Publikationsserver der Universitätsbibliothek Marburg

Titel:New Materials for Photoconductive Terahertz Antennas
Autor:Abdulmunem, Oday Mazin
Weitere Beteiligte: Koch, Martin (Prof. Dr.)
Veröffentlicht:2017
URI:https://archiv.ub.uni-marburg.de/diss/z2017/0609
URN: urn:nbn:de:hebis:04-z2017-06095
DOI: https://doi.org/10.17192/z2017.0609
DDC: Physik
Titel (trans.):Neue Materialien für Photoleitender Terahertz Antennen
Publikationsdatum:2017-10-28
Lizenz:https://creativecommons.org/licenses/by/4.0

Dokument

Schlagwörter:
LT-GaAs photoconductive antenna, Charakterisierung photoleitender, LT-GaAs photoleitenden antennen, THz-Zeitbereichsspektroskopie verwendet werden, Enhanced THz emission., LT-GaAs photoleitenden antennen, Characterization of photoconductive, Erhöhte THz-Emission., THz time-domain spectroscopy, Erhöhte THz-Emission., Charakterisierung photoleitender, THz-Zeitbereichsspektroskopie verwendet werden

Summary:
In this thesis, we have first introduced a new setup for the reliable characterization of photoconductive antennas to be used in THz time-domain spectroscopy. Using this setup one can benchmark THz antennas with high precision. The intra-day reproducibility error is in the range of 1.9% while the reproducibility within 9 days is 2.6%. This includes not only absolute power stability but also reproducibility of the spectra by eliminating alignment errors that alter the transfer function from sender to receiver. In order to demonstrate the full capabilities of the system, we investigated samples from five LT-GaAs wafers, grown at temperatures between 200°C and 300°C, in a systematic manner. The obtained results are in good agreement with previous studies on the same material system. These results prove that the system allows for quality control of photoconductors with minimum comparison error. We have also investigated the correlation between THz emission strength and the surface properties of the LT-GaAs photoconductive antenna. The THz characteristics were measured with the highly stable setup mentioned above, which allowed exciting a 10-mm long CPS antenna along the gap without changing the alignment of the optical or THz beam path. The surface properties were quantified regarding roughness and grain size. The roughness was extracted from AFM measurements and the grain size from SEM measurements. A comparison of the THz emission strength in form of the peak-to peak THz amplitude and the surface properties showed a strong nonlinear correlation: a smaller grain size and a smoother surface increase the THz amplitude. These results can be used in the future to optimize the performance of THz antennas. Additionally, we have successfully prepared TiN-nanoparticles using ultrasonic and pulsed laser ablation techniques. The two techniques provide with a different distribution of Zeta-potential and particle size. Within our experimental conditions, pulsed laser ablation can give lower particle size and greater Zeta-potential. TiN-nanoparticles prepared by these techniques have a high and flat absorbance in the spectral range 600 -1000 nm. LT-GaAs covered with dispersed TiNnanoparticles has enhanced THz emission when the average particle size is about 62 nm. More investigations are needed on how to develop preparation and deposition techniques in such a way that control the shape, size, distance between the particles. This may lead to a further improvement of the THz power emitted from such devices. Finally, we demonstrated that coating with MnFe2O4 nanoparticles could be used to improve the performance of photoconductive antennas in the THz region. Our experiments demonstrate that coatings with MnFe2O4−particles provided a new approach to increase the photocurrent density on silicon under CW illumination. In order to understand the effect ofMnFe2O4 nanoparticles on photo-excited silicon, a semiconductor model was proposed to describe this phenomenon. We used this model to calculate the transmission amplitudes of THz pulses transmitted through bare silicon substrates and silicon substrates covered by MnFe2O4 nanoparticles under laser irradiation with different powers. Because the effect of MnFe2O4 nanoparticles on silicon significantly provides an enhanced attenuation of terahertz wave, silicon substrates covered by MnFe2O4 nanoparticles have the potential to be used as an optical modulator in the THz region. This may lead to a costefficient component for THz systems operating in transmission mode. Furthermore, MnFe2O4 nanoparticles could be used for the implementation of novel optical devices.

Bibliographie / References

  1. E Axente, M Barberoglou, PG Kuzmin, E Magoulakis, PA Loukakos, E Stratakis, GA Shafeev, and C Fotakis. Size distribution of au nps generated by laser ablation of a gold target in liquid with time-delayed femtosecond pulses. arXiv preprint arXiv:1008.0374, 2010.
  2. S. Preu, M. Mittendorff, H. Lu, H.B. Weber, S. Winnerl, and A.C. Gossard, 1550 nm ErAs:In(Al)GaAs large area photoconductive emitters, Appl Phys Lett 101 (2012), 101105.
  3. S. Preu, M. Mittendorff, H. Lu, H. B. Weber, S. Winnerl, and A. C. Gossard, 1550 nm ErAs:In(Al)GaAs large area photoconductive emitters, Appl. Phys. Lett. 101, 101105 (2012).
  4. S. Preu, M. Mittendorff, H. Lu, H. B. Weber, S. Winnerl, and A. C. Gossard, "1550 nm ErAs:In(Al)GaAs large area photoconductive emitters," Appl. Phys. Lett. 101, 101105 (2012).
  5. R.J.B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. G€ obel, and M. Schell, 64 mW pulsed THz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions, Appl Phys Lett 103 (2013), 061103.
  6. R. J. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, "64 μw pulsed terahertz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions," Appl. Phys. Lett. 103, 1-5 (2013).
  7. K. Ezdi, B. Heinen, C. Jördens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, "A hybrid time-domain model for pulsed terahertz dipole antennas," J. Eur. Opt. Soc. 4, (2009).
  8. Gao, Y. H. et al. Analysis of terahertz generation via nanostructure enhanced plasmonic excitations. Journal of Applied Physics 106 (2009).
  9. MR Melloch, JM Woodall, ES Harmon, N Otsuka, F Pollak, DD Nolte, RM Feenstra, and MA Lutz. Annual review of material science. 1995.
  10. Lai, W. E., Zhang, H. W., Zhu, Y. H. & Wen, Q. Y. A Novel Method of Terahertz Spectroscopy and Imaging in Reflection Geometry. Appl Spectrosc 67, 36-39 (2013).
  11. Tong, J. Y., Muthee, M., Chen, S. Y., Yngvesson, S. K. & Yan, J. Antenna Enhanced Graphene THz Emitter and Detector. Nano Letters 15, 5295-5301 (2015).
  12. David F Plusquellic, Karen Siegrist, Edwin J Heilweil, and Okan Esenturk. Applications of terahertz spectroscopy in biosystems. ChemPhysChem, 8(17):2412-2431, 2007.
  13. Yiwen Sun, Ming Yiu Sy, Yi-Xiang J Wang, Anil T Ahuja, Yuan-Ting Zhang, and Emma Pickwell-MacPherson. A promising diagnostic method: Terahertz pulsed imaging and spec- troscopy. World journal of radiology, 3(3):55, 2011.
  14. Lionel Duvillaret, Frederric Garet, and J-L Coutaz. A reliable method for extraction of ma- terial parameters in terahertz time-domain spectroscopy. IEEE Journal of selected topics in quantum electronics, 2(3):739-746, 1996.
  15. Pelaez, M. et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B-Environ 125, 331-349 (2012).
  16. AC Warren, JM Woodall, JL Freeouf, D Grischkowsky, DT McInturff, MR Melloch, and N Otsuka. Arsenic precipitates and the semi-insulating properties of gaas buffer layers grown by low-temperature molecular beam epitaxy. Applied Physics Letters, 57(13):1331-1333, 1990.
  17. RW Wood. A suspected case of the electrical resonance of minute metal particles for light- waves. a new type of absorption. Proceedings of the Physical Society of London, 18(1):166, 1902.
  18. S. Preu, A unified derivation of the Terahertz spectra generated by photoconductors and diodes, J Infrared Milli Terahz Waves 35 (2014), 998-1010.
  19. S. Preu, "A Unified Derivation of the Terahertz Spectra Generated by Photoconductors and Diodes," J Infrared, Millimeter, Terahertz Waves 35, 998-1010 (2014).
  20. EP MacPherson. Biological applications of terahertz pulsed imaging and spectroscopy, 2005.
  21. Rizzo, A. et al. Blue light emitting diodes based on fluorescent CdSe/ZnS nanocrystals. Appl Phys Lett 90, 051106 (2007).
  22. CF Bohren, DR Huffman, and Z Kam. Book-review-absorption and scattering of light by small particles. Nature, 306:625, 1983.
  23. A. Soltani, S. F. Busch, P. Plew, J. C. Balzer, and M. Koch, BTHz ATR Spectroscopy for Inline Monitoring of Highly Absorbing Liquids,^. J Infrared, Millimeter, Terahertz Waves 37, 1001-1006 (2016).
  24. Zhisheng Piao, Masahiko Tani, and Kiyomi Sakai. Carrier dynamics and terahertz radiation in photoconductive antennas. Japanese Journal of Applied Physics, 39(1R):96, 2000.
  25. Ronald Ulbricht, Euan Hendry, Jie Shan, Tony F Heinz, and Mischa Bonn. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Reviews of Modern Physics, 83(2):543, 2011.
  26. JE Pedersen, VG Lyssenko, JM Hvam, P Uhd Jepsen, SR Keiding, CB So/rensen, and PE Lin- delof. Ultrafast local field dynamics in photoconductive thz antennas. Applied physics letters, 62(11):1265-1267, 1993.
  27. Awad, M., Nagel, M., Kurz, H., Herfort, J. & Ploog, K. Characterization of low temperature GaAs antenna array terahertz emitters. Appl Phys Lett 91 (2007).
  28. David H Auston, KP Cheung, JA Valdmanis, and DA Kleinman. Cherenkov radiation from femtosecond optical pulses in electro-optic media. Physical Review Letters, 53(16):1555, 1984.
  29. Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. B. Stark, Q. Wu, X. C. Zhang, and J. F. Federici, Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection, Appl. Phys. Lett. 73, 444 (1998).
  30. Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. B. Stark, Q. Wu, X. C. Zhang, and J. F. Federici, "Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection," Appl. Phys. Lett. 73, 444-446 (1998).
  31. Han, S. P. et al. Compact fiber-pigtailed InGaAs photoconductive antenna module for terahertz-wave generation and detection. Opt Express 20, 18432-18439 (2012).
  32. E. Castro-Camus and M. B. Johnston, "Conformational changes of photoactive yellow protein monitored by terahertz spectroscopy," Chem. Phys. Lett. 455, 289-292 (2008).
  33. R. Wilk, F. Breitfeld, M. Mikulics, and M. Koch, Continuous wave terahertz spectrometer as a noncontact thickness measuring device, Appl. Opt. 47, 3023 (2008).
  34. B Knoll, F Keilmann, A Kramer, and R Guckenberger. Contrast of microwave near-field microscopy. Applied physics letters, 70(20):2667-2669, 1997.
  35. Masayoshi Tonouchi. Cutting-edge terahertz technology. Nature photonics, 1(2):97-105, 2007.
  36. Cai, Y. et al. Design and performance of singular electric field terahertz photoconducting antennas. Appl Phys Lett 71, 2076-2078 (1997).
  37. C. Jördens and M. Koch, Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy, Opt. Eng. 47, 37003 (2008).
  38. C. Jördens and M. Koch, "Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy," Opt. Eng. 47, 37003 (2008).
  39. D Banerjee, W Von Spiegel, MD Thomson, S Schabel, and HG Roskos. Diagnosing water content in paper by terahertz radiation. Optics Express, 16(12):9060-9066, 2008.
  40. Jessica Rodríguez-Fernández, Jorge Pérez-Juste, Luis M Liz-Marzán, and Peter R Lang. Dy- namic light scattering of short au rods with low aspect ratios. The Journal of Physical Chem- istry C, 111(13):5020-5025, 2007.
  41. Bruce J Berne and Robert Pecora. Dynamic light scattering: with applications to chemistry, biology, and physics. Courier Corporation, 2000.
  42. Davoud Dorranian, Shiva Tajmir, and Farzane Khazanehfar. Effect of laser fluence on the characteristics of ag nanoparticles produced by laser ablation. Soft Nanoscience Letters, 2013, 2013.
  43. Jin Keun Seo, Eung Je Woo, Ulrich Katscher, and Yi Wang. Electro-magnetic tissue proper- ties MRI, volume 1. World Scientific, 2014.
  44. Antonov, V. N., Harmon, B. N. & Yaresko, A. N. Electronic structure and x-ray magnetic circular dichroism in Fe3O4 and Mn-, Co-, or Ni-substituted Fe3O4. Phys Rev B 67 (2003).
  45. C. Winnewisser, P.U. Jepsen, M. Schall, V. Schyja, and H. Helm, Electro-optic detection of THz radiation in LiTaO 3 , LiNbO 3 and ZnTe, Appl Phys Lett 70 (1997), 3069.
  46. M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs, Appl. Opt. 36, 7853 (1997).
  47. M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, Emission charac- teristics of photoconductive antennas based on low-temperature- grown GaAs and semi-insulating GaAs, Appl Opt 36 (1997), 7853- 7857.
  48. M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, "Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs," Appl. Opt. 36, 7853 (1997).
  49. GKP Ramanandan, G Ramakrishnan, N Kumar, AJL Adam, and PCM Planken. Emission of terahertz pulses from nanostructured metal surfaces. Journal of Physics D: Applied Physics, 47(37):374003, 2014.
  50. S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, "Enhanced emission from Si- based light-emitting diodes using surface plasmons," Appl. Phys. Lett. 88, 161102 (2006).
  51. Weien Lai, Oday Mazin Abdulmunem, Pablo Del Pino, Beatriz Pelaz, Wolfgang J Parak, Qian Zhang, and Huaiwu Zhang. Enhanced terahertz radiation generation of photoconductive antennas based on manganese ferrite nanoparticles. Scientific Reports, 7, 2017.
  52. W. Lai, O. Mazin Abdulmunem, P. del Pino, B. Pelaz, W. J. Parak, Q. Zhang, and H. Zhang, "Enhanced Terahertz Radiation Generation of Photoconductive Antennas Based on Manganese Ferrite Nanoparticles," Sci. Rep. 7, 46261 (2017).
  53. Belén Andrés García. Enhancing the radiated power in the terahertz band. 2013.
  54. Young, C. D. Exploring terahertz pulse enhancement through gold nanoparticle deposition. Dissertations & Theses -Gradworks (2009).
  55. Young, C. D. Exploring terahertz pulse enhancement through gold nanoparticle deposition. Dissertations & Theses -Gradworks (2009).
  56. JT Kindt and CA Schmuttenmaer. Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy. The Journal of Physical Chemistry, 100(24):10373-10379, 1996.
  57. D Grischkowsky, Søren Keiding, Martin Van Exter, and Ch Fattinger. Far-infrared time- domain spectroscopy with terahertz beams of dielectrics and semiconductors. JOSA B, 7(10):2006-2015, 1990.
  58. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, Far- infrared time-domain spectroscopy with terahertz beams of dielec- trics and semiconductors, J Opt Soc Am B 7 (1990), 2006-2015.
  59. M Walther, B Fischer, M Schall, H Helm, and P Uhd Jepsen. Far-infrared vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by thz time-domain spectroscopy. Chemical Physics Letters, 332(3):389-395, 2000.
  60. M. Suzuki and M. Tonouchi, Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 μm femtosecond optical pulses, Appl. Phys. Lett. 86, 163504 (2005)
  61. M. Suzuki and M. Tonouchi, "Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 μm femtosecond optical pulses," Appl. Phys. Lett. 86, 163504 (2005).
  62. Gilad Haran, Wei-Dong Sun, Klaas Wynne, and Robin M Hochstrasser. Femtosecond far- infrared pump-probe spectroscopy: a new tool for studying low-frequency vibrational dy- namics in molecular condensed phases. Chemical physics letters, 274(4):365-371, 1997.
  63. J. Darmo, T. M€ uller, W. Parz, J. Kr€ oll, G. Strasser, and K. Unterrainer, Few-cycle terahertz generation and spectroscopy of nanostructures, Phil Trans R Soc Lond A 362 (2004), 251-262.
  64. Singh, D. J., Gupta, M. & Gupta, R. First-principles investigation of MnFe2O4. Phys Rev B 65 (2002).
  65. MR Melloch, N Otsuka, JM Woodall, AC Warren, and JL Freeouf. Formation of arsenic precipitates in gaas buffer layers grown by molecular beam epitaxy at low substrate temper- atures. Applied physics letters, 57(15):1531-1533, 1990.
  66. Kuk Ki Kim, Daehyun Kim, Sang Kyu Kim, Seung Min Park, and Jae Kyu Song. Formation of zno nanoparticles by laser ablation in neat water. Chemical Physics Letters, 511(1):116- 120, 2011.
  67. G. Segschneider, F. Jacob, T. Löffler, H. G. Roskos, S. Tautz, P. Kiesel, and G. Döhler, "Free-carrier dynamics in low-temperature-grown GaAs at high excitation densities investigated by time-domain terahertz spectroscopy," Phys. Rev. B 65, 125205 (2002).
  68. Q. Wu and X.C. Zhang, Free space electro-optic sampling of tera- hertz beams, Appl Phys Lett 67 (1995), 3523.
  69. Martin C Nuss. Gas sensing using terahertz time-domain spectroscopy. Applied Physics B: Lasers and Optics, 67(3):379-390, 1998.
  70. Gbit/s Transmission over 850 m Fixed Wireless Link at 240 GHz Carrier Frequency," J. Infrared, Millimeter, Terahertz Waves 36, 221-233 (2015).
  71. Andrew D Jameson. Generating and using terahertz radiation to explore carrier dynamics of semiconductor and metal nanostructures. PhD thesis, 2012.
  72. DH Auston and PR Smith. Generation and detection of millimeter waves by picosecond photoconductivity. Applied Physics Letters, 43(7):631-633, 1983.
  73. Jepsen, P. U., Jacobsen, R. H. & Keiding, S. R. Generation and detection of terahertz pulses from biased semiconductor antennas. Journal of the Optical Society of America B 13, 2424-2436 (1996).
  74. P Uhd Jepsen, Rune Hylsberg Jacobsen, and SR Keiding. Generation and detection of tera- hertz pulses from biased semiconductor antennas. JOSA B, 13(11):2424-2436, 1996.
  75. P.U. Jepsen, R.H. Jacobsen, and S.R. Keiding, Generation and detec- tion of terahertz pulses from biased semiconductor antennas, J Opt Soc Am B 13 (1996), 2424-2436.
  76. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, "Generation and detection of terahertz pulses from biased semiconductor antennas," J. Opt. Soc. Am. B 13, 2424 (1996).
  77. Masaya Nagai, Koichiro Tanaka, Hideyuki Ohtake, Toshiaki Bessho, Toshiharu Sugiura, To- moya Hirosumi, and Makoto Yoshida. Generation and detection of terahertz radiation by electro-optical process in gaas using 1.56 µ m fiber laser pulses. Applied physics letters, 85(18):3974-3976, 2004.
  78. S. Matsuura, M. Tani, and K. Sakai, Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas, Appl. Phys. Lett. 70, 559 (1997).
  79. Kashiwagi, T. et al. Generation of electromagnetic waves from 0.3 to 1.6 terahertz with a high-Tc superconducting Bi 2 Sr 2 CaCu 2 O 8 + δ intrinsic Josephson junction emitter. Appl Phys Lett 106, 2394 (2015).
  80. Masahiko Tani, Osamu Morikawa, Shuji Matsuura, and Masanori Hangyo. Generation of ter- ahertz radiation by photomixing with dual-and multiple-mode lasers. Semiconductor Science and Technology, 20(7):S151, 2005.
  81. O. Hatem, J.R. Freeman, J.E. Cunningham, P.J. Cannard, M.J. Robertson, E.H. Linfield, A.G. Davies, and D.G. Moodie, Generation of Terahertz radiation from Fe-doped InGaAsP using 800 nm to 1550 nm pulsed laser excitation, J Infrared Milli Terahz Waves (2015), 1-11.
  82. AS Weling, BB Hu, NM Froberg, and DH Auston. Generation of tunable narrow-band thz radiation from large aperture photoconducting antennas. Applied physics letters, 64(2):137- 139, 1994.
  83. K. S. Lee and M. A. El-Sayed, "Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition," J. Phys. Chem. B 110, 19220-19225 (2006).
  84. Ashraf, S. et al. Gold-Based Nanomaterials for Applications in Nanomedicine. Top Curr Chem 370, 169-202 (2016).
  85. Zhang, C. L. et al. Gold Nanoclusters-Based Nanoprobes for Simultaneous Fluorescence Imaging and Targeted Photodynamic Therapy with Superior Penetration and Retention Behavior in Tumors. Advanced Functional Materials 25, 1314-1325 (2015).
  86. Daniel, M. C. & Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104, 293-346 (2004).
  87. William R Tribe, David A Newnham, Philip F Taday, and Michael C Kemp. Hidden object detection: security applications of terahertz technology. In Integrated Optoelectronic Devices 2004, pages 168-176. International Society for Optics and Photonics, 2004.
  88. O. M. Abdulmunem, N. Born, M. Mikulics, J. C. Balzer, M. Koch, and S. Preu, High Accuracy Terahertz Time-Domain System for Reliable Characterization of Photoconducting Antennas, Microw. Opt. Technol. Lett. 59, 468-472 (2017).
  89. O. M. Abdulmunem, N. Born, M. Mikulics, J. C. Balzer, M. Koch, and S. Preu, "High accuracy terahertz time-domain system for reliable characterization of photoconducting antennas," Microw. Opt. Technol. Lett. 59, 468-472 (2017).
  90. Oday Mazin Abdulmunem, Norman Born, Martin Mikulics, Jan Christof Balzer, Martin Koch, and Sascha Preu. High accuracy terahertz time-domain system for reliable characteri- zation of photoconducting antennas. Microwave and Optical Technology Letters, 59(2):468- 472, 2017.
  91. C.W. Berry, M.R. Hashemi, S. Preu, H. Lu, A.C. Gossard, and M. Jarrahi, High power terahertz generation using 1550 nm plasmonic photomixers, Appl Phys Lett 105 (2014), 011121.
  92. M. Mikulics, X. Zheng, R. Adam, R. Sobolewski, and P. Krodos, High-speed photoconductive switch based on low-temperature GaAs transferred on SiO 2 -Si substrate, IEEE Photon Technol Lett 15 (2003), 528-530.
  93. M. Mikulics, Xuemei Zheng, R. Adam, R. Sobolewski, and P. Kordos, High-speed photoconductive switch based on low-temperature GaAs transferred on SiO/sub 2/-Si substrate, IEEE Photonics Technol. Lett. 15, 528-530 (2003).
  94. Xuanhua Li, Jinmeng Zhu, and Bingqing Wei. Hybrid nanostructures of metal/two- dimensional nanomaterials for plasmon-enhanced applications. Chemical Society Reviews, 45(11):3145-3187, 2016.
  95. Khalid, W. et al. Immobilization of Quantum Dots via Conjugated Self-Assembled Monolayers and Their Application as a Light- Controlled Sensor for the Detection of Hydrogen Peroxide. ACS Nano 5, 9870-9876 (2011).
  96. N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Wilk, H.W. H€ ubers, and M. Koch, Impact of the contact metallization on the performance of photoconductive THz antennas, Opt Exp 16 (2008), 19695.
  97. N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Wilk, H. W. Hübers, and M. Koch, Impact of the contact metallization on the performance of photoconductive THz antennas, Opt. Express 16, 19695 (2008).
  98. N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Wilk, H. W. Hübers, and M. Koch, "Impact of the contact metallization on the performance of photoconductive THz antennas," Opt. Express 16, 19695 (2008).
  99. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, "Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles," Appl. Phys. Lett. 89, 93103 (2006).
  100. D Auston. Impulse response of photoconductors in transmission lines. IEEE Journal of Quantum Electronics, 19(4):639-648, 1983.
  101. Anne Hahn, Stephan Barcikowski, and Boris N Chichkov. Influences on nanoparticle pro- duction during pulsed laser ablation. Pulse, 40(45):50, 2008.
  102. J. L. Johnson, T. D. Dorney, and D. M. Mittleman, "Interferometric imaging with terahertz pulses," IEEE J. Sel. Top. Quantum Electron. 7, 592-599 (2001).
  103. Kittel, C. Introduction to solid state physics. (Wiley, 2004).
  104. Azzazy, H. M. E. & Mansour, M. M. H. In vitro diagnostic prospects of nanoparticles. Clin Chim Acta 403, 1-8 (2009).
  105. M. Mikulics, M. Marso, I.C. Mayorga, R. Gusten, S. Stanc ˇek, P. Kov ac ˇ, S. Wu, X. Li, M. Khafizov, R. Sobolewski, E.A. Michael, R. Schieder, M. Wolter, D. Buca, A. F€ orster, P. Kordo s, and H. L€ uth, Photomixers fabricated on nitrogen-ion-implanted GaAs, Appl Phys Lett 87 (2005), 041106.
  106. Mittendorff, M. et al. Large area photoconductive terahertz emitter for 1.55 mu m excitation based on an InGaAs heterostructure. Nanotechnology 24 (2013).
  107. NV Tarasenko, VS Burakov, and AV Butsen. Laser ablation plasmas in liquids for fabrication of nanosize particles. Publications de l'Observatoire Astronomique de Beograd, 82:201-211, 2007.
  108. Koichi Sasaki and Noriharu Takada. Liquid-phase laser ablation. Pure and Applied Chem- istry, 82(6):1317-1327, 2010.
  109. Petryayeva, E. & Krull, U. J. Localized surface plasmon resonance: Nanostructures, bioassays and biosensing-A review. Anal Chim Acta 706, 8-24 (2011).
  110. D. A. Murdick, X. W. Zhou, and H. N. G. Wadley, Low-temperature atomic assembly of stoichiometric gallium arsenide from equiatomic vapor, J. Cryst. Growth 286, 197-204 (2006).
  111. I.S. Gregory, C. Baker, W.R. Tribe, M.J. Evans, H.E. Beere, E.H. Linfield, A.G. Davies, and M. Missous, High resistivity annealed DOI 10.1002/mop MICROWAVE AND OPTICAL TECHNOLOGY LETTERS / Vol. 59, No. 2, February 2017 low-temperature GaAs with 100 fs lifetimes, Appl Phys Lett 83 (2003), 4199.
  112. LG Lavrent'eva, MD Vilisova, VV Preobrazhenskii, and VV Chaldyshev. Low-temperature molecular-beam epitaxy of gaas: effect of excess arsenic on the structure and properties of the gaas layers. Russian physics journal, 45(8):735-752, 2002.
  113. AI Veinger, SV Kozyrev, VV Chaldyshev, MD Vilisova, LG Lavrenteva, IV Ivonin, DI Luby- shev, VV Preobrazhenskii, and BR Semyagin. Magnet-dependent microwave absorption caused by superconducting in-ga-clusters in gaas grown by molecular-ray epitaxy. FIZIKA TVERDOGO TELA, 38(10):2897-2904, 1996.
  114. Ferguson, B. & Zhang, X. C. Materials for terahertz science and technology. Nature Materials 1, 26-33 (2002).
  115. Bradley Ferguson and Xi-Cheng Zhang. Materials for terahertz science and technology. Na- ture materials, 1(1):26-33, 2002.
  116. E. R. Brown, K. A. McIntosh, F. W. Smith, K. B. Nichols, M. J. Manfra, C. L. Dennis, and J. P. Mattia, Milliwatt output levels and superquadratic bias dependence in a low-temperature-grown GaAs photomixer, Appl. Phys. Lett. 64, 3311 (1994).
  117. Zhang, Q. et al. Model Driven Optimization of Magnetic Anisotropy of Exchange-Coupled Core-Shell Ferrite Nanoparticles for Maximal Hysteretic Loss. Chem Mater 27, 7380-7387 (2015).
  118. N Krumbholz, T Hochrein, N Vieweg, T Hasek, K Kretschmer, M Bastian, M Mikulics, and M Koch. Monitoring polymeric compounding processes inline with thz time-domain spectroscopy. Polymer Testing, 28(1):30-35, 2009.
  119. Sun, S. et al. Monodisperse MFe 2 O 4 (M = Fe, Co, Mn) Nanoparticles. J. Am. Chem. Soc. 126, 273-279 (2004).
  120. Tanoto, H. et al. Nano-antenna in a photoconductive photomixer for highly efficient continuous wave terahertz emission. Scientific Reports 3 (2013).
  121. Lee, J., Mahendra, S. & Alvarez, P. J. J. Nanomaterials in the Construction Industry: A Review of Their Applications and Environmental Health and Safety Considerations. Acs Nano 4, 3580-3590 (2010).
  122. U. Guler, V. M. Shalaev, and A. Boltasseva, "Nanoparticle plasmonics: Going practical with transition metal nitrides," Mater. Today 18, 227-237 (2015).
  123. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods 9, 671-675 (2012).
  124. Robert Williams Wood. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proceedings of the Physical Society of London, 18(1):269, 1902.
  125. S. Verghese, K. a. McIntosh, and E. R. Brown, Optical and terahertz power limits in the low-temperature- grown GaAs photomixers, Appl. Phys. Lett. 71, 2743 (1997).
  126. S. Verghese, K. A. McIntosh, and E. R. Brown, "Optical and terahertz power limits in the low-temperature- grown GaAs photomixers," Appl. Phys. Lett. 71, 2743 (1997).
  127. BB Hu, JT Darrow, X-C Zhang, DH Auston, and PR Smith. Optically steerable photocon- ducting antennas. Applied physics letters, 56(10):886-888, 1990.
  128. Olivier Pluchery. Optical properties of gold nanoparticles. Gold Nanoparticles for Physics, Chemistry and Biology, pages 51-54, 2012.
  129. Uwe Kreibig and Michael Vollmer. Optical properties of metal clusters, volume 25. Springer Science & Business Media, 1995.
  130. Fox, M. Optical properties of solids. Vol. 3 (Oxford University Press, 2010).
  131. Anthony Mark Fox. Optical Properties of Solids, volume 3. Oxford University Press, USA, 2003.
  132. Mark Fox. Optical Properties of Solids, volume 3. Oxford University Press, 2010.
  133. Alfred P DeFonzo and Charles R Lutz. Optoelectronic transmission and reception of ultra- short electrical pulses. Applied Physics Letters, 51(4):212-214, 1987.
  134. R. Piesiewicz, M. Jacob, M. Koch, J. Schoebel, and T. Kürner, "Performance analysis of future multigigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments," IEEE J. Sel. Top. Quantum Electron. 14, 421-430 (2008).
  135. U. Guler, G. V. Naik, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, "Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications," Appl. Phys. B Lasers Opt. 107, 285-291 (2012).
  136. I. Ivanov, M. Bonn, Z. Mics, and D. Turchinovich, Perspective on terahertz spectroscopy of graphene, EPL Europhysics Lett. 111, 67001 (2015).
  137. OM Abdulmunem, KI Hassoon, J Völkner, M Mikulics, KI Gries, and JC Balzer. Photocon- ductive lt-gaas terahertz antennas: Correlation between surface quality and emission strength. Journal of Infrared, Millimeter, and Terahertz Waves, 38(5):574-582, 2017.
  138. O. M. Abdulmunem, K. I. Hassoon, J. Völkner, M. Mikulics, K. I. Gries, and J. C. Balzer, "Photoconductive LT-GaAs Terahertz Antennas: Correlation Between Surface Quality and Emission Strength," J. Infrared, Millimeter, Terahertz Waves (2017).
  139. E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H.H. Tan, C. Jagadish, and M.B. Johnston, Photoconductive response correction for detec- tors of terahertz radiation, J Appl Phys Lett 104 (2008), 053113.
  140. Haneman, D. Photoelectric emission and work functions of InSb, GaAs, Bi 2 Te 3 and germanium. Journal of Physics & Chemistry of Solids 11, 205,IN201,209-208,IN202,214 (1959).
  141. Sabir, N. et al. Photo-electrochemical Bioanalysis of Guanosine Monophosphate Using Coupled Enzymatic Reactions at a CdS/ZnS Quantum Dot Electrode. Small 11, 5844-5850 (2015).
  142. E.R. Brown, K.A. McIntosh, K.B. Nichols, and C.L. Dennis, Photo- mixing up to 3.8 THz in low-temperature grown GaAs, Appl Phys Lett 66 (1995), 285-287.
  143. David H Auston. Picosecond optoelectronic switching and gating in silicon. Applied Physics Letters, 26(3):101-103, 1975.
  144. DH Auston, KP Cheung, and PR Smith. Picosecond photoconducting hertzian dipoles. Ap- plied physics letters, 45(3):284-286, 1984.
  145. D.H. Auston, K.P. Cheung, and P.R. Smith, Picosecond photocon- ducting Hertzian dipoles, Appl Phys Lett 45 (1984), 284-286.
  146. A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, "Plasmon-Enhanced below Bandgap Photoconductive Terahertz Generation and Detection," Nano Lett. 15, 8306-8310 (2015).
  147. H. A. Atwater and A. Polman, "Plasmonics for improved photovoltaic devices," Nat. Mater. 9, 865-865 (2010).
  148. S Pillai and MA Green. Plasmonics for photovoltaic applications. Solar Energy Materials and Solar Cells, 94(9):1481-1486, 2010.
  149. Anagha Avinash Bhakay. Preparation of Nanovehicles for Targeted Drug Delivery. PhD thesis, New Jersey Institute of Technology, Otto H. York Department of Chemical, Biological and Pharmaceutical Engineering, 2009.
  150. Lee Yun-Shik. Principles of terahertz science and technology. NY: Springer, pages 105-122, 2008.
  151. A. Mitsuishi, Progress in far-infrared spectroscopy: Approximately 1890 to 1970, J Infrared Milli Terahz Waves 35 (2013), 243-281.
  152. Mihai Stafe, C Negutu, Niculae N Puscas, and IM Popescu. Pulsed laser ablation of solids. Rom. Rep. Phys, 62(4), 2010.
  153. AG Markelz, A Roitberg, and Edwin J Heilweil. Pulsed terahertz spectroscopy of dna, bovine serum albumin and collagen between 0.1 and 2.0 thz. Chemical Physics Letters, 320(1):42- 48, 2000.
  154. Richard T Hall and Jerome M Dowling. Pure rotational spectrum of water vapor. The Journal of Chemical Physics, 47(7):2454-2461, 1967.
  155. R. Gente, S. F. Busch, E.-M. Stubling, L. M. Schneider, C. B. Hirschmann, J. C. Balzer, and M. Koch, Quality Control of Sugar Beet Seeds With THz Time-Domain Spectroscopy, IEEE Trans. Terahertz Sci. Technol. 6, 1-3 (2016).
  156. R. Gente, S. F. Busch, E.-M. Stubling, L. M. Schneider, C. B. Hirschmann, J. C. Balzer, and M. Koch, "Quality Control of Sugar Beet Seeds With THz Time-Domain Spectroscopy," IEEE Trans. Terahertz Sci. Technol. 6, 1-3 (2016).
  157. Kadowaki, K. et al. Quantum terahertz electronics (QTE) using coherent radiation from high temperature superconducting Bi 2 Sr 2 CaCu 2 O 8 + delta intrinsic Josephson junctions. Physica C 491, 2-6 (2013).
  158. DM Mittleman, M Gupta, Ramesh Neelamani, RG Baraniuk, JV Rudd, and M Koch. Recent advances in terahertz imaging. Applied Physics B, 68(6):1085-1094, 1999.
  159. Prashant K Jain, Xiaohua Huang, Ivan H El-Sayed, and Mostafa A El-Sayed. Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics, 2(3):107-118, 2007.
  160. G Rodriguez and AJ Taylor. Screening of the bias field in terahertz generation from photo- conductors. Optics letters, 21(14):1046-1048, 1996.
  161. S. Ghorbani, M. Bashirpour, M. Forouzmehr, M. R. Kolahdouz, and M. Neshat, "Simulation of THz photoconductive antennas loaded by different metallic nanoparticles," in 2016 Fourth International Conference on Millimeter-Wave and Terahertz Technologies (MMWaTT) (IEEE, 2016), pp. 62-64.
  162. Payam Mousavi, Frank Haran, David Jez, Fadil Santosa, and John Steven Dodge. Simulta- neous composition and thickness measurement of paper using terahertz time-domain spec- troscopy. Applied optics, 48(33):6541-6546, 2009.
  163. S. Link and M. A. El-Sayed, "Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles," J. Phys. Chem. B 103, 4212 (1999).
  164. Daria Riabinina, Jianming Zhang, Mohamed Chaker, Joëlle Margot, and Dongling Ma. Size control of gold nanoparticles synthesized by laser ablation in liquid media. ISRN Nanotech- nology, 2012, 2012.
  165. Chatelain, A., Bonard, J. M., Buttet, J. & Monot, R. Small particles and inorganic clusters. Preface. Eur Phys J D 9, U1-U1 (1999).
  166. Weis, P. et al. Spectrally Wide-Band Terahertz Wave Modulator Based on Optically Tuned Graphene.
  167. Z. Liliental-Weber, H. J. Cheng, S. Gupta, J. Whitaker, K. Nichols, and F. W. Smith, Structure and carrier lifetime in LT-GaAs, J. Electron. Mater. 22, 1465-1469 (1993).
  168. J. Sigmund, C. Sydlo, H.L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, Structure investigation of LTG- GaAsSb as a new material for photoconductive THz antennas, Appl Phys Lett 87 (2005), 252103.
  169. S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures, Appl. Phys. Lett. 59, 3276 (1991).
  170. DH Auston. Subpicosecond electro-optic shock waves. Applied Physics Letters, 43(8):713- 715, 1983.
  171. Peter R Smith, David H Auston, and Martin C Nuss. Subpicosecond photoconducting dipole antennas. IEEE Journal of Quantum Electronics, 24(2):255-260, 1988.
  172. P. R. Smith, D. H. Auston, and M. C. Nuss, Subpicosecond photoconducting dipole antennas, IEEE J. Quantum Electron. 24, 255-260 (1988).
  173. P. R. Smith, D. H. Auston, and M. C. Nuss, "Subpicosecond photoconducting dipole antennas," IEEE J. Quantum Electron. 24, 255-260 (1988).
  174. Jean-Philippe Sylvestre, Suzie Poulin, Andrei V Kabashin, Edward Sacher, Michel Meunier, and John HT Luong. Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media. The Journal of Physical Chemistry B, 108(43):16864-16869, 2004.
  175. RH Ritchie. Surface plasmons in solids. Surface Science, 34(1):1-19, 1973.
  176. S Iravani, H Korbekandi, SV Mirmohammadi, and B Zolfaghari. Synthesis of silver nanopar- ticles: chemical, physical and biological methods. Research in pharmaceutical sciences, 9(6):385, 2014.
  177. Bateer, B. et al. Synthesis, size and magnetic properties of controllable MnFe2O4 nanoparticles with versatile surface functionalities. Dalton T 43, 9885-9891 (2014).
  178. Ch Fattinger and D Grischkowsky. Terahertz beams. Applied Physics Letters, 54(6):490-492, 1989.
  179. V C 2016 Wiley Periodicals, Inc. References 1. S. Leinß, T. Kampfrath, K. V. Volkmann, M. Wolf, J. T. Steiner, M. Kira, S. W. Koch, A. Leitenstorfer, and R. Huber, Terahertz coherent control of optically dark paraexcitons in Cu2O, Phys. Rev. Lett. 101, 246401 (2008).
  180. Zhong, H., Karpowicz, N. & Zhang, X. C. Terahertz emission profile from laser-induced air plasma. Appl Phys Lett 88 (2006).
  181. Daniela Dragoman and Mircea Dragoman. Terahertz fields and applications. Progress in Quantum Electronics, 28(1):1-66, 2004.
  182. S. Wietzke, C. Jördens, N. Krumbholz, B. Baudrit, M. Bastian, and M. Koch, Terahertz imaging: A new non-destructive technique for the quality control of plastic weld joints, J. Eur. Opt. Soc. 2, 2-6 (2007).
  183. Don Arnone, Craig Ciesla, and Michael Pepper. Terahertz imaging comes into view. Physics World, 13(4):35, 2000.
  184. Aurele JL Adam, Paul CM Planken, Sabrina Meloni, and Joris Dik. Terahertz imaging of hidden paint layers on canvas. Optics Express, 17(5):3407-3416, 2009.
  185. A. J. L. Adam, P. C. M. Planken, S. Meloni, and J. Dik, "TeraHertz imaging of hidden paint layers on canvas," Opt. Express 17, 3407 (2009).
  186. M. Herrmann, M. Tani, K. Sakai, and R. Fukasawa, Terahertz imaging of silicon wafers, J. Appl. Phys. 91, 1247-1250 (2002).
  187. Park, S. G., Choi, Y., Oh, Y. J. & Jeong, K. H. Terahertz photoconductive antenna with metal nanoislands. Opt Express 20, 25530-25535 (2012).
  188. VP Wallace, AJ Fitzgerald, S Shankar, N Flanagan, R Pye, J Cluff, and DD Arnone. Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo. British Journal of Dermatology, 151(2):424-432, 2004.
  189. Anthony J Fitzgerald, Vincent P Wallace, Mercedes Jimenez-Linan, Lynda Bobrow, Richard J Pye, Anand D Purushotham, and Donald D Arnone. Terahertz pulsed imaging of human breast tumors 1. Radiology, 239(2):533-540, 2006.
  190. Zhang, J., Hong, Y., Braunstein, S. L. & Shore, K. A. Terahertz pulse generation and detection with LT-GaAs photoconductive antenna. IEE Proceedings -Optoelectronics 151, 98-101 (2004).
  191. Carey, J. J. et al. Terahertz pulse generation in an organic crystal by optical rectification and resonant excitation of molecular charge transfer. Appl Phys Lett 81, 4335-4337 (2002).
  192. Rüdeger Köhler, Alessandro Tredicucci, Fabio Beltram, Harvey E Beere, Edmund H Linfield, A Giles Davies, David A Ritchie, Rita C Iotti, and Fausto Rossi. Terahertz semiconductor- heterostructure laser. Nature, 417(6885):156-159, 2002.
  193. Jepsen, P. U., Cooke, D. G. & Koch, M. Terahertz spectroscopy and imaging -Modern techniques and applications. Laser Photonics Rev 5, 124-166 (2011).
  194. P Uhd Jepsen, David G Cooke, and Martin Koch. Terahertz spectroscopy and imaging- modern techniques and applications. Laser & Photonics Reviews, 5(1):124-166, 2011.
  195. P.U. Jepsen, D.G. Cooke, and M. Koch, Terahertz spectroscopy and imaging-Modern techniques and applications, Laser Photon Rev 5 (2011), 124.
  196. S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, Terahertz spectroscopy on polymers: A review of morphological studies, J. Mol. Struct. 1006, 41-51 (2011).
  197. C. J€ ordens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, V. Reisecker, and M. Koch, Terahertz spec- troscopy to study the orientation of glass fibres in reinforced plastics, Compos Sci Technol 70 (2010), 472.
  198. N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, Terahertz-time domain spectrometer with 90 dB peak dynamic range, J. Infrared, Millimeter, Terahertz Waves 35, 823-832 (2014).
  199. V. Paebutas, et al. Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting compo- nents, Appl Phys Lett 97 (2010), 031111.
  200. Dorian Hanaor, Marco Michelazzi, Cristina Leonelli, and Charles C Sorrell. The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of zro 2. Journal of the European Ceramic Society, 32(1):235-244, 2012.
  201. J. Y. W. Seto, The electrical properties of polycrystalline silicon films, J. Appl. Phys. 46, 5247 (1975).
  202. Grundmann, M. The physics of semiconductors:an introduction including Nanophysics and applications. (Springer, 2014).
  203. Carl Sagan and WW Kellogg. The terrestrial planets. Annual review of astronomy and astrophysics, 1(1):235-266, 1963.
  204. Castro-Camus, E., Lloyd-Hughes, J. & Johnston, M. B. Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches. Phys Rev B 71 (2005).
  205. E. Castro-Camus, J. Lloyd-Hughes, and M. B. Johnston, "Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches," Phys. Rev. B -Condens. Matter Mater. Phys. 71, 1-7 (2005).
  206. A. Soltani, S. F. Busch, P. Plew, J. C. Balzer, and M. Koch, THz ATR Spectroscopy for Inline Monitoring of Highly Absorbing Liquids, J. Infrared, Millimeter, Terahertz Waves 37, 1001-1006 (2016).
  207. R.J.B. Dietz, M. Gerhard, D. Stanze, M. Koch, B. Sartorius, and M. Schell, THz generation at 1.55 mm excitation: six-fold increase in THz conversion efficiency by separated photoconductive and trap- ping regions, Opt Exp 19 (2011), 25911.
  208. E.R. Brown, THz generation by photomixing in ultrafast photocon- ductors, Int J High Speed Electron Syst 13 (2003), 497-545.
  209. J. Mangeney, THz photoconductive antennas made from ion- bombarded semiconductors, J Infrared Milli Terahz Waves 33 (2012), 455.
  210. J. Mangeney, "THz photoconductive antennas made from ion-bombarded semiconductors," J. Infrared, Millimeter, Terahertz Waves 33, 455-473 (2012).
  211. Oday Abdulmunem, Khaleel Hassoon, Mahmoud Gaafar, Arash Rahimi-Iman, and Jan C Balzer. Tin nanoparticles for enhanced thz generation in tds systems. Journal of Infrared, Millimeter, and Terahertz Waves, 38(10):1206-1214, 2017.
  212. Renata Pasqualini. Tissue-specific vascular endothelial signals and vector targeting, vol- ume 69. Academic Press, 2010.
  213. Mélanie Auffan, Jérôme Rose, Jean-Yves Bottero, Gregory V Lowry, Jean-Pierre Jolivet, and Mark R Wiesner. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature nanotechnology, 4(10):634-641, 2009.
  214. T. K€ urner and S. Priebe, Towards THz communications-status in research, standardization and regulation, J Infrared Milli Terahz Waves 35 (2013), 53-62.
  215. J. K. Luo, H. Thomas, D. V. Morgan, and D. Westwood, "Transport properties of GaAs layers grown by molecular beam epitaxy at low temperature and the effects of annealing," J. Appl. Phys. 79, 3622 (1996).
  216. M. Mikulics, E. A. Michael, R. Schieder, J. Stutzki, R. Güsten, M. Marso, A. van der Hart, H. P. Bochem, H. Lüth, and P. Kordoš, Traveling-wave photomixer with recessed interdigitated contacts on low- temperature-grown GaAs, Appl. Phys. Lett. 88, 41118 (2006).
  217. Daniel M Mittleman, Rune H Jacobsen, and Martin C Nuss. T-ray imaging. IEEE Journal of selected topics in quantum electronics, 2(3):679-692, 1996.
  218. S. Preu, G.H. D€ ohler, S. Malzer, A.C. Gossard, and L.J. Wang, Tun- able, continuous-wave photomixer sources and applications, J Appl Phys 109 (2011), 061301.
  219. M. Mikulics, S. Wu, M. Marso, R. Adam, A. Forster, A. van der Hart, P. Kordos, H. Luth, and R. Sobolewski, Ultrafast and highly sensitive photodetectors with recessed electrodes fabricated on low- temperature-grown GaAs, IEEE Photonics Technol. Lett. 18, 820-822 (2006).
  220. Shantanu Gupta, John F Whitaker, and Gerard A Mourou. Ultrafast carrier dynamics in iii-v semiconductors grown by molecular-beam epitaxy at very low substrate temperatures. IEEE Journal of Quantum Electronics, 28(10):2464-2472, 1992.
  221. J.E. Pedersen, V.G. Lyssenko, J.M. Hvam, P. Uhd Jepsen, S.R. Keiding, C.B. Sorensen, and P.E. Lindelof, Ultrafast local field dynamics in photoconductive THz antennas, Appl Phys Lett 62 (1993), 1265-1267.
  222. D.C. Driscoll, M.P. Hanson, A.C. Gossard, and E.R. Brown, Ultra- fast photoresponse at 1.55 lm in InGaAs with embedded semimetal- lic ErAs nanoparticles, Appl Phys Lett 86 (2005), 051908.
  223. T. Schneider, "Ultrahigh-Bitrate Wireless Data Communications via THz-Links; Possibilities and Challenges," J. Infrared, Millimeter, Terahertz Waves 36, 159-179 (2015).
  224. Ali Mazin Abdul-Munaim, Marco Reuter, Oday Mazin Abdulmunem, Jan C Balzer, Martin Koch, and Dennis G Watson. Using terahertz time-domain spectroscopy to discriminate among water contamination levels in diesel engine oil. Transactions of the ASABE, 59(3), 2016.
  225. M. Reuter, O. M. Abdulmunem, J. C. Balzer, M. Koch, and D. G. Watson, Using Terahertz Time-Domain Spectroscopy to Discriminate among Water Contamination Levels in Diesel Engine Oil, Trans. ASABE 59, 795-801 (2016).
  226. Horiuchi, N. View From … Teranano 2011 Terahertz Nano-Exploration. Nat Photonics 6, 82-83 (2012).
  227. JM Chamberlain. Where optics meets electronics: recent progress in decreasing the terahertz gap. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 362(1815):199-213, 2004.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten