secondary metabolites have been ascribed to the 

Ascomycete genus Aspergillus. Therefore, most of the studies on regulation of BGCs have been 

carried out in this genus, particularly on global regulators. LaeA is considered as a master 

regulator of secondary metabolism, as it is required not only for sterigmatocystin (ST) but also 

for penicillin (PN) biosynthesis, as well as for the biosynthesis of mycelial pigments in A. 

nidulans and A. fumigatus (Bok and Keller, 2004). Unlike other genes that regulate secondary 

metabolism, the loss of laeA has a negligible impact on morphological developmental 

processes. Another global regulator identified in Aspergillus nidulans is the protein PacC, 

which activates the expression of genes whose products are synthesized preferentially at 

alkaline pH. Mutations in pacC mimic the effects of growth at alkaline pH and lead to elevated 

levels of alkaline phosphatase, reduced levels of acid phosphatase and penicillin overproduction 

(Tilburn et al., 1995). On the other hand, the creA gene in A. nidulans is a remarkable example 

of a global regulatory gene mediating carbon catabolite repression. Deletion of creA and 

surrounding DNA has an extremely severe effect on morphology under carbon catabolite 

repressing and nonrepressing conditions (Dowzer and Kelly, 1989). Also related to nutritional 

sources, the global nitrogen regulator AreA is responsible for nitrogen-induced repression of 

the gibberellin biosynthesis gene cluster in F. fujikuroi (Tudzynski et al.,1999) but it is required 

for the production of fumonisin B1 in F. verticillioides (Kim and Woloshuk, 1998). Other 

global regulators that have been identified to affect SM gene cluster expression include 

development-related transcription factors such as StuA (Twumasi-Boateng et al., 2009) and a 

bZIP transcription factor in A. nidulans (Yin et al., 2011). 

Many, but not all, clusters contain genes encoding transcriptional factors that positively 

or negatively regulate gene expression (Figure 13A and B). Therefore, one the simplest ways 

to activate a gene cluster is by inducing or repressing the expression of a regulator with a 

positive or negative effect on the cluster genes, respectively. Furthermore, it also helps to 

increase the amount of products, which is often necessary for structure elucidation. 

Overexpression of the apdR gene, coding for a Zn2Cys6 transcription factor in A. nidulans, 

resulted in the activation of a silent gene cluster responsible for the biosynthesis of the 

aspyridones A and B (Bergmann et al., 2007). In the same year, Shimizu and co-workers 

identified an activator gene (ctnA) essential for the efficient production of citrinin (CT) in 

Monascus purpureus. CtnA was found in the upstream region of a gene encoding for a 

polyketide synthase (pksCT), which was shown to be expressed by ctnA. In addition, ctnA 

disruption drastically decreased CT production. In a similar way, the expression of the genes 
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involved in the biosynthesis of depudecin, a histone deacetylase inhibitor, in Alternaria 

brassicicola was shown to be controlled by the transcription factor DEP6 located within the 

depudecin gene cluster (Wight et al., 2009). Interestingly, CtnA, DEP6 and ApdR belong to the 

largest cluster-specific family of transcription factors in fungi, Zn(II)2Cys6. Belonging to the 

same family of TFs are those regulating the biosynthesis of bikaverin (Bik5), cercosporin 

(CTB8), fumonisin (FUM21) and sirodesmin PL (Sir Z) (Wiemann et al., 2009; Chen et al., 

2007; Brown et al., 2007; Fox et al., 2008). Other families of TFs involved in fungal secondary 

metabolism are: Cys2His2 (BMR1 and Cmr1 for melanin biosynthesis), bZip (ToxE for HC-

toxin) and winged helix (CPR1 for cephalosporin C) (Knox and Keller, 2015). 

 

1.2.2.2.3!Heterologous expression 
To characterize the function of unknown genes, heterologous expression in well-defined 

hosts provides a promising option (Figure 13C). However, the application of this strategy shows 

some limitations that need to be taken into account when planning to express a gene encoding 

for a PKS or NRPS. First of all, the presence of introns and strain-specific splicing mechanism 

has to be considered; second, the ACP domains of PKSs and NRPSs require posttranslational 

4-phosphopantetheinylation catalyzed by 4-phosphopantetheinyl transferases (PPTase), and 

third, the large sizes gene clusters containing SM genes could lead to unstable constructs 

(Schümann and Hertweck, 2006). For these reasons, using a host that is similar to the donor 

organism may increase the likelihood of synthesizing the desired compound.  

Aspergillus oryzae has been considered as one of the most attractive fungal heterologous 

host due to its ability to secrete large amounts of protein (Pahirulzaman et al., 2012). Such a 

system was used for Zhang and co-workers to overexpress the PKS gene involved in the 

biosynthesis of the squalene synthase inhibitor squalestatin S1 from Phoma sp. (Cox et al., 

2004). Following the same strategy, the entire citrinin (CT) biosynthetic cluster (20 kb) from 

M. purpureus was successfully introduced into A. oryzae with a high production rates (Sakai et 

al., 2012). In addition to A. oryzae, A. nidulans has also served as a host for expressing 

secondary metabolite genes. A clear example was found in the PKS-encoding gene atX from A. 

terreus, which produced significant amounts of 6-methylsalicylic acid (6-MSA) when 

expressed in A. nidulans (Fujii et al., 1996). Interestingly, two years later, the group of Barr 

and collaborators expressed the same PKS gene but used E. coli and S. cerevisiae as expression 

hosts (Kealey et al., 1998). In both cases, polyketide production required coexpression of 6-

MSA synthase and an heterologous phosphopantetheinyl transferase (PPTase) from B. subtilis, 

necessary for the conversion of the expressed apo-PKS to its holo form, thus indicating that it 
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is feasible to use such expression systems as long as those considerations are contemplated. 

Particularly in E. coli, there are more aspects to look at, as the unavailability of proper building 

blocks, difficulties in efficient translation and functional folding of key biosynthetic enzymes 

(Gao et al., 2010). Meanwhile, S. cerevisiae does not produce some of the necessary acyl CoA 

polyketide precursors, such as methylmalonyl-CoA. In addition, yeast may have insufficient 

levels of some tRNAs needed for PKS expression (Mutka et al., 2005). Despite some 

limitations, S. cerevisiae has served as an heterologous host for reconstituting fungal and plant 

biosynthetic pathways of the alkaloids cycloclavine and dihydrosanguinarine, respectively 

(Jakubczyk et al., 2015; Fossati et al., 2014). The latter, represents the longest reconstituted 

alkaloid pathway (10 genes) ever assembled in yeast (Fossati et al., 2014). 

 

!
Figure 13. Pathway-specific strategies to induce the expression of silent biosynthetic gene clusters. (A) 
Overexpression of a pathway-specific activator gene has been used to induce expression of the corresponding 
biosynthetic gene cluster. (B) Deletion of a pathway-specific repressor gene has also been used to induce the 
expression of silent BGCs. (C) Refactoring, which refers to the replacement of native regulatory elements with 
constitutive or readily inducible promoter. Adapted from Rutledge and Challis, 2015. 
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Heterologous expression of fungal biosynthetic genes can be technically challenging and 

time consuming (Chiang et al., 2011). Therefore, effective transformation protocols across 

fungal genera are necessary for the development of proper expression systems (Nevalainen et 

al., 2005). 

 

1.2.2.2.4!Epigenetic mining 
Altering the chromatin landscape by either genetic or chemical manipulation of chromatin 

modifiers has shown to be a strategy to activate silent SM gene clusters in fungi (Gerke et al., 

2012; Szewczyk et al., 2008; Wang et al., 2010). For example, gene expression has been 

associated with acetylation of histone H3 lysine 9 (H3K9ac) and dimethylation of histone H3 

lysine 4 (H3K4me2), whereas gene silencing has been associated with trimethylation of histone 

H3 lysine 9 (H3K9me3) (Wiemann and Keller, 2014) (Figure 14). Additionally, 

phosphorylation, ubiquitylation, and sumoylation can influence the expression of genes 

involved in secondary metabolism (Brakhage, 2013). Such epigenetic approaches are 

particularly useful in cases where any defined regulatory genes are present to control the 

expression of a SM gene cluster. Keller and co-workers demonstrated that deletion of hdaA, 

encoding an A. nidulans histone deacetylase (HDAC), caused transcriptional activation of two 

secondary metabolite gene clusters (Shwab et al., 2007). Conversely, deletion of gcnE, 

encoding for the histone H3K9 acetyltransferase (HAT) of the SAGA/ADA complex in A. 

nidulans, abolished the production of orsellinic acid (Bok et al., 2013). On the other hand, the 

use of chemical inhibitors of fungal histone methyltransferases (HMTs), as 5-azacytidine and 

5-aza-2´-deoxycytidine, has shown to have an impact on different developmental and cellular 

processes in C. albicans, Aspergillus spp., F. oxysporum and N. crassa (Cichewicz, 2010). In 

conjuction with these results, the application of HDACs inhibitors such as suberoylanilide in 

A. niger and D. stramonium L. yielded the production of nygerone A and two derivatives of 

fusaric acid, respectively (Henrikson et al., 2009; Chen et al., 2013).  

Both reports represent a good strategy to uncover new secondary metabolites in fungi, 

especially because it constitutes a low-cost technique and easy to apply in high-throughput 

screening operations. 
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!
Figure 14. Epigenetic perturbation as a strategy to activate silent gene clusters. Histone acetyltransferases 
(HATs) and histone demethylases (HDMs) can convert methylated histones into acetylated histones, thus 
activating silent BGCs. On the other hand, histone deacetylases (HDACs) and histone methyltransferases (HMTs) 
convert acetylated chromatin into the methylated form, which silences BGCs. Taken from Rutledge and Challis, 
2015. 
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Before automated tools became available, genome mining approaches have been 

undertaken by "manually!" identifying key biosynthetic enzymes in genome data (Weber and 
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for detection of secondary metabolite genes are: ClustScan (Starcevic et al., 2008), NP. searcher 

(Li et al., 2009) and SBSPKS (Anand et al., 2010) focus on nonribosomal peptide and 

polyketide biosynthesis pathways. For a more detailed description on bioinformatic tools for 

detection of BGCs, reviews by Weber and Kim (Weber and Kim, 2016), and Medema and 

Fischbach (Medema and Fischbach, 2015) can be consulted. 

 

1.3! Secondary metabolism in Ustilago maydis 
!
1.3.1! U. maydis as a model organism 

The fungus Ustilago maydis is the causative agent of smut disease on corn. In recent years 

U. maydis has emerged as an important model for plant pathogenic basidiomycetes, a large 

group of pathogens that causes smut and rust disease of plants (Kahmann and Kämper, 2004). 

It has also been used to study the molecular basis of such diverse phenomena as mating type 

determination, homologous recombination and signalling pathways (Bölker, 2001). U. maydis 

is dimorphic and grows in its haploid phase as a saprophytic yeast (Figure 15). Sexual 

development is initiated by the fusion of two compatible haploid yeast-like cells, a process 

controlled by the two mating type loci of U. maydis, the a and the b locus (Grandel et al., 2000). 

The resulting dikaryon is filamentous, grows in close contact with the plant and is able to sense 

surface signals that trigger the formation of appressoria (Mendoza-Mendoza et al., 2009; 

Lanver et al., 2010). The plasma membrane of the plant cell invaginates and tightly surrounds 

the intracellular hyphae (Brefort et al., 2009). An interaction zone develops between the plant 

and fungal membranes that is characterized by fungal deposits produced by exocytosis. At later 

stages, proliferation also occurs intercellularly and the dikaryotic mycelium grows towards 

bundle sheets (Doehlemann et al., 2008). Proliferation is followed by sporogenesis where 

hyphal sections fragment, round up, and differentiate into heavily melanized diploid teliospores 

(Snetselaar and Mims, 1993) (Figure 15). These spores are distributed by air and can germinate 

under favourable conditions. During germination, meiosis occurs and results in the production 

of haploid, unicellular sporidia (Bölker, 2001). 
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!
 

Figure 15. Life cycle of Ustilago maydis. In its saprophytic stage, U. maydis grows in the form of haploid budding 
yeast cells (sporidia). Sporidia of opposite mating types are able to fuse and give rise to the dikaryotic phase, which 
is the infective stage of the fungus. In the host tissues U. maydis grows in the form of mycelium, which eventually 
septates to form teliospores. At this stage, karyogamy occurs. Dark teliospores fill the galls characteristic of the 
disease. Upon germination of teliospores in the form of promycelium, meiosis and mitosis occur with the formation 
of basidiospores. Basidiospores bud off sporidia, which reproduce by budding, starting the life cycle again. 

 

1.3.2! Secondary metabolites identified in U. maydis 
Although U. maydis has not been considered as a commercial secondary metabolite 

producer, it secretes a number of interesting natural products (Bölker et al., 2008). Ustilagic 

acid (UA) is a secondary metabolite produced in U. maydis, with a broad antibacterial and 

antifungal spectrum (Haskins, 1950; Haskins and Thorn, 1951). UA consists of 15,16-

dihydroxypalmitic or 2,15,16-trihydroxypalmitic acid, which is O-glycosidically linked to 

cellobiose at its terminal hydroxyl group (Figure 16B). In addition, the cellobiose moiety is 

acetylated and acylated with a short-chain hydroxy fatty acid (Teichmann et al., 2007). The SM 

gene cluster involved in the synthesis of UA consists of 12 ORFs, including a gene encoding 

for a transcriptional regulator (rua1) which controls its activation under nitrogen starvation 

conditions (Teichmann et al., 2010). It was previously shown by the group of Bölker and 

collaborators in 2007, that UA production is critical during antagonistic interactions, since the 

co-inoculation of U. maydis with B. cinerea prevented the infection of the latter on tomato 

leaves (Teichmann et al., 2007).  Besides UA, U. maydis also secretes large amounts of 

mannosylerythritol lipids (MELs) under nitrogen starvation conditions (Hewald et al., 2006). 

MELs consist of a mannosylerythritol disaccharide which is acylated with short-chain (C2 to 

C8) and medium-chain (C10 to C18) fatty acids at the mannosyl moiety (Figure 17A). According 

to the number of acetyl groups, MELs can be differentiated into MEL A (fully acetylated), MEL 
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B and MEL C (monoacetylated at R-6 and R-4, respectively), and the fully deacetylated MEL 

D (Kitamoto et al., 1990). 

In particular, U. maydis served as the first organism for the molecular study of 

siderophore biosynthesis (Wang et al., 1989). To recruit iron from the environment, U. maydis 

produces two siderophores (Figure 17C), ferrichrome and ferrichrome A, which are synthesized 

by non-ribosomal peptide synthetases (NRPSs) and contain the unusual amino acid δ-N-

hydroxyornithine. Ferrichrome biosynthesis in U. maydis has been shown to be dependent on 

Sid1 (ornithine mono-oxygenase) and Sid2 (NRPS) (Mei et al, 1993; Wang et al., 1989; Yuan 

et al., 2001).  

 

!
Figure 16. Major compounds of secondary metabolism in U. maydis. (A) Mannosylerythritol lipids (MELs). 
(B) Ustilagic acid (UA). (C) Ferrichrome and ferrichrome A. (D) Itaconic acid. Taken from Bölker et al., 2008. 
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and metals through chelating properties of the acids and a decrease of pH. Since fungi tolerate 

low pH, it provides a competitive advantage in carbon-rich environments (Cray et al., 2013). 

In most of the described organisms, IA is generated by decarboxylation of the tricarboxylic acid 

(TCA) cycle intermediate cis-aconitate, while in U. maydis, IA is synthesized using a novel 

alternative pathway involving the isomerization of cis-aconitate into trans-aconitate and its 

subsequent decarboxylation to generate itaconate (Geiser et al., 2016).  

 

1.3.3! Melanization process in U. maydis 
Typical examples of secondary metabolites are pigments, which absorb damaging 

ultraviolet radiation and thus protect the organism against DNA damage and oxidative stress 

(Brakhage and Liebmann, 2005). Among those pigments, melanin plays an important role in 

many organisms including, of course, fungi (Nosanchuk and Casadevall, 2003). Melanin 

contributes to the ability to fungi to survive in harsh environments. In addition, it plays a role 

in pathogenesis (Eisenman and Casadevall, 2012). Melanins are polymerized from phenolic 

and/or indolic compounds forming negatively charged, hydrophobic pigments of high 

molecular weight (White, 1958).  

In fungi, two main melanin biosynthetic pathways have been described, DHN and L-

DOPA. In the DHN pathway, precursor molecules (acetyl-CoA or malonyl-CoA) are produced 

endogenously and transformed into 1,3,6,8-tetrahydroxynaphthalene (T4HN) by the action of 

a polyketide synthase (PKS). Afterwards, a series of reduction and dehydratation reactions 

produce the intermediates scytalone, 1,3,8-trihydroxynaphthalene (T3HN), vermelone, and 

finally 1,8-dihydroxynaphthalene (DHN). Subsequently, DHN is polymerized into melanin 

(Langfelder et al., 2003) (Figure 17). In the L-3,4-dihydroxyphenylalanine (L-dopa) pathway, 

there are two possible starting molecules: L-dopa or tyrosine. If L-dopa is the precursor 

molecule, it is oxidized to dopaquinone by laccase. If tyrosine is the starting molecule, it is first 

converted to L-dopa and then to dopaquinone (Figure 17). Tyrosinase catalyzes both steps 

(Eisenman and Casadevall, 2012). Dopaquinone is a highly reactive intermediate and in the 

absence of thiol compounds it undergoes intramolecular cyclization, leading eventually to the 

formation of eumelanin (Figure 17). Although both melanin biosynthetic pathways are found 

in fungi, the DHN pathway is the most common one (Tsai et al., 1999; Woo et al., 2010). 

The first studies of melanin in U. maydis suggested that catechol was the precursor for its 

biosynthesis since this compound was found in ethanol extracts from teliospores (Bell and 

Wheeler, 1986) (Figure 18). On the other hand, recent studies in U. maydis have shown that 

two PKS genes (pks1 and pks2) and a laccase (lac1) are involved in the melanization process 
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of teliospores during plant infection (Islamovic et al., 2015). This suggested that melanin in U. 

maydis is probably synthesized by the DHN pathway. However, whether the biosynthetic steps 

are carried out in the same way as for other fungi remains to be elucidated.  

 

!

Figure 17. Melanin biosynthesis pathways in fungi. DHN and L-DOPA pathways are the two main routes for 
synthesizing melanin in fungi. In the DHN pathway (above), the starter molecule, acetyl-CoA or malonyl-CoA, is 
converted to 1,3,6,8-tetrahydroxynaphthalene by a polyketide synthase (PKS). Subsequently, series of reduction 
and dehydration reactions produce 1,8-dihydroxynaphthalene (DHN). Polymerization of DHN leads to the 
formation of melanin. On the other hand, few fungi synthesize melanin via L-3,4-dihydroxyphenylalanine (L-
dopa) in a pathway that resembles mammalian melanin biosynthesis (below). The starter molecules can be either 
L-dopa or tyrosine. If the precursor molecule is L-dopa, it is oxidized to dopaquinone by laccase, while if tyrosine 
is the precursor, it is first converted to L-dopa and then dopaquinone. Tyrosinase, carries out both steps. Due to 
the high reactivity of dopaquinone, it forms dihydroxyindoles that polymerize into melanin.  

!
!
!
!
!

!
!

Figure 18. Melanized tumor of U. maydis and the proposed precursor for the melanin biosynthesis. (A) U. 
maydis tumor on field-grown maize plant (taken from Djamei and Kahmann, 2012). Teliospores of U. maydis 
contain dense deposits of melanin. (B) Molecular structure of catechol. 
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1.4! Aims of this work 
The analysis of an increasing number of whole genome sequences indicates that fungi 

encode the genetic information for the biosynthesis of a plethora of compounds that are not 

observed when cultured under standard laboratory conditions. Although in U. maydis some 

biosynthetic pathways involved in the production of secondary metabolites have been 

elucidated, its metabolic potential has not been totally explored yet. Based on this premise, the 

general objectives of this project were: 

 

1.! Identification of potential secondary metabolite gene clusters in U. maydis, especially 

those that could be involved in plant-pathogen interaction.  

 

2.! Identification of novel metabolites by forced-expression of the selected gene clusters. 

 

3.! Elucidation of the biosynthetic steps associated with the production of these secondary 

metabolites. 

 

4.! Investigation of the biological role of the identified compounds in U. maydis life cycle. 
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2!Results 
 
2.1! Identification of potential SM gene clusters in U. maydis  

The first goal of the project was to identify potential SM gene clusters in U. maydis. For 

that reason, two different strategies were followed. The first one, manual annotation, consisted 

in a careful inspection of the U. maydis genome data base in order to seek for characteristic 

candidate genes involved in secondary metabolism. The second one, focused on the search of 

clusters of coregulated genes under different conditions by the analysis of existing expression 

data of U. maydis genes. Comparison of the output from both strategies, together with the data 

collected from bioinformatic algorithms as SMURF (Khaldi et al., 2010) and antiSMASH 

(Medema et al., 2011), led to the detection of several putative SM gene clusters. A detailed 

description of each strategy is presented below. 

 

2.1.1! Manual annotation 
The MIPS Ustilago maydis genome database (MUMDB) is a web-based resource that 

provides reliable information regarding molecular structure and functional annotation of the 

entirely sequenced genome of this basidiomycetous fungus (Kämper et al., 2006). Taking 

advantage of the well annotated database, we searched for U. maydis genes implicated in the 

biosynthesis of secondary metabolites. For practical reasons, the search was restricted to genes 

coding for proteins belonging to any of these categories: backbone enzymes (BEs), tailoring 

enzymes (TEs), transcription factors (TFs) and transporters (TPs). A description of the classes 

of genes covered in each category is indicated in Table 1. Among the genes encoding backbone 

enzymes, PKSs were found in a higher number in comparison with NRPSs or DMATs. On the 

other hand, no terpene cyclases (TCs) were identified in this analysis (Table 1). Cytochrome 

P450 monooxygenases, dehydrogenases, transferases, hydroxylases and oxygenases were 

grouped into the category of tailoring enzymes, while all classes of TFs and TPs were included 

in this study. Selected genes were subsequently placed in a table with their respective ID 

number, putative function and chromosome location (Table S1). Genes located on the same 

chromosome and in close proximity to each other were considered to be part of a potential SM 

gene cluster. Since fungal secondary metabolite biosynthetic genes often occur in clusters that 

tend to be sub-telomerically located, we also took this criterion into account for selection of the 
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clusters. Based on this strategy, four putative SM gene clusters were identified, three of them 

contained at least one PKS and one contained an NRPS (Figure 19). Since none of the identified 

gene clusters has been previously characterized, they were tentatively named as cluster A 

(um04095-um11113), cluster B (um10532-um10539), cluster C (um10543-um05253) and 

cluster D (um06414-um11241). The arrangement of each gene cluster, its length and 

chromosome location is depicted in Figure 19.  

 

 

Table 1. Putative secondary metabolite genes identified by manual inspection of U. maydis 

genome database. 

Functional category Gene families Number of genes 

BEsa PKS 6 

NRPS 1 

DMAT 1 

TC 0 

TEsb Cytochrome P450 61 

Dehydrogenase 136 

Transferase 220 

Hydroxylase 9 

Oxygenase 34 

TFsc All families were considered 34 

TPsd All families were considered 104 
a Backbone enzymes 
b Tailoring enzymes 
c Transcription factors 
d Transporters 
 
 

In order to define with more accuracy the borders of each gene cluster identified by 

manual annotation, we compared the clusters A-D with those detected by the algorithms 

SMURF and anti-SMASH (Table S2 and S3). All the clusters, except for cluster B, were 

somehow considered as potential candidates by both bioinformatic programs (Table 3). In the 

case of cluster A, SMURF detected their genes as part of two clusters located next to each other, 

cluster 7 (um04095-um04097) and cluster 8 (um04100-um04109) (Table 3). On the other hand, 

antiSMASH only detected a single cluster composed by three of its genes (cluster 10, um04095-
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um04097). Moreover, a short version of cluster C was only shown by antiSMASH as cluster 

13 (um10543-um05248). Related to cluster D, SMURF and antiSMASH could detect most of 

its genes in cluster 13 (um06407-um06430) and 14 (um06411-um06418), respectively (Table 

3). These results suggested that even though the use of bioinformatic approaches to identify SM 

gene clusters constitutes a valuable option, we observed differences among both programs, 

particularly in assessing the length of the gene clusters. Therefore, we could not totally rely on 

these data, although they gave us a hint that most of our gene clusters (A, C and D) are potential 

candidates for being involved in secondary metabolism. 
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Table 2. Selected secondary metabolite genes identified by manual inspection of U. maydis genome database. 

Backbone Enzymes (BEs) Tailoring Enzymes (TEs) Transcription 

Factors (TFs) 

Transporters 

PKS NRPS DMAT TC Cytochrome 

P450 

Dehydrogenase Transferase Hydroxylase Oxygenase All categories All categories 

um04095a    um04109a um11113a um04106a  um04107a um04101a um04146 

um04097a    um04189 um04127 um04193   um04168 um04162 

um04105a    um42237 um04182 um04198   um10417  

     um04210 um04209   um10426  

     um04268 um10428     

     um04300 um04209     

      um10428     

      um04277     

um10532b    um04362 um10846 um04353  um04348  um04347 

     um04378 um11151    um04399 

     um04441 um04374    um04410 

     um10533b um04375    um04423 

     um04480 um04406    um10528b 

      um04420    um04444 

      um10539b    um11977 

          um04478 

 um10543c   um12083 um05252 um05293  um05329 um10544c um05260c 
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     um05275 um05348   um10560 um10210 

     um05407-A um05355   um05338 um05396 

     um05407-B um05433     

     um05412      

um06414d    um11005 um11241d um06426d um06466  um15103 um06461 

um06418d    um06459  um06462 um12340    

    um11812  um06467     

           

Genes highlighted in black were selected by manual annotation to be part of a secondary metabolite gene cluster.  
a Genes located on chromosome 12 
b Genes located on chromosome 14 
c Genes located on chromosome 19 
d Genes located on chromosome 23 
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!
Figure 19. Secondary metabolite gene clusters identified by manual annotation and bioinformatic approaches. Four potential secondary metabolite gene clusters (A, B, C 
and D) were identified in U. maydis genome by manual annotation and bioinformatic sources as SMURF and antiSMASH. Genes are colored according to five categories: red 
(backbone enzyme), blue (tailoring enzyme), green (transcription factor), light pink (transporter) and gray (other). Chromosome location is indicated on the left side of each cluster.
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Table 3. Comparison of the SM gene clusters identified by manual annotation with those 

detected by the SMURF and antiSMASH algorithms. 

Manual annotation SMURFa antiSMASHb 

Cluster A 

(um04095-um11113) 

Cluster 7 (um04095-um04097) 

Cluster 8 (um04100-um04109) 

Cluster 10  

(um04095-um04097) 

Cluster B 

(um10532-um10539) 

 

- 

 

- 

Cluster C 

(um10543-um05253) 

 

- 

Cluster 13  

(um10543-um05248) 

Cluster D 

(um06414-um11241) 

Cluster 13  

(um06407-um06430) 

 

Cluster 14  

(um06411-um06418) 

a Secondary Metabolite Unknown Regions Finder 
b antibiotics and Secondary Metabolite Analysis SHell 
 

 

2.1.2! Gene expression data 

By measuring correlation among expression profiles of adjacent genes it is possible to 

detect coregulated gene clusters potentially involved in a common pathway. Examination of U. 

maydis gene expression data under a variety of conditions represents a strategy to identify 

potential secondary metabolite gene clusters. The GEO (Gene Expression Omnibus) database 

is a public functional genomics data repository for gene expression profiles that allows users to 

locate, review, and download studies of interest (http://www.ncbi.nlm.nih.gov/geo/). Therefore, 

we decided to explore the available gene expression data in U. maydis by downloading all 144 

annotated experiments (platform GPL3681) and assembling them into an excel database (Table 

S4). Each sample (GSM105898, GSM105899, etc.) gene expression vector was added to a table 

column, thus creating an 8,682 (genes) vs. 144 (samples) excel table. The raw expression data 

were processed according to the following modifications: log2 transformation, normalization 

(z-score along each gene) and hierarchical clustering on the normalized data along samples and 

genes using Euclidean distance for column and row ordering (see Materials and Methods). In 

order to measure the similarity of expression profiles of a gene with its immediate upstream 

neighbor, we used the mean Pearson correlation coefficient (R). Mean R was calculated for the 

expression profiles of all possible pairs of 3 to 13 genes. Following this strategy, 40 clusters of 

coexpressed genes were identified (1GE-40GE) (Figure S1), including those important for the 
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production of mannosylerythritol lipid (MEL), ustilagic acid (UA) and ferrichrome A, which 

served as controls to validate the data processing strategy (Figure 20 and S1). From selected 

gene clusters, 52.5% contained 3 genes and 2.5% were formed by 9 genes, which represented 

the smallest and longest clusters identified by this method, respectively. Around 70% of the 

gene clusters seemed to be mostly upregulated during plant infection, 5 and 13 dpi (condition 

4-9 and 15-16, respectively), suggesting that many of these genes could be involved in 

processes that would allow the fungus to cope with the adverse environment inside the plant 

(Figure S1, Table S4). In addition to the identification of coregulated genes located on the 

chromosome and with potential roles in secondary metabolism (Figure 21A), the constructed 

gene expression table also allows the analysis of coregulated genes involved in several 

metabolic processes that are not necessarily located on the same chromosome, which is possible 

to detect by ordering genes by hierarchical clustering of their expression profiles. A clear 

example can be noted for those genes involved in pheromone response in U. maydis (Figure 

21B). 
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!
Figure 20. Gene expression plots of three different biosynthetic gene clusters. Analysis of the coregulation of 
the genes belonging to the (A) mannosylerythritol lipid, (B) ustilagic acid and (C) ferrichrome biosynthetic clusters 
serves as a control to validate the construction of the gene expression excel table. The x axis respresents the 
experimental conditions downloaded from the platform GPL3681, and the y axis the normalized gene expression 
values. 
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Figure 21. Expression analysis of coregulated genes in U. maydis under a variety of conditions. (A) Coregulated genes located on the same chromosome. Itaconic acid (IA) 
cluster genes (cyp3, rdo1, tad1, itp1, adi1, mmt1 and ria1) located on chromosome 4 are coregulated under a variety of conditions.  IA genes show a high expression level in tumor 
material from maize leaves 5 days post FB1/FB2 mixed infection at 28 °C (GSM488163) and a low expression level in the FB1 strain grown in CM-medium with 5 % of arabinose 
as a carbon source for 75 min (GSM140081). (B) Coregulated genes located on different chromosomes. Hierarchical clustering allows the identification of coregulated genes located 
on different chromosomes but involved in similar metabolic pathways or cellular processes as the pheromone response. Gene description: um05348, related to RAM1 protein 
farnesyltransferase; um11228, related to CAAX prenyl protease; um02713, pheromone response factor Prf1; um02383, a2-pheromone receptor Pra1; um02382, a1-specific 
pheromone (mating factor a1) and um10528, related to STE6-ABC transporter. The different colors of the cells represent the level of expression of a gene under a given condition, 
indicated above each column. In the scale of colors, dark red indicates a highly expressed gene while a dark blue represents lowly expression.  
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2.1.3! Analysis of the expression profiles of gene clusters identified by manual 

annotation 

In order to determine whether the genes manually identified as part of the clusters A, B, 

C and D were coregulated, the expression profile of each gene was analyzed and compared with 

the profiles of the other genes supposed to be part of the same cluster. Therefore, genes 

exhibiting similar expression profile under all given 144 experiments were considered to be 

coregulated. The corresponding expression graphs for the cluster genes are illustrated below 

(Figure 22). 

!
Figure 22. Gene expression plots of biosynthetic clusters identified by manual annotation in U. maydis. The 
y axis indicates the gene expression index on a log2 scale, and the x axis represents the 144 experimental conditions 
included in the microarray excel table. (A) Cluster A. Gene expression profile of versicolorin B-synthase 
(um11112), the only member of the group with gene expression data available. (B) Cluster B (um10532-
um10539). (C) Cluster D (um06414-um11241). 
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Microarray expression data of cluster A genes contained information only for the gene 

um11112, described as versicolorin B synthase (Figure 22A). A similar case was encountered 

for the cluster C, where nearly no expression was observed for any of their genes under most 

conditions, thus indicating that probably these genes were not sequenced or annotated when the 

DNA chips were designed. 

Regarding cluster B, even though microarray data was available for all their genes, 

differences in expression profiles throughout the described conditions suggested no 

coregulation (Figure 22B). Therefore, cluster B was not an appropriate candidate for further 

analysis. Interestingly, when the expression profiles of the cluster D genes were plotted no 

coregulation among the whole set of genes could be observed. Nevertheless, the genes um06414 

and um06418, which are annotated as polyketide synthases, seemed to be upregulated under 

the same conditions (Figure 22C). Since no transcription factor was found nearby these genes, 

it was suggested that a putative activator could be located on a different chromosome. 

Taking into account all these elements, the most promising candidates for secondary 

metabolite gene clusters were cluster A and cluster D. Among these clusters, the only one that 

harbors a transcriptional regulator was cluster A, which would represent a clear advantage over 

cluster D, in terms of controlling the expression of the whole gene cluster. Another reason for 

choosing cluster A was based on the presence of three polyketide synthase genes (pks3, pks4 

and pks5) which gave us a hint that this cluster could be responsible for the production of more 

than one compound since many examples in the literature have shown that even a single 

polyketide synthase can produce several secondary metabolites such as pksA in Aspergillus 

flavus which produces four different aflatoxins: AFB1, AFG1, AFG2 and AFB2 (Yu et al.,2004). 

 

2.2! Upregulation of the Cluster A genes triggers the production of a black-

greenish pigment 

The analysis of the U. maydis genome sequence in combination with gene expression 

data, allowed the identification of a putative secondary metabolite gene cluster, named in this 

study as cluster A (Figure 19). Cluster A is located on chromosome 12 and harbors 16 genes 

encoding for 3 polyketide synthases (pks3, pk4 and pks5), 2 transcription factors (mtf1 and 

mtf2), 6 potential tailoring enzymes (aox1, vbs1, omt1, pmo1, cyp4 and deh1) and 5 

uncharacterized proteins (orf1, orf2, orf3, orf4 and orf5) (Table 4, Figure 24A). In a previous 

work, this cluster was identified as msum_11 by analysis of conserved motif seeds in 

neighboring genes in U. maydis (Lee, 2010). msum_11 cluster genes were found to have two 

co-occurring promoter motif seeds 5´-GGGTAA-3´ and 5´GTAn{3}GTT-3´.  
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Besides the identification of this putative SM gene cluster in U. maydis and others in F. 

graminearum, no further characterization has been done, therefore we were interested in 

exploring the function and biological role of cluster A. As described in Table 2, cluster A 

possesses two transcription factors, Mtf1 and Mtf2, very likely to act as pathway specific 

regulators. mtf1, annotated as BAS1 transcription factor, consists of 621 aa and contains three 

SANT domains at positions 7-49, 61-104 and 112-155 aa (Figure 23). The SANT domain is a 

highly conserved motif that is similar to the Myb DNA-binding domain. The SANT domain 

consists of three α-helices, each of which contains a corresponding, bulky aromatic residue 

(Aasland et al., 1996). On the other hand, mtf2, a protein with 1,023 aa, encodes a sequence-

specific DNA-binding binuclear zinc cluster (Zn(II)2Cys6) protein (Figure 23). Zinc binuclear 

proteins have been reported to be important for the regulation of secondary metabolism in the 

ascomycetous fungi Aspergillus nidulans (AflR), Fusarium verticillioides (Zfr1 and Fum21) 

and Magnaporthe grisea (Pig1p) (Chang et al., 1995; Flaherty and Woloshuk, 2004; Brown et 

al., 2007; Tsuji et al., 2000). 

 

 

!
Figure 23. Domain structure of the transcription factors Mtf1 and Mtf2 located within the cluster A. Mtf1 
possesses three SANT domains located at the aminoacid positions: 7-49, 61-104 and 112-155 (pink boxes). On 
the other hand, Mtf2 contains a Zn(II)2Cys6 binuclear cluster domain (blue box) which expands from 129 to 160 
aa, and a fungal transcription factor regulatory middle homology region (MHR) located from 429 to 828 aa (green 
box). N letter represents N-terminal region and C, the C-terminal region from each protein.

N C Mtf2
(1023(aa)

Fungal(TF(MHRZn(II)2Cys6

Mtf1
(621(aa)

N C

SANT
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Table 4. Cluster A genes in U. maydis. 

Protein ID Protein name Deduced Function Size [bp/aa] Location on 

chromosome XII 

um04095 Pks5 Polyketide synthase 3552/1183 3748-7476 

um04096 Orf1 Uncharacterized protein 567/188 8330-9085 

um04097 Pks4 Polyketide synthase 2256/751 9796-12148 

um04098 Orf2 Uncharacterized protein 609/202 12543-13151 

um11110 Mtf2 Zn(II)2Cys6 transcription factor 3072/1023 14632-17703 

um04100 Orf3 Uncharacterized protein 507/168 18695-19201 

um04101 Mtf1 BAS1 transcription factor 1866/621 20348-22213 

um11111 Aox1 Ascorbate oxidase precursor 1893/630 23340-25553 

um11112 Vbs1 Versicolorin B synthase 1800/599 26411-28388 

um04104 Orf4 Uncharacterized protein 555/184 29009-29656 

um04105 Pks3 Polyketide synthase 5289/1765 30156-35453 

um04106 Omt1 O-methyltransferase 1398/465 36350-37747 

um04107 Pmo1 Phenol-2-monooxygenase 2145/714 38884-41028 

um12253 Orf5 Uncharacterized protein 564/187 41748-42392 

um04109 Cyp4 Cytochrome p450 1812/603 43060-44871 

um11113 Deh1 NADP (+) dependent dehydrogenase 846/281 47747-48859 
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In order to gain an insight into the regulation of cluster A genes, we generated strains in 

which each transcription factor (mtf1 or mtf2) was expressed under the control of the arabinose- 

inducible Pcrg promoter (MB215 Pcrg::mtf1 and MB215 Pcrg::mtf2). The reasoning behind 

this strategy was to analyze which genes were regulated by which transcription factor. 

Transcription of mtf1 and mtf2 was analyzed by Northern blot (Figure 24B). A substantial 

amount of the genes mtf1 and mtf2 steady state mRNA was detectable in the selected 

transformants under inducing conditions (I). This mRNA was completely absent under non-

inducing conditions (R). Notably, in the MB215 Pcrg::mtf1 strain grown under inducing 

conditions, the three pks genes (pks3, pks4 and pks5) were substantially transcribed. Likewise, 

orf1, aox1, vbs1, orf4, omt1, pmo1, orf5, cyp4 and deh1 genes were only expressed upon 

induction of mtf1. Conversely, no transcription of these genes was detected under non-inducing 

conditions. This suggests that this cluster is silent when U. maydis is grown under normal 

laboratory conditions and that expression of mtf1 is sufficient to activate most cluster genes 

(Figure 24B). 

!
Figure 24. Induction of the silent gene cluster A results in the production of a black-greenish pigment. (A) 
The cluster A consists of at least 12 coregulated genes. Among these are three polyketide synthases (pks3, pks4 
and pks5) and several other genes characteristic of secondary metabolism. (B) Overexpression of the transcription 
factor mtf1 under the control of the arabinose-inducible promoter stimulates transcription of the cluster genes. (C) 
After prolonged induction (I) cells produce a dark pigment, while cultures in which expression of mtf1 is repressed 
(R) remain light. 
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On the other hand, overexpression of mtf2 upregulated only the orf2 gene, indicating that 

activation of mtf2 has no influence in the expression of the other cluster A genes (Figure 24B). 

Induced expression of the biosynthetic gene cluster A over the time triggered the production of 

a black-greenish pigment, which was clearly observed after 24 h of induction (Figure 24C, right 

side). Moreover, no effect was recorded in MB215 Pcrg::mtf2 and MB215 strains. In addition, 

the appearance of the cultures was similar to those grown under repressing conditions (Figure 

24C, right side). The same result was detected when the wild-type, MB215 Pcrg::mtf1 and 

MB215 Pcrg::mtf2 strains were spotted in serial dilutions on agar inducing medium (Figure 

25). In other words, the activation of cluster A contributes to the biosynthesis of a black-

greenish pigment in U. maydis.  

 

 

!
Figure 25. Serial 10 fold-dilutions of cell suspension of MB215, MB215 Pcrg::mtf1 and MB215 Pcrg::mtf2 
strains on agar inducing medium.The MB215, MB215 Pcrg::mtf1 and MB215 Pcrg::mtf2 strains were grown 
on plates containing YNB, (NH4)2SO4, and either glucose or arabinose as a carbon source. Strains were grown 
until an OD600=1, washed twice with YNB+(NH4)2SO4 medium without carbon source and spotted onto the 
corresponding agar plates in serial 10 fold-dilutions (100-10-6). Left panel, strains grown under non-inducing 
conditions. Right panel, strains grown under inducing conditions.  

 
 

Biochemical analysis by HPLC-MS of culture pellets in the wild-type, MB215 Pcrg::mtf1 

and MB215 Pcrg::mtf2 strains, grown under inducing conditions, revealed the presence of 

many complex compounds extracted only in the MB215 Pcrg::mtf1 strain (Figure 26A). Further 

fragmentation analysis of the chromatogram peaks, identified a common mass of 192, which 

corresponds to the 1,3,6,8-tetrahydroxynaphthalene (T4HN) (Figure 26B and C). T4HN is an 

aromatic polyketide that serves as general precursor of fungal melanin. T4HN is derived from 

acetyl-CoA or malonyl-CoA via polyketide synthase activity. In many fungi, T4HN is 

subsequently converted to scytalone, 1,3,8-trihydroxynaphthalene, vermelone and 1,8-

dihydroxynapthalene (DHN), which finally polymerizes into melanin (Wheeler, 1983). 
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Figure 26. Overexpression of mtf1 results in the production of many complex compounds derived from 
T4HN. (A) HPLC chromatograms (272 nm) of the MB215, MB215 Pcrg::mtf1 and MB215 Pcrg::mtf2 extracts. 
All the strains were cultivated under inducing conditions at 28°C for 96 h. (B) Molecular structure of 
tetrahydroxynaphtalene (T4HN), a key intermediate in the melanin biosynthesis pathway of many fungi. (C) 
Proposed structures derived from T4HN and produced as a result of prolonged induction of cluster A. 

 
 
Due to this finding, we named the cluster A as a melanin-like cluster. For having a better 

understanding of the biosynthetic pathway controlled by the melanin-like cluster genes in U. 

maydis, a closer analysis of the genes was carried out and is described below. 

 

2.3! Deletion of the pks3, pks4, pks5 and cyp4 genes abolishes the melanin-

like pigment production 
One of the strategies to investigate the biosynthetic role of the melanin-like cluster genes 

was to generate single deletion mutants in the MB215 Pcrg::mtf1 background strain by 

exchanging their coding sequence with a selectable marker gene. Genes considered to be 
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deleted were those whose expression was activated upon induction of mtf1 (pks5, orf1, pks4, 

aox1, vbs1, orf4, pks3, omt1, pmo1, orf5, cyp4 and deh1), as well as the mtf2 gene, which served 

as a negative control. For all selected mutants, Southern blot hybridization patterns confirmed 

that they were the result of a single integration event at the targeted locus. All mutant strains 

were grown in inducing medium for 96 h at 28°C, and the extracts of their cell pellets were 

analyzed by HPLC-MS (Figure 28). 

Single deletion of pks3, pks4, pks5 and cyp4 genes clearly had an effect in the production 

of the melanin-like pigment compared to the parental strain MB215 Pcrg::mtf1. None of the 

mutants displayed any melanin production (Figure 28), thus indicating the important role of 

these genes at early stages in the melanin biosynthetic pathway. In the case of the pks4 gene, 

the attempts to generate a single deletion mutant in the MB215 Pcrg::mtf1 background did not 

succeed. Although a large number of the transformants analyzed by Southern blot analysis 

showed the expected size of the mutant strain, the wild-type band was always present. For that 

reason, we suspected that the pks4 gene could be duplicated in U. maydis genome. Duplication 

events, which have occurred at several times, seem to be the major force in the evolutionary 

history in fungi, particularly for genes involved in secondary metabolism (Khaldi et al., 2008). 

Deletion of a single copy of the pks4 gene had no effect in melanin biosynthesis, while 

the induction of the strain in which both copies were deleted (MB215 ΔΔpks4 Pcrg::mtf1) 

completely abolished the melanin phenotype (Figure 27B). This result was also reflected in 

their metabolic profiles where MB215 ΔΔpks4 Pcrg::mtf1 extracts, unlike MB215 Pcrg::mtf1 

and  MB215 Δpks4 Pcrg::mtf1,  produced no compounds (Figure 27B). In order to rule out the 

possibility that the colorless phenotype observed in MB215 ΔΔpks4 Pcrg::mtf1 cultures was 

due to a defect in the expression of those genes whose deletion triggered an albino phenotype 

(pks3, pks5 and cyp4), Northern blot analysis were carried out (Figure 27A). Probes 

corresponding to the genes pks3, pks4, pks5 and cyp4 were used to analyze their transcript levels 

in the strains MB215, MB215 Pcrg::mtf1, MB215 Δpks4 Pcrg::mtf1 and MB215 ΔΔpks4 

Pcrg::mtf1. Neither the single nor the double deletion of the pks4 copies had an effect in the 

expression of pks3, pks5 and cyp4 (Figure 27A), suggesting that the colorless phenotype 

observed in MB215 ΔΔpks4 Pcrg::mtf1 was attributed to the deletion of both copies of pks4. 

Interestingly, a deletion of a single copy of the pks4 gene in the background of the FB1 

Pcrg::mtf1 strain was enough to produce no longer melanin. Thus indicating that the gene pks4 

is only duplicated in the MB215 strain and not in FB1. 
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Figure 27. The single deletion of the pks4 gene has no effect on melanin production. (A) Expression analysis 
of pks3, pks4, pks5 and cyp4 genes in the induced cultures of the strains MB215 Δpks4 Pcrg::mtf1 and MB215 
ΔΔpks4 Pcrg::mtf1 by Northern blot. All the tested strains were grown under respressing (R) and inducing (I) 
conditions at 28 °C for 96 h. Lower panel shows methylene blue-stained ribosomal RNA as an indicator of RNA 
integrity, loading and relative mobility between the samples. (B) HPLC chromatograms (272 nm) of MB215 
Pcrg::mtf1, MB215 Δpks4 Pcrg::mtf1 and MB215 ΔΔpks4 Pcrg::mtf1 extracts. 

 

Markedly, MB215 Δpks3 Pcrg::mtf1 and MB215 ΔΔpks4 Pcrg::mtf1 strains were not able 

to produce any of the T4HN derivatives shown in the chromatogram of the reference strain 

(Figure 28). Moreover, HPLC-MS of the MB215 Δcyp4 Pcrg::mtf1 extract indicated the 

presence of three major peaks highlighted in red (Figure 28 and 29).  

Single deletion of vbs1 resulted in a yellowish phenotype (Figure 28). The vbs1 gene, 

codes for a protein with sequence similarity to versicolorin B synthase (VBS), previously 

shown to be involved in the aflatoxin biosynthesis in Aspergillus parasiticus (Silva et al., 1996). 

A closer look at the MB215 Δvbs1 Pcrg::mtf1 UV chromatogram at 272 nm revealed the 

presence of three prominent peaks. The first one (V1, retention time, tR 1.49 min) showed a m/z 

of 453.03 ([M+H]+), the second one (V2, tR 5.8 min) displayed a m/z of 511.32 ([M+H]+), and 

the third one (V3, tR 6.6 min) with a m/z of 1050.44 ([M+H]+) (Figure 28). 

Moreover, disruption of the omt1 gene accumulated an orange-yellowish pigment, which 

was in appearance darker than the MB215 Δvbs1 Pcrg::mtf1 culture (Figure 28). Remarkably, 

the peak named O1, with a retention time of 5.8 min and a m/z =511.34 ([M+H]+), seemed to 

be also present in Δvbs1 extracts as V2 (Figure 28). According to these data, it could be possible 

that Vbs1 and Omt1 reactions proceed with intermediates produced via Pks3, Pks4, Pks5 and 

Cyp4. 
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Figure 28. Metabolic profiling of the melanin cluster deletion mutants. Photographs of cultures were taken 
after 96 h of growth at 28 °C in inducing medium (middle column). Metabolite profiles of culture cells from wild- 
type (MB215), overexpressing strain (MB215 Pcrg::mtf1) and deletion mutants were recorded at 272 nm (right 
column). Some peaks are labeled and explained in the text. 
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Figure 29. Molecular structure of orsellinic acid and its derivatives identified in the MB215 Δcyp4 
Pcrg::mtf1 strain. 

 
Unfortunately, it was not possible to elucidate the structure of most these compounds due to 

their low amounts, instability and rapid polymerization.  

The double deletion of vbs1 and cyp4 genes (MB215 Δcyp4Δvbs1 Pcrg::mtf1) produced 

OA and its derivative compounds, same compounds observed in the single deletion of cyp4 

(Figure 30). This result represents another indication that Vbs1 catalyzes a downstream reaction 

of the once catalyzed by Cyp4.  

!
Figure 30. Metabolic profiles of MB215 Δvbs1 Pcrg::mtf1, MB215 Δcyp4 Pcrg::mtf1 and MB215 Δcyp4Δvbs1 
Pcrg::mtf1.The single and double deletion strains MB215 Δcyp4 Pcrg::mtf1 and MB215 Δcyp4Δvbs1 produce 
orsellinic acid (2) and its derivative compounds (1 and 3). 

 

Even though the mutant strains MB215 Δpmo1 Pcrg::mtf1 and  MB215 Δorf1 Pcrg::mtf1 

exhibited similar melanization phenotype when compared to the reference, their metabolic 

profiles were different (Figure 28). Deletion of!pmo1 generated two peaks that protrude more 

prominently than the others, one with a retention time of 4.9 minutes (P1) and the other one 

with 6.7 min (P2). In!MB215 Δorf1 Pcrg::mtf1 extracts, there were also found two major peaks 

with retention times of 6.7 min (F1) and 8.8 min (F2). On the other hand, the chromatogram of 
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the MB215 Δdeh1 Pcrg::mtf1 strain seemed to be shifted to the right in comparison to the 

reference. Notably, those peaks within retention times between 4-7 minutes did not appear as 

well defined as in the reference. However, a major peak with retention time of 7.2 min (D1) 

could be detected. Finally, the chromatograms of the MB215 Δaox1 Pcrg::mtf1, MB215 Δorf4 

Pcrg::mtf1 and MB215 Δorf5 Pcrg::mtf1 mutant strains mimicked the profile of the reference 

strain. Nevertheless, slight differences in pigmentation were observed in MB215 Δorf4 

Pcrg::mtf1 and MB215 Δorf5 Pcrg::mtf1, where the coloration of the cultures appeared to be 

lighter and more greenish than Pcrg::mtf1. In summary, disruption mutants of pks3, pks4, pks5 

and cyp4 abolished synthesis of the melanin-like pigment, thus indicating the crucial role of 

these genes in the biosynthetic pathway. Although neither deletion of vbs1 nor omt1 produced 

a colorless phenotype, the participation of the encoded enzymes was confirmed by the 

yellowish phenotypes and the different metabolic profiles. Small changes in pigmentation were 

observed in the MB215 Δorf1 Pcrg::mtf1,  MB215 Δaox1 Pcrg::mtf1, MB215 Δorf4 Pcrg::mtf1, 

MB215 Δpmo1 Pcrg::mtf1, MB215 Δorf5 Pcrg::mtf1 and MB215 Δdeh1 Pcrg::mtf1 strains if 

compared with the reference, suggesting a minor involvement of these gene products in the 

production of the melanin-like pigment. 

 

2.4! Metabolic profiles of strains overexpressing single and multiple genes of 

the melanization gene cluster  
Since there are no available expression data that allow us to assess which genes are 

regulated by the transcription factor Mtf1, we could not rule out the possibility that other genes, 

besides those belonging to the melanin-like cluster, could be also induced by mtf1. If so, this 

could indicate that the metabolic profile shown by the MB215 Pcrg::mtf1 strain is not only 

reflected by the contribution of the genes which are part of the melanin-like cluster (Figure 

26A).  Therefore, we decided to generate single and multiple overexpressing strains of the 

melanin-like cluster genes as a strategy to suppress a possible background caused by genes 

located outside the cluster. The genes that were selected to be overexpressed were those whose 

deletion showed a clear phenotype if compared with the reference strain. Candidate genes to be 

overexpressed under the control of the arabinose-inducible crg promoter were pks3, pks4, pks5, 

cyp4 and vbs1, thus generating the strains MB215 Pcrg::pks3, MB215 Pcrg::pks4, MB215 

Pcrg::pks5, MB215 Pcrg::cyp4 and MB215 Pcrg::vbs1, respectively. Using the crg promoter 

for overexpressing the melanin-cluster like genes instead of a constitutive promoter as etef or 

otef was due to the idea that having a constutive upregulation of characteristic secondary 

metabolite genes could probably affect the transformation process or viability of U. maydis, 
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since many of those metabolites produced by fungi, as defense mechanisms against harsh 

environments or competitors, could be toxic even for themselves. Cultures were induced for 96 

h at 28 °C in YNB medium with 0.1% of ammonium sulfate and 5% of arabinose as a carbon 

source. Cell pellets were further analyzed by HPLC-MS at 272 nm (Figure 31). 

 

!
Figure 31. Metabolic profiling of strains overexpressing single genes of the melanin gene cluster. Photographs 
of cultures were taken after 96 h of growth at 28 °C in YNB medium with 5% arabinose and 0.1% ammonium 
sulfate (column 2). Metabolite profiles of culture cells from wild type (MB215) and overexpressing strains 
(MB215 Pcrg::mtf1, MB215 Pcrg::pks3, MB215 Pcrg::pks4, MB215 Pcrg::pks5, MB215 Pcrg::cyp4 and MB215 
Pcrg::vbs1) recorded at 272 nm (column 3). 

 
 

Single overexpression of either pks3, pks4, pks5, cyp4 or vbs1 produced no detectable 

compounds even though deletion of either one of these genes abolished the synthesis of the 

melanin-like pigment (Figure 31). In the case of the polyketide synthases, the metabolic profiles 

of their overexpressing strains could be explained by the domain structure of these proteins. 

Neither Pks3, Pks4 nor Pks5 individually possess all the critical domains from canonical type I 

PKSs (AT-KS-PP), which would suggest that they very likely work together with another 

polyketide synthase (Figure 32). A closer look to the domain structure of orsellinic acid 

polyketide synthases, in fungi and bacteria, revealed the common presence of five domains: KS 

(β-ketoacyl synthase), AT (acyl transferase), PS-DH (polyketide synthase dehydratase), PP 

(phosphopantetheine attachment site) and TE (thioesterase). Notably, Pks3 contains all the 
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necessary domains for the synthesis orsellinic acid, except the AT domain (Figure 32). 

Therefore, we ask ourselves whether Pks3 could be able to synthesize OA and its derivatives 

together with Pks4, since this polyketide synthase harbors the AT domain missing in Pks3. 

Earlier experiments have shown that deletion of pks3 or pks4 in the MB215 Pcrg::mtf1 

background produced no compounds, an indication that these genes are involved at early stages 

in the melanin pathway. If Pks3 and Pks4 catalyze the first reaction of the melanin biosynthetic 

pathway, OA would be detected if both genes were simultaneously overexpressed. Thus 

indicating that both polyketide synthases catalyze the first step in the metabolic pathway by a 

shared contribution of domains. Similarly, in the NRPS-PKS system of the leinamycin 

biosynthetic gene cluster in Streptomyces atroolivaceus S-140, there were found six PKS 

modules (encoded by the lnmIJ pks genes) lacking the AT domain, whose missing activity 

instead was provided in trans by the discrete protein LnmG (Cheng et al., 2002 and 2003). 

LnmG was biochemically characterized in vitro as an AT enzyme, showing that it efficiently 

and specifically loaded malonyl CoA in trans to ACPs from all six LnmIJ PKS modules. 

 

 

!
 

Figure 32. Domain organization of polyketide synthases of the melanin-like gene cluster in U. maydis. Protein 
enzymatic domains are as follows: AT, acyl transferase; AMP, adenylation; KS, β-ketoacyl synthase; NAD, 
nicotinamide adenine dinucleotide binding; PP, phosphopantetheine attachment site; PS-DH, polyketide synthase 
dehydratase; SAT, starter unit and TE, thioesterase. Domains were predicted by Protein Families (PFAM) and 
National Center for Biotechnology Information (NCBI) domain search. Numbers located on the right side of each 
PKS indicate their length in amino acids, and numbers below each domain represent their localization in the 
protein. 

!
In order to explore this possibility, we decided to combine the expression of the single 

pks genes and analyze their metabolic profiles. Each pks gene was under the control of the crg 

promoter, thus generating the strains: MB215 Pcrg::pks3+Pcrg::pks4 and MB215 

Pcrg::pks4+Pcrg::pks5  (Figure 33). 
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Figure 33. Double overexpression of the pks3 and pks4 genes produces orsellinic acid (OA). Metabolic profiles 
at 272 nm of single (MB215 Pcrg::pks3, MB215 Pcrg::pks4 and MB215 Pcrg::pks5) and double (MB215 
Pcrg::pks3+Pcrg::pks4 and MB215 Pcrg::pks4+Pcrg::pks5) overexpressing strains were analyzed after 96 h of 
growth in induction medium at 28 °C. Phenotypes of the strains are shown on the right side of the picture. 
Simultaneous expression of the pks3 and pks4 genes produces a peak with a tR =4.4 min identified as orsellinic 
acid (2) (Figure 29). 

 
 

Cultures of the double overexpressing strains displayed similar phenotypes as those 

observed for their single overexpressed genes. Prolonged induction of MB215 

Pcrg::pks3+Pcrg::pks4 triggered the production of a single major compound (2) identified as 

orsellinic acid (OA). A similar effect was observed when pks5 was deleted in the MB215 

Pcrg::mtf1 background strain (Figure 28), which would indicate that indeed, Pks3 and Pks4 act 

at earlier stages than Pks5, otherwise no compound would be present in the cell pellets of the 

MB215 Δpks5 Pcrg::mtf1 strain. Moreover, the chromatogram given by the MB215 

Pcrg::pks4+Pcrg::pks5 strain showed no compounds (Figure 33). This was an expected result, 

since Pks4 and Pks5 together do not fullfill the minimal requirement of domains, since both 

lack the KS domain. Unfortunately, it was not possible to overexpress pks3 and pks5 

simultaneously. Many U. maydis transformation attempts failed, and those that succeeded had 

very few transformants which turned out to be negative. However, according to the statements 
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above, cultivation of MB215 Pcrg::pks3+Pcrg::pks5 in inducing medium would likely produce 

no detectable compounds.  

In spite of the acquired knowledge from these data, the role of Cyp4 in the melanin-like 

biosynthesis pathway is not clearly understood yet. Therefore, we decided to analyze the 

phenotypes and metabolic profiles of double overexpressing strains in which each polyketide 

synthase (pks3, pks4 and pks5) was simultaneously expressed with cyp4 for a 4-day period 

(Figure 34).  

 
!
Figure 34. Metabolic profiles of the extracts from the double overexpression strains MB215 
Pcrg::pks3+Petef::cyp4, MB215 Pcrg::pks4+Petef::cyp4 and MB215 Pcrg::pks5+Petef::cyp4 as detected by 
UV absorption at 272 nm. Photographs of cultures were taken after 96 h of growth at 28 °C in YNB medium 
with 5% arabinose and 0.1% ammonium sulfate (right side).  
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Tnos-G418), which contains the cyp4 gene under control of the constitutive etef promoter and 

allowed integration of the desired construct into the cbx locus.  The pETEF-Cyp4-Tnos-G418 

plasmid was transformed into the single pks overexpressing strains to generate: MB215 

Pcrg::pks3+Petef::cyp4, MB215 Pcrg::pks4+Petef::cyp4 and MB215 Pcrg::pks5+Petef::cyp4 

strains (Figure 34). Analysis of their chromatograms revealed that neither MB215 

Pcrg::pks3+Petef::cyp4, Pcrg::pks4+Petef::cyp4 nor MB215 Pcrg::pks5+Petef::cyp4 exhibited 

pigmented cultures, which was in accordance with the lack of compounds detected by HPLC. 

All these data suggest that Pks3, Pks4 and Pks5 participate at early stages in the synthesis of 

the melanin-like pigment and, very likely, the product derived from these polyketide synthases 

is used as a substrate by Cyp4. 

 

2.5! Can the overexpression of the pks1 and/or pks2 genes rescue the 

phenotype in the strains MB215 Δpks3 Pcrg::mtf1, MB215 ΔΔpks4 

Pcrg::mtf1 and MB215 Δpks5 Pcrg::mtf1? 
A previous work in U. maydis identified the APSES transcription factor Ust1, whose 

deletion led to filamentous haploid growth and the production of highly pigmented teliospore-

like structures in culture (García-Pedrajas et al., 2010). Transcriptome analysis of the Δust1 

mutant showed the upregulation of two polyketide synthases, pks1 (um06414) and pks2 

(um06418), and one putative laccase (um05361) with potential roles in melanin biosynthesis 

(Islamovic et al., 2015). Interestingly, even though our search for secondary metabolite gene 

clusters found pks1 and pks2 located close to each other in chromosome 23, they were not 

considered as the perfect cluster candidate since no transcription factor was observed in close 

proximity to pks1 and pks2. According to the work of Islamovic and collaborators, together 

with our experimental data, U. maydis possesses two gene clusters capable to synthesize 

melanin. In both cases, each polyketide synthase seems to play a crucial role in the biosynthesis 

of this natural pigment. Although it was shown that deletion of ust1 does not influence the 

expression of pks3 (Islamovic et al., 2015), we wanted to know whether the transcription factor 

Mtf1 could be responsible for the regulation of the pks1 and pks2 genes. For this reason, we 

analyzed the expression of pks1 and pks2 genes in the strain MB215 Pcrg:: mtf1 after being 

cultured for 96 h in inducing medium at 28 °C (Figure 35).  

In none of the cases, pks1 or pks2 showed increased expression upon induction of mtf1, 

suggesting that mtf1 does not exert a regulatory effect on pks1 or pks2. Therefore, we asked 

ourselves whether U. maydis polyketide synthases could have complementary functions, if so, 

the overexpression of either pks1 or pks2 could rescue the phenotype of the MB215 Δpks3 
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Pcrg::mtf1, MB215 ΔΔpks4 Pcrg::mtf1 or MB215 Δpks5 Pcrg::mtf1 mutants. Domain structures 

of U. maydis PKSs and their percentages of identity among them are shown below (Figure 36 

and Table 5, respectively).  
 

!
!

Figure 35. Mtf1 does not control the expression of the pks1 and pks2 genes. Expression analysis of (A) pks1 
and (B) pks2 in the strain MB215 Pcrg::mtf1. Lower panel shows methylene blue-stained ribosomal RNA as an 
indicator of RNA integrity, loading and relative mobility between the samples. The strains MB215, MB215 Pcrg:: 
pks1, MB215 Pcrg::pks2 served as controls. 

 

 

!
 

Figure 36. Domain structure of the polyketide synthases identified in the SM gene clusters A and D in U. 
maydis. The domain structures of the 5 polyketide synthases (Pks1-Pks5) identified in U. maydis are represented 
with different colors. Protein enzymatic domains are as follows: AT, acyl transferase; AMP, adenylation; KS, β-
ketoacyl synthase; NAD, nicotinamide adenine dinucleotide binding; PP, phosphopantetheine attachment site; PS-
DH, polyketide synthase dehydratase; SAT, starter unit and TE, thioesterase. Domains were predicted by Protein 
Families (PFAM) and National Center for Biotechnology Information (NCBI) domain search. Numbers located 
on the right side of each PKS indicate their length in amino acids, and numbers below each domain represent their 
localization in the protein. 
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Neither Pks1 nor Pks2 have all essential catalytic domains found in fungal PKSs (AT, KS 

and PP). This suggests that they could work only in a collaborative manner. Pks1 possesses KS 

and PP domains, while Pks2 contains KS and AT domains (Figure 36). A comparison of Pks1 

and Pks2 with the PKSs from the melanin-like cluster indicates that Pks1 and Pks2 are more 

similar to Pks3 than to Pks4 or Pks5 (Table 5). Despite this observation, the identity percentages 

among the PKSs from both clusters are not so distant from each other. Therefore, to gain an 

insight of the biosynthetic potential of Pks1 and Pks2, we first created strains in which either 

pks1 or pks2 were singly overexpressed under the control of the crg promoter (MB215 

Pcrg::pks1 and MB215 Pcrg::pks2) and afterwards they were analyzed by HPLC-MS at 272 

nm (Figure 37). 

 

Table 5. Identity between U. maydis PKSs from two different clusters located at 

chromosome 12 (Pks3, Pks4 and Pks5) and chromosome 23 (Pks1 and Pks2). 

Polyketide 

synthase 

Identity a 

Pks1 Pks2 

Pks3 16.0% 15.3% 

Pks4 12.8% 14.1% 

Pks5 9.6% 11.3% 
      a The sequences were analyzed by UniProt (www.uniprot.org). 
 
 

The phenotypes of the single overexpressing strains MB215 Pcrg::pks1 and MB215 

Pcrg::pks2 were similar to each other and to the one displayed by the strain MB215 Pcrg::pks3 

(Figure 34 and 37). Furthermore, when pks1 and pks2 were simultaneously expressed, the cells 

produced a light greenish pigment. Moreover, no detectable compound was observed in the 

MB215 Pcrg::pks1 or MB215 Pcrg::pks2 strains, while the combined overexpression of pks1 

and pks2 triggered the production of six major peaks, indicated as PP1 to PP6 (Table 6). Since 

the lac1 gene was shown to be involved in the melanization process together with pks1 and 

pks2 (Islamovic et al., 2015), we consider that the triple overexpression of lac1, pks1 and pks2 

will produce a dark pigmentation.  

These data suggest that only the combined expression of pks1 and pks2 synthesizes 

compounds that might serve as intermediates for melanin biosynthesis. As it was previously 

described for Pks3, Pks1 does not possess an AT domain in its structure, which makes us think 

that this activity could be provided by Pks2, just as we hypothesized that Pks4-AT domain 

could assist Pks3 in the biosynthesis of OA. 
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Table 6. Compounds identified by HPLC-MS (272 nm) in extracts of the MB215 

Pcrg::pks1+Pcrg::pks2 strain after prolonged induction. 

!
Compound tR (min) m/z ([M+H]+] 

PP1 5.9 208.52 

PP2 6.2 729.52 

PP3 6.8 427.06 

PP4 7.3 467.13 

PP5 7.7 465.11 

PP6 7.9 443.32 

!
 

On the other hand, we also generated strains in which either pks1 or pks2 were co-

expressed with Cyp4 (Figure 37). The analysis of the phenotypes and metabolic profiles given 

by these strains served as a control to rule out the possibility of an involvement of Cyp4 in the 

biosynthesis of the greenish pigment. Neither MB215 Pcrg::pks1+Petef::cyp4 nor MB215 

Pcrg::pks2+Petef::cyp4 displayed a different phenotype to the one observed in the MB215 

Pcrg::pks1 or MB215 Pcrg::pks2 strains (Figure 37). In no case, the double overexpression of 

either pks1 or pks2 with cyp4 produced a significant peak, indicating that Cyp4 has no effect in 

the metabolic profile of MB215 Pcrg::pks1 or MB215 Pcrg::pks2. 

Until now, we have shown that the majority of the single or double overexpressing strains 

of the polyketide synthase genes located within the same cluster produced no compounds. 

Considering this premise, we decided to explore the complementarity of the PKSs from both 

gene clusters by combining the expression of their genes and evaluating whether those strains 

could show a different phenotype. For this purpose, we created six double overexpressing 

strains in a way that pks1 and pks2 could be coexpressed with either pks3, pks4 or pks5 (Figure 

38 and 39) 
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Figure 37. HPLC profiles of the extracts from the double overexpressing strains MB215 
Pcrg::pks1+Pcrg::pks2, MB215 Pcrg::pks1+Petef::cyp4 and MB215 Pcrg::pks2+Petef::cyp4 as detected by 
UV absorption at 272 nm. Photographs of cultures were taken after 96 h of growth at 28 °C in YNB medium 
with 5% arabinose and 0.1% ammonium sulfate (right side). PP1-PP6 peaks indicate the compounds identified in 
the strain MB215 Pcrg::pks1+Pcrg::pks2. For more details, consult Table 6. 

!
In the scenario in which pks1 was overexpressed together with either pks3, pks4 or pks5 

no compounds were produced, thus suggesting that the function of Pks2 can not be 

complemented by Pks3, Pks4 or Pks5. As expected, similar phenotypes were displayed in the 

double and single overexpressing strains (Figure 38). Likewise, overexpression of pks2 in 

combination with the PKS genes from the melanin-like gene cluster did not produce any new 

compounds or phenotypes in comparison to those observed in their single overexpressing 

strains (Figure 39). These data indicate that neither Pks1 nor Pks2 are able to synthesize a 

greenish pigment if expressed together with either Pks3, Pks4 or Pks5. 
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Figure 38. HPLC profiles of the extracts from the double overexpressing strains MB215 
Pcrg::pks1+Pcrg::pks3, MB215 Pcrg::pks1+Pcrg::pks4 and MB215 Pcrg::pks1+Pcrg::pks5 as detected by 
UV absorption at 272 nm. Photographs of cultures were taken after 96 h of growth at 28 °C in YNB medium 
with 5% arabinose and 0.1% ammonium sulfate (right side). 
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Figure 39. HPLC profiles of the extracts from the double overexpressing strains MB215 
Pcrg::pks2+Pcrg::pks3, MB215 Pcrg::pks2+Pcrg::pks4 and MB215 Pcrg::pks2+Pcrg::pks5 as detected by 
UV absorption at 272 nm. Photographs of cultures were taken after 96 h of growth at 28 °C in YNB medium 
with 5% arabinose and 0.1% ammonium sulfate (right side). 
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Consequently, we considered the possibility that pks1 and/or pks2 could rescue the 

colorless phenotype observed in MB215 Δpks3 Pcrg::mtf1, MB215 ΔΔpks4 Pcrg::mtf1 and 

MB215 Δpks5 Pcrg::mtf1 mutant strains. Six different strains were generated and analyzed in 

their phenotypes and metabolic profiles (Figure 40). Strains included as controls were: MB215 

Pcrg::mtf1, MB215 Pcrg::pks1, MB215 Pcrg::pks2, MB215 Δpks3 Pcrg::mtf1, MB215 

ΔΔpks4 Pcrg::mtf1, and MB215 Δpks5 Pcrg::mtf1. 

Interestingly, overexpression of pks1 rescued the phenotype of the MB215 Δpks3 

Pcrg::mtf1 strain, which suggests that  Pks1 can somehow replace the function of Pks3 since 

both polyketide synthases harbor the KS and PP domains. In this situation, acyl transferase 

(AT) and dehydratase (PS-DH) functions are apparently provided by Pks4 (Figure 40). Whether 

the PS-DH domain is needed or not in Pks3 for the biosynthesis of OA and melanin, has not 

been investigated yet. Nonetheless, the AT domain represents a critical requirement for any 

polyketide synthase. By contrast, overexpression of pks1 in MB215 ΔΔpks4 Pcrg::mtf1 and 

MB215 Δpks5 Pcrg::mtf1 strains had no effect in their phenotypes. None of the expressed PKSs 

in the strain MB215 ΔΔpks4 Pcrg::mtf1+Pcrg::pks1 (Pks1, Pks3 and Pks5) possesses an AT 

domain, which would match with the no complementation effect. In the same way, due to 

differences in domain structure between Pks1 and Pks5, MB215 Δpks5 Pcrg::mtf1+Pcrg::pks1 

could not synthesize any T4HN derivatives. 

Moreover, overexpression of pks2 did not rescue the phenotype of the MB215 Δpks3 

Pcrg::mtf1, MB215 ΔΔpks4 Pcrg::mtf1 and MB215 Δpks5 Pcrg::mtf1 strains. In all cases, their 

phenotypes mimicked those produced by their single deletion mutants. The missing 

complementation of the MB215 Δpks3 Pcrg::mtf1 strain by overexpression of pks2 could be 

explained by the lack of the PP domains in Pks2. The existence of one PP domain in Pks5 

appears not to be enough to allow biosynthetic intermediates to be channeled to cognate partner 

proteins for condensation and further biochemical elaboration. On the other hand, AT-Pks2 

domain seemed not enough for replacing AT-Pks4 domain in the MB215 ΔΔpks4 

Pcrg::mtf1+Pcrg::pks1 strain. Finally, differences in domain structure among Pks2 and Pks5 

could not produce melanization in MB215 Δpks5 Pcrg::mtf1+Pcrg::pks2 cultures. Putting all 

these data together, Pks1 is capable to participate in the synthesis of the melanin-like pigment 

in combination with at least two coexpressed PKS genes, pks4 and pks5. Conversely, Pks2 

could not complement the albino phenotypes given by the deletion mutants of pks3, pks4 and 

pks5 genes, suggesting that Pks2 domains are not enough for replacing their functions. 
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Figure 40. Phenotype of complementation strains MB215 Δpks3 Pcrg::mtf1+Pcrg::pks1, MB215 Δpks3 
Pcrg::mtf1+Pcrg::pks2, MB215 ΔΔpks4 Pcrg::mtf1+Pcrg::pks1, MB215 ΔΔpks4 Pcrg::mtf1+Pcrg::pks2, 
MB215 Δpks5 Pcrg::mtf1+Pcrg::pks1 and MB215 Δpks5 Pcrg::mtf1+Pcrg::pks2. Protein enzymatic domains 
are as follows: AT, acyl transferase; AMP, adenylation; KS, β-ketoacyl synthase; NAD, nicotinamide adenine 
dinucleotide binding; PP, phosphopantetheine attachment site; PS-DH, polyketide synthase dehydratase; SAT, 
starter unit and TE, thioesterase. 
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2.6! Orsellinic acid feeding experiment 
Orsellinic acid (OA) is a compound produced by prolonged induction of the strains 

MB215 Δcyp4 Pcrg::mtf1, MB215 Δpks5 Pcrg::mtf1 and MB215 Pcrg::pks3+Pcrg::pks4. In 

any case, this molecule seems to be an important intermediate at early stages in the metabolic 

pathway activated by the melanin-like cluster. Therefore, we examined the impact of the 

addition of OA to those strains whose gene deletions displayed a different phenotype than the 

parental strain (MB215 Pcrg::mtf1) as MB215 Δpks3 Pcrg::mtf1, MB215 ΔΔpks4 Pcrg::mtf1, 

MB215 Δpks5 Pcrg::mtf1, MB215 Δcyp4 Pcrg::mtf1 and MB215 Δvbs1 Pcrg::mtf1. Figure 41 

(A-D) provides experimental data obtained from the OA feeding experiment performed in those 

strains under repressing (5 % glucose) and inducing (5 % arabinose) conditions in the presence 

or absence of 0.5 mM OA. Cell pellets were analyzed by HPLC (272 nm) after 96 h of 

induction. Phenotypes of the strains are shown for each condition (Figure 41A-D). MB215 and 

MB215 Pcrg::mtf1 strains were used as negative and positive controls, respectively. Under 

repressing conditions, with or without OA, all the phenotypes observed resembled the MB215 

and MB215 Pcrg::mtf1 strains (Figure 41A-B). Regarding the metabolic profiles, no 

differences were found between the chromatograms of the deletion mutants and the wild type 

strains in the absence of OA (Figure 41A).  

Under the same conditions, but with the addition of OA, a peak with a retention time of 

4.5 min (representing the synthethic compound) emerged in all the strains in this category 

(Figure 41B). On the left bottom side, the phenotypes and profiles given by the deletion strains 

grown in inducing medium without the addition of OA are indicated (Figure 41C). Data 

collected by these cultures served as benchmark to determine the effect of the addition of OA 

to the strains under the same conditions. It can be seen in Figure 41D that the incorporation of 

OA to the cultures resulted in the chemical complementation of two deletion mutant strains, 

MB215 Δpks3 Pcrg::mtf1 and MB215 ΔΔpks4 Pcrg::mtf1. Moreover, those strains that did not 

show complementation (MB215 ΔΔpks5 Pcrg::mtf1, MB215 Δcyp4 Pcrg::mtf1 and MB215 

Δvbs1 Pcrg::mtf1) had a much weaker phenotype compared to the cultures in Figure 41C, which 

could be especially noticed in the MB215 Δvbs1 Pcrg::mtf1 where its vivid yellowish color 

seemed to be diluted with the addition of OA (Figure 41D). Interestingly, the phenotype of 

MB215 ΔΔpks4 Pcrg::mtf1 was stronger than the one displayed by MB215 Δpks3 Pcrg::mtf1 

strain. Even though the induction in both cultures started from an OD600=0.6, differences in 

growth rate could have influenced the cell density reached after 96 h (Figure 42). 



 Results 
! !

!

66 

!
 

Figure 41. Orsellinic acid feeding experiment in YNB liquid medium. Metabolic profiles (272 nm) of the 
culture pellets from U. maydis MB215, MB215 Pcrg::mtf1, MB215 Δpks3 Pcrg::mtf1, MB215 ΔΔpks4 Pcrg::mtf1, 
MB215 Δpks5 Pcrg::mtf1, MB215 Δcyp4 Pcrg::mtf1 and MB215 Δvbs1 Pcrg::mtf1 strains grown under the 
different conditions: (A) Repressing conditions, - OA; (B) Repressing conditions, +OA; (C) Inducing conditions, 
-OA and (D) Inducing conditions, +OA.  
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Comparison of their chromatograms with the MB215 Pcrg::mtf1 strain presented some 

differences. First of all, the peaks previously observed in the reference strain with retention 

times between 4-8 min, now appear to lean to the right with retention times between 6-8 min. 

Furthermore, the chromatograms of MB215 Δpks3 Pcrg::mtf1 and MB215 ΔΔpks4 Pcrg::mtf1 

were more similar among them than to the MB215 Pcrg::mtf1 strain (Figure 41D). In both cases 

it could be noticed the presence of 2 peaks that clearly standed out: A1 with a m/z= 355.13 

([M+H]+), tR=5.2min, and A2 with m/z= 256.87 ([M+H]+), tR=7.6 min. Even though the A2 

peak had been detected in the MB215 strain, under repressing or inducing conditions, now it 

seems to be produced in higher amount in all the strains in which OA was added,  except for 

MB215 Δpks5 Pcrg::mtf1 (Figure 41D). Remarkably, compounds produced by MB215 Δcyp4 

Pcrg::mtf1 (1) and MB215 Δvbs1 Pcrg::mtf1 (V1, V2 and V3) appeared to be decreased. 

Overall, these results support the idea that Pks3 and Pks4 participate at early stages in the 

melanin pathway, followed by Pks5, Cyp4 and Vbs1. The presence of OA in the MB215 Δpks5 

Pcrg::mtf1, MB215 Δcyp4 Pcrg::mtf1 and MB215 Δvbs1 Pcrg::mtf1 did not restore their 

phenotype.  

In order to get knowledge whether the presence of orsellinic acid influences the growth 

of the MB215 Δpks3 Pcrg::mtf1, MB215 ΔΔpks4 Pcrg::mtf1 and MB215 Δpks5 Pcrg::mtf1 

strains, a drop test assay was performed in the presence of 0.25 and 0.5 mM of OA. All the 

strains were grown to an OD600=1 and spotted on YNB agar plate containing 0.1% of 

ammonium sulfate and 5% arabinose as a carbon source. Four dilution series were considered 

in this experiment (10-1-10-3). Figure 42 depicts the assay after the incubation of the strains for 

2 days at 28 °C. The inducing agar plate without OA served as control (left side). As it can be 

seen in the control plate, all strains were affected in their growth when compared with MB215. 

When they grew on the plate with 0.25 mM of OA those differences were more remarkable, 

MB215 Pcrg::mtf1 and MB215 Δpks3 Pcrg::mtf1 showed less cell density compared with 

MB215 ΔΔpks4 Pcrg::mtf1  and MB215 Δpks5 Pcrg::mtf1. Even in the dilution 10-3, the strains 

MB215 Pcrg::mtf1 and MB215 Δpks3 Pcrg::mtf1 did not grow. Likewise, at the highest 

concentration of OA (0.5 mM), the growth of all mutant strains seemed to be affected. 

According to this data we can infer that OA is a compound that can be toxic for U. maydis in 

high concentrations. Those strains that were affected in cell growth like MB215 Pcrg::mtf1 and 

MB215 Δpks3 Pcrg::mtf1,  can even be more sensitive to it. 
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Figure 42. Orsellinic acid feeding experiment on YNB agar plate. The strains MB215, MB215 Pcrg::mtf1, 
MB215 Δpks3 Pcrg::mtf1, MB215 ΔΔpks4 Pcrg::mtf1and MB215 Δpks5 Pcrg::mtf1 were grown to an OD600=1 
and spotted on YNB agar plates supplemented with 0.1% of ammonium sulfate and 5% arabinose. After two days 
of incubation at 28 °C pictures of the plates were taken. Left side, control plate without OA; middle and right side, 
plates with 0.25 and 0.5 mM of OA, respectively. 

 

2.7! Effect of tricyclazole on the melanin synthesis  
Most fungal melanins are derived from the precursor molecule 1,8-dihydroxynaphthalene 

(DHN) and are known as DHN-melanins. DHN-melanin pathway has been found in fungi that 

utilize polyketide metabolites as intermediates as Botrytis cinerea (Schumacher, 2016), 

Magnaporthe grisea (Thompson et al., 2000), T. marneffei (Sapmak et al., 2015) and A. 

fumigatus (Sugareva et al., 2006). In this pathway, a polyketide synthase catalyzes the 

formation of the first intermediate, 1,3,6,8-tetrahydroxynaphthalene (T4HN), which is then 

reduced to scytalone by a tetrahydroxynaphthalene reductase (T4HNR). Dehydratation of 

scytalone by scytalone dehydratase (SD) leads to 1,3,8-trihydroxynaphthalene (T3HN) that is 

again reduced to vermelone by a trihydroxynaphthalene reductase (T3HNR). DHN is formed 

by further dehydratation by SD, and polymerized to produce DHN-melanin (Figure 43A). 

One effective way to study if a given microorganism synthesizes DHN-melanin is by the 

utilization of inhibitors as tricyclazole (5-methyl-1,2,4-triazolo-(3,4-b)-benzothiazole),  which 

blocks the two reduction steps in this biosynthetic pathway (T4HN to scytalone, T3HN to 

vermelone) (Figure 43A and C). To examine if the black-greenish coloration produced after the 

induction of the melanin-like cluster is attributed to DHN-melanin, MB215 Pcrg::mtf1 strain 

was grown in inducing medium (I) supplemented with tricyclazole (50 mg/l in DMSO) (Figure 

43B). 
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Figure 43. Effect of tricyclazole on the melanin biosynthesis pathway in U. maydis. (A) DHN-melanin 
biosynthesis pathway in fungi. Tricyclazole inhibits the two reduction steps in the DHN-melanin pathway, 
conversion of T4HN to scytalone and T3HN to vermelone. PKS, polyketide synthase; T4HNR, 
tetrahydroxynaphthalene reductase; SD, scytalone dehydratase and T3HNR, trihydroxynaphthalene reductase. (B) 
Effect of tricyclazole on the production of melanin. The strain MB215 Pcrg::mtf1 was grown under repressing (R) 
and inducing (I) conditions in the presence and absence of tricyclazole (50 mg/l in DMSO) for 96 h at 28 °C. 
Addition of tricyclazole did not abolish the prodution of melanin, indicating an alternative melanin biosynthetic 
pathway in U. maydis. (C) Molecular structure of tricyclazole. 

 

If U. maydis synthesizes DHN-melanin, we would expect a reduction in pigmentation due to 

the inhibition of 2 biosynthetic steps catalyzed by T4HNR and T3HNR. However, no 

differences in pigmentation were observed in MB215 Pcrg::mtf1 cultures grown in the presence 

or absence of tricyclazole, thus indicating that U. maydis uses an alternative melanin 

biosynthesis pathway. A closer inspection to U. maydis genome revealed that this pathogenic 

fungus does not possess T4HNR, T3HNR or scytalone reductase enzymes, which supports the 

idea that other enzymes are involved in the biosynthesis of this type of melanin. 

 

2.8! Pathogenicity assays 
In order to study the role of the melanin-like cluster genes on virulence in maize plants, 

single deletion mutants in the solopathogenic SG200 background strain were generated. Genes 

considered to be deleted were those which were activated by the transcription factor Mtf1. Since 

Mtf1 showed to be responsible for the regulation of at least 12 of these genes, its deletion mutant 

was also included in this study. In all cases, disease symptoms were scored 13 days after 

infection according to severity (Kämper et al., 2006) (see methods). Figure 44 provides the 

evaluation of the plant infection symptoms for the SG200 Δmtf1 and SG200 Δmtf2 strains. 
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Deletion of mtf1 showed reduced symptoms compared to the solopathogenic strain, especially 

in the formation of tumors causing stem bending. On the other hand, the infection of SG200 

Δmtf2 strain did not display any impact in virulence, since severity of the disease symptoms 

was comparable with SG200. These results gave us a hint that the melanin-like cluster could be 

somehow implicated in pathogenicity (Figure 44).  

To explore in more detail the contribution of each cluster gene during this process, plant 

infection analysis were made with the single knockout strains (Figure 45). Due to their key role 

in the biosynthesis of the melanin-like pigment, the first strains that were tested were the 

deletion mutants SG200 Δpks3, SG200 Δpks4 and SG200 Δpks5. 

!
Figure 44. Virulence of the mtf1 and mtf2 mutant strains. Maize seedlings were inoculated with the 
solopathogenic strain SG200 and derivative mutant strains: SG200 Δmtf1 and SG200 Δmtf2. Symptoms were 
scored 13 days after infection (see methods for details). The color code for disease rating is given on the bottom 
left. 

 

After 13 dpi none of the infected plants presented heavy tumors (tumors causing stem 

bending) (Figure 27). The most noticeable effect was observed in the SG200 Δpks4 strain, 

around 80% of the infected plants had tumors with sizes less than 2mm, close to 5% had tumors 

larger than 2mm, and the rest minor symptoms. Even though SG200 Δpks3 and SG200 Δpks5 

exhibited similar phenotype, SG200 Δpks5 had higher percentage of plants without symptoms 

than SG200 Δpks3 (Figure 45). These observations are indicative for the importance of these 

genes during plant-pathogen interaction. 

When deletion mutants of the genes encoding for tailoring enzymes (SG200 Δaox1, 

SG200 Δvbs1, SG200 Δomt1, SG200 Δpmo1, SG200 Δcyp4 and SG200 Δdeh1) were analyzed, 

different results were obtained (Figure 45). From the 57 infected plants with SG200 Δcyp4 none 

of them presented heavy tumors or lingula swelling, instead of that, chlorosis was the most 
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frequent symptom. Concerning to SG200 Δvbs1 and SG200 Δaox1, a reduction in large and 

heavy tumors was observed in both cases. In contrast, SG200 Δomt1 mutant strain did not show 

any significant difference compared to the wildtype. 

For the SG200 Δpmo1, the symptoms were slightly reduced, the plants had tumors of all 

sizes with a major proportion of tumors causing stem bending. Deletion of deh1 also displayed 

an overall reduction in disease symptoms (Figure 45). An observed trend, though not borne out 

by statistical analysis, was reduced symptoms in the strains SG200 Δorf1, SG200 Δorf3, SG200 

Δorf4 and SG200 Δorf5. Particularly, a decrease in large and heavy tumors in SG200 Δorf3, 

SG200 Δorf4 and SG200 Δorf5. Putting together all these data, the single deletion of the 

melanin-like cluster genes had an effect in virulence of maize plants, which reflects an 

implication of these genes during the infection process. Further studies need to be done in order 

to determine at which specific stage of infection those genes are required.  

Moreover, deletion of mtf1 seemed to have a less dramatic effect than other strains as 

SG200 Δpks4 or SG200 Δpks5, just to mention some examples, which could suggest the a 

presence of a second transcription factor that could have regulatory effects on the melanin-like 

cluster genes.  

Since maize seedlings inoculated with the single deletion mutants SG200 Δpks3 and 

SG200 Δcyp4 showed a small reduction in symptoms, we asked ourselves whether the double 

deletion of pks3 and cyp4 could have a more significant effect compared with those strains. As 

it is depicted in Figure 46, the strain SG200 Δpks3Δcyp4 displayed similar phenotype compared 

to SG200 Δpks3 and SG200 Δcyp4 strains, thus indicating that the double deletion of pks3 and 

cyp4 had no major effect in virulence as the one observed in their single deletion mutants. 
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Figure 45. Virulence of the melanin-like single deletion mutants. Maize seedlings were inoculated with the 
solopathogenic strain SG200 and derivative mutant strains. Symptoms were scored 13 days after infection (see 
methods for details). The color code for disease rating is given on the bottom. 
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Figure 46. Virulence of the SG200 Δpks3Δcyp4 strain. Maize seedlings were inoculated with the solopathogenic 
strain SG200 and derivative mutant strains. Symptoms were scored 13 days after infection (see methods for 
details). The color code for disease rating is given on the right side of the graph. 

 
 

2.9! H2O2 sensitivity assay in U. maydis 
To determine the role of pks3, pks4 and pks5 under oxidative stress conditions, deletion 

mutant strains SG200 Δpks3, SG200 Δpks4 and SG200 Δpks5 were exposed to H2O2 on agar 

plate. Since H2O2 is an oxidative agent, prolonged exposure may result in cell death, therefore 

when cells grow in the presence of H2O2 in agar diffusion test, a growth inhibition halo is 

observed. Strains were grown in YEPSlight  medium to an OD600= 0.6 and spread onto a PD 

plate. Filter disks were soaked with 2 µL H2O2 (30% [v/v]) and placed on the plates. After 48 

h at 28 °C of incubation, the diameter of the halos were mesured and compared to the wildtype 

(SG200). The larger the diameter was, the more sensitive the strain was considered (Figure 47). 

The halo size in all cases oscillated between 0.5 to 1 cm.  

Among the deletion mutants, SG200 Δpks4 strain showed to be the most sensitive one. 

This effect can also be clearly seen in the photographs located above each graph. What is 

interesting in this data is that SG200 Δpks4 had stronger phenotype over SG200 Δpks3 and 

SG200 Δpks5, same scenario observed during plant infection (Figure 47). This would mean that 

the melanin-like cluster genes could be activated under different stress conditions. 
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Figure 47. Sensitivity of U. maydis wild-type (SG200) and pks3, pks4 and pks5 mutant strains to oxidative 
stress. Sensitivity of strains to H2O2 was assessed in an agar diffusion test in which a filter soaked with H2O2 (30% 
v/v) was placed on a PD agar plate seeded with the strains indicated on bottom. Halo size was quantified for the 
SG200 and SG200 Δpks3, SG200 Δpks4 and SG200 Δpks5 strains. Error bars indicate standard deviations derived 
from three independent experiments consisting of three replicas each. 
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3!Discussion 
 

3.1! Identification of a coregulated polyketide synthase gene cluster in U. 

maydis 
The search of characteristic genes involved in secondary metabolism in U. maydis 

genome, in combination with the analysis of their gene expression data under different 

conditions, led to the identification of a putative SM gene cluster named in this work as cluster 

"A". Cluster "A" consists of 16 ORFs including genes encoding for 3 polyketide synthases 

(pks3, pks4, and pks5), 2 transcription factors (mtf1 and mtf2), 6 tailoring enzymes (aox1, vbs1, 

omt1, pmo1, cyp4, and deh1) and 5 uncharacterized proteins (orf1, orf2, orf3, orf4, and orf5) 

(Figure 24A). 

Unlike clusters "B" or "D", cluster "A" is located at the telomeric region on chromosome 

12, a feature often found in fungal SM clusters (Bok et al., 2009). Another factor that influenced 

the selection of cluster "A" was the presence of the two transcription factors, Mtf1 and Mtf2, 

considered as an important advantage for the manipulation of the cluster genes, since forced 

expression of transcription factors has constituted an efficient way to uncover secondary 

metabolites in other fungi; e.g., sterigmatocystin (Fernandes et al., 1998), and aspyridones A 

and B (Bergmann et al., 2007). Even though, cluster "C" was found at the telomeric region on 

chromosome 19, it was not contemplated as a promising candidate due to the lack of expression 

data (Figure 22). As a part of the strategy to identify potential SM gene clusters in U. maydis, 

we also compared the clusters A-D with those detected by the algorithms SMURF and 

antiSMASH (Table 3). Although most of the clusters ("A", "C" and "D") were detected by these 

bioinformatic programs, their general trend was either to overpredict the cluster boundaries or 

to divide a single gene cluster into two different clusters located next to each other (Table 3). 

For this reason, we considered that the boundaries of clusters A-D should be defined by the 

manual annotation strategy. 

 On the other hand, the analysis of the normalized gene expression data extracted from 

GEO (Gene Expression Omnibus), allowed the identification of groups of 3 to 13 coregulated 

neighboring genes in U. maydis (cluster 1GE - cluster 40GE), whose majority were found to be 

uncharacterized proteins upregulated during plant infection (Figure S1). Besides the 

identification of the MEL (21GE) and ferrichrome (6GE) gene clusters, no additional groups of 

genes involved in secondary metabolism were observed. However, the compendium of 
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expression data facilitated us the analysis of expression profiles of the genes belonging to the 

clusters A-D (Figure 22), which supported our decision of selecting the cluster "A" as a matter 

of this study.  

On the other hand, the expression data table constructed in this work can also be used as 

a valuable tool for the study of genes that are not necessarily located on the same chromosome 

but participate in related metabolic pathways or cellular processes (e.g., fatty acid biosynthesis) 

(Figure 21B). 

Once the cluster "A" was selected, we decided to analyze the expression of each gene 

upon the activation of the transcription factor mtf1 or mtf2. Northern blot analysis showed that 

12 genes within the cluster "A" (pks5, pks4, pks3, aox1, vbs1, omt1, pmo1, cyp4, deh1, orf1 and 

orf4) were simultaneously upregulated after the induced expression of mtf1. Conversely, 

overexpression of mtf2 only upregulated orf2 (Figure 24B), suggesting that mtf1 is responsible 

for the regulation of most of the cluster "A" genes, which are not transcribed when U. maydis 

is grown under standard laboratory  conditions. The regulation of cluster "A" can be explained 

by the three SANT domains of Mtf1 (Figure 23), which are well known for participating in 

histone acetylation, a process that enhances transcription (Boyer et al., 2002). Increasing the 

level of histone acetylation at SM clusters was also found to be the molecular basis of how 

bacterial-fungal cocultivation activates the orsellinic acid gene cluster (ORS) in A. nidulans 

(Schroeckh et al., 2009). Similar case was observed for the White Collar 1 (WC-1) 

photoreceptor in N. crassa, where the histone H3 K14 acetylation by NGF-1 (an homologue of 

the yeast histone acetyltransferase Gcn5p) was reported as a determinant for the blue light-

induced transcription (Grimaldi et al., 2006).  

On the other hand, the presence of a second transcription factor (Mtf2) within the cluster 

"A", seemed not to have an influence in the regulation of the majority of its genes. Markedly, 

Mtf2 belongs to the family of transcription factors Zn(II)2Cys6, which are considered the most 

common family of cluster regulators for fungal SM; e.g., CtnA controlling the citrinin cluster 

in M. purpureus (Shimizu et al., 2007), and Zfr1 for fumonisin biosynthesis in F. verticillioides 

(Flaherty and Woloshuk, 2004). In many of these cases, overexpression of Zn(II)2Cys6 proteins 

can be sufficient to activate silent SM clusters, which could be an indication that mtf2 is 

involved in controlling the expression of other SM genes outside the cluster "A" in U. maydis. 

When, where or how this is conducted, remains as an open question. 
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3.2! Identification of an alternative melanization pathway in U. maydis 
Induced expression of mtf1 but not mtf2 resulted in the accumulation of a dark-greenish 

pigment (Figure 24C). LC-MS analysis of the cell pellets of the MB215 Pcrg::mtf1 strain, 

grown under inducing conditions for a 4-day period, revealed the presence of many complex 

compounds derived from the 1,3,6,8-tetrahydroxynaphthalene (T4HN) (Figure 26). 

Unfortunately, it was not possible to elucidate the molecular structure of the T4HN derivatives 

produced in the MB215 Pcrg::mtf1 strain, since the pigment was unstable and rapidly 

underwent polymerization. T4HN is an intermediate in the 1,8-dihydroxynaphthalene-(DHN) 

melanin biosynthesis pathway in fungi. DHN melanin represents the most common type of 

fungal melanins, followed by the L-3,4-dihydroxyphenylalanine (L-DOPA) melanin, whose 

pathway resembles mammalian melanin biosynthesis (Eisenman and Casadevall, 2012). In the 

DHN pathway, a PKS catalyzes the formation of T4HN from acetyl-CoA or malonyl-CoA 

precursors. Subsequently, T4HN is reduced to scytalone by a THN reductase (T4HNR), which 

is then dehydrated by a scytalone dehydratase (SD) to 1,3,8-trihydroxynaphthalene (1,3,8-

T3HN). Finally, T3HN is reduced to vermelone by another THN reductase (T3HN), converted 

to DHN by SD, and polymerized into melanin by a laccase (Wheeler, 1983). Although genes 

required for the biosynthesis of this type on melanin are highly conserved in fungi, they are 

missing in the genome of U. maydis and other smut fungi as U. hordei, Sporisorium 

scitamineum and S. reilianum.  

The notion of the presence of another type of melanin in U. maydis was strengthened by 

the treatment of the strain MB215 Pcrg::mtf1 with tricyclazole. The effect of the tricyclazole 

on the DHN melanin pathway has been well documented for fungi as Pyricularia oryzae and 

Verticillium dahliae. In both cases, tricyclazole inhibited the conversion of T4HN to scytalone, 

and T3HN to vermelone, thus losing their ability to synthesize melanin (Tokousbalides and 

Sisler, 1979; Wooloshuk et al., 1980). On the contrary, addition of tricyclazole into induced 

MB215 Pcrg::mtf1 cultures had no impact on melanin production when compared with the 

strain grown without treatment (Figure 43), an indication that U. maydis uses an alternative 

pathway for melanin synthesis. This is in line with a recent publication in Aspergillus terreus, 

where the group of Brock and collaborators reported a non-canonical melanin biosynthesis 

pathway involving an unusual NRPS-like enzyme (MelA) and a tyrosinase (TyrP) (Geib et al., 

2016). Interestingly, as in the case of U. maydis, A. terreus lacks the highly conserved enzymes 

required for DHN-melanin synthesis (Zaehle et al., 2014; Gressler et al., 2015).  

On the other hand, the idea that U. maydis could synthesize L-DOPA melanin was ruled 

out since this pathway does not involve a polyketide synthase, instead, a laccase or tyrosinase 
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catalyzes the conversion of L-DOPA or tyrosine to dopaquinone, respectively. In addition, no 

genes encoding for tyrosinases could be identified in U. maydis. Markedly, by the time this 

study was carried out, a publication in U. maydis was released, concerning to melanogenic 

genes involved in teliospore formation. Islamovic and colleagues found two PKS genes (pks1 

and pks2), and a putative laccase (lac1) to be highly upregulated in a strain deleted for the 

transcription factor ust1, which led to filamentous haploid growth and production of pigmented 

teliospore-like structures in culture. Moreover, Δpks1 and Δlac1 mutants showed less 

pigmented teliospores in tumors, with a more dramatic effect in the deletion mutant of pks1. 

Even though the Δpks2 mutant was not tested in planta, they inferred by the transcriptome 

analysis of the Δust1 strain, that pks1, pks2, and lac1 participate in the DHN-melanin 

biosynthesis pathway in U. maydis (Islamovic et al., 2016).  

It is worth to emphasize that none of the polyketide synthase genes of the melanin-like 

cluster (pks3, pks4 or pks5) were induced in the ust1 deletion mutant. Likewise, no transcript 

was detected for the pks1 or pks2 genes when the MB215 Pcrg::mtf1 strain was grown under 

inducing conditions (Figure 35). All these data suggest that U. maydis possesses two PKS gene 

clusters capable to synthesize melanin using alternative pathways. 

Comparative analysis of U. maydis, U. hordei, S. scitamineum and S. reilianum genomes 

revealed that U. maydis possesses 6 PKS genes, while the other smut fungi only 3 of them. 

Among the U. maydis PKSs, Pks1, Pks2 and Pks6 share high sequence similarity to those 

identified in U. hordei, S. scitamineum and S. reilianum (Figure 48). Interestingly, the 

counterparts of U. maydis pks1 and pks2 genes in U. hordei (UHOR_8962 and UHOR_08970), 

S. scitamineum (SPSC_00596 and SPSC_00592) and S. reilianum (sr16857 and sr16861) are 

located on the same chromosome, a similar feature observed for pks1 and pks2 in U. maydis. 

Although there are no reports of genes involved in melanization in these smut fungi, the 

presence of homologs of U. maydis pks1 and pks2 in their genomes suggests that they could 

play an important role in the melanin pathway. Interestingly, although the genes pks6 (U. 

maydis), UHOR_06950 (U. hordei), sr15337 (S. reilianum) and SPSC_00985 (S. scitamineum) 

are annotated as polyketide synthases (Figure 48C), none of them contains the characteristic 

domains found in a PKS gene. Instead, they harbor a NAPRTase (nicotinate 

phosphoribosyltransferase) domain, which has been shown to be involved in the synthesis of 

NAD(H) (Heuser et al., 2007). Thus indicating that the function of these genes may differ from 

the polyketide synthases. 
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To the best of our knowledge, this study constitutes the first report in which 3 PKS genes 

(pks3, pks4 and pks5) are required for the biosynthesis of a melanin-like pigment. Biological 

implications of the melanin-like cluster are discussed in the paragraphs below. 

!
 

Figure 48. Domain organization of polyketide synthases in U. maydis, U. hordei, S. reilianum and S. 
scitamineum. Comparative analysis of the domain structures of (A) Pks1, (B) Pks2 and (C) Pks6 from U. maydis 
with their counterparts in U. hordei, S. reilianum and S. scitamineum. Protein enzymatic domains are as follows: 
AT, acyl transferase; AMP, adenylation; KS, β-ketoacyl synthase; NAD, nicotinamide adenine dinucleotide 
binding; PP, phosphopantetheine attachment site; PS-DH, polyketide synthase dehydratase; SAT, starter unit; TE, 
thioesterase and NAPRTase, nicotinate phosphoribosyltransferase. Domains were predicted by Protein Families 
(PFAM) and National Center for Biotechnology Information (NCBI) domain search. Numbers located on the right 
side of each PKS indicate their length in amino acids, and numbers below each domain represent their localization 
in the protein. 

U.#maydis

U.#hordei

S.#reilianum

S.#scitamineum

Pks1 2122SAT
(46+347)

KS
(500+751)

KS
(759+881)

PP
(1629+1696)

PP
(1757+1819)

TE
(1871+2115)

SAT 2233
(34+332)

KS
(486+736)

PP PP TE
(1730+1797) (1863+1929) (1982+2226)

UHOR_08962

SAT 2144
(36+336)

KS
(492+924)

PP PP TE
(1639+1706) (1770+1832) (1891+2120)

sr16857

SAT 2142
(36+337)

KS
(493+924)

PP PP TE
(1638+1704) (1770+1832) (1891+2132)

SPSC_00596

A

B 1972KS KS
(381+632) (640+759)

AT
(924+1252)

PS+
DH

(1347+1658)
TE

(1761+1967)
U.#maydis Pks2

U.#hordei KS
(395+644)

AT
(936+1253)

PS+
DH

(1359+1664)

1984TE
(1775+1979)

UHOR_08970

S.#reilianum

S.#scitamineum

KS
(382+804)

AT
(928+1244)

PS+
DH

(1371+1655)

1974TE
(1766+1962)

sr16861

KS
(384+806)

AT
(930+1246)

PS+
DH

(1373+1657)

1976TE
(1768+1961)

SPSC_00592

C
U.#maydis

U.#hordei

S.#reilianum

S.#scitamineum

UHOR_06950 NAPRTase 467
(15+424)

sr15337 NAPRTase 474
(23+446)

SPSC_00985 NAPRTase 474
(23+434)

NAPRTase 470
(21+439)

Pks6



Discussion 
! !

!

80 

3.3! Inactivation of pks3, pks4, pks5 and cyp4 genes abolishes melanin 

pigment biosynthesis 
Biochemical analysis by LC-MS revealed the presence of many compounds in the strain 

MB215 Pcrg::mtf1, most of them were derived from T4HN (Figure 26). To examine the role 

of the melanin-like cluster genes in the pigment production, we generated single deletion 

mutants that were analyzed for their phenotypes and metabolic profiles (Figure 28). Mutants 

defective for pks3, pks4, pks5 or cyp4 did not accumulate melanin, which is consistent with 

observations made for other fungi that synthesize melanin by the DHN pathway. Deletion of 

the polyketide synthase gene alb1 in Penicillium marneffei was accompanied by the loss of 

melanin pigment production (Woo et al., 2010). Similar case was reported for Podospora 

anserina, whose pigmentation during all stages of the life cycle was abolished due to 

inactivation of the PaPKS1 gene (Coppin and Silar, 2007). 

Besides the colorless phenotype displayed in the MB215 Δpks3 Pcrg::mtf1 and MB215 

ΔΔpks4 Pcrg::mtf1 strains, they were not able to produce any UV-detectable compound, while 

the chromatogram of the MB215 Δpks5 Pcrg::mtf1 strain showed the presence of orsellinic acid 

(OA) (Figure 29). These results gave us the first indication that Pks3 and Pks4 act at early stages 

in the metabolic pathway, likely followed by Pks5. This assumption was further supported by 

the rescue of the melanization defect of the MB215 Δpks3 Pcrg::mtf1 and MB215 ΔΔpks4 

Pcrg::mtf1 mutants after being fed with orsellinic acid (Figure 41D).  

Although the HPLC chromatograms (272nm) of the chemically complemented mutants 

(MB215 Δpks3 Pcrg::mtf1+OA and MB215 ΔΔpks4 Pcrg::mtf1+OA) resulted in quite similar 

peaks among them, the pigmentation of the pks4 deletion strain was more intense and closer to 

MB215 Pcrg::mtf1 strain than what the MB215 Δpks3 Pcrg::mtf1 mutant was (Figure 41D). 

One explanation can be given by the more pronounced growth defect of the MB215 Δpks3 

Pcrg::mtf1 strain in comparison to the MB215 ΔΔpks4 Pcrg::mtf1 strain (Figure 42). Somehow 

the addition of OA seems to have a more toxic effect in mutants lacking the pks3 gene rather 

than the pks4. OA, as many other phenolic compounds produced in fungi, is considered as a 

potent antioxidant and free radical scavenger. Nevertheless, their accumulation can also have 

toxic effects for the organism that produces it (Barros-Lopes et al., 2008). In line with these 

data, the induction of the double overexpressing strain MB215 Pcrg::pks3+Pcrg::pks4  

produced OA as well, thus indicating that Pks5 catalyzes the subsequent reaction to the one 

catalyzed by Pks3 and Pks4 (Figure 33). In the literature there are some examples of fungal 

PKSs that synthesize OA accompanied by other compounds, e.g., overexpression of the PKS14 
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gene from F. graminearum produced orsellinic acid and orcinol (Jørgensen et al., 2014). In 

addition, the heterologous expression of the terA gene (a pks gene from A. terreus) in A. niger 

yielded a mixture of 4-hydroxy-6-methylpyranone, 6,7-dihydroxymellein and orsellinic acid 

(Zaehle et al., 2014). However, we found no reports in bacteria or fungi, in which two PKSs 

would be involved in production of OA. A closer look to the domain structure of Pks3 and 

Pks4, showed that none of them has the minimal set of required domains for being a functional 

polyketide synthase, the β-ketoacyl synthase (KS), the acyltransferase (AT), and the acyl carrier 

protein (ACP) domain (Figure 49).  Notably, Pks3 has a similar domain structure to other fungal 

OA-PKSs, except for the lack of the AT domain, which made us hypothesize that Pks3 does 

not work alone, and very likely, its mechanism of action is linked to Pks4 due to the presence 

of an AT domain within its structure. This hypothesis was further supported by the notion of 

many AT-less type PKSs able to generate SM by using ATs acting in trans to select the extender 

unit and load it onto the ACP domain (Cheng et al., 2003). 

Even though there are reports of AT-less type I PKSs especially from Streptomyces, 

Xanthomonas, Bacillus, Myxococcus, Sorangium and Pseudomonas genera (Cheng et al., 2002, 

2003; Huang et al., 2001; Butcher et al., 2007; Simunovic et al., 2006; Menche et al., 2008; 

Brendel et al., 2007), the only AT-less type I PKS that has been confirmed experimentally is 

the LNM PKS from Streptomyces atroolivaceus S-140 (Figure 50). The LNM biosynthetic gene 

cluster consists of two PKS genes lnmI and lnmJ, that encode six PKS modules, none of which 

contain an AT-domain. Since a PKS module cannot be functional unless its ACP domain is 

loaded with the extender unit, they proposed that another protein in the cluster with an AT 

activity (LnmG) could act in trans to form a functional type I PKS. Biochemical 

characterization of LnmG in vitro showed that this protein was able to load malonyl-CoA to all 

six PKS modules in an efficient and specific manner (Cheng et al, 2003), thus providing 

evidence that the functionality of an AT-less type I PKS can be achieved with the collaboration 

of another PKS with AT activity. Unlike canonical type I PKSs, the AT-less type I PKS 

generates polyketides with a high degree of structural diversity, which stems from their 

evolution by horizontal gene transfer (Lohman et al., 2015). 
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Figure 49. Domain organization of polyketide synthases (PKSs). (A) Domain structure of the PKS enzymes of 
the melanin-like custer (Pks3, Pks4 and Pks5) in U. maydis. (B) Comparison of the domain structure of different 
PKSs experimentally verified in biosynthesis of orsellinic acid in diffent fungi and bacteria. OrsA (AN7909) is 
from the filamentous fungus Aspergillus nidulans; TerA (ATEG_00145) from A. terreus; Ops1 (BBA_08179) 
from Beauveria bassiana; BBO_0072, the Ops1 ortholog in Beauveria brongniartii; FgPKS14 (FGSG_03964) 
from Fusarium graminearum; ArmB (AFL91703) from the mushroom Armillaria mellea; AviM (AAK83194) and 
Ca105 (AAM70355) are from the bacteria Streptomyces viridochromogenes and Micromonospora echinospora, 
respectively. Protein enzymatic domains are as follows: AT, acyl transferase; AMP, adenylation; KS, β-ketoacyl 
synthase; NAD, nicotinamide adenine dinucleotide binding; PP, phosphopantetheine attachment site; PS-DH, 
polyketide synthase dehydratase; SAT, starter unit and TE, thioesterase. Domains were predicted by Protein 
Families (PFAM) and National Center for Biotechnology Information (NCBI) domain search. Numbers located 
on the right side of each PKS indicate their lenght in aminoacids. Modified from Feng et al., 2015. 

 

!
Figure 50. Modular organization of type I polyketide synthases (PKSs). (A) A prototypical type I PKS module 
contains the cognate AT domain and other domains. (B) An AT-less type I PKS module lacks the cognate AT 
domain but often contains a short segment of remnant AT residues. (C) The remnant AT segment lacks critical 
catalytic motifs (GHSxG and AFHS) and is therefore catalytically inactive, but may serve as a docking domain 
mediating the interactions between the discrete AT (LnmG) and AT-less PKS modules in LnmI and LnmJ. 
Modified from Tang et al., 2004. 
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Although there is no information about AT-less type I PKSs in fungi, and even less with 

respect to such PKSs involved in OA or melanin biosynthesis, the work done by Cheng and 

coworkers inspired us to speculate that somehow Pks4 provides the missing AT activity in trans 

to Pks3. Gathering all these elements, we could think of some experiments that would help us 

to get a better understanding of the mechanism of Pks3 and Pks4: (i) the single and double 

overexpression of the pks3 and pks4 genes in an heterologous system as Saccharomyces 

cerevisiae or Aspergillus niger with the further LC-MS analysis of the cell pellets and,  (ii) 

biochemical in vitro assay with the purified Pks3 and Pks4 proteins to test whether Pks4 can 

load the malonyl-CoA extender unit onto the Pks3 ACP domains, in a similar way as it was 

carried out for the LnmI and LnmJ PKSs with LnmG (Cheng et al., 2003).  

Our data has shown that U. maydis contains a SM cluster with 3 PKSs capable to 

synthesize orsellinic acid and a melanin-like pigment derived from T4HN, which made us think 

that this cluster synthesizes either two independent compounds (OA and T4HN) or only T4HN-

melanin having OA as an intermediate. In our literature research, we found a report in which 

the heterologous expression of a polyketide synthase gene (PKS1) from C. lagenarium in A. 

oryzae produced T4HN and orsellinic acid (Fujii et al., 1999). They considered that the 

production of OA could have resulted from loose control of the chain-length of the poly β-

ketomethylene intermediate and its cyclization; even though the chain-length domain has only 

been found in bacterial type II PKSs. They also indicated that the aldol-type cyclization could 

occur between the C-2 and C-7 positions, even at the stage of the tetraketide intermediate, on 

the PKS1 enzyme (Figure 51).  As in U. maydis, the type of melanin synthesized by C. 

lagenarium PKS1 resulted from the polymerization of unstable T4HN (Fujii et al., 1999), 

suggesting that both plant-pathogenic fungi could produce similar type of melanin, likely 

sharing a similar mechanism. Further experiments performed by Watanabe and Ebizuka in 

2004, showed that the Claisen condensation domain (TE-like domain) of C. lagenarium PKS1 

interferes with the chain length growth by intercepting the polyketomethylene intermediate 

from the ACP halfway through the condensation reaction. Deletion of the C-terminal TE-like 

domain of PKS1 resulted in the production of high amounts of the hexaketide isocumarin, while 

the wild-type in which the TE-like domain is active, produced pentaketides as major products 

(Figure 52). 
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Figure 51. Biosynthetic reaction scheme for T4HN and the by-product orsellinic acid produced by the 
heterologous expression of the C. lagenarium PKS1 gene in A. oryzae. Adapted from Fujii et al., 1999. 
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Figure 52. Product identification of the wild-type PKS1 and its mutant in C. lagenarium. (A) Domain 
organization of the wild-type PKS1 and its TE-like domain deletion mutant. (B) Products of the wild-type PKS1. 
(C) Products of the TE-like domain deletion mutant. The proportion of each compound is shown as the percentage 
in the total of products. ATHN, 2-acetyl-1,3,6,8-tetrahydroxynaphthalene; THN, tetrahydroxynaphthalene; KS, β-
ketoacyl synthase; AT, acyltransferase; PP, phosphopantetheine attachment site; CLC, Claisen-type cyclase. 
Adapted from Watanabe and Ebizuka, 2004. 
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TE-less pks3 gene under the control of the arabinose-inducible crg promoter in the MB215 

Pcrg::pks4 background strain, since the simultaneous expression of the pks3 and pks4 genes 

produces OA. If our assumption is right, the absence of the TE domain in Pks3 will mark a 

difference in the biosynthesis of polyketides, thus favoring the production of T4HN.  

Moreover, mutagenesis experiments in the TE-domain of the aflatoxin B1 polyketide 

synthase (PksA), revealed that the residues Ser1937, His2088 and Asp1964 play a crucial role 

in the CLC activity, since their exchange to S1937A, H2088F, and D1964N led predominantly 

to the production of pyrone (Korman et al., 2009). In U. maydis, the TE-domain of Pks3 

contains those conserved residues at positions: Ser1558, His1739, and Asp1587 (Figure 53). 

Besides the deletion of the TE-domain of Pks3 proposed above, it would be also interesting to 

study the activity of this domain by mutagenizing these amino acids with the further analysis 

of their products by HPLC. 

 

 

!
 

Figure 53. Sequence alignment of the PksA from A. flavus and Pks3 from U. maydis. The aminoacids 
belonging to the catalytic triad of the TE-domains of PksA (A. flavus) and Pks3 (U. maydis) are indicated with a 
red rectangle. The TE-domain of PksA is located at 1867-2106 aa, while in Pks3 is at position 1488-1635 aa. 

 

On the other hand, in the metabolic profile of the deletion mutant of cyp4 we detected 

OA and its derivative compounds, an indication that Cyp4 catalyzes a reaction downstream of 

the one catalyzed by Pks3 and Pks4. This result was also supported by the non-complementation 

effect of the MB215 Δcyp4 Pcrg::mtf1 strain after the addition of OA (Figure 41). If we take 

into account that Pks3 and Pks4 catalyze together the first step of the pigment biosynthesis, we 

could infer that Cyp4 also acts downstream of Pks3 and Pks4, however the reaction steps carried 

out by Cyp4 are not totally understood yet. Therefore we analyzed the metabolic profiles of the 
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overexpressing strains in which each PKS gene was simultaneously expressed with cyp4 

(Figure 34). As expected, the double overexpressing strains (Pcrg::pks3+Petef::cyp4, 

Pcrg::pks4+Petef::cyp4 and Pcrg::pks5+Petef::cyp4) exhibited no change in their phenotypes 

and metabolic profiles when compared with the strains in which their genes were singly 

overexpressed (Figure 34). Although there are no cases in fungi synthesizing melanin using a 

PKS and cytochrome P450, we did find a report in the gram-positive bacteria Streptomyces 

griseus. Besides the L-DOPA melanin pathway, S. griseus is capable to synthesize HPQ 

melanin (1,4,6,7,9,12-hexahydroxyperylene-3,10-quinone) by the condensation of malonyl-

CoA to generate T4HN by the action of a type III PKS (RppA), followed by the subsequent 

aryl coupling of T4HN to yield unstable HPQ, a step catalyzed by a cytochrome P450 enzyme 

(P-450mel) (Funa et al., 2005). As in U. maydis, the pigment produced by S. griseus was also 

derived from T4HN and rapidly polymerized. However, they treated the cell extract with 

trimethylsilyl-diazomethane in order to replace the hydroxyl groups of T4HN by methyl ethers, 

thus preventing the polymerization. Such a strategy might be considered in the future for the 

anaylsis of the cell extracts of the MB215 Pcrg::mtf1 strain. As for MB215 Δpks3 Pcrg::mtf1, 

deletion of the rppA gene caused the strain to show an albino phenotype. On the other hand, the 

mutant ΔP-450mel produced a red-brown pigment as a result of the accumulation of flaviolin 

as a shunt product (Figure 54).  So far, none of our deletion mutants of the melanin-like pigment 

genes have shown to accumulate only T4HN or flaviolin. Therefore, it would be worthwhile to 

overexpress cyp4 under the control of a strong promoter as T7 in E. coli, purify it, reconstitute 

its activity in vitro with the ferredoxin and ferredoxin-NADP+ reductase from spinach, as it was 

done for P-450mel in S. griseus, incubate it with T4HN and analyze it by HPLC. This 

experiment could help us somehow to understand whether or not Cyp4 can catalyze the aryl 

coupling of T4HN. A second alternative would be the heterologous expression of Cyp4 in S. 

cerevisiae as it was performed for the cytochrome P450 enzyme KtnC in A. niger, which was 

shown to be essential for the dimerization of the monomeric cumarin 7-demethylsiderin to 

orlandin (Mazzaferro et al., 2015). 
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Figure 54. Proposed HPQ melanin biosynthesis pathway in Streptomyces griseus. The structure and HMBC 
correlation of methylated HPQ are also shown. In S. coelicolor A3, instead of producing HPQ melanin, CYP158A2 
dimerizes flaviolin, which is formed from T4HN by MomA to yield flaviolin dimers. RppA, type III PKS from S. 
griseus; P450-mel, cytochrome P450 involved in the HPQ melanin pathway; CYP158A, cytochrome P450 from 
S. coelicolor. Adapted from Funa et al., 2005. 

 
 

Gathering all the data concerning to deletion and overexpressing mutants, as well as the 

previous reports in fungi and bacteria, we propose two different hypothesis. One attractive 

hypothesis is that Pks3 and Pks4 work together catalyzing the conversion of malonyl-CoA into 

orsellinic acid only if Pks5 is absent (Figure 55A, steps 1-4A). Since Pks3 does not have the 

AT domain found in all the OA-PKSs, this function may be provided in trans by Pks4.  

On the other hand, when pks5 is expressed together with pks3 and pks4 (Figure 55A, steps 

1-4B), Pks5 interacts with the complex Pks3-Pks4 by an unknown mechanism, causing a 

conformational change that masks the catalytic triad of the TE-domain of Pks3 (Ser1558, 

His1739, and Asp1587), thus disturbing the claisen cyclase activity of TE. Once this occurs, 

instead of three extension steps that end up with the biosynthesis of OA, there is one additional 

step that drives the carbon skeleton to the formation of T4HN (Figure 55A, step 4B). 

Afterwards, it is likely that Cyp4 uses T4HN as a substrate to synthesize the melanin pigment 

by a similar mechanism as the one describe for HPQ melanin in S. griseus (Figure 55A, step 

5). None of the experiments carried out so far approve or disapprove the statement that Pks5 

uses OA as a direct substrate for the biosynthesis of melanin. Hence, a feeding experiment with 

OA of the MB215 Pcrg::pks5 and MB215 Pcrg::pks5+Petef::cyp4 strains, followed by the LC-

Malonyl'CoA
RppA P'450mel P'450mel

HPQ'melanin

1,3,6,8'Tetrahydroxynaphthalene
(T4HN)

MomA

Flaviolin
CYP158A2

Flaviolin dimers

PseudoHPQ
1,4,6,7,9,12'Hexahydroxyperylene'3,10'quinoneL (HPQ)

Trimethylsilyl'diazomethane



Discussion 
! !

!

89 

MS analysis of the cell pellets could provide a deeper knowledge about the reaction catalyzed 

by Pks5.  

An important question to be addressed is how the release and cyclization of the carbon 

chain is carried out to synthesize T4HN. Since we are proposing that Pks5 somehow interferes 

with the TE activity of Pks3, we had a look to its domain structure and we found that Pks5 

possesses a short-chain dehydrogenase/reductase (SDR) domain with the characteristic 

Rossmann-fold structure and nucleotide binding motif (782-1051aa). Members of the SDR 

family offer and alternative offloading mechanism by reducing 4´-phosphopantetheine (4´-

PPant) arm-tethered peptidyl chain, a thioester, to an aldehyde or an alcohol (Du and Lou, 

2010). This finding would suggest that the TE activity needed for the assembly line termination 

of the polyketide could be given by Pks5. Similar domains are also known from NRPS systems 

where reductase domains are sometimes used as chain release mechanisms, releasing an 

aldehyde or primary alcohol. Interestingly, the T4HN and T3HN reductases of Magnaporthe 

grisea are typical members of the SDR family containing the canonical glycine rich NAD (P)-

binding site tetrad (Vidal-Cros et al., 1994). Even though U. maydis does not possess THN 

reductases, it seems that the SDR feature is not entirely rare for melanin biosynthetic enzymes. 

One strategy to study the polyketide intermediate would be by swapping the Pks3-TE domain 

with the Pks5-SDR domain. By doing so, it could be possible that the combined expression of 

the chimeric Pks3 and Pks4 (MB215 Pcrg::pks3SDR-PKS5+Pcrg::pks4) produces T4HN instead 

of OA.  

In the second hypothesis, Pks3 and Pks4 catalyze together the first step of the metabolic 

pathway in a similar way as described above (Figure 55B, steps 1-4). Afterwards, OA is used 

as a substrate for Pks5 and Cyp4, which catalyze together its conversion into T4HN (Figure 

55B, step 5). Further polymerization of T4HN is accomplished by tailoring enzymes 

participating in the same pathway, as the ascorbate oxidase Aox1 (Figure 55B, step 6). This 

hypothesis assumes that neither Pks5 nor Cyp4 are able to convert by themselves OA into 

T4HN (Figure 55B). It is proposed in this hypothetical model that Pks5 together with Cyp4 act 

as molecular switches able to convert OA into T4HN. Of course, to validate it, it would be 

necessary to perform feeding experiments of the strains MB215 Pcrg::cyp4, MB215 Pcrg::pks5 

and MB215 Pcrg::pks5+Petef::cyp4 with OA and T4HN, followed by the LC-MS analysis of 

their cell pellets. 
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Figure 55. Proposed mechanisms for the first biosynthetic reactions in the melanin pathway in U. maydis. 
(A) First hypothesis. Pks3 and Pks4 catalyze together the conversion of malonyl-CoA into OA (steps 1-4A). If 
Pks5 is present, as in the MB215 Pcrg::mtf1 strain, the product derived from the 3rd. step is converted into 1,3,6,8-
tretahydroxynaphthalene (T4HN). Afterwards, Cyp4 polymerizes T4HN into different dimers or trimers.  (B) 
Second hypothesis. The steps 1-4 are carried out in the same way as described for the first hypothesis. Afterwards, 
Pks5 and Cyp4 convert the OA molecule into T4HN, which is further polymerized by the tailoring enzymes whose 
genes belong to the melanin-like cluster as ascorbate oxidase (Aox1). Molecular structures shown in the 5th. step 
in A and 6th. step in B are proposed according the molecular masses detected in the chromatograms of the MB215 
Pcrg::mtf1 cultures. 
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3.4! Inactivation of vbs1, omt1, pmo1 and deh1 genes influences the 

biosynthesis of the melanin-like pigment in U. maydis. 
In addition to the albino phenotypes shown by the deletion mutants of pks3, pks4, pks5, 

and cyp4 genes, disruption of vbs1 and omt1 genes resulted in a yellowish and orangish 

phenotypes, respectively. In a similar experiment, disruption of the vbs1 gene from the aflatoxin 

pathway in A. parasiticus, caused the accumulation of 5´-oxoaverantin (OAVN) and other 

precursors preceding its formation, thus yielding a yellowish pigment (Sakuno et al., 2004). In 

A. parasiticus, versicolorin B (VBS1) synthase catalyzes two distinct and disconnected 

reactions. In the first one, versiconal is converted to versicolorin B (VERB) (Yabe et al., 1993), 

considered as a fundamental step since it closes the bisfuran ring of aflatoxin (McGuire et al., 

1996; Silva et al., 1996); and the second one, that involves the conversion of OAVN to (2´S, 

5´S) -averunfin (AVR) (Sakuno et al., 2005). Unfortunately, due to the inestability of the T4HN, 

none of the compounds produced in the MB215 Δvbs1 Pcrg::mtf1 strain in U. maydis (V1, V2, 

V3) could be isolated and their structures determined (Figure 28). U. maydis Vbs1 exhibits an 

amino acid identity of 28% with the VBS1 from A. parasiticus. In addition to that, we did not 

find reports related to the participation of the vbs1 gene in any other SM pathway. Therefore, 

we can only speculate that U. maydis Vbs1 might have a similar function to the one observed 

for the aflatoxin VBS1.  

Whether or not U. maydis Vbs1 can catalyze more than one metabolic step in the synthesis 

of melanin is not yet clear, but one way to study it in more detail would by the overexpression 

of the vbs1 gene from A. parasiticus in the MB215 Δvbs1 Pcrg::mtf1 U. maydis strain. If the 

introduction of A. parasiticus vbs1 gene could rescue the phenotype of the MB215 Δvbs1 

Pcrg::mtf1 strain, it would mean that both enzymes are capable to catalyze similar reactions, 

thus contibuting to the understanding of this metabolic pathway.  

What is clear to us is that Vbs1 catalyzes a downstream reaction of Cyp4, since the double 

deletion mutant MB215 Δcyp4Δvbs1 Pcrg::mtf1 displayed the same phenotype and metabolic 

profile as the MB215 Δcyp4 Pcrg::mtf1 strain did (Figure 30). 

On the other hand, deletion of the omt1 gene triggered a darker phenotype than the one 

observed in the MB215 Δvbs1 Pcrg::mtf1 strain, seeming plausible that the reaction catalyzed 

by Vbs1 precedes the one catalyzed by Omt1, although it remains to be experimetally 

demonstrated. As in the case of the V1, V2 and V3 compounds, all the attempts for purifying 

O1 failed (Figure 28). Hence, a different strategy as the heterologous expression of the omt1 

gene in A. parasiticus or F. fujikuroi appears to be a feasible solution to gain a better insight 

into the function of this enzyme. The similarity of Omt1 with the o-methyltransferases Bik3 
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and AflO from F. fujikuroi and A. parasiticus, respectively, promises to be an alternative to 

study the reactions that could be carried out by Omt1. Bik3 belongs to the bikaverin gene cluster 

in F. fujikuroi, in this pathway a PKS (Bik1) catalyzes the formation of the intermediate pre-

bikaverin. The FAD-dependent monooxygenase Bik2 might then be responsible for the 

oxidation of pre-bikaverin to oxo-pre-bikaverin which is in turn methylated by Bik3 me-oxo-

pre-bikaverin. A further cycle of oxidation and methylation by Bik2 and Bik3 leads to bikaverin 

(Wiemann et al., 2009). In contrast to the orangish phenotype of the MB215 Δomt1 Pcrg::mtf1 

strain, the deletion of bik3 in F. fujikuroi resulted in loss of their ability to produce pigmented 

mycelia as compared with the wild-type strain. Moreover, the encoded protein of the aflatoxin 

gene aflO, catalyzes the conversion of DMST (demethylsterigmatocystin) to ST and DMDHST 

(demethyldihydrosterigmatocystin) to DHST (Yabe et al., 1989; Kelkar et al., 1996). In the 

case of Bik3 and AflO, both enzymes catalyze reactions mostly located at the end of their 

metabolic pathways probably because the non-methylated derivatives are not toxic for the 

producer fungi (Medentsev and Akimenko, 1998). In our case, even though the compounds of 

the MB215 Δomt1 Pcrg::mtf1 strain could not be isolated, we infer that Omt1 might participate 

at later stages in the melanin-like pigment biosynthesis pathway. Same case might be true for 

those genes whose deletion gave black-greenish phenotypes as orf1, orf4, orf5, aox1, pmo1 and 

deh1 (Figure 28). When the metabolic profiles of those deletion mutants were compared with 

the parental strain, MB215 Pcrg::mtf1, some differences were observed but, as described in the 

previous cases, the respective compounds could not be isolated nor determined. In agreement 

with this observation, there are many reports in which the monomer units of melanin have been 

characterized; nevertheless, due to their inestability, the arrangement of those subunits in the 

polymer structure has not been determined (Wakamatsu and Ito 2002).  

In contrast to the wild-type phenotype given by the MB215 Δaox1 Pcrg::mtf1 strain, 

deletion of the abr2 gene, encoding a laccase for conidial pigment in A. fumigatus, changed the 

gray-green conidial pigment to a brown color (Sugareva et al., 2006). A similar case was 

observed in T. marneffei, where the deletion of the laccase gene (prbB) for DHN-melanin 

synthesis in conidia resulted in brown pigmented conidia (Sapmak et al., 2015). One of the 

reasons why the deletion of the aox1 gene had not effect on the phenotype could be explained 

by the presence of another multicopper oxidase gene that has replaced its function. 

Interestingly, the best self match in U. maydis genome, was given by the gene um05361, 

previously identified as lac1 by Islamovic and coworkers. Because the two genes, lac1 and 

aox1, are involved in melanogenesis in U. maydis, it would not be entirely surprising that they 

could complement each other´s function. One way to confirm this assumption would be by 
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deleting the lac1 gene in the MB215 Δaox1 Pcrg::mtf1 background, in case of a complementary 

function of both genes,  a reduction of pigmentation in the double deletion mutant (MB215 

Δaox1Δlac1 Pcrg::mtf1) might be observed.  

Another gene whose deletion seems not to have a strong impact in the pigment 

biosynthesis is pmo1. The pmo1 gene encoding for a phenol-2-monooxygenase (better known 

as phenol hydroxylase) belongs to the family of polyphenol oxidases (PPO), in the same way 

as tyrosinases and laccases do. In contrast to them, phenol hydroxylases are non-copper 

enzymatic systems. Besides phenol, phenol hydroxylases are also able to catalyze the oxidation 

of various phenol derivatives including p-, m- and o-cresols, p-, m- and o-chlorophenols, p-, m- 

and o-aminophenols, orcinol, phloroglucinol, 2-amino-m-cresol and β-naphthol (Nakagawa 

and Takeda, 1962). According to the phenotype of the MB215 Δpmo1 Pcrg::mtf1 strain, pmo1 

gene may contribute to further modifications of the core structure of the melanin molecule. 

Similar situation may be true for the dehydrogenase gene deh1. Analysis of the domain structure 

of the Deh1 protein showed a KR domain (at position 11-140 aa) similar to those found in 

bacterial PKSs. Since the KR domain catalyzes the first step in the reductive modification of 

the beta-carbonyl centres in the growing polyketide chain, it may be possible that the Deh1-KR 

domain provides a reductase activity for the melanin PKSs. 

No conserved domains were detected for the orf1, orf4, and orf5 genes, neither 

similarities with proteins from other fungi. However, a closer analysis to their amino acid 

sequences showed certain degree of similarity among them, what makes us suspect that 

probably orf1, orf4 and orf5 are paralogs genes residing within the same cluster.  

As expected, deletion of the mtf2 gene had not effect in the pigmentation nor in the 

metabolic profile of the strain. Besides controlling the expression of the orf2 gene, it is not 

known if mtf2 influences the regulation of other genes outside the melanin-like cluster, since 

no expression data was found in any of the 144 experiments collected from GEO database. 

Even when there is no experimental evidence about the role of orf1, orf2, orf5, pmo1, 

aox1 and deh1 genes in the biosynthesis of the melanin-like pigment, their similar phenotypes 

to the wild-type after being deleted indicate a minor role in the metabolic pathway. 

Remarkably, the melanin-like cluster genes in U. maydis share similarities with those 

found in DHN-melanin pathways in other basidiomycetes, while at the same time some of them 

resemble the aflatoxin genes in A. parasiticus. From the evolutionary point of view, it might be 

possible that U. maydis have acquired the melanin and aflatoxin genes by horizontal gene 

transfer (HGT) events, and during the course of the time those genes belonging to different 

clusters have fused into one. Most of the HGT events in eukaryotes concerns to the transfer of 
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single or a few genes from bacterial donors, however there is a perfect example of eukaryote-

eukaryote HGT of SM gene clusters. In Podospora anserina, the complete gene cluster for 

sterigmatocystin (a precursor of the aflatoxins) was horizontally transferred from Aspergillus 

(Slot and Rokas, 2011). All the promoter regions of the Podospora cluster contain the 

palindromic sequence 5´-TCG (N5) CGA-3´, which is the binding site of the pathway regulator 

AflR. Even though the inspection of such a binding site in the promoter regions of the melanin-

like cluster genes did not give a match, the possibility that this cluster has been acquired by 

HGT can not be entirely ruled out. Comparative genomics and phylogenetic studies need to be 

done in order to get a deeper understanding in this field.  

 

3.5! Role of the melanin clusters in U. maydis 
LC-MS analysis of the cell pellets extracts of the strains MB215 Pcrg::pks1 and MB215 

Pcrg::pks2 produced no compounds, thus indicating that neither Pks1 nor Pks2 are capable to 

synthesize polyketides by themselves. However, the double overexpression of both 

accumulated a light-greenish pigment and six compounds (PP1-PP6) which are currently being 

analyzed (Figure 37).  The fact that none of these PKSs can synthesize a polyketide when they 

are singly overexpressed could be inferred by their domain structures. None of them possess 

the three minimal domains required to considered a polyketide synthase as functional, AT, ACP 

and KS (Figure 36). Although it is unknown how these two PKSs interact with eact other, our 

experiments clearly support the idea of complementarity. In addition to U. maydis, the 

biosynthesis of a polyketide generated by two PKSs was previously reported in Cochliobolus 

heterostrophus, the causative agent of the southern corn leaf blight in maize. The synthesis of 

its T-toxin and the high virulence effect in maize is influenced by C. heterostrophus PKS1 and 

PKS2. Although the mechanism by which both PKSs produce the T-toxin is not well 

understood, the study suggested that due to each PKS synthesizes a polyketide, one of them 

may act as the starter unit for the biosynthesis of the mature T-toxin molecule (Baker et al., 

2006). Related cases have been also reported for the pair of PKSs in the lovastatin and 

compactin gene clusters, where the polyketides are joined by an ester, not a carbon-carbon bond 

as for the T-toxin (Abe et al., 2002; Kennedy et al., 1999).  

Since Pks1 and Pks2 were shown to be involved in teliospore pigmentation and our study 

has presented evidence that suggests that Pks3, Pks4 and Pks5 play a fundamental role in the 

biosynthesis of a melanin-like pigment, we asked ourselves the possibility of complementarity 

among them. Coexpression of either pks1 or pks2 with each of the PKS genes of the melanin-

like cluster (pks3, pks4 and pks5) produced no change in the phenotypes or in the metabolic 
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profiles compared to their single overexpressing strains (MB215 Pcrg::pks3, MB215 

Pcrg::pks5 and MB215 Pcrg::pks4) (Figure 38 and 39). In some cases, the outcome could be 

inferred beforehand since not all combinations of PKSs fullfilled the minimum domain 

requirements for being functional (KS-AT-ACP). Strains that fall within this classification due 

to the lack of an AT domain are MB215 Pcrg::pks1+Pcrg::pks3 and MB215 

Pcrg::pks1+Pcrg::pks5. Another strain that belongs to this category is MB215 

Pcrg::pks2+Pcrg::pks4, that despite having the KS and AT domains, none of them harbor an 

ACP domain. In other cases, although the combination of PKSs covered the KS, AT, and ACP 

domains, they were not able to synthesize detectable compounds (Figure 38 and 39), as for the 

strain MB215 Pcrg::pks2+Pcrg::pks3, MB215 Pcrg::pks2+Pcrg::pks5 and MB215 

Pcrg::pks1+Pcrg::pks4. An indication that even though Pks1-Pks5 are implicated in the 

biosynthesis of a melanin pigment, the specificity of their domains make them to function 

preferentially with the PKSs from the same gene cluster. However, when pks1 and pks2 where 

individually overexpressed in MB215 Δpks3 Pcrg::mtf1, MB215 ΔΔpks4 Pcrg::mtf1 and 

MB215 Δpks5 Pcrg::mtf1 strains, only the overexpression of pks1 in MB215 Δpks3 Pcrg::mtf1 

strain could rescue the black-greenish phenotype, thus indicating that Pks1 and Pks3 have 

complementary functions. Both PKSs harbor the KS, ACP and TE domains, which in 

combination with Pks4 and Pks5 domains synthesize the melanin-like pigment (Figure 40). Due 

to the lack of an AT domain in Pks1, it is possible that Pks1 recruits the AT activity in trans 

provided by Pks4, in a similar way as proposed for Pks3. Even though the amino acid sequence 

analysis of the AT domains of Pks2 and Pks4 is not highly significant (31% identity and 33% 

similarity), it would seem that Pks1 does not discriminate in using one or the other. Most of the 

AT domains characterized so far are either malonyl-CoA or (2S)-methylmalonyl-CoA specific; 

in other rare cases, AT domains are specific for an ACP-tethered extender unit, such as 

methoxymalonyl-ACP, hydroxymalonyl-ACP, and aminomalonyl-ACP (Chan et al., 2009). In 

our particular case, AT-domain swaps between Pks2 and Pks4 appears to be an attractive 

alternative to study their substrate specificity. Moreover, the no complementation effect in the 

strain MB215 Δpks3 Pcrg::mtf1+Pcrg::pks2 could be explained by the absence of the ACP 

domains in Pks2. Although Pks5 contains an ACP domain, our experiments have previously 

shown that Pks5 does not participate in the catalysis of the first reaction product for the melanin-

like pigment biosynthesis.  

On the other hand, the fact that the overexpression of either pks1 or pks2 did not 

complement the phenotype of MB215 ΔΔpks4 Pcrg::mtf1 or MB215 Δpks5 Pcrg::mtf1 strains 

can be due to some other reasons. Neither pks1 nor pks2 possess the SDR and AMP adenylation 
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domain of Pks5, which could influence the number of elongation steps carried out by the 

polyketide intermediate. According to our model, one additional step would drive the reaction 

towards the biosynthesis of T4HN, which later will polymerize into melanin. In the case of 

MB215 ΔΔpks4 Pcrg::mtf1+Pcrg::pks1 strain can be easily observed that none of the active 

domains is an AT-domain. In other words, not even together, Pks1, Pks3 and Pks5 accomplish 

the minimal requirements for a functional PKS (Figure 40). In constrast, although the minimal 

PKS domains were present in the MB215 ΔΔpks4 Pcrg::mtf1+Pcrg::pks2 strain, it was not 

sufficient for its complementation. Suggesting that Pks3 is not able to use the activity of the AT 

domain of Pks2, which is in line with the observation that MB215 Pcrg::pks3+Pcrg::pks2 strain 

produced no detectable compounds. Although it would be premature to speculate on this, it 

seems that the Pks4-AT domain has less specificity compared with the Pks2-AT domain.  

When pks1 and pks2 were individually expressed together with cyp4, none of the strains 

displayed a different phenotype than the one observed in the wild-type strain (Figure 37). As 

formerly mentioned, the strains MB215 Pcrg::pks1 and MB215 Pcrg::pks2 produced no 

compound (s), therefore no intermediates could serve as a substrate for Cyp4. In order to have 

a better understanding of the role of Cyp4 in the biosynthesis of melanin, it would be necessary 

to coexpress pks1, pks2 and cyp4 together (MB215 Pcrg::pks1+Pcrg::pks2+Pcrg::cyp4) and 

analyzed the extracts by LC-MS. A similar experiment should be also performed using lac1 

instead of cyp4 (MB215 Pcrg::pks1+Pcrg::pks2+Pcrg::lac1), which would enable to estimate 

whether Pks1 and Pks2 also synthesize the same kind of T4HN-melanin as Pks3, Pks4 and 

Pks5. It is possible that cyp4 could play a role in polymerizing the melanin subunits synthesized 

by Pks1 and Pks2, in a similar way as suggested for lac1 by Islamovic and coworkers. In the 

same publication, it was shown a dramatic and reduced pigmentation phenotype in maize plants 

when they were infected with Δpks1 and Δlac1 mutant strains, respectively. However, they did 

not test the pks2 deletion mutant, basically due to its highly induced expression level 

comparable with pks1 (Islamovic et al., 2015). Interestingly, experiments performed by 

Meryem Friedrich in our group showed that plants infected with crosses of the strains FB1 

Δpks2 X FB2 Δpks2 led to a loss in spore pigmentation compared to wild-type strain (FB1 X 

FB2) (unpublished data). Thus confirming the role of Pks1 and Pks2 in spore pigmentation and 

the complementary effect with each other (Figure 56).  
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Figure 56. Teliospore development in maize plants induced by the wild-type, Δpks2, Δpks3 and Δpks2Δpks3 
mutant strains. The upper panel shows the plant tumors induced after 12 dpi by the strains (from left to right): 
wild-type (FB1 X FB2), Δpks2 (FB1 Δpks2 X FB2 Δpks2), Δpks3 (FB1 Δpks3 X FB2 Δpks3) and Δpks2Δpks3 
(FB1 Δpks2Δpks3 X FB2 Δpks2Δpks3). The lower panel indicates the hand sectioned tissues derived from the 
pictured tumors of the corresponding strains taken by a binocular microscope 4 weeks post-infection. Data kindly 
provided by Meryem Friedrich and Tobias Deinzer. 

 

In addition, the double deletion mutant of pks2 and pks3 genes was also tested for spore 

pigmentation. Plants inoculated with mixtures of FB1 Δpks3 X FB2 Δpks3 showed a slightly 

impact in virulence and a markedly reduction in spore pigmentation, while the double deletion 

mutant strain FB1 Δpks2Δpks3 X FB2 Δpks2Δpks3 had a similar effect in virulence and 

pigmentation compared to the single deletion of the pks2 gene. (Friedrich et al., unpublished 

data). Seen in a different way, deletion of pks3 in the Δpks2 background strain had no 

contribution to its phenotype (Figure 56). 

Further experiments carried out in the solopathogenic strain SG200 supported the idea of 

a minor role of the pks3 gene in virulence (Figure 45). Similar results were exhibited for the 

strains SG200 Δpks4 and SG200 Δpks5, although SG200 Δpks4 seems to have a stronger impact 

compared to the deletion of pks3 and pks5 genes (Figure 45). This is in line with the observation 

of RNA-seq data concerning to U. maydis PKS genes during maize plant infection, data kindly 

provided by Daniel Lanver (Figure 57A). In all cases, the transcript levels remain low during 

the first 24 h post-infection (hpi). At this stage, the filaments of the solopathogenic U. maydis 

strain have formed appressoria on the maize epidermis to penetrate the maize cell wall (Brefort 

et al., 2009). This is an indication that none of the U. maydis PKS-encoding genes seems to 

play a role during the first stages of infection, unlike other plant pathogenic fungi as 

Magnaporte grisea (Howard and Valent 1996), Venturia inaequalis (Steiner and Oerke 2007), 

FB1∆pks2 X&FB2∆pks2 FB1∆pks3 X&FB2∆pks3 FB1∆pks2∆pks3 X&FB2 ∆pks2&∆pks3FB1&X&FB2
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Diplocarpon rosae (Gachomo et al., 2010) and Colletotrichum graminicola (Ludwig et al., 

2014), whose polyketide synthases participate in the production of melanized appresoria. 

Interestingly, at 24 hpi small changes in expression could be observed for pks1 (Figure 57A, 

blue line), while for pks2 those changes started at 6 dpi. As expected, the low expression level 

of pks1 and pks2 in the period between 24 hpi and 2 dpi is because during that time, the 

penetrated hyphae proliferates intracelluarly within the epidermis and mesophyll, having no 

need to synthesize melanin (Doehlemann et al., 2008). When the tumor induction begins, fungi 

grow both inter- and intracellularly, normally at 4 dpi. At this stage, cell death is very rarely 

observed in the plant tissue surrounding aggregates, which indicates that U. maydis is actively 

suppressing plant defense responses during all stages of biotrophic development (Doehlemann 

et al., 2008). Five to six days after infection, massive fungal proliferation presumably of the 

diploid form is observed in tumor tissue, therefore pks1 and pks2 markedly increase their 

expression levels at 6 dpi (Figure 57A). That increment continues when fungal hyphae forms 

large aggregates between the enlarged maize tumor cells (8 dpi). Afterwards, pks1 and pks2 

register their highest levels in expression at 12 dpi, a period after proliferation where hyphal 

sections fragment, round up and differentiate into heavily melanized diploid teliospores 

(Snetselaar and Mims, 1993; Banuett et al., 1996). On the other hand, the expression levels 

during plant infection of pks3, pks4 and pks5 remained comparable to those in axenic culture 

until 8 dpi, thereafter they showed a small increase until 12 dpi (Figure 57A). Comparing the 

transcript levels of pks1 and pks2 with pks3, pks4 and pks5, there is a tremendous difference 

among them, making it clear that pks1 and pks2 are involved in the melanization processes of 

teliospores. Although the role of pks3, pks4 and pks5 has not been studied in detail during plant 

infection, probably they contribute to suppress the plant responses by actively detoxifying 

H2O2. We previously showed that overexpression of mtf1 does not upregulate pks1 and pks2, 

just as the Δust1 mutant strain does not induce the expression of pks3, pks4 and pks5 (Islamovic 

et al., 2015), thus denoting that both gene clusters have distinct mechanisms of regulation and, 

as a consequence, they are activated under different circumstances. In fungi, most of the studies 

link one gene cluster to one or more compounds, but very few cases link the same kind of 

compound with two different gene clusters. For instance, DHN melanogenesis in Botrytis 

cinerea is based on two developmentally regulated PKS-encoding genes. BcPKS13 and 

BcPKS12 provide the intermediate T4HN in conidia and sclerotia respectively, for further 

conversion to DHN by the same set of enzymes (Schumacher, 2016). This report provides a 

perfect example in which PKSs located on distinct chromosomes are able to synthesize the 

same compound but under different developmental programs. In A. flavus, two clusters 
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harboring non-canonical NRPS genes on chromosome 6 and 8 encode the same set of enzymes 

involved in the production of a group of piperazines. It was shown that addition of one of the 

piperazine metabolites, produced almost exclusively by the lna cluster, to wild-type cultures 

greatly increased expression of lnbA NRPS. Since both gene clusters shown to be important for 

sclerotial formation, it was speculated that the ocurrence of a functionally duplicated 

biosynthetic pathway may be due to a mechanism to ensure timely sclerotial production and 

hence, persistence during unfavorable environmental conditions (Forseth et al., 2013). 

Alongside these studies, the biosythesis of endocrocin in A. fumigatus (Throckmorton et al., 

2016) and conidial pigment in A. terreus (Guo et al., 2015) constitute cases in which physically 

unlinked clusters contribute to the synthesis of the same metabolite in one fungal species. To 

the best of our knowledge, the work presented here would constitute the first example in U. 

maydis in which two gene clusters located on different chromosomes are able to synthesize the 

same secondary metabolite, melanin. Although many experiments need to be done in order to 

clarify under which circumstances the melanin-like cluster is preferentially activated.  

In addition to pks3, pks4, and pks5 from the melanin-like cluster, we also infected maize 

plants with the deletion mutants of those genes encoding for tailoring enzymes that also were 

activated by mtf1 (Figure 45). Deletion of mtf1 displayed a reduction in plant symptoms 

compared to the solopathogenic strain SG200. If we take into account that mtf1 regulates the 

expression of pks3/pks4/pks5 and that the deletion of those genes reduced the symptoms in 

infected plants, somehow it was expected such a phenotype for SG200 Δmtf1. On the other 

hand, when maize plants were infected with the strain SG200 Δmtf2, no differences were 

observed when compared to the wild-type (Figure 44). Besides orf2, there are no reports of 

other genes whose expression is controlled by the transcription factor mtf2, but what is clear is 

that this gene does not seem to play an important role in virulence. A general trend in plants 

infected with the deletion mutant strains SG200 Δaox1, SG200 Δvbs1, SG200 Δpmo1, SG200 

Δcyp4, SG200 Δdeh1, SG200 Δorf1, SG200 Δorf3, and SG200 Δorf5 was a small reduction in 

symptoms when compared to the wild-type strain  (Figure 45). 

Moreover, no significant differences in pathogenicity were observed between SG200 

Δomt1 and SG200 strains (Figure 45). Although it is not clear the role in melanization of the 

genes encoding for tailoring enzymes, we have observed that in most of the cases this role is 

secondary, therefore it may be possible that when any of those genes is deleted, another gene 

could complement its function. Another important thing to know is whether there is or not a 

whole contribution of the melanin-like cluster in pathogenicity, hence it would be worth it to 
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infect maize plants with a strain in which the whole melanin-like cluster has been deleted 

(SG200 Δmel). 

Genes encoding for the tailoring enzymes have a similar trend in their gene expression 

levels compared to pks3/pks4/pks5 during plant infection (Figure 45). All of them show a low 

expression level at early stages with a small increase at 8 dpi, except for vbs1, deh1, and pmo1 

whose transcript levels raised after 6 days of inoculation. It is not uncommon for coregulated 

genes part of the same SM gene cluster to show differences in expression under certain 

condition. In F. graminearum, five genes in a cluster with enzymes involved in triacetylfusarin 

biosynthesis showed differential expression and correlation in their expression profiles during 

infection (Sieber et al., 2014). Furthermore, the earlier expression increase of mtf1 (4 dpi) in 

comparison to the rest of the melanin-like cluster genes can be explained by the idea that its 

activation may be subjected to an upstream control of other TFs expressed at earlier stages. In 

addition to this, it is important to note that there can be many steps between mRNA translation 

of a TF and the actual transcriptional regulation of its target genes. The TF can be post-

translationally modified, i.e. it can be methylated, ubiquitinated or phosphorylated. 

Phosphorylations are often necessary for dimerization and binding to the target gene´s promoter 

(Schacht et al., 2014). As a control, we also included in the analysis the expression of mtf2 and 

orf6, due to their expression is not dependent of mtf1. 

Putting all this together, we have observed that the melanin-like cluster genes are 

coregulated during plant infection, having their highest expression levels at the latest stages. 

Although pks1 and pks2 are leading the spore pigmentation process, the role of the melanin-

like cluster genes may be related to help in overcoming the plant responses.  

In this work, we also analyzed the gene expression data through 144 experimental 

conditions downloaded from GEO database. Concerning to the melanin-like cluster genes, we 

only found information regarding to vbs1. In addition to its induction during plant infection, 

vbs1 also showed high expression levels in conditions under which the FB1 strain was 

cultivated in CM-glucose medium with 5 mM of H2O2 for 1h (Table S5). Since one of the 

primary defense reaction mechanisms in planta is the production of ROS, it is not at all 

unthinkable that melanin is synthesized as a protection shield in the presence of hydrogen 

peroxide. Therefore, we tested the sensitivity of the strains SG200 Δpks3,  SG200 Δpks4, and 

SG200 Δpks5 to H2O2  in an agar diffusion test (Figure 47). Overall, no significant differences 

in halo size were observed when compared to the wild-type. 
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Figure 57. RNA-Seq data of the PKSs and melanin-like cluster genes in U. maydis when cultivated in axenic 
culture and during maize plant infection. (A) RNA-Seq data of U. maydis PKS genes pks1, pks2, pks3, pks4 
and pks5. The pks1 and pks2 genes notably increase their expression level at 6 dpi and continue until 12 dpi. 
Although both genes are coregulated, it can be noticed a higher expression level in pks1 compared with pks2. On 
the other hand, the expression levels of pks3, pks4 and pks5 genes are low in axenic culture and planta; however,  
small increases in gene expression can be observed at 8 dpi, which is in line with the observation of a reduced 
virulence effect in maize plants inoculated with SG200 Δpks3, SG200 Δpks4 and SG200 Δpks5 strains. (B) RNA-
Seq data of the melanin-like cluster genes. Most of the genes increase their expression level at 8 dpi, while some 
others as pmo1, deh1 and vbs1 start at 6 dpi. The genes mtf2, orf2 and orf6 (encoding for a dioxygenase) were 
included as controls since they were not activated by mtf1. Among the melanin-like cluster genes, mtf1 showed 
the earliest expression increase in planta at 4 dpi, followed by a higher increase from 6 to 8 dpi.  RPKM, reads per 
kilobase of exon model per million mapped reads; hpi, hours post-infection; dpi, days post-infection. Data kindly 
provided by Daniel Lanver. 
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This result seems to be contradictory with the observations in some other fungi such as 

Sporothrix schenckii, A. fumigatus and Paracoccidioides brasiliensis, which found a decreased 

resistance to killing by hydrogen peroxide when their melanin-PKS genes were deleted 

(Romero-Martinez et al., 2000; Tsai et al., 1999; da Silva et al., 2009). A possible explanation 

for this result in U. maydis would be that in the absence of the melanin-like genes, pks1 and 

pks2 could take over the detoxification process. However, when we had a look to the expression 

levels of pks1 and pks2 under the same conditions we noticed that both genes were 

downregulated (Table S6 and S7), indicating once again that although PKS genes from different 

clusters participate in the biosynthesis of melanin, the activation of one or other depends on 

specific conditions. A way to confirm whether pks1 and pks2 can be activated in the absence of 

pks3 would be by testing the sensitivity to H2O2 of the triple deletion mutant strain SG200 

Δpks1Δpks2Δpks3. Of course, in addition to the melanization process to overcome ROS, there 

are many other genes implicated in such redox-dependent signaling pathways as the 

peroxidases um01947 and um10672, whose regulation was shown to be controlled by the 

transcription factor YAP1(Molina et al., 2007). According to our expression data, there is not 

a considerable difference in expression of the PKS  genes when  FB1 or FB1 Δyap1 strains 

were grown in the presence of H2O2, suggesting that yap1 does not exert a regulatory control 

on the PKS genes when U. maydis is grown under oxidative stress conditions. Furthermore, we 

also noticed that the expression level of vbs1 decreased in SG200 Δtup1 strain compared to the 

wild-type when both were grown on charcoal plates for 48 h, thus indicating that tup1 somehow 

positively influences the gene expression of vbs1 and, likely, also the expression of the other 

melanin-like genes. Even though Tup1 has been described as a general transcriptional repressor, 

the deletion of tup1 in U. maydis leads to the down-regulation of the genes that control the 

dimorphic transition, suggesting an activator role for tup1 in controlling them (Elías-Villalobos 

et al., 2011). Although it is not known how mtf1 is activated, we assume that Tup1 could be its 

upstream regulator. Therefore, it would be interesting to perform expression analysis of mtf1 

and the melanin-like cluster genes in the background of the Δtup1strain. In a recent publication 

in U. maydis, the major regulator of spore formation, Ros1, was found to bind to the promoters 

of the genes tup1, ust1, rum1, and hgl1, suggesting that they could be direct targets (Tollot et 

al., 2016). Interestingly, the gene encoding for versicolorin B synthase (vbs1) was the most 

upregulated gene involved in secondary metabolism controlled by Ros1. In a similar way, pks1 

and lac1 were positively regulated by Ros1.  

Furthermore, we also explored conditions under which vbs1 exhibited its lowest 

expression levels. One of them was found when FB1 Δrak1 strain was grown in CM medium 
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with 1% of glucose as a carbon source. Rak1 has been reported to play an important role in cell 

growth, and cell fusion in U. maydis (Wang et al., 2011). In addition, rak1 participates in the 

response of cell wall stressors, since the SG200 Δrak1 strain displayed more sensitivity to congo 

red and calcofluor white than the wild-type strain. In fungi, Rak1 orthologues are involved in 

regulation of cell growth and stress responses (Rothberg et al., 2006; Coyle et al., 2009), so it 

would not be totally surprising that such a process as melanization was controlled by the 

expression of rak1. Indeed, Gib2, the homolog of Rak1 in Cryptococcus neoformans required 

for normal growth and virulence, directly binds to the Gα protein (Gpa1), a component of the 

cAMP-signaling cascade. Deletion of gpa1 leads to a melanin deficient phenotype (Pukkila-

Worley et al., 2005), which can be rescued by the overproduction of Gib2 (Palmer et al., 2006; 

Wang et al., 2014).  Interestingly, the closest relative of Gpa1 in U. maydis is Gpa3 (75% 

identity), whose deletion did not induce disease symptoms in infected corn plants (Regenfelder 

et al., 1997). Considered as an important gene for teliosporogenesis, gpa1 showed an increase 

in its transcript leves, together with pks1 and pks2, in the Δ ust1 mutant (Islamovic et al., 2015). 

Nonetheless, more comprehensive studies need to be done in order to gain a better knowledge 

about the regulatory process and the interconnection of both melanin clusters. Given the 

remarkable conservation in signaling mechanisms among fungal and other eukaryotic 

organisms, it may be possible that U. maydis controls the biosynthesis of the melanin in a 

similar way.  

On the other hand, a low expression level was also reported for vbs1 when the BW12 

strain was grown in minimal medium with 10 µM of FeSO4 (Eichhorn et al., 2006). BW12 is a 

derivative of FB1 strain with a deletion of the urbs1 open re 

ading frame. Urbs1 is a GATA transcription regulator of siderophore biosynthesis in U. 

maydis (Voisard et al., 1993) whose disruption leads to constitutive expression of sid1 and sid2 

genes, enconding for a L-Orn N 5-monooxygenase and a siderophore synthase, respectively 

(Mei et al., 1993; Yuan et al., 2001). Besides sid1 and sid2, Urbs1 also represses the expression 

of other siderophore genes when U. maydis is grown under high iron conditions (Eichhorn et 

al., 2006). Unlike them, the expression of vbs1 seems to be oppositely regulated by Urbs1; that 

is to say, while Urbs1 is a transcriptional repressor for iron-uptake genes, it acts as a positive 

regulator of vbs1. It seems reasonable, that a high concentration of iron can trigger a signal that 

activates genes involved in melanin biosynthesis, since it is well known that the presence of 

ferreous iron at high levels catalyzes the production of free radicals that can bind to critical 

molecules as sugars, aminoacids, phospholipids, DNA bases, and organic acids (Byers et al., 

1998). The ability of melanin to prevent the redox cycling of iron ions and their action as 



Discussion 
! !

!

104 

catalysts in Fenton-type reactions has been extensively studied, however there has not been a 

proper study that links the regulatory network of the siderophore and melanin gene clusters in 

U. maydis. Moreover, when SG200 Δhxt1 strain was grown in minimal medium with 1% of 

either glucose or xylose as a carbon source for 6 h, the expression of vbs1 also dropped down. 

In U. maydis, Hxt1 is a high affinity transporter for monosaccharides important for fungal 

development during both the saprophytic and the pathogenic stage of the fungus. Besides its 

function as a transporter, Hxt1 also plays a role as a sensor (Schuler et al., 2015), therefore it is 

conceivable that Δhxt1 strains showed decreased symptom development after plant infection. 

In accordance to this report, deletion of the encoded gene for Hxs1, the counterpart of Hxt1 in 

C. neoformans, had a defect in virulence mainly explained by a defect in melanin production 

(Liu et al., 2013). Although Schuler and collaborators did not discuss the implication of melanin 

in the phenotype observed in plants infected with Δhxt1 strains,  it is reasonable to think that 

the sensing of  glucose regulates the production of melanin via the cAMP signaling pathway,  

just as in C. neoformans (Alspaugh et al., 1997; Xue et al., 2006). 

Despite the fact that the analysis of 144 experimental conditions was helpful to 

understand to some extent under which circumstances the melanin-like genes are up- or down-

regulated, we can not rule out the possibility of other favorable conditions for the gene cluster 

activation. In a previous study, Jonkers and collaborators determine the metabolic and 

transcriptomic changes in U. maydis and F. verticillioides when both fungi were cocultivated. 

Seven of the melanin-like cluster genes (pks5, orf1, pks4, vbs1, omt1, pmo1 and cyp4) showed 

slightly higher expression levels during cocultivation with F. verticillioides than in single 

cultures, suggesting that U. maydis could activate the melanin-like cluster in response to the 

presence of other competitors as F. verticillioides (Jonkers et al., 2012). Also related to this 

report, the orsellinic acid gene cluster in A. nidulans was induced after the cocultivation with 

S. hygroscopicus (Schroeckh et al., 2009). Gathering all this information, it seems reasonable 

to think that due to the toxic effect of orsellinic acid, U. maydis synthesizes it as a defense 

mechanism during antagonistic interactions. Further experiments need to be carrried out in 

order to gain a better knowledge about the regulation of the melanin-like cluster in U. maydis. 

 

3.6! Conclusions and Outlook 
In this study we mined the U. maydis genome for novel secondary metabolite gene 

clusters. Among others, we detected a large cluster containing genes enconding for three 

polyketide synthases (pks3, pks4 and pks5), several tailoring enzymes (aox1, vbs1, omt1, pmo1, 

cyp4, and deh1) and two transcription factors (mtf1 and mtf2). Induced expression of mtf1 but 
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not mtf2 resulted in the accumulation of a dark pigment. Mass spectrometric analysis revealed 

that this melanin, mainly consisted of crosslinked T4HN, is an unusual finding since most 

fungal melanins are derived from DHN. In the DHN pathway, the T4HN generated by a PKS 

undergoes two reduction and two dehydratation steps carried out by highly conserved enzymes 

in fungi but missing in the genome of U. maydis as T4HN reductase, T3HN reductase and 

scytalone dehydratase (SD).  

Mutants defective for pks3, pks4, pks5 and cyp4 did not accumulate melanin, but MB215 

Δcyp4 Pcrg::mtf1 mutants produced OA and two of its derivatives, while MB215 Δpks5 

Pcrg::mtf1  mutants only OA. Interestingly, feeding experiment of OA rescued the melanization 

defect of pks3 and pks4 deletion mutants, suggesting that Pks3 and Pks4 generate OA, which is 

then used for chemical conversion into T4HN. Since deletion of the gene encoding for 

versicolorin B synthase (vbs1) results in light yellow coloring, we assume the following 

preliminary biosynthetic pathway. Pks3 and Pks4 catalyze together the conversion of malonyl-

CoA into OA. In the presence of Pks5 orsellinic acid is not synthesized, instead, its intermediate 

is converted into T4HN, which is further polymerized by Cyp4 into different dimers or trimers, 

which will be then modified by tailoring enzymes. A second proposed model would be that the 

OA synthesized by Pks3 and Pks4 is converted by Pks5 and Cyp4 to T4HN, suggesting that 

Pks5 and Cyp4 act as molecular switchers. Afterwards, the T4HN will be the substrate of 

enzymes as Vbs1 and Aox1, which will assist in the polymerization of this molecule into 

T4HN-melanin. An important goal to understand this mechanism would be to fully reconstitute 

this pathway either in S. cerevisiae or in A. niger.  

Since the transcription of the melanin-like cluster genes was observed under very few 

conditions as during pathogenic development inside of the plant tissue, on charcoal containig 

media and in the presence of H2O2, information regarding to other stress regimes or 

environmental signals (light, osmolarity and temperature) would contribute to understand 

biological context of the melanin-like cluster in U. maydis. Along with these experiments, the 

screening of potential transcriptional regulators as Tup1 would improve our understanding of 

the regulation process of the melanin-like gene cluster. 
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4.1! E. coli, S. cerevisiae and U. maydis strains  
!
4.1.1! E. coli strains 

For cloning of DNA either the strain DH5α (Hanahan, 1983) or Top 10 (Invitrogen) was used. 

 

Strain Genotype 

DH5α F-, endA1, hsdR17 (rK _, mK
+) supE44, thi-1, gyrA96 (Nalr), relA1, 

recA1, Δ(argF-lacIZYA)U169 (φ80dlacZΔM15) 

 

Top10 F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 recA1 

AraD139 Δ(ara-leu)7697 galU galK rpsL (StrR) endA1 nupG 

 

4.1.2! S. cerevisiae strains 

Strain Genotype Reference 

DF5 his1-1 MATa; his3-D200, leu2-3,2-112, 

lys2-801, trp1-1 (am), ura3-52, his1-1 

Derivative of DF5 (Finley 

et al., 1987), kindly provided by 

Prof. Dr. Hans-Ulrich Mösch. 

 
4.1.3! U. maydis strains 
!
4.1.3.1!Lab collection 

Strain Genotype Core phase Reference 

FB1 a1 b1 Haploid Banuett and Herskowitz, 1989 

FB2 a2 b2 Haploid Banuett and Herskowitz, 1989 

MB215 a2 b13 Haploid Lab collection (Hewald) 

SG200 a1::mfa2 bW2 bE1 Haploid Kämper et al., 2006 
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4.1.3.2!U. maydis strains generated in this work. 

Strain Genotype Transformed construct Resistance Recipient strain 

MB215 Pcrg::mtf1 a2 b13 Pcrg::um04101 pCRG-Mtf1-Tnos-Cbx CbxR MB215 

FB1 Pcrg::mtf1 a1 b1 Pcrg::um04101 pCRG-Mtf1-Tnos-Cbx CbxR FB1 

MB215 Pcrg::mtf2 a2 b13 Pcrg::um11110 pCRG-Mtf2-Tnos-Cbx CbxR MB215 

MB215 Δpks5 Pcrg::mtf1 a2 b13 Δum04095 Pcrg::um04101 pRS426-Δpks5(G418) CbxR, G418R MB215 Pcrg::mtf1 

MB215 Δorf1 Pcrg::mtf1 a2 b13 Δum04096 Pcrg::um04101 pRS426-Δorf1(G418) CbxR, G418R MB215 Pcrg::mtf1 

FB1 Δpks4 Pcrg::mtf1 a1 b1 Δum04097 Pcrg::um04101 pRS426-Δpks4 (Hyg) CbxR, HygR FB1 Pcrg::mtf1 

MB215 Δpks4 Pcrg::mtf1 a2 b13 Δum04097 Pcrg::um04101 pRS426-Δpks4 (G418) CbxR, G418R MB215 Pcrg::mtf1 

MB215 ΔΔpks4 Pcrg::mtf1 a2 b13 ΔΔum04097 Pcrg::um04101 pRS426-Δpks4 (Hyg) CbxR, G418R, 

HygR 

MB215 Δpks4 

Pcrg::mtf1 

MB215 Δmtf2 Pcrg::mtf1 a2 b13 Δum11110 Pcrg::um04101 pRS426-Δmtf2 (G418) CbxR, G418R MB215 Pcrg::mtf1 

MB215 Δorf3 Pcrg::mtf1 a2 b13 Δum04100 Pcrg::um04101 pRS426-Δorf3 (Hyg) CbxR, HygR MB215 Pcrg::mtf1 

MB215 Δaox1 Pcrg::mtf1 a2 b13 Δum11111 Pcrg::um04101 pRS426-Δaox1 (Hyg) CbxR, HygR MB215 Pcrg::mtf1 

MB215 Δvbs1 Pcrg::mtf1 a2 b13 Δum11112 Pcrg::um04101 pRS426-Δvbs1 (Hyg) CbxR, HygR MB215 Pcrg::mtf1 

MB215 Δorf4 Pcrg::mtf1 a2 b13 Δum04104 Pcrg::um04101 pRS426-Δorf4 (Hyg) CbxR, HygR MB215 Pcrg::mtf1 

MB215 Δpk3 Pcrg::mtf1 a2 b13 Δum04105 Pcrg::um04101 pRS426-Δpks3 (Hyg) CbxR, HygR MB215 Pcrg::mtf1 

MB215 Δomt1 Pcrg::mtf1 a2 b13 Δum04106 Pcrg::um04101 pRS426-Δomt1 (Hyg) CbxR, HygR MB215 Pcrg::mtf1 

MB215 Δpmo1 Pcrg::mtf1 a2 b13 Δum04107 Pcrg::um04101 pRS426-Δpmo1 (Hyg) CbxR, HygR MB215 Pcrg::mtf1 

MB215 Δorf5 Pcrg::mtf1 a2 b13 Δum12253 Pcrg::um04101 pRS426-Δorf5 (Hyg) CbxR, HygR MB215 Pcrg::mtf1 
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MB215 Δcyp4 Pcrg::mtf1 a2 b13 Δum04109 Pcrg::um04101 pRS426-Δcyp4 (Hyg) CbxR, HygR MB215 Pcrg::mtf1 

MB215 Δdeh1 Pcrg::mtf1 a2 b13 Δum11113 Pcrg::um04101 pRS426-Δdeh1 (Hyg) CbxR, HygR MB215 Pcrg::mtf1 

MB215 Δcyp4Δvbs1 Pcrg::mtf1 a2 b13 Δum04109 

Δum11112  Pcrg::um04101 

pRS426-Δvbs1 (G418) CbxR, G418R, 

HygR 

MB215 Δcyp4 

Pcrg::mtf1 

SG200 Δpks5 a1::mfa2 bW2 bE1 Δum04095 pRS426-Δpks5(G418) G418R SG200 

SG200 Δorf1 a1::mfa2 bW2 bE1 Δum04096 pRS426-Δorf1(G418) G418R SG200 

SG200 Δpks4 a1::mfa2 bW2 bE1 Δum04097 pRS426-Δpks4 (G418) G418R SG200 

SG200 Δmtf2 a1::mfa2 bW2 bE1 Δum11110 pRS426-Δmtf2 (G418) G418R SG200 

SG200 Δorf3 a1::mfa2 bW2 bE1 Δum04100 pRS426-Δorf3 (Hyg) HygR SG200 

SG200 Δmtf1 a1::mfa2 bW2 bE1 Δum04101 pRS426-Δmtf1 (Hyg) HygR SG200 

SG200 Δaox1 a1::mfa2 bW2 bE1 Δum11111 pRS426-Δaox1 (Hyg) HygR SG200 

SG200 Δvbs1 a1::mfa2 bW2 bE1 Δum11112 pRS426-Δvbs1 (Hyg) HygR SG200 

SG200 Δorf4 a1::mfa2 bW2 bE1 Δum04104 pRS426-Δorf4 (Hyg) HygR SG200 

SG200 Δpks3 a1::mfa2 bW2 bE1 Δum04105 pRS426-Δpks3 (Hyg) HygR SG200 

SG200 Δomt1 a1::mfa2 bW2 bE1 Δum04106 pRS426-Δomt1 (Hyg) HygR SG200 

SG200 Δpmo1 a1::mfa2 bW2 bE1 Δum04107 pRS426-Δpmo1 (Hyg) HygR SG200 

SG200 Δorf5 a1::mfa2 bW2 bE1 Δum12253 pRS426-Δorf5 (Hyg) HygR SG200 

SG200 Δcyp4 a1::mfa2 bW2 bE1 Δum04109 pRS426-Δcyp4 (Hyg) HygR SG200 

SG200 Δdeh1 a1::mfa2 bW2 bE1 Δum11113 pRS426-Δdeh1 (Hyg) HygR SG200 

MB215 Pcrg::pks1 a2 b13 Pcrg::um06414 pCRG-Pks1-Tnos-Cbx CbxR MB215 
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MB215 Pcrg::pks2 a2 b13 Pcrg::um06418 pCRG-Pks2-Tnos-Cbx CbxR MB215 

MB215 Pcrg::pks3 a2 b13 Pcrg::um04105 pCRG-Pks3-Tnos-Cbx CbxR MB215 

MB215 Pcrg::pks4 a2 b13 Pcrg::um04097 pCRG-Pks4-Tnos-Cbx CbxR MB215 

MB215 Pcrg::pks5 a2 b13 Pcrg::um04095 pCRG-Pks5-Tnos-Cbx CbxR MB215 

MB215 Pcrg::cyp4 a2 b13 Pcrg::um04109 pCRG-Cyp4-Tnos-Cbx CbxR MB215 

MB215 Pcrg::vbs1 a2 b13 Pcrg::um11112 pCRG-Vbs1-Tnos-Cbx CbxR MB215 

MB215 Petef::cyp4 a2 b13 Petef::um04109 pETEF-Cyp4- 
Tnos-G418 

G418R MB215 

MB215 Pcrg::pks1+ Pcrg::pks2 a2 b13 Pcrg::um06414 

+ Pcrg::um06418 

pCRG-Pks2- 
Tnos-G418 

CbxR, G418R MB215 Pcrg::pks1 

MB215 Pcrg::pks3+ Pcrg::pks4 a2 b13 Pcrg::um04105 

+ Pcrg::um04097 

pCRG-Pks3- 
Tnos-G418 

CbxR, G418R MB215 Pcrg::pks4 

MB215 Pcrg::pks4+ Pcrg::pks5 a2 b13 Pcrg::um04097 

+ Pcrg::um04095 

pCRG-Pks4-Tnos- 
G418-Mig2-6 

CbxR, G418R MB215 Pcrg::pks5 

MB215 Pcrg::pks1+Petef::cyp4 a2 b13 Pcrg::um06414 

+ Petef::um04109 

pETEF-Cyp4- 
Tnos-G418 

CbxR, G418R MB215 Pcrg::pks1 

MB215 Pcrg::pks2+Petef::cyp4 a2 b13 Pcrg::um06418 

+ Petef::um04109 

pETEF-Cyp4- 
Tnos-G418 

CbxR, G418R MB215 Pcrg::pks2 

MB215 Pcrg::pks3+Petef::cyp4 a2 b13 Pcrg::um04105 

+ Petef::um04109 

pETEF-Cyp4- 
Tnos-G418 

CbxR, G418R MB215 Pcrg::pks3 

MB215 Pcrg::pks4+Petef::cyp4 a2 b13 Pcrg::um04097 

+ Petef::um04109 

pETEF-Cyp4- 
Tnos-G418 

CbxR, G418R MB215 Pcrg::pks4 
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MB215 Pcrg::pks5+Petef::cyp4 a2 b13 Pcrg::um04095 

+ Petef::um04109 

pETEF-Cyp4- 
Tnos-G418 

CbxR, G418R MB215 Pcrg::pks5 

MB215 Δpk3 

Pcrg::mtf1+Pcrg::pks1 

a2 b13 Δum04105 

Pcrg::um04101+Pcrg::um06414 

pCRG-Pks1- 
Tnos-G418 

 

CbxR, G418R, 

HygR 

MB215 Δpk3 

Pcrg::mtf1 

MB215 Δpk3 

Pcrg::mtf1+Pcrg::pks2 

a2 b13 Δum04105 

Pcrg::um04101+Pcrg::um06418 

pCRG-Pks2- 
Tnos-G418 

CbxR, G418R, 

HygR 

MB215 Δpk3 

Pcrg::mtf1 

FB1 Δpks4 Pcrg::mtf1+Pcrg::pks1 a1 b1 Δum04097 

Pcrg::um04101+ Pcrg::um06414 

pCRG-Pks1- 
Tnos-G418 

CbxR, G418R, 

HygR 

FB1 Δpks4 

Pcrg::mtf1 

FB1 Δpks4 Pcrg::mtf1+Pcrg::pks2 a1 b1 Δum04097 

Pcrg::um04101+ Pcrg::um06418 

pCRG-Pks2- 
Tnos-G418 

CbxR, G418R, 

HygR 

FB1 Δpks4 

Pcrg::mtf1 

MB215 Δpks5 

Pcrg::mtf1+Pcrg::pks1 

a2 b13 Δum04095 

Pcrg::um04101+ Pcrg::um06414 

pCRG-Pks1- 
Tnos-Hyg 

CbxR, G418R, 

HygR 

MB215 Δpks5 

Pcrg::mtf1 

MB215 Δpks5 

Pcrg::mtf1+Pcrg::pks2 

a2 b13 Δum04095 

Pcrg::um04101+ Pcrg::um06418 

pCRG-Pks2- 
Tnos-Hyg 

CbxR, G418R, 

HygR 

MB215 Δpks5 

Pcrg::mtf1 

MB215 Pcrg::pks1+ Pcrg::pks3 a2 b13 Pcrg::um06414 

+ Pcrg::um04105 

pCRG-Pks3- 
Tnos-G418 

 

CbxR, G418R MB215 Pcrg::pks1 

MB215 Pcrg::pks1+ Pcrg::pks4 a2 b13 Pcrg::um06414 

+ Pcrg::um04097 

pCRG-Pks1- 
Tnos-G418 

CbxR, G418R MB215 Pcrg::pks4 

MB215 Pcrg::pks1+ Pcrg::pks5 a2 b13 Pcrg::um06414 

+ Pcrg::um04095 

pCRG-Pks1- 
Tnos-G418 

CbxR, G418R MB215 Pcrg::pks5 
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MB215 Pcrg::pks2+ Pcrg::pks3 a2 b13 Pcrg::um06418 

+ Pcrg::um04105 

pCRG-Pks2- 
Tnos-G418 

CbxR, G418R MB215 Pcrg::pks3 

MB215 Pcrg::pks2+ Pcrg::pks4 a2 b13 Pcrg::um06418 

+ Pcrg::um04097 

pCRG-Pks2- 
Tnos-G418 

CbxR, G418R MB215 Pcrg::pks4 

MB215 Pcrg::pks2+ Pcrg::pks5 a2 b13 Pcrg::um06418 

+ Pcrg::um04095 

pCRG-Pks2- 
Tnos-G418 

CbxR, G418R MB215 Pcrg::pks5 

MB215 Δpk3 

Pcrg::mtf1+Ppks3::pks3 

a2 b13 Δum04105 

Pcrg::um04101+Pum04105::um04105 

pMM69-Comp-Pks3-

Tnos-G418 

CbxR, G418R, 

HygR 

MB215 Δpk3 

Pcrg::mtf1 

MB215 Δcyp4 

Pcrg::mtf1+Pcyp4::cyp4 

a2 b13 Δum04109 

Pcrg::um04101+Pum04109::um04109 

pMM69-Comp-Cyp4-

Tnos-G418 

CbxR, G418R, 

HygR 

MB215 Δcyp4 

Pcrg::mtf1 

MB215 Δvbs1 

Pcrg::mtf1+Pvbs1::vbs1 

a2 b13 Δum11112 

Pcrg::um04101+Pum11112::um11112 

pMM69-Comp-Vbs1-

Tnos-G418 

CbxR, G418R, 

HygR 

MB215 Δvbs1 

Pcrg::mtf1 

MB215 ΔΔpks4 Pcrg::mtf1 + 

Pcrg::pks1 

a2 b13 ΔΔum04097 Pcrg::um04101 

+Pcrg::um06414 

pCRG-Pks1- 
Tnos-G418 

CbxR, G418R, 

HygR, NatR 

MB215 ΔΔpks4 

Pcrg::mtf1 

MB215 ΔΔpks4 Pcrg::mtf1 + 

Pcrg::pks2 

a2 b13 ΔΔum04097 Pcrg::um04101 

+Pcrg::um06418 

pCRG-Pks2- 
Tnos-G418 

CbxR, G418R, 

HygR, NatR 

MB215 ΔΔpks4 

Pcrg::mtf1 
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4.2! Plasmids and primers 
!
4.2.1! Standard plasmids  

Plasmid Resistance Reference 
pJET1.2 Amp Fermentas 
pRS426 Amp, Ura3 (S.cerevisiae) Sikorski and Hieter, 1989 
pETEF-GFP-Ala6-MMXN Amp, Cbx (U. maydis) Lab collection 
pCRG-GFP-Ala6-MXN Amp, Cbx (U. maydis) Lab collection 
pMF1-h Amp, Hyg (U. maydis) Brachmann et al., 2004 
pMF1-g Amp, G418 (U. maydis) Brachmann et al., 2004 
pMM69 Amp, Cbx (U. maydis) Provided by Marino 

Moretti 
pETEF-GFP-Ala6-MMXN-
G418 

Amp, G418 (U. maydis) Provided by Julia Ast 

pDL64 Amp, Cbx (U. maydis) Provided by Marino 
Moretti 

pMM40 Amp, Cbx (U. maydis) Provided by Marino 
Moretti 

 

4.2.2! Plasmids created in this study for the transformation of U. maydis 
 

pRS426-Δpks5 (G418) 
This plasmid was used to generate a pks5-deletion. 500 bp of the open reading frame of 

the pks5 gene were replaced by a geneticin resistance cassette. 
 
Construct: 
 
Left Border 
MI287 pks5 LBfw  5´-gtaacgccagggttttcccagtcacgacgaatattatgactgtatcacctcctgctccattcg 
MI288 pks5 LBrv    5´-caattgtcacgccatggtggccatctaggccatcggcattccgatcgagagcgataggc 
 
Right Border 
MI289 pks5 RBfw  5´-gtgcggccgcattaataggcctgagtggccacaatcccaacgctggaggtaatcgggcgcaag 
MI290 pks5 RBrv       5´-gcggataacaatttcacacaggaaacagcaatattcgcagatatgtcttaagcaagtgtcgtcc 
 

To generate a fragment for the deletion of pks5, the 5´and 3´flanking regions of pks5 were 
amplified by PCR with the primer combinations MI287 pks5 LBfw/MI288 pks5 LBrv and 
MI289 pks5 RBfw/MI290 pks5 RBrv, respectively. The PCR products together with the SfiI-
geneticin resistance cassette fragment (digested from the pMF1-g vector) and the KpnI/BamHI 
pRS426 excised vector were introduced into S. cerevisiae. The plasmid  pRS426-Δpks5 (G418) 
was generated by the homologous recombination between the borders, the resistance cassette 
and the pRS426 vector. For transformation of U. maydis, the plasmid was linearized with SspI. 
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pRS426-Δorf1 (G418) 
This plasmid was used to generate a orf1-deletion. 406 bp of the open reading frame of 

the orf1 gene was replaced by a geneticin resistance cassette. 
 

Construct: 
 
Left Border 
MI938 orf1 LBfw       5´-gtaacgccagggttttcccagtcacgacgaatattcaaagtgaagagagcgtcaagtataagtg 
MI939 orf1 LBrv        5´-caattgtcacgccatggtggccatctaggccagcggcatcaatgagggcccttcttcacactc 
 
Right Border 
MI940 orf1 RBfw       5´-gtgcggccgcattaataggcctgagtggcccgattcgttttgtttttcattttcttaccaggatc 
MI941 orf1 RBrv        5´-gcggataacaatttcacacaggaaacagcaatattctcccacctcattccattgttggagc 
 

To generate a fragment for the deletion of orf1, the 5´and 3´flanking regions of orf1 were 
amplified by PCR with the primer combinations MI938 orf1 LBfw/MI939 orf1 LBrv and 
MI940 orf1 RBfw/MI941 orf1 RBrv, respectively. The PCR products together with the SfiI-
geneticin resistance cassette fragment (digested from the pMF1-g vector) and the KpnI/BamHI 
pRS426 excised vector were introduced into S. cerevisiae. The plasmid  pRS426-Δorf1 (G418) 
was generated by the homologous recombination between the borders, the resistance cassette 
and the pRS426 vector. For transformation of U. maydis, the plasmid was linearized with SspI. 
 
pRS426-Δpks4 (Hyg) 

This plasmid was used to generate a pks4-deletion. 506 bp of the reading frame of the 
pks4 gene was replaced by a hygromycin resistance cassette. 
 
Construct: 
 
Left Border 
MI469 pks4 LBfw      5´-gtaacgccagggttttcccagtcacgacgaatattgcaggtgtgtttcgcctcgaggacgccatc 
MI470 pks4 LBrv       5´-caattgtcacgccatggtggccatctaggcccaaccaccttgtggcccgatactgtctcctggaac 
 
Right Border 
MI471 pks4 RBfw      5´-gtgcggccgcattaataggcctgagtggccattcaatctttcactgtggatctacgcgaac 
MI472 pks4 RBrv       5´-gcggataacaatttcacacaggaaacagcaatatttctatcttcaacgcatgacgacagtg 
 

To generate a fragment for the deletion of pks4, the 5´and 3´flanking regions of pks4 were 
amplified by PCR with the primer combinations MI469 pks4 LBfw/MI470 pks4 LBrv and 
MI471 pks4 RBfw/MI472 pks4 RBrv, respectively. The PCR products together with the SfiI-
hygromycin resistance cassette fragment (digested from the pMF1-h vector) and the 
KpnI/BamHI pRS426 excised vector were introduced into S. cerevisiae. The plasmid  pRS426-
Δpks4 (Hyg) was generated by the homologous recombination between the borders, the 
resistance cassette and the pRS426 vector. For transformation of U. maydis, the plasmid was 
linearized with SspI. 
 
pRS426-Δpks4 (G418) 

This plasmid was used to generate a pks4-deletion. 506 bp of the reading frame of the 
pks4 gene was replaced by a geneticin resistance cassette. To generate a fragment for the 
deletion of pks4, the 5´and 3´flanking regions of pks4 were amplified by PCR with the primer 
combinations MI469 pks4 LBfw/MI470 pks4 LBrv and MI471 pks4 RBfw/MI472 pks4 RBrv, 
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respectively. The PCR products together with the SfiI-geneticin resistance cassette fragment 
(digested from the pMF1-g vector) and the KpnI/BamHI pRS426 excised vector were 
introduced into S. cerevisiae. The plasmid pRS426-Δpks4 (G418) was generated by the 
homologous recombination between the borders, the resistance cassette and the pRS426 vector. 
For transformation of U. maydis, the plasmid was linearized with SspI. 
 
pRS426-Δmtf2 (Hyg) 

This plasmid was used to generate a mtf2-deletion. The total open reading frame of the 
mtf2 gene was replaced by a hygromycin resistance cassette. 
 
Construct: 
 
Left Border 
MG104 mtf2 LBfw       5´- gtaacgccagggttttcccagtcacgacgaatattcttctatcaacgacttctacaagttgtc 
MG105 mtf2 LBrv        5´- caattgtcacgccatggtggccatctaggccagcaaagtacaagagcactgcggcattagatc 
 
Right Border 
MG106 mtf2 RBfw       5´- gtgcggccgcattaataggcctgagtggccacttggctagtcgtgggtcgacgatgccccc 
MG107 mtf2 RBrv        5´- gcggataacaatttcacacaggaaacagcaatattcaggacttggcaatgtggatgcgattg 
 

To generate a fragment for the deletion of mtf2, the 5´and 3´flanking regions of mtf2 were 
amplified by PCR with the primer combinations MG104 mtf2 LBfw/MG105 mtf2 LBrv and 
MG106 mtf2 RBfw/MG107 mtf2 RBrv, respectively. The PCR products together with the SfiI-
hygromycin resistance cassette fragment (digested from the pMF1-h vector) and the 
KpnI/BamHI pRS426 excised vector were introduced into S. cerevisiae. The plasmid  pRS426-
Δmtf2 (Hyg) was generated by the homologous recombination between the borders, the 
resistance cassette and the pRS426 vector. For transformation of U. maydis, the plasmid was 
linearized with SspI. 
 
pRS426-Δorf3 (Hyg) 

This plasmid was used to generate a orf3-deletion. The total open reading frame of the 
orf3 gene was replaced by a hygromycin resistance cassette. 
 
Construct: 
 
Left Border 
MH416 orf3 LBfw   5´-gtaacgccagggttttcccagtcacgacgaatattgacgaaaccgacacggagcttgatctatatg 
MH417 orf3 LBrv    5´-caattgtcacgccatggtggccatctaggccgctgtatcatgatgcgttccgaatgaaacataaag 
 
 
Right Border 
MH418 orf3 RBfw   5´-gtgcggccgcattaataggcctgagtggccaccaacagttcccagttaagttactgtacatg 
MH419 orf3 RBrv    5´-gcggataacaatttcacacaggaaacagcaatattggccgccaacgcccttttcactagac 
 

To generate a fragment for the deletion of orf3, the 5´and 3´flanking regions of orf3 were 
amplified by PCR with the primer combinations MH416 orf3 LBfw/MH417 orf3 LBrv and 
MH418 orf3 RBfw/MH419 orf3 RBrv, respectively. The PCR products together with the SfiI-
hygromycin resistance cassette fragment (digested from the pMF1-h vector) and the 
KpnI/BamHI pRS426 excised vector were introduced into S. cerevisiae. The plasmid  pRS426-
Δorf3 (Hyg) was generated by the homologous recombination between the borders, the 
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resistance cassette and the pRS426 vector. For transformation of U. maydis, the plasmid was 
linearized with SspI. 
 
pRS426-Δmtf1 (Hyg) 

This plasmid was used to generate a mtf1-deletion. The total open reading frame of the 
mtf1 gene was replaced by a hygromycin resistance cassette. 
 
Construct: 
 
Left Border 
MG108 mtf1 LBfw  5´- gtaacgccagggttttcccagtcacgacgaatattgtctatgcaactccgaaggcggcgcgg 
MG109 mtf1 LBrv   5´- caattgtcacgccatggtggccatctaggccggcgttgagccaagtagcgaactacccagggg 
 
Right Border 
MG110 mtf1 RBfw  5´- gtgcggccgcattaataggcctgagtggccgtgatagattcgattgaccgtattctgtaatg 
MG111 mtf1 RBrv   5´- gcggataacaatttcacacaggaaacagcaatattccagaagcgaccgaccgcacatgttgctc 
 

To generate a fragment for the deletion of mtf1, the 5´and 3´flanking regions of mtf1 were 
amplified by PCR with the primer combinations MG108 mtf1 LBfw/MG109 mtf1 LBrv and 
MG110 mtf1 RBfw/MG111 mtf1 RBrv, respectively. The PCR products together with the SfiI-
hygromycin resistance cassette fragment (digested from the pMF1-h vector) and the 
KpnI/BamHI pRS426 excised vector were introduced into S. cerevisiae. The plasmid  pRS426-
Δmtf1 (Hyg) was generated by the homologous recombination between the borders, the 
resistance cassette and the pRS426 vector. For transformation of U. maydis, the plasmid was 
linearized with SspI. 
 
pRS426-Δaox1 (Hyg) 

This plasmid was used to generate an aox1-deletion. The total open reading frame of the 
aox1 gene was replaced by a hygromycin resistance cassette. 
 
Construct: 
 
Left Border 
MH420 aox1 LBfw5´- gtaacgccagggttttcccagtcacgacgaatattcgacacaaacctcaacgtgttcaacgttg 
MH421 aox1 LBrv 5´- caattgtcacgccatggtggccatctaggccccttgtacacagtggtggtcgagcgtaaaaag 
 
Right Border 
MH422 aox1 RBfw5´- gtgcggccgcattaataggcctgagtggccaaacacaccaggtacaaagcacgtgatcctgtaaac 
MH423 aox1 RBrv 5´- gcggataacaatttcacacaggaaacagcaatattagacactgttgttggtgcagcggaacc 
 

To generate a fragment for the deletion of aox1, the 5´and 3´flanking regions of aox1 
were amplified by PCR with the primer combinations MH420 aox1 LBfw/MH421 aox1 LBrv 
and MH422 aox1 RBfw/MH423 aox1 RBrv, respectively. The PCR products together with the 
SfiI-hygromycin resistance cassette fragment (digested from the pMF1-h vector) and the 
KpnI/BamHI pRS426 excised vector were introduced into S. cerevisiae. The plasmid  pRS426-
Δaox1 (Hyg) was generated by the homologous recombination between the borders, the 
resistance cassette and the pRS426 vector. For transformation of U. maydis, the plasmid was 
linearized with SspI. 
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pRS426-Δvbs1 (Hyg) 
This plasmid was used to generate a vbs1-deletion. The total open reading frame of the 

vbs1 gene was replaced by a hygromycin resistance cassette. 
 
Construct: 
 
Left Border 
MH424 vbs1 LBfw   5´-   gtaacgccagggttttcccagtcacgacgaatattacccacgccaggcgcagagagaccgttgg 
MH425 vbs1 LBrv    5´- caattgtcacgccatggtggccatctaggcccttgaagaagctcagatgtctaggtcagc 
 
Right Border 
MH426 vbs1 RBfw   5´-gtgcggccgcattaataggcctgagtggccgtcgtggatatgacttgcagttttactctgtac 
MH427 vbs1 RBrv    5´- gcggataacaatttcacacaggaaacagcaatattcgccagctgtcaattgtacacacctgg 
 

To generate a fragment for the deletion of vbs1, the 5´and 3´flanking regions of vbs1 were 
amplified by PCR with the primer combinations MH424 vbs1 LBfw/MH425 vbs1 LBrv and 
MH426 vbs1 RBfw/MH427 vbs1 RBrv, respectively. The PCR products together with the SfiI-
hygromycin resistance cassette fragment (digested from the pMF1-h vector) and the 
KpnI/BamHI pRS426 excised vector were introduced into S. cerevisiae. The plasmid  pRS426-
Δvbs1 (Hyg) was generated by the homologous recombination between the borders, the 
resistance cassette and the pRS426 vector. For transformation of U. maydis, the plasmid was 
linearized with SspI. 
 
pRS426-Δorf4 (Hyg) 

This plasmid was used to generate a orf4-deletion. The total open reading frame of the 
orf4 gene was replaced by a hygromycin resistance cassette. 
 
Construct: 
 
Left Border 
MH428 orf4 LBfw   5´- gtaacgccagggttttcccagtcacgacgaatattgacactgcttccaccacccaggccaaaac 
MH429 orf4 LBrv     5´-caattgtcacgccatggtggccatctaggccagtatcgttgagggctgtacaagttcgag 
 
Right Border 
MH430 orf4 RBfw   5´-gtgcggccgcattaataggcctgagtggccagcaactcaacgtggtccatttcaatatcaatc 
MH431 orf4 RBrv    5´-gcggataacaatttcacacaggaaacagcaatattgcttcgctcatgcctcagacgcgctccac 
 
 

To generate a fragment for the deletion of orf4, the 5´and 3´flanking regions of orf4 were 
amplified by PCR with the primer combinations MH428 orf4 LBfw/MH429 orf4 LBrv and 
MH430 orf4 RBfw/MH431 orf4 RBrv, respectively. The PCR products together with the SfiI-
hygromycin resistance cassette fragment (digested from the pMF1-h vector) and the 
KpnI/BamHI pRS426 excised vector were introduced into S. cerevisiae. The plasmid  pRS426-
Δorf4 (Hyg) was generated by the homologous recombination between the borders, the 
resistance cassette and the pRS426 vector. For transformation of U. maydis, the plasmid was 
linearized with SspI. 
 
pRS426-Δpks3 (Hyg) 

This plasmid was used to generate a pks3-deletion. The total open reading frame of the 
pks3 gene was replaced by a hygromycin resistance cassette. 
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Construct: 
 
Left Border 
MH432 pks3 LBfw    5´- gtaacgccagggttttcccagtcacgacgaatattggataagagcaagaagctgacgcaagctc   
MH433 pks3 LBrv      5´-caattgtcacgccatggtggccatctaggccgccgatagattaccaatgtggctaacgctg 
 
Right Border 
MH434 pks3 RB fw    5´-gtgcggccgcattaataggcctgagtggccaaacgatcgagccaatgttgcctgacagacgtc 
MH435 pks3 RB rv     5´- gcggataacaatttcacacaggaaacagcaatattctccttactcgaacttgtacagccctc 
 

To generate a fragment for the deletion of pks3, the 5´and 3´flanking regions of pks3 were 
amplified by PCR with the primer combinations MH432 pks3 LBfw/MH433 pks3 LBrv and 
MH434 pks3 RBfw/MH435 pks3 RBrv, respectively. The PCR products together with the SfiI-
hygromycin resistance cassette fragment (digested from the pMF1-h vector) and the 
KpnI/BamHI pRS426 excised vector were introduced into S. cerevisiae. The plasmid  pRS426-
Δpks3 (Hyg) was generated by the homologous recombination between the borders, the 
resistance cassette and the pRS426 vector. For transformation of U. maydis, the plasmid was 
linearized with SspI. 
 
pRS426-Δomt1 (Hyg) 

This plasmid was used to generate a omt1-deletion. The total open reading frame of the 
omt1 gene was replaced by a hygromycin resistance cassette. 
 
Construct: 
 
Left Border 
MH436 omt1 LBfw  5´-gtaacgccagggttttcccagtcacgacgaatattccgggatctcgtcgatcgcttgagctccc 
MH437 omt1 LBrv   5´-caattgtcacgccatggtggccatctaggcccctcaaagaaagaggctagttttcaggaaaac 
 
 
Right Border 
MH438 omt1 RBfw  5´-gtgcggccgcattaataggcctgagtggccgcacctcttgcaagaacgctatcgagttcttc   
MH439 omt1 RBrv   5´- gcggataacaatttcacacaggaaacagcaatattcaggtgacaagcatcaccaagtagtatc   
 

 
To generate a fragment for the deletion of omt1, the 5´and 3´flanking regions of omt1 

were amplified by PCR with the primer combinations MH436 omt1 LBfw/MH437 omt1 LBrv 
and MH438 omt1 RBfw/MH439 omt1 RBrv, respectively. The PCR products together with the 
SfiI-hygromycin resistance cassette fragment (digested from the pMF1-h vector) and the 
KpnI/BamHI pRS426 excised vector were introduced into S. cerevisiae. The plasmid  pRS426-
Δomt1 (Hyg) was generated by the homologous recombination between the borders, the 
resistance cassette and the pRS426 vector. For transformation of U. maydis, the plasmid was 
linearized with SspI. 
 
pRS426-Δpmo1 (Hyg) 

This plasmid was used to generate a pmo1-deletion. The total open reading frame of the 
pmo1 gene was replaced by a hygromycin resistance cassette. 
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Construct: 
 
Left Border 
MH440 pmo1 LBfw  5´-gtaacgccagggttttcccagtcacgacgaatattcagctctccaaccgagcagcccatgg 
MH441 pmo1 LBrv   5´-caattgtcacgccatggtggccatctaggccgtttttcaagtgccatataatcgagtaaac 
 
Right Border: 
MH442 pmo1 RBfw 5´-gtgcggccgcattaataggcctgagtggccccacaatcttgaagcttttccctcacgcctgtc 
MH443 pmo1 RBrv  5´-gcggataacaatttcacacaggaaacagcaatattgaaaacaggaatgccgcgaactagatgac 
 

To generate a fragment for the deletion of pmo1, the 5´and 3´flanking regions of pmo1 
were amplified by PCR with the primer combinations MH440 pmo1 LBfw/MH441 pmo1 LBrv 
and MH442 pmo1 RBfw/MH443 pmo1 RBrv, respectively. The PCR products together with 
the SfiI-hygromycin resistance cassette fragment (digested from the pMF1-h vector) and the 
KpnI/BamHI pRS426 excised vector were introduced into S. cerevisiae. The plasmid  pRS426-
Δpmo1 (Hyg) was generated by the homologous recombination between the borders, the 
resistance cassette and the pRS426 vector. For transformation of U. maydis, the plasmid was 
linearized with SspI. 
 
pRS426-Δorf5 (Hyg) 

This plasmid was used to generate a orf5-deletion. The total open reading frame of the 
orf5 gene was replaced by a hygromycin resistance cassette. 
 
Construct: 
 
Left Border 
MH444 orf5 LBfw     5´-gtaacgccagggttttcccagtcacgacgaatattggcagagttgagcaccactatgcggttgc 
MH445 orf5 LBrv      5´-caattgtcacgccatggtggccatctaggccgtttcgtctgcagaagagctgctgtatac 
 
Right Border: 
MH446 orf5 RBfw     5´-gtgcggccgcattaataggcctgagtggccaacacgcgcttgatcgactcactcctcagtcctc 
MH447 orf5 RBrv      5´-gcggataacaatttcacacaggaaacagcaatatttcttgacccacaccgaccatgcgcagcac 
 

To generate a fragment for the deletion of orf5, the 5´and 3´flanking regions of orf5 were 
amplified by PCR with the primer combinations MH444 orf5 LBfw/MH445 orf5 LBrv and 
MH446 orf5 RBfw/MH447 orf5 RBrv, respectively. The PCR products together with the SfiI-
hygromycin resistance cassette fragment (digested from the pMF1-h vector) and the 
KpnI/BamHI pRS426 excised vector were introduced into S. cerevisiae. The plasmid  pRS426-
Δorf5 (Hyg) was generated by the homologous recombination between the borders, the 
resistance cassette and the pRS426 vector. For transformation of U. maydis, the plasmid was 
linearized with SspI. 
 
pRS426-Δcyp4 (Hyg) 

This plasmid was used to generate a cyp4-deletion. The total open reading frame of the 
cyp4 gene was replaced by a hygromycin resistance cassette. 
 
Construct: 
 
Left Border 
MH448 cyp4 LBfw    5´-gtaacgccagggttttcccagtcacgacgaatattcggatcaacttggtggctagtccagggc 
MH449 cyp4 LBrv      5´- caattgtcacgccatggtggccatctaggccgtcgatcaacaaatacacgtccacagcg 
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Right Border 
MH450 cyp4 RBfw    5´-gtgcggccgcattaataggcctgagtggccaccacacatctttctgcaataggcaatgcg 
MH451 cyp4 RBrv    5´-gcggataacaatttcacacaggaaacagcaatattctcgtcacaggcagcaccgatcctgaagc 
 

To generate a fragment for the deletion of cyp4, the 5´and 3´flanking regions of cyp4 were 
amplified by PCR with the primer combinations MH448 cyp4 LBfw/MH449 cyp4 LBrv and 
MH450 cyp4 RBfw/MH451 cyp4 RBrv, respectively. The PCR products together with the SfiI-
hygromycin resistance cassette fragment (digested from the pMF1-h vector) and the 
KpnI/BamHI pRS426 excised vector were introduced into S. cerevisiae. The plasmid  pRS426-
Δcyp4 (Hyg) was generated by the homologous recombination between the borders, the 
resistance cassette and the pRS426 vector. For transformation of U. maydis, the plasmid was 
linearized with SspI. 

 
pRS426-Δdeh1 (Hyg) 

This plasmid was used to generate a deh1-deletion. The total open reading frame of the 
deh1 gene was replaced by a hygromycin resistance cassette. 
 
Construct: 
 
Left Border 
MH452 deh1 LB fw     5´-gtaacgccagggttttcccagtcacgacgaatattgcgatcgacgctccaatcagcggtggtgc 
MH453 deh1 LBrv       5´-caattgtcacgccatggtggccatctaggccttcgtacagcttgcaagatcgagaaagcg 
 
Right Border 
MH454 deh1 RB fw     5´-gtgcggccgcattaataggcctgagtggccaattcagtgcgacgctatccgtttgaatcgcc  
MH455 deh1 RB rv      5´-gcggataacaatttcacacaggaaacagcaatattgacggctctggactcaccgccgagggag  
 
 

To generate a fragment for the deletion of deh1, the 5´and 3´flanking regions of deh1 
were amplified by PCR with the primer combinations MH452 deh1 LBfw/MH453 deh1 LBrv 
and MH454 deh1 RBfw/MH455 deh1 RBrv, respectively. The PCR products together with the 
SfiI-hygromycin resistance cassette fragment (digested from the pMF1-h vector) and the 
KpnI/BamHI pRS426 excised vector were introduced into S. cerevisiae. The plasmid  pRS426-
Δdeh1 (Hyg) was generated by the homologous recombination between the borders, the 
resistance cassette and the pRS426 vector. For transformation of U. maydis, the plasmid was 
linearized with SspI. 
 
pCRG-Mtf1-Tnos-Cbx 

This plasmid was used for expression of the gene mtf1 under the control of the arabinose-
inducible crg promoter. The carboxin resistance of the vector pCRG-GFP-Ala6-MXN was used 
as selection marker for U. maydis transformation. 
 
Construct: 
 
MG700 mtf1 XmaIfw   5´-gcatcccgggccatggctggaaaacgtaatcgc 
MG703 mtf1 NotIrv   5´-atggcggccgctcagaccacggtgttagtggc 
 

The open reading frame of the mtf1 gene was amplified from genomic DNA by PCR with 
the primers MG700 mtf1 XmaIfw and MG703 mtf1 NotIrv, and subsequently cleaved with 
XmaI/NotI. This fragment was inserted into the plasmid pCRG-GFP-Ala6-MXN, which had 
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been digested with XmaI/NotI for deleting the GFP insert. For transformation of U. maydis, the 
plasmid was linearized with SspI. 
 
pCRG-Mtf2-Tnos-Cbx 

This plasmid was used for expression of the gene mtf2 under the control of the arabinose- 
inducible crg promoter. The carboxin resistance of the vector pCRG-GFP-Ala6-MXN was used 
as selection marker for U. maydis transformation. 
 
Construct: 
 
MG554 mtf2 XmaIfw    5´-gcatcccgggatgtcttgcccacaggatcgc 
MG551 mtf2 NotIrv       5´-atgcgcggccgcctagtgaaaagggcgttggcg 
 

The open reading frame of the mtf2 gene was amplified from genomic DNA by PCR with 
the primers MG554 mtf2 XmaIfw and MG551 mtf2 NotIrv, and subsequently cleaved with 
XmaI/NotI. This fragment was inserted into the plasmid pCRG-GFP-Ala6-MXN, which had 
been digested with XmaI/NotI for deleting the GFP insert. For transformation of U. maydis, the 
plasmid was linearized with SspI. 
 
pCRG-Pks1-Tnos-Cbx 

This plasmid was used for expression of the gene pks1 under the control of the arabinose- 
inducible crg promoter. The carboxin resistance of the vector pCRG-GFP-Ala6-MXN was used 
as selection marker for U. maydis transformation. 
 
Construct: 
 
MI055 pks1 KpnIfw     5´- gcatggtaccccatgagcgctgctatcctcccctcg 
MI056 pks1 NotIrv       5´- atggcggccgcctagttgagcaaggcattccg 
 

The open reading frame of the pks1 gene was amplified from genomic DNA by PCR with 
the primers MI055 pks1 KpnIfw and MI056 pks1 NotIrv, and subsequently cleaved with 
KpnI/NotI. This fragment was inserted into the plasmid pCRG-GFP-Ala6-MXN, which had 
been digested with KpnI/NotI for deleting the GFP insert. For transformation of U. maydis, the 
plasmid was linearized with SspI. 
 
pCRG-Pks1-Tnos-Cbx-G418 

This plasmid was used for expression of the gene pks1 under the control of the arabinose- 
inducible crg promoter. The geneticin resistance of the vector pETEF-GFP-Ala6-MMXN-
G418 was used as selection marker for U. maydis transformation. 
 
Construct: 
 
MI756 crg SbfIfw        5´- atatcctgcaggctgggaccataccgtgttgc 
MI936 pks1 AflIIrv   5´- atatcttaagctagttgagcaaggcattccgacagg 
 

The crg promoter and the open reading frame of the pks1 gene were amplified from the 
plasmid pCRG-Pks1-Tnos-Cbx (described above) with the primers MI756 crg Sbffw and 
MI936 pks1 AflIIrv. The PCR product was subsequently cleaved with SbfI/AflII and ligated 
with the plasmid pETEF-GFP-Ala6-MMXN-G418, which had been previously digested with 
SbfI/AflII for removing the pETEF-GFP insert. For transformation of U. maydis, the plasmid 
was linearized with SspI. 
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pCRG-Pks1-Tnos-Cbx-Hyg 
This plasmid was generated by replacing the G418 resistance cassette of the plasmid 

pCRG-Pks1-Tnos-Cbx-G418 for a hygromycin cassette. The plasmids pCRG-Pks1-Tnos-Cbx-
G418 and pMF1-h were digested with NotI to excise the G418 and the hygromycin resistance 
cassettes, respectively. Subsequently, the digested plasmid and the hygromycin cassette were 
ligated. 
 
pCRG-Pks2-Tnos-Cbx 

This plasmid was used for expression of the gene pks2 under the control of the arabinose- 
inducible crg promoter. The carboxin resistance of the vector pCRG-GFP-Ala6-MXN was used 
as selection marker for U. maydis transformation. 
Construct: 
 
MI10 pks2 XmaIfw     5´- gcatcccgggccatgaaggcccacggccataagg 
MI11 pks2 NotIrv        5´- atggcggccgctcactcttgagcactgc 
 

The open reading frame of the pks2 gene was amplified from genomic DNA by PCR with 
the combination of primers MI10 pks2 XmaIfw and MI11 pks2 NotIrv, and subsequently 
cleaved with XmaI/NotI. This fragment was inserted into the plasmid pCRG-GFP-Ala6-MXN, 
which had been digested with XmaI/NotI for deleting the GFP insert. For transformation of U. 
maydis, the plasmid was linearized with SspI. 
 
pCRG-Pks2-Tnos-Cbx-G418 

This plasmid was used for expression of the gene pks2 under the control of the arabinose- 
inducible crg promoter. The geneticin resistance of the vector pETEF-GFP-Ala6-MMXN-
G418 was used as selection marker for U. maydis transformation. 
 
Construct: 
 
MI756 crg SbfIfw        5´- atatcctgcaggctgggaccataccgtgttgc 
MI937 pks2 AflIIrv      5´- atatcttaagtcactcttgagcactgcgcacgacaagg 
 

The crg promoter and the open reading frame of the pks2 gene were amplified from the 
plasmid pCRG-Pks2-Tnos-Cbx (described above) with the primers MI756 crg Sbf1fw and 
MI937 pks2 AflIIrv. The PCR product was subsequently cleaved with SbfI/AflII and ligated 
with the plasmid pETEF-GFP-Ala6-MMXN-G418, which had been previously digested with 
SbfI/AflII for removing the pETEF-GFP insert. For transformation of U. maydis, the plasmid 
was linearized with SspI. 
 
pCRG-Pks2-Tnos-Cbx-Hyg 

This plasmid was generated by replacing the G418 resistance cassette of the plasmid 
pCRG-Pks1-Tnos-Cbx-G418 for a hygromycin cassette. The plasmids pCRG-Pks2-Tnos-Cbx-
G418 and pMF1-h were digested with NotI to excise the G418 and the hygromycin resistance 
cassettes, respectively. Subsequently, the digested plasmid and the hygromycin cassette were 
ligated. 
 
 
pCRG-Pks3-Tnos-Cbx 

This plasmid was used for expression of the gene pks3 under the control of the arabinose- 
inducible crg promoter. The carboxin resistance of the vector pCRG-GFP-Ala6-MXN was used 
as selection marker for U. maydis transformation. 
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Construct: 
 
MH701 pks3 XmaIfw  5´- gcatcccgggccatgtcaagtcaaagttttgc 
MH702 pks3 NotIrv     5´- atggcggccgcctactgtgatagtggcttcg 
 

The open reading frame of the pks3 gene was amplified from genomic DNA by PCR with 
the primers MH701 pks3 XmaIfw and MH702 pks3 NotIrv, and subsequently cleaved with 
XmaI/NotI. This fragment was inserted into the plasmid pCRG-GFP-Ala6-MXN, which had 
been digested with XmaI/NotI for deleting the GFP insert. For transformation of U. maydis, the 
plasmid was linearized with SspI. 
 
pCRG-Pks3-Tnos-Cbx-G418 

This plasmid was used for expression of the gene pks3 under the control of the arabinose- 
inducible crg promoter. The geneticin resistance of the vector pETEF-GFP-Ala6-MMXN-
G418 was used as selection marker for U. maydis transformation. 
 
Construct: 
 
MI985 crg SbfIfw     5´- atatcctgcaggctgggaccataccgtgttgc 
MI986 pks3 AflIIrv      5´- atatcttaagaaactttattgccaaatgtttg 
 

The crg promoter and the open reading frame of the pks3 gene were amplified from the 
plasmid pCRG-Pks3-Tnos-Cbx (described above) with the primers MI985 crg SbfIfw and 
MI986 pks3 AflIIrv. The PCR product was subsequently cleaved with SbfI/AflII and ligated 
with the plasmid pETEF-GFP-Ala6-MMXN-G418, which had been previously digested with 
SbfI/AflII for removing the pETEF-GFP insert. For transformation of U. maydis, the plasmid 
was linearized with SspI. 
 
pCRG-Pks4-Tnos-Cbx 

This plasmid was used for expression of the gene pks4 under the control of the arabinose- 
inducible crg promoter. The carboxin resistance of the vector pCRG-GFP-Ala6-MXN was used 
as selection marker for U. maydis transformation. 
 
Construct: 
 
MI593 pks4 XmaIfw     5´- gcatcccgggccatgtcttcccactcctctagtc 
MH704 pks4 NotIrv      5´- cggatgagctgggatcactatag 
 

The open reading frame of the pks4 gene was amplified from genomic DNA by PCR with 
the primers MI593 pks4 XmaIfw and MH704 pks4 NotIrv, and subsequently cleaved with 
XmaI/NotI. This fragment was inserted into the plasmid pCRG-GFP-Ala6-MXN, which had 
been digested with XmaI/NotI for deleting the GFP insert. For transformation of U. maydis, the 
plasmid was linearized with SspI. 
 
pCRG-Pks4-Tnos-G418-Mig2-6 

This plasmid was used for expression of the gene pks4 under the control of the arabinose- 
inducible crg promoter. The geneticin resistance of the vector pMM69 was used as selection 
marker for U. maydis transformation. 
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Construct: 
 
MI985 crg SbfIfw     5´- atatcctgcaggctgggaccataccgtgttgc 
MI758 pks4 NotIrv  5´- atatgcggccgcctatgcgcaaagcatgg 
 

The crg promoter and the open reading frame of the pks4 gene were amplified from the 
plasmid pCRG-Pks4-Tnos-Cbx (described above) with the primers MI985 crg SbfIfw and 
MI758 pks4 NotIrv. The PCR product was subsequently cleaved with SbfI/NotI and ligated 
with the plasmid pMM69, which had been previously digested with SbfI/NotI for removing the 
pAM1-mCherry insert. For transformation of U. maydis, the plasmid was linearized with 
EcoNI. 
 
pCRG-Pks5-Tnos-Cbx 

This plasmid was used for expression of the gene pks5 under the control of the arabinose- 
inducible crg promoter. The carboxin resistance of the vector pDL64 was used as selection 
marker for U. maydis transformation. 
 
Construct: 
 
MI823 pDL64fw      5´- cgtaggggtaggctgctgagcggccgcccggctgcag 
MI824 pDL64rv       5´- ggtgcgtatcgcgggcctgcaggcatgcaagcttcagctgctcg 
MI825 Pcrgfw          5´- gctgaagcttgcatgcctgcaggcccgcgatacgcaccttgcaag 
MI826 Pcrgrv           5´- ggaggtgatacagtcattctagacgagtttcaccgcaaacctcgcg 
MI827 pks5fw          5´- gcggtgaaactcgtctagaatgactgtatcacctcctgctcc 
MI828 pks5rv     5´- cagccgggcggccgctcagcagcctacccctacgacgtgcccgactatgcc  
                   ggcgctagtccggcgcatc 
 

The open reading frame of the pks5 gene was amplified from genomic DNA by PCR with 
the primers MI827 pks5fw and MI828 pks5rv. The crg promoter and the backbone for the 
construction of the plasmid pCRG-Pks5-Tnos-Cbx were amplified by PCR using as a template 
the vectors pMM40 and pDL64, respectively. The primer combinations for each case were: 
MI825 Pcrgfw/MI826 Pcrgrv (crg-promoter) and MI823 pDL64fw/MI824 pDL64rv (backbone 
vector). The three PCR fragments were ligated by Gibson assembly. For transformation of U. 
maydis, the plasmid was linearized with SspI. 
 
pCRG-Cyp4-Tnos-Cbx 

This plasmid was used for expression of the gene cyp4 under the control of the arabinose- 
inducible crg promoter. The carboxin resistance of the vector pCRG-GFP-Ala6-MXN was used 
as selection marker for U. maydis transformation. 
 
Construct: 
 
MI059 cyp4 XmaIfw    5´- gcatcccgggccatgttcgctctcgaggtagatg 
MI060 cyp4 NotIrv       5´- atggcggccgctcaatccttgtagtagtgatcg 
 

The open reading frame of the cyp4 gene was amplified from genomic DNA by PCR with 
the primers MI059 cyp4 XmaIfw and MI060 cyp4 NotIrv, and subsequently cleaved with 
XmaI/NotI. This fragment was inserted into the plasmid pCRG-GFP-Ala6-MXN, which had 
been digested with XmaI/NotI for deleting the GFP insert. For transformation of U. maydis, the 
plasmid was linearized with SspI. 
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pETEF-Cyp4-Tnos-Cbx-G418 
This plasmid was used for expression of the gene cyp4 under the control of the 

constitutive etef promoter. The geneticin resistance of the vector pETEF-GFP-Ala6-MMXN-
G418 was used as selection marker for U. maydis transformation. 
 
Construct: 
 
MI802 cyp4 BamHI fw  5´- atatggatccccatgttcgctctcgaggtagatg 
MI803 cyp4 SacIIrv       5´- atatccgcggtcaatccttgtagtagtgatcg 
 

The open reading frame of the cyp4 gene was amplified from the plasmid pCRG-Cyp4-
Tnos-Cbx (described above) with the primers MI802 cyp4 BamHIfw and MI803 cyp4 SacIIrv. 
The PCR product was subsequently cleaved with BamHI/SacII and ligated with the plasmid 
pETEF-GFP-Ala6-MMXN-G418, which had been previously digested with BamHI/SacII for 
removing the GFP insert. For transformation of U. maydis, the plasmid was linearized with 
SspI. 
 
pCRG-Vbs1-Tnos-Cbx 

This plasmid was used for expression of the gene vbs1 under the control of the arabinose- 
inducible crg promoter. The carboxin resistance of the vector pCRG-GFP-Ala6-MXN was used 
as selection marker for U. maydis transformation. 
 
Construct: 
 
MI328 vbs1 XmaIfw   5´- gcatcccgggccatggcttcaagcagctctgc 
MI329 vbs1 NotIrv        5´- atggcggccgctcaatgatgataatgagaag 
 
The open reading frame of the vbs1 gene was amplified from genomic DNA by PCR with the 
primers MI328 vbs1 XmaIfw and MI329 vbs1 NotIrv, and subsequently cleaved with 
XmaI/NotI. This fragment was inserted into the plasmid pCRG-GFP-Ala6-MXN, which had 
been digested with XmaI/NotI for deleting the GFP insert. For transformation of U. maydis, the 
plasmid was linearized with SspI. 
 
pMM69-Comp-Pks3-G418 

For construction of the complementation vector pMM69-Comp-Pks3-G418, the complete 
gene, including its promoter as one flank (1 kb), were amplified from genomic DNA by PCR 
with the primers MI796 comp pks3 SbfIfw and MI797 comp pks3 NotIrv. The PCR product 
was subsequently cleaved with SbfI/NotI and ligated with the plasmid pMM69, which had been 
previously digested with SbfI/NotI for removing the pAM1-mCherry insert. For transformation 
of U. maydis, the plasmid was linearized with EcoNI. 
 
Construct: 
 
MI796 comp pks3 SbfIfw 5´- atatcctgcagggctgacgcaagctcttagctctctc 
MI797 comp pks3 NotIrv 5´- atatgcggccgcctatggcccggccaagaaagaacac 
 
pMM69-Comp-Cyp4-G418 

For construction of the complementation vector pMM69-Comp-Cyp4-Gen, the complete 
gene, including its promoter as one flank (1 kb), were amplified from genomic DNA by PCR 
with the primers MI798 comp cyp4 SbfIfw and MI799 comp cyp4 NotIrv. The PCR product 
was subsequently cleaved with SbfI/NotI and ligated with the plasmid pMM69, which had been 
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previously digested with SbfI/NotI for removing the pAM1-mCherry insert. For transformation 
of U. maydis, the plasmid was linearized with EcoNI.   
 
Construct: 
 
MI798 comp cyp4 SbfIfw 5´- atatcctgcaggcgtagattcggatcaacttggtgg 
MI799 comp cyp4 NotIrv 5´- atatgcggccgctcaatccttgtagtagtgatcg 
 
pMM69-Comp-Vbs1-G418 

For construction of the complementation vector pMM69-Comp-Vbs-Gen, the complete 
gene, including its promoter as one flank (1 kb), were amplified from genomic DNA by PCR 
with the primers MI800 comp vbs1 SbfIfw and MI801 comp vbs1 NotI rv. The PCR product 
was subsequently cleaved with SbfI/NotI and ligated with the plasmid pMM69, which had been 
previously digested with SbfI/NotI for removing the pAM1-mCherry insert. For transformation 
of U. maydis, the plasmid was linearized with EcoNI.   
 
Construct: 
 
MI800 comp vbs1 SbfIfw 5´- atatcctgcaggatattacccacgccaggcgcag 
MI801 comp vbs1 NotIrv 5´- atatgcggccgctcaatgatgataatgagaagagc 
 

4.2.3! Primers 
An additional table (Table S8) with a detailed description of primers used in this study can be 

found in the supplementary section at the end of this chapter. 

 

4.3! Materials and their sources of supply 

 

4.3.1! Laboratory equipment 
Equipment Company 
Balances Sartorious 
Cell Mill Retsch (Düsseldorf) 
Centrifuges Heraeus 
Freezer, -80 °C Eppendorf 
Freezer, -20 °C Liebherr 
Refrigerator, 4 °C Liebherr 
Gel Electrophoresis Chambers Bio-Rad 
Heating Block Eppendorf 
Hot Air Oven Heraeus 
HPLC Instrument Thermo-Scientific 
Microscope Zeiss 
Nanodrop peQlab 
pH-Meter Schott 
Power Supply Bio-Rad 
Shaker Edmund Bühler GmbH (Hechingen) 
Sonicator Bandelin electronic (Berlin) 
Spectrophotometer Eppendendorf 
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Speed Vac-Concentrator Eppendorf (Hamburg) 
Storm 860 Amersham 
Thermocycler Biometra 
Transilluminator Eppendorf 
UV-crosslinker Stratagene 
Vibrax Kobe 
Vortex MAGV GmbH 
Water Bath GFL mbH 

 

 

4.3.2! General materials 
Material Company 
Baffled Flask Ochs (Bovenden) 
Blotting Paper Roth (Karlsruhe) 
Cryogenic Vials Sarstedt (Nümbrecht) 
Falcon Tubes (15 ml and 50 ml) Sarstedt (Nümbrecht) 
Filter Paper Neolab (Heidelberg) 
Glass Beads Sigma (Deisenhofen) 
Glass Vials (4 ml) VWR (Darmstadt) 
MobiSpin Columns MoBiTec (Göttingen) 
Petri Dishes Greiner, Sarstedt (Nümbrecht) 
Pipette Tips Biozym, Sarstedt (Nümbrecht) 
Plastic Cuvettes Sarstedt (Nümbrecht) 
Round-Bottom Boiling Flask (100 ml) VWR (Darmstadt) 
Screw Cap for Glass Vials Neolab (Heidelberg) 
Screw Cap for Plastic Vials VWR (Darmstadt) 
Screw Cap for Plastic Vials (0.3 ml) VWR (Darmstadt) 
Sterile Filter Sarstedt (Nümbrecht) 
Sterile Syringes and Needles Braun (Melsungen) 

 

 

4.3.3! Chemicals 
Chemical Company 
Acetic Acid Roth (Karlsruhe) 
Adenine Sigma (Deisenhofen) 
Agarose Biozym (Hessisch Oldendorf) 
Alanine  Serva (Heidelberg)                                                                                                     
Ampicillin Roth (Karlsruhe) 
Arabinose Merck (Darmstadt) 
Arginine Sigma (Deisenhofen) 
Asparagine Sigma (Deisenhofen) 
Aspartic Acid     Serva (Heidelberg)                                                                                           
Bacto-Agar     Difco (Detroit) 
Boric Acid   Sigma (Deisenhofen) 
Calcium Chloride      Merck (Darmstadt) 
Carboxin Riedle-de Haen (Seelze) 
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Chloroform Roth (Karlsruhe) 
Cobalt (II) Chloride     Merck (Darmstadt) 
Copper Chloride    Sigma (Deisenhofen) 
Copper Sulfate    Roth (Karlsruhe) 
α32P-dCTP      Hartmann Analytic                                                                                                
DEPC Roth (Karlsruhe) 
Deoxyribonucleotide Triphosphate (dNTPs) Fermentas 
Dimethyl Sulfoxide (DMSO)   Sigma (Deisenhofen)                                                                  
Disodium Phosphate    Merck (Darmstadt) 
Ethylenediaminetetraacetic Acid (EDTA) Merck (Darmstadt) 
Ethanol (Denatured)    Schmidt-GmbH (Dillenburg) 
Ethanol (Undenatured)   Roth (Karlsruhe) 
Ethidium Bromide      Roth (Karlsruhe)                                                                                   
Ethyl Acetate     Roth (Karlsruhe) 
Glucose     Roth (Karlsruhe) 
Glycerin     Roth (Karlsruhe)                                                                                                     
Herring Sperm DNA    Sigma (Deisenhofen) 
Hydrochloric Acid    Roth (Karlsruhe) 
Histidine      Merck (Darmstadt)                                                                                                   
Hygromycin Duchefa Biochemie (Haarlem, NL) 
Iron (III) Chloride    Roth (Karlsruhe) 
Iron (III) Sulfate     Roth (Karlsruhe) 
Isoleucine     Merck (Darmstadt) 
Isopropanol     Roth (Karlsruhe)   
L-Histidine      Roth (Karlsruhe)                                                                                                 
Liquid Nitrogen      MPI (Marburg)                                                                                        
Lithium Acetate      Sigma (Deisenhofen)                                                                                       
L-Lysine     Merck (Darmstadt)                                                                                                      
Magnesium Chloride    Merck (Darmstadt)                                                                               
Magnesium Sulfate     Merck (Darmstadt)                                                                                  
Manganese Chloride Mallinckrodt-Baker (Deventer, NL) 
Methanol VWR (Darmstadt) 
Methionine Merck (Darmstadt) 
Methylene Blue Roth (Karlsruhe)                                                                  
Molybdic Acid    Sigma (Deisenhofen)                                                                                          
Myo-Inositol     Sigma-Aldrich                                                                                             
Monopotassium Phosphate    Roth (Karlsruhe)                                                                  
Monosodium Phosphate  Roth (Karlsruhe)                                                                       
ClonNAT    Werner BioAgents (Jena) 
Nickel (II) Chloride    Merck (Darmstadt) 
Nutrient Broth     Difco (Detroit, USA)                                                                                         
Orage G     Sigma (Deisenhofen)                                                                                                     
Orsellinic Acid Alfa Aesar (Heysham, England) 
p-Amino-Benzoic Acid   Sigma (Deisenhofen)                                                                            
Peptone      Difco (Detroit, USA)                                                                                                     
Potassium Acetate     Merck (Darmstadt)                                                                                  
Potassium Chloride     Merck (Darmstadt)                                                                                 
Potassium Iodide      Roth (Karlsruhe)                                                                                     
Potassium Nitrate      Roth (Karlsruhe)                                                                                    
Phenol     Roth (Karlsruhe)                                                                                                        
Phenylalanine     Merck (Darmstadt)                                                                                           
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Polyethylene Glycol (PEG 3350)  Merck (Darmstadt)                                                            
Proline     Serva (Heidelberg)                                                                                                       
Serine     Roth (Karlsruhe)                                                                                                         
Sodium Acetate     Merck (Darmstadt)                                                                                        
Sodium Chloride     Roth (Karlsruhe)                                                                                       
Sodium Citrate     Roth (Karlsruhe)                                                                                          
Sodium Dodecyl Sulfate (SDS)   Roth (Karlsruhe)                                                                          
Sodium Hydroxide     Roth (Karlsruhe)                                                                                    
Sodium Molybdate     Merck (Darmstadt)                                                                                  
Sodium Sulfate     Roth (Karlsruhe)                                                                                          
Sorbitol      Sigma (Deisenhofen)                                                                                                      
Sulfuric Acid      Merck (Darmstadt)                                                                                              
Threonine     Sigma (Deisenhofen)                                                                                                  
Triazol     Life Technologies 
Tris     Roth (Karlsruhe) 
Tryptone      GibcoBRL LT (Eggenstein) 
Tryptophan     Merck (Darmstadt)                                                                                                
Valine     Merck (Darmstadt)                                                                                                          
Yeast Extract     GibcoBRL LT (Eggenstein) 
Yeast Nitrogen Base    Difco (Detroit, USA)                                                                                 
Zinc Chloride     Merck (Darmstadt)                                                                                              
Zinc Sulfate      Merck (Darmstadt)                                                                                                 

 

 

4.3.4! Enzymes 
Enzyme Company 
Lysozyme Boehringer (Mannheim) 
KOD Xtreme Hot Start DNA Polymerase Novagen 
Phusion-DNA-Polymerase Lab Preparation 
Restriction Endonucleases NEB (Schwalbach), Fermentas 
RNase A Serva (Heidelberg) 
T4-DNA-Ligase Roche (Mannheim) 

 

 

4.3.5! Kits used in this study 
Kit Company 
Gel/PCR DNA Fragment Extraction Kit Geneaid (Taipeh, Taiwan) 
Megaprimer Labeling Kit Amersham (Braunschweig) 
ZR Plasmid Miniprep Classic Zymo Research 
Gibson Assembly Thermo-Scientific 
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4.4! Cultivation methods 
 

4.4.1! Cultivation of E. coli 

E. coli cultures were grown in liquid dYT medium with ampicillin (100 µg/ml) and 

incubated at 37 °C overnight (12-18 h). Glycerin stocks were made from exponentially growing 

cultures and mixed with dYT-Glycerin-Medium at a 1:1 ratio, in 2 ml screw-cap culture vial, 

and stored at -80 °C. For growing cultures from glycerin stocks, the desired strains were 

streaked onto antibiotic containing dYT-agar plates and incubated at 37 °C overnight. 

 
dYT-Medium: 16g/l Tryptone               dYT-Glycerin-Medium:  16g/l Tryptone 
                          10g/l Yeast-Extract                                                                       10g/l Yeast-Extract        
                          5g/l  NaCl                    5g/l  NaCl 
                           in dH2O                                   69.9 % (v/v) Glycerin 
                           [Agar medium: 2% (w/v) Bactogar]                                 in dH2O   
                           Autoclave for 20 min at 121 °C                                                    Autoclave for 20 min at 121 °C 
  

 

4.4.2! Cultivation of S. cerevisiae 
S. cerevisiae strains were grown at 28 °C overnight (12-18 h) in YPD medium (Sambrook 

et al., 1989) or in SC-Medium for auxotrophic selection. Glycerin stocks were made from early 

stationary phase culture and mixed with NSY-Glycerin-Medium at a 1:1 ratio, in 2 ml screw-

cap culture vial, and stored at -80 °C. For growing cultures from glycerin stocks, the desired 

strains were streaked onto YPD- or SC-URA- agar plates and incubated at 28 °C overnight. 

 
YPD-Medium:  10g/l Yeast-Extract    NSY-Glycerin-Medium:  8g/l Nutrient Broth 
              20g/l Bacto-Peptone     5g/l Saccharose 
              in dH2O       1g/l Yeast-Extract 
                           Autoclave for 20 min at 121 °C    69.9 % (v/v) Glycerin                           
              [Agar medium: 2% (w/v) Bactoagar]     in dH2O   
              2 % (w/v) glucose solution (filter sterilized)   Autoclave for 20 min at 121°C 
 
 
 
Synthetic Complete-Medium (SC-Medium) 
 
Dropout-Mix –His –Leu –Ade –Trp –Ura –Met 
2.0 g                   Alanine 
2.0 g                   Arginine 
2.0 g                   Aspartic acid 
2.0 g                   Asparagine 
2.0 g                   Cysteine  
2.0 g                   Glutamic acid 
2.0 g                   Glutamine 
2.0 g                   Glycine 
2.0 g                   Inositol 
2.0 g                   Isoleucine 
2.0 g                   Lysine 
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2.0 g                   para-Aminobenzoic acid 
2.0 g                   Phenylalanine 
2.0 g                   Proline 
2.0 g                   Serine 
2.0 g                   Threonine 
2.0 g                   Tyrosine 
2.0 g                   Valine 
1.7g/l                  Yeast Nitrogen Base without (NH4)2SO4 
1.47g/l                Dropout-Mix (depending on the selection marker is 
                           additionally added: 0.2 g L-Histidine,0.1 g Adenine, 
                           0.2 g Leucin, 0.2 g Tryptophan, 0.15g Methionine or  
                           0.2 g Uracil). 
                           in dH2O, pH 5.6 (with NaOH) 
                           Autoclave for 20 min at 121 °C            
                           2 % (w/v) glucose solution (filter sterilized)          
                           [Agar medium: 2% (w/v) Bactoagar]         
 
 

4.4.3! Cultivation of U. maydis 
Ustilago maydis strains were grown at 28 °C in liquid medium (YEPS, YEPSlight or YNB) 

with shaking (200 rpm) to a density of OD600= 0.5 - 0.6. Glycerin stocks were prepared from 

exponentially growing cultures and mixed with NSY-Glycerin at a 1:1 ratio, in 2 ml screw-cap 

culture vial, and stored at -80 °C. For growing cultures from glycerin stocks, the desired strains 

were streaked onto PD-agar plates with the appropriate antibiotic [carboxin (2 µg/ml), 

hygromycin (200µg/ml) and geneticin (200µg/ml) ] and incubated at 28 °C. For the induction 

of the inducible promoters, U. maydis strains were grown at 28 °C in YNB liquid medium 

(containing 0.1% of ammonium sulfate and 5% of glucose as a carbon source) to exponential 

phase and then shifted to YNB liquid medium with 5% arabinose instead of glucose. The 

cultures were centrifuged after 96 h of incubation at 28 °C. 
 

YEPS-Liquid-Medium:                10 g/l Yeast-Extract   
    20 g/l Peptone 
    20g /l Saccharose 
    in dH2O, autoclave for 20 min at 121°C 

   
YEPSlight-Liquid-Medium:            10 g/l Yeast-Extract 

4 g/l Peptone 
4 g/l Saccharose  
in dH2O, autoclave for 20 min at 121°C 

 

YNB-Liquid-Medium:   1.7 g/l Yeast Nitrogen Base  
    0.1% (w/v) Ammonium sulfate 
    5.0% (w/v) Glucose or Arabinose 
    in dH2O, adjust pH to 5.6-5.8 with NaOH 
    Autoclave for 20 min at 121°C 
 
PD-Agar:   24 g/l Potato Dextrose Broth 
    15 g/l Bactoagar 
    in 1:1 H2O with dH2O, adjust pH to 5.6-5.8 with NaOH 
    Autoclave for 20 min at 121°C 
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4.5! Molecular biological methods 
!
4.5.1! Competent cell preparation and transformation of E. coli 

A single colony from E. coli (Top 10 strain) was picked into 5 ml SOB-Medium and 

incubated overnight at 37 °C with constant shaking (250 rpm). 100 ml SOB-Medium were 

inoculated with 1 ml of the overnight culture and incubated at 37 °C (250 rpm) until the cells 

reached an OD550 =0.4 (2-3 h).  Afterwards, the cells were transferred into two pre-chilled 50 

ml falcon tubes and centrifuged for 10 min (4,000 rpm) at 4 °C. Once the supernatant was 

carefully discarded, the cell pellets were gently resuspended in 30 ml ice-cold CCMB80-Buffer 

and incubated for 20 min. Subsequently, the centrifugation step was repeated and the cell pellets 

were resuspended in 3 ml of ice-cold CCMB80-Buffer. Finally, 50-100 µl aliquots were 

prepared and stored at -80 °C or used immediately for transformation. 

 
SOB-Medium:   20 g/l Bacto-Tryptone  
    5 g/l Bacto-Yeast-Extract 
    0.5 g/l NaCl 
    2.5 mM KCl 

in dH2O, autoclave for 20 min at 121 °C 
 

CCMB80-Buffer:  10 mM KOAc pH 7.0  
    80 mM CaCl2 

    20 mM MnCl2 
    10 mM MgCl2 

    10% (v/v) Glycerin 
   Adjust pH to 6.4 with HCl 

in dH2O, autoclave for 20 min at 121 °C 
 

 

For a single transformation 1 aliquot of bacterial suspension was mixed with 3-5 µl of 

ligation product in an Eppendorff tube, equalling approximately 1-10 ng of circular plasmid 

DNA. Immediately, after heat shock (42 °C for 60-90 s) the tube was placed on ice for 2 min. 

Afterwards, the whole suspension was plated on a dYT-agar plate with ampicillin (100 µg/ml) 

and incubated at 37 °C over night. 

 

4.5.2! Plasmid preparation from E. coli 
The E. coli strain carrying the desired plasmid was grown in liquid dYT medium with 

ampicillin (100 µg/ml) overnight under shaking at 37 °C. Cells were harvested by centrifugation 

(30 s, 13,000 rpm) in a 1.5 ml Eppendorf tube. Depending on the purpose, two different methods 

were used for the DNA extraction. For high quality plasmid DNA isolation, the ZR Plasmid 

MiniprepTM-Classic kit was used according to manufacturer´s instructions. The alternative used 
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method was the alkaline lysis. In brief, 100 µl of the Solution A were added into each tube and 

vortexed until complete resuspension of the cell pellet. 200 µl of lysis buffer (Solution B) were 

added and gently mixed by inverting the tubes 5-6 times. After 5 min, 150 µl ice-cold Solution 

C were added and mixed thoroughly (without vortexing). The tubes were incubated for 5 min 

on ice and centrifuged for 8 min at 13,000 rpm. Carefully, the supernatant was transferred to a 

new 1.5 ml labeled tube and 500 µl of a phenol:chloroform:isoamyl alcohol (25:24:1) solution 

were added, vortexed and centrifuged for 2 min at 13,000 rpm. The supernatant was transferred 

to a fresh reaction tube and 500 µl of chloroform:isoamyl alcohol (24:1) solution were added, 

vortexed and centrifuged for 2 min at 13,000 rpm. The supernatant was carefully removed and 

transferred to a new reaction tube. 1 ml of ethanol 96% was added, vortexed and incubated at 

RT for 2 min. After a centrifugation step (10 min, 13,000 rpm), the supernatant was removed 

and 1 ml of ethanol 70% was added. After a final centrifugation round (5 min, 13,000 rpm), the 

supernatant was carefully remove and the pellet was dissolved in 50 µl of TE buffer with 

RNaseA. DNA was stored at -20 °C for further analysis. 
 
 
Solution A:   50 mM Glucose  
    25 mM Tris/HCl-Buffer pH 8.0 
    10 mM Na2-EDTA 
    100 µg/ml RNase A 

in dH2O 
 
 
Solution B:   200 mM NaOH 
    1 % (w/v) SDS 

in dH2O 
 
 

Solution C:   3 M Potassium Acetate  
in dH2O 

 
 
TE-RNase A Buffer:   10 mM Tris/HCl pH 8 
   1 mM Na2-EDTA 
   50 µg/ml RNase A 

in dH2O 
 

 

4.5.3! Restriction enzymatic cleavage of DNA 
The restriction enzymatic cleavage of DNA was performed using restriction enzymes 

from Fermentas or New England Biolabs (NEB). The restriction enzymes were used with the 

appropriate reaction conditions described by the manufacturers. The digestions were performed 

under optimal conditions for 2 h or overnight, depending on the subsequent application. 
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4.5.4! Dephosphorylation of cut plasmid-DNA 
In order to prevent self-ligation of plasmid vectors in a ligation reaction, the terminal 5´-

phosphate groups were removed by using alkaline phosphatase. To achieve this purpose, closed 

circular plasmid DNA was digested with the desired restriction enzyme (as describe above) and 

subsequently dephosphorylated. The reaction was prepared as below: 

 
Linear DNA:   1 µg (∼1 pmol termini) 
10 X Reaction Buffer:  2 µl 
Shrimp Alkaline Phosphatase: 1 µl (1 u)      
H2O (Nuclease-Free):  to 20 µl 
Total Volume:   20 µl 
 

The reaction was mixed thoroughly, spun briefly and incubated at 37 °C (30 min for 5´-

overhangs or blunt ends, 60 min for 3´overhangs). Finally, the reaction was stop by heating for 

15 min at 65 °C. 

 

4.5.5! Agarose gel electrophoresis 
Separation of DNA fragments was performed by agarose gel electrophoresis. The gels 

contained 1-2% agarose dissolved in 1xTAE buffer and 1 µg/ml ethidium bromide. 10 kb DNA 

ladder (Fermentas) was prepared and run in parallel to the samples. Electrophoresis was carried 

out in 1xTAE buffer at 90-120 V for 40-60 min. Visualization of DNA was performed by 

exposure to UV-light using a Dual-Intensity Transilluminator system (UVP). 

 
TAE-Running Buffer:  40 mM Tris/HCl pH 8.3 
   20 mM Sodium Acetate 
    2 mM EDTA 

in dH2O 
 
 
10X DNA Loading Buffer: 0.2% (w/v) Orange G 
    50% (w/v) Saccharose 
    1 mM EDTA 

in dH2O 
 
     

4.5.6! DNA extraction from agarose gel 
The DNA fragments were visualized on a Dual-Intensity Transilluminator (UVP) using 

the low setting of UV-light. The DNA fragments were cut out from the agarose gel with a clean 

scalpel. Extraction of the fragments from the gel slice was performed using the Gel/PCR DNA 

Fragment Extraction Kit (Geneaid) following the manufacturer´s protocol. DNA fragments 

were eluted from the spin column using nuclease-free H2O. 
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4.5.7!  Ligation of DNA fragments  
Ligation of the DNA fragments was performed using T4 DNA ligase (Roche) with 

supplemented buffer. Ligation took place under optimal reaction conditions according to 

manufacturer´s protocol. 100 ng of vector was used with the molar ratio of vector to insert set 

at 1:2 or 1:3. In the case of three-fragment ligation, the reaction was performed at equimolar 

concentrations. The total reaction volume for ligation was 20 µl. The reaction mixture was 

incubated at 16 °C overnight. Afterwards, 10 µl of ligated mixture was used for transformation 

into competent bacteria. 

An alternative method used in this study for the three-fragment ligation was Gibson 

Assembly, using the kit from NEB. The following components were set up in a reaction on ice: 
 
Total Amount of Fragments:  0.02-0.5 pmol 
Gibson Assembly Master Mix (2X):           10 µl  
Nuclease-Free H2O:                                     Up to 20 µl  
 
 
To calculate the number of pmols of each fragment for optimal assembly, based on fragment 

length and weight, the following formula was used: 

 
pmol = (weight in ng) x 1, 000 / (base pairs x 650 daltons) 
 

The samples were incubated in a thermocycler at 50°C for 15 min. Following incubation, 

store samples on ice or at -20°C for subsequent transformation. As in the case of the ligation 

performed with the T4 ligase, 10 µl of the Gibson Assembly reaction were used for 

transformation into competent bacteria.     

  

4.5.8! PCR amplification of DNA 
DNA was amplified by PCR using the Phusion polymerase enzyme for short fragments 

(< 3 kb) or KOD extreme polymerase for longer fragments (> 3 kb). The reaction setups and 

thermocycling conditions are described for both cases below: 

 
PCR (Phusion Polymerase) 

Reaction Setup     Thermocycling Conditions 
Template DNA: < 250 ng   1. Initial Denaturation:  95 °C, 2 min 
5 X Buffer: 1 X    2. Denaturation:   95 °C, 30 s 
dNTP´s: 250 µM (1:1:1:1 ratio) 3. Annealing:   55 °C, 30 s 
Primer Fw: 1 µM   4. Extension:   72 °C, 30 s per 1 kb 
Primer Rv: 1 µM   5. Cycle from step 2 to 4:  30X 
DMSO: 5 µl    6. Final Extension:  72 °C, 10 min  
Phusion: 1 U    7. Storage:   4 °C   
Nuclease-Free H2O: up to 50 µl    
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PCR (KOD Extreme Polymerase) 

Reaction Setup     Thermocycling Conditions 
Template DNA: 10 ng plasmid DNA  1. Initial Denaturation:  95 °C, 2 min 
10 X Buffer: 1 X    2. Denaturation:   95 °C, 30 s 
dNTP´s: 250 µM (1:1:1:1 ratio) 3. Annealing:   65 °C, 15 s 
Primer Fw:  1 µM   4. Extension:   72 °C, 30 s/kb 
Primer Rv: 1 µM    5. Cycle from step 2 to 4:  40X 
KOD: 1 U    6. Final Extension:  70 °C, 25 s/kb 
Nuclease-Free H2O: up t0 50 µl   7. Storage:   4 °C 
 
The PCR products were agarose-gel extracted and purified as described in section 4.5.6. 

 

4.5.9! Sequencing of DNA 
DNA sequences were delivered to the MPI-Marburg and analyzed by the company 

Eurofins Genomics. The DNA concentration was adjusted in a total volume of 15 µl as 

described below: 
Purified Plasmid:   50-100 ng/µl 
Purified PCR products:  < 0.3 kb  (2 ng/µl) 
    0.3-1 kb (5 ng/µl)  
   > 1 kb     (10 ng/µl) 
 

In all cases, the primer concentration was set up to 2 pmol/µl. 

 

4.5.10!Competent cell preparation and transformation of S. cerevisiae 
The yeast strain of interest was streaked on YPD plate and grown for 2 days at 28 °C 

before inoculation. Subsequently, one colony was inoculated into 10 ml YPD liquid medium 

and incubated overnight at 28 °C (shaking speed around 150 rpm). Afterwards, the cells were 

diluted to an OD600 of 0.1 in 20 ml of YPD medium and grown for 6 h at 28 °C. Cells were 

harvested (2,000 rpm, 3 min), washed once with 0.5 volumes of dH2O and once with 0.1 

volumes of SORB buffer. 450 µl SORB with 50 µl of carrier DNA (salmon sperm DNA, 10 

mg/ml, denatured at 100 °C for 10 min, cooled on ice). Aliquots of 45 µl were made and stored 

at -80 °C. Yeast cells were transformed according to the Lithium Acetate/ss DNA / PEG method 

proposed by Gietz and Woods (2002).  Briefly, to one aliquot of yeast competent cells, the 

following components were added in the amount indicated: 
Component   Amount 
 
Competent Yeast Cells:  1 aliquot (45µl) 
Left Border (LB):   Half of the eluted PCR product (15µl) 
Right Border (RB):   Half of the eluted PCR product (15µl) 
Resistance Cassette:   500 ng 
Digested Plasmid pRS426: 200-400 ng 
PEG-LA Buffer:   300 µl 
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The suspension was mixed by flipping the tube and incubated for 30 min at 28 °C and 

then, at 42 °C for 15 min. Cells were spun (2,000 rpm, 3 min) and resuspended in 200 µl of SC 

URA- medium prior being spread onto an agar SC URA-  plate and incubated at 28 °C for 3 

days. 

 
SORB Buffer:   100 mM Lithium Acetate 
   10 mM Tris 
   1 mM EDTA 
   1 M Sorbitol 
   pH 8 (adjust with acetic acid) 

in dH2O 
 
 

PEG-LA Buffer:   100 mM Lithium Acetate 
   10 mM Tris 
   1 mM EDTA 
   40% PEG 3350 
   pH 8 (adjust with acetic acid) 

in dH2O 
 
 
Carrier DNA:   10 mg/ml Salmon Sperm DNA 
 
 

4.5.11!Protoplast preparation and transformation of U. maydis 
For protoplasts preparation, the desired U. maydis strains were grown in 50 ml of 

YEPSlight medium at 28 °C until an OD600 of 0.3-0.8 was reached.  Cells were harvested and 

resuspended in 25 ml of SCS buffer prior being centrifuged at 3,500 rpm for 5 min. 

Subsequently, cells were carefully resuspended in 2 ml SCS buffer with 20 mg/ml of lysing 

enzyme (filter sterilized) and incubated at RT until the 70% of the cells began to form 

protoplasts (constantly observed under the microscope). Then, 10 ml SCS buffer were added to 

each sample, centrifuged (2,300 rpm, 10 min) and the supernatant was discarded. The latter 

procedure was repeated three times. Cell pellets were carefully resuspended in 20 ml STC 

buffer, centrifuged and the supernatant was discarded. Finally, the pellets were resuspended in 

500 µl of STC (ice-cold)  and divided into aliquots (50 µl) and used directly for transformation 

or stored at -80 °C. 

Transformation of U. maydis was performed as previously described by Schulz et al., 

1990. Linearized DNA (5 µg) together with1 µl of heparin were added to the protoplast aliquot 

and incubated on ice for 10 min. Subsequently, 500 µl STC/PEG were added to the protoplast 

mix and then incubated for another 15 min on ice. In the mean time, Reg-agar plates were 

prepared as follows: 10 ml of the Reg-Agar, containing the selected antibiotic, were poured 

onto a petri-dish (bottom agar). When the agar cooled it down, another 10 ml of Reg-Agar 
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without antibiotic were poured on the top of the plate (top agar). Once the plates were ready, 

the whole mix was spread onto the surface. Plates were incubated at 28 °C for 3 to 7 days. 

Transformed colonies were singled-out and grown on PD-agar plates containing the appropriate 

antibiotic. 

 
SCS Buffer:   20 mM Sodium Citrate Buffer pH 5.8 
   1 M Sorbitol  

in dH2O 
 
 
SCS-Lysing-Enzyme Buffer: 30 mg/ml Lysing-Enzyme in SCS Buffer 
 
 
STC Buffer:   10 mM Tris/HCl pH 7.5 
   100 mM CaCl2 

   1 M Sorbitol 
in dH2O 

 
 
STC-PEG Buffer:   40% (w/v) Polyethylenglycol/STC 
 
 
Regeneration-Agar:  10 g/l Yeast-Extract 
      (Reg-Agar)   20 g/l Peptone 
    2.0% (w/v) Saccharose 
    182.2 g/l Sorbitol 
    13 g/l Agar 
    in dH2O, autoclave for 20 min at 121°C 
 
 

4.5.12!Genomic DNA isolation of U. maydis 
For genomic DNA isolation of U. maydis, 3 ml of YEPSlight  were inoculated with a single 

colony of the selected strain and incubated overnight at 28 °C with constant shaking. Cells were 

harvested (13,000 rpm, 2 min) in a 2 ml Eppendorf tube. Afterwards, 500 µl of Ustilago-Lysis 

Buffer, 500 µl of the Phenol:Chloroform (1:1) and the equivalent of 0.2 ml of glass beads were 

added to each pellet. All the samples were placed on the vibrax for 15 min and then centrifuged 

at 13,000 rpm for 10 min. Subsequently, 400 µl of the upper phase were transferred to a fresh 

1.5 ml Eppendorf tube containing 1 ml of 96% ethanol. Samples were vortexed for short time 

and centrifuged for 10 min at 13,000 rpm. Supernatant was removed and the pellet washed with 

500 µl of 70% ethanol and centrifuged again at 13,000 rpm for 5 min. Once the supernatant 

was removed, the pellet was dried and resuspended in 100 µl of TE-RNase A Buffer at 50 °C 

on a thermomixer with constant shaking (600-800 rpm). 
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Ustilago-Lysis Buffer:  10 mM Tris/HCl pH 8 
   100 mM NaCl 
   1 mM EDTA 
   1 % (w/v) SDS 
   2 % (w/v) Triton X-100 
   in dH2O, autoclave for 20 min at 121 °C 
 
 
Phenol/Chloroform:   50% (v/v) Phenol 
   50% (v/v) Chloroform 
 

 
TE-RNase A Buffer:   10 mM Tris/HCl pH 8 
   1 mM Na2-EDTA 
   50 µg/ml RNase A 
   in dH2O 
 

4.5.13!U. maydis total RNA isolation from axenic culture 
For RNA preparation, U. maydis cells were grown overnight at 28 °C to an OD600=0.4 in 

YNB medium containing 5% glucose and 0.1% ammonium sulfate. After centrifugation (3,500 

rpm, 10 min), the cells were washed and resuspended in the same volume of fresh YNB medium 

containing 5% arabinose and 0.1% ammonium sulfate. Cultures were grown for 4 h at 28 °C 

with constant shaking. Afterwards, the cells were harvested in a 50 ml falcon tube (3,500 rpm/ 

10 min) and the supernatant was discarded. Cell pellets were immersed in liquid nitrogen for 

30 s. Thereafter, 1 ml of trizol reagent was added to each sample and the cells were carefully 

lysed by pipetting up and down several times. Once homogenized, the solution was divided into 

aliquots in 1.5 ml Eppendorf tubes containing glass beads and subjected to disruption in a cell 

mill (15 min at maximum speed). 200 µl of chloroform were added to each sample, vortexed 

and incubated for 3 min at RT. Samples were centrifuged (11,000 rpm for 15 min at 4 °C) and 

right after, the upper aqueous phase (400-450 µl) was carefully transferred into prepared 1.5 ml 

Eppendorf tubes containing 500 µl of isopropanol. The samples were mixed by inverting the 

tube several times and incubated for 10 min at RT. Subsequently, the samples were centrifuged 

again (11,000 rpm for 15 min at 4 °C). The supernatant was discarded and the pellet washed 

with 1 ml of ethanol 80%, mixed by inverting the tube several times and centrifuged at 7,500 

rpm for 10 min. Carefully, the supernatant was removed and an additional centrifugation step 

was carried out in order to remove residual ethanol. RNA pellets were dried at RT for 5 min, 

resuspended in 50-70 µl of RNase-free water and dissolved at 60 °C for 10-30 min. RNA 

samples were stored at -80 °C for further analysis. 
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4.5.14!DNA blotting and hybridization (Southern analysis) 
Digested genomic DNA was separated at 90 V on a 1% agarose gel in 1X TAE. The gels 

were then photographed on a UV transilluminator. For depurination, the gel was shaken in 0.25 

M HCl for 15 min and denatured for additional 15 min in 0.4 M NaOH solution. Capillary blot 

was performed to transfer DNA onto Hybond-N+ membranes (Sambrook et al., 1989). Blotting 

was carried out overnight in 0.4 M NaOH. Then, the membrane was dried and cross-linked, 

followed by incubation in Southern hybridization buffer at 65 °C for 30 min under rotation. The 

Southern hybridization buffer was discarded and the radioactively labeled probe (see " Probe 

Labeling!") was added. The membrane was incubated in the probe solution at 65 °C overnight 

under rotation. After 12-24 h, the membrane was washed with the Southern Wash Buffer (25 

ml) for 15 min at 65 °C. Afterwards, the buffer was discarded and the membrane was incubated 

with another 25 ml of Southern Wash Buffer for 15 min under the same conditions. Finally, the 

membrane was dried and exposed within a screen cassette for at least 4 h, followed by laser 

scanning (STORM Phosphorimager). 

 
 
Breaking Solution:   0.25 M HCl 
   in dH2O 
 
 
Transfer Solution:   0.4 M NaOH 
   in dH2O 
 
 
Southern Hybridization Buffer: 7% (w/v) SDS 
   500 mM Sodium Phosphate Buffer 
   pH 7 
   in dH2O 
 
 
Southern Wash Buffer:  1% (w/v) SDS 
   100 mM Sodium Phosphate Buffer 
   pH 7 
   in dH2O   
 

 

4.5.15!RNA blotting and hybridization (Northern analysis) 
In order to check the RNA quality, all the RNA samples were subjected to electrophoresis 

through 1% (w/v) agarose gel stained with ethidium bromide. The sample mix was prepared as 

it follows: 
RNA Extract:   1 µl 
10X RNA Loading Buffer: 1 µl 
RNase-free water:   9 µl   
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The gel was run at 80 V until the fastest dye moved 2/3 of the gel length and visualized 

by a UV transilluminator. Prior RNA blotting, the RNA concentrations were determined using 

a ND-1000 spectrophotometer. Afterwards, 20 µg of each RNA sample were taken and mixed 

with the following components in a fresh 1.5 ml Eppendorf tube: 

 
10X MOPS:   2 µl 
Glyoxal:    2 µl 
DMSO:   10 µl  
RNA:   20 µg 
RNase-free water:   Up to 30 µl 
 

The mixture was incubated at 60 °C for 1 h, and then was transferred on ice for 15 min. 

3 µl RNA loading buffer were added to the mixture. The RNA samples were loaded onto a 1% 

(w/v) agarose gel (in 1X MOPS buffer) at 90 V for 2 h in 1X MOPS buffer. Subsequently, the 

gel was equilibrated in 20X SSC buffer for 20 min under gentle rotation. The RNA sample in 

the gel was transferred to a Hybond-NX membrane in 20X SSC buffer by capillary blotting 

overnight. The dry membrane was UV cross-linked (Stratalinker, STRATA GENE). The 

membrane was stained in methylene blue solution for 5 min under gentle shaking. Next, the 

membrane was rinsed in dH2O for 15 min under gentle rotation, dried and placed into a glass 

tube for being hybridized. Membrane was pre-hybridize with Northern hybridization buffer for 

30 min at 65 °C. The buffer was discarded and the P32 labeled DNA probe (see " Probe Labeling!

") was denatured by boiling and then added to the membrane to be incubated overnight at 65 

°C. After 12-24 h, the membrane was washed twice with Northern Wash Buffer for 20 min at 

65 °C under rotation. Finally, the membrane was dried and exposed to a cassette for at least 4 

h, and then the cassette was scanned (STORM Phosphorimager). 

 
10X MOPS Buffer:   20 mM MOPS, pH 7 
   50 mM Sodium Acetate 
   10 mM EDTA 
   pH 7 
   in RNase-free water 
 
 
20X SSC Buffer:   3 M NaCl 
   0.3 M Sodium Citrate 
   in RNase-free water 
 
 
Northern Hybridization Buffer: 50 mM Sodium Phosphate Buffer, pH7 
   50 mM PIPES, pH 6.7 
   100 mM NaCl 
   5 % (w/v) SDS 
   1 mM EDTA, pH 8 
   pH 7 
   in dH2O  
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Northern Wash Buffer:  1X SSC 
   0.1% (w/v) SDS 
   in dH2O  
 
   
10X RNA Loading Buffer: 1 ml 10X MOPS 
   5 g Glycerin 
   50 mg Bromophenol Blue 
   50 mg Xylene Blue 
   in 10 ml RNase-free water 
 
 
Methylene Blue Solution: 300 mM Sodium Acetate 
   0.02 % (w/v) Methylene Blue 
   in RNase-free water 
 
 

4.5.16!Probe labeling 
The generation of radioactive probes for Southern and Northern blot hybridizations was 

carried out with the Megaprime Labeling System Kit from Amersham Biosciences. As a first 

step, the DNA template to be labeled and the primer solution (random sequence 

hexanucleotides) were incubated at 95-100 °C for 5 min as it follows: 

 
DNA Template (400-1000 bp): 25 ng  
Primer Solution:   5 µl  
diH2O:   Up to 33 µl 
 
 

Afterwards, the reaction mix was spun briefly in a microcentrifuge to bring all the 

contents to the bottom of the tube. Subsequently, the mix was cooled briefly on ice and 10 µl 

of Reaction Buffer (Buffer solution with all the dNTPs except dCTP), 2 µl of the Klenow 

Polymerase and 5 µl of α32-P-dCTP  were added. The reaction mix was then incubated at 37 

°C for 1 h and stopped by the addition of 5 µl of 0.2 M EDTA. The unincorporated dNTP was 

removed by chromatography on Sephadex G-50 spin column. Prior hybridization, the labeled 

DNA was denatured by heating to 95-100 °C for 5 min. 

 

4.5.17!Pathogenicity assays 
Pathogenicity assays were performed as described by Kämper et al., 2006. For maize 

(Zea mays) infections, cultures of U. maydis strains were grown to an OD600 of 0.6 in YEPSlight, 

centrifuged and resuspended in distilled water to and OD600 of 1 and injected into 7-day-old 

seedlings of the variety Early Golden Bantam (Olds Seeds, Madison, WI). Plants were kept in 

the greenhouse with a light-dark cycle of 16 h (28 °C) and 8 h (20 °C). Disease symptoms were 

scored according to severity 14 days after inoculation. Categories for disease were rated as 
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follows: (0) no symptoms; (1) chlorosis; (2) lingula swelling; (3) small tumors (<1 mm in 

diameter); (4) large tumors (> 1 mm in diameter), not associated with bending of stem; (5) 

tumors associated with bending of infected stems; and (6) dead plants. 

 

4.6! Genetic methods 
 

4.6.1! Generation of deletion mutants in U. maydis 
For the generation of deletion mutants in U. maydis, the open reading frame (ORF) of 

each gene was replaced by an antibiotic-resistance cassette. The primers LBfw/LBrv and 

RBfw/RBrv were used for amplifying by PCR ∼1 kb of the 5´and 3´ border regions of the ORF 

to be deleted, respectively. The 5´ extremes of LBfw and RBrv were designed with a 

homologous sequence to the pRS426 vector (blue), while the 5´extremes of LBrv and RBrv 

contained a homologous sequence to the hph cassette (red). The method for creating a deletion 

construct is presented in Figure 58. 

 

!
Figure 58. Strategy for creating deletion constructs in S. cerevisiae. The right (RB) and left (LB) border regions 
of the target gene are amplified separately from U. maydis genomic DNA with the primers LBfw/LBrv and 
RBfw/RBrv, respectively. LB and RB are cotransformed into S. cerevisiae along with the hph cassette and the 
gapped yeast shuttle vector. The assemble of all the DNA fragments is carried out by homologous recombination 
in S. cerevisiae.  
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Briefly, the four DNA fragments comprising the left and right borders of the target gene 

(LB and RB), the hph cassette, and the gapped yeast vector, were assembled in S. cerevisiae 

using endogenous homologous recombination system. A detailed protocol for yeast 

transformation is described in section 4.5.10. For replicating the plasmid, E. coli transformation 

was carried out with the DNA extracted from those yeast transformants that grew on selection 

medium (SC –URA-agar plates). After selecting the positive E. coli transformants, their 

plasmids were extracted, and the constructs (LB-resistance cassette-RB) were cut out from the 

plasmid and used for further transformation in U. maydis. The integration of the deletion 

construct in U. maydis is mediated by homologous recombination. 

 

4.6.2! Integration of overexpressing constructs into the ip-locus in U. maydis 
For the generation of overexpressing strains in U. maydis, a plasmid carrying the desired 

gene under the control of the arabinose-inducible (Pcrg) or the constitutive (Petef) promoter is 

integrated into the succinate dehydrogenase (cbx or ip) genomic locus. A selection of positive 

transformants is possible due to an amino acid substitution of histidine by leucine at position 

257 in the ip-gene of the overexpressing vector, which confers to U. maydis resistance to the 

fungicide carboxin. Once the vector is linearized with SspI and used for transformation in U. 

maydis, both parts of the ip-gene are integrated into the genomic ip-locus by homologous 

recombination (Figure 59).  Therefore, those transformants that are able to grow on carboxin 

containing PD-agar plates are considered as potential candidates for successful integration 

events. 

!
Figure 59. Integration of overexpressing plasmids into the genomic ip-locus in U. maydis. The overexpressing 
plasmid carrying the ip-gene with an amino acid substitution H257L (which confers cbx resistance) is linearized 
with SspI and integrated into the genomic ip-locus by homologous recombination in U. maydis. The combination 
of primers MB767/MB766 and MB768/MB769 is used to verify that the construct has been successfully integrated 
into the genomic ip-locus. 
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4.7! Analytical methods 

 

4.7.1! Tricyclazole experiment 
U. maydis strains were inoculated in 3 ml of YEPSlight medium and incubated at 28 °C 

ON with constant shaking. Afterwards, the cells were diluted to an OD600 of 0.2 in 3 ml of YNB 

medium with 5% of glucose and 0.1% of ammonium sulfate until an OD600 of 0.6 was reached. 

Subsequently, the cells were washed twice with YNB medium without any carbon source, only 

containing 0.1% of ammonium sulfate. Cells were immediately transferred to 3 ml volume of 

YNB medium with 5% of arabinose as a carbon source and 0.1% of ammonium sulfate and 

incubated, in the presence and absence of tricyclazole in DMSO (50 mg/l), for a 4-day period 

with constant shaking at 28 °C. 

 

4.7.2! H2O2 sensitivity assay 
To assay H2O2 sensitivity, U. maydis strains were grown in YEPSlight until the cells 

reached and OD600 of 0.6 and 300 µl were  plated on PD medium supplemented with ampicillin 

(100 µg/ml). Filter disks of Whatman paper (5 mm) were soaked with 2 µl of H2O2 (30% [v/v]) 

and placed on the plates. The halo sizes were measured in four duplicates after 48 h of 

incubation at 28 °C. 

 

4.7.3! Orsellinic acid (OA) feeding experiment 
Strains were grown in YNB medium with 0.1% ammonium sulfate and 5% glucose until 

they reached an OD600 =0.5-0.8. Afterwards, the cultures were centrifuged (3,500 rpm, 10 min) 

and the cells were washed with dH2O, this procedure was repeated twice. Subsequently, the 

cells were transferred to 4 ml YNB liquid medium containing 0.1% ammonium sulfate, 5% of 

carbon source (glucose or arabinose) and depending on the case, with or without 0.5 mM of 

orsellinic acid in DMSO. Cultures were incubated with shaking for 96 h at 28 °C.   

 
YNB-Agar:   1.7 g/l Yeast Nitrogen Base 
    0.1% (w/v) Ammonium sulfate 
    5.0% (w/v) Glucose or Arabinose 
    2.0% (w/v) Agar 
    in dH2O, adjust pH to 5.6-5.8 with NaOH 
    Autoclave for 20 min at 121°C 
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4.7.4! Preparation of the extracts for HPLC analysis 
The wild-type and mutant strains were grown in YNB medium containing 0.1% of 

ammonium sulfate and 5% glucose until the cells reached an OD600= 0.6-0.8. Afterwards, the 

cultures were centrifuged (3,500 rpm, 10 min) and the cells were washed with dH2O, this 

procedure was repeated twice before they were shifted to 30 ml liquid YNB medium with 0.1% 

of ammonium sulfate and 5% of arabinose as a carbon source. The strains were grown for 96 h 

at 28 °C with constant shaking. After completion of the incubation period, the cultures were 

centrifuged (3,500 rpm/ 10 min) and pellet and supernatant were collected for further analysis. 

For the pellet fraction, the extracts were prepared as follows. Pellets were transferred to 50 ml 

glass beakers and stirred with 20 ml acetone for 1 h. The extracts were filtered into 100 ml 

round bottom flasks and the pellets were washed with a further 10 ml acetone before being 

concentrated to dryness in a rotary evaporator. Dry extracts were dissolved in 2 ml methanol 

and transferred to 4 ml glass vials prior of being concentrated to dryness in a speed vacuum (2 

h, 28 °C). Extracts were dissolved in 1 ml of methanol (HPLC grade) and centrifuged (16,000 

rpm, 20 min) to ensure that no particles were injected onto the HPLC instrument. Finally, 100 

µl of the supernatant was transferred to HPLC plastic vials and subjected to analysis.  

 

4.7.5! HPLC-MS 
HPLC-MS analysis was performed with a Dionex UltiMate 3000 system coupled to a 

Bruker AmaZon X mass spectrometer and an Acquity UPLC BEH C18 1.7 µm RP column 

(Waters). 

 

  

4.8! Bioinformatic analysis 

 

4.8.1! Sequence analysis of DNA and proteins  
For the search and comparison of sequences, the following databases were used in this 

study: National Center of Biotechnology (NCBI; www.ncbi.nlm.nih.gov), MIPS Ustilago 

maydis Data Base (MUMDB; mips.helmholtz-muenchen.de/genre/proj/ustilago), 

Saccharomyces Genome Database (SGD; www.yeastgenome.org), UniProt 

(www.uniprot.org/align), and ClustalX (Larkin et al., 2007). 
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4.8.2! Compilation of gene expression data in U. maydis 
Examination of U. maydis gene expression data under a variety of conditions was 

performed as follows. From GEO (Gene Expression Omnibus) database a total of 144 

experiments of U. maydis, including annotations, related to microarray platform GPL3681 were 

downloaded. Using information on probe-ID and chromosomal position the measured gene 

expression values were mapped along the genome. Each of the 144 experiments (GSM105898, 

GSM105899, etc.) was added as expression vector of 8,682 genes to a table column, creating 

thus a data matrix of 8,682 (genes) vs. 144 (samples), stored as Microsoft Excel sheet. The raw 

expression data were normalized by common operations: log2 transformation of values and z-

score transformation along each gene, i.e. mean subtraction followed by a scaling to unit 

variance. Hierarchical clustering on the normalized data along samples using Euclidean 

distance with average linkage criterion was used for ordering the 144 experiments by similarity. 

The mean Pearson correlation coefficient (r) was used as a measure of similarity of co-

expression of a gene with its upstream neighboring gene under all the given conditions.  All the 

neighboring genes with an r value higher than 0.75 were considered to be coregulated. 

Likewise, all the groups from 3 to 13 coregulated neighboring genes were considered as a gene 

cluster. 
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Figure S1, Part1. Overview of the gene expression profiles for all predicted members of 
the biosynthetic gene clusters of U. maydis (Cluster 1GE-Cluster 8GE). The y axis indicates 
the gene expression index on log2 scale, and the x axis represents the 144 experimental 
conditions in the microarray compendium. Regions highlighted with a red rectangle indicate 
the conditions in which tumor material was analyzed (5dpi and 13 dpi). 
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Figure S1, Part2. Overview of the gene expression profiles for all predicted members of 
the biosynthetic gene clusters of U. maydis (Cluster 9GE-Cluster 16GE). The y axis 
indicates the gene expression index on log2 scale, and the x axis represents the 144 experimental 
conditions in the microarray compendium. Regions highlighted with a red rectangle indicate 
the conditions in which tumor material was analyzed (5dpi and 13 dpi). 
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Figure S1, Part3. Overview of the gene expression profiles for all predicted members of 
the biosynthetic gene clusters of U. maydis (Cluster 17GE-Cluster 24GE). The y axis 
indicates the gene expression index on log2 scale, and the x axis represents the 144 experimental 
conditions in the microarray compendium. Regions highlighted with a red rectangle indicate 
the conditions in which tumor material was analyzed (5dpi and 13 dpi). 
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Figure S1, Part4. Overview of the gene expression profiles for all predicted members of 
the biosynthetic gene clusters of U. maydis (Cluster 25GE-Cluster 32GE). The y axis 
indicates the gene expression index on log2 scale, and the x axis represents the 144 experimental 
conditions in the microarray compendium. Regions highlighted with a red rectangle indicate 
the conditions in which tumor material was analyzed (5dpi and 13 dpi). 
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Figure S1, Part5. Overview of the gene expression profiles for all predicted members of 
the biosynthetic gene clusters of U. maydis (Cluster 33GE-Cluster 40GE). The y axis 
indicates the gene expression index on log2 scale, and the x axis represents the 144 experimental 
conditions in the microarray compendium. Regions highlighted with a red rectangle indicate 
the conditions in which tumor material was analyzed (5dpi and 13 dpi). 
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Table S1. Characteristic secondary metabolite genes identified in U. maydis by manual inspection. 
 

Backbone Enzymes (BEs) Tailoring Enzymes (TEs) Transcription 
Factors (TFs) 

Transporters 
(T) 

PKS NRPS DMAT TC Cytochrome 
P450 

Dehydrogenase Transferase Hydroxylase Oxygenase All categories All categories 

um04095 (12) um10543 (19)   um00005 (1) um10004 (1) um00020 (1) um00319 (1) um00005 (1) um00332 (1) um00034 (1) 
um04097 (12)    um00123 (1) um00108 (1) um00059 (1) um01424 (2) um00029 (1) um00523 (1) um00083 (1) 
um04105 (12)    um10048 (1) um00118 (1) um10015 (1) um11819 (3) um11424 (1) um00533 (1) um00096 (1) 
um10532 (14)    um00202 (1) um00123 (1) um10021 (1) um05074 (4) um11449 (1) um00808 (1) um00103 (1) 
um06414 (23)    um00646 (1) um11421 (1) um00099 (1) um05230 (4) um00708 (1) um00883 (2) um00222 (1) 
um06418 (23)    um11830 (1) um00265 (1) um10032 (1) um11458 (5) um00783 (1) um00922 (2) um00455 (1) 
    um11618 (1) um00381 (1) um10043 (1) um03408 (9) um00965 (2) um01371 (2) um00477 (1) 
    um12110 (1) um00403 (1) um00265 (1) um06466 (23) um01424 (2) um01523 (3) um11433 (1) 
    um00940 (2) um00407 (1) um00280 (1) um12340 (23) um01425 (2) um12167 (3) um00597 (1) 
    um11275 (2) um00412 (1) um00288 (1)  um01540 (3) um01908 (3) um00679 (1) 
    um11645 (2) um00418 (1) um00322 (1)  um01714 (3) um05183 (4) um00712 (1) 
    um01150 (2) um00424 (1) um11341 (1)  um11382 (3) um02405 (5) um11841 (2) 
    um10232 (2) um00555 (1) um11347 (1)  um05074 (4) um02808 (6) um01051 (2) 
    um01424 (2) um00594 (1) um00518 (1)  um05084 (4) um02989 (7) um01062 (2) 
    um11653 (3) um00694 (1) um00579 (1)  um10188 (4) um03074 (7) um01156 (2) 
    um01478 (3) um11170 (1) um00594 (1)  um06333 (4) um03172 (8) um01341 (2) 
    um01723 (3) um00844 (2) um00595 (1)  um10062 (5) um03346 (8) um11339 (2) 
    um11368 (3) um11256 (2) um00595 (1)  um10070 (5) um03557 (9) um01431 (2) 
    um01863 (3)  um01049 (2) um00605 (1)  um02398 (5) um03588 (9) um01435 (2) 
    um01896 (3) um11275 (2) um00624 (1)  um12229 (9) um03708 (10) um01495 (3) 
    um01947 (3) um01099 (2) um11613 (1)  um03415 (9) um04101 (12) um01656 (3) 
    um01953 (3) um01172 (2) um11617 (1)  um11077 (9) um04168 (12) um11359 (3) 
    um01980 (3) um01233 (2) um00789 (1)  um03728 (10) um10417 (12) um01700 (3) 
    um12341 (3) um01245 (2) um11632 (1)  um03832 (10) um10426 (12) um15074 (3) 
    um06473 (3) um01250 (2) um00872 (2)  um03995 (11) um10941 (16) um01756 (3) 
    um05074 (4) um01314 (2) um10569 (2)  um04107 (12) um11582 (16) um01758 (3) 
    um06273 (4) um01328 (2) um10624 (2)  um12271 (13) um11176 (18) um01762 (3) 
    um02071 (5) um01329 (2) um10586 (2)  um04348 (14) um10544 (19) um01813 (3) 
    um02377 (5) um01335 (2) um00980 (2)  um05586 (18) um10560 (19) um12169 (3) 
    um02457 (5) um11323 (2) um00990 (2)  um05606 (18) um05338 (19) um01862 (3) 



Supplementary data 
! !
! !

!

179 

    um02464 (5) um11333 (2) um15057 (2)  um05329 (19) um12033 (21) um01868 (3) 
    um02477 (5) um01466 (3) um11267 (2)  um05812 (20) um11222 (22) um01996 (3) 
    um10296 (6) um10804 (3) um01040 (2)  um05967 (20) um10971 (22) um11777 (4) 
    um02708 (6) um11693 (3) um01080 (2)  um06459 (23) um15103 (23) um05079 (4) 
    um10835 (8) um01619 (3) um01088 (2)    um10761 (4) 
    um11097 (9) um01697 (3) um01090 (2)    um06349 (4) 
    um12241 (10) um11361 (3) um01093 (2)    um02037 (5) 
    um03775 (10) um01708 (3) um01123 (2)    um02081 (5) 
    um10507 (10) um01711 (3) um01139 (2)    um10072 (5) 
    um03845 (10) um01733 (3) um01154 (2)    um02258 (5) 
    um11288 (11) um01747 (3) um01200 (2)    um02365 (5) 
    um11743 (11) um01861 (3) um01201 (2)    um02374 (5) 
    um11744 (11) um01881 (3) um01231 (2)    um02387 (5) 
    um04109 (12) um01885 (3) um10244 (2)    um02568 (6) 
    um04189 (12) um01911 (3) um11317 (2)    um02583 (6) 
    um04237 (12) um01984 (3) um11318 (2)    um02598 (6) 
    um12269 (13) um05069 (4) um11330 (2)    um02686 (6) 
    um11534 (13) um05170 (4) um01407 (2)    um02723 (6) 
    um04362 (14) um02105 (5) um11334 (2)    um02806 (6) 
    um05664 (16) um02150 (5) um01432 (2)    um15032 (6) 
    um05791 (16) um02164 (5) um01450 (3)    um02900 (7) 
    um04702 (17) um02189 (5) um11660 (3)    um11500 (7) 
    um10682 (17) um10077 (5) um11672 (3)    um10320 (7) 
    um04802 (17) um02437 (5) um01512 (3)    um10330 (7) 
    um04818 (17) um02461 (5) um01533 (3)    um03034 (7) 
    um05465 (18) um02491-B (5) um11682 (3)    um03110 (7) 
    um12083 (19) um02491-A (5) um01621 (3)    um03148 (8) 
    um11212 (21) um02508 (6) um01623 (3)    um03153 (8) 
    um11005 (23) um10276 (6) um11885 (3)    um03293 (8) 
    um06459 (23) um02577 (6) um11136 (3)    um03475 (9) 
    um11812 (23) um10283 (6) um01726 (3)    um03655 (10) 
     um10295 (6) um11369 (3)    um11105 (10) 
     um02683 (6) um01752 (3)    um11514 (11) 
     um10596 (6) um01787 (3)    um03945 (11) 
     um10599 (6) um01804 (3)    um11057 (11) 
     um02778 (6) um01816 (3)    um04056 (11) 
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     um10605 (6) um01818 (3)    um04146 (12) 
     um02801 (6) um01821 (3)    um04162 (12) 
     um02888 (7) um01835 (3)    um04523 (13) 
     um03108 (7) um01843 (3)    um01908 (13) 
     um03126 (7) um01870 (3)    um04680 (13) 
     um10402 (8) um01873 (3)    um04347 (14) 
     um10643 (8) um01875 (3)    um04399 (14) 
     um03264 (8) um01893 (3)    um04410 (14) 
     um10825 (8) um01979 (3)    um04423 (14) 
     um03402 (8) um11776 (4)    um10528 (14) 
     um03523 (9) um05103 (4)    um04444 (14) 
     um12236 (9) um11572 (4)    um11977 (14) 
     um03665 (10) um11784 (4)    um04478 (14) 
     um03669 (10) um05240 (4)    um04982 (15) 
     um03761 (10) um10766 (4)    um05023 (15) 
     um10665 (10) um06295 (4)    um05033 (15) 
     um03845 (10) um10768 (4)    um05642 (16) 
     um03854 (10) um10781 (4)    um05783 (16) 
     um03990 (11) um06329 (4)    um05642 (16) 
     um04046 (11) um06334 (4)    um05783 (16) 
     um04061 (11) um06491 (5)    um05786 (16) 
     um11113 (12) um12074 (5)    um05794 (16) 
     um04127 (12) um11460 (5)    um04811 (17) 
     um04182 (12) um10055 (5)    um05442 (18) 
     um04210 (12) um02124 (5)    um05506 (18) 
     um04268 (12) um10063 (5)    um10896 (18) 
     um04300 (12) um02170 (5)    um05602 (18) 
     um12269 (13) um10080 (5)    um05260 (19) 
     um10846 (14) um02291 (5)    um10210 (19) 
     um04378 (14) um02444 (5)    um05396 (19) 
     um04441 (14) um02500 (5)    um05889 (20) 
     um10533 (14) um02519 (6)    um05951 (20) 
     um04480 (14) um02527 (6)    um05954 (20) 
     um11161 (15) um02567 (6)    um05968 (20) 
     um11162 (15) um02624 (6)    um06093 (21) 
     um04930 (15) um02653 (6)    um06139 (21) 
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     um05644 (16) um02657 (6)    um10968 (22) 
     um10732 (16) um02667 (6)    um06461 (23) 
     um10735 (16) um10308 (6)     
     um10938 (16) um02715 (6)     
     um11583 (16) um02783 (6)     
     um10581 (17) um02793 (6)     
     um10682 (17) um11483 (7)     
     um10695 (17) um11638 (7)     
     um04833 (17) um02913 (7)     
     um04873 (17) um02915 (7)     
     um05598 (18) um10326 (7)     
     um11181 (18) um02979 (7)     
     um05600 (18) um15001 (7)     
     um05610 (18) um03063 (7)     
     um05252 (19) um03073 (7)     
     um05275 (19) um03114 (7)     
     um05407-A 

(19) 
um03116 (7)     

     um05407-B 
(19) 

um03117 (7)     

     um05412 (19) um10636 (7)     
     um05923 (20) um03169 (8)     
     um15025 (20) um03182 (8)     
     um10898 (20) um10402 (8)     
     um05970 (20) um03298 (8)     
     um05970 (20) um10833 (8)     
     um05984 (21) um03318 (8)     
     um06086 (21) um11010 (8)     
     um06105 (21) um11014 (8)     
     um06111-B (21) um03425 (9)     
     um06111-A (21) um03515 (9)     
     um06185 (22) um03537 (9)     
     um06186 (22) um03538 (9)     
     um11231 (22) um03543 (9)     
     um10973 (22) um10571 (9)     
     um11241 (23) um03621 (9)     
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      um03661 (10)     
      um10484 (10)     
      um10659 (10)     
      um03858 (10)     
      um03873 (11)     
      um03937 (11)     
      um03949 (11)     
      um03984 (11)     
      um04081 (11)     
      um04106 (12)     
      um04193 (12)     
      um04198 (12)     
      um04209 (12)     
      um10428 (12)     
      um04209 (12)     
      um10428 (12)     
      um04277 (12)     
      um04496 (13)     
      um04505 (13)     
      um11987 (13)     
      um04562 (13)     
      um10904 (13)     
      um04590 (13)     
      um04649 (13)     
      um04353 (14)     
      um11151 (14)     
      um04374 (14)     
      um04375 (14)     
      um04406 (14)     
      um04420 (14)     
      um10539 (14)     
      um04913 (15)     
      um11770 (15)     
      um11771 (15)     
      um04994 (15)     
      um12293 (15)     
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      um05627 (16)     
      um05671 (16)     
      um05678 (16)     
      um05692 (16)     
      um05746 (16)     
      um05769 (16)     
      um05785 (16)     
      um04712 (17)     
      um04714 (17)     
      um04740 (17)     
      um10688 (17)     
      um04801 (17)     
      um10704 (17)     
      um04844 (17)     
      um04881 (17)     
      um10749 (18)     
      um05531 (18)     
      um10357 (18)     
      um05545 (18)     
      um05547 (18)     
      um11792 (18)     
      um05554 (18)     
      um11795 (18)     
      um05569 (18)     
      um05584 (18)     
      um05614 (18)     
      um05293 (19)     
      um05348 (19)     
      um05355 (19)     
      um05433 (19)     
      um05848 (20)     
      um05900 (20)     
      um05915 (20)     
      um12026 (20)     
      um10864 (20)     
      um05994 (21)     
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      um11807 (21)     
      um06035 (21)     
      um06047 (21)     
      um06061 (21)     
      um06088 (21)     
      um12068 (21)     
      um11220 (22)     
      um06205 (22)     
      um11231 (22)     
      um06426 (23)     
      um06462 (23)     
      um06467 (23)     

Chromosome location is indicated in brackets followed the ID of each gene. 
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Table S2. Potential SM gene clusters identified in U. maydis by SMURF. 
 

Number  
of cluster 

Gene ID Annotated Function Chromosome 
Location 

Cluster 1 um00785 Uncharacterized protein 1 
um00786 Uncharacterized protein 1 
um00787 Probable FUM1-fumarate hydratase 1 
um00788 Uncharacterized protein 1 
um00789 Probable carnitine O-acetyltransferase, mitochondrial precursor 1 
um00790a Related to coenzyme a synthetase 1 

Cluster 2 um01424 Probable cytochrome P450 monooxygenase/phenylacetate 
hydroxylase 

2 

um01425 Probable homogentisate 1,2-dioxygenase 2 
um01426 Uncharacterized protein 2 
um01427 Related to Crg1 protein (Putative arabinase) 2 
um01428 Uncharacterized protein 2 
um01429 Related to high-affinity nickel transport protein nic1 2 
um01430 Related to siderophore iron transporter 3 2 
um01431 Related to ATP-binding cassette transporter protein 2 
um01432 Related to N6-hydroxylysine acetyl transferase 2 
um01433 Related to enoyl-CoA hydratase 2 
um01434a Siderophore peptide synthetase involved in ferrichrome A 

biosynthesis 
2 

um01435 Related to MCH4-monocarboxylate transporter 2 
um01436 Uncharacterized protein 2 

Cluster 3 um01815 Related to carbonyl reductase 3 
um01816 Related to TRM7-tRNA 2´-O-ribose methyltransferase 3 
um01817 Uncharacterized protein 3 
um01818 Related to TAE1-AdoMet-dependent proline methyltransferase 3 
um01819 Uncharacterized protein 3 
um01820 Uncharacterized protein 3 
um01821 Probable KRE2-alpha-1,2-mannosyltransferase 3 
um01822 - 3 
um01823 Uncharacterized protein 3 
um01824 Uncharacterized protein 3 
um01825 Uncharacterized protein 3 
um01826 Uncharacterized protein 3 
um01827 Related to acid phosphatase ACP2 precursor 3 
um01828 - 3 
um01829 Related to alpha-L-arabinofuranosidase I precursor 3 
um01830a Related to alpha-aminoadipate reductase 3 
um01831 Uncharacterized protein 3 
um01832 Uncharacterized protein 3 
um01833 Related to zinc finger DHHC domain containing protein 2 3 
um01834 Uncharacterized protein 3 
um01835 Related to carnitine acetyl transferase FacC 3 
um01836 Uncharacterized protein 3 
um01837 Uncharacterized protein 3 
um01838 - 3 

Cluster 4 um02621 - 6 
um02622 Uncharacterized protein 6 
um02623a Uncharacterized protein 6 
um02624 Related to alpha-1,6-mannosyltransferase 6 
um02625 Probable DUR3-Urea permease 6 
um02626 Uncharacterized protein 6 
um02627 Uncharacterized protein 6 
um02628 Related to DNA-directed RNA polymerase I 6 



Supplementary data 
! !
! !

!

186 

Cluster 4 um02629 Related to YRO2-Putative plasma membrane protein, 
transcriptionally regulated by Haa1p 

6 

um02630 Uncharacterized protein /related to thiamin pyrophosphokinase 6 
um02631 Uncharacterized protein 6 
um02632 Probable nudC protein 6 
um02633 Probable FBP26-fructose-2,6-biphosphatase 6 
um02634 Uncharacterized protein 6 
um02635 Uncharacterized protein 6 
um02636 Related to LYS2-L-aminoadipate-semialdehyde dehydrogenase, 

large subunit 
6 

um02637 Related to PBP1-Pab1p interacting protein 6 
um02638 Related to GEM1 mitochondrial GTPase EF-hand protein 6 
um02639 Probable ubiquitin-specific processing protease 21 6 

Cluster 5 um02960 Probable Ser/Thr protein phosphatase 2A regulatory subunit A 7 
um02961 Uncharacterized protein 7 
um02962 Related to OSH6-member of an oxysterol-binding protein family 7 
um02963 Uncharacterized protein 7 
um02964 Related to Ras-like G protein RagD 7 
um02965 Related to PEX29-peroxisomal integral membrane peroxin 7 
um02966 Related to RPC37-RNA polymerase III subunit C37 7 
um02967 Probable YNK1-nucleoside diphosphate kinase 7 
um02968 Related to LSM1-Sm-like (Lsm) protein 7 
um02969 Probable ubiquitin-conugating enzyme e2-23 kda 7 
um02970 Uncharacterized protein 7 
um02971a Related to fatty acid synthase, beta and alpha chains 7 
um02972 Uncharacterized protein 7 
um02973 Uncharacterized protein 7 
um02974 Related to AUT4-breakdown of autophagic vesicles inside the 

vacuole 
7 

um02975 Uncharacterized protein 7 
um02976 Uncharacterized protein 7 
um02977 Related to CWC2-involved in mRNA splicing 7 
um02978 Uncharacterized protein 7 
um02979 Related to HPM1-AdoMet-dependent methyltransferase 7 

Cluster 6 um03104 Uncharacterized protein 7 
um03105 Uncharacterized protein 7 
um03106 Uncharacterized protein 7 
um03107 Uncharacterized protein 7 
um03108a Related to aminoadipate-semialdehyde dehydrogenase 7 
um03109 Related to pH-regulated antigen pra1 precursor 7 
um03110 Related to ZRT2-Zinc transporter II 7 
um03111 Uncharacterized protein 7 
um03112 Uncharacterized protein 7 
um03113 Uncharacterized protein 7 
um03114 Acetyltransferase involved in MEL production 7 
um03115 Major facilitator involved in MEL production 7 
um03116 Acyltransferase involved in MEL production 7 
um03117 Erythritol-mannosyl-transferase involved in MEL production 7 
um03118 Uncharacterized protein 7 
um03119 Acetyltransferase involved in MEL production 7 

Cluster 7 um04095a Polyketide synthase 12 
um04096 Uncharacterized protein 12 
um04097 Polyketide synthase 12 
um04116 Uncharacterized protein 12 
um02990 Uncharacterized protein 7 

Cluster 8 um04099 Related to HAP1-heme activator protein 12 
um04100 Uncharacterized protein 12 
um04101 Related to BAS1-transcription factor 12 
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um04102 Related to ascorbate oxidase precursor 12 
Cluster 8 um04103 Related to versicolorin B synthase 12 

um04104 Uncharacterized protein 12 
um04105a Related to polyketide synthase 12 
um04106 Related to O-methyltransferase B 12 
um04107 Related to phenol-2-monooxygenase 12 
um04108 Uncharacterized protein 12 
um04109 Related to cytochrome P450 12 
um04110 Related to NADP(+)-dependent dehydrogenase 12 
um04111 Uncharacterized protein 12 
um04112 Uncharacterized protein 12 
um04113 Myosin I 12 
um04114 Probable PHO8-repressible alkaline phosphatase vacuolar 12 
um04115 Probable LYS20-homocitrate synthase 12 
um04116 Uncharacterized protein 12 
um04117 Related to CAX4-required for full levels of dolichol-linked 

oligosaccharides 
12 

um04118 Uncharacterized protein 12 
um04119 Uncharacterized protein 12 

Cluster 9 um04694 Related to alcohol dehydrogenase class III chi chain 17 
um04695 Probable HNM1-choline permease 17 
um04696 Uncharacterized protein 17 
um04697a Related to LYS2 alpha aminoadipate reductase 17 
um04698 Uncharacterized protein 17 
um04699 Uncharacterized protein 17 
um04700 Related to ATP23-putative metalloprotease of the mitochondrial 

inner membrane 
17 

um04701 Probable rcd1 protein involved in sexual development 17 
um04702 Related to CYT2-holocytochrome-c1 synthase 17 
um04703 Probable phosphomannomutase 17 
um04704 Related to MRE11-DNA repair and meiotic recombination protein 17 
um04705 Related to ARG2-acetylglutamate synthase 17 

Cluster 10 um05165a Ferrichrome siderophore peptide synthetase 4 
um05166 Related to FUN30-Protein important for chromosome integrity and 

segregation 
4 

um05167 Uncharacterized protein 4 
um05168 Putative histone acetylase 4 
um05169 Related to YAP1802-protein involved in clathrin cage assembly 4 
um05170 Probable formate dehydrogenase 4 
um05171 Related to multifunctional folic acid synthesis protein 4 
um05172 Uncharacterized protein 4 
um05173 Related to DnaJ homolog subfamily C member 3 4 
um05174 Uncharacterized protein 4 
um05175 Uncharacterized protein 4 
um05176 Related to TMS1 protein 4 
um05177 Related to endosomal protein EMP70 precursor 4 
um05178 Related to BET5-component of the TRAPP complex 4 
um05179 Probable MVD1-Mevalonate pyrophosphate decarboxylase 4 

Cluster 11 um05245a Related to NRPS (N-terminal fragment) 19 
um05246 Related to BAS1-Myb-related transcription factor 19 
um05247 Related to methylcrotonyl-CoA carboxylase beta chain, 

mitochondrial precursor 
19 

um05248 Related to TPO3-Polyamine transport protein 19 
um05249 Uncharacterized protein 19 
um05250 Related to methylcrotonyl-CoA carboxylase alpha chain, 

mitochondrial precursor 
19 

um05251 Uncharacterized protein 19 
um05252 Probable NADP-dependent mannitol dehydrogenase 19 
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um05253 Related to ATP-binding multidrug cassette transport protein 19 
um05254 Uncharacterized protein 19 
um05255 Uncharacterized protein 19 
um05256 Uncharacterized protein 19 
um05257 Probable histone 3 19 
um05258 Uncharacterized protein 19 
um05259 Uncharacterized protein 19 
um05260 Related to inorganic phosphate transporter 19 

Cluster 12 um05781 Uncharacterized protein 16 
um05782 Capsule-associated protein-like protein 16 
um05783 Related to UDP-galactose transporter 16 
um05784 Related to capsular associated protein 16 
um05785 Acyl transferase-like protein 16 
um05786 Related to UDP N-acetylglucosamine transporter 16 
um05787 Uncharacterized protein 16 
um05788 Uncharacterized protein 16 
um05789 Uncharacterized protein 16 
um05790 Uncharacterized protein 16 
um05791 Related to cytochrome P450 16 
um05792 Related to chitin deactylase precursor 16 
um05793 Uncharacterized protein 16 
um05794 Probable YCF1-vacuolar full size ABC transporter 16 
um05795 Uncharacterized protein 16 
um05796a Uncharacterized protein 16 

Cluster 13 um06407 Probable VIP1-actin cytoskeleton organization and biogenesis-
related protein 

23 

um06408 Related to IVY1-Phospholipid-binding protein 23 
um06409 Uncharacterized protein 23 
um06410 Related to SFH1-component of the RSC chromatin remodeling 

complex 
23 

um06411 Related to aspartate-tRNA ligase, mitochondrial 23 
um06412 Related to paxillin 23 
um06413 Uncharacterized protein  23 
um06414 Polyketide synthase 23 
um06415 Uncharacterized protein 23 
um06416 Uncharacterized protein 23 
um06417 Related to superoxide dismutase 23 
um06418a Polyketide synthase 23 
um06419 Uncharacterized protein 23 
um06420 Uncharacterized protein 23 
um06421 Related to Gamm1 protein/Ni-binding urease accessory protein 

(UreG) 
23 

um06422 Uncharacterized protein 23 
um06423 - 23 
um06424 Related to aldehyde dehydrogenase NAD(P) 23 
um06425 Uncharacterized protein 23 
um06426 Related to SLC1-1-acyl-sn-glycerol-3-phosphate acyltransferase 23 
um06427 Related to kinesin-like protein KIF2C 23 
um06428 Related to thiamine-repressible acid phosphatase precursor 23 
um06429 Uncharacterized protein 23 
um06430 Probable heat shock protein HSP104 (endopeptidase Clp ATP-

binding chain HSP104) 
23 

Cluster 14 um06452 Uncharacterized protein 23 
um06453 Related to transaldolase B 23 
um06454 Related to mannose-6-phosphate isomerase 23 
um06455 Uncharacterized protein 23 
um06456 Related to aminopeptidase Y precursor, vacuolar 23 
um06457 - 23 
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um06458 Regulator of ustilagic acid biosynthesis 23 
um06459 Cytochrome P450 monooxygenase involved in ustilagic acid 

production  
23 

Cluster 14 um06460a Fatty acid synthase FAS2 23 
um06461 ABC transporter 23 
um06462 Ustilagic acid acyltransferase 23 
um06463 Cytochrome P450 enzyme involved in glycolipid production 23 
um06464 Uncharacterized protein 23 
um06465 Uncharacterized protein 23 
um06466 Ustilagic acid hydroxylase 23 
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Table S3. Potential SM gene clusters identified in U. maydis by anti-SMASH. 
 

Number 
of cluster 

Gene ID Annotated Function Chromosome 
Location 

Cluster 1 um00784 Uncharacterized protein 1 
um12356 Uncharacterized protein (N-terminal fragment) 1 
um00785 Uncharacterized protein 1 
um00786 Uncharacterized protein 1 
um10787 Probable FUM1 (fumarate hydratase) 1 
um00788 Uncharacterized protein 1 
um00789 Probable carnitine O-acetyltransferase, mitochrondrial 

precursor 
1 

um00790 Related to coenzyme a synthetase 1 
um10788 Probable AAP1-alanine/arginine aminopeptidase 1 
um00792 Uncharacterized protein 1 
um00793 Uncharacterized protein 1 
um00794 Uncharacterized protein 1 
um00795 Uncharacterized protein 1 
um00796 Uncharacterized protein 1 
um15051 Related to SKN1-protein involved in sphngolipid 

biosynthesis 
1 

um00797 Probable adenosine kinase 1 
um00798 Related to RAD5-DNA helicase 1 

Cluster 2 um01426-A Uncharacterized protein 2 
um01426-B Uncharacterized protein 2 
um01427 Related to Crg1 protein (Putative arabinase) 2 
um01428 Uncharacterized protein 2 
um01429 Related to high-affinity nickel transport protein nic1 2 
um11338 Related to AIF1-mitochondrial cell death effector 2 
um11339 Related to Siderophore iron transporter 3 2 
um01431 Related to ATP-binding cassette transporter protein 2 
um01432 Related to N6-hydroxylysine acetyl transferase 2 
um01433 Related to Enoyl-CoA hydratase 2 
um01434 Siderophore peptide synthetase involved in ferrichrome A 

biosynthesis 
2 

um01435 Related to MCH4-monocarboxylate transporter 2 
um01436 Uncharacterized protein 2 
um01437 Uncharacterized protein 2 
um01438 Uncharacterized protein 2 
um01439 Related to FRE3, ferric reductase 2 
um11873 Uncharacterized protein 2 
um01441 Uncharacterized protein 2 

Cluster 3 um01691 Related to ATP-dependent DNA helicase 3 
um01692 Related to CHA1-L-serine/L-threonine deaminase 3 
um11358 Related to MEF2-translation elongation factor, 

mitochondrial 
3 

um11359 Related to BOR1-boron efflux transporter 3 
um01694 Uncharacterized protein 3 
um01695 Uncharacterized protein 3 
um01696 Uncharacterized protein 3 
um01697 Probable LYS2-L-aminoadipate-semialdehyde 

dehydrogenase, large subunit 
3 

um01698 Uncharacterized protein 3 
um01699 Uncharacterized protein 3 
um01700 Related to ABC transporter protein 3 
um01701 Uncharacterized protein 3 
um01702 Uncharacterized protein 3 
um01703 Uncharacterized protein 3 
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Cluster 4 um12165 Uncharacterized protein 3 
Cluster 4 um01826 Uncharacterized protein 3 

um01827 Related to acid phosphatase ACP2 precursor 3 
um12166 Related to SPC1-signal peptidase 10.8 kDa subunit 3 
um12167 Related to PPR1-Zinc finger transcription factor 3 
um12168 Uncharacterized protein 3 
um01829 Related to alpha-L-arabinofuranosidase I precursor 3 
um01830 Related to alpha-aminoadipate reductase 3 
um01831 Uncharacterized protein 3 
um01832 Uncharacterized protein 3 
um01833 Related to zinc finger DHHC domain containing protein 2 3 
um01834 Uncharacterized protein 3 
um01835 Related to carnitine acetyl transferase FacC 3 
um10255 Uncharacterized protein 3 
um01837 Uncharacterized protein 3 
um10256 Uncharacterized protein 3 

Cluster 5 um05160 Probable ILS1-isoleucyl-tRNA synthetase 4 
um05161 Related to phosducin 4 
um05162 Probable ADE6-phosphoribosylformyl glycinamidine 

synthetase 
4 

um05163 Uncharacterized protein 4 
Um10188 1-ornithine N5-oxygenase 4 
Um10189 Ferrichrome siderophore peptide synthetase 4 
um05166 Related to FUN30-protein important for chromosome 

integrity and segregation 
4 

um05167 Uncharacterized protein 4 
um10190 Putative histone acetylase 4 
um05169 Related to YAP1802-protein involved in clathrin cage 

assembly 
4 

um05170 Probable formate dehydrogenase 4 
um12158 Uncharacterized protein 4 
um05171 Related to multifunctional folic acid synthesis protein 4 
um12159 Uncharacterized protein 4 
um05173 Related to DnaJ homolog subfamily C member 3 4 
um05174 Uncharacterized protein 4 

Cluster 6 um06284 Related to Cutl1 or CASP protein 4 
um06285 Related to carbamoyl-phosphate synthase small chain, 

arginine specific 
4 

um10760 Uncharacterized protein 4 
um10761 Related to FLC2-Putative FAD transporter 4 
um06287 Related to Phytoene synthase 4 
um06288 Uncharacterized protein 4 

Cluster 7 um02629 Related to YRO2-Putative plasma membrane protein, 
transcriptionally regulated by Haa1p 

6 

um02630 Uncharacterized protein/related to thiamin 
pyrophosphokinase 

6 

um02631 Uncharacterized protein 6 
um02632 Probable nudC protein 6 
um10293 Probable FBF26-fructose-2,6-bisphosphatase 6 
um10294 Uncharacterized protein 6 
um02635 Uncharacterized protein 6 
um10295 Related to LYS2-L-aminoadipate-semialdehyde 

dehydrogenase, large subunit 
6 

um02637 Related to PBP1-Pab1p interacting protein 6 
um02639 Probable ubiquitin-specific processing protease 21 6 
um02640 Uncharacterized protein 6 
um02641 Related to PEX10-peroxisomal assembly protein-peroxin 6 
um02642 Uncharacterized protein 6 
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um10296 Probable COX12-cytochrome-c-oxidase, subunit VIB 6 
um10297 Related to pre-mRNA splicing factor 18 6 

Cluster 7 um10298 Uncharacterized protein 6 
um02645 Probable DIBB1-17kDa component of the U4/U6aU5 tri-

snRNP 
6 

um10299 Related to LUC7-essential protein associated with the U1 
snRNP complex 

6 

um10300 Related to JJJ1 cochaperone required for a late step of 
ribosome biogenesis 

6 

um10301 Uncharacterized protein 6 
um10302 Uncharacterized protein 6 
um02649 Uncharacterized protein 6 
um12194 Related to SWD2-subunit of the COMPASS complex 6 
um02651 Related to dihydroceramide delta (4)-desaturase 6 
um02652 Uncharacterized protein 6 
um02653 Related to alpha-1,3-mannosyltransferase alg2 6 
um02654 Uncharacterized protein 6 
um02655 Related to RNA binding motif protein 6 

Cluster 8 um03100 Related to dynein light chain 2B, cytoplasmic 7 
um11948 Related to ubiquitin-like protein Hub1 7 
um03102 Uncharacterized protein 7 
um03103 Probable ribose-5-phosphate isomerase 7 
um10627 Related to triose-phosphate isomerase 7 
um10628 Uncharacterized protein 7 
um10629 Uncharacterized protein 7 
um03105 Uncharacterized protein 7 
um10630 Uncharacterized protein 7 
um10631 Uncharacterized protein 7 
um03108 Related to aminoadipate-semialdehyde dehydrogenase 7 
um10632 Related to pH-regulated antigen pra1 precursor 7 
um03110 Related to ZRT2-zinc transporter II 7 
um10633 Uncharacterized protein 7 
um10634 Uncharacterized protein 7 
um03112 Uncharacterized protein 7 
um03113 Uncharacterized protein 7 
um03114 Acetyltransferase involved in MEL production 7 
um03115 Major facilitator involved in MEL transport 7 

Cluster 9 um03583 Related to HIS2-histidinol-phosphatase 9 
um03584 Related to RPA49-49kDa subunit of DNA-directed RNA 

polymerase I 
9 

um03585 Uncharacterized protein 9 
um03586 Uncharacterized protein 9 
um12235 Uncharacterized protein 9 
um03588 Related to transcription factor medusa 9 
um11959 Uncharacterized protein 9 
um03590 Uncharacterized protein 9 
um12236 Probable NADP(+)-dependent dehydrogenase acting on 3-

hydroxy acids 
9 

um11960 Uncharacterized protein 9 
um03593 Probable sterol delta 5,6-desaturase 9 
um03595 Uncharacterized protein 9 
um03596 Related to PEX7-peroxisomal import protein-peroxin 9 
um03597 Uncharacterized protein 9 
um03598 Related to ENT2-clathrin binding protein, required for 

endocytosis 
9 

um03599 Probable CDC12-septin 9 
Cluster 10 um04095 Related to polyketide synthase 12 

um04096 Uncharacterized protein 12 
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um04097 Related to polyketide synthase 12 
Cluster 11 um04350 Related to 3-phytase A precursor 14 

um04351 Probable sec7-component of non-clathrin vesicle coat 14 
Cluster 11 um04352 Probable MOB1 protein 14 

um04353 Related to glycosyl transferase, group 2 family protein 14 
um04354 Uncharacterized protein 14 
um04355 Related to Sel-1 homolog precursor 14 
um04356 Related to UTP20 component of the small-subunit 

processome 
14 

um04357 Related to endo-1,6-beta-d-glucanase precursor 14 
um04358 Uncharacterized protein 14 
um12262 Related to 4-coumarate-CoA ligase 14 
um11146 Uncharacterized protein 14 
um11147 Uncharacterized protein 14 
um04361 Related to KRI1-KRRI-Interacting protein 1 14 

Cluster 12 um04371 Related to eukaryotic translation initiation factor 14 
um04372 Cytoplasmic dynein heavy chain 2 14 
um12263 Uncharacterized protein 14 
um11151 Related to type I protein geranylgeranyltransferase beta 

subunit 
14 

um04374 Farnesyl-diphosphate farnesyltransferase 14 
um04375 Related to hnRNP arginine N-methyltransferase 14 
um04376 Uncharacterized protein 14 
um11152 Related to 2-amino-3-carboxylmuconate-6-semialdehyde 

decarboxylase 
14 

um04378 Related to phenylacetaldehyde dehydrogenase 14 
um04379 Related to gibberellin 20-oxidase 14 

Cluster 13 um10543 Related to non-ribosomal peptide synthetase (N-terminal 
fragment) 

19 

um10544 Related to BAS1-Myb-related transcription factor 19 
um05247 Related to methylcrotonyl-CoA carboxylase beta chain, 

mitochondrial precursor 
19 

um05248 Related to TPO3-Polyamine transport protein 19 
um05249 Uncharacterized protein 19 

Cluster 14 um06411 Related to aspartate-tRNA ligase, mitochondrial 23 
um06412 Related to paxillin 23 
um06413 Uncharacterized protein 23 
um06414 Related to polyketide synthase 23 
um11239 Uncharacterized protein 23 
um06416 Uncharacterized protein 23 
um06417 Related to superoxide dismutase 23 
um06418 Related to polyketide synthase 23 
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Table S4. Description of the 144 experiments downloaded from GEO, platform GPL3681.  
Condition GEO ID Description of the condition Replicate 
1 GSM488161 Tumor material from maize leaves 5 days post FB1∆fox1/FB2∆fox1 mixed infection at 28°C 2nd 
2 GSM488162 Tumor material from maize leaves 5 days post FB1∆fox1/FB2∆fox1 mixed infection at 28°C 3rd 
3 GSM488160 Tumor material from maize leaves 5 days post FB1∆fox1/FB2∆fox1 mixed infection at 28°C 1st 
4 GSM488165 Tumor material from maize leaves 5 days post FB1/FB2 mixed infection at 28°C 3rd 
5 GSM488164 Tumor material from maize leaves 5 days post FB1/FB2 mixed infection at 28°C 2nd 
6 GSM488163 Tumor material from maize leaves 5 days post FB1/FB2 mixed infection at 28°C 1st 
7 GSM414622 Tumor material from maize leaves 5 days post FB1/FB2 mixed infection at 31°C 2nd 
8 GSM414621 Tumor material from maize leaves 5 days post FB1/FB2 mixed infection at 31°C 1st 
9 GSM414624 Tumor material from maize leaves 5 days post FB1/FB2 mixed infection at 31°C 3rd 
10 GSM414629 Tumor material from maize leaves 5 days post RAb1ts/RAb2ts mixed infection at 31°C 3rd 
11 GSM414628 Tumor material from maize leaves 5 days post RAb1ts/RAb2ts mixed infection at 31°C 2nd 
12 GSM414625 Tumor material from maize leaves 5 days post RAb1ts/RAb2ts mixed infection at 31°C 1st 
13 GSM414499 Tumor material from maize leaves 5 days post RAb1ts/RAb2ts mixed infection at 22°C 1st 
14 GSM414496 Tumor material from maize leaves 5 days post FB1/FB2 mixed infection at 22°C 1st 
15 GSM135548 Tumors induced in corn plants by an infection with the strains FB1 and FB2 (13 dpi) 2nd 
16 GSM135547 Tumors induced in corn plants by an infection with the strains FB1 and FB2 (13 dpi) 1st 
17 GSM140086 HE140 strain grown for 180 min in CM medium containing 1% (w/v) arabinose 3rd 
18 GSM140081 FB1 strain grown for 75 min in CM medium containing 1% (w/v) arabinose 3rd 
19 GSM140085 HE140 strain grown for 180 min in CM medium containing 1% (w/v) arabinose 2nd 
20 GSM140084 HE140 strain grown for 180 min in CM medium containing 1% (w/v) arabinose 1st 
21 GSM140080 FB1 strain grown for 75 min in CM medium containing 1% (w/v) arabinose 2nd 
22 GSM140079 FB1 strain grown for 75 min in CM medium containing 1% (w/v) arabinose 1st 
23 GSM732626 SG200Δtup1 strain grown for 48 h on charcoal minimal medium 2nd 
24 GSM732625 SG200Δtup1 strain grown for 48 h on charcoal minimal medium 1st 
25 GSM732623 SG200 strain grown for 48 h on charcoal minimal medium 1st 
26 GSM732624 SG200 strain grown for 48 h on charcoal minimal medium 2nd 
27 GSM537076 SG200Δrep1 strain grown on NM+ charcoal plates for 48 h 1st 
28 GSM537077 SG200Δrep1 strain grown on NM+ charcoal plates for 48 h 2nd 
29 GSM537078 SG200Δrep1 strain grown on NM+ charcoal plates for 48 h 3rd 
30 GSM537074 SG200 strain grown on NM+ charcoal plates for 48 h 2nd 
31 GSM537075 SG200 strain grown on NM+ charcoal plates for 48 h 3rd 
32 GSM537073 SG200 strain grown on NM+ charcoal plates for 48 h 1st 
33 GSM465433 AB31 strain grown for 12 h in array medium containing 1% (w/v) arabinose 2nd 
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34 GSM465432 AB31 strain grown for 12 h in array medium containing 1% (w/v) arabinose 1st 
35 GSM528243 AB33 strain grown for 12 h in array medium containing 3g/l nitrate and 1% (w/v) arabinose 1st 
36 GSM528244 AB33 strain grown for 12 h in array medium containing 3g/l nitrate and 1% (w/v) arabinose 2nd 
37 GSM465546 AB33 strain grown for 12 h in array medium containing 3g/l nitrate 2nd 
38 GSM465545 AB33 strain grown for 12 h in array medium containing 3g/l nitrate 1st 
39 GSM465543 AB33 strain grown for 5 h in array medium containing 3g/l nitrate 1st 
40 GSM465544 AB33 strain grown for 5 h in array medium containing 3g/l nitrate 2nd 
41 GSM465541 AB33 strain grown for 3 h in array medium containing 3g/l nitrate 1st 
42 GSM465542 AB33 strain grown for 3 h in array medium containing 3g/l nitrate 2nd 
43 GSM528252 UKH156 strain grown for 12 h in array medium containing 3g/l nitrate and 1% (w/v) arabinose 1st 
44 GSM528253 UKH156 strain grown for 12 h in array medium containing 3g/l nitrate and 1% (w/v) arabinose 2nd 
45 GSM528255 UKH164 strain grown for 12 h in array medium containing 3g/l nitrate and 1% (w/v) arabinose 2nd 
46 GSM528254 UKH164 strain grown for 12 h in array medium containing 3g/l nitrate and 1% (w/v) arabinose 1st 
47 GSM528248 UMS84 strain grown for 12 h in array medium containing 3g/l nitrate and 1% (w/v) arabinose 1st 
48 GSM528249 UMS84 strain grown for 12 h in array medium containing 3g/l nitrate and 1% (w/v) arabinose 2nd 
49 GSM528242 AB33 strain grown for 5 h in array medium containing 3g/l nitrate and 1% (w/v) arabinose 2nd 
50 GSM528247 UMS84 strain grown for 12 h in array medium containing 3g/l nitrate and 1% (w/v) arabinose 2nd 
51 GSM465554 AB34 strain grown for 3 h in array medium containing 3g/l nitrate 2nd 
52 GSM465557 AB34 strain grown for 12 h in array medium containing 3g/l nitrate 1st 
53 GSM465558 AB34 strain grown for 12 h in array medium containing 3g/l nitrate 2nd 
54 GSM465556 AB34 strain grown for 5 h in array medium containing 3g/l nitrate 2nd 
55 GSM465555 AB34 strain grown for 5 h in array medium containing 3g/l nitrate 1st 
56 GSM465553 AB34 strain grown for 3 h in array medium containing 3g/l nitrate 1st 
57 GSM465552 AB34 strain grown for 2 h in array medium containing 3g/l nitrate  2nd 
58 GSM465551 AB34 strain grown for 2 h in array medium containing 3g/l nitrate 1st 
59 GSM465540 AB33 strain grown for 2 h in array medium containing 3g/l nitrate 2nd 
60 GSM465539 AB33 strain grown for 2 h in array medium containing 3g/l nitrate 1st 
61 GSM465550 AB34 strain grown for 1 h in array medium containing 3g/l nitrate 2nd 
62 GSM465549 AB34 strain grown for 1 h in array medium containing 3g/l nitrate 1st 
63 GSM465538 AB33 strain grown for 1 h in array medium containing 3g/l nitrate 2nd 
64 GSM465537 AB33 strain grown for 1 h in array medium containing 3g/l nitrate 1st 
65 GSM465434 AB32 strain grown for 0 h in array medium containing 1% (w/v) arabinose 1st 
66 GSM465439 AB32 strain grown for 0 h in array medium containing 1% (w/v) arabinose 2nd 
67 GSM465411 AB31 strain grown for 0 h in array medium containing 1% (w/v) arabinose 2nd 
68 GSM465410 AB31 strain grown for 0 h in array medium containing 1% (w/v) arabinose 1st 
69 GSM135545 FB1 strain grown to an OD600 of 0.5 in  array medium 1st 
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70 GSM135546 FB1 strain grown to an OD600 of 0.5 in  array medium 2nd 
71 GSM465535 AB33 strain grown for 0 h in array medium containing 3g/l nitrate 1st 
72 GSM465536 AB33 strain grown for 0 h in array medium containing 3g/l nitrate 2nd 
73 GSM465548 AB34 strain grown for 0 h in array medium containing 3g/l nitrate 2nd 
74 GSM465547 AB34 strain grown for 0 h in array medium containing 3g/l nitrate 1st 
75 GSM465534 AB32 strain grown for 12 h in array medium containing 1% (w/v) arabinose 2nd 
76 GSM465533 AB32 strain grown for 12 h in array medium containing 1% (w/v) arabinose 1st 
77 GSM465598 AB31∆rbf1 strain grown for 12 h in array medium containing 1% (w/v) arabinose 2nd 
78 GSM465597 AB31∆rbf1 strain grown for 12 h in array medium containing 1% (w/v) arabinose 1st 
79 GSM140091 HE140 strain grown to an OD600 of 0.5 in CM medium containing 1% (w/v) glucose 2nd 
80 GSM182059 FB1 strain grown in CM medium containing 1% (w/v) glucose (without H2O2) 2nd 
81 GSM182056 FB1 strain grown in CM medium containing 1% (w/v) glucose (without H2O2) 1st 
82 GSM140082 FB1 strain grown in CM medium containing 1% (w/v) glucose 1st 
83 GSM140083 FB1 strain grown in CM medium containing 1% (w/v) glucose 2nd 
84 GSM140090 HE140 strain grown to an OD600 of 0.5 in CM medium containing 1% (w/v) glucose 1st 
85 GSM140094 FB1 strain grown in CM medium containing 1% (w/v) glucose in the presence of 10mM FeSO4 1st 
86 GSM140098 BW12 strain grown in CM medium containing 1% (w/v) glucose in the presence of 10mM FeSO4 1st 
87 GSM140099 BW12 strain grown in CM medium containing 1% (w/v) glucose in the presence of 10mM FeSO4 2nd 
88 GSM140096 FB1 strain grown to an OD600 of 0.5 in  array medium containing 1%(w/v) glucose in the presence of  FeSO4 2nd 
89 GSM140097 FB1 strain grown to an OD600 of 0.5 in  array medium containing 1%(w/v) glucose in the absence of  FeSO4 2nd 
90 GSM140095 FB1 strain grown to an OD600 of 0.5 in  array medium containing 1%(w/v) glucose in the absence of  FeSO4 1st 
91 GSM140076 FB1 strain grown in CM medium containing 1% (w/v) arabinose for 180 min 1st 
92 GSM140077 FB1 strain grown in CM medium containing 1% (w/v) arabinose for 180 min 2nd 
93 GSM140078 FB1 strain grown in CM medium containing 1% (w/v) arabinose for 180 min 3rd 
94 GSM140089 HE140 strain grown in CM medium containing 1 %(w/v) arabinose for 75 min 3rd 
95 GSM140088 HE140 strain grown in CM medium containing 1 %(w/v) arabinose for 75 min 2nd 
96 GSM140087 HE140 strain grown in CM medium containing 1 %(w/v) arabinose for 75 min 1st 
97 GSM465674 JB2 strain grown in array medium containing 1% (w/v) arabinose for 5 h 1st 
98 GSM465675 JB2 strain grown in array medium containing 1% (w/v) arabinose for 5 h 2nd 
99 GSM465413 AB31 strain grown in array medium containing 1% (w/v) arabinose for 1 h 2nd 
100 GSM465427 AB31 strain grown in array medium containing 1% (w/v) arabinose for 2 h 2nd 
101 GSM465426 AB31 strain grown in array medium containing 1% (w/v) arabinose for 2 h 1st 
102 GSM105901 JB1-Pcrg::clp1 strain grown in minimal medium containing 1% (w/v) arabinose for 2 h 2nd 
103 GSM105900 JB1-Pcrg::clp1 strain grown in minimal medium containing 1% (w/v) arabinose for 2 h 1st 
104 GSM105899 JB1 strain grown in array medium containing 1% (w/v) arabinose for 2 h 1st 
105 GSM105898 JB1 strain grown in array medium containing 1% (w/v) arabinose for 2 h 2nd 
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106 GSM465412 AB31 strain grown in array medium containing 1% (w/v) arabinose for 1 h 1st 
107 GSM465589 AB31∆rbf1 strain grown in array medium containing 1% (w/v) arabinose for 3 h 1st 
108 GSM465590 AB31∆rbf1 strain grown in array medium containing 1% (w/v) arabinose for 3 h 2nd 
109 GSM465592 AB31∆rbf1 strain grown in array medium containing 1% (w/v) arabinose for 5 h 2nd 
110 GSM465591 AB31∆rbf1 strain grown in array medium containing 1% (w/v) arabinose for 5 h 1st 
111 GSM465531 AB32 strain grown in array medium containing 1% (w/v) arabinose for 5 h 1st 
112 GSM465532 AB32 strain grown in array medium containing 1% (w/v) arabinose for 5 h 2nd 
113 GSM465529 AB32 strain grown in array medium containing 1% (w/v) arabinose for 3 h 1st 
114 GSM465530 AB32 strain grown in array medium containing 1% (w/v) arabinose for 3 h 2nd 
115 GSM465527 AB32 strain grown in array medium containing 1% (w/v) arabinose for 2 h 1st 
116 GSM465528 AB32 strain grown in array medium containing 1% (w/v) arabinose for 2 h 2nd 
117 GSM465649 CP27 strain grown in array medium containing 1% (w/v) arabinose for 5 h 1st 
118 GSM465650 CP27 strain grown in array medium containing 1% (w/v) arabinose for 5 h 2nd 
119 GSM465430 AB31 strain grown in array medium containing 1% (w/v) arabinose for 5 h 1st 
120 GSM465431 AB31 strain grown in array medium containing 1% (w/v) arabinose for 5 h 2nd 
121 GSM465428 AB31 strain grown in array medium containing 1% (w/v) arabinose for 3 h 1st 
122 GSM465429 AB31 strain grown in array medium containing 1% (w/v) arabinose for 3 h 2nd 
123 GSM528241 AB33 strain grown in array medium containing 3g/l nitrate containing 1 % (w/v) arabinose for 5 h 1st 
124 GSM528245 UMS84 strain grown in array medium containing 3g/l nitrate and 1% (w/v) arabinose for 5 h 1st 
125 GSM418686 SG200 strain grown in array medium containing 1% (w/v) xylose for 6 h 1st 
126 GSM418687 SG200 strain grown in array medium containing 1% (w/v) xylose for 6 h 2nd 
127 GSM418690 SG200∆hxt1 strain grown in array medium containing 1% (w/v) xylose for 6 h 1st 
128 GSM418691 SG200∆hxt1 strain grown in array medium containing 1% (w/v) xylose for 6 h 2nd 
129 GSM418688 SG200∆hxt1 strain grown in array medium containing 1% (w/v) glucose for 6 h 1st 
130 GSM418689 SG200∆hxt1 strain grown in array medium containing 1% (w/v) glucose for 6 h 2nd 
131 GSM418684 SG200 strain grown in array medium containing 1% (w/v) glucose for 6 h 1st 
132 GSM418685 SG200 strain grown in array medium containing 1% (w/v) glucose for 6 h 2nd 
133 GSM182090 FB1∆yap1 strain grown in CM-glucose medium containing 5 mM H2O2 for 1 h 1st 
134 GSM182102 FB1∆yap1 strain grown in CM-glucose medium containing 5 mM H2O2 for 1 h 2nd 
135 GSM182087 FB1 strain grown in CM-glucose medium containing 5 mM H2O2 for 1 h 2nd 
136 GSM182061 FB1 strain grown in CM-glucose medium containing 5 mM H2O2 for 1 h 1st 
137 GSM465526 AB32 strain grown in array medium containing 1% (w/v) arabinose for 1 h 2nd 
138 GSM465525 AB32 strain grown in array medium containing 1% (w/v) arabinose for 1 h 1st 
139 GSM754003 FB1 strain grown in CM medium with 1% (w/v) glucose to an OD600 of 0.5 2nd 
140 GSM754004 FB1 strain grown in CM medium with 1% (w/v) glucose to an OD600 of 0.5 3rd 
141 GSM754002 FB1 strain grown in CM medium with 1% (w/v) glucose to an OD600 of 0.5 1st 
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142 GSM754005 FB1∆rak1 strain grown in CM medium with 1% (w/v) glucose to an OD600 of 0.5 3rd 
143 GSM754007 FB1∆rak1 strain grown in CM medium with 1% (w/v) glucose to an OD600 of 0.5 2nd 
144 GSM754006 FB1∆rak1 strain grown in CM medium with 1% (w/v) glucose to an OD600 of 0.5 1st 
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Table S5. Conditions under wich the vbs1 gene is most up- and down-regulated. 
 

Condition Log2 fold changea 

Up-regulated  

1.! SG200 strain grown for 48 h on charcoal minimal medium 3.47b 

2.! SG200 strain grown on NM+ charcoal plates for 48 h 3.12c 

3.! FB1 strain grown in CM-glucose medium containing 5 mM H2O2 for 1 h 1.85b 

4.! Tumors induced in corn plants by an infection with the strains FB1 and FB2 (13 dpi) 1.45b 

5.! SG200Δtup1 strain grown for 48 h on charcoal minimal medium 0.94b 

Down-regulated  

1.! FB1∆rak1 strain grown in CM medium with 1% (w/v) glucose to an OD600 of 0.5 -2.06c 

2.! FB1 strain grown in CM medium with 1% (w/v) glucose to an OD600 of 0.5 -1.59c 

3.! BW12 strain grown in CM medium containing 1% (w/v) glucose in the presence of 10 mM 

FeSO4 

-1.47b 

4.! SG200∆hxt1 strain grown in array medium containing 1% (w/v) glucose for 6 h -1.27b 

5.! SG200∆hxt1 strain grown in array medium containing 1% (w/v) xylose for 6 h -1.05b 

a Normalized gene expression data extracted from Gene Expression Omnibus. 
b Value calculated from two experimental conditions. 
c Value calculated from three experimental conditions. 
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Table S6. Conditions under wich the pks1 gene is most up- and down-regulated. 
 

Condition Log2 fold changea 

Up-regulated  

1.! Tumors induced in corn plants by an infection with the strains FB1 and FB2 (13 dpi) 4.82b 

2.! Tumor material from maize leaves 5 days post FB1∆fox1/FB2∆fox1 mixed infection at 28°C 1.93c 

            3.   Tumor material from maize leaves 5 days post FB1/FB2 mixed infection at 28°C 1.93c 

4.    AB33 strain grown for 5 h in array medium containing 3g/l nitrate 0.76b 

5.    AB32 strain grown for 12 h in array medium containing 1% (w/v) arabinose 0.71b 

Down-regulated  

1.! HE140 strain grown for 180 min in CM medium containing 1% (w/v) arabinose -1.89b 

2.! FB1 strain grown for 75 min in CM medium containing 1% (w/v) arabinose -1.47b 

3.! FB1 strain grown to an OD600 of 0.5 in  array medium containing 1%(w/v) glucose in the 

presence of  FeSO4 

-1.47c 

4.! FB1 strain grown in CM-glucose medium containing 5 mM H2O2 for 1 h -1.44b 

5.! FB1 strain grown in CM medium containing 1% (w/v) glucose in the presence of 10 mM 

FeSO4 

-0.98b 

a Normalized gene expression data extracted from Gene Expression Omnibus. 
b Value calculated from two experimental conditions. 
c Value calculated from three experimental conditions. 
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Table S7. Conditions under wich the pks2 gene is most up- and down-regulated. 
 

Condition Log2 fold changea 

Up-regulated  

1.! Tumors induced in corn plants by an infection with the strains FB1 and FB2 (13 dpi) 5.29b 

2.! Tumor material from maize leaves 5 days post FB1∆fox1/FB2∆fox1 mixed infection at 

28°C 

0.95c 

3.! Tumor material from maize leaves 5 days post FB1/FB2 mixed infection at 28°C 0.92c 

                  4.   AB32 strain grown for 12 h in array medium containing 1% (w/v) arabinose 0.89b 

                  5.   AB34 strain grown for 3 h in array medium containing 3g/l nitrate 0.83b 

Down-regulated  

1.! HE140 strain grown for 180 min in CM medium containing 1% (w/v) arabinose -1.56b 

2.! FB1 strain grown in CM medium with 1% (w/v) glucose to an OD600 of 0.5 -1.54c 

3.! HE140 strain grown to an OD600 of 0.5 in CM medium containing 1% (w/v) glucose -1.43b 

4.! FB1 strain grown to an OD600 of 0.5 in  array medium containing 1% (w/v) glucose in the 

presence of  FeSO4 

-1.23b 

5.! FB1 strain grown for 75 min in CM medium containing 1% (w/v) arabinose -0.88b 

a Normalized gene expression data extracted from Gene Expression Omnibus. 
b Value calculated from two experimental conditions. 
c Value calculated from three experimental conditions. 
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Table S8. Primers used in this study. 
Primer Sequence Tm (°C) Comments 
MH86 5' -CGAGCACGGTGTTGAGCTCTTG 71.4 Primer forward for the amplification of pks5 ORF 
MH87 5' -CGCTTGTAGGATAACACCGC 64.4 Primer reverse for the amplification of pks5 ORF 
MH88 5' -CGACTTTCCGTTTTGGTGAGTAGC 68.5 Primer forward for the amplification of orf1 ORF 
MH89 5' -GCTTCAATGGCCAATACTGCACG 71.2 Primer reverse for the amplification of orf1 ORF 
MH90 5' -CGTTTCGCCACTGCTATCGATCAAGC 75.1 Primer forward for the amplification of pks4 ORF 
MH91 5' -CGTAAGCTTGGCGTCCGTCCAGGC 78.1 Primer reverse for the amplification of pks4 ORF 
MH92 5' -GCTGTTTCTCCATATGATGC 59.7 Primer forward for the amplification of vbs1 ORF 
MH93 5' -GGATCACAGTCACAAGCTGC 63.6 Primer reverse for the amplification of vbs1 ORF 
MH94 5' -GCTGCTCAGACGCAAAACCC 69.3 Primer forward for the amplification of orf4 ORF 
MH95 5' -GCATCAATGAGTACTGGATGG 62.0 Primer reverse for the amplification of orf4 ORF 
MH96 5' -CGGTAGGGCGGAAGGCGTTGC 77.0 Primer forward for the amplification of pks3 ORF 
MH97 5' -GCTGGAAATGTCCAGGTGTGTGG 71.7 Primer reverse for the amplification of pks3 ORF 
MH98 5' -GCTCTCCTCGAGAATTACCAGC 65.3 Primer forward for the amplification of omt1 ORF 
MH99 5' -CGAACCTTGGCCGAGTGCAGG 75.0 Primer reverse for the amplification of omt1 ORF 
MH100 5' -CGAACCTTCTGGGATACAAGCC 67.6 Primer forward for the amplification of pmo1 ORF 
MH101 5' -GCATTCTCCTGCTCGGTGTTGC 72.2 Primer reverse for the amplification of pmo1 ORF 
MH102 5' -CGTCAGCGACACCTGATCTGC 70.7 Primer forward for the amplification of orf5 ORF 
MH103 5' -CGTGACCCTATCGAGGCCATGACC 75.0 Primer reverse for the amplification of orf5 ORF 
MH104 5' -CGAATTCCTGGTCCACGTCAACTGC 74.9 Primer forward for the amplification of cyp4 ORF 
MH105 5' -GAACTGATATCGGCATGCGGCGACG 78.6 Primer reverse for the amplification of cyp4 ORF 
MH106 5' -CGTTCTCGTCACAGGCAGCACC 73.4 Primer forward for the amplification of deh1 ORF 
MH107 5' -CGATGGAACCTCGAGCAGAGG 70.4 Primer reverse for the amplification of deh1 ORF 
MH108 5' -CGTCAGATGGCGGGCTGGGACTCG 81.3 Primer forward for the amplification of orf6 ORF 
MH109 5' -CGACACGCGATGCGACACCGATGG 82.3 Primer reverse for the amplification of orf6 ORF 
MH110 5' -GCAACGTCACCAAAGCCTTGACC 72.5 Primer forward for the amplification of orf7 ORF 
MH111 5' -GGTGTACTCGCCTGCGTACGACG 73.5 Primer reverse for the amplification of orf7 ORF 
MG1012 5' -CGTTAAACGTATCGAAGCTAGC 61.7 Primer forward for the amplification of mtf2 ORF 
MG1013 5' -GCAACACAAGATCGTGAGGAGC 68.2 Primer reverse for the amplification of mtf2 ORF 
MG1014 5' -ATGGATCAGCACAAGCGAGGC 70.8 Primer forward for the amplification of orf2 ORF 
MG1015 5' -TTAGAACAAGATGAGAACGTGTCTCCTGC 70.6 Primer reverse for the amplification of orf2 ORF 
MG1016 5' -ATGAGAAGCGCAGCAATCGAAGC 72.3 Primer forward for the amplification of orf3 ORF 
MG1017 5' -TCATCCATGTGGACAAGTGGC 68.3 Primer reverse for the amplification of orf3 ORF 
MG1018 5' -GCTCAAAAAATCTGAATGGACCG 67.4 Primer forward for the amplification of mtf1 ORF 
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MG1019 5' -CGTGCCGGGTCGCCAGCCATGG 84.2 Primer reverse for the amplification of mtf1 ORF 
MG1020 5' -CGACGAATCAAACAGGTCTACACTGG 70.2 Primer forward for the amplification of aox1 ORF 
MG1021 5' -CGAAGCGGGCGCGATGCGATCG 83.8 Primer reverse for the amplification of aox1 ORF 
MH881 5' -CGAGAACGTGGTCAAGTCGATGG 71.8 Primer forward for the amplification of pks1 ORF 
MH882 5' -GCAGATCGCAGTAATGCTGGGC 71.8 Primer reverse for the amplification of pks1 ORF 
MH883 5' -CGATGCGGAGATGAGCCAGCC 75.3 Primer forward for the amplification of pks2 ORF 
MH884 5' -GGTAATCTCTTCAAAGTCTCCAC 59.7 Primer reverse for the amplification of pks2 ORF 
MH876 5' -GTGAAACTCGATGAGGCC 60.9 Outer primer for downstream of crg1 ORF 
ME48 5' -GGGGGATGTGCTGCAAGGCG 76.1 Primer forward for sequencing the pRS426 vector 
ME49 5' -TCCGGCTCCTATGTTGTGTGG 69.2 Primer reverse for sequencing the pRS426 vector 
MI108 5' -GATCCTTCTTCCTGCGACCTTTC 68.0 Primer forward for sequencing the pks2 ORF 
MI109 5' -GCGGCTGTATCAGAAAATTTTCG 67.3 Primer forward for sequencing the pks2 ORF 
MI110 5' -GTTAGGCTTCTCAGTCTTCTCTG 60.3 Primer forward for sequencing the pks2 ORF 
MI111 5' -GACGCTGCAGAAAGCTGGTTACG 70.8 Primer forward for sequencing the pks2 ORF 
MI112 5' -CCACCAATCATTCGGGAGAATCC 71.2 Primer forward for sequencing the pks2 ORF 
MI113 5' -CAGACTATCAGAGCAGAGCAAGC 64.5 Primer forward for sequencing the pks2 ORF 
MI114 5' -CCTTGCAGACGGATGCAACCAAG 73.5 Primer forward for sequencing the pks2 ORF 
MI115 5' -GTATCGCATGGTAGTAGCCAGCC 67.5 Primer forward for sequencing the pks2 ORF 
MI116 5' -GCTCCCGCTAATTCTTCGCATG 70.5 Primer forward for sequencing the pks2 ORF 
MI117 5' -CACAAAGGAGCACGTCACTCAAC 68.0 Primer forward for sequencing the pks2 ORF 
MI118 5' -CGTCTTTAAGCGAATTCGCCGAG 71.2 Primer forward for sequencing the pks2 ORF 
MI119 5' -GGAGCTGCTTTGCAGCGTTCAGC 74.9 Primer forward for sequencing the pks2 ORF 
MI120 5' -CCTGGCTTTGTGGCAACGCGGCG 82.4 Primer forward for sequencing the pks5 ORF 
MI121 5' -GGGAGCTGATGCTGGCTTTGTATTG 72.0 Primer forward for sequencing the pks5 ORF 
MI122 5' -CAAATGCTGGCTGAATGCCGTGC 76.1 Primer forward for sequencing the pks5 ORF 
MI123 5' -CGTATCGACGACATTATCGTTCTAG 64.4 Primer forward for sequencing the pks5 ORF 
MI124 5' -GCAACTGCCTTCGTGTCGCACTATG 74.1 Primer forward for sequencing the pks5 ORF 
MI125 5' -CCGACCTAAGTCAGGCGGAATGG 73.1 Primer forward for sequencing the pks5 ORF 
MI126 5' -CCAGCTGCCTAGACAGTGTTGTCG 71.0 Primer forward for sequencing the pks5 ORF 
MI127 5' -GCTCGATCTGGCCAAAGCCAGGTC 76.1 Primer forward for sequencing the pks5 ORF 
MI196 5' -CGCTCTCGAGGTAGATGAGAGAAGC 69.4 Primer forward for sequencing the cyp4 ORF 
MI197 5' -GCACCAAGAGTCAGGGCTACAAG 68.1 Primer forward for sequencing the cyp4 ORF 
MI198 5' -GGACTCACCGCCGAGGGAGAGATG 76.5 Primer forward for sequencing the cyp4 ORF 
MI199 5' -GCCAGGGCATGCACATTGCCG 78.6 Primer forward for sequencing the cyp4 ORF 
MI436 5' -CAAGCATCTTTGGCGCATGCTGTTG 76.4 Primer forward for sequencing the vbs1 ORF 
MI437 5' -GCAAGCGTTTACGTCAACACG 67.6 Primer forward for sequencing the vbs1 ORF 
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MI438 5' -GCTATCTGGTATTGGACCAGCTC 64.8 Primer forward for sequencing the vbs1 ORF 
MI439 5' -CGAGTCACGAGGAAGCGTTCGAC 73.1 Primer forward for sequencing the vbs1 ORF 
MI440 5' -CCGCTACTGCGTGCACACTG 70.4 Primer forward for sequencing the vbs1 ORF 
MI955 5' -CGAAATGAAGATGAAATTCTTAAG 59.7 Primer forward for sequencing the mtf1 ORF 
MI956 5' -GTTCGTCACCTATGTCCGCGTCG 73.5 Primer forward for sequencing the mtf1 ORF 
MI957 5' -CGAAGACTCTGGTCGCCTCACC 71.5 Primer forward for sequencing the mtf1 ORF 
MI958 5' -CCATGTTGCGCTTGCCCAATTTTTC 75.4 Primer forward for sequencing the mtf1 ORF 
MI959 5' -GCGACAAGTGCCCAGTGTAGTCC 70.9 Primer forward for sequencing the mtf1 ORF 
MJ180 5' -CGTAAATGTGTTGAGGGTTGTTC 64.2 Primer forward for sequencing the native promoter of pks5 ORF 
MJ181 5' -GTCGTCAGTATGTACTACCTGAG 57.0 Primer forward for sequencing the native promoter of pks5 ORF 
MJ182 5' -CGAGAGCAATGCTGGACCATCC 72.1 Primer forward for sequencing the native promoter of pks5 ORF 
MJ183 5' -CGAGATTAATTTTTCAAATGCTG 61.3 Primer forward for sequencing the native promoter of pks5 ORF 
MJ186 5' -GCTTACTCTCCGGTAAACCAGC 64.9 Primer forward for sequencing the omt1 ORF 
MJ187 5' -GCTCCCGCCATCAAGAGGCTC 73.4 Primer forward for sequencing the omt1 ORF 
MJ188 5' -CAGATACTCACGAATGTAAATCC 59.1 Primer forward for sequencing the omt1 ORF 
MJ189 5' -CTAGCCTCTTTCTTTGAGGATGG 64.1 Primer forward for sequencing the omt1 ORF 
MJ190 5' -CACGAGAGCTGGACGAGGAGTG 70.8 Primer forward for sequencing the omt1 ORF 
MJ191 5' -GCAGAGGTCGACGTGGACACGTAC 72.9 Primer forward for sequencing the omt1 ORF 
MJ192 5' -CGATGCCGTCTCGAGCCGCACGAC 82.4 Primer forward for sequencing the omt1 ORF 
MJ197 5' -GTCGATACCGTCGCTTACTGTC 64.7 Primer forward for sequencing the lac1 ORF 
MJ198 5' -CGTACCTGGGCTATCTCAATGG 66.4 Primer forward for sequencing the lac1 ORF 
MJ199 5' -CTTTGACTGTCTTCAGCGCTGCC 71.2 Primer forward for sequencing the lac1 ORF 
MJ200 5' -CCTCTCGACACTGCTCGCCTGGCAG 79.2 Primer forward for sequencing the lac1 ORF 
MJ201 5' -GCTCTGCAAATGCAAAGTACGTGG 70.3 Primer forward for sequencing the lac1 ORF 
MJ202 5' -CAGTCAACGCTGTTTGCTATTGC 67.6 Primer forward for sequencing the lac1 ORF 
MJ203 5' -CTATGTCCAGCAGTGCAAGTTTG 65.7 Primer forward for sequencing the lac1 ORF 
MJ204 5' -GAGGTGGAAGAGCATCGGCGTCG 76.6 Primer forward for sequencing the lac1 ORF 
MI924 5' -CGTAAGGTGGACACCTTACTG 61.1 Primer forward for sequencing the crg1  ORF 
MI925 5' -GCTGACTCCTGTCATGGGCAATG 72.0 Primer forward for sequencing the crg1  ORF 
MI926 5' -CAGCCGTGCACGAAGATCTCCGG 77.4 Primer forward for sequencing the crg1  ORF 
MI917 5' -CCTCTTTCTTTGAGGATGGCTTC 66.1 Primer forward for sequencing the native promoter of the pks3 ORF 
MI918 5' -CGTCCAGCGCGATTTCACAAATC 73.2 Primer forward for sequencing the native promoter of the pks3 ORF 
MI919 5' -GCTCTTTTGGCGACACTGGTAG 66.9 Primer forward for sequencing the native promoter of the pks3 ORF 
MI920 5' -GTCGATAATCCCGGCCGCGCTCTTG 79.7 Primer forward for sequencing the native promoter of the pks3 ORF 
MI594 5' -CGGATGAGCTGGGATCACTATAG 65.6 Primer forward for sequencing the pks4 ORF 
MI595 5' -CCCACTCCTCTAGTCCGAGCTC 67.5 Primer forward for sequencing the pks4 ORF 
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MI596 5' -GTTTTGCCACCTCTTCTTGCAC 66.9 Primer forward for sequencing the pks4 ORF 
MI597 5' -CACCTATCCGACTCCATTATCAGC 66.5 Primer forward for sequencing the pks4 ORF 
MI598 5' -GTGCCACACCCTCACAGGTCAACG 75.7 Primer forward for sequencing the pks4 ORF 
MJ049 5' -GTATTCGAGCTGGACGAGCGAC 69.2 Primer forward for sequencing the native promoter of the cyp4 ORF 
MJ050 5' -CGGATGGTGCAATAGCACTTCTC 68.7 Primer forward for sequencing the native promoter of the cyp4 ORF 
MJ051 5' -CCTCACATCACCACAACACGAG 67.9 Primer forward for sequencing the native promoter of the cyp4 ORF 
MI930 5' -CGTTTTTTTCATGTTGCATCTCG 67.2 Primer forward for sequencing the crg1 ORF 
MI931 5' -CATTCCAATCAGTCACGAGTGCAC 69.8 Primer forward for sequencing the crg1 ORF 
MI932 5' -GCTACTAACTGTCTTTCGCATCTC 62.2 Primer forward for sequencing the crg1 ORF 
MI933 5' -GCGTGGGCTCGGATATCGGTGG 77.0 Primer forward for sequencing the crg1 ORF 
MI035 5' -CTCATCCTTCGACAACGCCGTTC 72.6 Primer forward for sequencing the pks1 ORF 
MI036 5' -CCTGGAAAGCTTTGACGCAACC 70.7 Primer forward for sequencing the pks1 ORF 
MI037 5' -CTCGCGCCCGAAGCAGATCTGG 77.6 Primer forward for sequencing the pks1 ORF 
MI038 5' -CTAGACGCGCACTCCTGAGCGG 74.2 Primer forward for sequencing the pks1 ORF 
MI039 5' -CATTGGTGCAGGCGAAGCGGTGTC 78.7 Primer forward for sequencing the pks1 ORF 
MI040 5' -GCCTCGGACAAAGATGAGCTGG 71.2 Primer forward for sequencing the pks1 ORF 
MI041 5' -GCATCAAAAAGGTCACTGCATTCG 70.3 Primer forward for sequencing the pks1 ORF 
MI042 5' -GGTCAAGCTTTCAGTGAAGTCGG 68.1 Primer forward for sequencing the pks1 ORF 
MI043 5' -GGTGCGTCTGTCAGCTACACGG 71.2 Primer forward for sequencing the pks1 ORF 
MI044 5' -CGTTGTTTATGGAGTGCGACAGC 69.5 Primer forward for sequencing the pks1 ORF 
MI045 5' -GCAAATCGCGTTCTTTCTTCCACC 72.0 Primer forward for sequencing the pks1 ORF 
MI046 5' -GTCGATAGCCTCGTTGGCTGGG 72.7 Primer forward for sequencing the pks1 ORF 
MI950 5´-CCAACCGACCTCGTGCTCTCTG 72.4 Primer forward for sequencing the pks4 ORF 
MI951 5´-CAGGAACTTGGGATGCTGACGTG 71.8 Primer reverse for sequencing the cyp4 ORF 
MI952 5´-GACTGGCTCACTCGGCTCATAGTG 70.2 Primer reverse for sequencing the native promoter of the pks3 ORF 
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