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SUMMARY

Summary

Plants, bacteria, and fungi provide diverse structures derived from their primary and the
secondary metabolism. Representative substances from secondary metabolite pathways are
flavonoids, coumarins, xanthones, and indole alkaloids. The attachment of isoprene units (n x
C5) such as dimethylallyl (DMAPP), geranyl (GPP), or farnesyl (FPP) moieties to the
backbones of aromatic secondary metabolites is a further step for the broad diversification.
Prenylated natural products often exhibit stronger pharmacological activities than their non-
prenylated precursors. The prenyltransferases (PTs) accomplish these prenyl transfer
reactions in nature. Therefore, the investigation on the applications of prenyltransferases
could be used for structural modification of aromatic substances to produce biologically

active compounds.

Prenylated acylphloroglucinols (APs), which have remarkable chemical structures and
intriguing biological and pharmacological activities, are characteristic constituents of several
plant families. Main structural features of prenylated APs are highly oxygenated and densely
decorated with prenyl moieties, such as dimethylallyl and geranyl moieties.
Phlorisobutyrophenone (PIBP), phlorisovalerophenone (PIVP), and phlorbenzophenone
(PBZP) serve as precursors of most prenylated APs. In the first part of this thesis, the
acceptance of APs catalyzed by thirteen fungal prenyltransferases in the presence of DMAPP
was elucidated. Nine regular prenylated products were obtained from the reactions with
AnaPT. The results indicated that AnaPT catalyzes the same prenylation of PIBP and PIVP
as the membrane-bound prenyltransferases like HIPT-1 involved in the biosynthesis of the
prenylated APs in plants, but with much higher conversion yields than HIPT-1. However,
only monoprenylated derivatives were obtained in the presence of DMAPP and the
conversion yields of PIBP, PIVP, and PBZP with GPP as prenyl donor were very low in
AnaPT reactions. Recently, a fungal prenyltransferase AtaPT was demonstrated to carry an
unprecedented promiscuity toward diverse drug-like aromatic acceptors and prenyl donors
including DMAPP, GPP, and FPP. On the availability of AtaPT, we investigated the behavior
of AtaPT toward PIBP, PIVP, and PBZP. Twenty-one prenylated APs were isolated and their
structures were elucidated by NMR and MS analyses. Total conversion vyields were
calculated for the three APs with AtaPT and DMAPP, which are significantly higher than
those of AnaPT. C-prenylated products are in consistent with the AnaPT products. O-
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prenylated products were also obtained from the reaction mixtures of PIBP and PIVP. Also
Gem-diprenylated derivatives were identified in the reaction mixtures of these substrates
respectively. C-monoprenylated products were converted into gem-diprenylated derivatives
as predominant products in the presence of DMAPP. GPP and FPP also served as good
prenyl donors for the reaction of AtaPT. Only one C-prenylated derivative and one O-

prenylated derivative each were identified from these incubation mixtures.

Subsequently, prenylation of different flavonoids including flavanones and isoflavones by
AnaPT at C-6 of the A ring or C-3’ of the B ring was demonstrated. Twelve prenylated
flavonoids from incubation mixtures of flavonoids with AnaPT in the presence of DMAPP
were produced. Previous studies found that 7-DMATS accepted chalcones, isoflavonoids,
and flavanones much better than flavones and flavonols and mainly catalyzed prenylation at

C-6. AnaPT and 7-DMATS show different substrate preferences and prenylation positions.

In the third part of this thesis, we identified a key amino acid residue Tyr205 in FtmPT1 for
the interaction with its aromatic substrate brevianamide F. Saturation mutagenesis on this
position resulted in all nineteen possible mutants. FtmPT1 Y205N and FtmPT1_Y205L
differ from FtmPT1 in behaviors toward four cyclo-Trp-Pro isomers. Regularly C2-
prenylated derivatives were detected as main products of FtmPT1 reactions with all these
isomers. In contrast, the reversely C3-prenylated products were found to be the main products
in Y205N and Y205L reactions with cyclo-D-Trp-D-Pro, cyclo-D-Trp-L-Pro, and cyclo-L-Trp-
D-Pro, while regularly C2- and C3-prenylated derivatives were identified in their reaction
mixtures with cyclo-L-Trp-L-Pro. These results indicated that the isomers are in different
positions and orientations in the reaction chamber and Tyr205 is important for the prenyl

transfer reaction, but can be replaced by other amino acids.

The results obtained during this thesis demonstrate that AtaPT and AnaPT could be
promising candidates for production of prenylated APs like B-bitter acids by synthetic
biology. AnaPT and 7-DMATS could be used complementarily for prenylation of flavonoids.
The mutants of FtmPT1 can be used for production of regularly C3-prenylated brevianamide

F in synthetic biology.



ZUSAMMENFASSUNG

Zusammenfassung

Pflanzen, Bakterien und Pilze produzieren vielseitige primére und sekundare
Stoffwechselprodukte. Beispiele der Sekundéarstoffe sind Flavonoide, Coumarine, Xanthone
und Indolalkaloide. Das Anhangen von Isopreneinheiten (n x C5), wie Dimethylallyl
(DMAPP), Geranyl (GPP) oder Farnesyl (FPP) an aromatischen Grundstrukturen des
Sekundédrmetabolismus ist ein weiterer Schritt in der Diversifizierung dieser Stoffe. Die
prenylierten Naturstoffe zeigen haufig stiarkere pharmakologische Aktivitaten als ihre nicht-
prenylierten Vorganger. In der Natur wird die Ubertragung der Prenyleinheit von
Prenyltransferasen realisiert. Aus diesem Grund kdnnen Prenyltransferasen genutzt werden,
um aromatische Substanzen zu modifizieren und somit neue biologisch aktive Stoffe

herzustellen.

Prenylierte Acylphloroglucinole (APs), die sich durch bemerkenswerte chemische Strukturen
und verbliffende biologische und pharmakologische Aktivitaten auszeichnen, sind
charakteristische Sekundarstoffe verschiedener Pflanzenfamilien. Wichtige Strukturmerkmale
von prenylierten APs sind hoch oxidiert und dicht verziert mit Prenylgruppen, wie
Dimehylallyl- und Geranyleinheiten. Phlorisobutyrophenone (PIBP), Phlorisovaerophenone
(PIVP) und Phlorbenzophenon (PBZP) sind die Vorstufen der meisten prenylierten APs. Im
ersten Teil dieser Arbeit wurde die Akzeptanz der APs durch dreizehn pilzliche
Prenyltransferasen in der Gegenwart von DMAPP untersucht. Neun reguldr prenylierte
Produkte wurden durch Einsatz von AnaPT erhalten. Die Ergebnisse weisen darauf hin, dass
AnaPT dieselben Prenylierungen von PIBP und PIVP wie die membrangebundenen
Prenyltransferasen, wie z.B. HIPT-1, katalysiert, welche in die Biosynthese von prenylierten
APs in Pflanzen involviert sind. Die Umsatzrate mit AnaPT sind jedoch deutlich héher als
mit HIPT-1. Allerdings wurden nur monoprenylierte Derivate in Gegenwart von DMAPP
erhalten und die Umsatzraten von PIBP, PIVP und PBZP mit GPP als Prenyldonor waren
sehr gering. Vor Kurzem wurde mit der pilzlichen Prenyltransferase AtaPT eine
auflergewohnliche Promiskuitat gegenuber diversen Arzneimittel-relevanten aromatischen
Akzeptoren und Prenyldonoren, darunter DMAPP, GPP, und FPP, nachgewiesen. Daraufhin
untersuchten wir das Verhalten von AtaPT gegeniiber PIBP, PIVP und PBZP.
Einundzwanzig prenylierte APs wurden isoliert und ihre Strukturen mittels NMR und MS
aufgeklart. Die Umsetzungen der drei APs wurden mit AtaPT und DMAPP bestimmt und
waren deutlich hoher als die mit AnaPT. Gleiche C-prenylierte Produkte wie AnaP-
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Reaktionen wurden identifiziert. O-prenylierte Produkte wurden aus den Reaktionen mit
PIBP und PIVP erhalten. Auch Gem-diprenylierte Derivate konnten in den
Reaktionsgemischen identifiziert werden. C-monoprenylierte Produkte wurden in
Anwesenheit von DMAPP hauptsachlich zu gem-diprenylierte Derivate umgesetzt. GPP und
FPP waren auch gute Prenyldonoren der AtaPT-Reaktionen. Nur ein einziges C-prenyliertes

und ein O-prenyliertes Derivat konnten aus diesen Reaktionen identifiziert werden.

AnschlieBend wurden Prenylierungen verschiedener Flavonoide, darunter Flavanone und
Isoflavone durch AnaPT am C-6 des A-Rings und dem C-3" des B-Rings untersucht. Zwolf
prenylierte Flavonoide wurden in den Reaktionsgemischen von Flavonoiden und AnaPT in
der Gegenwart von DMAPP produziert. Es ist bekannt, dass 7-DMATS Chalcone,
Isoflavonoide und Flavanone deutlich besser als Flavone oder Flavonole akzeptiert und
hauptséchlich die Prenylierung am C-6 Kkatalysiert. AnaPT und 7-DMATS zeigen

unterschiedliche Substratpraferenzen und Prenylierungspositionen.

Im dritten Teil dieser Arbeit wurden die fir die Interaktion von FtmPT1 mit dem
aromatischen Substrat Brevianamide F Schlissel-Aminosaure Tyr205 identifiziert. Mittels
Sattigungsmutagenese an dieser Position wurden Mutanten von allen (brigen 19
Aminoséuren hergestellt. FtmPT1_Y205N und FtmPT1_Y205L unterscheiden sich von
FtmPT1 in ihrem Verhalten gegeniber den vier cyclo-Trp-Pro Isomeren. Reguldar C2-
prenylierte Derivate wurden als Hauptprodukte der FtmPT1 mit diesen Isomeren identifiziert.
Dagegen waren revers C3-prenylierte Produkte die Hauptprodukte von Y205N und Y205L
mit cyclo-D-Trp-D-Pro, cyclo-D-Trp-L-Pro und cyclo-L-Trp-D-Pro, wahrend regular C2- und
C3-prenylierte Derivate mit cyclo-L-Trp-L-Pro nachgewiesen wurden. Diese Ergebnisse
lassen darauf schlielen, dass die Isomere in unterschiedlichen Positionen und Orientierungen
im aktiven Zentrum vorliegen und Tyr205 fir die Reaktion zwar wichtig ist, jedoch durch

andere Aminosauren ersetzt werden kann.

Die Ergebnisse dieser Arbeit zeigen, dass AtaPT und AnaPT vielversprechend Kandidaten
fur die Produktion von prenylierten APs, wie beispielweise B-Bittersduren im Rahmen der
synthetischen Biologie sein konnen. AnaPT und 7-DMATS konnten komplementér fir die
Prenylierung der Flavonoide genutzt werden. Die Mutanten der FtmPT1 konnen fir die
Produktion von reguldr C3-prenyliertem Brevianamid F in der synthetischen Biologie genutzt

werden.



INTRODUCTION

1. Introduction

1.1. Prenylated aromatic secondary metabolites

Prenylated aromatic secondary metabolites are distributed throughout all kingdoms of life.
These compounds fulfil various roles in their plant, bacterial or fungal hosts and the prenyl
residue is a key element for the presented biological and pharmacological activities (Botta et
al. 2005b; Chen et al. 2014a; El-Seedi et al. 2010; Heide 2009a; Li 2010; Liu et al. 2015;
Sunassee and Davies-Coleman 2012). The basic chemical structures of these metabolites
emerge from different biosynthetic pathways and form various substance classes, including
acylphloroglucinols (APs), flavonoids, indole alkaloids, naphthalenes, quinones, xanthones,
and coumarins (Figure 1-1, A). The distinctive prenyl moieties play an important role in the
structural diversity of these natural products, due to various prenylation positions forming C-
C, C-O or C-N bonds on the aromatic nucleus and different patterns (regular or reverse) as
well as lengths of the prenyl chain from dimethylallyl diphosphate (DMAPP, C5 unit),
geranyl diphosphate (GPP, C10 unit), farnrsyl diphosphate (FPP, C15 unit), to geranylgeranyl
pyrophosphate (GGPP, C20 unit) (Figure 1-1, B) (Heide 2009a; Winkelblech et al. 2015a). In
addition, the prenylated compounds can be further modified by rearrangement, cyclization,
oxidation, and hydroxylation reactions (Heide 2009a; Raju et al 2011). The prenylated
aromatic metabolites are classified into prenylated acylphloroglucinols, flavonoids, indole
alkaloids, naphthalenes, quinones, xanthones, and coumarins. The prenylated
acylphloroglucinols, flavonoids, and indole alkaloids are described and summarized in this

thesis in details.
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Flgure 1-1. (A) Aromatic scaffold with numbering; (B) Examples of regular and reverse
prenyl patterns and different lengths of prenyl moieties.



INTRODUCTION

1.1.1. Prenylated acylphloroglucinols

Prenylated acylphloroglucinols (APs) are characteristic constituents of plant
families including Clusiaceae, Hypericaceae, and Cannabaceae. Prenylated APs are classified
into monocyclic polyprenylated acylphloroglucinols (MPAPSs) and polycyclic polyprenylated
acylphloroglucinols (PPAPs) (Ciochina and Grossman 2006). Two classes of MPAPs are
found in hops, o-acids and B-acids. The PPAPs feature a highly oxygenated and densely
substituted bicyclo[3.3.1]nonane-2,4,9-trione or bicyclo[3.2.1]octane-2,4,8-trione  core
decorated with CsHg or C1oH17 (dimethylallyl, geranyl, etc.) side chains. The PPAPs can be
divided into three classes: type A PPAPs have a C-1 acyl group and an adjacent C-8
quaternary center, type B PPAPs have a C-3 acyl group, and the rare type C PPAPSs have a C-
1 acyl group and a distant C-6 quaternary center (Figure 1-2). Secondary cyclizations
involving the B-diketone and pendant olefinic groups may occur to afford adamantanes,

pyrano-fused, or other cyclized structures (Ciochina and Grossman 2006).

%i?%

o amds B- aclds
= j-Pr cohumulone = i-Pr colupulone 3 ;
R1 i-Bu humulone R1 i-Bu lupulone | i
R4 = s-Bu adhumulone R4 = s-Bu adlupulone ! ; 1

R1=Me, CgHg, or CqoH47
R, =H or CsHg
Rj3 = i-Pr, i-Bu, s-Bu, Ph

3-(HO)CeHy, or 3, 4-(HO),CeHs !
R4 = Me, Rs=OH or R4-Rg=CH,CHRg !
Rg = H,CMe=CH,, or CMe,OH i

Figure 1-2. Main structures and classification of prenylated APs.

Prenylated APs exhibit various biological activities including antibacterial, antifungal, anti-
inflammatory, antioxidant, and cytotoxic effects and are considered as a source of new drug
lead from plant sources. As shown in Figure 1-3, lindbergins E and lindbergins F showed
significant leishmanicidal activity (Socolsky et al. 2016). Psorothatin C from Psorothamnus
fremontii was active against methicillin-resistant Staphylococcus aureus and vancomycin-
resistant Enterococcus faecium (Yu et al. 2015b). Clusianone and its 7-epimer from the
family Clusiaceae exhibited anti-HIV and antitumor activities (Garnsey et al. 2011;
Nagalingam et al. 2016; Piccinelli et al. 2005; Sales et al. 2015). Yojironin E and petiolin J
exhibited moderate antimicrobial activity (Tanaka et al. 2010; Tanaka et al. 2011). Yojironin
E also showed cytotoxicity against murine lymphoma P388 cells and human epidermoid
carcinoma KB cells in vitro (Tanaka et al. 2011). a- and B-Bitter acids (Figure 1-2) from H.
lupulus (Cannabinaceae), commonly known as hops, were used in folk medicine as an

antibacterial (in the form of wound powders and salves), a tranquilizer (sleep inducer), and a

6



INTRODUCTION

diuretic and to ameliorate the symptoms of menopause. Perhaps more importantly, the female
inflorescences (hop cones) of hops were also used in beer production (Van Cleemput et al.
2009). Different approaches were developed for the production of prenylated APs, including
the isolation from plants (Nagalingam et al. 2016; Piccinelli et al. 2005; Sales et al. 2015;
Socolsky et al. 2016; Van Cleemput et al. 2009; Yu et al. 2015b), chemical synthesis
(Garnsey et al. 2011; Qi and Porco 2007; Shimizu et al. 2010; Tsukano et al. 2007), and
chemoenzymatic synthesis (Li et al. 2015a; Tsurumaru et al. 2012).

'R lindbergin E R=H petiolins J '
! lindbergin F R=Et psorothatin C clusianone yojironin E Hypericum pseudopetiolatum |
Elaphoglossum lindbergii Psorothamnus fremontii Garcinia brasiliensis Hypericum yojiroanum var. kiusianum |

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 1-3. Examples of prenylated APs.

1.1.2. Prenylated flavonoids

Flavonoids are valuable natural products distributed mainly in plant kingdom. Chemically,
flavonoids have the general structure of a 15-carbon skeleton, which consists of two phenyl
rings (A and B) and heterocyclic ring (C) (Figure 1-4) (Sandhar et al. 2011). This carbon
structure can be abbreviated C6-C3-C6. Based on their structures, they are categorized into
flavones, isoflavonoids, neoflavonoids, flavonols, flavanone, flavanonols, flavans, and
anthocyanidines (Figure 1-4) (Botta et al. 2009; Sandhar et al. 2011). Flavonoids have a wide
range of biological and pharmacological activities in vitro-studies, including anti-
inflammatory, antiviral, antithrombogenic, antifungal, and antitumor activities (Agrawal
2011). They are also considered as potential candidates for treatment of neurodegenerative
and vasodilatory diseases (Sandhar et al. 2011). Prenylations at the two benzene rings often
increase the lipophilicity of flavonoids, which results in an increased affinity to biological
membranes and an improved interaction with target proteins (Botta et al. 2005b; Chen et al.

2014a).

55 0905 o0 @y 3

flavone isoflavone neoflavonoids flavonol dihydroflavonol flavan flavanone anthocyanidin

Figure 1-4. Main structures of flavonoids.
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An example of prenylated flavonoids is licoflavonol (Figure 1-5), which is a novel natural
inhibitor of Salmonella type III secretion system (T3SS) that secreted effector proteins to
facilitate invasion into host cells. And it could be a promising candidate for novel type of
anti-virulence drugs (Guo et al. 2016). Abyssinone-V 4'-methyl ether inhibited pneumococcal
neuraminidase (NA), pneumococcal growth, and biofilm formation, without harming lung
epithelial cells (Grienke et al. 2016). Sanggenol A and abyssinone-V 4'-methyl ether
disrupted the synergism between influenza A virus and NA in vitro, hence functioning as
dual-acting anti-infectives (Grienke et al. 2016). Kuwanon E and kuwanon C showed anti-
inflammatory activity (Zelova et al. 2014). The higher toxicity of kuwanon C in comparison
to kuwanon E could be caused by the presence of two prenyl moieties in contrast to only one
geranyl group in kuwanon E, as well as by the positions at which these were attached to the
flavonoid skeleton (Zelova et al. 2014).

licoflavonol abyssinone-V 4'-methyl ether sanggenol A
Seihoku Kanzo orus alba L. Morus alba L.

Figure 1-5. Examples of prenylated flavonoids.

1.1.3. Prenylated indole alkaloids

Alkaloids are a group of naturally occurring chemical compounds that mostly contain basic
nitrogen atoms. Indole alkaloids are a class of alkaloids containing a structural moiety of
indole. Many indole alkaloids contain isoprene groups and are thus called terpene indole or
secologanin tryptamine alkaloids, which belong to one of the largest classes of alkaloids.
Many of them possess significant physiological activity and some of them were used as
medicine (Li 2010; Tanner 2015). The amino acid tryptophan is the biogenetic precursor of
indole alkaloids. The indole structure is derived from L-tryptophan and its precursors (Li
2010; Tanner 2015).

Prenylated indole alkaloids comprise a large family of biologically active natural products
produced by plants, fungi, and bacteria (Tanner 2015). These alkaloids generally contain a
diketopiperazine or a bicyclo[2.2.2]diazaoctane ring as a core structure, and are
biogenetically derived from tryptophan, a second amino acid, and one or two isoprene units

(Tanner 2015). The prenyl carbons may reside on the periphery, or may ultimately be
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embedded within the core of the alkaloid product. Thus, they may serve either to increase the
lipophilicity of the alkaloids or to provide a carbon skeleton that is integral to the structure
(Li 2010; Tanner 2015). These natural products attract attention in consequence to their
strong biological and pharmacological effects (Li 2010; Wallwey and Li 2011). Therefore,
diverse approaches were used to obtain such compounds, including the isolation from natural
sources (Chang et al. 2016; Mireku et al. 2016; Tsukamoto et al. 2009a; Tsukamoto et al.
2009b), chemical synthesis (Mercado-Marin et al. 2016; Robins et al. 2016; Simpkins et al.
2013; Sunderhaus et al. 2013), and chemoenzymatic synthesis (Ding et al. 2010; Li 2010).
One part of my thesis deals with enzymes for C2- and C3-prenylation of indole alkaloids.

Therefore more details on C2-, C3- and other prenylated indole alkaloids are described below.

1.1.3.1. C2-prenylated indole alkaloids

Prenylated indole alkaloids in this group carry one prenyl moiety at position C-2 on the
indole ring (Figure 1-6). For example, deoxybrevianamide E, a C2-reverse prenylated
brevianamide F, obtained from a marine-derived fungus, Aspergillus sp. (Kato et al. 2007,
Steyn 1971). Talathermophilin A and talathermophilin B were isolated from a thermophilic
fungus Talaromyces thermophilus strain. The ratio of the two talathermophilins in the culture
broths was unexpectedly rather constant, suggesting that talathermophilins might be of
special function for the extremophilic fungus (Chu et al. 2010). Asterriquinone C-1 (ARQ C1)
and ARQ analogues from Aspergillus sp. were effective in inhibiting the growth of several
transplantable animal tumor in vivo (Shimizu et al. 1982a; Shimizu et al. 1982b).

talathermophilin A, R=H ‘ 17-epinotoamide Q, R=CHj3 aszonalenin,R=H
deoxybrevianamide E talathermophilin B, R=CHj asterriquinone C-1 | 17-epinotoamide M, R=H roquefortine C acetylaszonalenin R= cocH3
Aspergillus sp Talaromyces thermophilus Aspergillus sp ; Aspergillus sp Penicillium roqueforti Neosartoryal fischeri

Figure 1-6. Examples of C2- and C3- -prenylated indole alkaloids.

1.1.3.2. C3-prenylated indole alkaloids

Most of C3-prenylated indole alkaloids represent a characteristic fused multicyclic ring
system with the prenyl moiety at the position C-3 on the indole ring (Figure 1-6). Most of
these compounds are reversely C3-prenylated derivatives of cyclic dipeptides. For example,
17-epinotoamide Q and 17-epinotoamide M were isolated from a marine-derived Aspergillus

sp. (Chen et al. 2013a). Roquefortine C identified from Penicillium strains is a cyclic
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dipeptide derivative of tryptophan and histidine (O'Brien et al. 2006; Ohmomo et al. 1977).
The mycotoxin acetylaszonalenin and its non-acetylated form aszonalenin were identified in
various fungal strains, e.g. N. fischeri (Ellestad et al. 1973; Wakana et al. 2006; Yin et al.
2009b).Their stereoisomers epi-aszonalenins A and C were isolated from Aspergillus
novofumigatus (Rank et al. 2006). These four compounds are derived from the amino acids

tryptophan and anthranilic acid.

1.1.3.3. Other prenylated indole alkaloids

Besides positions C-2 and C-3, the prenyl moiety can be connected to positions C-4, C-5, C-6,
C-7, and N-1 on the indole ring in nature (Figure 1-7). The tremorgenic mycotoxin aflatrem
was C4-prenylated indole alkaloid from Aspergillus flavus (Cole et al. 1981; Gallagher and
Wilson 1978), which is a monoprenylated derivative of the indole diterpene. Iso-notoamide B
was isolated from the marine-derived endophytic fungus Paecilomyces variotii, which is an
example of C5-prenylation, forming the fused dimethyldihydropyran ring at C-5 and C-6 of
the indole ring (Zhang et al. 2015). Semicochliodinol B from Chrysosporium merdarium is
prenylated bisindolylbenzoquinone with prenyl moieties substituted at position C-6 on indole
ring, which exhibited inhibitory activity against HIV-1 protease (Fredenhagen et al. 1997).
Penipalines A and B were isolated from the deep-sea-sediment derived fungus Penicillium
paneum and were identified as C7-prenylated indole alkaloids. Penipaline B showed potent
cytotoxic activities against A-549 and HCT-116 cell lines (Li et al. 2014). Asterriquinone
contains one reverse prenyl moiety at the position N-1 on each tryptophanyl moiety, which
showed inhibitory activity against tumour cells (Yamamoto et al. 1976a; Yamamoto et al.
1976b).

——————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

QUQ %L

penipaline A, R=H i ‘ o)

aflatrem : iso-notoamide B 3 semicochliodinol B : penipaline B, R=CH; ! N TN asterriquinone (ARQ)
Aspergillus flavus ! Paecilomyces variotii | Chrysosporium merdarium ; Penicillium paneum ; \/f Aspergillus terreus

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 1-7. Examples of C- 4 C-5, C-6, C-7, and N-1 prenylated indole alkaloids.

1.2. Biosynthetic pathways of prenylated acylphloroglucinols,
prenylated flavonids, and fumitremorgins

1.2.1. Biosynthetic pathway of prenylated acylphloroglucinols
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Early labelling experiments provided evidence for a polyketide-type biosynthesis for
monocyclic polyprenylated acylphloroglucinols (MPAPSs) (bitter acids) that involves one
acyl-CoA and three malonyl-CoA units (Scheme 1-1) (Okada et al. 2004; Paniego et al. 1999).
The acylphloroglucinol cores, phlorisovalerophenone (PIVP) and phlorisobutyrophenone
(P1BP), were formed by condensation of three malonyl-CoA-derived acetate units with
isovaleryl-CoA or isobutyryl-CoA as the starter units (Okada et al. 2004; Paniego et al. 1999).
The enzyme valerophenone synthase (VPS), which was involved in the formation of PIVP in
the biosynthesis of humulone, had been characterized (Scheme 1-1) (Okada and Ito 2001;
Zhao et al. 2016). Recently, dual functional CHS (chalcone synthase)/VVPS had also been
reported. A CHS, FvCHS2-1 from strawberry was identified to be responsible for
acylphloroglucinol synthesis in strawberry fruit (Song et al. 2016a). Several plants from the
families Clusiaceae and Hypericaceae also used benzoyl-CoA as start unit and produced
phlorbenzophenone and derivatives thereof, such as grandone (Hu and Sim 2000; Tian et al.
2014; Wu et al. 2014; Zhang et al. 2014). The prenylation or geranylation of this compound
occured through an enzyme-catalyzed addition of dimethylallyl or geranyl pyrophosphate to
the phloroglucinol moiety. Li et al. identified two membrane-bound prenyltransferases
HIPT1L and HIPT2 from H. lupulus in 2015. Co-expression of different genes in
Saccharomyces cerevisiae revealed that HIPT1L and HIPT2 catalyzed three sequential
prenylations in the B-bitter acid biosynthetic pathway (Scheme 1-1). HIPT1L was confirmed
to be an orthologue of HIPT1 (Tsurumaru et al. 2012). HIPT2 was only active, when it was
co-expressed with HIPT1L. This led to the hypothesis that HIPT1L and HIPT2 formed a
metabolon as the catalytic unit (Li et al. 2015a).

HO Monooxygenase
HO OH
: OH O
iBranched-chain 3"Malonyl:CoA R DMAPR DMAPP~ HO a-bitter acid
1acyl-CoAs VPS HIPTIL metabolon of
: OH O HIPTIL/HIPT2
acylphloroglucinols
R= CH(CHs), PIBP T"L‘Ie'hv'?”y' | di-dimethylallyl- DMAPP.
CHCH,(CHy), PIVP acylphloroglucinols acylphloroglucinols metabolon of
HIPT1L/HIPT2
OH O
B-bitter acid

Scheme 1-1. The proposed biosynthetic pathway for MPAPs

PPAPs are biosynthetically derived from the less complex MPAPs. The hypothesized
biosynthetic pathway of PPAPs is shown in Scheme 1-2 (Adam et al. 2002; Ciochina and
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Grossman 2006; Cuesta-Rubio et al. 2001). MPAPs were cyclized to both type A and type B
PPAPs via a precursor. Attack of one of the geminal prenyl groups of a MPAP on prenyl
pyrophosphate gave the tertiary carbocation. Attack of C-1 of intermediated | on the pendant
carbocation (or the corresponding pyrophosphate) would provide a type A PPAP, whereas
attack of C-5 would provide a type B PPAP. The most likely scheme for the biosynthesis of
the type C PPAPSs, in contrast, would require that the initial MPAP have its quaternary center
bear the acyl group (Adam et al. 2002; Ciochina and Grossman 2006; Cuesta-Rubio et al.
2001).

type c !
K,PP intermediate Il

Scheme 1-2. The proposed blosynthetlc pathway for PPAPs

1.2.2. Biosynthetic pathway of prenylated flavonoids

Flavonoids are derived from a chalcone precursor, the product of the condensation of
cinnamoyl-CoA or 4-coumaroyl CoA (a product of the central phenylpropanoid pathway) and
three molecules of malonyl-CoA by the enzyme chalcone synthase (CHS) (Scheme 1-3)
(Dixon and Steele 1999; Koes et al. 1994; Nguyen et al. 2013; Pandey et al. 2016; Song et al.
2016b). The reactions to anthocyanins were catalyzed by chalcone isomerase (CHI),
flavanone 3-hydroxylase (FHT), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase
(ANS) and flavonoid 3-O-glucosyltransferase (FGT). Most of the post modifications of
flavonoids were carried out by enzymes such as glycosyltransferases (GTs), O-
methyltransferases (OMTSs), cytochrome P450s (CYP), and prenyltransferases (PTs), which
modified flavonoid and isoflavonoid skeletons (Pandey et al. 2016; Sasaki et al. 2008; Shen
et al. 2012; Yazaki et al. 2009).
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oH OH 0 o o
henylalanine ’ ¥
pheny 4-coumaroyl-CoA chalcone flavanone OH OH O on

Scheme 1-3. The proposed biosynthetlc pathway for prenylated flavonoids
PAL, phenylalanine ammonia-lyase; C4H, cinnamate 4-hydroxy; 4CL, 4-coumaroyl-
coenzyme A ligase; CHS, chalcone synthase; CHI, chalcone flavanone isomerase; F3H,
flavanone 3B-hydroxylase; DFR, dihydroflavonol 4-reductase; FLS, flavonol synthase; IFS,
isoflavonoid synthase; AS, anthocyanin synthase; UF3GT, UDP-glucose: flavonoid 3-O-
glucosyltransferase; SAN8DT-1, naringenin 8-dimethylallyltransferase 1; SFTG6DT, genistein
6-dimethylallyltransferase; LaPT1, plastid-localized 5-hydroxyisoflavone prenyltransferase.

1.2.3. Biosynthetic pathway of fumitremorgins

The gene clusters for the biosynthesis of fumitremorgin-type indole alkaloids were identified
in A. fumigatus and N. fischeri (Grundmann and Li 2005; Li 2011; Steffan et al. 2009). The
biosynthesis of these compounds started with the formation of brevianamide F from L-
tryptophan and L-proline by the nonribosomal peptide synthetase (NRPS) FtmPS, followed
by a prenylation reaction catalyzed by FtmPT1 to produce tryprostatin B (Scheme 1-4)
(Grundmann and Li 2005; Maiya et al. 2006). The cytochrome P450 enzyme FtmP450-1 and
the putative methyltransferase FtmMT catalyzed the addition of small functional groups, i.e.
hydroxyl and methyl groups, resulting in the formation of tryprostatin A (Kato et al. 2009).
The second cytochrome P450 enzyme FtmP450-2 was responsible for cyclization of
tryprostatin A, and the hydroxylation was catalyzed by the third cytochrome P450 enzyme
FtmP450-3 consequently for the production of 12,13-dihydroxyfumitremorgin C (Kato et al.
2009; Tang et al. 2017). The identification of three cytochrome P450 genes was carried out
by gene disruption (Kato et al. 2009). The second prenyltransferase FtmPT2 was proven to
catalyze the conversion of 12,13 dihydroxyfumitremorgin C to fumitremorgin B (Grundmann
et al. 2008). The non-heme Fe(ll) a-ketoglutarate-dependent dioxygenase FtmOx1 catalyzed
the formation of verruculogen from fumitremorgin B (Steffan et al. 2009). The final step of
this biosynthetic pathway was the O-prenylation of verruculogen to fumitremorgin A by
FtmPT3 in N. fischeri (Mundt et al. 2012).
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Scheme 1-4. The proposed biosynthetic pathway for fumitremorgins

1.3. Prenyltransferases

Prenyltransferases (PTs) attach isoprenoid moieties derived from allylic isoprenyl
diphosphates to acceptor molecules. The prenyl diphosphates originate from the terpenoid
biosynthetic pathway and therefore consist of n x C5 units, e.g. dimethylallyl diphosphate
(DMAPP; n=1), geranyl diphosphate (GPP; n=2), farnesyl diphosphate (FPP; n=3) or
geranylgeranyl diphosphate (GGPP; n=4) (Figure 1-1, B) (Heide 2009a; Winkelblech et al.
2015a). These enzymes catalyze the cleavage of a prenyl moiety from its diphosphate and the
subsequent transfer of the resulting isoprene carbocation onto other isoprenoid moieties,
amino acids or aromatic and a few non-aromatic structures. According to their sequences,
structures, biochemical properties, and functions, PTs can be classified into different
subgroups, like trans- and cis -PTs, peptide, protein, and tRNA PTs and aromatic PTs (Heide
2009a; Winkelblech et al. 2015a). The aromatic PTs will be described in this thesis in details.

Aromatic prenyltransferases catalyze the transfer reactions of prenyl moieties onto aromatic
acceptors, such as indole derivatives, flavonoids, naphthalenes, phenolic acids, coumarins,
phenazines, or phenols. Aromatic prenylations are important steps in the biosynthesis of
natural products in both primary and secondary metabolism. Particularly, the latter leads to a
diversity of chemical structures in plants, fungi, and bacteria (Botta et al. 2005a; Heide 2009a;
Winkelblech et al. 2015a). The acceptance of aromatic compounds by these enzymes is one
explicit feature to divide the diverse prenyltransferases into distinct enzyme groups.
Furthermore, discrimination characteristics are their native organisms and if the proteins are
soluble in the cytosol or membrane bound. Dependency on divalent metal ions is an
additional criterion. Moreover, aromatic prenyltransferases may present certain amino acid
motifs or exhibit distinct tertiary structures (Botta et al. 2005a; Heide 2009a; Winkelblech et

al. 2015a). There are several possibilities to categorize prenyltransferases based on the
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described properties. Prenyltransferases comprises the membrance-bound prenyltransferases,
including UbiA superfamily and aromatic prenyltransferases of plant secondary metabolism;
soluble prenyltransferases, including the CloQ/NphB group and the DMATS superfamily
(Heide 2009a; Winkelblech et al. 2015a). These groups or super families are described in the

following paragraphs.

1.3.1. Membrance-bound prenyltransferases for aromatic substrates

Membrane-bound prenyltransferases play an important role in diversifying secondary
metabolites. These enzymes are responsible for synthesizing potentially active molecules
(Yazaki et al. 2009). The best-studied prenyltransferase is 4-hydroxybenzoate (4HB)
polyprenyltransferase, which is responsible for an essential step in the biosynthesis of
ubiquinones. Ubiquinone (also known as coenzyme Q) is a ubiquitous lipid soluble redox
cofactor that is an essential component of electron transfer chains dependent on the
predominant isoprenoid chain length of ubiquinones in the respective organism (Heide
2009a). The 4HB polyprenyltransferases usually showed a broad substrate specificity for the
isoprenoid substrate, accepting short chain isoprenoids like FPP and GPP, but not DMAPP
and cis-prenyl diphosphates (Saleh et al. 2009b). UbiA transfered prenyl moieties of different
size (usually 30-50 carbons) to position 3 of 4HB (Figure 1-8, A). The UbiA homologue
UBIAD1 was discovered in human cells and was involved in the vitamin K biosynthesis,
which is important for maintaining vascular homeostasis (Hegarty et al. 2013; Nakagawa et al.
2010). The crystal structures of an archaeal UbiA in its apo and substrate-bound states were
reported, which gave detailed information about the reaction mechanism of this type of
prenyltransferases (Cheng and Li 2014). Flavin prenyltransferase UbiX linked a dimethylallyl
moiety to the flavin N5 and C6 atoms and added a fourth non-aromatic ring to the flavin
isoalloxazine group (Figurel-8, A) (Aussel et al. 2014; White et al. 2015). All
prenyltransferases of lipoquinone biosynthesis comprise an aspartate-rich motif (e.g.
NDxxDxxxD). Most of their activity is absolutely dependent on the presence of Mg?* or
similar cations like Mn?*, Co?*, or Ni?*. However, UbiX is metal-independent and requires

dimethylallyl monophosphate as substrate (Aussel et al. 2014; White et al. 2015).

H ¢
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! 4hydro i acid prenylated flavi ;} umbelifer demethylsuberosin (DMS) umbellifer

Flgure 1-8. Examples of membrance bound prenyltransferases reactions.
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Umbelliferone dimethylallyltransferase (UDT) is a prenyltransferase that is specific for the
first reaction step in the furanocoumarin (FC) biosynthetic pathway (Figure 1-8, B). This
enzyme plays a critical role in FC structural diversification because its regiospecificity
determines the final form of the isomer, that is, dimethylallylation at the C-6 or C-8 position
leading to linear or angular FCs, respectively (Dhillon and Brown 1976; Ellis and Brown
1974; Hamerski et al. 1990). Two new UDT enzymes, prenyltransferase PsPT1 and PsPT2,
were discovered and characterized as two membrane-bound prenyltransferases that
synthesized demethylsuberosin (linear FC intermediate) and osthenol (angular FC

intermediate), respectively, in parsnip (Munakata et al. 2016).

In prenylflavonoid and prenylisoflavonoid biosynthesis, prenylation is also carried out by
membrane-bound prenyltransferases (Sasaki et al. 2011; Yazaki et al. 2009). SFN8DT-1, the
first identified flavonoid-specific prenyltransferase, was shown to be responsible for the
prenylation of a very few select flavanones at C-8 (Scheme 1-3) (Sasaki et al. 2008). G4DT
was found to act specifically on a pterocarpan substrate glycinol (Akashi et al. 2009). SfFPT
displayed high catalytic efficiency with high regiospecificity acting on C-8 of structurally
different types of flavonoids and exhibited strict stereospecificity for levorotatory flavanones
to produce (2S)-prenylflavanones (Chen et al. 2013b). SFfG6DT was found to specifically
prenylate the isoflavone genistein at C-6 (Scheme 1-3) (Sasaki et al. 2011). The chalcone-
specific prenyltransferase SFiLDT was shown to prenylate isoliquiritigenin (Sasaki et al.
2011). LaPT1 catalyzed the prenylation of the B-ring of isoflavones, such as genistein
(Scheme 1-3) and 2"-hydroxygenistein (Sasaki et al. 2011; Shen et al. 2012; Yazaki et al.
2009). Recently, two isoliquiritigenin 3-dimethylallyltransferases MalDT and CtIDT had
been identified in Morus alba and Cudrania tricuspidata, respectively (Wang et al. 2014).

The overproduction of the membrane-bound prenyltransferase HIPT-1 from H. lupulus and
its biochemical characterization were reported (Scheme 1-1) (Tsurumaru et al. 2012). This
enzyme catalyzed the prenylation of PIVP in the presence of DMAPP and also accepted PIBP
as prenylation acceptor. Two membrane-bound prenyltransferases HIPT1L and HIPT2 from
H. lupulus were identified (Li et al. 2015a). HIPT1L and HIPT2 catalyzed three sequential
prenylation steps in the -bitter acid pathway. HIPT1L was confirmed to be an orthologue of
HIPT1 identified by Tsurumaru et al.

1.3.2. Soluble prenyltransferases for aromatic substrates
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1.3.2.1. Prenyltransferases of the CloQ/NphB group

The enzyme CloQ from Streptomyces roseochromogenes catalyzed the prenylation of 4-
hydroxyphenylpyruvic acid in the clorobiocin biosynthesis (Figure 1-9) (Pojer et al. 2003).
On the basis of sequence similarity with CloQ, NphB (initially termed Orf2) from the
biosynthetic gene cluster of the meroterpenoid (prenylated polyoetide) naphterpin in a
Steptomyces strain was identified as an aromatic prenyltransferase (Kuzuyama et al. 2005).
Orf2 catalyzed the prenylation of 1,6-DHN (1,6-dihydroxynaphthalene) to produce two
prenylated products, 1,6-DHN-P1 and 1,6-DHN-P2 in the presence of GPP (Figure 1-9)
(Kuzuyama et al. 2005). SCO7190, an NphB homologue found in Streptomyces coelicolor,
catalyzed the attachment of DMAPP onto 1,6-DHN (Kumano et al. 2008). Both EpzP and
PpzP from Streptomyces sp. catalyzed the C-prenylation of 5,10-dihydrophenazine-1-
carboxylic acid (Figure 1-9) (Saleh et al. 2009a; Seeger et al. 2011; Zocher et al. 2012).
These enzymes are restricted to the transfer of C5 or C10 isoprene units. DzmP, the first
farnesyl diphosphate prenyltransferase of the CloQ/NphB group, had been characterized from
the bacterium Micromonospora sp. and was involved in the biosynthesis of diazepinomicin
(Bonitz et al. 2013). In contrast to the membrane bound enzymes of the UbiA superfamily,
this group comprised soluble enzymes found in bacteria and fungi (Heide 2009b). All
enzymes of this group did not depend on divalent metal ions (Kuzuyama et al. 2005; Tello et
al. 2008). Recent computational studies further elucidated and strengthened the metal ion
independent prenylation mechanism of these enzymes (Bayse and Merz 2014). No aspartate
rich (N/D)DxxD motif was present in these enzymes and with the exception of NphB
(Kuzuyama et al. 2005; Tello et al. 2008). Crystallization of NphB revealed a new tertiary
structure with an a-f-B-a (ABBA) barrel fold. This protein structure is also termed
prenyltransferase (PT) barrel, which allows another classification into the ABBA
prenyltransferase family (Kuzuyama et al. 2005; Tello et al. 2008).

3 ‘ COOH
H o rf2 + ( PpzP |
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i HOOC HooC ~ OH N N H
: H
HO oH \‘/ H
|

: o 3-dimethylallyl- 5,10-dihydro- 5,10-dihydro- !
| 4-hydroxyphenylpyruvic acid 4-hydroxyphenylpyruvic acid 1,6-DHN 1,6-DHN-P1 1,6-DHN-P2 phenazine-1-carboxylic acid endophenazine A |

Figure 1-9. Examples of CloQ/NphB group prenyltransferases reactions.
1.3.2.2. Ezymes of the DMATS superfamily

Bacterial prenyltransferases of the LtxC group
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Members of the LtxC group prenylate indole-containing substrates. These enzymes carry no
aspartate rich motif and are divalent metal ion independent (Edwards and Gerwick 2004).
They are predominantly expressed in bacterial hosts. Due to their common features and
relatively high sequence similarity with fungal DMAT synthases, this group of
prenyltransferases could likely be integrated into the DMATS superfamily. LtxC from
Lyngbya majuscula was a member of the lyngbyatoxin A—C biosynthetic pathway and
geranylated the precursor (—)-indolactam V at position C-7 to lyngbyatoxin A (Edwards and
Gerwick 2004). TleC, a LtxC homologous prenyltransferase, and MpnD catalyzed the
‘reverse’ prenylation of (-)-indolactam V at the C-7 position of the indole ring with geranyl
pyrophosphate or dimethylallyl pyrophosphate to produce lyngbyatoxin or pendolmycin,
respectively (Awakawa et al. 2014; Ma et al. 2012; Takahashi et al. 2010). Recent studies on
TleC and MpnD revealed a high flexibility toward prenyl donors with different chain length
(C5-C25) (Mori et al. 2016). In the actinobacterium Salinispora sp., the reverse L-tryptophan
N-prenyltransferase, CymD was involved in the biosynthesis of the anti-inflammatory and
anti-bacterial cyclic peptides cyclomarin and cyclomarazine, respectively (Schultz et al. 2008;
Schultz et al. 2010). ComX pheromone was produced by Bacillus subtilis and related bacilli
(Magnuson et al. 1994). The tryptophan residue of ComX pheromone was modified by
ComQ with either a geranyl or a farnesyl group in the o formation at the C-3 position of
tryptophan residue, resulting in the formation of a tricyclic structure, including a newly
formed pyrrolidine ring. KgpF modified the tryptophan derivative with a dimethylallyl group
at the 3 position of its indole ring, resulting in the B formation of a tricyclic structure with the
same scaffold as ComX pheromones (Okada et al. 2005; Okada et al. 2007; Okada et al.
2016). FamD1 and FamD2, from the cyanobacterium Fischerella ambigua, played critical
roles in fusing indole isonitrile with GPP to generate tri- or tetracyclic hapalindoles and
prenylating tetracyclic hapalindoles with dimethylallyl pyrophosphate (DMAPP) to form the
ambiguines (Li et al. 2015b). Two additional 6-DMAT synthases, namely 6-DMATSs. and 6-
DMATSsy, were identified from Streptomyces spp. L-Tryptophan and derivatives were well
accepted by both enzymes in the presence of DMAPP or GPP (Winkelblech and Li 2014).

Fungal prenyltransferases

Prenyltransferases of the dimethylallyltryptophan synthase (DMATS) superfamily are found
predominantly in fungi of the genera of Aspergillus, Penicillium, and Claviceps (Williams et

al. 2000). The enzymes are soluble proteins and carry no aspartate rich motifs. They catalyze
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mainly the formation of prenylated indole derivatives and no divalent metal ions are required
for the catalytic reaction (Winkelblech et al. 2015a; Yu and Li 2012). Most of these enzymes
show broad substrate promiscuity while retaining a strong specificity regarding the
prenylation position. The 4-DMATS (the first DMATS) was obtained from Claviceps sp. in
1992. It catalyzed the C4-prenylation of L-tryptophan and was involved in the
biosynthesis of ergot alkaloids (Gebler and Poulter 2009). Later the corresponding gene
dmaW was isolated, its amino acid sequence was elucidated and the prenyl transfer reaction
was proved in yeast transformants, 4-DMATS is also termed DmaW (Tsai et al. 1995).
Prenyltransferases that transfer the isoprene residue selectively to one of the carbon atoms
(C-2, C-3, C-4, C-5, C-6, C-7) or the nitrogen atom (N-1) of the indole ring, in regular or
reverse orientation, have been reported in recent years (Table 1-1) (Li 2010; Yu and Li 2012).
AstPT and TdiB as well as ArdB accepted a bisindolyl benzoquinone and a cyclic tripeptide
as substrates, respectively (Haynes et al. 2013; Schneider et al. 2008; Tarcz et al. 2014a).
XptB combined xanthones with a DMA residue (Pockrandt et al. 2012). VrtC is the first
DMATS, which utilized GPP instead of DMAPP and moreover transfered the prenyl moiety
onto a tetracyclic ring system (Chooi et al. 2010). In addition, NscD catalyzed the addition of
the dimethylallyl group to the aromatic C-5 of viridicatumtoxin (Chooi et al. 2012; Chooi et
al. 2013). Beside the numerous indole prenyltransferases, several prenyltransferases used
non-indole substrates e.g. the tyrosine O-prenyltransferase SirD from Leptosphaeria
maculans and TyrPT from Aspergillus niger (Table 1-1) (Fan et al. 2014; Kremer and Li
2010). One example for a prenyltransferase from DMATS superfamily, PAPT from
Phomopsis amygdali used a non-aromatic derivative for O-prenylation in the glucose moiety
(Noike et al. 2012). Two aromatic prenyltransferases (Penl and PenG) played an iterative
prenylation mechanism for installing the 10-carbon unit present in the gene cluster of
penigequinolones from Penicillium thymicola (Zou et al. 2015). FoPT1, a highly
regiospecificity prenyltransferase, catalyzed the prenylation of flavonoids to produce only
C6-prenylated flvonoids (Yang et al. 2016). Recently, a soluble prenyltransferase AtaPT from
A. terreus strain was demonstrated to carry an unprecedented promiscuity toward 72 drug-
like acceptors and prenyl donors including DMAPP, GPP, and FPP (Chen et al. 2017).
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Table 1-1. PTs of the DMATS superfamily used in this thesis

Prenyltransferases Organism Prenylated substrate, position and pattern
74 o)
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1.4. Chemoenzymatic synthesis of prenylated aromatic

compounds

Prenylation improves the affinity of a compound to biomembranes and the interaction of the
substance with proteins, leading to dramatically increased biological activities (Botta et al.
2005b). Therefore, it is attractive for scientists to use prenyltransferases as strategies for
regioselective  chemoenzymatic  synthesis of prenylated derivatives. Aromatic
prenyltransferases, especially the soluble indole prenyltransferases of the DMATS
superfamily, show promising flexibility towards their aromatic substrates and catalyze highly
regioselective and stereoselective prenyltransfer reactions. These features provide evidence
for the potential of aromatic prenyltransferases as biocatalysts for chemoenzymatic synthesis.
Many series of prenylated derivatives have been successfully synthesized by these enzymes.
Details are described below.

1.4.1. Chemoenzymatic synthesis of prenylated indole alkaloids and other

prenylated derivatives

The fungal L-tryptophan prenyltransferases FgaPT2, 5-DMATS, and 7-DMATS catalyzed the
regiospecific regular C4-, C5-, and C7-prenylation of several simple indole derivatives in the
presence of DMAPP, respectively (Kremer and Li 2008; Steffan et al. 2007; Yu et al. 2012a).
The bacterial prenyltransferases IptA and its homologues 6-DMATSsa and 6-DMATSsy
catalyzed the formation of several C6-prenylated indole derivatives. The latter two enzymes
also utilized GPP as prenyl donor (Takahashi et al. 2010; Winkelblech and Li 2014).
Furthermore, the significantly modified indole derivatives DMA-indoleacetonitriles and
DMA-indolocarbazoles were obtained in vitro using purified recombinant bacterial and
fungal prenyltransferases, respectively (Ozaki et al. 2013; Yu et al. 2012a). Cyclic dipeptide
prenyltransferases in turn can be used as biocatalyst for the formation of different prenylated
dipeptides. FtmPT1 catalyzed the prenylations of tryptophan-containing cyclic dipeptides to
produce not only C2-, but also C3-regulars prenylated products (Wollinsky et al. 2012).
Recent investigations have also shown that FtmPT1 was able to prenylate a non-aromatic
carbon atom using the indole derivative indolylbutenone (Chen et al. 2012). Investigation on
AnaPT, CdpNPT, and CdpC3PT revealed that these enzymes produced stereospecific C3-
prenylated cyclic dipeptides (Yin et al. 2009a; Yu et al. 2013). An unnatural cyclic dipeptide,
cyclo-L-homotryptophan-D-valine, were accepted by eight prenyltransferases, including five
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cyclic dipeptide prenyltransferases, BrePT, FtmPT1, CdpC3PT, CdpNPT, and AnaPT as well
as three tryptophan prenyltransferases, FgaPT2, 5-DMATS, and 7-DMATS, forming one
prenyl moiety at each position of the indole nucleus and one diprenylated derivatives (Fan
and Li 2013). Tryptophan prenyltransferases could also use tripeptide derivatives, ardeemin
fumiquinazoline (FQ), as prenylation substrates, which provided a possibility for the

synthesis of prenylated analogues of ardeemin FQ (Mai et al. 2016).

Not only compounds containing an indole moiety, but also other aromatic compounds could
be used as substrates. L-Tyrosine and derivatives could be prenylated by the L-tyrosine
prenyltransferases SirD (Rudolf and Poulter 2013) and TyrPT (Fan et al. 2014). Recent
studies on the xanthone prenyltransferase XptB and the benzoquinone prenyltransferase
AstPT broaden the availability of O-prenylated, O-geranylated, and O-farnesylated xanthones
(Pockrandt et al. 2012; Tarcz et al. 2014b). C- as well as O-, mono- and di-prenylated
hydroxynaphthalenes were also formed using the L-tryptophan prenyltransferases or cyclic
dipeptide prenyltransferases (Winkelblech and Li 2014; Yu et al. 2011). Dimethylallyl and
geranyl moieties have been attached to different flavonoid substrates, in the presence of
diverse prenyltransferases, such as 7-DMATS, NphB, NovQ, and FoPT1 (Kumano et al.
2008; Ozaki et al. 2009; Yang et al. 2016; Yu and Li 2011). LynF was able to prenylate
several other nonnatural substrates, including N-acetyl- and N-boc-modified D- or L-Tyr, as
well as several other linear and cyclic polypeptides (Mclintosh et al. 2011). The regiospecific
2-prenylation of a variety of structurally diverse hydroxyxanthones was catalyzed by MalDT,
which is a plant flavonoid prenyltransferase with substrate flexibility from Morus alba (Wang
et al. 2016).

1.4.2. Chemoenzymatic synthesis of aromatic substrates by altering the

prenyl donors

In the last years, the potential usage of DMATS enzymes as biocatalysts was expanded
significantly by their acceptance of different prenyl donors. In addition to their remarkable
high flexibility toward aromatic substrates, recent studies manifested that several members of
this family accept not only DMAPP, but also other alkyl donors, such as GPP and FPP.
Meanwhile, it was demonstrated that the unnatural DMAPP analogous like monomethylallyl
(MAPP), 2-pentenyl (2-pentenyl-PP), and benzyl diphosphate (benzyl-PP) could also be used
for alkylation or benzylation of tryptophan and tryptophan-containing cyclic dipeptides by a
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number of DMATS enzymes (Liebhold et al. 2012; Liebhold et al. 2013; Liebhold and Li
2013; Winkelblech et al. 2015b; Yu et al. 2015a).

1.4.3. Chemoenzymatic synthesis of aromatic substrates with enzymes from

saturation mutagenesis experiments

Enzymes have been successfully improved for many years by mutation and selection. Many
improvements have been made to this technology. Existing approaches to improve single
proteins or parts thereof include modelling based point mutagenesis, cassette library
mutagenesis, and random point mutagenesis, mutator strains, and UV or chemical
mutagenesis, which introduce (partially) random mutations either into a selected small region
of a gene or throughout a gene (Powell et al. 2001). As refer to PTs, crystal structures of
DMATS enzymes provide not only detailed insights into the reaction mechanism of the
prenyl transfer reactions, but also basic information for protein engineering to create new
biocatalysts with desirable features (Jost et al. 2010). Due to the difficulty of high throughput
screening (HTS) for PT mutants, rational design based on the available crystal structure is
more efficient and preferred. In the last years, structures of several DMATSs including
FgaPT2 (Metzger et al. 2009), FtmPT1 (Jost et al. 2010), CdpNPT (Schuller et al. 2012),
AnaPT (Yu et al. 2013), and AtaPT (Chen et al. 2017) were determined and used as basis for
understanding the catalytic mechanism and for creation of new biocatalysts. Comparing these
structures revealed that these enzymes share similar folds consisting of five repeating “afpa”
(ABBA) barrel fold. Their active sites are located in the center of the barrel. The amino acid
residues in the DMAPP binding sites seem to be fairly conserved, while the binding sites of
the aromatic substrates differ from each other. FtmPT1 catalyzed the prenylation of
brevianamide F in the biosynthesis of fumitremorgin-type alkaloids which showed diverse
pharmacological activities and are promising candidates for the development of antitumor
agents (Grundmann and Li 2005) (Figures 1-10). The overall three-dimensional structure of
FtmPT1 was formed by a central core of 10 antiparallel B-strands that are surrounded by a
ring of 10 partially solvent exposed a-helices. FtmPT1 exists as a dimer in solution and also
forms dimers in the crystal (Figure 1-11, A). Based on the structure of FtmPT1, a modifiable
reaction chamber was identified and a mutant FtmPT1_G115T was obtained. The mutant still
accepted brevianamide F as substrate, but catalyzed mainly a reversely syn-cis C3 prenylation
instead of the regularly C2-prenylation (Jost et al. 2010) (Figures 1-10 and 1-11, B).
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FtmPT1_ N\ HNTHD 3
\ HN DMAPP \ HN thPT1 _G115T 3
DMAPP !

brevianamide F ' syn-cis C3-prenylated
(cyclo-LTrp-L-Pro) tryprostatin B . eyelo-LTrp-L-Pro cyclo-LTrp-L-Pro

Figure 1-11. Crystal structure of brevianamide F prenyltransferase complexed with
brevianamide F and dimethylallyl S-thiolodiphosphate (A) and cross section of the active site
of FtmPT1 with the bound substrates, brevianamide F (violet), around DMSPP (orange), and
G115 is indicated as a violet sphere (B) (adopted from Jost et al., 2010).

Structure-based engineering of EpzP resulted in a novel phenazine PT with conformational
changes at C-termini and increased its catalytic turnover rate (Zocher et al. 2012). FgaPT2
from A. fumigatus catalyzed C4-prenylation of L-tryptophan (Unséld and Li 2005). With high
protein amount, FgaPT2 was able to catalyze the C4-prenylation of five tryptophan-
containing cyclic dipeptides (Steffan et al. 2007) and C3-prenylation of tyrosine (Fan et al.
2015b). Lys174 was proposed to abstract one proton from the intermediate cation and to
rearomatization for end products (Metzger et al. 2009). Saturation mutagenesis on Lys174 led
to creation of 17 mutants, and FgaPT2_K174F exhibited much higher catalytic efficiency
towards L-tyrosine than FgaPT2, while its activity towards L-tryptophan was almost
abolished (Fan et al. 2015b). Arg244 was proposed to bind the hydroxylate group of
tryptophan (Metzger et al. 2009). Site-directed mutagenesis on Arg244 led to identification of
13 mutants, which display differentially increased enzyme activities for tryptophan-
containing cyclic dipeptides, with up to 76-fold turnover number of that of FgaPT2 (Fan and
Li 2016).
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2. Aims of this thesis

The following issues have been addressed in this thesis:

2.1. Biochemical investigations on the acceptance of
acylphloroglucinols in the presence of DMAPP, GPP, and FPP
catalyzed by fungal prenyltransferases

Different approaches and agents were developed for synthesis of the prenylated APs.
Chemical prenylation usually has some limitations, such as different reactivities of C-atoms
on APs, difficulty to construct quaternary centers, and extensive oxygen functionality. In
contrast, prenylation catalyzed by enzymes, i.e., prenyltransferases, provides a more
environment-friendly and safer alternative. Three membrane-bound prenyltransferases HIPT-
1, HIPTLL, and HIPT2 from H. lupulus were demonstrated to catalyze the prenylations in the
B-bitter acid pathway. However, most membrane-bound proteins were difficult to
overproduce and purify than soluble enzymes. These features prohibit their potential use as
biocatalysts for chemoenzymatic synthesis for production of prenylated APs. Therefore, there
is a need to find alternative enzymes with better properties. The aim of this project was to test
the acceptance of APs by fungal prenyltransferases, which are soluble proteins and can be
readily overproduced in E. coli with significantly higher yields. The following experiments

were carried out:

» Overproduction and purification of the tryptophan-containing cyclic dipeptide,
tryptophan, and tyrosine prenyltransferases.

» Analysis of enzymatic conversion of APs and analogues in the presence of different
prenyl donors (DMAPP, GPP, and FPP) by HPLC.

» lIsolation of enzymatic products for structure elucidation by LC-MS and NMR.

» Determination of kinetic parameters of identified reactions.

2.2. Chemoenzymatic synthesis of prenylated flavonoids by fungal
prenyltransferases

Fungal prenyltransferases of the DMATS superfamily show no sequence similarity to known
aromatic prenyltransferases of the CloQ/NphB group and the UbiA superfamily. However,

recent studies indicated that prenyltransferases of the DMATS superfamily share structure
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similarity with those of the CloQ/NphB group. In a previous study, it was demonstrated that
the recombinant indole prenyltransferase 7-DMATS accepted several flavonoids and mainly
catalyzed prenylations at C-6. These results encouraged us to find more prenyltransferases
with different substrate specificities and prenylation positions on the flavonoid skeleton. The

following experiments were carried out:

» Enzyme assays of flavonoids with fungal prenyltransferases.

» Analysis and isolation of enzyme products by HPLC, and structure elucidation by
NMR and MS analyses.

» Determination of kinetic parameters for selected substrates.

2.3. Creation of FtmPT1 mutants with strongly increased activity
for production of C3-prenylated cyclo-Trp-Pro stereocisomers by
saturation mutagenesis

The fungal indole prenyltransferase FtmPT1 catalyzed prenylation of cyclo-L-Trp-L-Pro
(brevianamide F) at position C-2 of the indole nucleus to produce a regular product
tryprostatin B in the presence of DMAPP, and it was involved in the biosynthesis of
fumitremorgins. Analysis of the substrate-bound structure of FtmPT1 revealed that several
amino acid residues including Gly115 and Tyr205 were involved in the binding of
brevianamide F. Mutation of Gly115 in FtmPT1 redirected the prenylation of brevianamide F
from regular C2- to reverse C3-prenylation. Brevianamide F formed a hydrogen bond via its
carbonyl oxygen in the diketopiperazine moiety with the hydroxyl group of Tyr205 near the
center of the PT barrel (Jost et al. 2010) (Figure 1-11). We proposed that the location and
orientation of brevianamide F in the reaction chamber can be influenced by replacement of
Tyr205 with other amino acids, which could result in the formation of mutants with different

enzyme activities. The following experiments were carried out:

» Molecular modeling-guided site-directed mutagenesis experiments.
» Enzyme assays of FtmPT1 and mutants with four cyclo-Trp-Pro stereoisomers.
» Comparison of enzyme activities and structure elucidation by LC-MS and NMR.

> Determination of kinetic parameters for selected substrates.
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3. Results and discussion

3.1. Biochemical investigations on the acceptance of
acylphloroglucinols in the presence of DMAPP, GPP, and FPP
catalyzed by fungal prenyltransferases

Up to now, three membrane-bound prenyltransferases HIPT-1, HIPT1L, and HIPT2 from H.
lupulus were reported to elaborate skeletons of APs (Li et al. 2015a; Tsurumaru et al. 2012).
HIPT-1 catalyzed the prenylation of phlorisobutyrophenone (1) and phlorisovalerophenone (2)
in the presence of DMAPP. Co-expression of different genes revealed that HIPT1L and
HIPT2 catalyzed three sequential prenylation steps in the B-bitter acid pathway (Li et al.
2015a; Tsurumaru et al. 2012). In this study, we tested the acceptance of APs by fungal
prenyltransferases of the DMATS superfamily.

DMAPP, GPP, and FPP were prepared according to the method described for GPP (Woodside
et al. 1988) by Lena Ludwig and Dr. Edyta Stec. 1, 2, and phlorbenzophenone (3) were
synthesized by Lena Ludwig according to protocols described previously (George et al. 2010)
and incubated with thirteen purified soluble prenyltransferases, including seven cyclic
dipeptide prenyltransferases (AnaPT (Yin et al. 2009b), FtmPT1 (Grundmann and Li 2005),
CdpC2PT (Mundt and Li 2013), CdpC3PT (Yin et al. 2010b), CdpNPT (Yin et al. 2007),
BrePT (Yin et al. 2013), and CTrpPT (Zou et al. 2010)), four tryptophan prenyltransferases
(5-DMATS (Yu et al. 2012b), 6-DMATSsa (Winkelblech and Li 2014), 7-DMATS (Kremer
et al. 2007), and FgaPT2 (Uns6ld and Li 2005)), and two tyrosine prenyltransferases (SirD
(Zou et al. 2011) and TyrPT (Fan et al. 2014)). HPLC analysis of the incubation mixtures
revealed that AnaPT showed higher activities towards these compounds than other tested
enzymes. The tryptophan prenyltransferase 7-DMATS from A. fumigatus (Kremer et al. 2007)
showed slightly lower activities than AnaPT. These results encouraged us to test the
acceptance of phloroglucinol (4) and its carboxylic acid (5), orsellinic acid (6) and 6-
methylsalicylic acid (7) as substrates. All of these substances were accepted with 50 pg
AnaPT at 37°C for 6 h (Scheme 3-1). Nine enzyme products of AnaPT were isolated on
HPLC and their structures were elucidated by HRESI-MS and NMR analyses, including H-
NMR and *H-'H spatial correlations in nuclear overhauser effect spectroscopy (NOESY).
The results showed that the soluble fungal indole prenyltransferase AnaPT catalyzed the

same reaction of APs as the membrane-bound prenyltransferases involved in the biosynthesis
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of the prenylated APs in plants like HIPT-1. AnaPT also prenylated hydroxylated benzoic
acids, such as 6 and 7, which are typical PKS products of microorganisms. Therefore,
prenylated and hydroxylated benzoic acids could be produced by introducing anaPT into the
producers of 6 and 7 or by coexpression of the responsible PKS genes with anaPT in suitable

hosts.

Scheme 3-1. Prenyl transfer reactions of (R)-benzodiazepinedione and 1-7 catalyzed by
AnaPT (modified from Zhou et al., 2015).
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The observed activities of AnaPT toward 1-3 were much higher than that of a microsomal
fraction containing the overproduced prenyltransferase from the glandular trichomes
of hops. However, only monoprenylated derivatives were obtained in the presence of
DMAPP and the conversion yields of 1-3 with GPP as prenyl donor were very low. Recently,
a soluble prenyltransferase AtaPT from A. terreus strain was demonstrated to carry an
unprecedented promiscuity toward diverse drug-like aromatic acceptors and prenyl donors
including DMAPP, GPP, and FPP (Chen et al. 2017). AtaPT shares high sequence identity
with the hypothetical protein EAU34068 encoded by ATEG_04999 from A. terreus NIH2624
and differs at only three residues, i.e. at 290 (Thr in AtaPT and Lys in EAU34068), 292 (Ala
versus Glu), and 373 (Asn versus Ser). Among the tested aromatic substrates, AtaPT also
consumed 3 in the presence of DMAPP, GPP, and FPP, although no noteworthy sequence
homology exits between AtaPT and HIPT1L and HIPT2. These reactions were not studied in
detail (Chen et al. 2017). The coding sequence of ATEG_04999 orthologue from A. terreus
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DSM 1958 was amplified by PCR and cloned into the expression vector pQE-70, resulting in
the expression construct pCaW?7, which carried out by Dr. Carsten Wunsch. Gene expression
in E. coli and purification of the soluble protein resulted in a predominant band on SDS-
PAGE with a migration above the 45 kDa size marker, corresponding well to the calculated
mass of 48.7 kDa for AtaPT-Hise. Protein yield was calculated to be 29 mg of purified

protein per liter of culture.

Total conversion yields of 64.3 £ 2.4, 23.7 + 1.2, and 27.4 + 0.2% were calculated for 1-3
after incubation with 20 pg protein at 37°C for 2 h in the presence of DMAPP, respectively
(Scheme 3-2). These values were higher than those obtained from AnaPT with conversion
yields of 3.6 + 0.8, 43 + 0.8, and 7.7 £ 0.5% respectively in the same conditions.
Interestingly, two main products were observed from the reaction mixtures of AtaPT with
1-3. LC-MS analysis revealed that the [M+H]" ions of the unknown product peaks are 136
Da larger than their respective substrates, indicating that the diprenylations of 1-3 had taken
place. These results encouraged us to investigate into the structures of the diprenyl
derivatives. To elucidate the structures, nine enzyme products were isolated from the
incubation mixtures of 1-3 with AtaPT and DMAPP and were subjected to NMR analysis.
They were proven to be C-dimethylallyl products 1D1-3D1, gem-diprenylated derivatives
1D3-3D3, O-dimethylallyl derivatives 1D2 and 2D2, and C- and -O-di-dimethylally product
2D4 (Scheme 3-2).

Scheme 3-2. Prenyl transfer reactions of 1-3 catalyzed by AtaPT (modified from Zhou et al.,
2017)
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RESULTS AND DISCUSSION

More interestingly, AtaPT also accepted C-monoprenylated products 1D1-3D1 as substrates.
After incubation with 50 pg protein at 37°C for 2 h in the presence of DMAPP. HPLC, LC-
MS, and NMR analyses revealed that gem-diprenylated derivatives 1D3—-3D3 were observed
as predominant products from extract of the incubation mixtures with product yields of 4.88
+ 0.15, 57.18 £ 1.07, and 33.31 £+ 0.23%, respectively. A minor diprenylated product each
with longer retention time was detected. No product was detected in the incubation mixtures

of 1D1-3D1 with AnaPT and DMAPP under the same conditions (Scheme 3-3).

Scheme 3-3. Results of the incubation of dimethylallyl APs catalyzed by AtaPT or AnaPT
(modified from Zhou et al., 2017).
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In addition geranyl diphosphates (GPP) and farnesyl diphosphates (FPP) were also accepted
by AtaPT as prenyl donors, forming monoprenylated acylphloroglucinols with C-C or C-O
bonds. The conversion yields of C-prenylated products were 32.9 + 2.6, 47.6 = 1.8, and 54.7
+ 0.4% were calculated for 1-3 after incubation with 20 pg protein at 37°C for 2 h in the
presence of GPP (Scheme 3-2), which were much higher than that of AnaPT. FPP was also
used as a donor, but the conversion yields of the three substrates 1-3 were lower than that of
DMAPP or GPP as donors under the same condition. These prenylated products were
identified as C-geranyl derivatives 1G1-3G1, O-geranyl products 1G2-3G2, C-farnesyl
derivatives 1F1-3F1, and O-farnesyl products 1F2-3F2 (Scheme 3-2). The O-prenylated

derivatives were identified as minor products with conversion yields in the range of 0.5-2.0%.

No product was detected by LC-MS analysis after incubation of 1D2 and 2D2 with 50 pg
AtaPT and DMAPP at 37°C for 2 h. Incubation of 1D1-3D1 with AtaPT and GPP or FPP did
not result in product formation under the same conditions. No diprenylated product was
detected in the incubation mixtures of AtaPT with 1-3 and GPP or FPP in the same
conditions, which was confirmed by incubation of their C-monoprenylated derivatives
(Scheme 3-4). Product formation was not observed neither for the reaction mixtures of

1G1-3G1 with AtaPT in the presence of GPP, nor for those of 1F1-3F1 with FPP.
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Scheme 3-4. Results of the incubations of monoprenylated APs with AtaPT (modified from
Zhou et al., 2017).
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To get more information on the catalytic efficiency of the tetrameric AtaPT, kinetic
parameters including Michaelis—Menten constants (Ku/) and turnover numbers (kca) Were
determined at pH 7.5 for 1, 2, and 3 in the presence of DMAPP, GPP, and FPP as well as
DMAPP with 1 and GPP with 3. The catalytic efficiency of AtaPT toward 1 is 32-fold of that
of AnaPT in the presence of DMAPP. 1 was better consumed by AtaPT in the presence of
DMAPP and FPP than 2 and 3. 3 was the most efficiently consumed substrate in the presence
of GPP. The determined kc./Ky values for 1-3 are in the range of 170-300 s'M" in the
presence of GPP and between 17 and 37 s "M in the presence of FPP. With 1 as acceptor, a
95-fold kca/Ku value of that of AnaPT was determined for DMAPP with AtaPT.

In this study, we provided the first example of gem-diprenylation of APs by a member of the
dimethylallyltryptophan synthase superfamily and an alternative synthesis method of gem-
diprenylation of APs. AtaPT could be an interesting candidate for production of

polyprenylated APs like B-bitter acids by synthetic biological method.

For detailed information about this work, please see the publications (sections 4.1 and
4.2)

Kang Zhou, Lena Ludwig, and Shu-Ming Li (2015). Friedel-Crafts alkylation of
acylphloroglucinols catalyzed by a fungal indole prenyltransferase. J. Nat. Prod., 78 (4):
929-933

Kang Zhou, Carsten Wunsch, Jungui Dai, and Shu-Ming Li (2017). Gem-diprenylation of
acylphloroglucinols by a fungal prenyltransferase of the dimethylallyltryptophan
synthase superfamily. Org. Lett. 19 (2): 388-391
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3.2. Chemoenzymatic synthesis of prenylated flavonoids by fungal
prenyltransferases

Prenylated flavonoids are a group of compounds predominantly found in plants (Botta et al.
2005b; Botta et al. 2009; Chen et al. 2014a). Due to their broad pharmacological activities
(Botta et al. 2005b; Botta et al. 2009; Grienke et al. 2016; van de Schans et al. 2015; Watjen
et al. 2007), various strategies have been developed for both regioselective chemical and
chemoenzymatic synthesis of prenylated flavonoids, especially for C-prenylated derivatives
(Hossain et al. 2006; Tischer and Metz 2007; Yang et al. 2016; Yazaki et al. 2009). In
previous studies, prenylated flavonoids have been produced by using recombinant enzymes
(Kumano et al. 2008; Ozaki et al. 2009; Sasaki et al. 2008; Sasaki et al. 2011). However, only
a few of such derivatives carry a dimethylallyl moiety at position C-6. In a former work, it
was demonstrated that the recombinant indole prenyltransferase 7-DMATS accepted
chalcones, isoflavonoids, and flavanones much better than flavones and flavonols and mainly
catalyzed prenylation at C-6 of the ring A. Preliminary results indicated that AnaPT could be
a good candidate for prenylations other than those of 7-DMATS (Yu and Li 2011).

AnaPT was then incubated with twenty-one flavonoids and analogues in the presence of
DMAPP. Naringenin (l1a), 7-hydroxyflavanone (2a), eriodictyol (3a), hesperetin (4a),
silibinin (5a), phloretin (6a), apigenin (7a), genistein (8a), and biochanin A (9a) were better
substrates than other substrates. HPLC analysis showed that the retention time of the major
enzyme product of AnaPT with 1a was 9 min, which was 1 min shorter than that of the C6-
prenylated 1a obtained from the 7-DMATS assay with 40 ug AnaPT at 37°C for 2h (Figure
3-1).

To get more information of enzyme products catalyzed by 7-DMATS and AnaPT, we
extended the reaction time to 16h. As shown in Figure 3-1, AnaPT displayed a clearly
different substrate preference from that of 7-DMATS. AnaPT accepted 1a, 2a, 5a, 7a, and 9a
better than 7-DMATS, while 3a, 4a, 6a, and 8a were better substrates for 7-DMATS. The
major products of AnaPT and 7-DMATS reactions clearly differed in some cases from each
other. For example, the main product 1b in the 7-DMATS reaction with 1a was only detected
as a minor product in its reaction mixture with AnaPT. Instead, a product 1c with a yield of
54.2% was the main product. Eriodictyol (3a) was much better accepted by 7-DMATS and
several products including 3b, 3c, and 3d with comparable yields were observed, whereas 3c

with a product yield of 16.4% was the main product of the AnaPT reaction. Silibinin (5a), a
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hepatoprotective flavanonol from the medicinal plant Silypbum marianum (Biedermann et al.
2014), was accepted by AnaPT with a product yield of 11.3%, whereas HPLC analysis
showed that no product formation was observed from the incubation mixture of 5a with 7-
DMATS. Phloretin (6a) was converted by 7-DMATS to one predominate product 6b, while a
number of products including 6b, 6¢, and 6d were detected in its reaction mixture with
AnaPT. These results indicated that different prenyl transfer reactions catalyzed by the two

enzymes.

To investigate the prenylated positions and patterns of these substrates, twelve enzyme
products 1b, 1c¢, 2b, 3¢, 5b, 6b, 6c¢, 6d, 7b, 8b, 8¢, and 9b were isolated by preparative HPLC
from incubation mixtures of 1a-3a, 5a-9a with AnaPT and DMAPP, respectively. The 'H
NMR spectrum of 5b was very similar to that of its substrate silybin (Lee and Liu 2003) and
showed additional signals for a dimethylallyl moiety. HSQC and HMBC spectra were further
proved the prenylation of the 7-hydroxy group (Figure 3-1). Comparing the 'H-NMR spectra
of 6¢ and 6d (Yu and Li 2011) with that of 6a revealed that 6c is a C3 -monoprenylated
derivative and 6d bears the two prenyl moieties at C-6 and C-3" (Figure 3-1). Compounds 1b,
1c, 2b, 3c, 6b, 7b, 8b, 8¢, and 9b were identified as known compounds by 'H-NMR and HR-
EI-MS analyses and literature search, including Cé6-prenylated derivatives (1b, 2b, 6b, 7b,
8b, and 9b), C3 -prenylated derivatives (1¢ and 3c), and C6, C3 -diprenylated product (8c)
(Figure 3-1).

AnaPT displayed in several cases different behaviors regarding the prenylation positions from
those of 7-DMATS reported previously (Yu and Li 2011). For 1a, 3a, and 6a, 7-DMATS
preferred for a prenylation at C-6 of A-ring and C6-prenylated derivatives 1b, 3b, and 6b
were detected as predominant or one of the main products. In contrast, C3 -prenylation of B-

ring was observed as main reactions in the assays of these compounds with AnaPT.

To get information on the catalytic efficiencies of AnaPT towards flavonoids, Kinetic
parameters were determined for the nine substrates. The Kv and keat values for flavonoids
were determined to be in the range of 0.10-0.90 mM and 3-170 s, respectively. These data
provided evidence that AnaPT, the soluble indole prenyltransferases, could also be used for

production of prenylated flavonoids in microorganisms by synthetic biological approaches.
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Figure 3-1. HPLC analysis of reaction mixtures of 7-DMATS and AnaPT (modified from
Zhou et al., 2015).
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Figure 3-1 (continued)

For detailed information about this work, please see the publication (section 4.3)

Kang Zhou, Xia Yu, Xiulan Xie, and Shu-Ming Li (2015). Complementary flavonoid
prenylations by fungal indole prenyltransferases. J. Nat. Prod., 78 (9): 2229-2235

3.3. Creation of FtmPT1 mutants with strongly increased activity
for production of C3-prenylated cyclo-Trp-Pro sterecisomers by
saturation mutagenesis

The indole prenyltransferase FtmPT1 from A. fumigatus used DMAPP as prenyl donor and

cyclo-L-Trp-L-Pro as acceptor and catalyzed predominantly a regular C2-prenylattion
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(Grundmann and Li 2005; Li 2011; Wollinsky et al. 2012). AnaPT, CdpNPT, and CdpC3PT
acted as reverse C3-prenyltransferases on different cyclic dipeptides, leading to the formation
of prenylated pyrrolo[2,3-b]indoles with anti-cis or syn-cis configuration of the ring systems
(Fan et al. 2015a; Schuller et al. 2012; Winkelblech et al. 2015a; Yin et al. 2009b; Yin et al.
2010a; Yu et al. 2013). The indole prenyltransferase ArdB from A. fischeri catalyzed reverse
(C3-prenylation of a tripeptide derivative (Haynes et al. 2013). A prenyltransferase was
identified in the producer of nocardioazines and proven to be responsible for a regular C3-
prenylation of cyclo-L-Trp-L-Trp (Algahtani et al. 2015). In comparison to reverse C3-
prenyltransferases, there is still a deficiency with the availability of regular C3-

prenyltransferases for application in the chemoenzymatic synthesis or synthetic biology.

Crystal structures of unliganded FtmPT1 and its ternary complex with brevianamide F and
DMSPP were solved and used as basis to understand the catalytic mechanism. Prenyl transfer
reaction was performed in a hydrophobic reaction chamber at the center of the barrel (Jost et
al. 2010). Several amino acid residues including Glyl115 and Tyr205 were proposed to be
involved in the binding of brevianamide F. Mutation of Gly115 to Thr in FtmPT1 redirects

the prenylation of brevianamide F from regular C2- to reverse C3.

Saturation mutagenesis experiments were carried out on the amino acid Tyr205. Nineteen
single and one double mutants of FtmPT1 were obtained. Single mutants were constructed by
Wei Zhao and Dr. Sylwia Tarcz. Five mutants Y205C, Y205L, Y205N, Y2051, and Y205S
showed similar enzyme activity as the wildtype with substrate consumption of more than
90% under the tested conditions. Five mutants Y205H, Y205Q, Y205V, Y205G, and Y205E
showed lower enzyme activity with substrate consumption between 46.9 and 76.4%. Other
mutants like Y205A, Y205R, Y205K, Y205D, and Y205P accepted brevianamide F with
significantly reduced activities. In addition to the regularly C2-prenylated derivative LL1 and
the regularly C3-prenylated LL2, product peaks LL3 at 34.8 min and LL4 at 35.8 min were
also detected in the reaction mixtures of most mutants (Scheme 3-5). Among these mutants,
Y205L and Y205N showed high activity toward cyclo-L-Trp-L-Pro. Therefore, behaviors of
Y205N and Y205L toward cyclo-Trp-Pro stereoisomers were tested. Y205N converted cyclo-
D-Trp-D-Pro, cyclo-L-Trp-D-Pro, and cyclo-D-Trp-L-Pro mainly to one dominant peak each
(DD3, LD3, or DL3), identified as reversely C3-prenylated derivatives, with product yields
of 21.6 £1.1,41.1 £ 1.9, and 32.5 + 1.1%, respectively. Regularly C2-prenylated derivatives
DD1, LD1, and DL1 were minor products of cyclo-D-Trp-D-Pro, cyclo-L-Trp-D-Pro, and
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cyclo-D-Trp-L-Pro reactions, respectively. DD1 was also identified as the predominant
product of Y205L with cyclo-D-Trp-D-Pro, with a product yield of 60.5 + 3.0%.

Scheme 3-5. Prenyl transfer reactions of cyclo-L-Trp-L-Pro and cyclo-D-Trp-D-Pro catalyzed
by FtmPT1, Y205N, and Y205L (modified from Zhou et al., 2016).
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The two enantiomers cyclo-L-Trp-D-Pro and cyclo-D-Trp-L-Pro were converted by Y205L to
two similar complex product mixtures (Scheme 3-6). Detailed inspection of the HPLC
chromatograms indicated the presence of LD1 and LD3 as well as DL1 and DL3 with the
same retention times as those in the incubation mixtures of cyclo-L-Trp-D-Pro and cyclo-D-
Trp-L-Pro with FtmPT1 and/or Y205N. LD5 and LD4 as well as DL5 and DL4 showed the
same retention times as those of the reversely C2- and regularly N1-prenylated derivatives,
which were obtained from the incubation mixtures of cyclo-L-Trp-D-Pro with BrePT (Yin et
al. 2013) and CdpNPT (Yu et al. 2013), respectively. According to H-NMR of the
incubation mixtures of cyclo-L-Trp-D-Pro and cyclo-D-Trp-L-Pro with Y205N or Y205L,
signals for dimethylallyl moieties of LD5 and LD4 as well as DL5 and DL4 were observed,

which also proved the structures of enzyme products.

Scheme 3-6. Prenyl transfer reactions of cyclo-L-Trp-D-Pro and cyclo-D-Trp-L-Pro catalyzed
by FtmPT1, Y205N, and Y205L (modified from Zhou et al., 2016).
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It was demonstrated that mutation on Gly115 to Thr led to change the prenylation pattern and
position, i.e. from regular C2-prenylation catalyzed by FtmPT1 to reverse C3-prenylation
catalyzed by FtmPT1_G115T. A plasmid pKZ27 for overproduction of the double mutant
FtmPT1 G115T_Y205N was constructed. HPLC analysis of the incubation mixture of cyclo-
L-Trp-L-Pro with 5 pg enzyme at 37°C for 2 h revealed a drastic reduction of the enzyme
activity. A very small product peak with a retention time corresponding to that of LL2 was
observed in the chromatogram. These resulted indicated that both positions could not be
altered at the meantime. Similar results were also obtained for G115T Y205N with cyclo-D-

Trp-D-Pro, cyclo-L-Trp-D-Pro, or cyclo-D-Trp-L-Pro.

These results demonstrated that Y205N and Y205L could be used for production of regularly
C3-prenylated brevianamide F in the chemoenzymatic synthesis and synthetic biology. More
specific enzymes for regular C3-prenylation should be created in the future, e.g. by

mutagenesis of mutants obtained in this study.

For detailed information about this work, please see the publication (section 4.4)

Kang Zhou, Wei Zhao, Xiao-Qing Liu, and Shu-Ming Li (2016). Saturation mutagenesis on
Tyr205 of the cyclic dipeptide C2-prenyltransferase FtmPT1 results in mutants with
strongly increased C3-prenylating activity. Appl Microbiol Biotechnol, 100 (23):9943-
9953
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4.1. Friedel-Crafts alkylation of acylphloroglucinols catalyzed by
a fungal indole prenyltransferase
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ABSTRACT: Naturally occurring prenylated acylphloroglucinol derivatives
are plant metabolites with diverse biological and pharmacological activities.
Prenylation of acylphloroglucinols plays an important role in the formation of
these intriguing natural products and is catalyzed in plants by membrane-
bound enzymes. In this study, we demonstrate the prenylation of such
compounds by a soluble fungal prenyltransferase AnaPT involved in the

R
R AnaPT
7—?» HO OH
HO OH

>J0PF’ PPi |

biosynthesis of prenylated indole alkaloids. The observed activities of AnaPT
toward these substrates are much higher than that of a microsomal fraction containing an overproduced prenyltransferase from

the plant hop.

P olyprenylated acylphloroglucinols are found in a limited

number of plant families including Clusiaceae, Hyper-
icaceae, and Cannabaceae.'™ Their fascinating chemical
structures and intriguing biological activities have attracted
increasing attention. Hyperforin, a polyprenylated acylphlor-
oglucinol (Scheme S1, Supporting Information), and the
naphthodianthrone hypericin are considered as active con-
stituents in extracts of Hypericum perforatum (St John’s wort,
Hypericaceae) used for treatment of depression in Europe and
the USA.”> Humulone (a-acid) and lupulone (f-acid, Scheme
S1, Supporting Information) are prenylated acylphloroglucinols
in hop cones, the female flowers of Humulus lupulus
(Cannabaceae), and are responsible for the bitter taste and
pharmacological effects.®* Hops are used primarily as a flavoring
and stabilizing agent in beer. In traditional medicines, hops are
also used as mild sedative drugs.?

Biogenetically, the acylphloroglucinol cores in hyperforin and
lupulone are formed by condensation of three malonyl-CoA
molecules with different start units, isobutyryl-CoA in the case
of the hyperforin precursor phlorisobutyrophenone (1a) and
isovaleryl-CoA in the case of the lupulone precursor
phlorisovalerophenone (2a). This key step is catalyzed by a
polyketide synthase (PKS) and followed by an alkylation on the
benzene ring catalyzed bgr prenyltransferases (Scheme S1,
Supporting Information)."®” Several plants from the families
Clusiaceae and Hypericaceae also use benzoyl-CoA as start unit
and produce phlorbenzophenone (3a) and derivatives thereof
such as grandone (Scheme S1, Supporting Information).*>*?

In sharp contrast to many new grenylated acylphloroglucinol
derivatives reported in 2014,">° little is known about the
enzymes related to the biosynthesis of these compounds. Until
now, only one recombinant enzyme involved in their
biosynthesis, the prenyltransferase HIPT-1 from Humulus
lupulus, was investigated biochemically.® The membrane-
bound HIPT-1 was overproduced in baculovirus-infected insect
cells® and the microsomal fraction of the protein extract was
used for enzyme assays. It catalyzed the prenylation of

© 2015 American Chemical Society and
American Society of Pharmacognosy
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phlorisovalerophenone (2a) in the presence of dimethylallyl
diphosphate (DMAPP) and also accepted phlorisobutyrophe-
none (la) as prenylation substrate. Its catalytic activities for
both substrates were very low, being 11 pmol per mg of
microsomal fraction per minute for phlorisovalerophenone
(2a), and 29.5% of that for phlorisobutyrophenone (1a). Like
most membrane-bound proteins, HIPT-1 is more difficult to
overproduce and purify than soluble enzymes. These features
strongly prohibit its potential use as a biocatalyst for
chemoenzymatic synthesis for production of prenylated
acyphloroglucinols. Therefore, there is a need to find alternative
enzymes with better properties. In this study, we tested the
acceptance of such acylphloroglucinols by prenyltransferases of
the DMATS superfamily from fungi, which are soluble proteins
and can be easily overproduced in Escherichia coli with
significantly higher yields."

Phlorisobutyrophenone (1a), phlorisovalerophenone (2a),
and phlorbenzophenone (3a) were synthesized according to
protocols described previously''™** (Scheme 1) and incubated
with 13 purified soluble fungal prenyltransferases including four
tryptophan, seven cyclic dipeptide, and two tyrosine prenyl-
transferases. HPLC analysis of the incubation mixtures revealed
that AnaPT from Neosartorya fischeri, which catalyzes the C3-

Scheme 1. Synthesis of Acylphloroglucinols

OH OH O
/@\ AICI; CsHsNO, RCOCI /dkR
HO OH 6510, BBl HO OH
R=CH(CH3), phlorisobutyrophenone (1a, 70.8 %)

R=CH,CH(CH3); phlorisovalerophenone (2a, 67.1 %)
R=CgHs phlorbenzophenone (3a, 65.8%)
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Figure 1. HPLC chromatograms and prenyl transfer reactions catalyzed by AnaPT. Different wavelengths were used for illustration of product
formation: 230 nm (4a), 254 nm ((R)-benzodiazepinedione and Sa), 266 nm (6a), 291 nm (1a, 2a, and 7a), and 306 nm (3a).

prenylation of (R)-benzodiazepinedione (Figure 1A) and is
involved in the biosynthesis of acetylaszonalenine,'* showed
higher activities toward these compounds than other tested

enzymes (Table S1, Supporting Information). Conversion
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yields between 12% and 14% were achieved for these substrates
after incubation with S pg of AnaPT in 100 uL assay at 37 °C
for 16 h. No product formation was detected with heat-
inactivated AnaPT (data not shown). Using S0 ug of protein,

DOI: 10.1021/np5009784
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Table 1. '"H NMR Data (500 MHz) of the Enzyme Products b, 6b, 7b, and 7c in Methanol-d,”

r OH
X COOH
5 2
Comp HO™ 7" "OH
5b

Pos. Oy, (Jin Hz) Oy, (Jin Hz) on, (Jin Hz) On, (Jin Hz)
3 / 6.13,s 6.97,d (8.4) /
4 / / 6.57,d (8.4) 6.91,d (8.4)
5 5.73, s / / 6.50,d (8.4)
7 / 2.50, s 2.46, s 2.53,s
1’ 3.16,d (7.0) 3.28,d (7.0) 3.24,d(7.0) 3.24,d (6.9)
27 5.20, m 5.02, m 5.16, m 532, m
4’ 1.63,s 1.66, s 1.71,s 1.70, s
5 1.73, s 1.75, s 1.72, s 1.73, s

“Chemical shifts (5) are given in ppm and coupling constants (J) in Hz.

we found product formation to be nearly linear in the first 6 h
(Figure S1, Supporting Information). Conversion yields of
32.1%, 32.3%, and 28.2% were calculated for 1a, 2a, and 3a,
respectively, after incubation with 50 pg of protein at 37 °C for
6 h (Figure 1). Under this condition, 93% of (R)-
benzodiazepinedinone was converted to aszonalenin (Figure
1A). The tryptophan prenyltransferase 7-DMATS from
Aspergillus fumigatus'> showed slightly lower activities than
AnaPT, with product yields of about 10% in the assays of 1a
and 2a with S pug of protein (Table S1, Supporting
Information). Compound la was accepted by CdpC3PT
from Neosartorya fischeri'® with a conversion yield of 5.7%
(Table S1, Supporting Information).

These results encouraged us to test the acceptance of
phloroglucinol (4a) and its carboxylic acid Sa, as well as
orsellinic acid (6a) and 6-methylsalicylic acid (7a), as
substrates. The latter two compounds were identified as PKS
products in different microorganisms.'”~** As shown in Figure
1, all of these substances were accepted by AnaPT. Conversion
yields of 4.6—10.8% were observed using SO pg of AnaPT after
incubation at 37 °C for 6 h. It is obvious that acylphlor-
oglucinols 1a—3a are better substrates for AnaPT than 4a—7a.
Interestingly, 6a with a methyl instead of a hydroxy group in Sa
was a better substrate for AnaPT (Figure 1F,G). Detailed
inspection of the HPLC chromatograms B—H in Figure 1
revealed the presence of one predominant product each in the
incubation mixtures of 1a—3a, Sa, and 6a. Compounds 4a and
7a were converted to at least two products.

In a previous study,’® we demonstrated that AnaPT also used
geranyl diphosphate (GPP) as prenyl donor. Therefore, 1a—7a
were incubated with 50 g of AnaPT in the presence of GPP.
Indeed, product formation was observed in all incubation
mixtures, but with relatively lower activities than with DMAPP
for a given aromatic substrate. After incubation for 16 h,
conversion yields of 6—10% were obtained for 1la—3a and less
than 5% for other substrates (Figure S2, Supporting
Information).
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To elucidate the structures, nine enzyme products, 1b, 2b,
3b, 4b, 4c, Sb, 6b, 7b, and 7c, were isolated from the
incubation mixtures of la—7a with AnaPT and DMAPP and
subjected to NMR and HR-EI-MS analysis (Table 1 and Tables
S2 and S3 and Figures S3—S14, Supporting Information). In
addition, 1b was also isolated from the incubation mixtures of
1a with CdpC3PT or 7-DMATS. The spectra of 1b from the
three different incubation mixtures are nearly identical, proving
the same product of different enzymes. With the exception of
4c, the M" ions of the isolated products are 68 Da larger than
the respective substrates (Table S2, Supporting Information),
proving the monoprenylation of these compounds. The M* jon
of 4c is 136 Da larger than that of 4a, proving the diprenylation
in its structure. This conclusion was confirmed by their
molecular formula deduced from HR-MS analysis (Table S2,
Supporting Information). The signals at §3.16—3.29 (d, 2H
—CH,-), 5.02—5.32 (m, 1H, —C=CH), 1.61-1.71 (s, 3H,
—C=C~CH,), and 1.72—1.76 ppm (s, 3H, -C=C—CH,) in
the '"H NMR spectra of the isolated products confirmed the
presence of regular dimethylallyl moieties in their structures.
The resonance of the methylene group in the range of 3.16—
3.29 ppm proved their attachment to aromatic carbon atoms.>*
Comparison of the NMR data with those of previously reported
compounds led to identification of the structures of 1b,>* 2b,**
3b,”® 4b,** and 4c¢,** as shown in Figure 1. The structures of Sb,
6b, 7b, and 7c have not been reported prior to this study.

Only one singlet for an aromatic proton at 65.73 ppm was
found in the 'H NMR spectrum of Sb, which proved
unequivocally the attachment of the prenyl moiety at C-3 of
the benzene ring (Table 1, Figure 1F). One singlet for an
aromatic proton (56.13 ppm) was also observed in the 'H
NMR spectrum of 6b, confirming the prenylation at C-3 or C-$
of the benzene ring. Coupling between CH; at C-6 and H-S
was observed in the 'H NMR spectrum of 6a (data not shown).
No coupling between the signal for this methyl group at 62.50
ppm with the singlet at §6.13 ppm was observed in the 'H
NMR spectrum of 6b, indicating a prenylation at C-5. The
NOESY correlation of the signal at §2.50 ppm with that of H-

DOI: 10.1021/np5009784
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1’of the prenyl moiety at 63.28 ppm proved unequivocally the
prenylation at C-S, as shown in Figure 1. The 'H NMR
spectrum of 7b showed two doublets at §6.97 (1H, d, ] = 8.4
Hz, ArH-3) and 66.57 ppm (1H, d, ] = 8.4 Hz, ArH-4), and the
NOESY correlation of the signal at 62.46 ppm for CH; at C-6
with that of H-1"of the prenyl moiety at 3.24 (d, ] = 7.8 Hz)
confirmed the prenyl moiety at C-S of the benzene ring. The
spectrum of 7c also showed signals of two aromatic protons at
8691 (1H, d, J = 7.5 Hz, ArH-3) and 86.50 (1H, d, ] = 7.5 Hz,
ArH-4). NOESY correlation was observed for the signal of CH,
at C-6 with that of H-5, suggesting the prenylation at C-3 in 7¢
(Figure 1H).

In summary, our data provide evidence that the soluble
fungal indole prenyltransferase AnaPT catalyzed the same
prenylation reaction of acylphloroglucinols as the membrane-
bound prenyltransferases involved in the biosynthesis of the
prenylated acylphloroglucinols in plants like HIPT—1,6 but with
much higher conversion yields than HIPT-1. To the best of our
knowledge, this is the first report on the prenylation of
acylphloroglucinols by microbial enzymes. Furthermore,
AnaPT also prenylated hydroxylated benzoic acids such as
orsellinic acid (6a) and 6-methylsalicylic acid (7a), which are
typical PKS products of mic:1‘oorganisms.17—19 Therefore,
prenylated and hydroxylated benzoic acids could be produced
by introducing anaPT into the producers of 6a and 7a or by
coexpression of the responsible PKS genes'’ " with anaPT in
suitable hosts. Thus, this work extends significantly the
substrate and catalytic promiscuity of the prenyltransferases
of the DMATS superfamily as well as their potential
applications.

To get more insi§hts into the catalytic efficiency of the
tetrameric AnaPT'**> toward acylphloroglucinols and hydrox-
ybenzoic acids, kinetic parameters including Michaelis—Menten
constants (Ky;) and turnover numbers (k_,) were determined
at pH 7.5 for (R)-benzodiazepinedinone, 1a—7a, and DMAPP
by Hanes—Woolf, Eadie—Hofstee, and Lineweaver—Burk plots
and were compared with each other (Figures S15-24,
Supporting Information). As given in Table 2, AnaPT displayed

Table 2. Kinetic Parameters of AnaPT toward Selected
Substrates

Vinax (nn‘wl1
substrate [II:II\W/I] mgrgifffin []sciaf] [sk~c Tté\I/I(B‘l]
(R)- 0.22 526 1.72 7818
benzodiazepinedione

1a 0.22 3.71 0.012 54.5
2a 0.33 5.07 0.017 S1.S
3a 0.24 4.54 0.015 62.5
4a 1.64 0.71 0.0023 1.4
Sa 0.87 121 0.0040 4.8
6a 0.42 3.54 0.012 28.6
7a 0.52 1.11 0.0037 7.1
DMAPP with 1a 0.21 2.56 0.0084 40.0
DMAPP with 2a 0.38 3.29 0.011 28.9

similar affinity to 1a—3a as to its natural aromatic substrate (R)-
benzodiazepinedinone,'* while 4a—7a showed lower affinity to
AnaPT. With la as aromatic substrate, a slightly higher Ky
value was determined for DMAPP than in the presence of (R)-
benzodiazepinedione,14 while a significantly higher Ky; value
was obtained in the presence of 2a. As expected, the turnover
numbers of AnaPT for 1la—3a are very low, only 0.7—1.0% of
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that of (R)-benzodiazepinedione determined in this study.
Undoubtedly, catalytic efficiency of AnaPT toward acylphlor-
oglucinols should be improved in the future by suitable
approaches such as mutagenesis experiments. However, it
should be mentioned that the turnover number of AnaPT
toward its natural substrate is much higher (up to 10-fold) than
most prenyltransferases of the DMATS superfamily to their
natural substrates. The determined V,,,, values for 1a—3a are in
the range of 3.7—5.1 nmol mg protein™' min~". Therefore, it
can be concluded that AnaPT is already an interesting
candidate as a biocatalyst for prenylation of phloroglucinol
analogues, especially of acylphloroglucinols.

B EXPERIMENTAL SECTION

General Experimental Procedures. Phloroglucinol (4a) was
obtained from Acros Organics, 2,4,6-trihydroxybenzoic acid (Sa) and
orsellinic acid (6a) from Alfa Aesar, and 6-methylsalicylic acid (7a)
from Chempur. NMR spectra were recorded on a JEOL ECA-500
spectrometer, processed with MestReNova 5.2.2. Chemical shifts were
referenced to the signal of acetone-dy at 2.0S ppm or methanol-d, at
3.31 ppm. The enzyme products were also analyzed by electron impact
mass spectrometry (EI-MS) on an Auto SPEC (Micromass Co. UK
Ltd.).

Synthesis of DMAPP, GPP, and Acylphloroglucinols 1a, 2a,
and 3a. The triammonium salts of dimethylallyl diphosphate
(DMAPP) and geranyl diphosphate (GPP) were synthesized
according to the method described for geranyl diphosphate by
Woodside et al.2® Compounds 1a, 2a, and 3a in yields of 70.8%,
67.1%, and 65.8% were prepared by Friedel—Crafts acylations of
phloroglucinol with isobutyryl chloride,'* methylbutanal chloride,"?
and benzoyl chloride'” in the presence of AlCL, respectively (Scheme
i)

Overproduction and Purification of the Recombinant AnaPT
and Enzyme Assay. Protein overproduction and purification were
carried out as described previously."* The enzyme assays (100 uL)
contained 1a—7a (1 mM), CaCl, (5 mM), DMAPP/GPP (2 mM),
glycerol (1.0—6% v/v), dimethyl sulfoxide (DMSO, $% v/v), SO mM
Tris-HCI (pH 7.5), and purified recombinant protein (5—50 ug). The
reaction mixtures were incubated at 37 °C for different times and
terminated by addition of 100 uL of methanol. The protein was
removed by centrifugation at 13000 rpm for 20 min. Assays for
isolation of the enzyme products were carried out in large scale (10—
15 mL) containing aromatic substrates (1 mM), DMAPP (2 mM),
CaCl, (5 mM), glycerol (1.0-9.9% v/v), DMSO (5% v/v), SO mM
Tris-HCI (pH 7.5), and S mg of recombinant protein per 10 mL assay.
After incubation for 16 h at 37 °C, the reaction mixtures of la—3a
were extracted 3—4 times with a double volume of ethyl acetate. The
organic phases were combined and evaporated. The residues were
dissolved in methanol (0.5-1.0 mL) and purified by HPLC. The
reaction mixtures of 4a—7a were terminated by addition of a double
volume of methanol. Protein was removed by centrifugation at 6000
rpm for 30 min. The supernatants were collected, concentrated, and
dried on a rotary evaporator. The residues were dissolved in methanol
(0.5—-1.0 mL) and after centrifugation, the supernatants were purified
on HPLC. Assays for determination of kinetic parameters (100 uL)
contained CaCl, (S mM), glycerol (1.0—9.9% v/v), DMSO (5% v/v),
50 mM Tris-HCl (pH 7.5), DMAPP (2 mM), 50 pg of AnaPT, and
(R)-benzodiazepinedinone or la—7a at final concentrations of up to
20.0 mM. For determination of the kinetic parameters of DMAPP, 1a
or 2a at a final concentration of 1 mM and DMAPP of up to 5.0 mM
were used. The reaction mixtures were incubated for 60 min ((R)-
benzodiazepinedione), 120 min (1a, 2a, 3a, Sa, DMAPP, and 6a), or
240 min (4a and 7a). Product formation was found to be linear within
such incubation times (Figure S1, Supporting Information). The
reactions were then terminated with 100 pL of methanol. Protein was
removed by centrifugation at 13000 rpm for 20 min.

Analysis of Enzyme Products by HPLC and Structure
Elucidation by NMR and MS Analysis. An Agilent HPLC series

DOI: 10.1021/np5009784
J. Nat. Prod. 2015, 78, 929-933



Journal of Natural Products

1200 was used for analysis and isolation of the enzyme products. A
Multospher 120 RP-18 column (250 mm X 4 mm, S um C+S
Chromatographie Service, Langerwehe, Germany) was applied for
analysis at a flow rate of 1 mL/min, and a Multospher 120 RP18
column (250 mm X 10 mm, S ym) was used for isolation at a flow rate
of 2.5 mL/min. Water containing 0.5% trifluoroacetic acid (solvent A)
and acetonitrile containing 0.5% trifluoroacetic acid (solvent B), were
used as solvents. A linear gradient of 2—100% (v/v) solvent B in 30
min was used for analysis of the enzymatic products. The column was
then washed with 100% solvent B for 5 min and equilibrated with 2%
solvent B for another S min. Detection was carried out on a
photodiode array detector. Solvents for isolation of the enzyme
products are water (solvent C) and acetonitrile (solvent D) without
acid. The enzyme products were isolated with a linear gradient of 10—
100% D in C in 25 min. After each run, the column was equilibrated
with 10% solvent D for S min. Analysis of product from (R)-
benzodiazeginedione by HPLC was carried out as described
previously."
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biosynthetic origins, results of different enzyme assays as tables
or HPLC chromatograms, MS and 'H NMR data, NMR
spectra, and, kinetic parameters. This material is available free
of charge via the Internet at http://pubs.acs.org.

B AUTHOR INFORMATION

Corresponding Author
*E-mail: shumingli@staff.uni-marburg.de.

Notes
The authors declare no competing financial interest.

B ACKNOWLEDGMENTS

This work was financially supported in part by a grant from the
Deutsche Forschungsgemeinschaft (Li844/4-1 to S.-M. L.) We
thank Nina Zitzer and Stefan Newel for taking MS and NMR
spectra, respectively. Kang Zhou is a recipient of a scholarship
from China scholarship council.

B REFERENCES

(1) Yang, X. W,; Ding, Y.; Zhang, J. J.; Liu, X; Yang, L. X; Li, X. N;
Ferreira, D.; Walker, L. A.; Xu, G. Org. Lett. 2014, 16, 2434—2437.

(2) Russo, E.; Scicchitano, F.; Whalley, B. J.; Mazzitello, C.; Ciriaco,
M,; Esposito, S.; Patane, M.; Upton, R,; Pugliese, M.; Chimirri, S.;
et al. Phytother. Res. 2014, 28, 643—655.

(3) Van Cleemput, M.; Cattoor, K.; De Bosscher, K.; Haegeman, G.;
De Keukeleire, D.; Heyerick, A. J. Nat. Prod. 2009, 72, 1220—1230.

(4) Wu, S.-B.; Long, C.; Kennelly, E. J. Nat. Prod. Rep. 2014, 31,
1158—1174.

5) Zhang, J. ].; Yang, J.; Liao, Y.; Yang, X. W.; Ma, J. Z,; Xiao, Q. L;
Yang, L. X;; Xu, G. Org. Lett. 2014, 16, 4912—4918.

(6) Tsurumaru, Y.; Sasaki, K,; Miyawaki, T.; Uto, Y.; Momma, T.;
Umemoto, N.; Momose, M.; Yazaki, K. Biochem. Biophys. Res.
Commun. 2012, 417, 393—398.

(7) Adam, P.; Arigoni, D.; Bacher, A; Eisenreich, W. J. Med. Chem.
2002, 45, 4786—4793.

(8) Tian, W. J;; Yu, Y,; Yao, X. J.; Chen, H. F.; Dai, Y.; Zhang, X. K;
Yao, X. S. Org. Lett. 2014, 16, 3448—3451.

(9) Hu, L.-H,; Sim, K.-Y. Tetrahedron 2000, 56, 1379—1386.

(10) Yu, X;; Li, S.-M. Methods Enzymol. 2012, 516, 259—278.

(11) George, J.-H.; Hesse, M.-D.; Baldwin, E.; dlington, R.-M. Org.
Lett. 2010, 12, 3532—3535.

(12) Pepper, H. P.; Lam, H. C; Bloch, W. M.; George, J. H. Org. Lett.
2012, 14, 5162—5164.

933

(13) Morkunas, M.; Dube, L.; Gotz, F.; Maier, M.-E. Tetrahedron
2013, 69, 8559—8563.

(14) Yin, W.-B,; Grundmann, A.; Cheng, J.; Li, S-M. . Biol. Chem.
2009, 284, 100—109.

(15) Kremer, A; Westrich, L,; Li, S.-M. Microbiology 2007, 153,
3409-3416.

(16) Yin, W.-B.; Yu, X;; Xie, X.-L.; Li, S.-M. Org. Biomol. Chem. 2010,
8, 2430—2438.

(17) Ding, W,; Lei, C.; He, Q.; Zhang, Q;; Bi, Y.; Liu, W. Chem. Biol.
2010, 17, 495-503.

(18) Lu, P.; Zhang, A.; Dennis, L. M.; Dahl-Roshak, A. M.; Xia, Y. Q;
Arison, B.; An, Z.; Tkacz, J. S. Mol. Genet. Genomics 2008, 273, 207—
216.

(19) Lackner, G.; Bohnert, M.; Wick, J.; Hoffmeister, D. Chem. Biol.
2013, 20, 1101-1106.

(20) Pockrandt, D.; Li, S.-M. ChemBioChem 2013, 14, 2023—2028.

(21) Yu, X; Xie, X; Li, S.-M. Appl. Microbiol. Biotechnol. 2011, 92,
737—748.

(22) Boubakir, Z.; Beuerle, T.; Liu, B.; Beerhues, L. Phytochemistry
2005, 66, 51-57.

(23) Fung, S.-Y.; Brussee, J.; van der Hoeven, R. A. M.; Niessen, W.-
M. A,; Scheffer, J.-J. C.; Verpoorte, R. J. Nat. Prod. 1994, 57, 452—459.

(24) Osorio, M.; Aravena, J.; Vergara, A;; Taborga, L,; Baeza, E;
Catalan, K; Gonzalez, C.; Carvajal, M.; Carrasco, H.; Espinoza, L.
Molecules 2012, 17, 556—570.

(25) Yu, X.; Zocher, G.; Xie, X.; Liebhold, M.; Schiitz, S.; Stehle, T.;
Li, S.-M. Chem. Biol. 2013, 20, 1492—1501.

(26) Woodside, A. B.; Huang, Z.; Poulter, C. D. Org. Synth. 1988, 66,
211-215.

DOI: 10.1021/np5009784
J. Nat. Prod. 2015, 78, 929-933



Friedel-Crafts Alkylation of Acylphloroglucinols Catalyzed by a

Fungal Indole Prenyltransferase

Kang Zhou, Lena Ludwig and Shu-Ming Li*

Institut fiir Pharmazeutische Biologie und Biotechnologie, Philipps-Universitit Marburg, Deutschhausstrasse 17a,

35037 Marburg, Germany. Fax: (49)-6421-2825365; Email: shuming.li@staff.uni-marburg.de

Content
Table S1: Conversions of 1a-3a by 13 purified fungal prenyltransferases...........cooceeveereiiieneniieneneneeeeeeee 2
Table 82; HR-EI-MS data.of enZyme: PLOGICES .. it siisi csssnrssessisriiissassasessisrstassasssansstsnsbosssonsarabtonsioss sonsavabisnsios sonnavabts 3
Table S3. '"H NMR data (500 MHz) of enzyme products (known compounds) in acetone-Ds (1b, 2b, and 3b) or
14075 vzl e (o1 B DITATI o BE: ) 4V I ) Ot ST O TR SR SN DO SO B OO Ut ORI 4
Scheme S1: Examples of polyprenylated acylphloroglucinols and their biosynthetic origins ............ccceeevvevereenee 5
Figure S1: Dependence of the product formation of 1a-7a on incubation times in the presence of DMAPP. .......... 6
Figure S2: HPLC chromatograms of the incubation mixtures of 1a-7a with AnaPT in the presence of GPP. .......... 7
Figure S3: "H NMR spectrum of 1b in acetone-Dg (500 MHZ)............coouevueeeermrrrereereesessessessessessesessssssssssssessssessons 8
Figure S4: '"H NMR spectrum of 2b in acetone-Dg (500 MHZ).............coovuevreemeeeeeereeeereeseeeesesessessesessssssessssssssssesens 8
Figure S5: '"H NMR spectrum of 3b in acetone-Dg (500 MHZ).............cooovuevereeeeeeeeeeeeeeeeeeeeeeeseeeeseeeseeeesee e aesesesees s 9
Figure S6: '"H NMR spectrum of 4b in methanol-Ds (500 MHZ) ...........cccooeueeeruemeeeeeeeeeeeeeeeeseeeeeseseesesee e 9
Figure S7: "H NMR spectrum of 4¢ in methanol-Da (500 MHZ) ..........ccooevrurveruereeieinireeeeseeesesessessesesssssssnes 10
Figure S8: "H NMR spectrum of 5b in methanol-Da (500 MHZ) ..........cccoeveurreeeereeeecrsrsseseeseesssessesseseesessessssenes 10
Figure S9: "H NMR spectrum of 6b in methanol-Da (500 MHZ) .............cocurrrvreieereeisireeseeseesssesses s sensenens 11
Figure S10: NOESY spectrum of 6b in methanol-Da (500 MHZ) .....c..coooiiiiiiiiiiiiiiiieiceeeeeeeee e 11
Figure S11: 'H NMR spectrum of 7b in methanol-Dya (500 MHZ) ...........cocooovurueeeeereeeeeeeeeeeeeeeeeeeseeessiesssenenanes 12
Figure S12: NOESY spectrum of 7b in methanol-Dy (500 MHZ) .....cc..oociiiiiiiiiiiiiiieieeteeeseeee e 12
Figure S13: 'H NMR spectrum of 7c in methanol-Dy (500 MHZ) ..........ccovevvueuemeieeceeeeeeceeseseseeeseseesesesesse e senas 13
Figure S14: NOESY spectrum of 7¢ in methanol-Dy (500 MHZ) .....c..coccovieiiiiiiniiiiiiiiiininiceeeeieneeeeeereneeeeeeen 13
Figure S15: Dependence of the product formation of the AnaPT reaction on the presence of (R)-
BEnZod1aZBPINCUTIONE. . caisseonmsms e i S s SR R s P S A e S P R S R i 14
Figure S16: Dependence of the product formation of the AnaPT reaction on the presence of la...........ccceeeeeee. 14
Figure S17: Dependence of the product formation of the AnaPT reaction on the presence of 2a.........c.cccecueeueeneee. 15
Figure S18: Dependence of the product formation of the AnaPT reaction on the presence of 3a.........cccccecueeueeneee. 15
Figure S19: Dependence of the product formation of the AnaPT reaction on the presence of 4a..........ccccceveneene. 16
Figure S20: Dependence of the product formation of the AnaPT reaction on the presence of 5a.........c.cccceveeenne. 16
Figure S21: Dependence of the product formation of the AnaPT reaction on the presence of 6a...........ccceeneee. 17
Figure S22: Dependence of the product formation of the AnaPT reaction on the presence of 7a.........c.cccceeeenenee. 17

Figure S23: Dependence of the product formation of the AnaPT reaction on the presence of DMAPP with 1a as
aromalicSUbStalCme o0 = momvosm o mwcrsosme ez o L oRReE T RN S AT OERIE O e e ks, Sy S5 can 18
Figure S24: Dependence of the product formation of the AnaPT reaction on the presence of DMAPP with 2a as
ATOTNALIC STTDSTTAIC s e mrses cenmr oo T S A R S . o S S S B 18



Table S1: Conversions of 1a-3a by 13 purified fungal prenyltransferases

Prenyltransferases

Conversion yield (%)

la 2a 3a

CdpC2PT! 1.23 2.39 2.43

CdpC3PT? 5.66 0.46 1.41
Cyclic dipeptide AnaPT? 14.07 14.38 12.74
Prenyltransferases CapNET* 0.65 027 047
FtmPT1° 0.23 1.16 0.72
BrePT® 0.24 0.41 <0.01
CTrpPT’ 0.13 0.25 <0.01
6-DMATSs,* 0.55 0.39 <0.01

Tryptophan 7-DMATS’ 10.08 10.09 5.84
prenyltransferases 5-DMATS'® <0.01 <0.01 <0.01
FgaPT2"! 6.45 0.96 0.49
Tyrosine SirD'? 0.15 0.43 <0.01
prenyltransferases TPT> 0.14 0.12 <0.01

The enzyme assays (100 pL) contained 1a-3a (1 mM), CaCl, (5§ mM), DMAPP (2 mM), 50 mM Tris-HCI (pH
7.5), glycerol (1.0-6 % v/v), dimethyl sulfoxide (DMSO, 5 % v/v) and purified recombinant proteins (40 pg of
FgaPT2 or 5-DMATS and 5pg of other enzymes). The reaction mixtures were incubated at 37°C for 16h.
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Table S2: HR-EI-MS data of enzyme products

Product  Chemical formula Calculated M, Measured (M") Deviation (ppm)
1b Ci5H2004 264.1362 264.1369 2.6
2b Ci6H204 278.1518 278.1515 1.1
3b CigHi1304 298.1205 298.1246 13.7
4b Ci1iH1403 194.0943 194.0952 4.6
4c Ci16H203 262.1569 262.1548 8.0
5b C12H140s5 238.0841 238.0836 2.1
6b C13H1604 236.1048 236.1055 3.0
7b C13H1603 220.1099 220.1093 2.7
Tc C13H1603 220.1099 220.1098 0.5

a7



Table S3. 'H NMR data (500 MHz) of enzyme products (known compounds) in acetone-D¢ (1b, 2b, and 3b)
or methanol-D4 (4b, and 4c)

10

a4

\1OH089 B oH o v oH O
, 1 . 5N 10
1b 2b 3b
Pos. ou (J in Hz) on,(J/ in Hz) Ou, (J in Hz) on, (J in Hz) Ou, (J in Hz)
3 / / / 5.81,s /
5 6.06, s 6.07,s 6.04, s 5.81,s /
6 y / / / 5.93,s
8 3.98, sept (6.6) 2.94,d (6.7) / / /
9 1.12,d, (6.6) 2.23, m 7.59, m / /
10 1.12,d, (6.6) 0.94,d (6.7) 7.40, m / /
11 / 0.94,d (6.7) 7.47,tt (7.4, 1.3) / /
12 / / 7.40, m / /
13 / / 7.59, m / /
I’ 3.22,d(6.8) 3.23,d(7.1) 3.29,d (7.1) 3.14,d (7.2) 3.23,d(7.2)
22 5.20, m 522, m 527, m 5.17, m 5.17, m
4 1.61,s 1.61,s 1.65,s 1.62,s 1.65,s
5’ 1.72, s 1.73, s 1.76, s 1.71, s 1.74, s
1” 3.23,d(7.2)
27 5.17, m
4> 1.65, s
5" 1.74, s

Chemical shifts (3) are given in ppm and coupling constants (J) in Hz.
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prenyltransferase OH O

HO SCoA -

3x > , OPP R

HO OH
/lk phlorisobutyrophenone (1a):
R”™ “SCoA R=GH{CH3) |
phlorisovalerophenone (2a):

isobutyryl-CoA: R=CH(CH5), R=CH,CH(CH3), _
isovaleryl-CoA: R=CH,CH(CHa), phlorbenzophenone (3a): prenylated acylphloroglucinol
benzoyl-CoA: R=CgHs R=CgHs

further prenyltransferases and other ‘ O
modification enzymes HO OH HO OH

I —_—

8 N\

grandone lupulone hyperforin

Scheme S1: Examples of polyprenylated acylphloroglucinols and their biosynthetic origins
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Figure S1: Dependence of the product formation of 1a-7a on incubation times in the presence of DMAPP.

The enzyme assays (100 pL) contained 1a-7a (1 mM), CaCl, (5§ mM), DMAPP (2 mM), 50 mM Tris-HCI (pH
7.5), glycerol (1.0-6 % v/v), dimethyl sulfoxide (DMSO, 5 % v/v), and 50 ug purified AnaPT. The reaction
mixtures were incubated at 37 °C.
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Figure S2: HPLC chromatograms of the incubation mixtures of 1a-7a with AnaPT in the presence of GPP.

The enzyme assays (100 pL) contained 1a-7a (1 mM), CaCl, (5§ mM), GPP (2 mM), 50 mM Tris-HCI (pH 7.5),
glycerol (1.0-6 % v/v), dimethyl sulfoxide (DMSO, 5 % v/v), and 50 pg purified AnaPT. The reaction mixtures
were incubated at 37 °C for6or 16 h

51



8€CL 0—

LZLL'L
omm_\ev

PR AN
€921 —

H-9
H-10

H-4'
H-5'

OO0

88167y

solent

B8 L

0

II7E
1522€
sz e/
£005°€
COVE'E
88GE'S
£196¢
2086'
TPe6'E
0100
€120

018l'S
6261°G
GG61'S
690C°G
160T°G
vLeT's

1£90'9
ano.wv"

gLz e—

1GZT e~

L0

322 3.19

1 (ppm)

325

HS

H-1'
x|

H-2"

LJMJWL_

EpE9

=80¢
=66

=10¢C

%mmvo

F960

=000

25 20 15 1.0 05

30

35

50 45

55

6.0

70 65

75

tone-D¢ (500 MHz)

1 ace

'H NMR spectrum of 1b

Figure S3

2.E60

90560

9919'L
o819
ner”
00502

Loc ).

H4

H-5'

S60CC
62CCC
79eT T
96%C T
0£9C¢C

LPE6 T
9iv6T7
£0ZZ€
ovmwmw
0408€

LE08°E—

161G
261G
1007 61
607G
6502 S
6307 S 1
LT
SPLT G
m:m.m\__
1022 S
762z s
7977 ¢
6927 S
LLET S
ereT S
89/0°9—

H-8

solfent

€0z e—

IpeT e—

H-5

Ll

319

322

325

1 {ppm)

H-1

J jU N oo

=79
=90'¢
=867

Frzi

9l
Aww.v

=/

Fouu

=00

05

10

1.5

20

25

30

40

45

50

55

6.0

6.5

tone-D¢ (500 MHz)

1 ace

'"H NMR spectrum of 2b

Figure S4

52



199 |
1951 r/
vIGLL

LIV0Ty

Ha'
H-5'

L O
e T

00S0C
G0S0C

V68 C—

6€8C°¢
mw@m.mv

9057°S
GEST'S
£957°G
PBST'S
7797°S
0597°G
6197°G
80iT°S
984TS
$617°S
£787°S
7587°S
19v0'9—
5671 L7
98¢ /1
98e L
196€ £
066€ L1
PLOY 2
Pl LA
9SLY 2
SIGF L
009t 2
129% 1]
104t 1
8rip i)
££85° /1
198G £
0009'Z1
1209°2°

S

6e8C e~

86T e—

solyent

-66'

T T T T T 1

330 320 328 327 326 3.

T

331

1 {ppm)

H-5

H-1'

»G6T
hpgz

=661

Erll

FoLL

vavm

601
Rgpz

05

35 30 25 20 15 1.0

40

80 75 7.0 65 6.0 55 50

85

tone-D¢ (500 MHz)

1 ace

'H NMR spectrum of 3b

Figure S5

GLLO~
080L'1—

H4'

H-5'

LZrl'e
verl'e
i
£GPl '€
8kl'e

splvent

0zsl'e

cvmv .o%
QRGLC

€5G1L'S
L8GL' G

H.0

9e9l'S
1991 G~
G691 G
€TLL'S
808l'S
L781°G
0981

7808 G—

H-3

H-5

"

A

>l
=00¢

=l7¢

=6l

0T

5.0

thanol-D4 (500 MHz)

1n me

'H NMR spectrum of 4b

Figure S6

53



©O©m OO ® s N~

O I~ rel =1 - I~ I~

o m QO M~ O N T W0
>3 ==2 1 ~ &
ww www [y2] —
v ~ v \

o =

o -

& & sfivent

yel o)

| |

Ha"
H{o H4| | Hs
H-5'
=
-
—_—
&
AN IS
.26 3.24 o 3.22
f1 (ppm)
H2" N
. H-2'
He H-1
| H-1'
1 ' s [
~ =T - = LEY
[(e) . o [() o
o o ™ © w0
0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
f1 (ppm)

Figure S7: 'H NMR spectrum of 4¢ in methanol-D; (500 MHz)

o~ T N WD gio o o ™M
o~ @) O © g — N
gl — O O —|© WO Mo
w ww W oo ™M L o o
| ~ N \ !
o o
w =
© w
, ™

H-5"

H-4"
[\o]
@

T T T T T
322 320 318 316 3.4
f1 {ppm}
sohfent
'120
H-5 b
H-1"
H-2"
Ajj\w._,w..,.
o i T T i
© [\2} [\ NOoO
5] =} =} (=¥
o o - [holp)
r T T T T T T T T T T T T T
0 6.5 6.0 5.5 5.0 4.5 4.0 a5 3.0 2.5 2.0 1.5 1.0 0.5
f1 (ppm)

Figure S8: 'H NMR spectrum of 5b in methanol-D4 (500 MHz)



< o oo - ot o + P~ <t
[Ce] < O M- O N ~— A el o |
o~ oy N g — 4O I~ d o ©
= SSg HHS P =&
[Ce] wwy ™o [y -
S o \ 7
~ ™
o~ -—
& =
P © h-7
| Heg'
solyent
H.5'
1
o
&
3.285  3.275  3.265  3.255 Ho
f1 (ppm) 3
=
H-3
X
R
H-2
Y i ¥ ! )y
= — @ © I~ 0o
o o (=] O 0 —
o ™~ (o] M~ M
- - r = T = T v —— ~ e : :
7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 " 3.0 s 2.0 715 1.0 0.5
f1 (ppm)
Figure S9: 'H NMR spectrum of 6b in methanol-Ds (500 MHz)
l JL " L »
1
2
3
4
5
-6
=T
T T T T T T T T T T T T T T T T I-8
8.0 1.6 7.0 6.5 6.0 5.6 5.0 4.5 3.5 3.0 2.6 2.0 1.6 1.0 0.5 0.0

4.0
£2 (om)
Figure S10: NOESY spectrum of 6b in methanol-D4 (500 MHz)

11
55



£2 (ppm)

Figure S12: NOESY spectrum of 7b in methanol-D4 (500 MHz)

12
56

0 — Q — W0 I < omMmm - 8 o~
0 N (=5 3 s e, 2. O o < g ~ <
r—~ © 0 WO M~ O < — N ™M g el N
@@ 0w N N oI ¥ P~
[(e(a] [(el (e} 0w w [hoN s Rl ls. =
v ~- NS
™ o
@ g
T @
o~ N
o™ o™
H-7
Ha'
solyent H-5'
T
w
©
3255 3245 3235 3225
1 (ppm)
Ha Hio
Ha H-1'
H-2'
psth A ‘-“Ld yALL‘L«—_M—
¥ ¥ " " 1 ¥
o (2] w w o) o)
< s o < < =,
. — o o™ ™~ [(=]
75 70 65 6.0 55 50 45 4.0 35 3.0 25 20 15 1.0 0.5
1 {(ppm)
Figure S11: 'H NMR spectrum of 7b in methanol-D4 (500 MHz)
a l I LJL,L jl IA A l | e -
; v B
\Y °
- | (pae 324y [30 =
—_— & L
J .50
..
(246, 3.24) L3
- = = 2.6 2.5 2.4 2.3 ———
| £2 (opm) 3
f=3
g &
&
P
—_— el SIS L5
L6
—
— _7
r T T T T T T T T T T T T T T T 5—8
8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0



O MO~ O v P~ g o= L w0 w0
NP~ ~NO ™ O o [32] of DO
=N £ oh D M — O — ™) o N
$® BT S oA o NS u ™~
OO OOoo w0 WL ol 2 N0 ls -
oo~ ~l— N\ N/
» ~

O o

T 2]

N ~

™ ™

|

=

0 sgivent
H7 Hed
H-5'
1

ool
(o]

ol

T

T T T T

3.255 3.245 3.235 3.225 B

f1 (ppm)

o H-2'
x
i i it ¥ ¥ N
(2] o [e] (o] o~ o~
& S 3 > o X @
o -— L L ] ™~ NN
0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.
fl (ppm)
Figure S13: 'H NMR spectrum of 7¢ in methanol-D4 (500 MHz)
L ll JJJ 1 | J‘L
A AN »—2
- 2.4 & -1
(650,253) < N
2.8 & ; o
- 6.9 6.8 6.7 6.6 6.5 6.4 rl
—= 2 Coom) (6.50, 2.53)
— L2
] o L3
%‘ _4 B
5
. - s 2
_6 m
3 . L7
v
k Lg
— ¢
kg
A H10
i h11
)
' L2
il
14 13 12 11 10 9 8 7 6 4 3 2 1 0 -1 -2 -3 -4

5
£2 (ppm)

Figure S14: NOESY spectrum of 7c¢ in methanol-D4 (500 MHz)

13
57



600+
— )
e .
4004
£ Ky=0.22 mM
£
E koam1.72 8
g 200- cat—
S
>
0 T T 1
0 2 4 6
(R)-benzodiazepinedione [mM]
Hanes-Woolf plot
0.0154
Ky~0.17 mM 4
0.010
2
@,
0.005- ®
0.000+ T T 1
0 2 4 6
[s]

Eadie-Hofstee plot
600-

Kyy=0.26 mM

»

o

=]
1

200+

v[nmol mg"I min"']

1000 1500 2000

vi[s]

0 500

Lineweaver-Burk plot
0.025-

00201 Ky=0.24 mM

0.015

1v

0.010

0.005

50
1/[s]

Figure S15: Dependence of the product formation of the AnaPT reaction on the presence of (R)-

benzodiazepinedione
Eadie-Hofstee plot
44 5-
é: 3 "_: #
£ £ Ky=0.23 mM
= Ky=0.22mM < 3-
=] 24 =]
£ £
3 k.2=0.012 s S 21
£ £
£ 11 Sqd
> >
8
o4 T T ) 0 T r T ]
()} 1 2 3 0 5 10 15 20
substrate: 1a, conc.[mM] vl[s]
Hanes-Woolf plot Lineweaver-Burk plot
0.8 o
06{ Ky=0.26mM i K,=0.18 mM
>
E 0.4+ 5
14
0.2
0.0+ T T | 0+ T T T T !
0 1 2 3 0 10 20 30 40 50
[s] 1/[s]

Figure S16: Dependence of the product formation of the AnaPT reaction on the presence of 1a

14
58



[s]v

61
e
£ 4
o Ky=0.33 mM
=
2 2 ksa=0.017 s
=
(] ; T ,
(] 1 2 3
substrate: 2a, conc.[mM]
Hanes-Woolf of plot
0.6+
Ky=0.31 mM
0.4
2
0.2
0.0 T T ]
(] 1 2 3
[s]

Eadie-Hofstee plot

o
1

‘%;‘ Ky=0.31 mM
E 44
‘Tcn
£
£ 21
i
> [ ]
0 T T T 1
0 5 10 15 20
vi[s]
Lineweaver-Burk plot
1.5-
Ky=0.36 mM
1.0
0.5
0.0+ T T T T 1
0 5 10 15 20 25

1/[s]

Figure S17: Dependence of the product formation of the AnaPT reaction on the presence of 2a

Eadie-Hofstee plot

8- 8-
g 6 “c 6 Ky=0.23 mM
€ £
D 4] ‘D 4]
E Ky=0.24 mM E
2 2
£ 2 kc20.0015 s £ 24
> >
o T T . (] T . T .
(] 2 4 6 (i} 5 10 15 20
substrate: 3a, conc.[mM] vi[s]
Hanes-Woolf plot Lineweaver-Burk plot
1.5- 25-
Ky=0.23 mM 2.0
1.0 M Ky=0.26mM
> 1.5
= >
2 =
1.0
0.5 <
0.5-
0.09 s . . 0.0 r . T : .
(] 2 4 6 (] 10 20 30 40 50

[s]

1/[s]

Figure S18: Dependence of the product formation of the AnaPT reaction on the presence of 3a

15
59



Eadie-Hofstee plot

1.0+ 1.0+
‘.TE 0.8 ‘TE 0.8+ { KM= 1.51 mM
E E I
< 0.6- ~_ 0.64
£ £
<_E) 0.4 Ky~ 1.64mM E 0.4
(= = -1 (=
< 0.2 Kea= 0.0023s S 0.2

®
0.07 . , , . 0.0 : T : S s
0 5 10 15 20 0.0 0.1 0.2 0.3 0.4 0.5
substrate: 4a, conc.[mM] vi[s]
Hanes-Woolf plot
40+ Lineweaver-Burk plot
304
304

Ky=1.56 mM

1Iv

Ky= 1.86 mM
204

10

Figure S19: Dependence of the product formation of the AnaPT reaction on the presence of 4a

Eadie-Hofstee plot

2.0- 2.0+
e 1.5 g 1.5 { K;,~=0.90 mM
E E M-
g 1.0 Ky=0.87 mM £ 1.0 3
g k;4=0.0040 s°" 2
£ 05 caf=>- s £ 051
> >
0.0 T T T T | 0.0 T T T 1
()} 2 4 6 8 10 0.0 0.5 1.0 1.5 2.0
substrate:5a, conc.[mM] vi[s]
Hanes-Woolf plot ;
P Lineweaver-Burk plot
81 25-
Ky=0.81 mM

1Iv

50

1/[s]

Figure S20: Dependence of the product formation of the AnaPT reaction on the presence of 5a

16
60



v[nmol mg"I min'1]
N
)

Ky=0.42 mM

koa=0.012 5

0 T T T T 1
0 2 4 6 8 10
substrate: 6a, conc.[mM]
Hanes-Woolf plot
41
Ky=0.22 mM ]
34
2
ok
[ ]
14
0 T T
0 5 10

[s]

1Iv
‘s

»
1

w
1

v[nmol mg"I min"']
- N
) )

o

Eadie-Hofstee plot

Ky=0.48 mM

o

vi[s]

Lineweaver-Burk plot

Ky~0.55 mM

10 20 30 40 50
1/[s]

Figure S21: Dependence of the product formation of the AnaPT reaction on the presence of 6a

1.5+
i .
‘_E 1.0 °
g» Ky=0.52 mM
3 o5 kez=0.0037 s°"
S
>
0.0 T T T T 1
0 2 4 6 8 10
substrate:7a, conc.[mM]
Hanes-Woolf plot
15+
104 Ky=0.42 mM ®
2
@,
51 @
0 T T T T 1
0 2 4 6 8 10

[s]

1Iv

Eadie-Hofstee plot

1.5-
‘:-E ] -
E 0] Ky=0.62mM
‘Tcn
£
°
2 0.5
S
>
0.0 T T
0.0 0.5 1.0 1.5 2.0
vi[s]
Lineweaver-Burk plot
25+
20

154

104

K= 0.52 mM

10 20 30 40
11[s]

Figure S22: Dependence of the product formation of the AnaPT reaction on the presence of 7a



w
1

[ ]
L °
£
£ 2
“-g, Ky=0.21 mM
kT K,4=0.0084 s
c
s
0 T T T T 1
0.0 0.5 1.0 1.5 2.0 25
DMAPP [mM]
Hanes-Woolf plot
1.0
081  K,=0.21 mM ®
> 0.6+
o)
0.4
0.2+
0.0+ T T T T 1
0.0 0.5 1.0 1.5 2.0 25

1Iv

v[nmol mg™! min™]

Eadie-Hofstee plot

[ ]
° Ky=0.24 mM
2. (]
]
14
[ ]
e L]
0 T .
0 5 10 15
vi[s]
Lineweaver-Burk plot
Ky,=0.18 mM °
L]
10 20 30 40 50

1[s]

Figure S23: Dependence of the product formation of the AnaPT reaction on the presence of DMAPP with
1a as aromatic substrate
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ABSTRACT: Aspergillus terreus aromatic prenyltransferase (AtaPT) catalyzes predominantly C-monoprenylation of
acylphloroglucinols in the presence of different prenyl diphosphates. With dimethylallyl diphosphate (DMAPP) as prenyl
donor, gem-diprenylated products 1D3, 2D3, and 3D3 were also detected. High conversion of 1D1 to 1D3, 2D1 to 2D3, and 3D1
to 3D3 was demonstrated by incubation with AtaPT and DMAPP. The first example of gem-diprenylation by a member of the

dimethylallyltryptophan synthase superfamily is provided.
Prenylated acylphloroglucinols (APs) are characteristic
constituents of several plant families. Compounds of this
class have fascinating chemical structures and intriguing
biological and pharmacological activities.' > Main structural
features of prenylated APs are highly oxygenated and densely
decorated with prenyl such as dimethylallyl and geranyl

moieties. Polyprenylated APs like a- and f-bitter acids (Figure
1) from Humulus lupulus (Cannabinaceae), commonly known

)\/ oH O i
Ié[ > ‘ O
L ;/ Y\ OH

a- bitter acids B-bitter acids
cohumulone (R =CH(CH3);)  colupulone (R = CH(CHj3),)
humulone (R = CH,CH(CH3;),;) Ilupulone (R = CH,CH(CH3),)

cIuS|anone

Figure 1. Examples of polyprenylated APs from plants.

as hops, are considered as multipotent bioactive compounds
including their sedative effects.* Clusianone (Figure 1) and its
7-epimer from different plants such as Garcinia brasiliensis and
Clusia torresii, both from the family Clusiaceae, exhibit anti-HIV
and antitumor activities.” > An exceptional structure feature of
polyprenylated APs is the gem-diprenylation at C-atoms.
Biogenetically, cohumulone and colupulone are prenylated
phlorisobutyrophenone (PIBP, 1, Scheme 1), while humulone
and lupulone prenylated phlorisovalerophenone (PIVP, 2,

W ACS Publications  © 2016 American Chemical Society
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Scheme 1. Prenylation Steps in the Biosynthesis of f-Bitter
Acids in Humulus lupulus
.

metabolon of metabolon of

HO. OH
HIPTIL  +o H %
\Q/\(“ | HIPTIUHIPTZ 1o _L o HIPTILHIPT2. o
OH O i A~ R R R
v ‘ OH O T Ll P
acylphloroglucinols dimethylallyl- di-dimethylallyl- B-bitter acids

R = CH(CH3), (PIBP, 1)  acylphloroglucinols

acylphloroglucinols
R = CH,CH(CHy), (PIVP, 2)

Scheme 1). Clusianone carries the skeleton of phlorbenzophe-
none (PBZP, 3, Scheme 2). The AP cores of these compounds
are tetraketides and formed by condensation of three malonyl-
CoA molecules with different start units, i.e., isobutyryl-CoA in
the case of 1, isovaleryl-CoA in the case of 2, and benzoyl-CoA
in the case of 3. The respon51ble polyketide synthases have
been characterized."”™"* In comparison, little is known about
the enzymes for the multiple prenylation steps. Only the
prenyltransferases involved in the biosynthesis of bitter acids in
H. lupulus have been reported.'”"* Tsurumaru et al."’ reported
the overproduction of the membrane-bound prenyltransferase
HIPT-1 from H. lupulus and its biochemical characterization. It
was found that this enzyme catalyzed the prenylation of 2 in the
presence of DMAPP and also accepted 1 as prenylation
acceptor. Recently, Li et al.'” identified two membrane-bound
prenyltransferases HIPTIL and HIPT2 from H. lupulus.
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Scheme 2. Prenylations of 1—3 by AtaPT in the Presence of
DMAPP, GPP, and FPP
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Coexpression of different genes in Saccharomyces cerevisiae
revealed that HIPTIL and HIPT?2 catalyzed three sequential
prenylation steps in the f-bitter acid pathway. HIPTIL was
confirmed to be an orthologue of HIPT1 identified by
Tsurumaru et al.'® Interestingly, HIPT2 was only active when
it was co-expressed with HIPT1L. This led to the hypothesis
that HIPT1L and HIPT2 form a metabolon as the catalytic
unit."

In recent years, significant progress has been achieved for the
members of the dimethylallyltryptophan synthase (DMATS)
superfamily, mainly from ascomycetous fungi.'* These soluble
enzymes use predominantly tryptophan and other indole
derivatives as prenyl acceptors but also accept a broad spectrum
of aromatic compounds as substrates.'* Diprenylation of indole
derivatives by one DMATS enzyme was observed in several
cases.">”"” However, a gem-diprenylation has not been reported
for such enzymes or for other soluble prenyltransferases. The
sole example of gem-diprenylation of an aromatic substrate was
described for the metabolon of HIPT1L and HIPT2 mentioned
above.'?

In a previous study,'® we demonstrated the prenylation of
APs 1-3 by the soluble fungal prenyltransferase AnaPT from
Neosartorya fischeri, which catalyzed the prenylation of (R)-
benzodiazepinedinone, a cyclic dipeptide of tryptophan, and
anthranilic acid."® The observed activities of AnaPT toward
these substrates are much higher than that of a microsomal
fraction containing the overproduced prenyltransferase
HIPT1."”” However, only monoprenylated derivatives were
obtained in the presence of DMAPP, and the conversion yields
of 1—3 with GPP as prenyl donor were very low.'®

Very recently, a soluble prenyltransferase AtaPT from
Aspergillus terreus strain A8-4 was demonstrated to carry an
unprecedented promiscuity toward diverse aromatic acceptors
and prenyl donors including DMAPP, geranyl diphosphate
(GPP), and farnesyl diphosphate (FPP). AtaPT shares high
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sequence identity with the hypothetical protein EAU34068
encoded by ATEG_04999 from A. terreus NIH2624 and differs
at only three residues. Among the tested aromatic substrates,
AtaPT also consumed 3 in the presence of DMAPP, GPP, and
FPP, although no noteworthy sequence homology exits
between AtaPT and HIPTIL or HIPT2. These reactions
were not studied in detail.”’

In this study, we investigate the behavior of AtaPT toward
the three APs 1-3, which serve as precursors of most
polyprenylated APs," ™ in the presence of DMAPP, GPP,
and FPP. We hope to increase the structure diversity of
prenylated APs by high conversion yields with GPP and FPP as
well as by multiple prenylations, especially gem-diprenylations.

The coding sequence of AtaPT orthologue from A. terreus
DSM 1958 was amplified by PCR and cloned into the
expression vector pQE-70, resulting in the expression construct
pCaW?7 (see the Supporting Information for details). Sequence
analysis revealed that differences at only four residues were
found between AtaPT and its orthologue from DSM 1958.
$230, T290, A292, and N373 in AtaPT were replaced by A230,
K290, E292, and S373 in that of strain DSM 1958, respectively.
Because these residues are not located in the active sites,” it
can be expected that the orthologue from DSM 1958 will fulfill
the function of AtaPT, and we therefore use hereafter the name
AtaPT also for this enzyme. Gene expression in E. coli and
purification of the soluble protein resulted in a predominant
band on SDS-PAGE with a migration above the 45 kDa size
marker, corresponding well to the calculated mass of 48.7 kDa
for AtaPT-Hisg. The protein yield was calculated to be 29 mg of
purified protein per liter of culture (see the SI for details).

To compare the activities of AnaPT mentioned above and
AtaPT toward 1-3, incubations on a 100 uL scale, containing
20 ug of protein, DMAPP, GPP, or FPP, were carried out at 37
°C for 2 h. HPLC analysis revealed that 1—3 were much better
converted by AtaPT than by AnaPT in all enzyme assays. Total
conversion yields of 63.67 + 2.43, 23.4 + 1.26, and 27.35 +
0.25% were calculated for 1, 2, and 3 with AtaPT and DMAPP,
respectively. These values are significantly higher than those of
AnaPT, with conversion yields of 3.64 + 0.77, 4.33 + 0.52, and
7.66 + 0.49%, respectively (Scheme 2; see the SI for details).
The poor acceptance of GPP by AnaPT was confirmed in this
study, and product formation was only detected in the reaction
mixtures of 1 and 3 with GPP. In contrast, GPP served as a very
good prenyl donor for the AtaPT reactions, with product yields
of 32.85 + 2.58, 47.62 + 1.83, and 54.72 + 0.42% for 1, 2, and
3, respectively (Scheme 2; see the SI for details). FPP was
accepted by AtaPT with conversion yields of 7.19 + 1.57, 6.66
+ 0.51, and 6.27 + 0.09% for 1, 2, and 3, respectively (Scheme
2; see the SI for details).

Only one product each was detected in the AnaPT reactions
of 1-3 with DMAPP as well as those of 1 and 2 with GPP.
These products were identified as predominant ones in the
AtaPT reactions. Isolation and structure elucidation by NMR
and MS analyses (see the SI for details) proved the main
products of the AtaPT reactions to be monoprenylated
derivatives; that is 1D1— 3D1 with DMAPP, being consistent
with the AnaPT products,'® 1G1—3G1 with GPP, and 1F1—
3F1 with FPP (Scheme 2, see the SI for details).

Additional product peaks with longer retention times were
also detected in the reaction mixtures of AtaPT with 1—3 in the
presence of all three prenyl donors (see the SI for details). The
intensities of these peaks are clearly increased in the incubation
mixtures with S0 pg of protein at 37 °C for 2 h, which were

DOI: 10.1021/acs.orglett.6b03594
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detected by LC—MS analysis (Figure 2). In the incubation
mixtures of 1-3 with GPP and FPP, two monoprenylated

LC—MS analysis revealed clear conversion by detection of the
gem-diprenylated derivatives 1D3, 2D3, and 3D3 as predom-
inant products, with product yields of 4.88 + 0.15, 57.18 +
1.07, and 3331 =+ 0.23%, respectively (Figure 3). Better
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Figure 2. LC—MS analysis of the reaction mixtures of DMAPP, GPP,
or FPP with 1 (A), 2 (B), and 3 (C) after incubation with S0 ug of
AtaPT per 100 pL at 37 °C for 2 h. Red lines are UV absorptions, and
black lines are extracted positive-ion chromatograms (EIC).

derivatives each were detected. In addition to the C-prenylated
1G1-3Gl1 and 1F1-3F1, one O-prenylated derivative each,
1G2, 2G2, 3G2, 1F2, 2F2, or 3F2 ,was identified by NMR and
MS analyses as a minor product after isolation and structure
elucidation (Scheme 2 and Figure 2; see the SI for details).
In the incubation mixtures of 1 with DMAPP, two mono-
and two diprenylated derivatives were detected. In comparison,
three mono- and three diprenylated derivatives were found in
the reaction mixture of 2 with DMAPP and one mono- and one
diprenylated products of 3 with DMAPP. Isolation and
structure elucidation proved the presence of O-prenylated
1D2 and 2D2 in the reaction mixtures of 1 and 2, respectively.
Interestingly, gem-diprenylated derivatives 1D3, 2D3, and 3D3
were identified in the reaction mixtures of 1, 2, and 3,
respectively (Figure 2 and Scheme 2; see the SI for details).
These results proved the ability of AtaPT for a gem-
dipenylation of acylphloroglucinols and encouraged us to
investigate the conversion of the monoprenylated 1D1, 2D1,
and 3D1 by AtaPT. 1D1, 2D1, and 3D1 were then incubated in
the presence of DMAPP with S0 pg of AtaPT at 37 °C for 2 h.
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diprenylated derivative of the reaction mixtures with 1D1 and
3D1 could not be isolated and identified. However, on the basis
of their retention times and UV spectra together with LC—MS
data, it can be speculated that these compounds are also C- and
O-diprenylated derivatives.

These results provide evidence for successive diprenylations
of 1, 2, and 3 by AtaPT, which was also confirmed by time
dependence of the product formation in the incubation
mixtures of 2 and 3 with DMAPP. The formation of 2D3
and 3D3 increased continuously, while 2D1 and 3D1 reached
their maxima in short time and decreased after that (see the SI
for details). No product formation was detected in the
incubation mixtures of 1D1, 2D1, and 3D1 with AnaPT and
DMAPP under the same conditions (data not shown).
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As mentioned above, no diprenylated product was detected
in the incubation mixtures of AtaPT with 1—3 and GPP or FPP
(Figure 2 and Scheme 2). This was confirmed by incubation of
their C-monoprenylated derivatives. Product formation was not
observed for the reaction mixtures of 1G1, 2G1, and 3G1 with
AtaPT in the presence of GPP or those of 1F1, 2F1, and 3F1
with FPP (Scheme 3). Incubation of 1D1, 2D1, and 3D1 with
AtaPT and GPP or FPP did not result in product formation. A
previous study showed that AtaPT also catalyzed C-
diprenylations of several aromatic acceptors in the presence
of GPP and FPP, although no gem-prenylated products were
detected.” No formation of diprenylated 1—3 with these
donors resulted from their orientations in the reaction cavity.
No product formation was detected by LC—MS analysis after
incubation of 1D2 and 2D2 with S0 pg of AtaPT and DMAPP
at 37 °C for 2 h (Scheme 3), excluding the possible formation
of C- and O-diprenylated derivatives from O-monoprenylated
products.

To obtain more insights into the catalytic efficiency of the
tetrameric AtaPT, kinetic parameters including Michaelis—
Menten constants (Ky;) and turnover numbers (k.,), were
determined at pH 7.5 for 1, 2, and 3 in the presence of
DMAPP, GPP, and FPP as well as DMAPP with 1 and GPP
with 3 (see the SI for details). The catalytic efficiency of AtaPT
toward 1 is 32-fold of that of AnaPT in the presence of
DMAPP. compound 1 was better consumed by AtaPT in the
presence of DMAPP and FPP than 2 and 3. Compound 3 was
most efficiently consumed in the presence of GPP. The
determined k,/Ky; values for 1—3 are in the range of 170—300
s7' M in the presence of GPP and between 17 and 37 s
M in the presence of FPP. With 1 as acceptor, a 95-fold k,/
Ky value of that of AnaPT was determined for DMAPP with
AtaPT (see Table S8 for details).

In conclusion, we have provided in this study the first
example of gem-diprenylation of APs by a member of the
DMATS superfamily, proving their unprecedented application
potential. AtaPT could be an interesting candidate for
production of polyprenylated APs like A-bitter acids by
synthetic biology.
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I. Experimental Section

Chemicals

DMAPP, GPP, and FPP were synthesized according to the method described for GPP reported
previously.!  Phlorisobutyrophenone (PIBP, 1), phlorisovalerophenone (PIVP, 2), and

phlorbenzophenone (PBZP, 3) were synthesized according to protocols described previously.>

Cultivation of Aspergillus terreus for DNA isolation

A. terreus DSM 1958 was purchased from German Collection of Microorganisms and Cell Cultures
(DSMZ) and cultivated in 300 mL cylindrical flasks containing 100 mL YME medium (yeast extract:
4.0 gL', glucose monohydrate: 4.0 g L™!, and malt extract: 10.0 g L") at 30 °C for 5 days in darkness
for DNA isolation.

DNA propagation in E. coli and DNA isolation from fungi

Standard procedures for DNA isolation and manipulation in E. coli were performed as described.® To
isolate genomic DNA from A. terreus, the mycelia of a 5 day-old culture were collected and washed
with phosphate-buffered saline consisting of 137 mM NaCl, 2.7 mM KCl, I mM NaxHPOg, and 0.18
mM KH,PO4, pH 7.3. Genomic DNA was isolated according to a method described previously.*

Amplification of sequence coding forAtaPT (accession number KP893683) orthologue from A.
terreus DSM 1958

The ATEG 04999 orthologue is composed of two exons of 1148 and 127 bp, interrupted by an intron
of 48 bp. The two exons were amplified separately by PCR in a first round and then combined in a
second round by using the PCR products from the first round as templates and primers. The High
Fidelity PCR kit (Roche) was used for this purpose. Two primers CaW_04999-1 (5'-
AAGCATGCTCCCCCCATCAGACAGC-3") and CaW_04999-3 (5'-
TTCTTGGTTTGCGAGATATCCACATTGGGAAATTTCGCCTTGAGTTCATC-3") were used
for amplification of the first exon and CaW_04999-2 (5'-
GATGAACTCAAGGCGAAATTTCCCAATGTGGATATCTCGCAAACCAAGAA-3) and
CaW_04999-4 (5'-CCGGATCCCACACGTGCGACATTTC-3") for the second exon. Bold letters in

CaW_04999-1 and CaW_04999-4 represent mutations inserted into the original genome sequence in
order to create the restriction sites Sphl and BamHI for cloning in pQE-70. The underlined letters in

CaW_04999-2 and CaW_04999-3 indicate overlapping sequences for fusion.

S2
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Gene cloning, overproduction and purification of AtaPT

The generated PCR fragment consisting of the coding region was cloned in pGEM-T Easy and
sequenced. After confirming the sequence, the insert was released by restriction with Sphl/BamHI
and recloned in pQE-70 vector, resulted in the construct pCaW7 for expression in E. coli.

For AtaPT overproduction with pCaW7, E.coli M15 [pREP] cells were cultivated as described
previously.® Protein purification was carried out according to the procedure described by Yin et al.’

The purity of the obtained protein was proven on SDS-PAGE (Figure S1).
Enzyme assays

The enzyme assays (100 pL) contained 1 mM of acylphloroglucinols 1, 2, or 3, 5 mM of CaCl,, 2
mM of DMAPP, GPP or FPP, 0.2-5.0 % of glycerol, 5 % of DMSO, and 20 pg or 50 pg of purified
recombinant protein in 50 mM of Tris-HCI, pH 7.5. The reaction mixtures were incubated at 37 °C
for 2 h and terminated by addition of 100 pL methanol. The proteins were removed by centrifugation
at 13,000 rpm for 20 min. The supernatants were analyzed on HPLC described below. For analysis
on LC-MS, the reaction mixtures were extracted four times with double volumes of ethyl acetate. The
organic phases were combined and evaporated under reduced pressure to afford the residues, which

were dissolved in 100 pL methanol and analyzed on LC-MS.

Assays for isolation of the enzyme products were carried out in large scales (20-30 mL) containing
1 mM of acylphloroglucinols, 2 mM of DMAPP, GPP or FPP, 5 mM of CaCl, 0.2-5.0 % of glycerol,
5 % of DMSO, 10-20 mg of recombinant protein in 50 mM of Tris-HCI, pH 7.5. After incubation at
37 °C for 16 h, the reaction mixtures were extracted four times with double volumes of ethyl acetate.
The organic phases were combined and evaporated. The residues were dissolved in 0.5-1.0 mL of

methanol and purified on a preparative HPLC column.

Assays for determination of the kinetic parameters of acceptors (100 pL) contained 5 mM of CaCl,,
0.2-5.0 % of glycerol, 5% of DMSO, 2 mM of DMAPP, GPP or FPP, 1, 2, and 3 at final
concentrations of up to 5.0 mM and different amounts of proteins in 50 mM of Tris-HCL, pH 7.5
(Table S8). For determination of the kinetic parameters of the prenyl donors DMAPP and GPP, 1 or
3 at a final concentration of 1 mM, DMAPP of up to 1.0 mM and GPP of up to 4.0 mM were used.
Higher DMAPP and GPP concentrations led to inhibition of the AtaPT reactions. The used protein
amounts are given in Table S8. The reaction mixtures were incubated within the linear range of the
product formation for different times (Table S8 and Figures S32-42) and terminated with 100 puL
methanol. Proteins were removed by centrifugation at 13,000 rpm for 20 min and the supernatants

were analyzed on HPLC.
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Ion dependence of the AtaPT reaction

To determine the ion dependency of AtaPT, incubations with different cations, including Mn**, Mg?*,
Ca?", Ni**, Fe?*, Zn*", Co?", Cu*’, Na", and K" at 5 mM, were carried out in the presence of 1 and
DMAPP. The 100 pL reaction mixtures contained 50 pg of AtaPT-Hiss, 2 mM of DMAPP, 1 mM of
1 and were incubated at 37 °C for 2 h. Incubations with EDTA and without additives were used as
controls. As shown in Figure S2, different ions had various contributions to the catalytic activity. In
comparison to the assay without additives, addition of EDTA did not influence the enzyme activity.
Ca?" and Mg?" enhanced the enzyme activity slightly. Ca?" was therefore used in all enzyme assays

in this study.
Analysis of enzyme products by HPLC, LC-MS, and NMR

Agilent HPLC series 1200 (Boblingen, Germany) alone and with a micrOTOF-Q III spectrometer
with an ESI source (Bruker, Bremen, Germany) were used for analysis of the enzyme products.
Analysis of the enzyme products on HPLC without the spectrometer was performed on an Agilent
Eclipse XDB-Cig column (4.6 x 150mm, 5 um) with a linear gradient of 10-100 % acetonitrile in
water in 40 min and a flow rate at 0.5 mL/min. The column was then washed with acetonitrile for 5
min and equilibrated with 5 % acetonitrile in water for 5 min. The HPLC chromatograms of
incubation mixtures of 1, 2, and 3 with AtaPT or AnaPT in the presence of DMAPP, GPP or FPP are
shown as Figures S3-S5.

Analysis of the enzyme products on LC-MS was carried out on a CS Multospher 120 RP 18 column
(2 x 250mm, 5 um) and a linear gradient of 5-100 % acetonitrile in water, both containing 0.1%
formic acid, in 40 min and a flow rate at 0.25 mL/min. The column was then washed with 100 %
acetonitrile containing 0.1% formic acid for 5 min and equilibrated with 5 %, acetonitrile in water for
5 min. The parameters of the spectrometer were set as following: electrospray positive ion mode for
ionization, capillary voltage with 4.5kV, collision energy with 8.0eV.The LC-MS chromatograms of
the incubation mixtures of 1, 2, and 3 with AtaPT in the presence of DMAPP, GPP or FPP are
provided as Figures 2—3 in the main text. HR-ESI-MS data are given in Table S1.

The enzyme products were isolated on HPLC with an Agilent Eclipse XDB-C18 column (9.4x 250
mm, 5 pm) with a linear gradient of 30-100 % acetonitrile in water in 30 min and a flow rate at 2.0

mL/min. After each run, the column was equilibrated with 10 % acetonitrile in water for 10 min.

"H NMR spectra were recorded at room temperature on an ECA- 400 or an ECX-500 spectrometer
(JEOL, Tokyo, Japan). Chemical shifts were referenced to the solvent signal at 2.05 ppm for acetone-
D¢ and 7.26 ppm for CHCIs. All spectra were processed with MestReNova 5.2.2 (Metrelab Research,
S4
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Santiago de Compostella, Spain). NMR spectra and data of the prenylated products are provided as
Figures S6-S29 and Tables S2-S7, respectively.

Structure elucidation

Inspection of the "THNMR spectra of the isolated products indicated the regular attachment of the
prenyl moieties, i.e. via their C-1, to three different kinds of atoms, which can be clearly distinguished
by the chemical shifts of H'-1 of the prenyl chains (d, 2H, “CHz—). The signals of this proton of O-
prenylated derivatives are strongly downfield shifted to the range of 4.5-4.7 ppm.® Chemical shifts
between 3.2-3.4 ppm are characteristic for H'-1 of the prenyl moieties attached to an aromatic C-

atom.? The signals at about 2.5 ppm are those attached to sp> C-atoms.

By comparison of NMR data in the literature, the monoprenylated derivatives 1D1,2 2D1,2 3D1,?
1D2,7 1G1,2 2G1,2 3G1,° 1G2,'° 3G2,” 1F1,'' and 3F1° were identified unequivocally. As reported
previously, the gem-diprenylated derivative 1D3 exists as a mixtures of four tautomeric forms in
CDClI3'2. The '"H NMR spectrum of 1D3 in CDCl; obtained in this study corresponded very well to
that in the literature.!? Existence of tautomeric forms in CDCl; was also observed for 2D3 and 3D3
(data not shown). Using acetone-Ds as solvent, the tautomers of 1D3, 2D3, and 3D3 illustrated in
Scheme 2 are predominant structures. The NMR data of 2D3 and 3D3 are consistent very well with

those reported previously.!>!4

The structures of 2D2, 2D4, 2G2, 2F1, 1F2, 2F2, and 3F2 have not been reported prior to this study.
The O-monoprenylated products 2D2, 2G2, 1F2, 2F2, and 3F2 carry their prenyl moieties at the
para-position of the acyl residues, which are proven by the identical resonance of H-3 and H-5. The
structure of 2F1 was elucidated by comparison with those of 1F1. Only one singlet for an aromatic
proton at §5.89 ppm was found in the "H NMR spectrum of 2D4. The signals of the two dimethylallyl
moieties correspond well to those in 2D1 and 2D2, respectively, indicating C- and O-prenylation. In
addition, the [M+H]" ion of this product is 136 Da larger than that of 2, confirming the diprenylation
of 2. Conversion of 2D1 to 2D3 and 2D4 by AtaPT provided additional evidence for the structure of
2D4.

Time dependence of the formation of 2D1 and 2D3 in the reaction mixture of 2 as well as 3D1

and 3D3 in the reaction mixture of 3

To determine the relationship of 2D1 and 2D3 in the reaction mixtures (100 puL) of 2 with AtaPT,
time dependence of their formation was determined with 0.5 mM of 2 and 50 pg of AtaPT in the
presence of 2 mM of DMAPP. As shown in Figure S30, formation of 2D1 reached its maximal after
incubation for 30 min and decreased slowly during further incubations. After incubation for 480 min,
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only 12.8% of the maximal value was detected for 2D1. In contrast, the formation of 2D3 increased

continuously during incubation up to 480 min.

In analogy to 2, 3 was also incubated with AtaPT and DMAPP for different times. As shown in Figure
S31, similar results were obtained for the formation of 3D1 and 3D3. The changes are somewhat
slowly than those in the incubation of 2. The product yield of 3D1 reached its maximal at 60 min and
decreased after 180 min. The formation of 3D3 increased continuously during the whole incubation
process. These results confirmed that 2D3 and 3D3 are formed from 2 and 3 via 2D1 and 3D1,

respectively.
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II1. Table of HR-ESI-MS data
Table S1. HR-ESI-MS data of enzyme products

HR-ESI-MS data

Product Chemical formula

Calculated Measured Deviation
[M+H]" [M+H] [ppm]
1D1 Ci5H2104 265.1434 265.1428 2.3
1D2 Ci5H2104 265.1434 265.1414 7.5
1D3 C20H2904 333.2060 333.2057 0.9
1D4 C20H2904 333.2060 333.2052 2.4
2D1 Ci6H2304 279.1591 279.1587 1.4
2D2 Ci6H2304 279.1591 279.1577 5.0
2D3 C21H3104 347.2217 347.2217 0.1
2D4 C21H3104 3472217 347.2213 1.2
3D1 CisH1904 299.1278 299.1270 2.7
3D3 C23H2704 367.1904 367.1902 0.5
3D4 C23H2704 367.1904 367.1885 52
1G1 C20H2904 333.2060 333.2047 3.9
1G2 C20H2904 333.2060 333.2063 -0.9
2G1 C21H3104 347.2217 347.2220 -0.9
2G2 C21H3104 347.2217 347.2204 3.7
3G1 C23H2704 367.1904 367.1926 -6.0
3G2 C23H2704 367.1904 367.1900 1.1
1F1 CasH3704 401.2686 401.2669 4.2
1F2 CasH3704 401.2686 401.2680 1.5
2F1 Ca6H3904 415.2843 415.2849 -1.4
2F2 Ca6H3904 415.2843 415.2840 0.7
3F1 C2sH3504 435.2530 435.2503 6.2
3F2 C2sH3504 435.2530 435.2527 0.7
S7
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IV. Tables of NMR data

Table S2. '"H-NMR data of the enzyme products 1D1, 2D1, 3D1, 1D2, and 2D2, 500 MHz.

4\1- on o g o oH O 109 4\ ; oHo & , M e o ' OH O 109
¢ - 10 1" 4 3
Comp %o 1OH 10 o e " %o O '3 " 5'/&,/\0 H 10 )\/1\ S
Z 5 5 OH 12 2 5 5 2 9 on
1D1 2D1 3D1 1D2 2D2
Solvent acetone-Dg acetone-Dg acetone-Dg acetone-Dg CDCls acetone-Dg CDCls
Pos. du, J in Hz du,(J in Hz du,,J in Hz Ou,, J in Hz Ou,,J in Hz Ou,, J in Hz Ou,, J in Hz
3 / / / 6.00, s 5.93,s 5.99, s 5.92,s
5 6.06, s 6.07,s 6.04, s 6.00, s 5.93,s 599, s 5925
6 / / / / / / /
8 3.98, sept, 6.7 2.94,d,6.7 / 3.98, sept, 6.8 3.85, sept, 6.8 2.96,d,6.7 2.93,d,6.7
9 1.13,d,6.7 2.24, m 7.60,dt,7.2,1.3 1.13,d, 6.8 1.17,d, 6.8 224, m 2.25. m
10 1.13,d,6.7 0.95,d, 6.7 7.43,brt, 7.2 1.13,d, 6.8 1.17,d, 6.8 0.95,d,6.7 0.97,d, 6.7
11 / 0.95,d, 6.7 7.48,1t,7.2,1.3 / / 0.95,d,6.7 0.97,d, 6.7
12 / / 7.43,brt, 7.2 / f / /
13 / / 7.60,dt,7.2,1.3 / / / /
i 3:23.d,7.2 3.23,d,7.2 3.29,d,7.2 4.56,d, 6.7 4.49,d,6.9 4.55,d,6.7 4.49,d,6.8
2’ 5.22, tsept, 7.2, 1.4 5.22, tsept, 7.2, 1.4 5.27, tsept, 7.2, 1.4 5.42, tsept, 6.7,1.5  5.44,brt, 6.9 5.42,brt, 6.7 5.42,brt, 6.8
4 1.62,s 1.62,s 1.65, s 1.74, s 1.73,s 1.74,s 1.73, s
5 1.73,s 1.73, s 1.76, s 1.77, s 1.79,s 1.77, s 1.79, s
OH 14.12, s 14.09, s 12.21,s 11.84,s / 11.83,s /
OH 948, s 9.54,s 9.19,s / / / /
OH 9.06, s 9.12,s 8.93,s h / / /
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Table S3. '"H-NMR data of the enzyme products 1D3, 2D3, 3D3, and 2D4, 500 MHz

Comp
1D3 2D3 3D3
Solvent acetone-Dg acetone-Dg acetone-Dg acetone-Dg CDCl3
Pos. Oy, J in Hz Sy, J in Hz du, J in Hz 8y, J in Hz Oy, J in Hz
5 5.58,s 5.60, s 5.73,s 6.11,s 5.89, s
8 4.00, sept, 6.8 2.80° I 2.80* 2.87,d,6.7
9 1.03,d,6.8 2.04, m T44, brt, 74 2.04, m, 2.17, m
10 1.03,d, 6.8 0.94,d, 6.7 7.37, brt, 7.4 0.94,d, 6.7 0.94,d, 6.7
11 / 0.94,d, 6.7 7.46,brt, 7.4 0.94,d, 6.7 0.94,d, 6.7
12 / / 7.37, brt, 7.4 / /
13 / / 744, brt, 7.4 / /
1’ 2.51,4dd,13.5,7.5 2.53,dd, 13.2,7.5 2.55,dd,13.6,7.2
2.65,dd, 13.5,7.5 2.65,dd, 132,7.5 2.62,dd, 13.6,7.2 457,4,7.1 4.50,d,7.1
X 4.87, tsept, 7.5, 1.5 4.88,brt, 7.5 5.00,brt, 7.2 5.56,brt, 7.1 5.51,brt, 7.1
4’ 1.52;s 1.54,s 1.65, s 1.74, s 1.74,s
5 1.55,s 1.57,s 1.76, s 1.80, s 1.80, s
1" 2.51,dd, 13.5,7.5 2.53,dd, 13.2,7.5 2.55,dd, 13.6,7.2 3.25,d,7.2 3.37,d,7.0
2.65,4d,13.5,7.5 2.65,dd, 13.2,7.5 2.62,dd, 13.6,7.2
27 4.87, tsept, 7.5, 1.5 4.88,brt,7.5 5.00,brt, 7.2 5.22,brt,; 7.2 5.27,brt, 7.0
4" 1.52;s 1.54,s 1.60, s 1.62,s 1.62,s
5 1.55,s 1.57,s 1.62, s 1.74, s 1.74, s
OH / / / 144, s 14.6, s

2 overlapping with signals of water
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Table S4. 'TH-NMR data of the enzyme products 1G1, 2G1, and 3G1 in CDCls, 400 MHz

Comp
1G1 2G1 3G1

Pos. Ou, Jin Hz dn,Jin Hz Ou, Jin Hz
5 5.83,s 5.82,s 594, s
8 3.86, sept, 6.8 2.93,d,6.7 /
9 1.17,d, 6.8 2.25,m 7.65,dt,7.2,1.2
10 1.17,4d, 6.8 0.97,d, 6.7 7.52,brt, 7.2
11 / 0.97,d,6.7 7.59,4%, 7.2, 1.2
12 / / 7.52,brt, 7.2
13 / / 7.65,dt,7.2,1.2
1 3.38,d,7.1 3.37,d,7.1 3.38,d,7.1

2 5:25,brt, 7.1 5.25,brt, 7.1 527, brt, 7.1
4 2.10,m 211, m 2.08, m

5 2.10, m 211, m 2.08, m

6 5.05,brt, 7.0 5.04,brt, 7.1 5.04,brt7.1
8 1.81,s 1.81,s 1.80, s

9 1.67, s 1.68, s 1.66, s

10° 1.59, s 1.60, s 1.59, s
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Table S5. 'H-NMR data of the enzyme products 1G2, 2G2, and 3G2 in CDCl3, 500 MHz

i o 30H08 9 oHo 10 9 T 0 e
5 T /@\)\< 107 g 3/©fk)\9 5 1 3 1310
Chiiij SN T 5 1* 8 11 x XS0 OH n
e 4 2 5 8 X0 OH 6 4 2 5
1G2 " Wk ° 3G2
2G2
Pos. 8y, J in Hz du, J in Hz du, J in Hz

3 5.93,s 5.92,s 6.04, s
5 5.93,s 592, 8 6.04, s
8 3.85, sept, 6.8 2.92,d,6.7 /
9 1.17,d,6.8 2.24, m 765, dt. 7.1, 14
10 1.17,d,6.8 0.97,d, 6.7 7.54,brt, 7.1
11 / 0.97,d, 6.7 7.59,tt,7.1,1.4
12 f / 7.54,brt, 7.1
13 . / 7.65,dt,7.1,1.4
1’ 452,d,6.9 4.52,d,6.9 4.56,d,7.1
2" 5.43,brt, 6.9 5.43,brt, 6.9 5.46,brt, 7.1
4’ 2.09, m 2.10,m 2.10, m
5 2.09, m 2.10, m 2.10, m
6" 5.08,brt, 6.8 5.08,brt, 6.8 5.09,brt, 7.1
8’ 1.72, 8 172, 8 1.74, s
9 1.68, s 1.68, s 1.68, s
10" 1.60, s 1.60, s 1.61,s
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Table S6. '"H-NMR data of the enzyme products 1F1, 2F1, and 3F1 in acetone-Dg, 500 MHz

Comp
1F1 2F1 3F1

Pos. 8y, J in Hz du, J in Hz 8y, J in Hz
5 6.06, s 6.05, s 6.04, s
8 3.98, sept, 6.8 2.94,d,6.7 /
9 1.13,d, 6.8 224, m 7.59,dt,7.2,1.4
10 1.13,d, 6.8 0.95,d,6.7 7.40,brt, 7.2
11 / 0.95,d,6.7 747,tt,7.4,1.4
12 / / 7.40,brt, 7.2
13 ! / 7.59,dt,7.2,1.4
1 3.25,d,72 3.25,d,7.2 3:31,d4.72

2 325, bt 72 5.25,brt, 7.2 5.30,brt, 7.2
4 2.08, m 2.08, m 2.09, m

5 2.08, m 2.08, m 2.09, m

6’ 5.10,brt, 7.1 5.10,brt, 7.2 5.12,brt, 7.2
8 1.93, m 1.97, m 1.97, m

9 1.93, m 1.97, m 1.97, m

10° 5.07,brt, 7.1 5.07,brt, 7.2 5.08,brt, 7.2
127 1.76, s 1.76, s 1.78, s

137 1.64, s 1.64, s 1.64, s

147 1.57,s 1.56,s 1.57,s

15° 1.57,s 1.56,s 1.57,s
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Table S7. 'H-NMR data of the enzyme products 1F2, 2F2, and 3F2 in acetone-Ds, 500 MHz

15° 14 " . o 3 = - " 15 14° 13 Ml e
Comp 11 N ’5' N 1 : " i . i 11 9 N 5 N 1 03 13::)
127 100 8" 6 47 2 5 B o % - 3\2. o 127 100 8" 8 47 2 5 OH 12
1F2 3F2
2F2
Pos. du, J in Hz o, J in Hz o, Jin Hz
3 5.97,s 5.99,s 6.04, s
5 5.97,s 5.99,s 6.04, s
8 3.95, sept, 6.8 2.96,d,6.7 /
9 1.11,d,6.8 2.24, m 7.63,dt,7.4,14
10 1.11,d, 6.8 0.95,d, 6.7 7.42,brt, 7.4
11 / 0.95,d, 6.7 7.50,1t,7.4,1.4
12 / / 7.42,brt, 7.4
13 7 / 7.63,dt,7.4,1.4
1 4.57,d,6.5 4.59,d,6.6 4.63,d,6.5
27 5.41,brt, 6.5 5.43,brt, 6.6 5.46,brt, 6.5
4’ 2.09, m 2.13, m 2.14,m
i 2.09, m 2.13,m 2.14,m
6 5.11,brt, 6.7 5.14,brt, 7.0 5.15,brt, 6.7
8’ 1.94, m 1.97,s 1.98, m
9’ 1.94, m 1.97;s 1.98, m
10° 5.06,brt, 6.9 5.09,brt, 7.0 5.10,brt, 6.9
12 1.73,s 1.76, s 1.78,s
137 1.62,s 1.65,s 1.65,s
147 1.58,s 1.61,s 1.62,s
15’ 1.55;s 1.58,s 1.58,s
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V. Table of kinetic parameters

Table S8. Kinetic parameters of AtaPT toward 1, 2, 3, DMAPP, and GPP

AtaPT AnaPT?
Prenyl Prenyl Prot?in amount Kn keat kea/Ky kea/Ky
and incubation
donor acceptor prieg [mM] [s] [s'M] [sTM1]
Kinetic parameters of acceptors
1 15pg, 20min 0.16 + 0.006 0.284 +0.002 1775.0 54.5
DMAPP 2 15pg , 90min 1.10 +0.035 0.103 +0.002 96.5 51.5
3 15png , 90min 0.58 + 0.064 0.106 + 0.005 182.8 62.5
1 15pg , 45min 1.27+0.14 0.227 +£0.001 178.7 /
GPP 2 15png, 30min 0.75 +0.008 0.197 +£0.05 262.7 /
3 15png , 30min 0.47+0.013 0.137 +0.0002 291.5 /
1 50pg, 90min 0.38 £0.027 0.014 +0.0003 36.8 /
FPP 2 50pg, 90min 0.42+0.04 0.012 +0.0007 28.6 /
3 50pg , 90min 0.70 +£0.12 0.012 +0.0007 17.1 /
Kinetic parameters of donors
DMAPP 1 15pg, 20min 0.071 £0.0007  0.270 +0.0016 3816.9 40.0
GPP 3 15png, 30min 0.46 +0.003 0.126 +0.0004 273.9 /

*Data adopted from Zhou, K.; Ludwig, L.; Li, S.-M. J. Nat. Prod. 2015, 78, 929
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VI. Figure of SDS-PAGE

kDa 1 2 3 4 5 & 7

a7

66

45

o —
) 3‘.; .

Figure S1. Monitoring of overproduction and purification of AtaPT. The proteins were

separated on a 12 % polyacrylamide gel and stained with Coomassie brilliant blue R-250.

Lanes: 1, protein marker; 2, soluble fraction before induction; 3, soluble fraction after induction
with 0.5 mM Isopropyl-B-D-thiogalactopyranoside at 37 °C for 6 h; 4, soluble protein fraction

after centrifugation; 5, flow fraction; 6, washing fraction; 7, elution fraction.
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VII. Graphical representation of the ion dependence of the AtaPT
reaction

80
60 -
40 -

201

Conversion yields (%)

0-

T T

< VNV N N LSRN N RN 4 »
& L O REIEIOFQICIOE
KR 2 AT 2R VMR

& additive

Figure S2. Dependence of the AtaPT reaction on the presence of ions. The reaction mixtures
contained (100 pL) 50 pg of AtaPT-Hise, 5 mM of additives, 2 mM of DMAPP, 1 mM of 1
and were incubated at 37 °C for 2 h.

S16



VIII. Figures for HPLC analysis of enzyme activities

A 1 with AtaPT B 1 with AnaPT
Prenyldonor: DMAPP Prenyl donor: DMAPP
3000+ 3000+ 1
2500 1D1 2500+
2000+ 1 20004
=] =)
< 1500 < 1500+
5 £
10004 1000+
500 1D 2 500
LDs l1D1
0 L} Ll Ll L) T .| L) L] T L] o Ll Ll Ll Ll Ll Ll T Ll Ll L]
0 5 10 15 20 25 30 35 40 45 50 o 5 10 15 20 25 30 35 40 45 50
t/min t/min
Prenyldonor: GPP Prenyl donor: GPP
3000 3000+
1 1
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2000 2000+
= =)
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E 161 &
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500+ 500
1G2 191
0 e B e e e e o | S B B S S m S p—
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
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Prenyldonor: FPP Prenyldonor: FPP
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1
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J1F2
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5 10 15 20 25 30 35 40 45 50
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Figure S3. HPLC analysis of the reaction mixtures of 1 with AtaPT and AnaPT. The enzyme
assays (100 pL) contained 1 mM of 1, 5 mM of CaCl,, 2 mM of DMAPP, GPP or FPP,
1.0—6.0% of glycerol (v/v), 5% of DMSO, (v/v), and 20 pg of the purified recombinant protein
in 50 mM Tris-HCI, pH 7.5. The reaction mixtures were incubated at 37 °C for 2 h and detected
with a diode assay detector. The absorption at 291 nm was used for illustration of the reaction

with 1.
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A 2 with AtaPT B 2 with AnaPT
Prenyl donor: DMAPP Prenyl donor: DMAPP
3000+ 3000+
2 2
2500+ 2500+
2000+ 2000+
=) 2
< 1500+ < 1500+
E E
1000+ 2D1 10004
500 J 2D3 500 J 201
R2).2D4 |
0 L] L) L) L) L} L] 0 k) L] L] L] L] L] L] Ll L) L
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
t/min t/min
Prenyldonor: GPP Prenyldonor: GPP
2500+ 3000+
2
20004 2 2500
2G1 2000+
- 1500+ 5
< < 1500
E 1000+ E
1000+
500+ 500
2G2
0 L} L) L) L] L] v L] L) v Ll 0 L} L) L] L} L] L) L) L) L] Ll
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
t/min t/min
Prenyldonor: FPP Prenyldonor: FPP
3000+ 3000+
2 2
2500+ 2500+
2000+ 2000+
2 2
< 1500+ < 1500+
£ E
1000 1000+
5004 2F1 500
L 2F2 J
0 L] L) L] L] L) L] L] L L] L) 0 L] L] L] L] L] L] L] L) L] Ll

0

5 10 15 20 25 30 35 40 45 50

t/min

0

5 10 15 20 25 30 35 40 45 50

t/min

Figure S4. HPLC analysis of the reaction mixtures of 2 with AtaPT and AnaPT.

The enzyme assays (100 pL) contained 1 mM of 2, 5 mM of CaCl,, 2 mM of DMAPP, GPP or
FPP, 1.0-6.0% of glycerol (v/v), 5% of DMSO (v/v), and 20 pg of the purified recombinant
protein in 50 mM Tris-HCI, pH 7.5. The reaction mixtures were incubated at 37 °C for 2 h and
detected with a diode assay detector. The absorption at 291 nm was used for illustration of the
reaction with 2.
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A 3 with AtaPT B 3 with AnaPT

Prenyl donor: DMAPP Prenyldonor: DMAPP
2000+ 1500+ 3
3
1500+
1000+
2 2
< 1000+ <
£ £
500+
] 3D1
3D1
|
0 L] L] L] Ll L] Ll L] L} Ll L} 0 L) L] L) L] L) Ll L L] L) L}
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Prenyl donor: FPP Prenyl donor: FPP
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Figure SS. HPLC analysis of the reaction mixtures of 3 with AtaPT and AnaPT. T

The enzyme assays (100 pL) contained 1 mM of 3, 5 mM of CaCl,, 2 mM of DMAPP, GPP or
FPP, 1.0-6.0% of glycerol (v/v), 5% of DMSO (v/v), and 20 pg of the purified recombinant
protein in 50 mM Tris-HCI, pH 7.5. The reaction mixtures were incubated at 37 °C for 2 h and
detected with a diode assay detector. The absorption at 306 nm was used for illustration of the
reaction with 3.
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X. Dependence of product formation of AtaPT reactions on
incubation time.
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Figure S30. Time dependence of the product formation of AtaPT reaction with 2 and DMAPP.

The enzyme assays (100 pL) contained 0.5 mM of 2, 5 mM of CaCl,, 2 mM of DMAPP, 1.2%
of glycerol, 5% of DMSO, and 50 pg of the purified recombinant protein in 50 mM Tris-HCI,
pH 7.5.
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Figure S31. Time dependence of the product formation of AtaPT reaction with 3 and DMAPP.

The enzyme assays (100 pL) contained 0.5 mM of 3, 5 mM of CaCl,, 2 mM of DMAPP, 1.2%
of glycerol, 5% of DMSO, and 50 pg of the purified recombinant protein in 50 mM Tris-HCI,
pH T.5.
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XI. Figures of kinetic parameters
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Figure S32. Determination of the kinetic parameters of the AtaPT reaction toward 1 in the
presence of DMAPP.

30
- I
=
£ 20
IU)
E K, =1.10 £ 0.035 mM
£ 10 y
E ko, = 0.103 £ 0.002 s
Y
0 ] 1 ) )
0 1 2 3 4 5
2 [mM]

Figure S33.Determination of the kinetic parameters of the AtaPT reaction toward 2 in the
presence of DMAPP.
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Figure S34. Determination of the kinetic parameters of the AtaPT reaction toward 3 in the
presence of DMAPP.
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Figure S35. Determination of the kinetic parameters of the AtaPT reaction toward 1 in the
presence of GPP.
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Figure S37. Determination of the kinetic parameters of the AtaPT reaction toward 3 in the
presence of GPP.
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Figure S38. Determination of the kinetic parameters of the AtaPT reaction toward 1 in the
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Figure S39. Determination of the kinetic parameters of the AtaPT reaction toward 2 in the
presence of FPP.
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ABSTRACT: Flavonoids are found mainly in plants and
exhibit diverse biological and pharmacological activities, which
can often be enhanced by prenylations. In plants, such
reactions are catalyzed by membrane-bound prenyltrans-
ferases. In this study, the prenylation of nine flavonoids from
different classes by a soluble fungal prenyltransferase (AnaPT)
involved in the biosynthesis of the prenylated indole alkaloid
acetylaszonalenin is demonstrated. The behavior of AnaPT
toward flavonoids regarding substrate acceptance and
prenylation positions clearly differs from that of the indole
prenyltransferase 7-DMATS. The two enzymes are therefore
complementary in flavonoid prenylations.

OH
oo T
YJ@;Q

6
OH O

C-6 prenylated derivative
as predominant product

OH

OH O

OH O

naringenin NOPP

C-3'prenylated derivative
as predominant product

lavonoids are valuable natural products widely distributed

in the plant kingdom. On the basis of their structures, they
are categorized into dihydrochalcones, chalcones, flavanones,
dihydroflavonols, flavones, flavonols, isoflavones, isoflavonols,
pterocarpans, coumestans, aurones, neoflavonoids, and antho-
cyanidins."” Flavonoids have been shown to have a wide range
of biological and pharmacological activities in in vitro studies,
including anti-inflammatory, antibacterial, antiviral, antiallergic,
cytotoxic, and antitumor activities.” They are also considered
potential candidates for the treatment of neurodegenerative and
vasodilatory diseases.” Prenylations at the two benzene rings
often increase the lipophilicity of the backbone compounds,
leading to enhancement of their affinity to cell membranes and
of their interaction with target proteins."® Owing to the
impressive biological activities and their diverse chemical
structures, prenylated flavonoids have been studied by scientists
from different research disciplines including natural product
chemistry,” plant physiology,” and chemical syntheses.”"’

In plants, the prenyl moieties are transferred from prenyl
diphosphates onto the flavonoid skeleton by membrane-bound
prenyltransferases.11’12 For example, SIN8DT-1/SfPFT,
SfG6DT, and SALDT from Sophora flavescens catalyze
prenylations of flavanones, isoflavonoids, and chalcones,
respectively.' "' >'* SfN8DT-1, the first identified flavonoid-
specific prenyltransferase, was shown to be responsible for the
prenylation of a few select flavanones at C-8.'* SfFPT displayed
a high catalytic efficiency for different types of flavonoids with
high regiospecificity at C-8."* SfG6DT was found to specifically
prenylate the isoflavone genistein at C-6,'' while SALDT
functions as a chalcone-specific prenyltransferase.'’ LaPT1
from Lupinus albus acts as an isoflavonoid-specific B-ring
prenyltransferase,"> while G4DT from Glycine max is specific

© 2015 American Chemical Society and

7 ACS Publications
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for pterocarpans.'® Recently, two isoliquiritigenin 3,3-dimethy-
lallyltransferases MaIDT and CtIDT have been identified in
Morus alba and Cudrania tricuspidata, respectively.'” With the
exception of a few members, these enzymes usually showed
high substrate specificities and accepted only their natural
substrates or just a few substances with similar structures.

In addition to membrane-bound prenyltransferases from
plants, soluble prenyltransferases from bacteria such as NphB
and SCO7190 also accept flavonoids as substrates."®'? NphB
from a Streptomyces sp. is a hydroxynaphthalene geranyltrans-
ferase.'® Its homologue SCO7190 from Streptomyces coelicolor
used dimethylallyl diphosphate (DMAPP) as a prenyl donor
and also catalyzes the prenylation of naringenin at C-6."" We
have demonstrated that the recombinant indole prenyltransfer-
ase 7-DMATS from the fungus Aspergillus fumigatus accepted
chalcones, isoflavonoids, and flavanones much better than
flavones and flavonols and mainly catalyzed prenylation at C-
6.”" These results encouraged us to find more prenyltrans-
ferases with different substrate specificities and prenylation
positions on the flavonoid skeleton, in order to utilize these
enzymes for the production of prenylated flavonoids.
Preliminary results from the previous study’® indicated that
AnaPT, which catalyzes the C-3 prenylation of (R)-

benzodiazepindinone in the biosynthesis of acetylaszonalenin®"

. . L2225
and uses diverse aromatic substances for prenylation,

could be a good candidate.
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B RESULTS AND DISCUSSION

Twenty-one flavonoids were initially incubated with 75 ug of
the recombinant AnaPT in the presence of DMAPP at 37 °C
for 16 h. HPLC analysis revealed that naringenin (1a), 7-
hydroxyflavanone (2a), eriodictyol (3a), hesperetin (4a),
silibinin (Sa), phloretin (6a), apigenin (7a), genistein (8a),
and biochanin A (9a) were readily accepted by AnaPT under
these conditions. Compounds la—3a and Sa—9a were
incubated with 75 ug of AnaPT at 37 °C for different times
(Figure S1, Supporting Information). With the exception of the
preferred flavonoid 1a, product formation was found to be
nearly linear for up to 2 h for other substrates. With 1a as
substrate and 40 ug of protein, the AnaPT reaction was found
to be linear for up to 2 h (Figure S2, Supporting Information).
For better comparison of their acceptance, la—9a were
incubated with 40 pg of AnaPT at 37 °C for 2 h (Table 1,

Table 1. Product Yields of 1a—9a Catalyzed by 7-DMATS
and AnaPT“

product yield (%)

substrate 7-DMATS AnaPT
la 269 + 0.3 482 + 1.0
2a 1.2 + 0.0 32 +02
3a 36.0 + 0.4 44 + 03
4a 159 + 2.7 1.5 + 0.0
Sa 0.2 + 0.2 32 +0.1
6a 23.1 + 0.5 120 + 0.3
7a 0.9 £+ 0.0 33+02
8a 6.7 + 0.2 48 £03
9a 45 + 02 7.1 £ 0.0

“The enzyme assays (100 xL) contained one of the flavonoids 1a—9a
(1 mM), CaCl, (10 mM), DMAPP (2 mM), glycerol (1.0—6.0% v/v),
DMSO (5% v/v), Tris-HCl (50 mM, pH 7.5), and the purified
recombinant proteins (40 yg). The reaction mixtures were incubated
at 37 °C for 2 h.

Figure S3, Supporting Information). Under these conditions, 1a
was accepted as the best substrate with a product yield of
48.2%, which was calculated by comparison of peak areas in the
HPLC chromatogram and intensities of signals in the 'H NMR
spectrum of the reaction mixture. Compounds la—9a were
subsequently incubated with 40 pg of 7-DMATS at 37 °C for 2
h. Under these conditions, product formation with its best
substrate 3a”’ was found to be linear (Figure S2, Supporting
Information). HPLC analysis confirmed 3a as the best
substrate, with a product yield of 36.0%, followed by la and
6a, with product yields of 26.9% and 23.1%, respectively.

To enhance product formation, compounds la—9a were
incubated with 40 pg of AnaPT or 7-DMATS at 37 °C for 16 h
(Figure 1). Under these conditions, product yields of more
than 10% were calculated for seven AnaPT reactions (la—3a,
Sa, 6a, 8a, and 9a), with 1a as the best substrate (58.6%) and
six 7-DMATS reactions (1a, 3a, 4a, 6a, 8a, and 9a) with 3a, 4a,
and 6a as the best substrates (56.0—77.8%). It is obvious that
the flavanones 1a, 3a, and 4a, chalcone 6a, and isoflavones 8a
and 9a were better substrates for one or both of the two
enzymes than other subgroups. AnaPT accepted 1a, 2a, Sa, 7a,
and 9a much better than 7-DMATS, while 3a, 4a, 6a, and 8a
were better substrates for 7-DMATS. Interestingly, silibinin
(5a, also termed silybin), a hepatoprotective dihydroflavonol
lignoid from the medicinal plant Silybum marianum,>® was
accepted by AnaPT with a product yield of 11.3%. Flavones
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were poor substrates for both enzymes. The product yield of
the preferred flavone apigenin (7a) was determined for AnaPT
at 6.7%.

Inspection of the HPLC chromatograms revealed that more
than one product peaks were detected in a number of reaction
mixtures. Interestingly, the major products of several AnaPT
and 7-DMATS reactions differed from each other. For example,
the dominant product 1b in the 7-DMATS reaction with la
(product yield 29.6%) was detected only as a minor product,
with a yield of 4.4% in its reaction mixture with AnaPT. Instead,
product 1c, with a yield of 54.2%, was found as the main
product. Eriodictyol (3a) was much better accepted by 7-
DMATS, and several products including 3b, 3¢, and 3d with
comparable yields were observed. In contrast, 3¢, with a
product yield of 16.4%, was detected as the main product of the
AnaPT reaction (Figure 1). Phloretin (6a) was converted by 7-
DMATS to one predominate product, 6b, while a number of
products including 6b, 6c, and 6d were detected in its reaction
mixture with AnaPT. These results indicate different prenyl
transfer reactions catalyzed by these two enzymes.

Previously, we demonstrated that AnaPT also used geranyl
diphosphate (GPP) as prenyl donor for prenylation of cyclic
dipeptides.”® Therefore, 1a—9a were incubated with AnaPT in
the presence of GPP. HPLC analysis revealed that these
compounds were also accepted by AnaPT in the presence of
GPP. However, for a given aromatic substrate, the activity was
much lower than that with DMAPP. After incubation with 40
ug of AnaPT for 16 h, the highest product yield of 5.9% was
found for 6a (Figure S4, Supporting Information). Under the
same conditions, 7-DMATS also used GPP as prenyl donor for
its reaction with 1a—9a, but with lower product yields than
with AnaPT. The highest product yield of approximately 1%
was found for 1a with 7-DMATS after incubation at 37 °C for
16 h (data not shown).

For structure elucidation, 12 enzyme products 1b, 1c, 2b, 3c,
Sb, 6b, 6¢, 6d, 7b, 8b, 8¢, and 9b were isolated via preparative
HPLC from incubation mixtures of la—3a and Sa—9a with
AnaPT and DMAPP, respectively. Compounds 8b and 8c were
also isolated from the incubation mixture of 8a with 7-DMATS
and DMAPP. The isolated products were subjected to NMR
and HREIMS analyses. With the exception of 6d and 8c, the
M" ions of the isolated products are 68 Da larger than the
respective substrates, proving the monoprenylation of these
compounds. The M* ions of 6d and 8c are 136 Da larger than
those of 6a and 8a, respectively, corresponding to those of
diprenylated derivatives. This conclusion was also confirmed by
their molecular formula deduced from HREIMS analysis. The
signals at 8y 3.24—3.55 (d, 2H, —CH,—), 5.18—5.36 (tsept or
m, 1H, —C=CH), 1.62—1.71 (d or s, 3H, -C=C—CH,), and
1.67—1.78 (d or s, 3H, —C=C—CHj) in the '"H NMR spectra
of the isolated products indicated the presence of dimethylallyl
moieties in their structures (Tables 2 and 3, Experimental
Section, and Figures S5—S8 and S12-S18, Supporting
Information). The resonance of the methylene group in the
range 3.24—3.55 ppm proved the attachment of the
dimethylallyl moieties to aromatic carbon atoms.”” Compounds
16,7 1¢,”° 2b,*® 3¢,*° 6b,*° 7b,*° 8b,*° 8¢,*® and 9b™° were
identified as known compounds by comparison of their 'H
NMR data with reported data. These compounds are 6- (1b,
2b, 6b, 7b, 8b, and 9b) or 3’-prenylated (1c and 3c) or 6,3’
diprenylated derivatives (8c).

The 'H NMR spectrum of $b (Figure S9, Supporting
Information) was similar to that of its substrate, silybinf'l and

DOI: 10.1021/acs jnatprod.5b00422
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Chart 1

OH O
1aR;=R,=R3=Rg=H, Ry =OH
3aR;=R,=Rs=H, Ry=R 4= OH
4aR;=Ry=Rs=H, Ry= OH, Ry = OCH3

1b Ry, = R3=Rs=H, Ry = OH, Ry = DMA1
3b R, =Rs=H, R3= Ry = OH, Ry = DMA1
4b R, =Rs=H, Rg= OH, R4= OCH3 R;= DMA1

1¢ Ry =R,=Rgs=H, Ry = OH, Ry = DMA1
3¢ Ry = Ry=H, Ry = Ry = OH, Rg = DMA1
4cRy=Rs=H, Rg= OH, Rs= OCH; R,=DMA1

8aR;=R,=H, Ry= OH
9aR;=R,=H, R3= OCHj

8b R, = H, Ry = OH, Ry = DMA1
9b R, = H, Ry = OCH; Ry = DMA1

8c Ry = OH, Ry = DMA1, R, = DMA2

s o
6' o9
s T
RO O 0 O 7
2 2 7
6 3OH 6" OH
OH O 5
5aR=H
5b R = DMA2

6aR;=R,=H

OH O
7aR=H
6b R, =H, Ry = DMA1 N
6c Ry=H, Ry= DMA1 7b R=DMA1
6d Ry = DMA1, R, = DMA2
& e
DMA2 = M\
z 5 WO

showed additional signals for a dimethylallyl moiety (5 4.63,
2H, d, ] = 8.0 Hz, H-1"; 5.45, 1H, m, H2"; 1.77, 3H, 5, H-5";
and 1.74, 3H, s, H-4") (Table 2). The chemical shift of H-1" at
4.63 ppm indicated that the prenylation has taken place at an
oxygen atom. This conclusion was supported by the same
number and coupling pattern of the aromatic protons in the
spectra of Sb and its substrate. To prove the prenylation
position in 5b, HSQC and HMBC spectra (Figures S10 and
S11, Supporting Information) were also taken into consid-
eration. As shown in Figure S11 (Supporting Information),
correlations of H-1” with C-7, C-2”, and C-3” were evident,
proving the prenylation of the 7-hydroxy group (Table 2).

Comparing the 'H NMR spectra of 6c (Figure S13,
Supporting Information) and 6d (Figure S14, Supporting
Information) with that of 6a revealed the disappearance of the
AA'BB’ systems for B-ring protons in 6¢ and 6d. Instead, an
ABX system was observed in their spectra. This indicates the
prenylation of both substances at C-3’. Signals of two prenyl
moieties (6 3.24, 2H, d, J = 7.3 Hz; 5.22, 1H, tsept, ] = 7.3, 0.9
Hz; 1,74, 3H, d, ] = 0.7 Hz; 1.62, 3H, d, ] = 1.1 Hz, and 8, 3.28,
2H, d, ] = 7.3 Hz; 5.32, 1H, tsept, ] = 7.3, 1.1 Hz; 1.70, 3H, d,
= 1.1 Hz; 1.68, 3H, d, ] = 1.3 Hz) were observed in the 'H
NMR spectrum of 6d. Comparing the spectrum of 6d with that
of 6b revealed the disappearance of the signal for H-6 in both
cases. These results proved that 6c is a 3’-monoprenylated
derivative and 6d bears the two prenyl moieties at C-6 and C-3’
(Table 3). A literature search indicated that the structures of
Sb, 6¢, and 6d have not been reported prior to this work.

In summary, AnaPT displayed in several cases different
behaviors regarding prenylation position from those of 7-
DMATS reported previously.”” For 1a, 3a, and 6a, 7-DMATS
is preferred for C-6 prenylation, and 6-prenylated derivatives
1b, 3b, and 6b were detected as predominant or one of the

2231

110

main products. In contrast, 3’-prenylation was observed as the
main reactions in the assays of these compounds with AnaPT.

Kinetic parameters including Michaelis—Menten constants
(Ky) and turnover numbers (k) were determined at the pH
optimum of the AnaPT reactions (pH 7.5) in a Tris-HCl buffer
system by Hanes—Woolf, Eadie—Hofstee, and Lineweaver—
Burk plots. The data obtained for (R)-benzodiazepinedinone,
la—3a, and Sa—9a were compared (Figures $19—S26,
Supporting Information). As shown in Table 4, 1a, 3a, and
Sa were found to have comparable affinities to (R)-
benzodiazepinedione toward AnaPT, with Ky values of 0.26,
0.29, and 0.18 mM, respectively, while 2a and 6a showed lower
affinity to AnaPT. The Ky values of 7a and 9a at 0.11 mM are
even lower than that of (R)-benzodiazepinedione. As reported
previously,”” 7-DMATS displayed affinity to 6a and 8a similar
to its natural substrate L-tryptophan. The turnover numbers of
AnaPT with 1a—3a and 5a—9a in the range 0.001—0.05 s™" are
much smaller than that with (R)-benzodiazepinedione, at 1.72
s\ It is evident that catalytic efficiency of AnaPT toward
flavonoids should be improved in the future by suitable
approaches such as mutagenesis experiments.

In conclusion, AnaPT used in this study was identified in the
ascomycetous fungus Neosartorya fischeri and proved to be
responsible for the 3-prenylation of (R)-benzodiazepindinone
in the biosynthesis of acetylaszonalenin.”’ This enzyme was
demonstrated to exhibit significant substrate and catalytic
promiscuity in vitro. It has an unprecedented ability to
recognize diverse aromatic substrates such as tryptophan-
containing cyclic dipeptides, hydroxynaphthalenes, and acyl-
phloroglucinols and catalyzes Friedel—Crafts alkyla-
tions.”***>** In addition to its prenyl donor DMAPP,
AnaPT also accepted GPP and unnatural alkyl donors as
substrates.”*>?

DOI: 10.1021/acs jnatprod.5b00422
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Figure 1. HPLC analysis of the reaction mixtures of 7-DMATS and AnaPT. The enzyme assays (100 L) contained one of the flavonoids 1a—9a (1
mM), CaCl, (10 mM), DMAPP (2 mM), glycerol (1.0—6.0% v/v), DMSO (5% v/v), Tris-HCl (50 mM, pH 7.5), and the purified recombinant
proteins (40 yg). The reaction mixtures were incubated at 37 °C for 16 h and detected on a diode assay detector. The absorption at 277 nm was
used for illustration of the reaction with 2a and 296 nm for other substrates.

In this study, we demonstrated prenylations of different
flavonoids such as flavanones and isoflavones by AnaPT at C-6
of the A ring or C-3’ of the B ring, which expands significantly
its potential for modification of small molecules. More
importantly, AnaPT and 7-DMATS displayed different
substrate preferences and prenylation positions, so that these
two fungal indole prenyltransferases could be used comple-
mentarily for prenylation of flavonoids. Prenylations of the
flavonoid skeleton contribute significantly to structural diversity
and biological activity of natural products and are usually crucial
in the biosynthesis of these compounds. Therefore, the soluble
indole prenyltransferases AnaPT and 7-DMATS could also be
used for production of prenylated flavonoids in microorganisms
by synthetic biological approaches.
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B EXPERIMENTAL SECTION

General Experimental Procedures. Flavonoids and solvents
used in this study were purchased from Alfa Aesar (Karlsruhe,
Germany), Acros Organics (Geel, Belgium), Carl Roth (Karlsruhe,
Germany), Sigma-Aldrich (Steinheim, Germany), and TCI (Zwyn-
drecht, Belgium). The triammonium salts of DMAPP and GPP were
synthesized according to the method described for GPP by Woodside
and co-workers.>* NMR spectra were recorded at room temperature
on a JEOL ECA-400 or -500 or a Bruker Avance 600 MHz
spectrometer and processed with MestReNova 5.2.2. Chemical shifts
were referenced to the signal of acetone-dg at 2.05 ppm. The enzyme
products were also analyzed by EIMS on an Auto SPEC (Micromass
Co. UK Ltd.).

Overproduction and Purification of AnaPT and 7-DMATS as
Well as Enzyme Assay. Overproduction and purification of AnaPT
and 7-DMATS were carried out as described previously.””** The

DOI: 10.1021/acs jnatprod.5b00422
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Table 2. NMR Spectroscopic Data (600 Hz, Acetone-dg) for Sb

pos 8¢, type &y mult (J in Hz) HMBC pos Sc, type 8y, mult (J in Hz) HMBC

y) 83.5, CH 5.13,d (13.8) C-3, C4, C-9, C-1/, C-2, C-6' 12 128.1, C

3 72.5, CH 4.38, d (13.8) 27 1110, CH 7.14, d (2.1) C-1”, C-3", C-6"

4 198.1, C 3" 1477, C

5 1652, C 4" 1474, C

6 94.5, CH 6.06, d (3.3) C-5, C-7, C-8, C-10 5" 114.8, CH 6.88, d (8.4) C-1”, C-2", C4", C-6"
7 168.4, C 6" 120.6, CH 698, d (8.0, 2.1) c-7', C-1”, C2", C-4", C-5"
8 95.5, CH 6.09, d (3.3) C-6, C-7,C-9, C-10 7" 55.5, CH, 3.87, s c3”

9 1622, C 1” 65.3, CH, 4.63, d (8.0) C7, C2m,C-3n

10 101.1, C 2" 119.0, CH 545, m C-4", C-5"

1 1302, C 3" 1382, C

2! 116.5, CH 7.14,d (2.1) C-2, C-6,C7 4" 17.3, CH; 1.74, s c-2”, C-3”, C-5"

3 1439, C 5" 24.8, CH, 177, s C2", IC3", 4"

4 1442, C

8t 1164, CH 6.98, d (8.4) C-1, C3,C6,C8

6 121.0, CH 7.10 dd, (84, 2.1) C-2,C-2,C3,C4

7' 76.5, CH 5.00, d (8.0) c-8, C9, C-1”,C2", C-6"

8’ 78.7, CH 4.16, m

9’ 60.9, CH, 3.52, dd (14.5, 4.9) c-7, C-8

375, dd (14.5, 2.6)

Table 3. "H NMR Spectroscopic Data (500 Hz, Acetone-d;)
for 6¢ and 6d

6¢ 6d
pos Sy, mult (J in Hz) Sy, mult (J in Hz)
1 2.84,t (7.7) 2.87,t (7:7)
2 3.29,t (7.7) 3.32,t (7.7)
6 590, s
8 590, s 6.07, s
2 6.96,d (2.2) 6.99, d (2.1)
s’ 6.70, d (8.1) 6.72,d (82)
6 6.88, dd (8.1, 2.2) 6.90, dd (8.2, 2.1)
1” 3.26,d (7.2) 3.24,d (7.3)
o 5.30, tsept (7.2, 1.1) 5.22, tsept (7.3, 0.9)
4" 1.66, d (1.3) 1.62, d (1.1)
5" 1.68, d (1.1) 1.74, d (0.7)
1” 3.28,d (7.3)
2" 5.32, tsept (7.3, 1.1)
4" 1.68, d (1.3)
s" 1.70, d (1.1)

enzyme assay mixtures (100 uL) contained 1a—9a (1 mM), CaCl, (10
mM), DMAPP or GPP (2 mM), glycerol (1.0—6.0% v/v), DMSO (5%

(40 pg). The reaction mixtures were incubated at 37 °C for different
times and terminated by addition of 100 xL of MeOH. The proteins
were removed by centrifugation at 13 000 rpm for 20 min. Assays for
isolation of the enzyme products were carried out in large scales (10—
15 mL) containing aromatic substrates (1 mM), DMAPP (2 mM),
CaCl, (10 mM), glycerol (1.0—6.0% v/v), DMSO (5% v/v), Tris-HCl
(50 mM, pH 7.5), and 7.5 mg of recombinant protein per 10 mL assay.
After incubation for 16 h at 37 °C, the reaction mixtures of la—3a and
Sa—9a were extracted three or four times with double the volume of
EtOAc. The organic phases were combined and evaporated. The
residues were dissolved in acetone-dg for recording "H NMR spectra.
After measurement, the NMR samples were evaporated, dissolved in
MeOH (0.5-1.0 mL), and purified by HPLC. Assays for
determination of kinetic parameters (100 L) contained CaCl, (10
mM), glycerol (1.0-6.0% v/v), DMSO (5% v/v), Tris-HCI (S0 mM,
pH 7.5), DMAPP (2 mM), (R)-benzodiazepinedinone, 1a—3a, or Sa—
9a at final concentrations of up to 5.0 mM and different amounts of
AnaPT, ie,, 1 ug for (R)-benzodiazepinedinone, 40 ug for 1a, or 75 g
for 2a, 3a, and 5a—9a. To keep product formation in the linear region
(Figures S1 and S2, Supporting Information), the reaction mixtures
were incubated for different times: 15 min for la, 60 min for (R)-
benzodiazepinedione, 120 min for 3a and 9a, 180 min for 2a, Sa, and
6a, or 240 min for 7a and 8a. The reactions were terminated with 100
UL of MeOH. Protein was removed by centrifugation at 13 000 rpm

v/v), Tris-HCl (50 mM, pH 7.5), and purified recombinant protein for 20 min.
Table 4. Kinetic Parameters of AnaPT and 7-DMATS Reactions
AnaPT 7-DMATS?
substrate Ky [mM] ke [s7] kew/ Koy [s7H MT'] Ky [mM] Keae [s7] kew/Kag [ M7
L-tryptophan 0.14 023 1643
(R)-benzodiazepinedione 0.22 1.72 7818
naringenin (la) 0.26 0.042 161.5 0.99 0.023 23
7-hydroxyflavanone (2a) 0.48 0.0042 8.8
eriodictyol (3a) 0.29 0.0039 134 1.26 0.39 312
hesperetin (4a) 1.10 0.026 24
silibinin (5a) 0.18 0.0017 94
phloretin (6a) 0.81 0.0025 31 0.13 0.036 286
apigenin (7a) 0.11 0.0018 16.4
genistein (8a) 0.51 0.0042 82 0.16 0.027 171
biochanin A (9a) 0.11 0.011 100.0 0.07 0.019 261
2233 DOI: 10.1021/acs jnatprod.5b00422
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Analysis of Enzyme Products by HPLC, NMR, and MS. An
Agilent HPLC series 1200 was used for analysis and isolation of the
enzyme products. A Multospher 120 RP-18 column (250 X 4 mm, $
um C+S Chromatographie Service, Langerwehe, Germany) was used
for analysis at a flow rate of 1 mL/min, and a Multospher 120 RP18
column (250 X 10 mm, S um) for isolation at a flow rate of 2.5 mL/
min. H,O (solvent A) and MeCN (solvent B), both containing 0.5%
TFA, were used as solvents. A linear gradient of 40—100% (v/v)
solvent B in 15 min was used for analysis of the enzymatic products.
The column was then washed with 100% solvent B for 5 min and
equilibrated with 40% solvent B for another 5 min. Detection was
carried out using a photodiode array detector. Solvents for isolation of
the enzyme products were H,O (solvent C) and MeCN (solvent D)
without acid. The enzyme products were isolated with a linear gradient
of 50—100% D in C in 25 min. After each run, the column was
equilibrated with 50% solvent D for 10 min. HPLC analysis of the (R)-
benzodiazepinedione reaction was carried out as described pre-
viously.*!

Compound 1b: t; = 10.02 min; UV (extracted from PDA)
(MeCN/H,0) A, 230, 288 nm; MS m/z 340.1293 (calculated for
C,oH,005, 340.1311); "H NMR (500 Hz, acetone-dg) § 7.39 (2H, d, J
= 8.7 Hz, H-2'/H-6"), 6.89 (2H, d, ] = 8.7 Hz, H-3'/H-5'), 6.03 (1H,
s, H-8), 5.43 (1H, dd, J = 12.9, 3.0 Hz, H-2), 5.23 (1H, tsept, ] = 7.3,
1.5 Hz, H-2"), 3.17 (1H, dd, ] = 17.1, 12.9 Hz, H-3), 3.24 2H, d, ] =
7.3 Hz, H-1"), 2.72 (1H, dd, ] = 17.1, 3.0 Hz, H-3), 1.7 (3H, d, ] =
0.8 Hz, H-5"), 1.64 (3H, d, ] = 1.1 Hz, H-4").

Compound 1c: ty = 9.52 min; UV (extracted from PDA) (MeCN/
H,0) Apae 230, 296 nm; MS m/z 340.1309 (calculated for CyyH,oOs,
340.1311); "H NMR (500 Hz, acetone-dg) & 7.29 (1H, d, J = 2.2 Hz,
H-2"),7.21 (1H, dd, ] = 8.3,2.2 Hz, H-6'), 6.89 (1H, d, ] = 8.3 Hz, H-
5), 595 (1H, d, ] = 2.2 Hz, H-6), 5.94 (1H, d, ] = 2.2 Hz, H-8), 5.43
(1H, dd, ] = 12.9, 3.0 Hz, H-2), 5.35 (1H, tsept, ] = 7.4, 1.5 Hz, H-2"),
334 (2H, d, ] = 7.4 Hz, H-1”), 3.18 (1H, dd, ] = 17.1, 12.9 Hz, H-3),
2.71 (1H, dd, J = 17.1, 3.0 Hz, H-3), 1.71 (3H, d, ] = 0.7 Hz, H-5"),
1.70 (3H, d, ] = 1.4 Hz, H-4").

Compound 2b: t; = 1243 min; UV (extracted from PDA)
(MeCN/H,0) A, 240, 277, 320 nm; MS m/z 308.1389 (calculated
for CyH,03, 308.1412); 'H NMR (500 Hz, acetone-dg) & 7.59 (1H,
s, H-5),7.57 (2H, br d, ] = 8.2 Hz, H-2'/H-6"), 7.44 (2H, t, ] = 8.2 Hz,
H-3'/H-5'), 7.38 (1H, tt, ] = 8.2, 1.4 Hz, H-4'), 649 (1H, s, H-8),
5.54 (1H, dd, J = 13.0, 3.0 Hz, H-2), 5.33 (1H, tsept, ] = 7.4, 1.5 Hg,
H-2"),3.28 (2H, d, J = 7.4 Hz, H-1"), 3.01 (1H, dd, ] = 16.7, 13.0 Hz,
H-3),2.72 (1H, dd, ] = 16.7, 3.0 Hz, H-3), 1.73 (3H, d, ] = 0.9 Hz, H-
5"), 1.71 (3H, d, ] = 1.4 Hz, H4").

Compound 3c: ty = 8.99 min; UV (extracted from PDA) (MeCN/
H,0) Apax 230, 290 nm; MS m/z 356.1234 (calculated for C,oH,0Os,
356.1260); 'H NMR (500 Hz, acetone-dg) 6 6.90 (1H, d, ] = 2.0 Hg,
H-2"), 6.80 (1H, d, ] = 2.0 Hz, H-6"), 5.95 (1H, d, ] = 1.2 Hz, H-6),
594 (1H, d, J = 1.2 Hz, H-8), 5.37 (1H, dd, ] = 12.9, 3.0 Hz, H-2),
5.35 (1H, tsept, J = 7.3, 1.5 Hz, H-2"), 3.35 (2H, d, ] = 7.3 Hz, H-1"),
3.12 (1H, dd, J = 17.1, 12.9 Hz, H-3), 2.70 (1H, dd, J = 17.1, 3.0 Hz,
H-3), 1.71 (3H, d, ] = 0.6 Hz, H-5"), 1.70 (3H, d, ] = 1.1 Hz, H-4").

Compound 5b: t; = 11.08 min; UV (extracted from PDA)
(MeCN/H,0) Apa 230, 290 nm; MS m/z 550.1839 (calculated for
C30H;00,0, 550.1900); '"H NMR (600 Hz, acetone-dy) Table 1.

Compound 6b: t; = 9.09 min; UV (extracted from PDA) (MeCN/
H,0) Apax 230, 290 nm; MS m/z 342.1438 (calculated for C,oH,,0s,
342.1467); 'H NMR (500 Hz, acetone-dg) 6 7.09 (2H, d, ] = 8.5 Hg,
H-2'/H-6'), 674 (2H, d, ] = 8.5 Hz, H-3'/H-5'), 6.07 (1H, s, H-8),
324 (2H, d, ] = 7.2 Hz, H-1"), 5.22 (1H, tsept, J = 7.2, 1.1 Hz, H-2"),
3.33 (2H, t, ] = 7.7 Hz, H-2), 2.88 (2H, t, ] = 7.7 Hz, H-1), 1.74 (3H,
d, ] = 0.7 Hz, H-5"), 1.62 (3H, d, ] = 1.1 Hz, H-4").

Compound 6¢: ty = 8.70 min; UV (extracted from PDA) (MeCN/
H,0) Apax 230, 285 nm; MS m/z 342.1505 (calculated for C,oH,,0s,
342.1467); '"H NMR (500 Hz, acetone-d,) Table 2.

Compound 6d: t; = 11.59 min; UV (extracted from PDA)
(MeCN/H,0) A0 230, 290 nm; MS m/z 410.2071 (calculated for
CyH,405, 410.2093); "H NMR (500 Hz, acetone-dg) Table 2.

Compound 7b: t; = 11.55 min; UV (extracted from PDA)
(MeCN/H,0) A, 220, 277, 330 nm; MS m/z 338.1149 (calculated
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for C,0H,505, 338.1154); "H NMR (500 Hz, acetone-dg) & 7.93 (2H,
d, J = 9.0 Hz, H-2'/H-6'), 7.02 (2H, d, ] = 9.0 Hz, H-3//H-5), 6.62
(1H, s, H-3), 6.64 (1H, s, H-8), 5.27 (1H, tsept, ] = 7.3, 1.4 Hz, H-2"),
335 (2H, d, J = 7.3 Hz, H-1"), 1.78 (3H, d, ] = 1.0 Hz, H-5"), 1.65
(3H, d, ] = 1.1 Hz, H-4").

Compound 8b: t; = 10.52 min; UV (extracted from PDA)
(MeCN/H,0) 4, 215, 265 nm; MS m/z 338.1175 (calculated for
C,oH;305, 338.1154); 'H NMR (500 Hz, acetone-dy) & 8.15 (1H, s,
H-2),7.45 (2H, d, ] = 6.5 Hz, H-2'/H-6'), 6.90 (2H, d, ] = 8.7 Hz, H-
3'/H-5"), 6.51 (1H, s, H-8), 5.27 (1H, tsept, ] = 7.2, 1.2 Hz, H-2"),
3.36 (2H, d, J = 7.2 Hz, H-1"), 1.78 (3H, d, ] = 0.7 Hz, H-5"), 1.65
(3H, d, ] = 1.2 Hz, H-4").

Compound 8c: tz = 12.73 min; UV (extracted from PDA)
(MeCN/H,0) A, 215, 266 nm; MS m/z 406.1768 (calculated for
C,sH,405, 406.1780); 'H NMR (500 Hz, acetone-dg) 5 8.10 (1H, s,
H-2),7.32 (1H, d, ] = 2.3 Hz, H-2"), 7.25 (1H, d, ] = 8.3, 2.3 Hz, H-
6'),6.88 (1H, d, ] = 8.3 Hz, H-2'), 6.50 (1H, s, H-8), 5.36 (1H, m, H-
2"), 526 (1H, m, H-2"), 3.35 (2H, d, J = 7.5 Hz, H-1"), 3.33 (2H, d, J
= 6.0 Hz, H-1"), 1.76 (3H, d, ] = 0.8 Hz, H-4"), 1.71 (3H, d, J = 1.2
Hz, H-5"), 1.70 (3H, d, J = 1.2 Hz, H-5"), 1.63 (3H, d, ] = 1.1 Hz, H-
4").

Compound 9b: t; = 13.55 min; UV (extracted from PDA)
(MeCN/H,0) A, 215, 265 nm; MS m/z 352.1310 (calculated for
C,1H,,0s, 352.1311); 'H NMR (500 Hz, acetone-dg) & 8.18 (1H, s,
H-2),7.54 (2H, d, ] = 8.8 Hz, H-2'/H-6'), 7.00 (2H, d, ] = 8.8 Hz, H-
3'/H-5'), 6.51 (1H, s, H-8), 5.27 (1H, tsept, ] = 7.2, 1.5 Hz, H-2"),
3.84 (3H, s, OCH,), 3.36 (2H, d, ] = 7.2 Hz, H-1"), 1.78 (3H, d, ] =
0.6 Hz, H-5"), 1.65 (3H, d, ] = 1.1 Hz, H-4").
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Figure S1: Dependence of the product formation of 1a—3a and 5a—9a on incubation times in the presence
of DMAPP.

The enzyme assays (100 pL) contained one of eight flavonoids (1 mM), Tris-HCI1 (50 mM, pH 7.5), CaCl, (10
mM), DMAPP (2 mM), glycerol (1.0-6.0 % v/v), DMSO (5 % v/v), and the purified recombinant AnaPT (75
1e).
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Figure S2: Dependence of the product formation of 1a and 3a on incubation times in the presence of
DMAPP.

The enzyme assays (100 pL) contained 1a or 3a (1 mM), Tris-HCI (50 mM, pH 7.5), CaCl, (10 mM), DMAPP

(2 mM), glycerol (1.0-6.0 % v/v), DMSO (5 % v/v), and the purified recombinant AnaPT or 7-DMATS (40
ng).
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Figure S3 HPLC analysis of reaction mixtures of 7-DMATS and AnaPT.

The enzyme assays (100 pL) contained one of the flavonoids 1a—9a (1 mM), CaCl, (10 mM), DMAPP (2 mM),
glycerol (1.0-6.0 % v/v), dimethyl sulfoxide (DMSO, 5 % v/v), Tris-HCI1 (50 mM, pH 7.5) and purified
recombinant protein (40 pg). The reaction mixtures are incubated at 37 °C for 2 h. The absorption at 277 nm

was used for illustration of the reaction with 2a and 296 nm for other reactions.
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Figure S4: HPLC chromatograms of enzyme assays of AnaPT in the presence of GPP.

The enzyme assays (100 pL) contained one of the flavonoids 1a—9a (1 mM), CaCl, (10 mM), GPP (2 mM),
glycerol (1.0-6.0 % v/v), DMSO (5 % v/v), Tris-HCI (50 mM, pH 7.5) and purified recombinant protein (75

ug). The reaction mixtures were incubated at 37 “C for 16 h. The wavelength for illustration of product
formation was 277 nm (2a) or 296 nm (1a, 3a—9a)
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Abstract The fungal indole prenyltransferase FtmPT1 is in-
volved in the biosynthesis of fumitremorgins and catalyzes, in
the presence of dimethylallyl diphosphate, a predominant reg-
ular prenylation of cyclo-L-Trp-L-Pro (brevianamide F) at po-
sition C-2 of the indole nucleus. Analysis of the substrate-
bound structure of FtmPT1 revealed that brevianamide F
forms a hydrogen bond via its carbonyl oxygen in the
diketopiperazine moiety with the hydroxyl group of Tyr205
near the center of the prenyltransferase (PT) barrel. In this
study, Tyr205 was mutated to 19 other proteinogenic amino
acids by one-step site-directed mutagenesis. The obtained mu-
tants were assayed in the presence of dimethylallyl diphos-
phate with brevianamide F. The enzyme products were isolat-
ed on HPLC and their structures were elucidated by NMR and
MS analyses. Mutation of Tyr205 to Phe or Met did not
change the behavior of FtmPT1 significantly, with regularly
C2-prenylated brevianamide F as the predominant product.
Interestingly, 15 of the obtained mutants also produced regu-
larly C3-prenylated brevianamide F, with relative yields be-
tween 33 and 110 % of those of the regularly C2-prenylated
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derivatives. Among them, Y205C, Y205L, Y205N, Y205],
and Y205S showed similar brevianamide F consumption.
Y205H, Y205Q, Y205V, Y205G, and Y205E showed activi-
ties between 47 and 77 % of that of the wild type. These
results provide a solid basis for the construction of a
brevianamide F regular C3-prenyltransferase by site-directed
mutagenesis. Assaying stereoisomers of brevianamide F,
cyclo-D-Trp-D-Pro, cyclo-L-Trp-D-Pro, and cyclo-D-Trp-L-
Pro, with two selected mutants Y205N and Y205L resulted
in the formation of reversely C3-prenylated derivatives as pre-
dominant products, being in sharp contrast to their regularly
C2- and C3-prenylated derivatives with cyclo-L-Trp-L-Pro.

Keywords Cyclic dipeptide - Dimethylallyltryptophan
synthase - Enzyme catalysis - Friedel-Crafts alkylation -
Prenyltransferase - Saturation mutagenesis

Introduction

Prenyl transfer reactions are found ubiquitously in nature and are
utilized by living organisms for modifications of both macromol-
ecules like cell membrane components, proteins or tRNAs, and
small natural products (Winkelblech et al. 2015). In these reac-
tions, prenyl moieties (nxCs units) with different chain lengths
are transferred by prenyltransferases from prenyl donors such as
dimethylallyl diphosphate (DMAPP, 1x Cs) or geranyl diphos-
phate (GPP, 2x Cs) to various alphatic or aromatic acceptors.
Decoration of small molecule backbone skeletons by prenylation
leads often to the generation of biologically active products
(Heide 2009; Li 2010; Winkelblech et al. 2015). According to
their origins, primary amino acid sequences, biochemical fea-
tures as well as their structure folding, these enzymes are divided
into different subgroups (Winkelblech et al. 2015). The most
investigated prenyltransferases in the last decade build the
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subgroup dimethylallyl tryptophan synthase (DMATS) super-
family from microorganisms. DMATS enzymes are soluble pro-
teins, mainly catalyze Friedel-Crafts alkylations by attachment
of prenyl moieties to various aromatic acceptors including indole
derivatives, and are involved in the biosynthesis of bacterial and
fungal secondary metabolites. Until now, more than 40 members
of this group have been characterized biochemically
(Winkelblech et al. 2015). Twelve of the DMATS enzymes use
tryptophan and 14 tryptophan-containing cyclic dipeptides as
substrates. Usually, they show significant substrate tolerance to-
ward a large number of aromatic substrates and catalyze
regiospecific and stereospecific prenylations on the indole ring.
These features make the prenyltransferases useful tools as
biocatalysts for production of prenylated products (Fan et al.
2015a). For example, the indole prenyltransferase FtmPT1 from
the ascomyceteous fungus Aspergillus fumigatus uses DMAPP
as prenyl donor and cyclo-L-Trp-L-Pro (brevianamide F) as ac-
ceptor and catalyzes predominantly a regular C2-prenylation
(Fig. 1) (Grundmann and Li 2005; Li 2011; Wollinsky et al.
2012). Three fungal indole prenyltransferases, AnaPT,
CdpNPT, and CdpC3PT, act as reverse C3-prenyltransferases
on different cyclic dipeptides, leading to the formation of
prenylated pyrrolo[2,3-blindoles with anti-cis or syn-cis config-
uration of the ring systems (Fan et al. 2015a; Schuller et al. 2012;
Winkelblech et al. 2015; Yin et al. 2009, 2010; Yu et al. 2013).
The indole prenyltransferase ArdB from Aspergillus fischeri cat-
alyzes reverse C3-prenylation of a tripeptide derivative (Haynes
et al. 2013). Regularly C3-prenylated cyclic dipeptides and de-
rivatives thereof are rare in nature. Until now, only
nocardioazines A and B from Nocardiopsis were reported
(Raju et al. 2011). Correspondingly, little is known about the
responsible prenyltransferases for regular C3-prenylation.
Recently, a prenyltransferase was identified in the producer of
nocardioazines and proven to be responsible for a regular C3-
prenylation of cyclo-L-Trp-L-Trp (Algahtani et al. 2015). In

Fig. 1 Main reactions catalyzed A
by FtmPT1 (a) and its Tyr205
mutants (b) o)

>’\0PP

H e} FtmPT1

brevianamide F
(cyclo-LTrp-L-Pro)

B

0 FtmPT1_Y205X

brevianamide F
(cyclo-LTrp-L-Pro)

@ Springer

comparison to reverse C3-prenyltransferases, there is still a defi-
ciency with the availability of regular C3-prenyltransferases for
application in the chemoenzymatic synthesis or synthetic
biology.

Crystal structures of unliganded FtmPT1 from A. fumigatus
and its ternary complex with brevianamide F and DMSPP, a
non-hydrolyzable analogue of DMAPP, were solved in 2010
and used as basis to understand the catalytic mechanism (Jost
et al. 2010). As the tryptophan prenyltransferase FgaPT2
(Metzger et al. 2009), FtmPT1 assumes a rare o/[3-barrel fold,
consisting of ten circularly arranged {3-strands surrounded by
o-helices, arranged in five structurally similar o3 3 repeats.
Prenyl transfer reaction is performed in a hydrophobic reac-
tion chamber at the center of the barrel (Jost et al. 2010).
Several amino acid residues in FtmPT1 including Gly115
and Tyr205 were proposed to be involved in the binding of
brevianamide F. The corresponding residues in FgaPT?2 struc-
tures are Thr102 and Tyr191 (Jost et al. 2010). Mutation of
Gly115 in FtmPT]1 redirected the prenylation of brevianamide
F from regular C2- to reverse C3-prenylation (Jost et al. 2010).

The aforementioned FgaPT?2 from A. fumigatus catalyzes
C4-prenylation of L-tryptophan (Uns6ld and Li 2005), and its
structure was solved in 2009 (Metzger et al. 2009). With high
protein amount, FgaPT2 was able to catalyze the C4-
prenylation of five tryptophan-containing cyclic dipeptides
(Steffan et al. 2007) and C3-prenylation of tyrosine (Fan
et al. 2015b). Arg244 was proposed to bind the hydroxylate
group of tryptophan (Metzger et al. 2009). Saturation muta-
genesis on Arg244 led to identification of 13 mutants, which
displayed differentially increased enzyme activities for
tryptophan-containing cyclic dipeptides, with up to 76-fold
turnover number of that of FgaPT2 (Fan and Li 2016).
Lys174 was proposed to abstract one proton from the inter-
mediate cation and to rearomatization for end products
(Metzger et al. 2009). FgaPT2 K174F exhibited much higher
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catalytic efficiency toward L-tyrosine than FgaPT2, while its
activity toward L-tryptophan was almost abolished (Fan et al.
2015b). These studies demonstrated the potential of site-
directed (saturation) mutagenesis on amino acid residues in
the active center for creation of new biocatalysts.

Tyr205 in FtmPT1 was proposed in a previous study (Jost
etal. 2010) to be involved in the hydrogen bond formation via
its hydroxyl group with the keto group of the diketopiperazine
moiety in brevianamide F. The corresponding residue Tyr191
and the aforementioned Arg244 in FgaPT2 interact with the
carboxyl residue of the tryptophan side chain (Jost et al.
2010). We proposed that the location and orientation of
brevianamide F in the reaction chamber can be influenced
by replacement of Tyr205 with other amino acids, which
could result in the formation of mutants with different enzyme
activities.

Materials and methods
Chemicals

DMAPP was synthesized according to the method described
for geranyl diphosphate reported previously (Woodside et al.
1988). Synthesis of cyclic dipeptides was described elsewhere
(Yu et al. 2013).

Bacterial strains, plasmids, and culture conditions

Escherichia coli XL1-Blue MRF’(Stratagene, Heidelberg,
Germany) was used for cloning and expression experiments.
PAGI12 containing fimPT1 in pQE70 was constructed previ-
ously (Grundmann and Li 2005) and used as expression vec-
tor for FtmPT1 and as DNA template for site-directed muta-
genesis experiments. E. coli cells harboring plasmids were
grown in liquid lysogeny broth (LB) medium and on solid
LB medium with 1.5 % (w/v) agar at 37 °C. Fifty micrograms
carbenicillin per milliliter was used for selection of recombi-
nant E. coli strains.

Site-directed mutagenesis

One-step site-directed mutagenesis protocols (Olafsen et al.
2006) with degenerated primers at bps 613—-615 were used
to generate mutants of FtmPT1 listed in Table 1. The
Expand Long Template PCR system (Roche Diagnostics,
Mannheim, Germany) was used for plasmids pWZI1-
pWZ18, pST3, and pKZ27. pWZ2 was used as template for
construction of the double mutant G115T Y205N. PCR were
carried out in 50-pL reactions containing 3.75 U of DNA
polymerase mix, 200-600 ng plasmid DNA, 15 pmol of each
primer, and 35 pmol dNTPs. Reactions were run for 20 cycles
at 94 °C for 40 s, 55-65 °C for 1 min, and 68 °C for 6 min as
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well as an additional 7 min at 68 °C (Table S1 in Electronic
Supplementary Material). PCR mixtures were digested with
Dpnl and subsequently transformed into E. coli XL1-Blue
MRF’. The obtained plasmids were isolated and subjected to
sequencing to confirm the desired mutations in the respective
constructs.

Overproduction and purification of the recombinant
proteins

Protein overproduction and purification of FtmPT1 and its
Tyr205 mutants were carried out as described previously
(Grundmann and Li 2005) and analyzed on SDS-PAGE
(Fig. S1 in Electronic Supplementary Material). Protein con-
centration was estimated by measurement of the absorption at
280 nm on a NanoDrop 2000c UV—-vis spectrophotometer and
by comparison of their intensities with those of protein
markers on SDS-PAGE.

Enzyme assays with purified recombinant proteins

The enzyme assays (100 nL) contained cyclic dipeptide
(1 mM), CaCl, (10 mM), DMAPP (2 mM), glycerol (0.2—
5.0 % vlv), dimethyl sulfoxide (DMSO, 5 % v/v), Tris-HCI
(50 mM, pH 7.5), and purified recombinant protein (5 pug).
The reaction mixtures were incubated at 37 °C for 2 h and
terminated by addition of 100 pL. methanol. The proteins were
removed by centrifugation at 13,000 rpm for 20 min. The
supernatants were analyzed on HPLC described below and
the results are given in Table 2. For analysis on LC-MS, the
reaction mixtures were extracted twice with double volume of
ethyl acetate. The organic phases were combined and evapo-
rated under reduced pressure to afford the residues, which
were dissolved in 100 pL methanol and analyzed on LC—
MS. Assays for isolation of the enzyme products were carried
out in large scales (10—15 mL) containing cyclic dipeptide
(1 mM), DMAPP (2 mM), CaCl, (10 mM), glycerol (0.2—
5.0 % v/v), DMSO (5 % v/v), Tris-HCI (50 mM, pH 7.5),
and 3-8 mg recombinant proteins per 10—-15 mL incubation
mixtures. After incubation for 16 h at 37 °C, the reaction
mixtures were extracted four times with double volume of
ethyl acetate. The organic phases were combined and evapo-
rated. The residues were dissolved in methanol (0.5-1.0 mL)
and purified on a preparative HPLC. Assays for determination
of kinetic parameters (100 pL) contained CaCl, (10 mM),
glycerol (0.2-5.0 % v/v), DMSO (5 % v/v), Tris-HCI
(50 mM, pH 7.5), DMAPP (2 mM), 1a—4a at final concentra-
tions of up to 2.0 mM, and different amounts of proteins
(Table 3). The reaction mixtures were incubated within the
linear range of the product formation for different times
(Table 3) and terminated with 100 L. methanol. Proteins were
removed by centrifugation at 13,000 rpm for 20 min, and the
supernatants were analyzed on HPLC.
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Table 1 Mutated derivatives of FtmPT1 at Tyr205 and respective primers used for site-directed mutagenesis
Sequence(5'-3") Bases at 613-615 Mutant Plasmid Protein yield
(mg/L of culture)
fw GCGTATTTCNNNCCGCAGCCCAAATCTGC ATA FtmPT1_Y205I pWZ1 26
rev GGGCTGCGGNNNGAAATACGCCTTGACCAG AAT FtmPT1 Y205N pWZZ 53
GCG FtmPT1_Y205A pWZ3 0.6
ACA FtmPT1_Y205T pWz4 02
GTA FtmPT1_Y205V pWZ5 0.6
fw GCGTATTTCCNNCCGCAGCCCAAATCTGC CAG FtmPT1_Y205Q pWZ6 0.6
CAC FtmPT1_Y205H pWz8 3.1
CCA FtmPT1_Y205P pWZ9 0.7
CTC FtmPT1_Y205L pWZ10 43
fw GCGTATTTCNGNCCGCAGCCCAAATCTGC AGT FtmPT1_Y205S pWZ11 44
rev GGGCTGCGGNCNGAAATACGCCTTGACCAG TGG FtmPT1 Y205W pWZlZ 58
GGC FtmPT1_Y205G pWZ13 0.9
fw GCGTATTTCRWSCCGCAGCCCAAATCTGC GAC FtmPT1_Y205D pWZ14 4.6
rev GGGCTGCGGSWYGAAATACGCCTTGACCAG GAG FtmPT1 Y205E pWZl 5 58
fw GCGTATTTCTGTCCGCAGCCCAAATCTGC TGT FtmPT1_Y205C pWZ16 8.7
rev GGGCTGCGGACAGAAATACGCCTTGACCAG
fw GCGTATTTCAWGCCGCAGCCCAAATCTGC ATG FtmPT1_Y205M pWZ17 25
fw GCGTATTTCTTCCCGCAGCCCAAATCTGC TTC FtmPT1_Y205F pST3 3.0

rev GGGCTGCGGGAAGAAATACGCCTTGACCAG

fw GATTCGAATTACGGTTGATCCCGTCACGGC- TGACTCTGGC ACG*

rev GGGATCAACGTAATTCGAATCAACGC- CCGAGCGACG

FtmPT1_GI115T_Y205N pKZ27 2.8

PAG 12 was used as DNA template for site-directed mutagenesis experiments of the single mutants and pWZ2 as DNA template for preparation of

FtmPT1_G115T_Y205N

Analysis of enzyme products by HPLC, LC-MS,
and NMR

An Agilent HPLC series 1200 (Boblingen, Germany) was
used for analysis and isolation of the enzyme products.
Analysis of the enzyme products was performed on an
Agilent Eclipse XDB-C;g column (150 x 4.6 mm, 5 pm) with
a linear gradient of 5-100 % (v/v) methanol (solvent B) in
water (solvent A) in 40 min and a flow rate at 0.5 mL/min.
The column was then washed with 100 % (v/v) solvent B for
5 min and equilibrated with 5 % (v/v) solvent B for 5 min. The
enzyme products were isolated on a Multospher 120 RP18
column (250 x 10 mm, 5 pm, C+S Chromatographie
Service, Langerwehe, Germany) with a linear gradient of
10-50 % B in A in 30 min and a flow rate at 2.5 mL/min.
After each run, the column was equilibrated with 10 % solvent
B for 10 min. The HPLC chromatograms of the incubation
mixtures of 1a with FtmPT1 and its Tyr205 mutants are illus-
trated in Fig. S2 in Electronic Supplementary Material.

MS spectra were obtained with a micrOTOF-Q III spec-
trometer (Bruker, Bremen, Germany) with an ESI source. The
spectrometer was equipped with an Agilent 1260 HPLC
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system. The LC-MS chromatograms of incubation mixtures
of 1a—4a with Y205N are provided in Figs. S3—-S6 in
Electronic Supplementary Material. "H NMR spectra were
recorded at room temperature on an ECX-400 or 500 spec-
trometer (JEOL, Tokyo, Japan). Chemical shifts were refer-
enced to the solvent signal at 7.26 ppm for CHCls. All spectra
were processed with MestReNov. 5.2.2 (Metrelab Research,
Santiago de Compostela, Spain).

Compound 1c¢ g = 35.4 min; UV (extracted from PDA)
(MeOH/H,0) Amax 243, 296 nm; MS: m/z 352.2038 ([M+
H]*, calculated for C,1H,6N305: 352.2020). '"H NMR
(500 Hz, CDCl3) 6y 7.10 (dd, 1H, J = 7.4 and 1.4 Hz, H-4),
7.09 (t, 1H, J = 7.4 Hz, H-6), 6.78 (t, 1H, J = 7.4 Hz, H-5),
6.61 (dd, 1H,J=7.4 and 0.8 Hz, H-7), 5.24 (s, 1H, H-2), 5.17
(brt, 1H,J=7.5Hz, H-2),4.06 (m, 2H, H-11 and H-14), 3.53
(m, 2H, H-17), 2.64 (dd, 1H, J=13.0 and 6.4 Hz, H-10), 2.36
(m, 3H, H-1’and H-10), 2.30 (m, 1H, H-19), 2.13 (m, 1H,
H-18), 2.04 (m, 1H, H-18), 1.89 (m, 1H, H-19), 1.70 (s, 3H,
H-4"), 1.52 (s, 3H, H-5"). These data correspond well to those
in literature (Caballero et al. 2003).

Compound 2d #z = 34.7 min; UV (extracted from PDA)
(MeOH/H,0) Amax 240, 296 nm; MS: m/z 352.2009 ([M+
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Table 2  Substrate consumption and product yields (%) of brevianamide F prenylation catalyzed by FtmPT1 and its mutants
Substrate C2-regularly  C3-regularly  Relative C3-reversely  NI-regularly
WT/mutant consumption prenylated prenylated vield prenylated prenylated
(1b) (1c) 1c/1b (1d) (1e)
i = o A o i
i ! HN\(‘/’\\‘} 7 <\{ N N Qmo
N \ I ) "’HNTO‘/Q ) HN\’HD S/ &
H b ™o A
FtmPT1 (WT) 98.3+0.1 96.2+0.2 N.D. - N.D. 2.1+£0.2
FtmPT1_Y205F 97.0+0.1 90.6 +0.3 3.5+0.2 0.04 % N.D. 29+0.1
FtmPT1_Y205C 96.2+0.1 66.1 £0.7 26.1+0.6 39.5 % N.D. 4.0+0.1
FtmPT1_Y205L 95.9+0.2 56.4+0.1 31.8+0.1 56.4 % N.D. 7.7+0.1
FtmPT1_Y205M 95.8+0.1 84.5+04 8.3+0.2 9.8 % N.D. 2.8+0.1
FtmPT1_Y205N 94.4+0.1 51.6+0.1 356+0.2 70.0 % 2.840.1 44+0.1
FtmPT1_Y205I 93.8+0.2 64.0+0.7 253+0.6 39.5% N.D. 45+0.2
FtmPT1_Y205S 93.3+0.9 57.5+£0.9 29.0+0.1 50.4 % 1.8+0.6 5.0+0.1
FtmPT1_Y205H 76.4+0.6 445 +0.1 27.0+0.3 60.7 % N.D. 4.9+0.1
FtmPT1_Y205Q 69.1+0.2 493+22 16.6 £1.1 33.7% N.D. 32+0.2
FtmPT1_Y205V 66.7+£1.3 473 +2.1 15.6+1.3 33.0% N.D. 3.8+0.1
FtmPT1_Y205G 49.0+3.2 174+1.3 16.0+1.7 92.0 % 12.2+1.1 34+04
FtmPT1_Y205E 469 +2.9 25719 14.8+£0.5 57.6 % 3.0+£0.2 32+0.2
FtmPT1_Y205W 36.5+2.1 30.0+2.3 N.D. - N.D. 6.5+0.6
FtmPT1_Y205A 32.0+2.0 17.5+£2:6 123+£2.7 70.3 % N.D. 22+04
FtmPT1_Y205R 282+0.4 7.4+0.1 5.7+£0.2 77.0 % 13.2+0.1 1.9+0.1
FtmPT1_Y205K 211105 8.9+0.5 9.8+0.5 110 % 1.6+0.3 0.8+0.1
FtmPT1_Y205D 20.5+3.3 95+1.8 53+0.8 55.8% 3.6+0.7 21+04
FtmPT1_Y205P 179+1.0 129+0.8 5.0£0.6 38.7% N.D. N.D.
FtmPT1_Y205T 12.7+0.5 12.7+0.9 N.D. - N.D. N.D.
The data are means of two independent measurements
N.D. not detected
Table 3  Kinetic parameters of FtmPT1, Y205N, and Y205L reactions
Enzymes Protein amount and incubation time Substrates Ky, [mM] ke [s71 keadKns [s MY
FtmPT1 1.0 pug, 5 min cyclo-L-Trp-L-Pro (1a) 0.057 +0.00021 8.91 +0.064 156,316
Y205N 1.0 pg, 45 min cyclo-L-Trp-L-Pro (1a) 0.11 £0.0026 1.36 £0.074 12,364
2.5 pg, 60 min cyclo-D-Trp-D-Pro (2a) 0.32+0.0010 0.25+0.016 781
1.0 pg, S min c¢yclo-L-Trp-D-Pro (3a) 0.62 +0.042 0.32+0.011 516
5.0 pg, 30 min cyclo-D-Trp-L-Pro (4a) 0.40 +0.029 0.21+0.011 525
Y205L 1.0 pg, 30 min cyclo-L-Trp-L-Pro (1a) 0.19+0.0031 4.26 +0.0098 22,421
2.5 ug, 10 min cyclo-D-Trp-D-Pro (2a) 0.28 +0.0093 1.39+0.10 4964
2.5 pg, 10 min cyclo-L-Trp-D-Pro (3a) 0.083 +£0.014 0.18+0.018 2169
2.5 ug, 45 min cyclo-D-Trp-L-Pro (4a) 0.46 +0.023 0.41 £+ 0.009 891
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H]*, calculated for C,;Hy6N30,: 352.2020). 'H NMR
(400 Hz, CDCly) 64 7.17 (dd, 1H, J=7.6 and 0.8 Hz, H-4 ),
7.07 (t, 1H, J = 7.6 Hz, H-6), 6.73 (t, 1H, J = 7.6 Hz, H-5),
6.55 (d, 1H, J = 7.6 Hz, H-7), 5.95 (dd, iH, J = 16.7 and
10.2 Hz, H-2%), 5.39 (s, 1H, H-2), 5.15 (dd, 1H, J = 10.2
and 1.2 Hz, H-1°), 5.12 (dd, 1H, J = 16.7 and 1.2 Hz, H-1"),
4.16 (t, 1H, J = 8.7, H-11), 4.09 (ddd, 1H, J = 9.0, 7.3, and
1.7 Hz, H-14), 3.43 (m, 2H, H-17), 2.79 (dd, 1H, J = 14.0 and
8.9 Hz, H-10), 2.55 (dd, 1H, J= 14.0 and 8.9 Hz, H-10), 2.32
(m, 1H, H-19), 2.05 (m, 1H, H-19), 1.97 (m, 1H, H-18), 1.87
(m, 1H, H-18), 1.14 (s, 3H, H-4"), 0.99 (s, 3H, H-5"). '"H NMR
data correspond well to those in literature (Yu et al. 2013).

Compound 3d fg = 34.0 min; UV (extracted from PDA)
(MeOH/H,0) Amax 250, 296 nm; MS: m/z 352.2016 ([M+
HJ*, calculated for C,H,eN305: 352.2020). 'H NMR (400 Hz,
CDClL) 65 7.17 (d, 1H, J=7.5 Hz, H-4), 7.08 (t, 1H, J=7.6 Hz,
H-6), 6.74 (t, 1H, J=7.6 Hz, H-5), 6.56 (d, 1H, J=7.6 Hz, H-7),
5.93 (dd, 1H,J=17.6 and 11.2 Hz, H-2"), 5.70 (s, 1H, H-2), 5.12
(d, 1H,J=11.2 Hz, H-1°), 5.08 (d, 1H, J= 17.6 Hz, H-1"), 4.02
(ddd, 1H, J = 11.7, 5.7, and 1.8 Hz, H-14), 3.97 (ddd, 1H,
J =120, 5.3, and 1.8 Hz, H-11), 3.90 (m, 1H, H-17), 3.29 (i,
1H, H-17), 2.51 (dd, 1H, J = 12.0 and 5.3 Hz, H-10), 2.40 (m,
1H, H-19), 2.31 (t, 1H, J= 12.0 Hz, H-10), 1.97 (m, 1H, H-18),
1.88 (m, 1H, H-18), 1.76 (m, 1H, H-19), 1.12 (m, 3H, H-4"), 1.00
(s, 3H, H-5"). "H NMR data correspond well to those in literature
(Yu et al. 2013).

Compound 4d #z = 34.0 min; UV (extracted from PDA)
(MeOH/H,0) Amax 250, 296 nm; MS: m/z 352.2013 ([M+
HJ*, calculated for C,;HgN305: 352.2020). 'H NMR (400 Hz,
CDCl) 65 7.17 (d, 1H, J=7.6 Hz, H-4), 7.08 (t, 1H, J=7.6 Hz,
H-6), 6.74 (t, 1H, J=7.6 Hz, H-5), 6.56 (d, 1H, J=7.6 Hz, H-7),
5.92(dd, 1H,J=17.7 and 11.2 Hz, H-2"), 5.70 (s, 1H, H-2), 5.12
(d, 1H,J=11.2 Hz, H-1°), 5.06 (d, 1H, J= 17.7 Hz, H-1"), 4.02
(m, 1H, H-14), 3.96 (m, 1H, H-11), 3.90 (m, 1H, H-17), 3.27 (m,
1H, H-17), 2.51 (dd, 1H, J = 12.0 and 5.4 Hz, H-10), 2.41 (m,
1H, H-19), 2.31 (t, 1H, J = 12.0 Hz, H-10), 1.97 (m, 1H, H-18),
1.89 (m, 1H, H-18), 1.76 (m, 1H, H-19) 1.12 (m, 3H, H-4"), 1.00
(s, 3H, H-5"). '"H NMR data correspond well to those in literature
(Yu et al. 2013).

Results

Generation of Tyr205 mutants by saturation mutagenesis
with degenerated primers

To generate Tyr205 mutants, saturation mutagenesis experi-
ments were carried out by site-directed mutagenesis using the
expression construct pAG12 (Grundmann and Li 2005) as
template. Different oligo nucleotides with wobbles at base
pairs of 613 to 615 were used as degenerated primer pairs
(Table 1). After identification of ten mutants amplified by
using primers containing NNN or CNN at these positions,
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the remained mutants were obtained with more specific
primers (Table 1). Finally, all 19 mutations at Tyr205 were
constructed and used for expression.

Overproduction and purification of the obtained mutants

Under the conditions for FtmPT1 overproduction
(Grundmann and Li 2005), protein yields between 5.0 and
9 mg/L of culture were obtained for five mutants, Y205N,
Y205W, Y205E, Y205C, and Y205K. These values are sig-
nificantly lower than 20 mg/L culture reported previously for
FtmPT1 (Grundmann and Li 2005), for which 10.6 mg/L
culture was calculated in this study. Protein yields between 1
and 5 mg/L culture were estimated for nine mutants, Y2051,
Y205R, Y205H, Y205L, Y205S, Y205D, Y205M, Y205F,
and G115T Y205N. Protein yields of lower than 1 mg/L cul-
ture were found for six other mutants. SDS-PAGE analysis
revealed that 12 mutants, Y205N, Y205L, Y205F, Y2051,
Y205M, Y205R, Y205S, G115T Y205N, Y205G, Y205H,
Y205Q, and Y205C, were purified to near homogeneity.
Predominant bands with expected size were observed for oth-
er mutants (Fig. S1 in Electronic Supplementary Material).

Mutation on Tyr205 redirected partially the prenylation
position of brevianamide F

Brevianamide F was incubated in the presence of 2 mM
DMAPP with 5 pg of purified FtmPT1 or its 19 Tyr205 single
mutants at 37 °C for 2 h. Under the HPLC conditions used in
this study, the enzyme products were separated very well from
each other (Fig. S2 in Electronic Supplementary Material) and
the chromatograms were highly reproducible. The results of
the 19 mutants can be categorized in different groups. The first
group consisting of Y205F and Y205M showed one predom-
inant product peak 1b at 33.0 min with comparable enzyme
activity to FtmPT1. By comparison of retention times, UV,
and NMR spectra, this peak was identified as the regularly
C2-prenylated derivative, i.e., the identical product as
FtmPT1 itself. Y205W and Y205T also converted
brevianamide F mainly to the regularly C2-prenylated prod-
uct, but with much lower enzyme activities.

In the HPLC chromatograms of 15 other mutants, two or
more product peaks were detected. With an exception for the
assay with Y205R, the regularly C2-prenylated brevianamide
F (1b) at 33.0 min was still detected as the major product.
Interestingly, 1c at 35.4 min was observed as the second pre-
dominant product peak in reaction mixtures of most mutants.
This peak was identified as a regularly anti-cis-configured C3-
prenylated brevianamide F by isolation and interpretation of
its '"H NMR spectrum (see below for structure elucidation).
Relative yields of 1¢ to 1b were determined between 33 and
110 % (Table 2). Five mutants, Y205C, Y205L, Y205N,
Y2051, and Y205S, showed similar enzyme activity as the
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wild type with substrate consumption of more than 90 % un-
der the tested conditions. The relative product yields of 1¢ to
1b varied from 39 to 70 % in the reaction mixtures of these
mutants (Table 2). Five mutants, Y205H, Y205Q, Y205V,
Y205G, and Y205E, showed lower enzyme activity with sub-
strate consumption between 46.9 and 76.4 %. The relative
product yields of 1c to 1b were found between 33 and 92 %.
Other mutants like Y205A, Y205R, Y205K, Y205D, and
Y205P accepted brevianamide F with significantly reduced
activities. In addition to the regularly C2-prenylated derivative
1b and the regularly C3-prenylated 1c, product peaks 1d at
34.8 min and 1e at 35.8 min were also detected in the reaction
mixtures of most mutants (Fig. S2 in Electronic
Supplementary Material). By comparing their retention times
and UV and NMR spectra with those of authentic compounds,
these two products were identified as reversely C3-prenylated
and regularly N/-prenylated derivatives, respectively. With an
exception for those in the reaction mixture of Y205G, 1d and
le were found as minor products with product yields of less
than 5 % in most cases. In the case of Y205G, the ratio of
1b:1c:1d:1e was calculated to be 5.1:4.7:3.6:1.

Structure elucidation of the detected enzyme products

As aforementioned, 1b, 1d, and 1e were identified, by com-
paring their retention times and UV spectra with those of
authentic samples, as regularly C2-, reversely C3-, and regu-
larly NI-prenylated derivatives of 1a, respectively. For struc-
ture confirmation of the enzyme products, we carried out
large-scale overnight incubations (10—15 mL) of 1a with five
selected mutants, Y2051, Y205C, Y205S, Y205L, and
Y205N. The reaction mixtures were extracted with ethyl ace-
tate, and the obtained organic phases were evaporated to dry-
ness and subjected to "H NMR analysis. As shown in Fig. S7
in Electronic Supplementary Material, the spectra of these
mixtures are very similar, indicating the presence of the same
or similar products. Due to different product yields and ratios,
the signal intensities of these products differed from each oth-
er in the mixtures. Comparison with NMR data of known
products confirmed the presence of the regularly C2-
prenylated (1b), the reversely C3-prenylated (1d), and the
regularly NI-prenylated derivative (1e) (Grundmann and Li
2005; Jostetal. 2010; Yin etal. 2007; Yu et al. 2013). LC-MS
analysis of the reaction mixture of 1a with Y205N (Fig. S3 in
Electronic Supplementary Material) also confirmed the peaks
at 23.0, 23.8, and 24.8 min as monoprenylated derivatives.
To determine the prenylation position in its structure, 1c
was isolated on a preparative HPLC from an incubation mix-
ture of 1a with Y205N and subjected to NMR analysis.
Signals for a regular prenyl moiety were clearly found at
5.17 (t, 1H, H-2"), 2.36 (m, 2H, H-1"), 1.70 (s, 3H, H-4"),
and 1.52 (s, 3H, H-5’) in the '"H NMR spectrum (Fig. S8 in
Electronic Supplementary Material). The appearance of H’-1
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of the dimethylallyl moiety and H-2 of the original indole ring
with up-field shifted chemical shifts at 2.36 (m, 2H, H-1") and
5.24 (s, 1H, H-2) indicated a C3-prenylation in 1¢ (Caballero
et al. 2003; Woilinsky et al. 2012). Reguiarly C3-prenyiated
derivatives have been identified as minor products of FtmPT1
reactions with tryptophan-containing cyclic dipeptides includ-
ing D-Trp-D-Pro (Wollinsky et al. 2012). In these products, the
prenyl moieties are on the same side of the C;(—C;; bond and
take a syn-cis configuration of the four fused rings. Detailed
analysis revealed that the 'H NMR data of 1¢ differed clearly
from those of the regularly syn-cis-configured C3-prenylated
D-Trp-D-Pro (Wollinsky et al. 2012), which would have an
identical spectrum as its enantiomer, i.e., the regularly syn-
cis-configured C3-prenylated L-Trp-L-Pro (brevianamide F).
The data of 1¢ corresponded very well to those of the chem-
ically synthesized regularly anti-cis-configured C3-prenylated
brevianamide F (Caballero et al. 2003). Therefore, the struc-
ture of 1¢ can be unequivocally elucidated as illustrated (Fig. 2
and Table 2).

Behaviors of Y205N and Y205L toward cyclo-Trp-Pro
stereoisomers

In a previous study, we identified several regularly syn-cis-
configured C3-prenylated cyclic dipeptides as side products
of the FtmPT1 reactions (Wollinsky et al. 2012). In that study,
FtmPT1 converted all the four cyclo-Trp-Pro stereoisomers
mainly to regularly C2-prenylated derivatives. Product yields
of 83.0, 29.1, and 79.1 % were calculated for FtmPT1 reac-
tions (5 pg protein at 37 °C for 2 h) with cyclo-L-Trp-L-Pro
(1a), cyclo-D-Trp-L-Pro (2a), and cyclo-L-Trp-D-Pro (3a), re-
spectively. In the reaction mixture of D-Trp-D-Pro (4a), both
regularly C2- and C3-prenylated derivatives were identified,
with product yields of 43.4 and 11.8 %, respectively. These
results were also reproduced in this study and are depicted in
Fig. 2.

HPLC analysis of the incubation mixtures of Y205N and
Y205L with the four stereoisomers of cyclo-Trp-Pro revealed
different behaviors. As shown in Fig. 2, two main products 1b
and 1¢ were detected in the incubation mixtures of Y205N and
Y205L with 1a. Conversion yields of 1¢ at 35.6 + 0.2 and
31.8 £ 0.1 % were obtained for 1a with Y205N and Y205L,
respectively (Table 2). As shown in Fig. 2, Y205N converted
cyclo-D-Trp-D-Pro (2a), cyclo-L-Trp-D-Pro (3a), and cyclo-
D-Trp-L-Pro (4a) mainly to one dominant peak each (2d, 3d,
or 4d), with product yields of 21.6 + 1.1, 41.1 = 1.9, and
32.5+ 1.1 %, respectively. 2d, 3d, and 4d were isolated from
the reaction mixtures of 2a, 3a, and 4a with Y205N and iden-
tified as reversely C3-prenylated derivatives, by comparison
of their "H NMR data with those of the known compounds
(Yu et al. 2013) (Materials and methods; Figs. S3—S6 and S8—
S11 in Electronic Supplementary Material). Regularly C2-
prenylated derivatives 2b—4b were identified as minor
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4 Fig. 2 HPLC chromatograms of the incubation mixture of FtmPTI,
Y205N, and Y205L with cyclo-Trp-Pro isomers (a) and reactions
catalyzed by the enzymes (b)

products of 2a—4a, respectively (Figs. S4-S6 in Electronic
Supplementary Material for LC-MS analysis).

2d was also identified as the predominant product of
Y205L with 2a, with a product yield of 60.5 + 3.0 %. The
two enantiomers 3a and 4a were converted by Y205L to two
similar complex product mixtures. Detailed inspection of the
HPLC chromatograms indicated the presence of 3b and 3d as
well as 4b and 4d with the same retention times as those in the
incubation mixtures of 3a and 4a with FtmPT1 and/or
Y205N. 3g and 3e as well as 4g and 4e showed the same
retention times as those of the reversely C2- and regularly NI-
prenylated derivatives, which were obtained from the incuba-
tion mixtures of 3a with BrePT (Yin et al. 2013) and CdpNPT
(Yu et al. 2013), respectively (data not shown). The product
yields of 15.3 + 0.4, 26.8 + 0.6, 5.9 +£ 0.6, and 18.2 £ 0.2 %
were calculated for 3b, 3d, 3e, and 3g, respectively. The prod-
uct yields of 4b, 4d, 4e, and 4g were found to be 9.8 + 1.3,
179+ 1.6,4.1 £ 1.4, and 12.1 £ 1.3 %, respectively (Fig. 2).

Double mutant at positions Gly115 and Tyr205

In a previous study, we have demonstrated that mutation on
Glyl115 to threonine led to a change in the prenylation pattern
and position, i.e., from regular C2-prenylation catalyzed by
FtmPT1 to reverse C3-prenylation catalyzed by
FtmPT1 G115T. We were curious to prove the effect of
Y205N and G115T together. Therefore, a plasmid pKZ27 for
overproduction of the double mutant FtmPT1 G115T Y205N
was constructed (Table 1). HPLC analysis of the incubation mix-
ture of 1a with 5 pg enzyme at 37 °C for 2 h revealed a drastic
reduction of the enzyme activity (Fig. S12 in Electronic
Supplementary Material). A very small product peak with a re-
tention time corresponding to that of 1c was observed in the
chromatogram. This result indicated that both positions could
not be altered in the meantime. Similar results were also obtained
for G115T Y205N with 2a, 3a, or 4a (Fig. S12 in Electronic
Supplementary Material).

Kinetic parameters of the prenyl transfer reactions
of 1a—4a with two of the identified best Tyr205 mutants

To get information on the catalytic efficiency of Y205N and
Y205L toward all the cyclo-Trp-Pro stereoisomers, kinetic pa-
rameters including Michaelis—-Menten constants (K},) and turn-
over numbers (k.,) were determined at pH 7.5 in a Tris-HCI
buffered system by Lineweaver—Burk plot (Figs. S13—-S21 in
Electronic Supplementary Material). The investigated reactions
followed apparently Michaelis—Menten kinetics. Under this con-
dition, a K, value at 0.057 £+ 0.00021 mM was determined for
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FtmPT1 with cyclo-L-Trp-L-Pro (1a), corresponding very well to
0.055 mM published previously (Grundmann and Li 2005). The
turnover number k., at 8.91 = 0.064 s is higher than 5.57 s~
determined in that study. As shown in Table 3, Y205N and
Y205L accepted 1a as the best substrate among the four isomers
with approximate two- to three-fold K, values and 15 to 48 %
turnover number of those of FtmPT1. cyclo-D-Trp-D-Pro (2a)
and cyclo-L-Trp-D-Pro (3a) were accepted better by Y205L than
Y205N. cyclo-D-Trp-L-Pro (4a) was accepted by Y205L slightly
better than Y205N. These results are in good agreement with the
product yields presented in Fig. 2.

Discussion

Prenyltransferases of the DMATS superfamily are capable of
prenylation of a wide range of substrates with different skele-
tons including indole, tyrosine, xanthone, flavonoid, and
naphthalene derivatives. Tryptophan and tryptophan-
containing cyclic dipeptides are used as prenylation substrates
by a large number of the identified DMATS enzymes
(Winkelblech et al. 2015). The until now characterized cyclic
dipeptide prenyltransferases from this group catalyzed mainly
regular N/-prenylation, regular and reverse C2-prenylation,
reverse C3-prenylation, and regular C7-prenylation
(Winkelblech et al. 2015). Recently, a regular C3-
prenyltransferase of cyclo-L-Trp-L-Trp NozC was identified
in Nocardiopsis and proven to be involved in the biosynthesis
of nocardioazines (Algahtani et al. 2015). NozC shares prac-
tically no sequence similarity with the known DMATS en-
zymes on the amino acid level. Biochemical properties of this
enzyme like substrate specificity have not been reported.

In this study, we identified a key amino acid residue Tyr205 in
FtmPT1 for the interaction with its aromatic substrate
brevianamide F. Saturation mutagenesis on this position resulted
in all 19 possible mutants. HPLC analysis of the incubation
mixtures of brevianamide F and DMAPP with the obtained mu-
tants led to identification of at least seven derivatives, Y205F,
Y205C, Y205L, Y205M, Y205N, Y2051, and Y205S, which
had comparable enzyme activities with the non-mutated
FtmPT1 (Table 2). In addition to the regularly C2-prenylated
derivative 1b, the regularly C3-prenylated brevianamide F 1c
was also clearly identified in the reaction mixtures with
Y205C, Y205L, Y205N, Y205I, and Y205S. Several mutants
like Y205H, Y205Q, and Y205V showed lower activity than the
mutants mentioned above, but also with 1b and 1¢ as main
products. This proved that Tyr205 is important for the prenyl
transfer reaction but can be replaced by other amino acids. In
these cases, the role of Tyr205 would be fulfilled by other amino
acids. However, changes at this position could influence the ac-
ceptance of 1a or the orientation of the prenyl transfer reaction.
The residues at 205 in the mentioned mutants differ from each
other in size, hydrophobility, and functional group. Tyr205 was
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postulated to be involved in the binding of 1a (Jost et al. 2010)
via its hydroxyl group. The binding pockets of these mutants or
their binding sites to 1a should differ from that of FtmPT1 and
also from each other. This hypothesis is supported by the fact that
several Tyr205 mutants showed much lower activity than
FtmPT1 (Table 2 and Fig. S2).

FtmPT1 Y205N, especially FtmPT1 Y205L, differed
from the FtmPT1 wild type in behaviors toward the four
cyclo-Trp-Pro isomers. Regularly C2-prenylated deriva-
tives were detected as main products of FtmPT1 reactions
with all these isomers. In contrast, the reversely C3-
prenylated products were found to be the main products
of Y205N and Y205L reactions with cyclo-D-Trp-D-Pro,
cyclo-D-Trp-L-Pro, and cyclo-L-Trp-D-Pro, while regularly
C2- and C3-prenylated derivatives were identified in their
reaction mixtures with cyclo-L-Trp-L-Pro (Fig. 2). These
results indicate different positions and orientations of the
three isomers in the reaction chamber than brevianamide
F.

Regularly C3-prenylated derivatives have been identified
as side products of FtmPT1 reactions with several cyclic di-
peptides, especially those with low activities. A minor peak in
the reaction mixture of FtmPT1 with 1a, with a relative yield
of 0.8 % of that of C2-prenylated, was speculated to be a
regularly C3-prenylated derivative (Wollinsky et al. 2012). It
should be mentioned that the regularly C3-prenylated deriva-
tives 1c identified in that study carrying a syn-cis configura-
tion of the ring system. In this study, the regularly C3-
prenylated derivative has an anti-cis configuration. Product
yields of 1¢ were observed for 1a with Y205C, Y205L,
Y205N, Y2051, Y205S, and Y205H at more than 25 %. The
ratios of the C3-prenylated 1¢ to C2-prenylated derivative 1b
were found between 40 and 70 %. Therefore, these mutants
can be used for production of regularly C3-prenylated
brevianamide F in the chemoenzymatic synthesis and synthet-
ic biology. More specific enzymes for regular C3-prenylation
should be created in the future, e.g., by mutagenesis of mu-
tants obtained in this study.
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Table S1 PCR conditions for the site-directed mutagenesis

Component Concentration | Step Temperature Time Cycles
Plasmid DNA 200-600 ng Initialization denaturation 94 °C 2min 1
Primer 15 pmol each | Denaturation 94 °C 40s

dNTP Mix 35 pmol Annealing 55-65 °C 1 min } 20
10x buffer 1% Extension 68 °C 6 min

High Fidelity Polymerase 375U Final elongation 68 °C 7min 1

Final volume 50 uL Final hold 4°C o0 1
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Fig. S1 Analysis of the overproduced and purified FtmPT1 and its mutants on
SDS-PAGE

The proteins were separated on a 12 % polyacrylamide gel and stained with Coomassie
brilliant blue R-250. Due to the low protein concentration, 50 uL of Y205G, Y205Q, Y205A,
Y205P or Y205V and 100 pL of Y205T were concentrated to near dryness in freezer dryer,
dissolved in 10 pL sample buffer and used for SDS-PAGE.
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Fig. S2 HPLC chromatograms of incubation mixtures of brevianamide F (1a) with
FtmPT1and its Tyr205 mutants

The reaction mixtures (100 pl) containing 5 pg FtmPT1 or one of its mutants, | mM
brevianamide F, 2 mM DMAPP, 10 mM CacCla, 0.2 — 5.0 % (v/v) glycerol, 5 % (v/v) DMSO
were incubated at 37 °C for 2 h. The substances were detected with a Photo Diode Array
detector and illustrated for absorption at 296 nm.
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CONCLUSIONS AND FUTURE PROSPECTS

5. Conclusions and future prospects

In this thesis, novel strategies for chemoenzymatic synthesis of prenylated
acylphloroglucinols (APs) were developed by using prenyltransferases of the DMATS
superfamily and natural prenyl donors, including DMAPP, GPP, and FPP.

Initially, prenyl donors and three APs were synthesized and their reactions with thirteen
soluble fungal prenyltransferases were investigated. Nine regular dimethylallyl products were
obtained from the reactions with AnaPT. The obtained results proved that AnaPT shows
higher activities toward these compounds than other tested enzymes. It could be an
interesting candidate as a biocatalyst for prenylation of phloroglucinol analogues. The
observed activities of AnaPT toward these substrates are much higher than that of a
microsomal fraction containing the overproduced prenyltransferase from the hop plant.
However, only monoprenylated derivatives were obtained in the presence of DMAPP and the

conversion yields of APs with GPP as prenyl donor were very low.

Recently, a soluble prenyltransferase AtaPT from A. terreus was demonstrated to carry an
unprecedented promiscuity toward diverse drug-like aromatic acceptors and prenyl donors
including DMAPP, GPP, and FPP. The activity of AtaPT toward APs was further investigated
in my thesis. Incubation of AtaPT with three APs and three prenyl donors provided further
insights into the catalytic properties of AtaPT. Total conversion yields of AtaPT are
significantly higher than those of AnaPT. GPP also served as an excellent prenyl donor for the
reaction of AtaPT. Twenty-one enzyme products were isolated and their structures were
elucidated by NMR and LC-MS analyses. Gem-diprenylated derivatives were identified in
the reaction mixtures of three APs in the presence of DMAPP. These results proved the ability
of AtaPT for gem-dipenylation of APs. The C-monodimethylallyl products were further
accepted by AtaPT in the presence of DMAPP and gem-diprenylated derivatives as

predominant products were observed.

Subsequently, prenylations of different flavonoids like flavanones and isoflavones by AnaPT
at C-6 of the A-ring or C-3 of the B-ring were demonstrated. Twelve enzyme products were
isolated by preparative HPLC from reaction mixtures of flavonoids with AnaPT and DMAPP.
Former study revealed that 7-DMATS accepted chalcones, isoflavonoids, and flavanones

much better than flavones and flavonols and mainly catalyzed prenylation at C-6. AnaPT and
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CONCLUSIONS AND FUTURE PROSPECTS

7-DMATS display different substrate preferences and prenylation positions, so that these two
fungal indole prenyltransferases could be used complementarily for prenylation of flavonoids.
Prenylations of the flavonoid skeleton contribute significantly to structural diversity and
biological activity of natural products and are usually crucial in the biosynthesis of these

compounds.

Furthermore, C3-prenylating activity of cyclo-Trp-Pro isomers by the cyclo-L-Trp-L-Pro C2-
prenyltransferase FtmPT1 was significantly improved by saturation mutagenesis experiments
on Tyr205. In addition to the regularly C2-prenylated cyclo-L-Trp-L-Pro, the regularly C3-
prenylated cyclo-L-Trp-L-Pro was also identified in the reaction mixtures with mutants in the
presence of DMAPP. FtmPT1_Y205N, especially FtmPT1_Y205L, differ from FtmPT1
wildtype in behaviours toward the four cyclo-Trp-Pro isomers. Regularly C2-prenylated
derivatives were detected as main products of FtmPT1 reactions with all these isomers. In
contrast, the reversely C3-prenylated products were found to be the main products of Y205N
and Y205L reactions with cyclo-D-Trp-D-Pro, cyclo-D-Trp-L-Pro, and cyclo-L-Trp-D-Pro.
These mutants can be used for production of regularly C3-prenylated brevianamide F in the

chemoenzymatic synthesis and synthetic biology.
For future prospects, the following works should be performed:

» Coexpression of AtaPT or AnaPT in engineered yeast strain harboring
CCL2/CCLA4/VPS genes for production of prenylated APs.

» Creation of more specific enzymes for regular C3-prenylation.

> Investigation of the acceptance of other cyclic dipeptides catalyzed by FtmPT1
mutants, for example cyclo-L-Trp-L-Ala and its isomers.

» Collection all available data of mutated DMATS enzymes to rational design PTs
which could catalyze additional Friedel-Crafts reactions for production of desired

products.
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