Publikationsserver der Universitätsbibliothek Marburg

Titel:Neue stationäre Phasen für die Ionenchromatographie auf Basis schichtstrukturartiger Ionene
Autor:Köhler, Erik
Weitere Beteiligte: Seubert, Andreas (Prof. Dr. rer. nat.)
Veröffentlicht:2016
URI:https://archiv.ub.uni-marburg.de/diss/z2017/0123
DOI: https://doi.org/10.17192/z2017.0123
URN: urn:nbn:de:hebis:04-z2017-01238
DDC: Chemie
Titel(trans.):New stationary phases for ion chromatography based on layered ionenes
Publikationsdatum:2017-03-23
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Ionenaustauschchromatographie, stationary phases, ionenes, Ionische Polymere, Stationäre Phase, Ionene, anion chromatography, Quartäre Ammoniumverbindungen, Anionenaustauschchromatographie

Zusammenfassung:
Diese Arbeit umfasst die Entwicklung neuer pellikularer Phasen für die Anionenaustauschchromatographie. Die Beschichtung basiert hierbei auf polykationischen Ketten (Ionenen), die mittels elektrostatischer Anbindung auf sulfonierten Polystyrol-Divinylbenzol-Partikeln fixiert werden. Die Synthese der Ionene erfolgt in einer Menshutkin-Reaktion eines tertiären Diamins und eines Dihalogenalkans. Das Ziel ist die Entwicklung neuer Ionene mit sogenannten Ankerstellen zwischen den kationischen Zentren der Hauptkette. Während die quartären Ammoniumfunktionen der Hauptkette für die elektrostatische Fixierung auf den Trägerpartikeln genutzt werden, dienen die Ankerstellen dem Aufbau von Seitenketten mit den Austauscherfunktionen. Für den Einbau der Ankerstellen werden drei verschiedene Konzepte untersucht: • direkte Ankerstellen (unterschiedliche Reaktivitäten innerhalb des Monomers) • indirekte Ankerstellen (Aktivierung durch nachträgliche Derivatisierung) • kationische Copolymere (unterschiedliche Polymerisationsverfahren) Während direkte Ankergruppen aufgrund der Reaktivitätsunterschiede mehrere Probleme aufzeigen, ist die Generierung der Seitenketten über indirekte Ankergruppen und kationische Copolymere erfolgreich. Die sequentielle Erweiterung der Seitenketten und damit verbunden die Vervielfachung der Austauscherfunktionen bereiten derzeit noch Probleme.

Summary:
This thesis comprises the development of new pellicular phases for the use in anion chromatography. The coating is based on polycationic chains (ionenes) fixed by electrostatic bonding to sulfonated polystyrene-divinylbenzene-particles. The ionenes are synthesized through a Menshutkin-reaction of a tertiary diamin and an alkyl dihalide. The aim is the development of new ionenes with so-called linking-groups between the cationic centres of the main chain. On the one hand the quarternary ammonium functions of the main chain are used for the electrostatic bonding to the carrier particles, on the other hand the linking-groups can be used for the construction of side chains with the exchange groups. For the placement of linking-groups three different concepts are examined: • direct linking-groups (different reactivities within a monomer) • indirect linking-groups (activation by subsequent derivatization) • cationic copolymers (different methods of polymerization) While direct linking-groups show several problems due to different reactivities, the generation of side chains on indirect linking-groups and cationic copolymers is successful. However, the sequential growth of side chains and the associated increase of exchange groups are currently still pose problems.

Bibliographie / References

  1. [1] H. Small, T. S. Stevens, W. C. Bauman, Novel ion exchange chromatographic method using conductimetric detection, Analytical Chemistry 1975, 47, 1801- 1809.
  2. [3] R. A. Ramli, W. A. Laftah, S. Hashim, Core-shell polymers: a review, RSC Advances 2013, 3, 15543-15565.
  3. [4] M. Raskop, Neue stationäre Phasen zum Einsatz in der Ionenchromatographie, Dissertation 2006, Philipps-Universität Marburg.
  4. [5] Dionex Corporation, Coated ion exchange substrate and method of forming, Patent 2005, US 20050181224 A1.
  5. [6] A. Rembaum, W. Baumgartner, A. Eisenberg, Aliphatic ionenes, Journal of Polymer Science Part B 1968, 6, 159-171.
  6. [7] M. J. Adeogun, J. N. Hay, Silica-polyviologen hybrids prepared by the sol-gel route. I. Synthesis and thermal characterisation of ionene systems, Polymer International 1996, 41, 123-134.
  7. [8] X. Xu, H. Xiao, Z. Ziaee, H. Wang, Y. Guan, A. Zheng, Novel comb-like ionenes with aliphatic side chains: synthesis and antimicrobial properties, Journal of Material Science 2013, 48, 1162-1171.
  8. [9] S. R. Williams, D. Salas-de la Cruz, K. I. Winey, T. E. Long, Ionene segmented block copolymers containing imidazolium cations: Structure-property relationships as a function of hard segment content, Polymer 2010, 51, 1252- 1257.
  9. [10] S. T. Hemp, M. Zhang, M. Tamami, T. E. Long, Phosphonium ionenes from well-defined step-growth polymerization: Thermal and melt rheological properties, Polymer Chemistry 2013, 4, 3582-3590.
  10. [11] K. Yamamoto, E. Shouji, F. Suzuki, S. Kobayashi, E. Tsuchida, Synthesis of poly(sulfonium cation) by oxidative polymerization of aryl alkyl sulfides, Journal of Organic Chemistry 1995, 60, 452-453.
  11. [14] J. Wang, W. H. Meyer, G. Wegner, On the polymerization of N,N,N',N' - tetramethyl- , !-alkanediamines with dibromoalkanes - an in-situ nmr study, Macromolecular Chemistry and Physics 1994, 195, 1777-1795.
  12. [15] S. Chempath, B. R. Einsla, L. R. Pratt, C. S. Macomber, J. M. Boncella, J. A. Rau, B. S. Pivovar, Mechanism of tetraalkylammonium headgroup degradation in alkaline fuel cell membranes, Journal of Physical Chemistry C 2008, 112, 3179-3182.
  13. [16] S. Gu, R. Cai, T. Luo, Z. Chen, M. Sun, Y. Liu, G. He, Y. Yan, A soluble and highly conductive ionomer for high-performance hydroxide exchange membrane fuel cells, Angewandte Chemie, International Edition 2009, 48, 6499-6502.
  14. [17] G. Merle, M. Wessling, K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: A review, Journal of Membrane Science 2011, 377, 1-35.
  15. [18] K. M. Lee, R. Wycisk, M. Litt, P. N. Pintauro, Alkaline fuel cell membranes from xylylene block ionenes, Journal of Membrane Science 2011, 383, 254- 261.
  16. [19] O. V. Krokhin, A. D. Smolenkov, N. V. Svintsova, O. N. Obrezkov, O. A. Shpigun, Modified silica as a stationary phase for ion chromatography, Journal of Chromatography A 1995, 706, 93-98.
  17. [20] A. V. Pirogov, N. V. Svintsova, O. V. Kuzina, O. V. Krokhin, M. M. Platonov, O. A. Shpigun, Silicas modified by polyelectrolyte complexes for the ion chromatography of anionic complexes of transition metals, Fresenius Journal of Analytical Chemistry 1998, 361, 288-293.
  18. [21] A. V. Pirogov, O. V. Krokhin, M. M. Platonov, Y. I. Deryugina, O. A. Shpigun, Ion-chromatographic selectivity of polyelectrolyte sorbents based on some aliphatic and aromatic ionenes, Journal of Chromatography A 2000, 884, 31-39.
  19. [22] A. V. Pirogov, Polyelectrolyte sorbents for ion chromatography, Journal of Analytical Chemistry 2000, 55, 1155-1160.
  20. [23] M. P. Raskop, A. Grimm, A. Seubert, Polystyrene immobilized ionenes as novel stationary phase for ion chromatography, Microchimica Acta 2007, 158, 85-94.
  21. [24] P. Kubáň, P. K. Dasgupta, C. A. Pohl, Open tubular anion exchange chromatography. Controlled layered architecture of stationary phase by successive condensation polymerization, Analytical Chemistry 2007, 79, 5462-5467.
  22. [25] M. S. Tswett, Adsorptionsanalyse und chromatographische Methode. Anwendung auf die Chemie des Chlorophylls., Berichte der Deutschen Botanischen Gesellschaft 1906, 24, 384-393.
  23. [27] C. Eith, M. Kolb, A. Rumi, A. Seubert, K. H. Viehweger, Praktikum der Ionenchromatographie, 2. Aufl., Metrohm AG, Herisau, 2007.
  24. [29] A. J. P. Martin, R. L. M. Synge, A new form of chromatogram employing two liquid phases, Biochemical Journal 1941, 35, 1358-1368.
  25. [30] J. P. Foley, J. G. Dorsey, Equations for calculation of chromatographic figures of merit for ideal and skewed peaks, Analytical Chemistry 1983, 55, 730-737.
  26. [31] J. J. van Deemter, F. J. Zuiderweg, A. Klinkenberg, Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography, Chemical Engineering Science 1956, 5, 3869-3882.
  27. [32] J. C. Giddings, H. Eyring, A molecular dynamic theory of chromatography, Journal of Physical Chemistry 1955, 59, 416-421.
  28. [33] E. Katz, K. L. Ogan, P. W. Scott, Peak dispersion and mobile phase velocity in liquid chromatography: The pertinent relationship for porous silica., Journal of Chromatography 1983, 270, 51-75.
  29. [35] J. C. Giddings, The role of lateral diffusion as a rate-controlling mechanism in chromatography, Journal of Chromatography 1961, 5, 46-60.
  30. [36] J. H. Knox, H. P. Scott, B and C terms in the Van Deemter equation for liquid chromatography, Journal of Chromatography 1983, 282, 297-313.
  31. [37] A. Berthod, F. Chartier, J.-L. Rocca, Contribution of longitudinal diffusion to band broadening in liquid chromatography, Journal of Chromatography 1989, 469, 53-65.
  32. [38] P. R. Haddad, P. E. Jackson, Ion chromatography - principles and applications, 1. Aufl., Journal of Chromatography Library Volume 46, Elsevier Verlag, Amsterdam, 1990.
  33. [39] J. Ugelstad, Process for the preparation of polymer latex, Patent 1980, EP 0010986 A1.
  34. [40] J. Ugelstad, K. H. Kaggerud, F. K. Hansen, A. Berge, Absorption of low molecular weight compounds in aqueous dispersion of polymer-oligomer partikles 2, Makromolekulare Chemie 1979, 180, 737-744.
  35. [41] J. Ugelstad, H. R. Mfutakamba, P. C. Mørk, T. Ellingsen, A. Berge, R. Schmid, L. Holm, A. Jørgedal, F. K. Hansen, K. Nustad, Preparation and application of monodisperse polymer particles, Journal of Polymer Science: Polymer Symposia 1985, 72, 225-240.
  36. [42] J. W. Goodwin, J. Hearn, C. C. Ho, R. H. Ottewill, Studies on the preparation and characterisation of monodisperse polystyrene latices III, Colloid and Polymer Science 1974, 252, 464-471.
  37. [43] C. A. Pohl, J. R. Stillian, P. E. Jackson, Factors controlling ion-exchange selectivity in supressed ion chromatography, Journal of Chromatography A 1997, 789, 29-41.
  38. [44] H. R. Wiltshire, K. J. Prior, J. Dhesi, F. Trach, M. Schlageter, H. Schönenberger, The synthesis of labelled forms of saquinavir, Journal of Labelled Compounds & Radiopharmaceuticals 1998, 41, 1103-1126.
  39. [45] A. Pawlinov, Ueber die Darstellung des Trimethylphenylammoniumjodids, Berichte der deutschen chemischen Gesellschaft 1881, 14, 2047.
  40. [46] G. Lock, Über die Chlormethylierung des Benzols, Berichter der deutschen chemischen Gesellschaft 1941, 74, 1568-1574.
  41. [47] D. L. Ransley, Long-range effects in the alkylation of benzene with dichloroalkanes, Journal of Organic Chemistry 1968, 33, 1517-1522.
  42. [48] S. M. McElvain, T. P. Carney, Piperidine derivatives XVII. Local Anesthetics Derived from substituted piperidinoalcohols, Journal of the American Chemical Society 1946, 68, 2592-2600.
  43. [49] W. Taylor, The displacement of bromine from mono- and dibromoethylbenzenes, Journal of the Chemical Society 1937, 343-351.
  44. [50] K. Matyjaszewski, J.-S. Wang, Controlled/“Living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes., Journal of the American Chemical Society 1995, 117, 5614-5615.
  45. [51] M. Sawamoto, M. Kato, M. Kamigaito, T. Higashimura, Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris(triphenylphosphine)ruthenium(II)/methylaluminium bis(2,6-di-tertbutyl-phenoxide) initiating system: possibility of living radical polymerization, Macromolecules 1995, 28, 1721-1723.
  46. [52] J. H. Simons, H. J. Passino, S. Archer, Hydrogen fluoride as a condensing agent XIII. Sulfonation, Journal of the American Chemical Society 1941, 63, 608-609.
  47. [53] L. M. Warth, J. S. Fritz, J. O. Naples, Preparation and use of latex-coated resins for anion chromatography, Journal of Chromatography 1989, 462, 165- 176.
  48. [54] A. Klingenberg, A. Seubert, Sulfoacylated polystyrenedivinylbenzene copolymers as resins for cation chromatography: Influence of capacity on resin selectivity, Journal of Chromatography A 1998, 804, 63-68.
  49. [55] P. K. Bhowmik, S. Akhter, H. Han, Thermotropic liquid crystalline main-chain viologen polymers, Journal of Polymer Science Part A 1995, 33, 1927-1933.
  50. [56] C. Pohl, C. Saini, New developments in the preparation of anion exchange media based on hyperbranched condensation polymers, Journal of Chromatography A 2008, 1213, 37-44.
  51. [57] N. A. Menshutkin, Beiträgen zur Kenntnis der Affinitätskoeffizienten der Alkylhaloide und der organischen Amine, Zeitschrift für Physikalische Chemie 1890, 5, 589-601.
  52. [58] N. A. Menshutkin, Über die Affinitätskoeffizienten der Alkylhaloide und der Amine, Zeitschrift für Physikalische Chemie 1890, 6, 41-57.
  53. [59] C. F. Gibbs, C. S. Marvel, Quaternary ammonium salts from bromopropyldialkylamines. V. Conversion of cyclic ammonium salts to linear polymers, Journal of the American Chemical Society 1935, 57, 1137-1139.
  54. [61] E. Bortel, A. Kochanowski, Chloro-ionenes from dichlorides and tertiary diamines, Macromolekulare Chemie 1987, 188, 2019-2026.
  55. [67] J. M. Layman, E. M. Borgerding, S. R. Williams, W. H. Heath, T. E. Long, Synthesis and characterization of aliphatic ammonium ionenes: Aqueous size exclusion chromatography for absolute molecular weight characterization, Macromolecules 2008, 41, 4635-4641.
  56. [68] X. Jiang, A. van der Horst, M. J. van Steenbergen, N. Akeroyd, C. F. van Nostrum, P. J. Schoenmakers, W. E. Hennink, Molar-mass characterisation of cationic polymers for gene delivery by aqueous size-exclusion Chromatography, Pharmaceutical Research 2006, 23, 595-603.
  57. [69] A. Kühn, S. Förster, R. Lösch, M. Rommelfanger, C. Rosenauer, M. Schmidt, Size-exclusion chromatography of cationic and anionic polyelectrolytes in aqueous media, Macromolecular Chemistry Rapid Communication 1993, 14, 433-438.
  58. [70] S. Yamazaki, Y. Muroga, I. Noda, Persistence lengths of ionenes in methanol, Langmuir 1999, 15, 4147-4149.
  59. [71] W. C. Griffin, Classification of surface-active agents by "HLB", Journal of Cosmetic Science 1949, 1, 311-326.
  60. [72] Schulman, J. H. (Hrsg.), Proceedings of the second international congress of surface activity. I. Gas/Liquid and Liquid/Liquid Interface, Butterworths, London, 1957.
  61. [73] J. C. Dearden, Partitioning and lipophilicity in quantitative structure-activity relationships, Enviromental Health Perspectives 1985, 61, 203-228.
  62. [78] V. Soldi, N. de Magalhães Erismann, F. H. Quina, Micelle-mimetic ionene polyelectrolytes, Journal of the American Chemical Society 1988, 110, 5137- 5143.
  63. [79] R. A. McAloney, M. Sinyor, V. Dudnik, M. C. Goh, Atomic force microscopy studies of salt effects on polyelectrolyte multilayer film morphology, Langmuir 2001, 17, 6655-6663.
  64. [80] A. V. Pirogov, M. M. Platonov, O. A. Shpigun, Polyelectrolyte sorbents based on aliphatic ionenes for ion chromatography, Journal of Chromatography A 1999, 850, 53-63.
  65. [81] A. W. Hofmann, Beiträge zur Kenntniss der flüchtigen organischen Basen, Justus Liebigs Annalen der Chemie 1851, 78, 253-286.
  66. [82] E. N. Komkova, D. F. Stamatialis, H. Strathmann, M. Wessling, Anionexchange membranes containing diamines: Preparation and stability in alkaline solution, Journal of Membrane Science 2004, 244, 25-34.
  67. [83] E. Berwig, V. L. S. Severgnini, M. S. Soldi, G. Bianco, E. A. Pinheiro, A. T. N. Pires, V. Soldi, Thermal degradation of ionene polymers in inert atmosphere, Polymer Degradation and Stability 2003, 79, 93-98.
  68. [84] T. S. Stevens, E. M. Creighton, A. B. Gordon, M. MacNicol, Degradation of quaternary ammonium salts. Part I, Journal of the Chemical Society 1928, 3193-3197.
  69. [85] G. Ghigo, S. Cagnina, A. Maranzana, G. Tonachini, The mechanism of the Stevens and Sommelet-Hauser rearrangements. A theoretical study, Journal of Organic Chemistry 2010, 75, 3608-3617.
  70. [87] B. Grassl, J. C. Galin, Segmented poly(tetramethylene oxide) zwitterionomers and their homologous ionenes. 1. Synthesis, molecular characterization, and thermal stability, Macromolecules 1995, 28, 7035-7045.
  71. [88] V. Campos, J. Dweck, C. A. O. Nascimento, C. M. Tcacenco, Thermal stability of ionene polymers, Journal of Thermal Analysis and Calorimetry 2013, 112, 1221-1229.
  72. [98] S. Zhao, E. Zhao, P. Shen, M. Zhao, J. Sun, An atom-efficient and practical synthesis of new pyridinium ionic liquids and application in Morita-BaylisHillman reaction, Ultrasonics Sonochemistry 2008, 15, 955-959.
  73. [99] H. C. Brown, X. R. Mihm, Steric effects in displacement reactions. III. The base strength of pyridine, 2,6-lutidine and the monoalkylpyridines, Journal of the American Chemical Society 1955, 77 (1723-1726).
  74. [100] D. R. Dalton, V. P. Dutta, D. C. Jones, Bromhydrin formation in dimethyl sulfoxide, Journal of the American Chemical Society 1968, 90, 5498-5501.
  75. [101] Z. Wang, M. Li, W. Zhang, J. Jia, F. Wang, S. Xue, CF3CO2ZnEt-mediated highly regioselective rearrangement of bromhydrin to aldehydes, Tetrahedron Letters 2011, 52, 5968-5971.
  76. [102] W. A. Herrmann, W. Wagner, U. N. Flessner, U. Volkhardt, H. Komber, Methyltrioxorhenium als Katalysator für die Olefin-Metathese, Angewandte Chemie 1991, 103, 1704-1706.
  77. [103] L. J. Morris, A. J. Downs, T. M. Greene, G. S. McGrady, W. A. Herrmann, P. Sirsch, O. Gropen, W. Scherer, Photo-induced tautomerisation of methyltrioxorhenium(VII): the intermediate in olefin metathesis?, Chemical Communications 2000, 67-68.
  78. [108] S. Langle, F. David-Quillot, M. Abarbri, Duchêne, Synthesis of parasubstituted styrenes, Tetrahedron Letters 2003, 44, 1647-1649.
  79. [109] P. Gödecke, Synthese neuer stationärer Phasen für die ionenchromatographische Trennung von Zuckern, Dissertationvorhaben (unveröffentlichte Ergebnisse) 2008, Philipps-Universität Marburg.
  80. [110] S. Adimurthy, S. Ghosh, P. U. Patoliya, G. Ramachandraiah, M. Agrawal, M. R. Gandhi, S. C. Upadhyay, P. K. Ghosh, B. C. Ranu, An alternative method for the regio- and stereoselective bromination of alkenes, alkynes, toluene derivatives and ketones using a bromide/bromate couple, Green Chemistry 2008, 10, 232-237.
  81. [111] P. Liu, Y. Chen, J. Deng, Y. Tu, An efficient method for the preparation of benzylic bromides, Synthesis 2001, 14, 2078-2080.
  82. [112] A. Abbas, C. Hayes, S. Worden, The 'Hirao reduction' revisited: a procedure for the synthesis of terminal vinyl bromides by the reduction of 1,1- dibromalkenes, Tetrahedron Letters 2000, 41, 3215-3219.
  83. [113] C. Amatore, E. Carré, A. Jutand, M. A. M'Barki, Rates and mechanism of the formation of zerovalent palladium complexes from mixtures of P d(OAc)2 and tertiary phosphines and their reactivity in oxidative additions, Organometallics 1995, 14, 1818-1826.
  84. [114] P. Espinet, A. M. Echavarren, Die Mechanismen der Stille-Reaktion, Angewandte Chemie 2004, 116, 4808-4839.
  85. [115] S. P. H. Mee, V. Lee, J. E. Baldwin, Stille coupling made easier - the synergic effect of copper(I) salts and the fluoride ion, Angewandte Chemie, International Edition 2004, 43, 1132-1136.
  86. [116] V. Farina, S. Kapadia, B. Krishnan, C. Wang, L. S. Liebeskind, On the nature of the “copper effect” in the stille cross-coupling, Journal of Organic Chemistry 1994, 59, 5905-5911.
  87. [128] W. T. Ford, H. Yu, J.-J. Lee, H. El-Hamshary, Synthesis of monodisperse cross-linked polystyrene latexes containing (vinylbenzyl)trimethylammonium chloride units, Langmuir 1993, 9, 1698-1703.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten