Publikationsserver der Universitätsbibliothek Marburg

Titel:Auswirkungen von Ischämie, Hypoxie und Hyperoxie am unreifen Gehirn der Ratte: Immunhistochemische Untersuchungen und Genexpressionsanalysen
Autor:Blüml, Carolin Sigrid
Weitere Beteiligte: Maier, Rolf Felix (Prof. Dr. med.)
Veröffentlicht:2017
URI:https://archiv.ub.uni-marburg.de/diss/z2017/0616
URN: urn:nbn:de:hebis:04-z2017-06164
DOI: https://doi.org/10.17192/z2017.0616
DDC: Medizin
Titel (trans.):Effects of ischemia, hypoxia and hyperoxia on the immature rat brain: immunhistochemical examinations and gene expression studies
Publikationsdatum:2019-05-29
Lizenz:https://creativecommons.org/licenses/by-nc-sa/4.0

Dokument

Schlagwörter:
Hyperoxie, unilateral carotid ligation, Ischämie, hyperoxia, hypoxia, Ischämie, Unilaterale Karotisligatur, Hyperoxie, Unilaterale Karotisligatur, Periventrikuläre Leukomalazie, ischemia, Periventricular leukomalacia, Hypoxie, Hypoxie, Periventrikuläre Leukomalazie

Zusammenfassung:
Durch verbesserte intensivmedizinische Versorgung überleben inzwischen viele extrem frühgeborene Kinder. Ihre Morbidität rückt vermehrt in den Fokus. Periventrikuläre Leukomalazie (PVL), Frühgeborenenretinopathie (ROP) und andere Erkrankungen spielen eine wichtige Rolle für das Langzeit-Outcome. Der für die humane PVL typische Verlust der weißen Substanz in der periventrikulären Region kann durch ein Modell mit neonatalen Ratten imitiert werden. Bei neonatalen Long-Evans-Ratten wurde am postnatalen Tag 6 (P6) eine einseitige Karotisligatur (Ischämie) durchgeführt. Danach wurden sie gegenüber unterschiedlichen hypoxischen und/ oder hyperoxischen Konditionen exponiert. Die Gehirne wurden post mortem an P7, P11 und P21 untersucht. Immunhistochemisch wurde an P11 die Myelin-Basis-Protein (MBP)-Expression analysiert, indem verblindet Schnitte des Gehirns mit einem definierten Score bewertet wurden. Eine Genexpressionsanalyse wurde für Epo-R (erythropoetin receptor), HIF-1α (hypoxia inducible factor 1, α subunit), NOS-2 (inducible nitric oxide synthase 2), TNFα (tumor necrosis factor α) und VEGF-A164 (vascular endothelial growth factor-A164) an P7, P11 und P21 durchgeführt. In der Histologie der Gehirne zeigte sich ein schädigender Effekt in den Gruppen mit Ischämie u. Hypoxie, sowohl ipsilateral als auch kontralateral. Zusätzliche Hyperoxie verstärkte die Schädigung. Das bedeutet, dass schwere hypoxisch-ischämische Ereignisse auch die Gegenseite in Mitleidenschaft zogen. Eine Exposition mit Hyperoxie führte zu einer milden beidseitigen Schädigung. In der Genexpressionsanalyse zeigten sich generell milde Veränderungen: Es kam zu einer signifikanten Hochregulation von Epo-R ipsilateral der Ischämie + Hypoxie an P7, die im Verlauf über P11 und P21 kontinuierlich abfallend war. Auch bei TNFα kam es zu einer Hochregulation ipsilateral zur Ischämie + Hypoxie an P7, die im Verlauf bis P21 abfiel. Für VEGF-A164, HIF-1α und NOS-2 konnten keine signifikanten Veränderungen nachgewiesen werden. Mit dieser Studie konnte in Einklang mit Ergebnisse anderer Studien gezeigt werden, dass Ischämie, Hypoxie wie auch Hyperoxie jeweils isoliert, vor allem aber in Kombination zu Schädigungen des unreifen Gehirns führen.

Bibliographie / References

  1. Gerstner, B., Lee, J., DeSilva, T. M., Jensen, F. E., Volpe, J. J., & Rosenberg, P. A. (2009). 17beta-estradiol protects against hypoxic/ischemic white matter damage in the neonatal rat brain. J Neurosci Res, 87(9), 2078-2086.
  2. ILCOR. (2005). 2005 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Part 7: Neonatal resuscitation. Resuscitation, 67(2-3), 293- 303.
  3. Abnormal pulmonary outcomes in premature infants: prediction from oxygen requirement in the neonatal period. Pediatrics, 82(4), 527-532.
  4. Flynn, J. T., Bancalari, E., Snyder, E. S., Goldberg, R. N., Feuer, W., Cassady, J., et al. (1992). A cohort study of transcutaneous oxygen tension and the incidence and severity of retinopathy of prematurity. N Engl J Med, 326(16), 1050-1054.
  5. Leviton, A., & Gilles, F. H. (1984). Acquired perinatal leukoencephalopathy. Ann Neurol, 16(1), 1-8.
  6. Tsai, P. T., Ohab, J. J., Kertesz, N., Groszer, M., Matter, C., Gao, J., et al. (2006). A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery. J Neurosci, 26(4), 1269-1274.
  7. Forsythe, J. A., Jiang, B. H., Iyer, N. V., Agani, F., Leung, S. W., Koos, R. D., et al. (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol, 16(9), 4604-4613.
  8. Schmitz, T., Endesfelder, S., Reinert, M. C., Klinker, F., Muller, S., Buhrer, C., et al. (2012). Adolescent hyperactivity and impaired coordination after neonatal hyperoxia. Exp Neurol, 235(1), 374-379.
  9. Doyle, L. W., & Anderson, P. J. (2010). Adult outcome of extremely preterm infants. Pediatrics, 126(2), 342-351.
  10. Diehl, K. H., Hull, R., Morton, D., Pfister, R., Rabemampianina, Y., Smith, D., et al. (2001). A good practice guide to the administration of substances and removal of blood, including routes and volumes. J Appl Toxicol, 21(1), 15-23.
  11. Di Fiore, J. M., Bloom, J. N., Orge, F., Schutt, A., Schluchter, M., Cheruvu, V. K., et al. (2010). A higher incidence of intermittent hypoxemic episodes is associated with severe retinopathy of prematurity. J Pediatr, 157(1), 69-73.
  12. Di Lorenzo, M., & Krantis, A. (2001). Altered nitric oxide production in the premature gut may increase susceptibility to intestinal damage in necrotizing enterocolitis. J Pediatr Surg, 36(5), 700-705.
  13. Ballabh, P., Braun, A., & Nedergaard, M. (2004). Anatomic analysis of blood vessels in germinal matrix, cerebral cortex, and white matter in developing infants. Pediatr Res, 56(1), 117-124.
  14. Fox, G., Gallacher, D., Shevde, S., Loftus, J., & Swayne, G. (1993). Anatomic variation of the middle cerebral artery in the Sprague-Dawley rat. Stroke, 24(12), 2087-2092; discussion 2092-2083.
  15. Staib-Lasarzik, I., Kriege, O., Timaru-Kast, R., Pieter, D., Werner, C., Engelhard, K., et al. (2014). Anesthesia for euthanasia influences mRNA expression in healthy mice and after traumatic brain injury. J Neurotrauma, 31(19), 1664-1671.
  16. Uehara, H., Yoshioka, H., Kawase, S., Nagai, H., Ohmae, T., Hasegawa, K., et al. (1999). A new model of white matter injury in neonatal rats with bilateral carotid artery occlusion. Brain Res, 837(1-2), 213-220.
  17. Animal models of periventricular leukomalacia. Lab Anim Res, 27(2), 77-84.
  18. An International Committee for the Classification of Retinopathy of Prematurity. (2005). The International Classification of Retinopathy of Prematurity revisited. Arch Ophthalmol, 123(7), 991-999.
  19. Levine, S. (1960). Anoxic-ischemic encephalopathy in rats. Am J Pathol, 36, 1- 17.
  20. Oskoui, M., Coutinho, F., Dykeman, J., Jette, N., & Pringsheim, T. (2013). An update on the prevalence of cerebral palsy: a systematic review and meta- analysis. Dev Med Child Neurol, 55(6), 509-519.
  21. Apoptosis and necrosis in the newborn piglet brain following transient cerebral hypoxia-ischaemia. Neuropathol Appl Neurobiol, 23(1), 16-25.
  22. Bernaudin, M., Marti, H. H., Roussel, S., Divoux, D., Nouvelot, A., MacKenzie, E. T., et al. (1999). A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J Cereb Blood Flow Metab, 19(6), 643-651.
  23. Baud, O., Ville, Y., Zupan, V., Boithias, C., Lacaze-Masmonteil, T., Gabilan, J. C., et al. (1998). Are neonatal brain lesions due to intrauterine infection related to mode of delivery? Br J Obstet Gynaecol, 105(1), 121-124.
  24. Are severe acute retinopathy of prematurity and severe periventricular leucomalacia both ischaemic insults? Br J Ophthalmol, 73(2), 111-114.
  25. Arterial oxygen fluctuation and retinopathy of prematurity in very-low-birth- weight infants. J Perinatol, 24(2), 82-87.
  26. Ment, L. R., Schwartz, M., Makuch, R. W., & Stewart, W. B. (1998). Association of chronic sublethal hypoxia with ventriculomegaly in the developing rat brain. Brain Res Dev Brain Res, 111(2), 197-203.
  27. Swamy, G. K., Ostbye, T., & Skjaerven, R. (2008). Association of preterm birth with long-term survival, reproduction, and next-generation preterm birth. Jama, 299(12), 1429-1436.
  28. Ramachandra, R., & Subramanian, T. (2011). Atlas of the neonatal rat brain. Boca Raton, FL: CRC Press.
  29. Romijn, H. J., Hofman, M. A., & Gramsbergen, A. (1991). At what age is the developing cerebral cortex of the rat comparable to that of the full-term newborn human baby? Early Hum Dev, 26(1), 61-67.
  30. Deulofeut, R., Critz, A., Adams-Chapman, I., & Sola, A. (2006). Avoiding hyperoxia in infants < or = 1250 g is associated with improved short-and long- term outcomes. J Perinatol, 26(11), 700-705.
  31. Eklind, S., Mallard, C., Leverin, A. L., Gilland, E., Blomgren, K., Mattsby-Baltzer, I., et al. (2001). Bacterial endotoxin sensitizes the immature brain to hypoxic-- ischaemic injury. Eur J Neurosci, 13(6), 1101-1106.
  32. Gill, M. B., Bockhorst, K., Narayana, P., & Perez-Polo, J. R. (2008). Bax shuttling after neonatal hypoxia-ischemia: hyperoxia effects. J Neurosci Res, 86(16), 3584-3604.
  33. Firbas, W., Sinzinger, H., & Schlemmer, M. (1973). Über den Circulus arteriosus bei Ratte, Maus und Goldhamster. Anatomia, Histologia, Embryologia, 2(3), 243-251.
  34. Perlman, J. M., Risser, R., & Broyles, R. S. (1996). Bilateral cystic periventricular leukomalacia in the premature infant: associated risk factors. Pediatrics, 97(6 Pt 1), 822-827.
  35. Van den Tweel, E. R., Kavelaars, A., Lombardi, M. S., Nijboer, C. H., Groenendaal, F., van Bel, F., et al. (2006). Bilateral molecular changes in a neonatal rat model of unilateral hypoxic-ischemic brain damage. Pediatr Res, 59(3), 434-439.
  36. Baumann, N., & Pham-Dinh, D. (2001). Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev, 81(2), 871-927.
  37. Borch, K., & Greisen, G. (1998). Blood flow distribution in the normal human preterm brain. Pediatr Res, 43(1), 28-33.
  38. Soothill, P. W., Nicolaides, K. H., Rodeck, C. H., & Gamsu, H. (1986). Blood gases and acid-base status of the human second-trimester fetus. Obstet Gynecol, 68(2), 173-176.
  39. Semple, B. D., Blomgren, K., Gimlin, K., Ferriero, D. M., & Noble-Haeusslein, L. J. (2013). Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol, 106-107, 1-16.
  40. Volpe, J. J. (2009). Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol, 8(1), 110-124.
  41. Volpe, J. J. (1997). Brain injury in the premature infant--from pathogenesis to prevention. Brain Dev, 19(8), 519-534.
  42. Volpe, J. J. (1998a). Brain injury in the premature infant: overview of clinical aspects, neuropathology, and pathogenesis. Semin Pediatr Neurol, 5(3), 135- 151.
  43. Marret, S., Marchand-Martin, L., Picaud, J.-C., Hascoët, J.-M., Arnaud, C., Rozé, J.-C., et al. (2013). Brain Injury in Very Preterm Children and Neurosensory and Cognitive Disabilities during Childhood: The EPIPAGE Cohort Study. PLoS One, 8(5), e62683.
  44. Trescher, W. H., Ishiwa, S., & Johnston, M. V. (1997). Brief post-hypoxic- ischemic hypothermia markedly delays neonatal brain injury. Brain Dev, 19(5), 326-338.
  45. Charriaut-Marlangue, C., Bonnin, P., Leger, P. L., & Renolleau, S. (2013). Brief update on hemodynamic responses in animal models of neonatal stroke and hypoxia-ischemia. Exp Neurol, 248, 316-320.
  46. Jobe, A. H., & Bancalari, E. (2001). Bronchopulmonary dysplasia. Am J Respir Crit Care Med, 163(7), 1723-1729.
  47. Day, C. L., & Ryan, R. M. (2017). Bronchopulmonary dysplasia: new becomes old again! Pediatr Res, 81(1-2), 210-213.
  48. Ferriero, D. M. (2006). Can we define the pathogenesis of human periventricular white-matter injury using animal models? J Child Neurol, 21(7), 580-581.
  49. Hunt, C. E., Corwin, M. J., Baird, T., Tinsley, L. R., Palmer, P., Ramanathan, R., et al. (2004). Cardiorespiratory events detected by home memory monitoring and one-year neurodevelopmental outcome. J Pediatr, 145(4), 465-471.
  50. Back, S. A., & Volpe, J. J. (1997). Cellular and molecular pathogenesis of periventricular white matter injury. Ment Retard Dev Disabil Res Rev, 3(1), 96- 107.
  51. Ohshima, M., Tsuji, M., Taguchi, A., Kasahara, Y., & Ikeda, T. (2012). Cerebral blood flow during reperfusion predicts later brain damage in a mouse and a rat model of neonatal hypoxic-ischemic encephalopathy. Exp Neurol, 233(1), 481- 489.
  52. Altman, D. I., Powers, W. J., Perlman, J. M., Herscovitch, P., Volpe, S. L., & Volpe, J. J. (1988). Cerebral blood flow requirement for brain viability in newborn infants is lower than in adults. Ann Neurol, 24(2), 218-226.
  53. Otto, K. (2004). CHAPTER 34 -Anesthesia, Analgesia and Euthanasia A2 - Hedrich, Hans J. In G. Bullock (Hrsg.), The Laboratory Mouse (p. 555-569). London: Academic Press.
  54. Brunson, D. B. (2008). Chapter 3 -Pharmacology of Inhalation Anesthetics A2 - Fish, Richard E. In M. J. Brown, P. J. Danneman & A. Z. Karas (Eds.), Anesthesia and Analgesia in Laboratory Animals (2nd edition, p. 83-95). San Diego: Academic Press.
  55. Bona, E., Andersson, A. L., Blomgren, K., Gilland, E., Puka-Sundvall, M., Gustafson, K., et al. (1999). Chemokine and inflammatory cell response to hypoxia-ischemia in immature rats. Pediatr Res, 45(4 Pt 1), 500-509.
  56. Chorioamnionitis and early lung inflammation in infants in whom bronchopulmonary dysplasia develops. Pediatrics, 97(2), 210-215.
  57. Wu, Y. W., & Colford, J. M., Jr. (2000). Chorioamnionitis as a risk factor for cerebral palsy: A meta-analysis. Jama, 284(11), 1417-1424.
  58. Saugstad, O. D. (2001). Chronic lung disease: oxygen dogma revisited. Acta Paediatr, 90(2), 113-115.
  59. Leviton, A., & Dammann, O. (2004). Coagulation, inflammation, and the risk of neonatal white matter damage. Pediatr Res, 55(4), 541-545.
  60. Liebeskind, D. S. (2012). Collateral perfusion: time for novel paradigms in cerebral ischemia. Int J Stroke, 7(4), 309-310.
  61. Dobbing, J., & Sands, J. (1979). Comparative aspects of the brain growth spurt. Early Hum Dev, 3(1), 79-83.
  62. Comprehensive gene expression analysis of cerebral cortices from mature rats after neonatal hypoxic-ischemic brain injury. Journal of Molecular Neuroscience, 49(2), 320-327.
  63. Huang, H. M., Lin, S. A., Chang, Y. C., & Kuo, H. K. (2012). Correlation between periventricular leukomalacia and retinopathy of prematurity. Eur J Ophthalmol, 22(6), 980-984.
  64. Kuban, K. C., Allred, E. N., O'Shea, T. M., Paneth, N., Pagano, M., Dammann, O., et al. (2009). Cranial ultrasound lesions in the NICU predict cerebral palsy at age 2 years in children born at extremely low gestational age. J Child Neurol, 24(1), 63-72.
  65. Menke, J., Michel, E., Hillebrand, S., von Twickel, J., & Jorch, G. (1997). Cross- spectral analysis of cerebral autoregulation dynamics in high risk preterm infants during the perinatal period. Pediatr Res, 42(5), 690-699.
  66. Schulman, H., Laufer, L., Berginer, J., Hershkowitz, E., Berenstein, T., Sofer, S., et al. (1998). CT findings in neonatal hypothermia. Pediatr Radiol, 28(6), 414-417.
  67. Shankaran, S., Langer, J. C., Kazzi, S. N., Laptook, A. R., & Walsh, M. (2006). Cumulative index of exposure to hypocarbia and hyperoxia as risk factors for periventricular leukomalacia in low birth weight infants. Pediatrics, 118(4), 1654- 1659.
  68. Dawson, J. A., Kamlin, C. O., Vento, M., Wong, C., Cole, T. J., Donath, S. M., et al. (2010). Defining the reference range for oxygen saturation for infants after birth. Pediatrics, 125(6), e1340-1347.
  69. Vottier, G., Pham, H., Pansiot, J., Biran, V., Gressens, P., Charriaut-Marlangue, C., et al. (2011). Deleterious effect of hyperoxia at birth on white matter damage in the newborn rat. Dev Neurosci, 33(3-4), 261-269.
  70. Petersen-Felix, S. (1998). Depth of anaesthesia. Veterinary Anaesthesia and Analgesia, 25(1), 4-7.
  71. Grafe, M. R. (1994). Developmental changes in the sensitivity of the neonatal rat brain to hypoxic/ischemic injury. Brain Res, 653(1-2), 161-166.
  72. Baud, O., Haynes, R. F., Wang, H., Folkerth, R. D., Li, J., Volpe, J. J., et al. (2004). Developmental up-regulation of MnSOD in rat oligodendrocytes confers protection against oxidative injury. Eur J Neurosci, 20(1), 29-40.
  73. Risau, W., & Wolburg, H. (1990). Development of the blood-brain barrier. Trends Neurosci, 13(5), 174-178.
  74. Cai, Z., Pang, Y., Lin, S., & Rhodes, P. G. (2003). Differential roles of tumor necrosis factor-alpha and interleukin-1 beta in lipopolysaccharide-induced brain injury in the neonatal rat. Brain Res, 975(1-2), 37-47.
  75. Klinger, G., Beyene, J., Shah, P., & Perlman, M. (2005). Do hyperoxaemia and hypocapnia add to the risk of brain injury after intrapartum asphyxia? Arch Dis Child Fetal Neonatal Ed, 90(1), F49-52.
  76. Markestad, T., Kaaresen, P. I., Ronnestad, A., Reigstad, H., Lossius, K., Medbo, S., et al. (2005). Early death, morbidity, and need of treatment among extremely premature infants. Pediatrics, 115(5), 1289-1298.
  77. Murase, M., & Ishida, A. (2005). Early hypocarbia of preterm infants: its relationship to periventricular leukomalacia and cerebral palsy, and its perinatal risk factors. Acta Paediatr, 94(1), 85-91.
  78. Early neonatal brain injury in histologic chorioamnionitis. J Pediatr, 138(1), 101-104.
  79. Cheng, T., Xue, X., & Fu, J. (2015). Effect of OLIG1 on the development of oligodendrocytes and myelination in a neonatal rat PVL model induced by hypoxia-ischemia. Mol Med Rep, 11(4), 2379-2386.
  80. Hicks, S. P., Cavanaugh, M. C., & O'Brien, E. D. (1962). Effects of anoxia on the developing cerebral cortex in the rat. Am J Pathol, 40, 615-635.
  81. Wiswell, T. E., Graziani, L. J., Kornhauser, M. S., Stanley, C., Merton, D. A., McKee, L., et al. (1996). Effects of hypocarbia on the development of cystic periventricular leukomalacia in premature infants treated with high-frequency jet ventilation. Pediatrics, 98(5), 918-924.
  82. Tomimatsu, T., Fukuda, H., Endoh, M., Mu, J., Watanabe, N., Kohzuki, M., et al. (2002). Effects of neonatal hypoxic-ischemic brain injury on skilled motor tasks and brainstem function in adult rats. Brain Res, 926(1-2), 108-117.
  83. Schmidt, B., Whyte, R. K., Asztalos, E. V., Moddemann, D., Poets, C., Rabi, Y., et al. (2013). Effects of targeting higher vs lower arterial oxygen saturations on death or disability in extremely preterm infants: a randomized clinical trial. Jama, 309(20), 2111-2120.
  84. Ando, M., Takashima, S., & Mito, T. (1988). Endotoxin, cerebral blood flow, amino acids and brain damage in young rabbits. Brain Dev, 10(6), 365-370.
  85. Stoll, B. J. (1994). Epidemiology of necrotizing enterocolitis. Clin Perinatol, 21(2), 205-218.
  86. EPR imaging to estimate the in vivo intracerebral reducing ability of mature rats after neonatal hypoxic-ischemic brain injury. Magn Reson Imaging, 22(9), 1305- 1309.
  87. Nagai, A., Nakagawa, E., Choi, H. B., Hatori, K., Kobayashi, S., & Kim, S. U. (2001). Erythropoietin and erythropoietin receptors in human CNS neurons, astrocytes, microglia, and oligodendrocytes grown in culture. J Neuropathol Exp Neurol, 60(4), 386-392.
  88. Sanchez, P. E., Navarro, F. P., Fares, R. P., Nadam, J., Georges, B., Moulin, C., et al. (2009). Erythropoietin receptor expression is concordant with erythropoietin but not with common beta chain expression in the rat brain throughout the life span. J Comp Neurol, 514(4), 403-414.
  89. Hoeber, D., Sifringer, M., van de Looij, Y., Herz, J., Sizonenko, S. V., Kempe, K., et al. (2016). Erythropoietin Restores Long-Term Neurocognitive Function Involving Mechanisms of Neuronal Plasticity in a Model of Hyperoxia-Induced Preterm Brain Injury. Oxid Med Cell Longev, 2016, 9247493.
  90. Gerstner, B., Sifringer, M., Dzietko, M., Schuller, A., Lee, J., Simons, S., et al. (2007). Estradiol attenuates hyperoxia-induced cell death in the developing white matter. Ann Neurol, 61(6), 562-573.
  91. Wyllie, J., Bruinenberg, J., Roehr, C. C., Rudiger, M., Trevisanuto, D., & Urlesberger, B. (2015). European Resuscitation Council Guidelines for Resuscitation 2015: Section 7. Resuscitation and support of transition of babies at birth. Resuscitation, 95, 249-263.
  92. Monson, B. B., Anderson, P. J., Matthews, L. G., Neil, J. J., Kapur, K., Cheong, J. L., et al. (2016). Examination of the Pattern of Growth of Cerebral Tissue Volumes From Hospital Discharge to Early Childhood in Very Preterm Infants. JAMA Pediatr, 170(8), 772-779.
  93. Wang, H.-Q., Xion, Y., & Guo, W.-J. (2011). Expression of iNOS protein and gliacyte apoptosis in neonatal rats with white matter damage. CJCP, 13(4), 309- 312.
  94. Pillekamp, F., Hermann, C., Keller, T., von Gontard, A., Kribs, A., & Roth, B. (2007). Factors influencing apnea and bradycardia of prematurity -implications for neurodevelopment. Neonatology, 91(3), 155-161.
  95. Yoon, B. H., Romero, R., Park, J. S., Kim, C. J., Kim, S. H., Choi, J. H., et al. (2000). Fetal exposure to an intra-amniotic inflammation and the development of cerebral palsy at the age of three years. Am J Obstet Gynecol, 182(3), 675- 681.
  96. Serdar, M., Herz, J., Kempe, K., Lumpe, K., Reinboth, B. S., Sizonenko, S. V., et al. (2016). Fingolimod protects against neonatal white matter damage and long-term cognitive deficits caused by hyperoxia. Brain Behav Immun, 52, 106- 119.
  97. Soul, J. S., Hammer, P. E., Tsuji, M., Saul, J. P., Bassan, H., Limperopoulos, C., et al. (2007). Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants. Pediatr Res, 61(4), 467-473.
  98. Wellmann, S., Bührer, C., & Schmitz, T. (2014). Focal necrosis and disturbed myelination in the white matter of newborn infants: a tale of too much or too little oxygen. Front Pediatr, 2, 143.
  99. Hack, M., Taylor, H. G., Klein, N., & Mercuri-Minich, N. (2000). Functional limitations and special health care needs of 10-to 14-year-old children weighing less than 750 grams at birth. Pediatrics, 106(3), 554-560.
  100. Follett, P. L., Deng, W., Dai, W., Talos, D. M., Massillon, L. J., Rosenberg, P. A., et al. (2004). Glutamate receptor-mediated oligodendrocyte toxicity in periventricular leukomalacia: a protective role for topiramate. J Neurosci, 24(18), 4412-4420.
  101. Baud, O., Greene, A. E., Li, J., Wang, H., Volpe, J. J., & Rosenberg, P. A. (2004). Glutathione peroxidase-catalase cooperativity is required for resistance to hydrogen peroxide by mature rat oligodendrocytes. J Neurosci, 24(7), 1531- 1540.
  102. Miller, M. J., Adams, J., Gu, X. A., Zhang, X. J., & Clark, D. A. (1990). Hemodynamic and permeability characteristics of acute experimental necrotizing enterocolitis. Dig Dis Sci, 35(10), 1257-1264.
  103. Yanowitz, T. D., Jordan, J. A., Gilmour, C. H., Towbin, R., Bowen, A., Roberts, J. M., et al. (2002). Hemodynamic disturbances in premature infants born after chorioamnionitis: association with cord blood cytokine concentrations. Pediatr Res, 51(3), 310-316.
  104. Sheldon, R. A., Osredkar, D., Lee, C. L., Jiang, X., Mu, D., & Ferriero, D. M. (2009). HIF-1 alpha-deficient mice have increased brain injury after neonatal hypoxia-ischemia. Dev Neurosci, 31(5), 452-458.
  105. Chen, W., Jadhav, V., Tang, J., & Zhang, J. H. (2008). HIF-1α inhibition ameliorates neonatal brain injury in a rat pup hypoxic-ischemic model. Neurobiol Dis, 31(3), 433-441.
  106. Tracy, M., Downe, L., & Holberton, J. (2004). How safe is intermittent positive pressure ventilation in preterm babies ventilated from delivery to newborn intensive care unit? Arch Dis Child Fetal Neonatal Ed, 89(1), F84-87.
  107. Kuban, K. C., & Gilles, F. H. (1985). Human telencephalic angiogenesis. Ann Neurol, 17(6), 539-548.
  108. Hoehn, T., Felderhoff-Mueser, U., Maschewski, K., Stadelmann, C., Sifringer, M., Bittigau, P., et al. (2003). Hyperoxia causes inducible nitric oxide synthase- mediated cellular damage to the immature rat brain. Pediatr Res, 54(2), 179- 184.
  109. Gerstner, B., DeSilva, T. M., Genz, K., Armstrong, A., Brehmer, F., Neve, R. L., et al. (2008). Hyperoxia causes maturation-dependent cell death in the developing white matter. J Neurosci, 28(5), 1236-1245.
  110. Deuber, C., & Terhaar, M. (2011). Hyperoxia in very preterm infants: a systematic review of the literature. J Perinat Neonatal Nurs, 25(3), 268-274.
  111. Collins, M. P., Lorenz, J. M., Jetton, J. R., & Paneth, N. (2001). Hypocapnia and other ventilation-related risk factors for cerebral palsy in low birth weight infants. Pediatr Res, 50(6), 712-719.
  112. Pappas, A., Shankaran, S., Laptook, A. R., Langer, J. C., Bara, R., Ehrenkranz, R. A., et al. (2011). Hypocarbia and adverse outcome in neonatal hypoxic- ischemic encephalopathy. J Pediatr, 158(5), 752-758.e751.
  113. Hypothermic protection in rat focal ischemia models: strain differences and relevance to "reperfusion injury". J Cereb Blood Flow Metab, 24(1), 42-53.
  114. Mu, D., Chang, Y. S., Vexler, Z. S., & Ferriero, D. M. (2005). Hypoxia-inducible factor 1alpha and erythropoietin upregulation with deferoxamine salvage after neonatal stroke. Exp Neurol, 195(2), 407-415.
  115. Spandou, E., Papoutsopoulou, S., Soubasi, V., Karkavelas, G., Simeonidou, C., Kremenopoulos, G., et al. (2004). Hypoxia-ischemia affects erythropoietin and erythropoietin receptor expression pattern in the neonatal rat brain. Brain Res, 1021(2), 167-172.
  116. Hypoxia-ischemic insult in neonatal rats induced slowly progressive brain damage related to memory impairment. Neurosci Lett, 376(3), 194-199.
  117. Kaur, C., Sivakumar, V., Ang, L. S., & Sundaresan, A. (2006). Hypoxic damage to the periventricular white matter in neonatal brain: role of vascular endothelial growth factor, nitric oxide and excitotoxicity. J Neurochem, 98(4), 1200-1216.
  118. Kinney, H. C., Panigrahy, A., Newburger, J. W., Jonas, R. A., & Sleeper, L. A. (2005). Hypoxic-ischemic brain injury in infants with congenital heart disease dying after cardiac surgery. Acta Neuropathol, 110(6), 563-578.
  119. Ikeno, S., Nagata, N., Yoshida, S., Takahashi, H., Kigawa, J., & Terakawa, N. (2000). Immature brain injury via peroxynitrite production induced by inducible nitric oxide synthase after hypoxia-ischemia in rats. J Obstet Gynaecol Res, 26(3), 227-234.
  120. Fernandez-Lopez, D., Martinez-Orgado, J., Casanova, I., Bonet, B., Leza, J. C., Lorenzo, P., et al. (2005). Immature rat brain slices exposed to oxygen-glucose deprivation as an in vitro model of neonatal hypoxic-ischemic encephalopathy. J Neurosci Methods, 145(1-2), 205-212.
  121. Iida, K., Takashima, S., & Ueda, K. (1995). Immunohistochemical study of myelination and oligodendrocyte in infants with periventricular leukomalacia. Pediatr Neurol, 13(4), 296-304.
  122. Bonnin, P., Leger, P. L., Deroide, N., Fau, S., Baud, O., Pocard, M., et al. (2011). Impact of intracranial blood-flow redistribution on stroke size during ischemia-reperfusion in 7-day-old rats. J Neurosci Methods, 198(1), 103-109.
  123. Dammann, O., Allred, E. N., & Veelken, N. (1998). Increased risk of spastic diplegia among very low birth weight children after preterm labor or prelabor rupture of membranes. J Pediatr, 132(3 Pt 1), 531-535.
  124. Increasing VLBW deliveries at subspecialty perinatal centers via perinatal outreach. Pediatrics, 127(3), 487-493.
  125. Loscher, C. E., Donnelly, S., Lynch, M. A., & Mills, K. H. (2000). Induction of inflammatory cytokines in the brain following respiratory infection with Bordetella pertussis. J Neuroimmunol, 102(2), 172-181.
  126. Oliff, H. S., Weber, E., Miyazaki, B., & Marek, P. (1995). Infarct volume varies with rat strain and vendor in focal cerebral ischemia induced by transcranial middle cerebral artery occlusion. Brain Res, 699(2), 329-331.
  127. Dammann, O., & Leviton, A. (1998). Infection remote from the brain, neonatal white matter damage, and cerebral palsy in the preterm infant. Semin Pediatr Neurol, 5(3), 190-201.
  128. Kadhim, H., Tabarki, B., Verellen, G., De Prez, C., Rona, A. M., & Sebire, G. (2001). Inflammatory cytokines in the pathogenesis of periventricular leukomalacia. Neurology, 56(10), 1278-1284.
  129. Ezquer, M. E., Valdez, S. R., & Seltzer, A. M. (2006). Inflammatory responses of the substantia nigra after acute hypoxia in neonatal rats. Exp Neurol, 197(2), 391-398.
  130. Towfighi, J., Mauger, D., Vannucci, R. C., & Vannucci, S. J. (1997). Influence of age on the cerebral lesions in an immature rat model of cerebral hypoxia- ischemia: a light microscopic study. Brain Res Dev Brain Res, 100(2), 149-160.
  131. Yager, J., Towfighi, J., & Vannucci, R. C. (1993). Influence of mild hypothermia on hypoxic-ischemic brain damage in the immature rat. Pediatr Res, 34(4), 525- 529.
  132. Van den Tweel, E. R., Peeters-Scholte, C. M., van Bel, F., Heijnen, C. J., & Groenendaal, F. (2002). Inhibition of nNOS and iNOS following hypoxia- ischaemia improves long-term outcome but does not influence the inflammatory response in the neonatal rat brain. Dev Neurosci, 24(5), 389-395.
  133. Saugstad, O. D., & Aune, D. (2011). In search of the optimal oxygen saturation for extremely low birth weight infants: a systematic review and meta-analysis. Neonatology, 100(1), 1-8.
  134. IQTIG. (2016). Institut für Qualitätssicherung und Transparenz im Gesundheitswesen -Bundesauswertung zum Erfassungsjahr 2015 1
  135. Brehmer, F., Bendix, I., Prager, S., van de Looij, Y., Reinboth, B. S., Zimmermanns, J., et al. (2012). Interaction of inflammation and hyperoxia in a rat model of neonatal white matter damage. PLoS One, 7(11), e49023.
  136. Hellwig-Bürgel, T., Rutkowski, K., Metzen, E., Fandrey, J., & Jelkmann, W. (1999). Interleukin-1beta and tumor necrosis factor-alpha stimulate DNA binding of hypoxia-inducible factor-1. Blood, 94(5), 1561-1567.
  137. Yoon, B. H., Romero, R., Yang, S. H., Jun, J. K., Kim, I. O., Choi, J. H., et al. (1996). Interleukin-6 concentrations in umbilical cord plasma are elevated in neonates with white matter lesions associated with periventricular leukomalacia. Am J Obstet Gynecol, 174(5), 1433-1440.
  138. Martin, R. J., Wang, K., Koroglu, O., Di Fiore, J., & Kc, P. (2011). Intermittent hypoxic episodes in preterm infants: do they matter? Neonatology, 100(3), 303- 310.
  139. O'Shea, T. M., Klinepeter, K. L., Meis, P. J., & Dillard, R. G. (1998). Intrauterine infection and the risk of cerebral palsy in very low-birthweight infants. Paediatr Perinat Epidemiol, 12(1), 72-83.
  140. Duggan, P. J., Maalouf, E. F., Watts, T. L., Sullivan, M. H., Counsell, S. J., Allsop, J., et al. (2001). Intrauterine T-cell activation and increased proinflammatory cytokine concentrations in preterm infants with cerebral lesions. Lancet, 358(9294), 1699-1700.
  141. Ng, E., Taddio, A., & Ohlsson, A. (2012). Intravenous midazolam infusion for sedation of infants in the neonatal intensive care unit. Cochrane Database Syst Rev, 6, Cd002052.
  142. Harb, R., Whiteus, C., Freitas, C., & Grutzendler, J. (2013). In vivo imaging of cerebral microvascular plasticity from birth to death. J Cereb Blood Flow Metab, 33(1), 146-156.
  143. Rothwell, N. J., & Relton, J. K. (1993). Involvement of interleukin-1 and lipocortin-1 in ischaemic brain damage. Cerebrovasc Brain Metab Rev, 5(3), 178-198.
  144. Falahati, S., Breu, M., Waickman, A. T., Phillips, A. W., Arauz, E. J., Snyder, S., et al. (2013). Ischemia-induced neuroinflammation is associated with disrupted development of oligodendrocyte progenitors in a model of periventricular leukomalacia. Dev Neurosci, 35(2-3), 182-196.
  145. Zhao, P., Peng, L., Li, L., Xu, X., & Zuo, Z. (2007). Isoflurane preconditioning improves long-term neurologic outcome after hypoxic-ischemic brain injury in neonatal rats. Anesthesiology, 107(6), 963-970.
  146. Zhao, P., & Zuo, Z. (2004). Isoflurane preconditioning induces neuroprotection that is inducible nitric oxide synthase-dependent in neonatal rats. Anesthesiology, 101(3), 695-703.
  147. Back, S. A., Luo, N. L., Borenstein, N. S., Levine, J. M., Volpe, J. J., & Kinney, H. C. (2001). Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci, 21(4), 1302-1312.
  148. Lipopolysaccharide-activated microglia induce death of oligodendrocyte progenitor cells and impede their development. Neuroscience, 166(2), 464-475.
  149. Lipopolysaccharide-preconditioning protects against endotoxin-induced white matter injury in the neonatal rat brain. Brain Res, 1489, 81-89.
  150. Digicaylioglu, M., Bichet, S., Marti, H. H., Wenger, R. H., Rivas, L. A., Bauer, C., et al. (1995). Localization of specific erythropoietin binding sites in defined areas of the mouse brain. Proc Natl Acad Sci U S A, 92(9), 3717-3720.
  151. Agresti, A. (2012). Logistic Regression Models Using Cumulative Logits Analysis of Ordinal Categorical Data (2nd edition, p. 44-87): John Wiley & Sons, Inc.
  152. Jansen, E. M., & Low, W. C. (1996). Long-term effects of neonatal ischemic- hypoxic brain injury on sensorimotor and locomotor tasks in rats. Behav Brain Res, 78(2), 189-194.
  153. Yang, C. S., Wang, A. G., Sung, C. S., Hsu, W. M., Lee, F. L., & Lee, S. M. (2010). Long-term visual outcomes of laser-treated threshold retinopathy of prematurity: a study of refractive status at 7 years. Eye (Lond), 24(1), 14-20.
  154. Compernolle, V., Brusselmans, K., Acker, T., Hoet, P., Tjwa, M., Beck, H., et al. (2002). Loss of HIF-2alpha and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat Med, 8(7), 702-710.
  155. Yanowitz, T. D., Baker, R. W., Roberts, J. M., & Brozanski, B. S. (2004). Low blood pressure among very-low-birth-weight infants with fetal vessel inflammation. J Perinatol, 24(5), 299-304.
  156. Bjorklund, L. J., Ingimarsson, J., Curstedt, T., John, J., Robertson, B., Werner, O., et al. (1997). Manual ventilation with a few large breaths at birth compromises the therapeutic effect of subsequent surfactant replacement in immature lambs. Pediatr Res, 42(3), 348-355.
  157. Leviton, A., Paneth, N., Reuss, M. L., Susser, M., Allred, E. N., Dammann, O., et al. (1999). Maternal infection, fetal inflammatory response, and brain damage in very low birth weight infants. Developmental Epidemiology Network Investigators. Pediatr Res, 46(5), 566-575.
  158. Reddy, K., Mallard, C., Guan, J., Marks, K., Bennet, L., Gunning, M., et al. (1998). Maturational change in the cortical response to hypoperfusion injury in the fetal sheep. Pediatr Res, 43(5), 674-682.
  159. Gerstner, B., Buhrer, C., Rheinlander, C., Polley, O., Schuller, A., Berns, M., et al. (2006). Maturation-dependent oligodendrocyte apoptosis caused by hyperoxia. J Neurosci Res, 84(2), 306-315.
  160. Back, S. A., Gan, X., Li, Y., Rosenberg, P. A., & Volpe, J. J. (1998). Maturation- dependent vulnerability of oligodendrocytes to oxidative stress-induced death caused by glutathione depletion. J Neurosci, 18(16), 6241-6253.
  161. Hartnett, M. E., & Penn, J. S. (2012). Mechanisms and management of retinopathy of prematurity. N Engl J Med, 367(26), 2515-2526.
  162. Karamysheva, A. F. (2008). Mechanisms of angiogenesis. Biochemistry (Mosc), 73(7), 751-762.
  163. Inder, T. E., & Volpe, J. J. (2000). Mechanisms of perinatal brain injury. Semin Neonatol, 5(1), 3-16.
  164. Juliano, C., Sosunov, S., Niatsetskaya, Z., Isler, J. A., Utkina-Sosunova, I., Jang, I., et al. (2015). Mild intermittent hypoxemia in neonatal mice causes permanent neurofunctional deficit and white matter hypomyelination. Exp Neurol, 264, 33-42.
  165. Workman, A. D., Charvet, C. J., Clancy, B., Darlington, R. B., & Finlay, B. L. (2013). Modeling transformations of neurodevelopmental sequences across mammalian species. J Neurosci, 33(17), 7368-7383.
  166. Hagberg, H., Peebles, D., & Mallard, C. (2002). Models of white matter injury: comparison of infectious, hypoxic-ischemic, and excitotoxic insults. Ment Retard Dev Disabil Res Rev, 8(1), 30-38.
  167. Geller, D. A., Lowenstein, C. J., Shapiro, R. A., Nussler, A. K., Di Silvio, M., Wang, S. C., et al. (1993). Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes. Proc Natl Acad Sci U S A, 90(8), 3491-3495.
  168. Lyons, C. R., Orloff, G. J., & Cunningham, J. M. (1992). Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line. J Biol Chem, 267(9), 6370-6374.
  169. Kadhim, H., Khalifa, M., Deltenre, P., Casimir, G., & Sebire, G. (2006). Molecular mechanisms of cell death in periventricular leukomalacia. Neurology, 67(2), 293-299.
  170. Rapp, M., Thyen, U., Müller-Steinhardt, K., & Kohl, M. (2005). Morbidität und Mortalität extrem frühgeborener Kinder in Schleswig-Holstein. [Morbidity and Mortality of Extremely Low Gestational Age Infants in Schleswig-Holstein]. Z Geburtshilfe Neonatol, 209(04), 135-143.
  171. Horbar, J. D., Carpenter, J. H., Badger, G. J., Kenny, M. J., Soll, R. F., Morrow, K. A., et al. (2012). Mortality and neonatal morbidity among infants 501 to 1500 grams from 2000 to 2009. Pediatrics, 129(6), 1019-1026.
  172. Young, R. S., Hessert, T. R., Pritchard, G. A., & Yagel, S. K. (1984). Naloxone exacerbates hypoxic-ischemic brain injury in the neonatal rat. Am J Obstet Gynecol, 150(1), 52-56.
  173. Follett, P. L., Rosenberg, P. A., Volpe, J. J., & Jensen, F. E. (2000). NBQX attenuates excitotoxic injury in developing white matter. J Neurosci, 20(24), 9235-9241.
  174. Ritter, J., Schmitz, T., Chew, L. J., Buhrer, C., Mobius, W., Zonouzi, M., et al. (2013). Neonatal hyperoxia exposure disrupts axon-oligodendrocyte integrity in the subcortical white matter. J Neurosci, 33(21), 8990-9002.
  175. Weiss, J., Takizawa, B., McGee, A., Stewart, W. B., Zhang, H., Ment, L., et al. (2004). Neonatal hypoxia suppresses oligodendrocyte Nogo-A and increases axonal sprouting in a rodent model for human prematurity. Exp Neurol, 189(1), 141-149.
  176. Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N Engl J Med, 355(7), 685-694.
  177. Stoll, B. J., Hansen, N. I., Bell, E. F., Shankaran, S., Laptook, A. R., Walsh, M. C., et al. (2010). Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics, 126(3), 443-456.
  178. Thompson, D. K., Wood, S. J., Doyle, L. W., Warfield, S. K., Lodygensky, G. A., Anderson, P. J., et al. (2008). Neonate hippocampal volumes: prematurity, perinatal predictors, and 2-year outcome. Ann Neurol, 63(5), 642-651.
  179. Jorch, G., & Hübler, A. (2010). Neonatologie Die Medizin des Früh-und Reifgeborenen. Stuttgart: Thieme.
  180. Steck, J. (2014). Netzhautgefäßpathologien in einem Rattenmodell für periventrikuläre Leukomalazie - ein neues Modell für die Frühgeborenenretinopathie beim Menschen? , Justus-Liebig-Universität Gießen, Gießen.
  181. Maier, R. F., & Obladen, M. (2011). Neugeborenenintensivmedizin Evidenz und Erfahrung (8. Ausgabe). Berlin: Springer.
  182. Volpe, J. J. (2001). Neurobiology of periventricular leukomalacia in the premature infant. Pediatr Res, 50(5), 553-562.
  183. Adams-Chapman, I., Hansen, N. I., Stoll, B. J., & Higgins, R. (2008). Neurodevelopmental outcome of extremely low birth weight infants with posthemorrhagic hydrocephalus requiring shunt insertion. Pediatrics, 121(5), e1167-1177.
  184. Imamura, T., Ariga, H., Kaneko, M., Watanabe, M., Shibukawa, Y., Fukuda, Y., et al. (2013). Neurodevelopmental outcomes of children with periventricular leukomalacia. Pediatr Neonatol, 54(6), 367-372.
  185. Neurodevelopmental outcomes of extremely low birth weight infants <32 weeks' gestation between 1993 and 1998. Pediatrics, 116(3), 635-643.
  186. Sherlock, R. L., Anderson, P. J., & Doyle, L. W. (2005). Neurodevelopmental sequelae of intraventricular haemorrhage at 8 years of age in a regional cohort of ELBW/very preterm infants. Early Hum Dev, 81(11), 909-916.
  187. Hack, M., Wilson-Costello, D., Friedman, H., Taylor, G. H., Schluchter, M., & Fanaroff, A. A. (2000). Neurodevelopment and predictors of outcomes of children with birth weights of less than 1000 g: 1992-1995. Arch Pediatr Adolesc Med, 154(7), 725-731.
  188. Wood, N. S., Marlow, N., Costeloe, K., Gibson, A. T., & Wilkinson, A. R. (2000). Neurologic and developmental disability after extremely preterm birth. EPICure Study Group. N Engl J Med, 343(6), 378-384.
  189. Marlow, N., Wolke, D., Bracewell, M. A., & Samara, M. (2005). Neurologic and developmental disability at six years of age after extremely preterm birth. N Engl J Med, 352(1), 9-19.
  190. Volpe, J. J. (1998b). Neurologic outcome of prematurity. Arch Neurol, 55(3), 297-300.
  191. Neuropathology of remote hypoxic-ischemic damage in the immature rat. Acta Neuropathol, 81(5), 578-587.
  192. Baud, O., Li, J., Zhang, Y., Neve, R. L., Volpe, J. J., & Rosenberg, P. A. (2004). Nitric oxide-induced cell death in developing oligodendrocytes is associated with mitochondrial dysfunction and apoptosis-inducing factor translocation. Eur J Neurosci, 20(7), 1713-1726.
  193. Haynes, R. L., Folkerth, R. D., Keefe, R. J., Sung, I., Swzeda, L. I., Rosenberg, P. A., et al. (2003). Nitrosative and oxidative injury to premyelinating oligodendrocytes in periventricular leukomalacia. J Neuropathol Exp Neurol, 62(5), 441-450.
  194. Haynes, R. L., Folkerth, R. D., Trachtenberg, F. L., Volpe, J. J., & Kinney, H. C. (2009). Nitrosative stress and inducible nitric oxide synthase expression in periventricular leukomalacia. Acta Neuropathol, 118(3), 391-399.
  195. Manning, S. M., Talos, D. M., Zhou, C., Selip, D. B., Park, H. K., Park, C. J., et al. (2008). NMDA receptor blockade with memantine attenuates white matter injury in a rat model of periventricular leukomalacia. J Neurosci, 28(26), 6670- 6678.
  196. Hungerford, J., Stewart, A., & Hope, P. (1986). Ocular sequelae of preterm birth and their relation to ultrasound evidence of cerebral damage. Br J Ophthalmol, 70(6), 463-468.
  197. Yuen, T. J., Silbereis, J. C., Griveau, A., Chang, S. M., Daneman, R., Fancy, S. P., et al. (2014). Oligodendrocyte-encoded HIF function couples postnatal myelination and white matter angiogenesis. Cell, 158(2), 383-396.
  198. Reynolds, R., & Hardy, R. (1997). Oligodendroglial progenitors labeled with the O4 antibody persist in the adult rat cerebral cortex in vivo. J Neurosci Res, 47(5), 455-470.
  199. Kofke, W. A., Garman, R. H., Garman, R., & Rose, M. E. (1999). Opioid neurotoxicity: fentanyl-induced exacerbation of cerebral ischemia in rats. Brain Res, 818(2), 326-334.
  200. Sanchez, P. E., Fares, R. P., Risso, J. J., Bonnet, C., Bouvard, S., Le-Cavorsin, M., et al. (2009). Optimal neuroprotection by erythropoietin requires elevated expression of its receptor in neurons. Proc Natl Acad Sci U S A, 106(24), 9848- 9853.
  201. Doyle, L. W. (2001). Outcome at 5 years of age of children 23 to 27 weeks' gestation: refining the prognosis. Pediatrics, 108(1), 134-141.
  202. Cust, A. E., Darlow, B. A., & Donoghue, D. A. (2003). Outcomes for high risk New Zealand newborn infants in 1998-1999: a population based, national study. Arch Dis Child Fetal Neonatal Ed, 88(1), F15-22.
  203. Hack, M., & Fanaroff, A. A. (2000). Outcomes of children of extremely low birthweight and gestational age in the 1990s. Semin Neonatol, 5(2), 89-106.
  204. Tarnow-Mordi, W., Stenson, B., Kirby, A., Juszczak, E., Donoghoe, M., Deshpande, S., et al. (2016). Outcomes of Two Trials of Oxygen-Saturation Targets in Preterm Infants. N Engl J Med, 374(8), 749-760.
  205. Haynes, R. L., Baud, O., Li, J., Kinney, H. C., Volpe, J. J., & Folkerth, D. R. (2005). Oxidative and nitrative injury in periventricular leukomalacia: a review. Brain Pathol, 15(3), 225-233.
  206. Mori, H., Oikawa, M., Tamagami, T., Kumaki, H., Nakaune, R., Amano, J., et al. (2007). Oxidized proteins in astrocytes generated in a hyperbaric atmosphere induce neuronal apoptosis. J Alzheimers Dis, 11(2), 165-174.
  207. Lundstrom, K. E., Pryds, O., & Greisen, G. (1995). Oxygen at birth and prolonged cerebral vasoconstriction in preterm infants. Arch Dis Child Fetal Neonatal Ed, 73(2), F81-86.
  208. Felderhoff-Mueser, U., Bittigau, P., Sifringer, M., Jarosz, B., Korobowicz, E., Mahler, L., et al. (2004). Oxygen causes cell death in the developing brain. Neurobiol Dis, 17(2), 273-282.
  209. Perez-Polo, J. R., Reilly, C. B., & Rea, H. C. (2011). Oxygen resuscitation after hypoxia ischemia stimulates prostaglandin pathway in rat cortex. Int J Dev Neurosci, 29(6), 639-644.
  210. Toth, B., Becker, A., & Seelbach-Gobel, B. (2002). Oxygen saturation in healthy newborn infants immediately after birth measured by pulse oximetry. Arch Gynecol Obstet, 266(2), 105-107.
  211. Calvert, J. W., Cahill, J., Yamaguchi-Okada, M., & Zhang, J. H. (2006). Oxygen treatment after experimental hypoxia-ischemia in neonatal rats alters the expression of HIF-1alpha and its downstream target genes. J Appl Physiol (1985), 101(3), 853-865.
  212. Hagberg, H., Wilson, M. A., Matsushita, H., Zhu, C., Lange, M., Gustavsson, M., et al. (2004). PARP-1 gene disruption in mice preferentially protects males from perinatal brain injury. J Neurochem, 90(5), 1068-1075.
  213. Wyllie, J., Perlman, J. M., Kattwinkel, J., Atkins, D. L., Chameides, L., Goldsmith, J. P., et al. (2010). Part 11: Neonatal resuscitation: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Resuscitation, 81 Suppl 1, e260-287.
  214. Wyckoff, M. H., Aziz, K., Escobedo, M. B., Kapadia, V. S., Kattwinkel, J., Perlman, J. M., et al. (2015). Part 13: Neonatal Resuscitation: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation, 132(18 Suppl 2), S543-560.
  215. Perlman, J. M., Wyllie, J., Kattwinkel, J., Wyckoff, M. H., Aziz, K., Guinsburg, R., et al. (2015). Part 7: Neonatal Resuscitation: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation, 132(16 Suppl 1), S204-241.
  216. Khwaja, O., & Volpe, J. J. (2008). Pathogenesis of cerebral white matter injury of prematurity. Arch Dis Child Fetal Neonatal Ed, 93(2), F153-161.
  217. Silverstein, F., Buchanan, K., & Johnston, M. V. (1984). Pathogenesis of hypoxic-ischemic brain injury in a perinatal rodent model. Neurosci Lett, 49(3), 271-277.
  218. Coalson, J. J. (2003). Pathology of new bronchopulmonary dysplasia. Semin Neonatol, 8(1), 73-81.
  219. Banks, W. A., Kastin, A. J., & Gutierrez, E. G. (1994). Penetration of interleukin- 6 across the murine blood-brain barrier. Neurosci Lett, 179(1-2), 53-56.
  220. Skrablin, S., Maurac, I., Banovic, V., & Bosnjak-Nadj, K. (2008). Perinatal factors associated with the neurologic impairment of children born preterm. Int J Gynaecol Obstet, 102(1), 12-18.
  221. Vannucci, R. C., & Vannucci, S. J. (2005). Perinatal hypoxic-ischemic brain damage: evolution of an animal model. Dev Neurosci, 27(2-4), 81-86.
  222. Banker, B. Q., & Larroche, J. C. (1962). Periventricular leukomalacia of infancy. A form of neonatal anoxic encephalopathy. Arch Neurol, 7, 386-410.
  223. Inder, T. E., Huppi, P. S., Warfield, S., Kikinis, R., Zientara, G. P., Barnes, P. D., et al. (1999). Periventricular white matter injury in the premature infant is followed by reduced cerebral cortical gray matter volume at term. Ann Neurol, 46(5), 755-760.
  224. Wen, T. C., Rogido, M., Genetta, T., & Sola, A. (2004). Permanent focal cerebral ischemia activates erythropoietin receptor in the neonatal rat brain. Neurosci Lett, 355(3), 165-168.
  225. Li, D., Marks, J. D., Schumacker, P. T., Young, R. M., & Brorson, J. R. (2005). Physiological hypoxia promotes survival of cultured cortical neurons. Eur J Neurosci, 22(6), 1319-1326.
  226. Posthypoxic cooling of neonatal rats provides protection against brain injury. Arch Dis Child Fetal Neonatal Ed, 74(1), F3-9.
  227. Hattori, H., & Wasterlain, C. G. (1990). Posthypoxic glucose supplement reduces hypoxic-ischemic brain damage in the neonatal rat. Ann Neurol, 28(2), 122-128.
  228. Kuhnert, M., Seelbach-Goebel, B., & Butterwegge, M. (1998). Predictive agreement between the fetal arterial oxygen saturation and fetal scalp pH: results of the German multicenter study. Am J Obstet Gynecol, 178(2), 330-335.
  229. Pre-ductal and post-ductal O2 saturation in healthy term neonates after birth. J Pediatr, 150(4), 418-421.
  230. Jelinski, S. E., Yager, J. Y., & Juurlink, B. H. (1999). Preferential injury of oligodendroblasts by a short hypoxic-ischemic insult. Brain Res, 815(1), 150- 153.
  231. Prenatal and perinatal factors and cerebral palsy in very low birth weight infants. J Pediatr, 128(3), 407-414.
  232. Neeley, E. W., Berger, R., Koenig, J. I., & Leonard, S. (2011a). Prenatal stress differentially alters brain-derived neurotrophic factor expression and signaling across rat strains. Neuroscience, 187, 24-35.
  233. Vento, M., Moro, M., Escrig, R., Arruza, L., Villar, G., Izquierdo, I., et al. (2009). Preterm resuscitation with low oxygen causes less oxidative stress, inflammation, and chronic lung disease. Pediatrics, 124(3), e439-449.
  234. Resch, B., Jammernegg, A., Vollaard, E., Maurer, U., Mueller, W., & Pertl, B. (2004). Preterm twin gestation and cystic periventricular leucomalacia. Archives of Disease in Childhood Fetal and Neonatal Edition, 89(4), F315-F320.
  235. Dommergues, M. A., Patkai, J., Renauld, J. C., Evrard, P., & Gressens, P. (2000). Proinflammatory cytokines and interleukin-9 exacerbate excitotoxic lesions of the newborn murine neopallium. Ann Neurol, 47(1), 54-63.
  236. Hardy, R., & Reynolds, R. (1991). Proliferation and differentiation potential of rat forebrain oligodendroglial progenitors both in vitro and in vivo. Development, 111(4), 1061-1080.
  237. Protective effects of caffeine on chronic hypoxia-induced perinatal white matter injury. Ann Neurol, 60(6), 696-705.
  238. Northway, W. H., Jr., Rosan, R. C., & Porter, D. Y. (1967). Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med, 276(7), 357-368.
  239. Lassus, P., Turanlahti, M., Heikkila, P., Andersson, L. C., Nupponen, I., Sarnesto, A., et al. (2001). Pulmonary vascular endothelial growth factor and Flt-1 in fetuses, in acute and chronic lung disease, and in persistent pulmonary hypertension of the newborn. Am J Respir Crit Care Med, 164(10 Pt 1), 1981- 1987.
  240. Castillo, A., Sola, A., Baquero, H., Neira, F., Alvis, R., Deulofeut, R., et al. (2008). Pulse oxygen saturation levels and arterial oxygen tension values in newborns receiving oxygen therapy in the neonatal intensive care unit: is 85% to 93% an acceptable range? Pediatrics, 121(5), 882-889.
  241. Whitfield, L. S., Lovell-Badge, R., & Goodfellow, P. N. (1993). Rapid sequence evolution of the mammalian sex-determining gene SRY. Nature, 364(6439), 713-715.
  242. Field, D., Draper, E. S., Fenton, A., Papiernik, E., Zeitlin, J., Blondel, B., et al. (2009). Rates of very preterm birth in Europe and neonatal mortality rates. Arch Dis Child Fetal Neonatal Ed, 94(4), F253-256.
  243. Oliff, H. S., Coyle, P., & Weber, E. (1997). Rat strain and vendor differences in collateral anastomoses. J Cereb Blood Flow Metab, 17(5), 571-576.
  244. Pfaffl, M. W. (2004). Real-time RT-PCR: neue Ansätze zur exakten mRNA Quantifizierung. BIOspektrum, 1(10), 92-95.
  245. Glass, H. C., Bonifacio, S. L., Chau, V., Glidden, D., Poskitt, K., Barkovich, A. J., et al. (2008). Recurrent postnatal infections are associated with progressive white matter injury in premature infants. Pediatrics, 122(2), 299-305.
  246. Vannucci, R. C., Lyons, D. T., & Vasta, F. (1988). Regional cerebral blood flow during hypoxia-ischemia in immature rats. Stroke, 19(2), 245-250.
  247. Selip, D. B., Jantzie, L. L., Chang, M., Jackson, M. C., Fitzgerald, E. C., Boll, G., et al. (2012). Regional differences in susceptibility to hypoxic-ischemic injury in the preterm brain: exploring the spectrum from white matter loss to selective grey matter injury in a rat model. Neurol Res Int, 2012, 725184.
  248. Schlarmann, J., & Galatsch, M. (2014). Regressionsmodelle für ordinale Zielvariablen. GMS Med Inform Biom Epidemiol, 10(1).
  249. Liu, C., Shen, K., Liu, Z., & Noguchi, C. T. (1997). Regulated human erythropoietin receptor expression in mouse brain. J Biol Chem, 272(51), 32395-32400.
  250. Mu, D., Jiang, X., Sheldon, R. A., Fox, C. K., Hamrick, S. E., Vexler, Z. S., et al. (2003). Regulation of hypoxia-inducible factor 1alpha and induction of vascular endothelial growth factor in a rat neonatal stroke model. Neurobiol Dis, 14(3), 524-534.
  251. Askie, L. M., Henderson-Smart, D. J., & Ko, H. (2009). Restricted versus liberal oxygen exposure for preventing morbidity and mortality in preterm or low birth weight infants. Cochrane Database Syst Rev(1), Cd001077.
  252. Davis, P. G., Tan, A., O'Donnell, C. P., & Schulze, A. (2004). Resuscitation of newborn infants with 100% oxygen or air: a systematic review and meta- analysis. Lancet, 364(9442), 1329-1333.
  253. Saugstad, O. D., Ramji, S., Soll, R. F., & Vento, M. (2008). Resuscitation of newborn infants with 21% or 100% oxygen: an updated systematic review and meta-analysis. Neonatology, 94(3), 176-182.
  254. Rook, D., Schierbeek, H., Vento, M., Vlaardingerbroek, H., van der Eijk, A. C., Longini, M., et al. (2014). Resuscitation of preterm infants with different inspired oxygen fractions. J Pediatr, 164(6), 1322-1326.e1323.
  255. Wang, C. L., Anderson, C., Leone, T. A., Rich, W., Govindaswami, B., & Finer, N. N. (2008). Resuscitation of preterm neonates by using room air or 100% oxygen. Pediatrics, 121(6), 1083-1089.
  256. Kapadia, V. S., Chalak, L. F., Sparks, J. E., Allen, J. R., Savani, R. C., & Wyckoff, M. H. (2013). Resuscitation of preterm neonates with limited versus high oxygen strategy. Pediatrics, 132(6), e1488-1496.
  257. Armanian, A. M., & Badiee, Z. (2012). Resuscitation of preterm newborns with low concentration oxygen versus high concentration oxygen. J Res Pharm Pract, 1(1), 25-29.
  258. Takashima, S., Becker, L. E., & Chan, F. W. (1982). Retardation of neuronal maturation in premature infants compared with term infants of the same postconceptional age. Pediatrics, 69(1), 33-39.
  259. Steck, J., Blueml, C., Kampmann, S., Greene, B., Maier, R. F., Arnhold, S., et al. (2015). Retinal vessel pathologies in a rat model of periventricular leukomalacia: a new model for retinopathy of prematurity? Invest Ophthalmol Vis Sci, 56(3), 1830-1841.
  260. Allred, E. N., Capone, A., Jr., Fraioli, A., Dammann, O., Droste, P., Duker, J., et al. (2014). Retinopathy of prematurity and brain damage in the very preterm newborn. J aapos, 18(3), 241-247.
  261. Pelken, L., & Maier, R. F. (2008). Risikofaktoren und Prävention der Retinopathia praematurorum. Der Ophthalmologe, 105(12), 1108-1114.
  262. Resch, B., Vollaard, E., Maurer, U., Haas, J., Rosegger, H., & Muller, W. (2000). Risk factors and determinants of neurodevelopmental outcome in cystic periventricular leucomalacia. Eur J Pediatr, 159(9), 663-670.
  263. Hatzidaki, E., Giahnakis, E., Maraka, S., Korakaki, E., Manoura, A., Saitakis, E., et al. (2009). Risk factors for periventricular leukomalacia. Acta Obstet Gynecol Scand, 88(1), 110-115.
  264. Back, S. A., Riddle, A., & Hohimer, A. R. (2006). Role of instrumented fetal sheep preparations in defining the pathogenesis of human periventricular white- matter injury. J Child Neurol, 21(7), 582-589.
  265. Rabi, Y., Singhal, N., & Nettel-Aguirre, A. (2011). Room-air versus oxygen administration for resuscitation of preterm infants: the ROAR study. Pediatrics, 128(2), e374-381.
  266. Ikeda, T., Mishima, K., Yoshikawa, T., Iwasaki, K., Fujiwara, M., Xia, Y. X., et al. (2001). Selective and long-term learning impairment following neonatal hypoxic- ischemic brain insult in rats. Behav Brain Res, 118(1), 17-25.
  267. Back, S. A., Han, B. H., Luo, N. L., Chricton, C. A., Xanthoudakis, S., Tam, J., et al. (2002). Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia. J Neurosci, 22(2), 455-463.
  268. Ikonomidou, C., Mosinger, J. L., Salles, K. S., Labruyere, J., & Olney, J. W. (1989). Sensitivity of the developing rat brain to hypobaric/ischemic damage parallels sensitivity to N-methyl-aspartate neurotoxicity. J Neurosci, 9(8), 2809- 2818.
  269. Nunez, J. L., & McCarthy, M. M. (2003). Sex differences and hormonal effects in a model of preterm infant brain injury. Ann N Y Acad Sci, 1008, 281-284.
  270. Mayoral, S. R., Omar, G., & Penn, A. A. (2009). Sex differences in a hypoxia model of preterm brain damage. Pediatr Res, 66(3), 248-253.
  271. Reiss, A. L., Kesler, S. R., Vohr, B., Duncan, C. C., Katz, K. H., Pajot, S., et al. (2004). Sex differences in cerebral volumes of 8-year-olds born preterm. J Pediatr, 145(2), 242-249.
  272. Dewing, P., Shi, T., Horvath, S., & Vilain, E. (2003). Sexually dimorphic gene expression in mouse brain precedes gonadal differentiation. Brain Res Mol Brain Res, 118(1-2), 82-90.
  273. Shrivastava, K., Chertoff, M., Llovera, G., Recasens, M., & Acarin, L. (2012). Short and long-term analysis and comparison of neurodegeneration and inflammatory cell response in the ipsilateral and contralateral hemisphere of the neonatal mouse brain after hypoxia/ischemia. Neurol Res Int, 2012, 781512.
  274. Giannakopoulou, C., Korakaki, E., Manoura, A., Bikouvarakis, S., Papageorgiou, M., Gourgiotis, D., et al. (2004). Significance of hypocarbia in the development of periventricular leukomalacia in preterm infants. Pediatr Int, 46(3), 268-273.
  275. Busto, R., Dietrich, W. D., Globus, M. Y., Valdes, I., Scheinberg, P., & Ginsberg, M. D. (1987). Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab, 7(6), 729-738.
  276. Spatiotemporal characterization of optic nerve degeneration after chronic hypoperfusion in the rat. Invest Ophthalmol Vis Sci, 51(3), 1483-1497.
  277. Henke, J., & Erhardt, W. (2011). Speziesspezifische Anästhesie: Nager. In J. Henke, W. Erhardt, J. Haberstroh, C. Baumgartner & S. Tacke (Eds.), Anästhesie und Analgesie beim Klein-und Heimtier mit Exoten, Labortieren, Vögeln, Reptilien, Amphibien und Fischen (2. Ausgabe, S. 703-725). Stuttgart: Schattauer.
  278. Goodfellow, P. N., & Lovell-Badge, R. (1993). SRY and sex determination in mammals. Annu Rev Genet, 27, 71-92.
  279. Van Wijngaarden, P., Brereton, H. M., Coster, D. J., & Williams, K. A. (2007). Stability of housekeeping gene expression in the rat retina during exposure to cyclic hyperoxia. Mol Vis, 13, 1508-1515.
  280. Neeley, E. W., Berger, R., Koenig, J. I., & Leonard, S. (2011b). Strain dependent effects of prenatal stress on gene expression in the rat hippocampus. Physiol Behav, 104(2), 334-339.
  281. Sheldon, R. A., Sedik, C., & Ferriero, D. M. (1998). Strain-related brain injury in neonatal mice subjected to hypoxia-ischemia. Brain Res, 810(1-2), 114-122.
  282. D'Agostino, D. P., Putnam, R. W., & Dean, J. B. (2007). Superoxide (*O2-) production in CA1 neurons of rat hippocampal slices exposed to graded levels of oxygen. J Neurophysiol, 98(2), 1030-1041.
  283. Hoekstra, R. E., Ferrara, T. B., Couser, R. J., Payne, N. R., & Connett, J. E. (2004). Survival and long-term neurodevelopmental outcome of extremely premature infants born at 23-26 weeks' gestational age at a tertiary center. Pediatrics, 113(1 Pt 1), e1-6.
  284. Survival, morbidity, and resource use of infants of 25 weeks' gestational age or less. Am J Obstet Gynecol, 185(1), 220-226.
  285. Saugstad, O. D., Aune, D., Aguar, M., Kapadia, V., Finer, N., & Vento, M. (2014). Systematic review and meta-analysis of optimal initial fraction of oxygen levels in the delivery room at </=32 weeks. Acta Paediatr, 103(7), 744-751.
  286. Wu, Y. W. (2002). Systematic review of chorioamnionitis and cerebral palsy. Ment Retard Dev Disabil Res Rev, 8(1), 25-29.
  287. Saija, A., Princi, P., Lanza, M., Scalese, M., Aramnejad, E., & De Sarro, A. (1995). Systemic cytokine administration can affect blood-brain barrier permeability in the rat. Life Sci, 56(10), 775-784.
  288. Carlo, W. A., Finer, N. N., Walsh, M. C., Rich, W., Gantz, M. G., Laptook, A. R., et al. (2010). Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med, 362(21), 1959-1969.
  289. Towfighi, J., Zec, N., Yager, J., Housman, C., & Vannucci, R. C. (1995). Temporal evolution of neuropathologic changes in an immature rat model of cerebral hypoxia: a light microscopic study. Acta Neuropathol, 90(4), 375-386.
  290. Lee, H. J., Koh, S. H., Song, K. M., Seol, I. J., & Park, H. K. (2016). The Akt/mTOR/p70S6K Pathway Is Involved in the Neuroprotective Effect of Erythropoietin on Hypoxic/Ischemic Brain Injury in a Neonatal Rat Model. Neonatology, 110(2), 93-100.
  291. Stiles, J., & Jernigan, T. L. (2010). The basics of brain development. Neuropsychol Rev, 20(4), 327-348.
  292. The International Neonatal Network. (1993). The CRIB (clinical risk index for babies) score: a tool for assessing initial neonatal risk and comparing performance of neonatal intensive care units. The Lancet, 342(8865), 193-198.
  293. Warner, B., Musial, M. J., Chenier, T., & Donovan, E. (2004). The effect of birth hospital type on the outcome of very low birth weight infants. Pediatrics, 113(1 Pt 1), 35-41.
  294. Henderson-Smart, D. J. (1981). The effect of gestational age on the incidence and duration of recurrent apnoea in newborn babies. Aust Paediatr J, 17(4), 273-276.
  295. Young, R. S., Olenginski, T. P., Yagel, S. K., & Towfighi, J. (1983). The effect of graded hypothermia on hypoxic-ischemic brain damage: a neuropathologic study in the neonatal rat. Stroke, 14(6), 929-934.
  296. Kwak, D. J., Kwak, S. D., & Gauda, E. B. (2006). The effect of hyperoxia on reactive oxygen species (ROS) in rat petrosal ganglion neurons during development using organotypic slices. Pediatr Res, 60(4), 371-376.
  297. Costeloe, K., Hennessy, E., Gibson, A. T., Marlow, N., & Wilkinson, A. R. (2000). The EPICure study: outcomes to discharge from hospital for infants born at the threshold of viability. Pediatrics, 106(4), 659-671.
  298. Tudehope, D. I. (2005). The epidemiology and pathogenesis of neonatal necrotizing enterocolitis. J Paediatr Child Health, 41(4), 167-168.
  299. Euro-Peristat-Project. (2014). The European Perinatal Health Report 2010.
  300. Rice, J. E., 3rd, Vannucci, R. C., & Brierley, J. B. (1981). The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol, 9(2), 131- 141.
  301. Minamisawa, H., Nordstrom, C. H., Smith, M. L., & Siesjo, B. K. (1990). The influence of mild body and brain hypothermia on ischemic brain damage. J Cereb Blood Flow Metab, 10(3), 365-374.
  302. Prieto, R., Carceller, F., Roda, J. M., & Avendano, C. (2005). The intraluminal thread model revisited: rat strain differences in local cerebral blood flow. Neurol Res, 27(1), 47-52.
  303. Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., et al. (2009). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem, 55(4), 611-622.
  304. Neu, J. (2005). The 'myth' of asphyxia and hypoxia-ischemia as primary causes of necrotizing enterocolitis. Biol Neonate, 87(2), 97-98.
  305. Pfeiffer, S. E., Warrington, A. E., & Bansal, R. (1993). The oligodendrocyte and its many cellular processes. Trends Cell Biol, 3(6), 191-197.
  306. Dieni, S., Inder, T., Yoder, B., Briscoe, T., Camm, E., Egan, G., et al. (2004). The pattern of cerebral injury in a primate model of preterm birth and neonatal intensive care. J Neuropathol Exp Neurol, 63(12), 1297-1309.
  307. Redline, R. W., Wilson-Costello, D., Borawski, E., Fanaroff, A. A., & Hack, M. (2000). The relationship between placental and other perinatal risk factors for neurologic impairment in very low birth weight children. Pediatr Res, 47(6), 721- 726.
  308. Oliff, H. S., Weber, E., Eilon, G., & Marek, P. (1995). The role of strain/vendor differences on the outcome of focal ischemia induced by intraluminal middle cerebral artery occlusion in the rat. Brain Res, 675(1-2), 20-26.
  309. Nowicki, P. T., & Nankervis, C. A. (1994). The role of the circulation in the pathogenesis of necrotizing enterocolitis. Clin Perinatol, 21(2), 219-234.
  310. McDonald, J. W., Chen, C. K., Trescher, W. H., & Johnston, M. V. (1991). The severity of excitotoxic brain injury is dependent on brain temperature in immature rat. Neurosci Lett, 126(1), 83-86.
  311. Morikawa, E., Ginsberg, M. D., Dietrich, W. D., Duncan, R. C., Kraydieh, S., Globus, M. Y., et al. (1992). The significance of brain temperature in focal cerebral ischemia: histopathological consequences of middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab, 12(3), 380-389.
  312. Silbereis, J. C., Huang, E. J., Back, S. A., & Rowitch, D. H. (2010). Towards improved animal models of neonatal white matter injury associated with cerebral palsy. Dis Model Mech, 3(11-12), 678-688.
  313. Transcutaneous oxygen levels in retinopathy of prematurity. Lancet, 346(8988), 1464-1465.
  314. Clancy, B., Darlington, R. B., & Finlay, B. L. (2001). Translating developmental time across mammalian species. J Neurosci, 105(1), 7-17.
  315. Deulofeut, R., Dudell, G., & Sola, A. (2007). Treatment-by-gender effect when aiming to avoid hyperoxia in preterm infants in the NICU. Acta Paediatr, 96(7), 990-994.
  316. Romero, R., Mazor, M., Sepulveda, W., Avila, C., Copeland, D., & Williams, J. (1992). Tumor necrosis factor in preterm and term labor. Am J Obstet Gynecol, 166(5), 1576-1587.
  317. Chen, Z. Y., Wang, L., Asavaritkrai, P., & Noguchi, C. T. (2010). Up-regulation of erythropoietin receptor by nitric oxide mediates hypoxia preconditioning. J Neurosci Res, 88(14), 3180-3188.
  318. Di Lorenzo, M., Bass, J., & Krantis, A. (1995). Use of L-arginine in the treatment of experimental necrotizing enterocolitis. J Pediatr Surg, 30(2), 235-240;
  319. Werdich, X. Q., McCollum, G. W., Rajaratnam, V. S., & Penn, J. S. (2004). Variable oxygen and retinal VEGF levels: correlation with incidence and severity of pathology in a rat model of oxygen-induced retinopathy. Exp Eye Res, 79(5), 623-630.
  320. Vascular endothelial growth factor in human preterm lung. Am J Respir Crit Care Med, 159(5 Pt 1), 1429-1433.
  321. Vascular endothelial growth factors A and C are induced in the SVZ following neonatal hypoxia-ischemia and exert different effects on neonatal glial progenitors. Transl Stroke Res, 4(2), 158-170.
  322. Licht, T., Dor-Wollman, T., Ben-Zvi, A., Rothe, G., & Keshet, E. (2015). Vessel maturation schedule determines vulnerability to neuronal injuries of prematurity. J Clin Invest, 125(3), 1319-1328.
  323. Ledebt, A., Savelsbergh, G. J., Sie, L. T., & van der Knaap, M. S. (2008). Walking and periventricular leukomalacia: locomotor characteristics and brain imaging (MRI). Infant Behav Dev, 31(4), 655-664.
  324. Clancy, B., Kersh, B., Hyde, J., Darlington, R. B., Anand, K. J., & Finlay, B. L. (2007). Web-based method for translating neurodevelopment from laboratory species to humans. Neuroinformatics, 5(1), 79-94.
  325. Kim, S. K., Cho, K. O., & Kim, S. Y. (2008). White Matter Damage and Hippocampal Neurodegeneration Induced by Permanent Bilateral Occlusion of Common Carotid Artery in the Rat: Comparison between Wistar and Sprague- Dawley Strain. Korean J Physiol Pharmacol, 12(3), 89-94.
  326. White matter injury in the premature infant: a comparison between serial cranial sonographic and MR findings at term. AJNR Am J Neuroradiol, 24(5), 805-809.
  327. Kinney, H. C., Haynes, R. L., & Folkerth, R. D. (2004). White matter lesions in the perinatal period. In J. Golden & B. Harding (Eds.), Neuropathology (1st). Basel: ISN.
  328. Shankaran, S., Laptook, A. R., Ehrenkranz, R. A., Tyson, J. E., McDonald, S. A., Donovan, E. F., et al. (2005). Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med, 353(15), 1574-1584.
  329. R-Core-Team. (2015). R: a language and environment for statistical computing, from http://www.R-project.org/.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten