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Summary 

The causative agent of the corn smut disease Ustilago maydis infects its host plant Zea mays by 

specialized infection structures, so-called appressoria, which are formed upon perception of 

chemical and physical stimuli on the leave surface. During the colonization process U. maydis 

secretes effector proteins that help to establish a biotrophic interaction. These effector proteins 

harbor an N-terminal hydrophobic secretion signal that targets them to the classical secretory 

pathway. In recent years, however, the existence of unconventionally secreted proteins has been 

uncovered which reach the extracellular space independently of the classical ER-Golgi system.  

In the present study the non-specific lipid transfer protein Scp2 (sterol carrier protein 2) of U. 

maydis was analyzed, which was identified as a putative candidate for unconventional protein 

secretion. Scp2 lacks a classical N-terminal signal peptide but exhibits a peroxisomal targeting 

signal (PTS1). 

A quantitative real-time PCR approach revealed that scp2 is up-regulated during early stages 

of plant colonization. Microscopic analyses demonstrated that the ability of scp2 deletion 

strains to form appressoria on artificial surfaces was significantly decreased. Furthermore, 

deletion of scp2 caused a virulence defect that appeared to result from a reduced efficiency of 

plant cuticle penetration. These defects are unlikely to result from deficiency in peroxisomal β-

oxidation. In contrast to scp2 deletion strains, the infection of maize plants with a strain 

overexpressing scp2 under the cmu1 promoter triggered strong plant defense reactions. Two 

Scp2 paralogs were shown to localize in peroxisomes but deletion of the respective genes 

revealed no effect on U. maydis virulence. With the help of colony secretion assays it was 

demonstrated that small amounts of Scp2 are unconventionally secreted. The export of Scp2 

via the classical ER-Golgi route, however, could not complement the virulence phenotype of 

the scp2 mutant strain, suggesting that the virulence defect is unconnected to the extracellular 

population of the protein. 

Surprisingly, peroxisomes and lipid droplets in the scp2 deletion strains displayed an altered 

distribution during filamentation on parafilm and on the plant surface. Based on these results, 

it is proposed that Scp2 affects appressorium development by influencing the distribution of 

peroxisomes and lipid droplets and thus constitutes a novel player in plant surface penetration. 
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Zusammenfassung 

Der Maisbeulenbranderreger Ustilago maydis infiziert seine Wirtspflanze Zea mays mithilfe 

spezialisierter Infektionsstrukturen, sogenannter Appressorien. Die Ausbildung von 

Appressorien wird durch die Wahrnehmung chemischer und physikalischer Stimuli auf der 

Blattoberfläche induziert. Im Verlauf der Kolonisierung sekretiert U. maydis Effektor-Proteine 

die zur Etablierung der biotrophen Interaktion beitragen. Diese Effektoren besitzen ein N-

terminales hydrophobes Sekretionssignal, welches den Transport über den klassischen 

Sekretionsweg vermittelt. In den vergangenen Jahren wurde jedoch eine Vielzahl 

unkonventionell sekretierter Proteine identifiziert, die den Extrazellularraum unabhängig vom 

ER-Golgi-System erreichen. In der vorliegenden Studie wurde das unspezifische Lipid-

Transfer Protein Scp2 (sterol carrier protein 2) von U. maydis analysiert, welches als 

potentieller Kandidat für unkonventionelle Proteinsekretion identifiziert wurde. Scp2 besitzt 

kein N-terminales Signalpeptid, verfügt jedoch über eine peroxisomale Zielsteuerungssequenz 

(PTS1). Quantitative Echtzeit-PCR zeigte eine Induktion der scp2-Expression in frühen Stadien 

der Pflanzen-Kolonisierung. Mikroskopische Untersuchungen ergaben, dass scp2 

Deletionsstämme eine stark eingeschränkte Fähigkeit zur Appressorienbildung auf künstlichen 

Oberflächen aufweisen. Des Weiteren führte die Deletion von scp2 zu einem Virulenzdefekt, 

der auf eine reduzierte Penetration der pflanzlichen Cuticula zurückgeführt werden konnte. Die 

beobachteten Defekte wurden dabei vermutlich nicht durch eine gestörte peroxisomale β-

Oxidation verursacht. Im Gegensatz zu scp2-Deletionsstämmen führte die Infektion von 

Maispflanzen mit Stämmen, die scp2 unter dem cmu1 Promoter überexprimierten, zu starken 

Pflanzenabwehrreaktionen. Zwei weitere Scp2-ähnliche Proteine konnten in Peroxisomen 

nachgewiesen werden, doch die Deletion der beiden Gene hatte keinen Einfluss auf die Virulenz 

von U. maydis. Mithilfe von Koloniesekretions-Analysen konnte bestätigt werden, dass Scp2 

in geringen Mengen unkonventionell sekretiert wird. Der Export von Scp2 über die klassische 

ER-Golgi-Route führte jedoch nicht zu einer Komplementation des Virulenz-Phänotyps eines 

scp2-Deletionsstammes, was vermuten lässt, dass der Virulenzdefekt nicht in Verbindung mit 

der extrazellulären Population des Proteins steht. Erstaunlicherweise wiesen scp2-

Deletionsstämme eine veränderte Verteilung von Peroxisomen und Lipidtropfen in Filamenten 

auf Parafilm und auf der Pflanzenoberfläche auf. Daher wird vermutet, dass Scp2 an der 

Appressorienbildung beteiligt ist, indem es die Verteilung von Peroxisomen und Lipidtropfen 

beeinflusst. Scp2 könnte somit einen neuen Faktor für die Penetration der Pflanzenoberfläche 

darstellen.



Introduction  1 

1. Introduction 

Approximately 10 to 16 % of global crop production is annually lost to plant diseases caused 

by different pests (Bebber et al., 2013). Besides ectoparasites like insects, a multitude of 

organisms is able to infect plants including bacteria, oomycetes, viruses and fungi. A molecular 

understanding of the interaction between plant pathogens and their respective hosts is important 

to develop new methods for crop protection. In this context, model systems are of major 

importance since they allow functional studies on the pathogen as well as on the plant side. A 

well-established model system for plant disease is the interaction between the biotrophic smut 

fungus Ustilago maydis and its host plant Zea mays (maize). 

1.1 The U. maydis and Z. mays pathosystem 

Z. mays belongs to the family of Gramineae (Poaceae), commonly referred to as grasses (Strable 

and Scanlon, 2009). Among other cereals, maize is one of the most comprehensive studied 

model systems for genetic, cytogenetic and genomic research (Strable and Scanlon, 2009).  

The facultative biotrophic pathogen U. maydis belongs to the order of Basidiomycota and 

infects maize and its wild ancestor teosinte which is native to Mexico and Central America 

(Fukunaga et al., 2005). U. maydis is the causative agent of corn smut disease that is 

characterized by the formation of large tumors which can form on all aerial parts of the plant. 

The smut disease was named after the dark pigmented teliospores that are released from tumors 

and give the plant a burned appearance (Kahmann et al., 2000). Smuts commonly infect grasses 

including economically important species such as maize, sorghum, sugar cane, wheat and 

barley (Brefort et al., 2009). As biotrophic pathogens, these fungi depend on living plant tissue. 

This is in contrast to necrotrophic fungi that kill their host plant during the colonization process.  

U. maydis infections accounted worldwide for about 11 % of global corn losses due to fungal 

and oomycete diseases in the years 2009 and 2010 (Fisher et al., 2012). In contrast, the soybean 

rust Phakopsora pachyrhizi caused an average of 45 % of the global soybean yield losses that 

were caused by fungal and oomycete diseases making U. maydis one of the economically less 

threatening pathogens (Fisher et al., 2012). Nevertheless, U. maydis has been established as an 

excellent model system to understand the molecular basis of plant infection mechanisms and 

disease (Basse and Steinberg, 2004). Compared to other plant pathogenic fungi U. maydis has 

a relatively small genome of only 20.5 mega base pairs which was found to encode 

approximately 6,900 proteins (Kämper et al., 2006; PEDANT 3 database 
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(http://pedant.gsf.de/)). U. maydis is accessible for molecular manipulations and its disease 

cycle can be completed within three weeks under greenhouse conditions (Donaldson et al., 

2013). Reverse genetic approaches like conventional gene replacement or genome editing using 

the CRISPR-Cas system, a large set of fluorescent proteins and the availability of many cell 

biological approaches contributed to making U. maydis a model organism (Steinberg and Perez-

Martin, 2008;  Brachmann et al., 2004;  Schuster et al., 2016). Further, the fungus can be 

cultivated in liquid culture or on solid medium and cryoconservation allows the storage of U. 

maydis strains over a period of several years. Infection assays of maize seedlings or floral tissue 

with fungal cells can be easily performed under controlled greenhouse or phytochamber 

conditions and the evaluation of fungal induced disease symptoms is feasible starting six days 

after infection (Brefort et al., 2009). 

1.2 The U. maydis life cycle 

One of the first descriptions of the U. maydis life cycle was performed in 1883 by the botanist 

and mycologist Julius Oscar Brefeld (Brefeld, 1883). During its life cycle the dimorphic fungus 

undergoes a transition from saprophytically growing yeast-like sporidia (Fig. 1 A) to an 

infectious dikaryotic filament that is formed when two compatible haploid cells fuse (Fig. 1 B 

and C). The fusion process and the subsequent pathogenic development is controlled by a 

tetrapolar mating system that comprises two unlinked mating loci: the biallelic a locus and the 

multiallelic b locus. The a locus encodes for a pheromone/pheromone receptor system which is 

responsible for the recognition and fusion of compatible haploid sporidia (Bölker et al., 1992). 

The initiation of sexual and pathogenic development is mediated by the b mating type locus 

that encodes for the homeodomain transcription factors bE and bW that are able to dimerize 

when derived from different alleles (Kämper et al., 1995). The active b heterodimer is a 

transcriptional master regulator that affects genes involved in cell cycle control and cell division 

and has been shown to be essential for establishing the biotrophic interaction with the plant 

(Brachmann et al., 2001). The ability of the active b heterodimer to initiate pathogenic 

development allowed the generation of the haploid solopathogenic strain SG200 that encodes 

compatible bE1 and bW2 alleles and is therefore able to infect plants without a compatible 

mating partner (Kämper et al., 2006). On the leaf surface the dikaryotic filament extends by 

polarized growth, with the cytoplasm migrating towards the growing tip while older parts of 

the filament are separated by the regular insertion of septa (Fig. 1 D) (Steinberg et al., 1998). 

During this stage of development the fungal cell cycle is arrested in the G2 phase (García-Muse 

et al., 2003). Upon the perception of plant derived physical and chemical stimuli U. maydis 
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forms specialized infection structures termed appressoria (Fig. 1 E). These appressoria are non-

melanized and penetration of the plant cuticle is presumably mediated by the secretion of lytic 

enzymes that loosen the cell wall and permit access to lower plant tissue (Mendoza-Mendoza 

et al., 2009;  Schirawski et al., 2005;  Lanver et al., 2014). During the penetration process U. 

maydis becomes surrounded by the plant plasma membrane that encloses the fungal hyphae like 

a glove (Fig. 1 F) (Snetselaar, 1993;  Döhlemann et al., 2009). Between the fungal cell wall and 

the plant plasma membrane a biotrophic interaction zone is established. Upon invasion of the 

epidermal layer the cell cycle arrest is abrogated and U. maydis proceeds to colonize the 

mesophyll and the vascular bundles by inter- and intracellularly branching hyphae (Snetselaar, 

1994). This stage of infection is characterized by strong proliferation of the dikaryotic filaments 

and the formation of clamp-like structures that coordinate the distribution of nuclei between 

hyphal cells (Fig. 1 G) (Scherer et al., 2006).  

 
Fig. 1: Schematic representation of the U. maydis life cycle. The biphasic life cycle is characterized by the 

transition through different morphological and nuclear states and can be subdivided into a saprophytic (A-C) and 

a biotrophic phase (D-J). The photograph displays an U. maydis infected corncob (picture: modified from S. 

Reißmann, unpublished; photograph: S. Krombach).  

 

Tumor formation is initiated approximately five to six days after infection by the development 

of hyphal aggregates embedded in a mucilaginous matrix in which the dikaryotic nuclei fuse 

(Fig. 1 H) (Banuett and Herskowitz, 1996;  Tollot et al., 2016). Nine to twelve days after 

infection the diploid hyphae start to fragment and release individual cells which start to round 
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and to develop into dark pigmented teliospores. When the tumors dry up and rupture the 

enclosed spores are released and spread by wind and rain (Fig. 1 I) (Banuett and Herskowitz, 

1996). Under favorable conditions the spores germinate, undergo meiosis and develop a 

promycelium from which haploid sporidia bud off (Fig. 1 J) (Kahmann et al., 2000). 

1.3 Secreted U. maydis effectors 

In order to establish a biotrophic interaction with its host plant U. maydis depends on effector 

proteins that grant protection from plant defense responses and prime host cells for the fungal 

invasion. U. maydis contains 467 secreted proteins of which 203 do not harbor a conserved 

protein domain (G. Schweizer, M. Schuster, unpublished). Approximately 19 % of the genes 

that encode secreted proteins were shown to be arranged in gene clusters which are distributed 

throughout the genome and comprise 3-26 genes (Kämper et al., 2006). 

Effectors can be subdivided into apoplastic and cytoplasmic effectors (Djamei and Kahmann, 

2012). Apoplastic effectors are secreted into the biotrophic interaction zone between the fungal 

cell wall and the plant plasma membrane. In contrast, cytoplasmic effectors traverse the 

apoplastic space and are taken up by the plant cell. The mechanisms by which the effector 

proteins translocate into the plant cell are poorly understood and the existence of potential 

uptake motifs of fungal and oomycete effectors are still under debate (Petre and Kamoun, 2014). 

Several apoplastic and cytoplasmic U. maydis effectors have been studied during the past years 

in terms of their localization and their function during pathogenic development.  

Pep1 is an apoplastic effector protein that functions in suppressing the early immune responses 

of maize. Deletion mutants of pep1 elicit strong plant defense responses and pathogenic 

development is blocked immediately upon penetration of the epidermal layer. Pep1 inhibits the 

secreted maize peroxidase POX12 and thus blocks the peroxidase driven oxidative burst 

(Hemetsberger et al., 2012). The effector protein Pit2 is secreted into the biotrophic interaction 

zone. While pit2 deletion mutants are still able to invade the plant tissue, tumor induction is 

severely attenuated. Pit2 has been shown to act as an inhibitor of apoplastic maize cysteine 

proteases involved in salicylic-acid-associated plant defenses (Müller et al., 2013). 

The U. maydis chorismate mutase Cmu1 is a cytoplasmic effector that translocates into the plant 

cytosol were it counteracts salicylic acid-induced immune responses (Djamei et al., 2011). 

Salicylic acid is a plant hormone that has been shown to be involved in the defense against 

biotrophic pathogens (Glazebrook, 2005). Cmu1 is predicted to reroute the flow of chorismate, 

thereby restricting the available substrate for salicylic acid biosynthesis. Importantly, Cmu1 can 

spread from cell to cell which is thought to prime the surrounding tissue for the upcoming fungal 
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infection (Djamei et al., 2011). A second U. maydis effector that translocates into the plant 

cytoplasm and presumably manipulates plant metabolic pathways is Tin2. Deletion mutants of 

tin2 induce attenuated virulence symptoms and infected leaves do not produce anthocyanin, a 

red pigment that typically accumulates in the infected plant tissue (Tanaka et al., 2014;  Banuett 

and Herskowitz, 1996). Tin2 interacts with and stabilizes the maize protein kinase ZmTTK1 

which has been proposed to control the biosynthesis of anthocyanin. The stabilization of 

ZmTTK1 supposedly induces the production of anthocyanin which in turn lowers the 

availability of pre-cursors needed for the lignification of plant cell walls. The absence of 

lignification allows U. maydis a more efficient colonization of the plant tissue (Brefort et al., 

2014;  Tanaka et al., 2014). 

Some of the secreted U. maydis effectors have been shown to be expressed and to function in 

an organ specific manner (Skibbe et al., 2010). The protein See1 is translocated to the maize 

cytoplasm and into the nucleus where it reactivates the DNA synthesis in vegetative tissue 

which is needed as a prerequisite for the formation of tumors in maize leaves. In contrast, tumor 

formation in floral tissue, which is actively dividing, was shown to be independent of See1, 

underlining that this effector is needed only during leaf infection (Redkar et al., 2015). 

1.4 Unconventional protein secretion 

Effectors have been typically defined as proteins that are externalized by signal peptide-

mediated secretion directing them from the endoplasmic reticulum (ER) through the Golgi 

apparatus to their final extracellular destination. However, there are also secreted proteins that 

do not contain a classical signal peptide but which reach the extracellular space ER and/or Golgi 

independent via unconventional secretion mechanisms (Chua et al., 2012). Over the past years 

several different mechanisms of leaderless secretion have been described (Rabouille et al., 

2012). Many of these proteins have been shown to be involved in cellular processes like cell 

survival, immune surveillance and tissue organization, underlining the significance of 

unconventionally secreted proteins (Rabouille et al., 2012). To identify such proteins an 

algorithm has been developed that allows the prediction of unconventional secreted proteins 

(SecretomeP). The prognosis is based on sequence-derived features such as putative 

posttranslational modifications and structure, degradation signals, composition, size and charge 

(Bendtsen et al., 2004). Unconventional secretion mechanisms have further been shown to be 

insensitive to the treatment with Brefeldin A (BFA). BFA is a fungal toxin that blocks the 

COPI-mediated retrograde transport from the Golgi to the ER which in turn causes an 

impairment of the COPII-dependent anterograde trafficking of proteins determined for classical 
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secretion and hence should not affect unconventional secretion pathways (Grieve and 

Rabouille, 2011). Many leaderless proteins are secreted in exceptionally small amounts and 

their secretion often occurs in a cell type specific and signal dependent manner making their 

analysis a challenging task (Malhotra, 2013). 

In recent years, a multitude of proteins was identified in animals, bacteria, oomycetes, fungi 

and plants that are non-conventionally secreted (Rabouille et al., 2012;  Liu et al., 2014;  Ding 

et al., 2014). Generally, unconventional secretion can be subdivided into vesicular and non-

vesicular export mechanisms. Non-vesicular mechanisms include protein export via self-

sustained secretion as it was shown for the signaling molecule fibroblast growth factor 2 (FGF2) 

(Nickel, 2011). The mechanism is driven by the phosphatidylinositol 4,5-bisphosphate 

dependent oligomerization of FGF2 and the formation of a transient lipidic pore in the plasma 

membrane. Binding to extracellular heparan sulfate proteoglycans is assumed to cause the 

disintegration of the lipidic pore and to promote the secretion of FGF2 to the extracellular space 

(Steringer et al., 2012). Non-vesicular secretion of the yeast a-factor mating pheromone is 

mediated by the ATP-binding cassette transporter Ste6 which is located in the plasma 

membrane (McGrath and Varshavsky, 1989).  

In contrast to these non-vesicular export mechanisms at least two secretion modes have been 

proposed that rely on intracellular membranous structures. The vesicle based pathways of the 

proteins AcbA/Acb1 and CFTR both depend on the Golgi reassembly stacking protein 

(GRASP) which is usually located in close proximity to ER exit sites and the early Golgi 

compartments (Curwin and Brouwers, 2016;  Prydz et al., 2013). 

The acyl-CoA binding protein AcbA is needed as a precursor protein to trigger sporulation 

within fruiting bodies of the social amoeba Dictyostelium discoideum (Anjard and Loomis, 

2005). The unconventional secretion of the AcbA yeast ortholog Acb1 is mediated by a novel 

compartment for unconventional protein secretion (CUPS) which seems to predominantly 

consist of secretory and endosomal membranes (Bruns et al., 2011). Upon starvation, the 

GRASP protein Grh1 translocates from the ER exit site and Golgi membranes to immature 

CUPS, a membrane cluster that resembles the mammalian intermediate compartment. These 

immature CUPS are engulfed by a saccular structure leading to the formation of stable CUPS 

which were found to contain Acb1. These CUPS mediate the transport to the plasma membrane 

were their contents are released into the extracellular space (Fig. 2 (1)). The capturing of Acb1 

by CUPS and the mechanism of protein externalization, however, remains elusive (Curwin and 

Brouwers, 2016). 
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Another route of unconventional secretion has been defined as Golgi bypass in which 

transmembrane proteins are transported from the ER to the plasma membrane without entering 

the Golgi apparatus. A prominent example for Golgi bypass is the cystic fibrosis transmembrane 

conductance regulator (CFTR). Gene mutations of CFTR can cause a range of epithelial 

disorders including cystic fibrosis since only negligible amount of the mutated CFTR version 

reach the plasma membrane. Induction of ER stress results in the activation of an 

unconventional GRASP-dependent secretion pathway that allows the mutated CFTR to enter 

the intermediate compartment between ER and Golgi (Gee et al., 2011;  Marie et al., 2009). 

From there, CFTR seems to bypass the Golgi cisternae via an endosomal intermediate which 

facilitate the transport to the trans-Golgi network (TNG) and to the plasma membrane (Prydz 

et al., 2013;  Grieve and Rabouille, 2011).  

Besides the described mechanisms several other pathways exist that facilitate the 

unconventional secretion of proteins such as the incorporation into microvesicles which bud 

outward from the plasma membrane, the uptake into the internal vesicles of multivesicular 

bodies (MVBs), which are subsequently released as exosomes or the export via secretory 

lysosomes (Fig. 2) (Prydz et al., 2013).  

 
Fig. 2: Proposed mechanisms of unconventional protein secretion. To simplify the model, Golgi bypass of 

proteins containing a signal peptide such as CFTR were excluded. Unconventional secretion mechanisms can be 

subdivided into vesicular (1, 3, 4 and 5) and non-vesicular mechanisms (2). 1. Externalization of cytoplasmic 

proteins via CUPS. 2. Direct membrane translocation of cytoplasmic proteins by membrane transporters or by self-

sustained insertion into the plasma membrane. 3. Translocation of proteins by microvesicles that bud from the 

plasma membrane which results in the formation of exosomes. 4. Capturing of cytoplasmic proteins by inwards 

budding endosomes which leads to the biosynthesis of MVBs. These MVBs can fuse with the plasma membrane 

and release the cargo proteins as exosomes. 5. Protein secretion of cytoplasmic proteins by secretory lysosomes. 

N: nucleus, ER: endoplasmic reticulum, SL: secretory lysosomes, MVB: multivesicular body, USP: 

unconventional secreted protein, CUPS: compartment of unconventional protein secretion, MT: membrane 

transporter, MV: microvesicle (picture modified from Nickel and Rabouille, 2009; Curwin and Brouwers, 2016). 
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In the recent years it became evident that unconventional secretion also has a major impact on 

the virulence of filamentous pathogens. In Phytophthora sojae and Verticillium dahliae 

unconventional mechanisms have been shown to mediate the secretion of the two leaderless 

effector proteins PsIsc1 and VdIsc1, respectively, which are required for full virulence. The 

two isochorismatases translocate to the plant cytoplasm and are, like the U. maydis effector 

Cmu1, involved in the suppression of the salicylate-mediated innate plant immunity (Liu et al., 

2014). These findings underline that defining effector proteins by the presence of a classical 

secretion signal is not sufficient anymore to establish a comprehensive picture of the fungal 

effector inventory that mediates infection and interaction with the host. 

1.5 Peroxisomes 

Peroxisomes are multifunctional single-membrane organelles present in all major groups of 

eukaryotes (Gabaldón, 2010). The spherical organelles range in diameter from 0.1 to 1.0 µm 

and are thought to originate de novo from the ER or to be generated by division from pre-

existing peroxisomes (Titorenko and Rachubinski, 2001;  Schrader et al., 2016). The assembly 

of peroxisomal membranes, peroxisome proliferation and inheritance and the import of matrix 

proteins are controlled by so-called peroxins (Titorenko and Rachubinski, 2001). External 

stimuli such as fatty acids can affect peroxisome biogenesis and degradation and thus allow the 

rapid adaptation to environmental requirements (Schrader et al., 2016). The name peroxisome 

originated from the presence of oxidases and catalases within the peroxisomal matrix that 

catalyse the generation and decomposition of hydrogen peroxide, respectively (de Duve, 1969). 

In recent years, however, it has been shown that peroxisomal metabolic functions extend far 

beyond the production and degradation of hydrogen peroxide. Peroxisomes contribute to the 

degradation of fatty acids by fatty acid β-oxidation, are involved in certain steps of the 

glyoxylate cycle, the metabolism of cholesterol, the biosynthesis of β-lactam antibiotics and 

they allow certain yeast species to use methanol as sole carbon source (Brown and Baker, 2008). 

The enzymatic composition of peroxisomes can differ substantially between organisms or 

different cell types and is strongly influenced by environmental conditions (Titorenko and 

Rachubinski, 2001). Glyoxysomes of plants, for instance, are specialized peroxisomes that 

mainly harbor enzymes of the glyoxylate cycle. Trypanosomatides like Leishmania and 

Trypanosoma ssp. possess a particular class of peroxisomes named glycosomes in which 90 % 

of the protein content consists of glycolytic enzymes (Michels et al., 2006). 

Peroxisomes are generally distributed equally throughout the cell. In U. maydis, the intracellular 

transport of peroxisomes, lipid droplets and the ER relies on the transient binding to early 
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endosomes which display motor protein dependent motility along microtubules (Guimaraes et 

al., 2015). In Aspergillus nidulans the transport of peroxisomes has been shown to be mediated 

by the endosome-associated linker protein PxdA which tethers early endosomes and 

peroxisomes by interacting with yet unknown components on each organelle. The deletion of 

PxdA caused the accumulation of peroxisomes in the hyphal tip without affecting the 

distribution of early endosomes (Salogiannis et al., 2016). 

Interestingly, peroxisomes interact with a multitude of other cellular organelles such as the ER, 

mitochondria, chloroplasts, lysosomes, lipid droplets and with themselves (Shai et al., 2016). 

These interactions promote peroxisome maturation and proliferation, peroxisome inheritance 

as well as the transport and exchange of proteins, molecules and metabolites between the 

different organelles (Shai et al., 2016). In contrast to chloroplasts and mitochondria, 

peroxisomes do not contain their own genome or an independent protein synthesis machinery. 

Therefore, peroxisomal proteins are encoded in the nucleus of the cell and protein synthesis is 

mostly mediated by polysomes in the cytoplasm (Titorenko and Rachubinski, 2001). Two 

peroxisomal targeting sequences are responsible for the import of cytosolic proteins into the 

peroxisomal matrix or membrane (Erdmann, 2016). The peroxisomal targeting signal 1 (PTS1) 

is located at the C-terminus of the respective proteins and is composed of the tripeptide SKL or 

conserved variants (S/A/C)-(K/R/H)-(L/M). The second peroxisomal import signal PTS2 

consists of a nonapeptide (R/K)-(L/V/I/Q)-XX-(L/V/I/H)-(L/S/G/A)-X-(H/Q)-(L/A) located in 

proximity to the N-terminus of the respective proteins (Ast et al., 2013;  Meinecke et al., 2016). 

Two cargo receptors cycle between cytosol and peroxisomal membrane to facilitate the import 

of proteins into peroxisomes. PTS1-containing proteins are recognized by the peroxin Pex5 

while proteins containing a PTS2 import signal are recognized by the peroxine Pex7 (Girzalsky 

et al., 2010). Proteins destined for the peroxisome are bound by the respective receptors in the 

cytosol and translocate to the peroxisomal membrane. After import of the protein-receptor 

complex the cargo receptor is recycled from the peroxisomal matrix either for the degradation 

in proteasomes or for another round of protein import (Erdmann, 2016). Peroxisomes allow the 

translocation of folded and even oligomeric proteins which is exploited by proteins without a 

PTS targeting sequence that can reach the peroxisomal lumen independently of Pex5 or Pex7 

by piggy-backing on PTS-containing proteins (Meinecke et al., 2016). 

1.6 Peroxisomes and pathogenicity 

Several diseases and malfunctions can be attributed to defects in peroxisomes. In mammals, 

mutations in genes encoding different peroxins have been shown to cause a variety of 
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peroxisomal disorders which either affect specific metabolic pathways or cause a generalized 

defect in the assembly of peroxisomes (Wanders, 2014). A rare genetic disease that is based on 

a peroxisomal biogenesis disorders is the Zellweger syndrome (ZS). ZS patient cells lack 

morphologically identifiable peroxisomes which can lead to severe developmental defects of 

the brain and death in early infancy (Erdmann, 2016;  Steinberg et al., 2006). 

In plant pathogenic fungi several peroxisomal functions have been determined to be essential 

for the infection of the respective host. Peroxisomal fatty acid β-oxidation mediates the break-

down of fatty acids that is driven by a set of four major enzymes: Acyl-CoA oxidase, 2-enoyl-

CoA hydratese, 3-hydroxacyl-CoA dehydrogenase and the 3-ketoacyl-CoA thiolase (Wanders, 

2014). In each round of β-oxidation two carbons are released from the oxidized fatty acid as an 

acetyl-CoA unit that serves as a substrate for the glyoxylate cycle or the citric acid cycle. In 

Magnaporthe grisea, defects in peroxisomal β-oxidation abolish its ability to grow on fatty 

acids as the sole carbon source and have been shown to diminish appressorium-mediated plant 

infection (Wang et al., 2007). Besides the enzymes for fatty acid β-oxidation several enzymes 

of the glyoxylate cycle are located within peroxisomes. The glyoxylate cycle mediates the 

conversion of two acetyl-CoA units to C4-precursors that can replenish the TCA cycle or 

function as precursors for amino acid or carbohydrate biosynthesis and thus allow growth on 

fatty acids, ethanol or acetate as a sole carbon source (Kunze et al., 2006). In Magnaporthe 

grisea gene disruptions in glyoxylate cycle key enzymes like isocitrate lyase (ICL) have been 

shown to delay germination, infection related development and cuticle penetration (Wang et 

al., 2003). Pexophagy is the selective degradation of peroxisomes by autophagy that contributes 

to the regulation of their abundance within the cell (Oku and Sakai, 2016). The deletion of 

essential pexophagy mediators can cause defects in appressorium formation and plant cuticle 

penetration as it has been shown for Colletotrichum orbiculare, the causative agent of 

anthracnose disease (Asakura et al., 2009). In Pezizomycotina peroxisome derived woronin 

bodies plug the septal pore upon hyphal lysis to prevent excessive cytoplasmic loss (Maruyama 

and Kitamoto, 2013). Woronin bodies are required for appressorium development and function 

and are crucial for the survival during host plant infection (Soundararajan et al., 2004). 

These examples document the importance of peroxisomes for fungal growth, survival and 

pathogenic development. 

1.7 Sterol carrier proteins 

Sterol carrier protein 2 is a ubiquitous protein domain present in mammals, insects, plants, 

bacteria, archaea and fungi (Edqvist and Blomqvist, 2006). The majority of Scp2 proteins 
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contains a PTS1 sequence that targets them to the peroxisomal matrix. However, two Scp2 

proteins in Aedes aegypti lack peroxisomal localization and are mostly present in the cytoplasm 

(Lan and Massey, 2004). Scp2, also called non-specific lipid transfer protein, binds a variety of 

lipids such as fatty acids, fatty acyl-CoAs, phospholipids, sterols and bile salts. The 

conformation of Scp2 proteins in different organisms is highly conserved and generally consists 

of a five-stranded β-sheet and five α-helices which form a hydrophobic cavity that allows the 

loose accommodation of a lipidic ligand (De Berti et al., 2013).  

Numerous intracellular processes have been shown to be influenced by Scp2 including 

cholesterol uptake and secretion, intracellular lipid trafficking and signaling (Gallegos et al., 

2001;  Stolowich et al., 2002). Scp2 can function as part of a multidomain protein or as a 

standalone protein with an individual function (De Berti et al., 2013). Well known examples of 

Scp2 as part of a multi domain protein is the mammalian SCPX protein consisting of a thiolase 

and a Scp2 domain or the multifunctional β-oxidation enzyme MFE-2 which contains a 

dehydrogenase and a hydratase domain in addition to Scp2 (Leenders et al., 1996;  Lensink et 

al., 2002). Several functions have been ascribed to SCPX and MFE-2 but the association with 

additional domains turned out to be a challenging feature for elucidating a Scp2-specific 

function (Schroeder et al., 2007;  Baes et al., 2000).  

Single domain Scp2 proteins have been identified in the yellow fever mosquito A. aegypti where 

deletion of scp2 leads to alterations of cholesterol and fatty acid uptake (Blitzer et al., 2005). 

Further standalone Scp2 proteins were identified in plants like Arabidopsis thaliana where a 

mutation caused alterations in seed morphology, compromised germination and delayed 

seedling establishment (Zheng et al., 2008). Although structural information has been obtained 

for the Thermus thermophilus Scp2 the biological function of bacterial and archaeal Scp2s still 

remains elusive (Goroncy et al., 2010).  

In fungi Scp2 domains are found in multidomain proteins but have also been frequently 

identified as standalone proteins (Edqvist and Blomqvist, 2006). Interestingly, while Scp2 has 

been described in a variety of eukaryotes no such protein has been detected in the baker’s yeast 

S. cerevisiae and the fission yeast S. pombe (Edqvist and Blomqvist, 2006). The first crystal 

structure of a fungal Scp2 was reported by De Berti et al. in 2013 for the yeast Yarrowia 

lipolytica. Even though several studies addressed the YLScp2 biophysical properties, 

localization and its ability to bind and transfer fatty acids no distinct biological function could 

be attributed to the protein until today.  
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The U. maydis genome encodes three single domain sterol-binding proteins namely 

UMAG_01850 (Um01850), UMAG_11277 (Um11277) and UMAG_11938 (Scp2) (Edqvist 

and Blomqvist, 2006; PEDANT 3 database (http://pedant.gsf.de/)).  

The U. maydis Scp2 protein exhibits a predicted molecular weight of 13.49 kDa and 

bioinformatic analyses using the SignalP 4.1 server revealed that Scp2 does not encode for a 

hydrophobic secretion sequence (http://www.cbs.dtu.dk/services/SignalP/). The C-terminus of 

Scp2, however, harbors a peroxisomal targeting sequence, in form of the tripeptide AKL that 

facilitates the translocation of the protein from the cytosol to peroxisomes 

(http://mendel.imp.ac.at/mendeljsp/sat/pts1/PTS1predictor.jsp). Previous work showed that the 

deletion of scp2 in U. maydis causes a virulence defect characterized by a significant reduction 

of tumor formation (S. Reißmann, personal communication). Mutation of the PTS1 sequence 

abolished peroxisomal localization causing Scp2 to reside in the cytosol. The cytoplasmic 

version of Scp2 could not complement the scp2 deletion mutant phenotype indicating that 

peroxisomal localization might be important for the virulence related function of Scp2 (S. 

Krombach and S. Reißmann, unpublished). A sequence based analysis using the SecretomeP 

server classified Scp2 as a potential candidate for unconventional secretion 

(http://www.cbs.dtu.dk/services/SecretomeP/). Moreover, Scp2 was detected in the isolated 

apoplastic fluid of infected maize leaves, in culture supernatants of b-induced filaments as well 

as in colony secretion assays (T. Brefort, M. Mann, K. Schipper, unpublished; F. Bochen, S. 

Krombach and S. Reißmann, unpublished).  

1.8 Aims and objectives of this study 

The aim of the present study is the analysis of the U. maydis protein Scp2 with respect to its 

intracellular and putative extracellular function. The potential leaderless secretion of Scp2 will 

be explored in particular with respect to its contribution to virulence. A comprehensive 

phenotypical characterization of scp2 deletion strains will be performed in order to elucidate a 

biological role of Scp2 during pathogenic development. The evaluation of binding specificities 

could thereby offer insights into the Scp2 function on a molecular level. Beyond the analysis of 

Scp2, the two remaining sterol carrier proteins present in the U. maydis genome will be 

analyzed with respect to their impact on virulence and to uncover potential redundant functions. 
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2. Results 

2.1 The impact of Scp2 on the pathogenic development of U. maydis 

Previous experiments showed that deletion of the scp2 gene in the solopathogenic U. maydis 

strain SG200 causes a decrease in virulence (S. Reißmann, F. Ahrens and S. Kreibich, 

unpublished). SG200 is a genetically modified haploid strain that carries the genetic 

information of both mating type loci and therefore does not require cell fusion events to induce 

filament formation and infection (Kämper et al., 2006). In the following paragraphs, growth 

rates, the ability to mate and the virulence of scp2 deletion strains was analyzed using either 

existing mutants in SG200 or newly generated mutants in the wild type strains FB1 and FB2. 

2.1.1 The role of Scp2 during saprophytic growth 

Previous work indicated that deletion of scp2 in SG200 does not lead to a significant growth 

defect when using colony size as an indicator (F. Bochen, personal communication). To detect 

minor differences in saprophytic proliferation, growth curves were generated using SG200, 

SG200Δscp2 as well as the respective complementation strain SG200Δscp2-c. 

 

Fig. 3: Saprophytic growth of SG200, SG200Δscp2 and the complementation strain SG200Δscp2-c. (A) The 

growth curve was generated by growing the respective strains in YEPSlight complete medium starting with an 

optical density (OD600) of 0.1. Growth was recorded over a period of 17 hours. For each strain the OD600 of three 

independent replicates was measured. Error bars indicate the ± standard deviation between the three replicates.  

(B) For the analysis of colony morphology, the respective strains were singled out on CM-glc solid medium. The 

plates were incubated at 28 °C for two days. Pictures of single colonies were taken with a binocular microscope. 

The scale bar equals 500 µm.  
 

In comparison to SG200, no significant differences of saprophytic growth rates could be 

observed for SG200Δscp2 (Fig. 3 A). Furthermore, after singling the strains out on defined 

complete medium (CM-glc) the analysis of colony morphology did not reveal differences with 

respect to size or filamentation between SG200, SG200Δscp2 and SG200Δscp2-c (Fig. 3 B). 
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These results rule out that a reduced growth rate of scp2 deletion strains causes the virulence 

phenotype observed in plant infections. 

2.1.2 Scp2 is not involved in mating 

In further experiments the ability of scp2 deletion mutants to form dikaryotic hyphae after 

successful mating with a respective mating partner was analyzed. On charcoal-supplemented 

solid medium U. maydis forms dikaryotic filaments after successful fusion with a compatible 

mating partner. These filaments have a white appearance due to empty sections in older parts 

of the developing hyphae (Day and Anagnostakis, 1971). To analyze mating, mixtures of 

compatible FB1 and FB2 strains and the respective scp2 deletion strains were spotted on PD 

charcoal plates. After 24 hours, wild type and scp2 deletion strain crossings formed white fuzzy 

colonies (Fig. 4). These results show, that scp2 mutants are not affected in mating and the 

development of dikaryotic filaments. 

 

Fig. 4: Mating of FB1Δscp2 and FB2Δscp2 on PD-charcoal plates. Indicated haploid U. maydis strains were 

spotted on PD charcoal plates either alone or in a 1:1 mixture of compatible mating partners. The plates were 

incubated at room temperature for two days. White colonies indicate the development of dikaryotic hyphae after 

successful mating. 

 

2.1.3 Pathogenicity of U. maydis scp2 deletion mutants is reduced 

To evaluate the impact of Scp2 on virulence, FB1Δscp2 and FB2Δscp2 were analyzed in plant 

infection experiments. As already observed for infections with SG200Δscp2, mixtures of 

FB1Δscp2 with FB2Δscp2 showed a significant reduction of virulence in comparison to the 

mixture of FB1 and FB2. Particularly, the amount of dead plants was strongly reduced when 

scp2 mutants were crossed (Fig. 5 A and B). Interestingly, the whole range of disease symptoms 

was observed in scp2 deletion strain crossings although the frequency by which the respective 

symptoms appeared was significantly decreased. These results show that the scp2 deletion 

phenotype observed in SG200 also manifests in crossings of FB1 and FB2 wild type strains 

determining Scp2 as a pathogenicity factor in U. maydis. 
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Fig. 5: Virulence of compatible haploid strains carrying deletions of scp2. (A) Mixtures (1:1) of the indicated 

FB1 and FB2 derivatives were injected into seven day old maize seedlings (Early Golden Bantam; EGB). Infection 

symptom development was quantified twelve days post infection. The respective symptom categories are depicted 

on the right hand side of the diagram. For the virulence assay average values of three independent replicates were 

taken. The total number of infected plants (n) is depicted above each column. (B) Maize plants infected with FB1 

x FB2 or FB1Δscp2 x FB2Δscp2 were photographed 12 days after infection. 

 

2.2 Scp2 is upregulated in early and late stages of plant colonization 

To narrow down at which stage of plant colonization Scp2 might be required and to determine 

relative gene expression of scp2 during different stages of pathogenic development quantitative 

real time polymerase chain reaction (qPCR) was conducted. To this end, RNA was isolated 

from saprophytically growing cells as well as from SG200 infected plant material 20 hours 

(hpi), 2, 4 and 12 days (dpi) after maize seedling infection. Plants infected with water were used 

for normalization (mock). The isolated RNA was reverse transcribed into cDNA and used as a 

template for the amplification process. The constitutively expressed U. maydis gene ppi 

encoding a peptidylprolyl isomerase (um03726) served as a reference gene (Bohlmann, 1996). 

The qPCR results showed a 16-fold increase of scp2 expression during appressorium formation 

and penetration at 20 hpi (Fig. 6). The expression dropped significantly at 2 dpi and increased 

again at later stages of biotrophic development starting at 4 dpi (Fig. 6).  
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Fig. 6: Relative expression of scp2 during biotrophic development. Relative expression of scp2 was determined 

proportional to the constitutively expressed ppi gene. RNA samples of SG200 were extracted from exponentially 

growing cells cultivated in YEPSlight medium and from SG200 infected maize plants 20 hpi, 2, 4 and 12 dpi. 

Extracted RNA samples were reverse transcribed into cDNA. Average values of three biological replicates are 

shown with error bars indicating the ± standard deviation. Values were normalized to scp2 expression in axenic 

culture which was set to value 1. The different stages of biotrophic interaction are indicated below the graph. 

 

2.3 Two paralogs of scp2 are present in the U. maydis genome 

As scp2 deletion strains are still able to cause disease symptoms albeit reduced when compared 

with wild type strains, additional putative sterol carrier proteins encoded in the U. maydis 

genome were analyzed with respect to their contribution to U. maydis virulence. A database 

search on the “PEDANT 3” database (http://pedant.gsf.de/) revealed two paralogs of Scp2, 

namely UMAG_01850 (Um01850) and UMAG_11277 (Um11277). Amino acid alignments 

using the “t-coffee” alignment tool (http://www.ebi.ac.uk/Tools/msa/tcoffee/) showed that 

Scp2 shares an amino acid sequence identity of 38.5 % and 28.1 % with its two paralogs, 

respectively. RNAseq data revealed that um01850 and um11277 have expression patterns 

similar to scp2. Expression of the paralogs during growth in axenic culture, however, was about 

18-fold and 5-fold lower than the expression of scp2, respectively (D. Lanver, personal 

communication). 

By using the “PTS1 predictor” tool (http://mendel.imp.ac.at/mendeljsp/sat/pts1/PTS1 

predictor.jsp) that recognizes potential peroxisomal targeting signals type 1 Scp2 (score: 

13.810) and Um01850 (score: 10.004) were predicted to be targeted to peroxisomes while 

Um11277 peroxisomal targeting was classified as “twilight zone” (score: -9.285). Proteins with 

scores above 0 are considered to be targeted to peroxisomes. Scores ranging from 0 - (-10) are 

considered as twilight zone, i.e. unreliable PTS1 prediction and proteins with a sequence score 

below -10 are classified as proteins that are not predicted to be targeted to peroxisomes 

(Neuberger et al., 2003).  
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2.3.1 Um01850 and Um11277 are targeted to peroxisomes 

Colocalization experiments were performed to determine in which cellular compartment 

Um01850 and Um11277 reside. To this end, N-terminal GFP-fusions were generated for 

Um01850 and Um11277 (GFP-01850 and GFP-11277). The respective constructs were 

integrated into the ip locus of the peroxisomal marker strain AB31Pex (kindly provided by J. 

Freitag). The U. maydis strain AB31Pex is a FB2 derivative in which the b-genes are regulated 

by the arabinose-inducible crg promoter (Brachmann et al., 2001). In addition, AB31Pex 

expresses a mCherry protein that is fused to a peroxisomal targeting signal (mCherry-PTS1). 

Since expression profiles had indicated low expression levels for both scp2 paralogs in axenic 

culture, gfp-01850 and gfp-11277 fusion constructs were expressed under the control of the 

endogenous scp2 promoter. To determine the subcellular localization of the two fluorescently 

labeled proteins, exponentially growing cells of AB31PexGFP-01850 and AB31PexGFP-

11277 were analyzed by fluorescence microscopy. Colocalization of GFP-01850 and GFP-

11277 fusion proteins with the peroxisomal marker mCherry-PTS1 revealed peroxisomal 

localization of both Um01850 and Um11277 (Fig. 7).  

 
Fig. 7: Cellular localization of GFP-01850 and GFP-11277 fusion proteins. Exponentially growing sporidia of 

AB31PexGFP-01850 and AB31PexGFP-11277 were analyzed using fluorescence microscopy. Red fluorescence 

displays localization of the peroxisomal marker protein mCherry-PTS1, green fluorescence displays localization 

of GFP-01850 or GFP-11277, respectively. The merge channel indicates colocalization of GFP-01850 and GFP-

11277 with peroxisomes. Scale bars equal 10 µm. 

 

2.3.2 Deletion of um01850 and um11277 does not affect virulence 

To determine the impact of um01850 and um11277 on virulence of the solopathogenic strain, 

SG200 deletion strains were generated carrying single gene deletions of the two Scp2 paralogs 

(SG200Δ01850 and SG200Δ11277). The influence of the deletions on U. maydis pathogenicity 

was examined in plant infection experiments. Both single deletion strains showed symptom 

development comparable to that of the SG200 progenitor strain (Fig. 8 A and B). 
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Fig. 8: Virulence of um01850 and um11277 mutants. (A) Infection symptoms on maize seedlings infected with 

SG200 and the single gene deletion strains SG200Δscp2, SG200Δ01850 and SG200Δ11277, respectively. 

Infection symptoms were evaluated twelve days post infection. The respective symptom categories are depicted 

on the right hand side of the diagram. For the virulence assay average values of three independent infections were 

taken. The total number of infected plants (n) is depicted above each column. (B) Filamentous growth of the 

respective strains on charcoal plates (top panel). Pictures of representative leaves from plant infections (lower 

panel). 

 

2.3.3 Deletion of scp2 and its two paralogs has no additive effect on virulence 

To investigate whether Scp2, Um01850 and Um11277 might have partially redundant functions 

a triple mutant strain SG200Δscp2Δ01850Δ11277 (SG200ΔΔΔ) was generated. Three 

independent triple deletion mutants where analyzed in plant infection experiments of which one 

is depicted in Fig. 9. All three independent mutants resembled the scp2 single deletion strain in 

strength of induced virulence symptoms, indicating no redundant function between Scp2 and 

its paralogs. Furthermore, the virulence defect observed for SG200ΔΔΔ could be fully 

complemented by inserting the scp2 gene into the ip locus of the SG200ΔΔΔ genome in single 

copy (SG200ΔΔΔ-c) (Fig. 9 A and B). Filamentation of SG200ΔΔΔ on charcoal plates was 

slightly delayed (not shown). However, no difference in filamentation was visible after two 

days of incubation (Fig. 9 B). In conclusion, the infection experiments showed that um01850 

and um11277 do not exhibit a virulence related function. Further, the three proteins do not seem 

to have redundant functions. 
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Fig. 9: Virulence of the triple deletion strain SG200Δscp2Δ01850Δ11277 (SG200ΔΔΔ). (A) Infection 

symptoms on maize seedlings infected with SG200, SG200Δscp2, the complementation strain SG200Δscp2-c, the 

triple deletion strain SG200ΔΔΔ and the respective complementation strain SG200ΔΔΔ-c. Infection symptoms 

were evaluated twelve days post infection. The respective symptom categories are depicted on the right hand side 

of the diagram. For the virulence assay average values of four independent infections were taken. The total number 

of plants (n) is depicted above each column. (B) Filamentous growth of the respective strains on charcoal plates 

(top panel). Pictures of representative leaves from plant infections (lower panel). 

 

2.3.4 Scp2 and its two paralogs are not involved in peroxisomal β-oxidation 

One of the main tasks of peroxisomes in eukaryotic cells is the breakdown of very long chain 

fatty acids in order to obtain acetyl-CoA in a process called peroxisomal β-oxidation (Wanders 

et al., 2016). It is known that defects in this important process lead to a reduction of virulence 

in U. maydis and several other plant pathogenic fungi like Magnaporthe oryzae or 

Colletotrichum orbiculare (Ramos-Pamplona and Naqvi, 2006;  Klose and Kronstad, 2006;  

Asakura et al., 2012). All three putative sterol carrier proteins of U. maydis Scp2, Um01850 

and Um11277 localize in peroxisomes and are predicted to be involved in fatty acids binding 

and transport (PEDANT 3 database (http://pedant.gsf.de/)). Hence, peroxisomal β-oxidation 

was assayed in the three single deletion strains as well as in the triple deletion strain to reveal a 

possible impairment by using fatty acid growth assays. For this, U. maydis was grown on solid 

medium supplemented with fatty acids ranging from 16 to 18 in carbon chain length (saturated 

and unsaturated) as the only available carbon source. U. maydis is able to utilize fatty acids as 

an energy source as long as peroxisomal β-oxidation is functional (Klose and Kronstad, 2006). 

The peroxisome deficient mutant SG200Δpex6 was used as a negative control. This strain lacks 

the peroxisomal biogenesis factor 6 causing U. maydis to produce “peroxisomal ghosts” that 

are not able to metabolize fatty acids via peroxisomal β-oxidation (Freitag et al., 2012).  

As expected, the pex6 deletion strain was unable to grow on oleic and linoleic acid and was 

strongly reduced in growth on palmitic and stearic acid (Freitag et al., 2012) (Fig. 10). SG200 

and derivatives lacking either scp2, um01850, um11277 or all three putative sterol carrier 
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proteins showed comparable growth on all plates containing fatty acids as sole carbon source 

(Fig. 10). This shows that peroxisomal β-oxidation of long-chain fatty acids is independent of 

Scp2, Um01850 and Um11277 function. 

 
Fig. 10: Growth assays on different fatty acid substrates. YNB medium without amino acids was supplemented 

with glucose (control), oleic acid, palmitic acid, stearic acid or linoleic acid to assay functional peroxisomal β-

oxidation. Exponentially growing cultures of the indicated SG200 derivatives were washed in water and optical 

densities were adjusted to 1. Serial dilutions were spotted on the respective media. Plates were sealed with parafilm 

and incubated for two days at 28 °C. 

 

2.4 Overexpression of scp2 under the cmu1 promoter causes a strong virulence defect 

In order to characterize the biological function of a protein, overexpression of the respective 

gene can offer valuable clues. Therefore, scp2 was overexpressed by generating a strain 

carrying a multiple integration event (m) of the complementation construct in the ip locus of 

the SG200 genome (SG200Δscp2-c #10 and SG200Δscp2-c #13). Protein levels of Scp2 were 

determined in lysates from saprophytically growing cells using western blot analysis and a Scp2 

peptide-specific antibody to proof successful overexpression of scp2 in the respective strains 

(Fig. 11 A). In comparison to SG200 and the complementation strain carrying a single 

integration of the complementation construct (SG200Δscp2-c) plant infection experiments 
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using the two generated strains with multiple integrations showed that overexpression of scp2 

had no negative effect on U. maydis virulence (Fig. 11 B). 

 
Fig. 11: Virulence of SG200 derivatives overexpressing scp2. (A) Scp2 protein levels in cell lysates of sporidia. 

Protein extracts were generated from exponentially growing cells of the indicated strains. Protein quantities in 

each extract were determined by Bradford protein assays. 10 µg of total protein was loaded and separated by SDS-

PAGE. Western blot analysis was used to determine Scp2 levels for each strain using an anti-Scp2 peptide-specific 

antibody (top panel). An InstantBlue stained polyacrylamide gel served as a loading control to ensure that equal 

protein quantities were used for the western blot analysis (lower panel). (B) Infection symptoms on maize seedlings 

infected with SG200, the deletion strain SG200Δscp2, the complementation strain SG200Δscp2-c carrying a single 

integration of the scp2 complementation construct and the two independent mutant strains SG200Δscp2-c #10 and 

SG200Δscp2-c #13 carrying a multiple integration of the scp2 complementation construct. Infection symptoms 

were evaluated twelve days post infection. The respective symptom categories are depicted on the right hand side 

of the diagram. For the virulence assay average values of four independent replicates were taken. The total number 

of plants (n) is depicted above each column. 

 

To produce Scp2 at even higher protein levels and to assay the importance of the scp2 gene 

expression pattern during plant infection, scp2 was expressed under the strong cmu1 promoter. 

Cmu1 is a chorismate mutase involved in the metabolic priming of the host plant during 

colonization and was shown to be one of the most highly expressed effector genes in U. maydis 

(Djamei et al., 2011). The scp2 and the cmu1 promoter show an opposing expression pattern.  

While scp2 expression is induced 20 hpi and downregulated at 2 dpi the expression of scp2 

under control of the cmu1 promoter would result in a strong constitutive overexpression during 

plant colonization (D. Lanver, personal communication). 

The generated scp2 overexpression strains (SG200Pcmu1-Scp2 and SG200Δscp2Pcmu1-Scp2) 

were analyzed in plant infection experiments. The overexpression of scp2 under control of the 

cmu1 promoter caused a severe reduction of virulence when integrated into the ip locus of 

SG200 and SG200Δscp2 (Fig. 12 A). This dominant negative effect caused a significantly 

stronger attenuation of virulence than what was observed for scp2 deletion strains. In addition, 

hardly any anthocyanin production could be detected in plants infected with SG200Pcmu1-Scp2 

and SG200Δscp2Pcmu1-Scp2 (Fig. 12 B and C). Close-up views from SG200Pcmu1-Scp2 infected 

leaves revealed a high amount of chlorotic lesions throughout the entire leaf, indicating plant 
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defense reactions (Fig. 12 C and D). The obtained results raised the question whether the 

observed virulence defect was caused by overloading the peroxisomes due to the strong 

overexpression of Scp2. To test this hypothesis a construct expressing peroxisomal mCherry 

was put under the control of the cmu1 promoter and multiple copies were inserted into the 

SG200 genome (SG200Pcmu1-mCherrypex). Quantification of disease symptoms showed that the 

overexpression of peroxisomal mCherry did not lower virulence significantly (Fig. 12 A). In 

addition, none of the overexpression strains analyzed showed defects in filament formation on 

PD-charcoal plates (Fig. 12 B). These results could suggest that not only the level of Scp2 

protein but also the timing of scp2 expression might be a crucial during pathogenic development 

of U. maydis. 

 
 Fig. 12: Virulence of strains overexpressing scp2 under the cmu1 gene promoter. (A) Infection symptoms on 

maize seedlings infected with SG200, SG200Δscp2, SG200Pcmu1-mCherrypex, SG200Pcmu1-Scp2 and 

SG200Δscp2Pcmu1-Scp2, respectively. Infection symptoms were evaluated twelve days post infection. The 

respective symptom categories are depicted on the right hand side of the diagram. For the virulence assay, average 

values of three independent infections were taken. The total number of plants (n) is depicted above each column. 

(B) Filamentous growth of the respective strains on charcoal plates (top panel). Pictures of representative leaves 

from plant infections (lower panel). (C) Photographs of maize leaves infected with the scp2 deletion strain 

SG200Δscp2 (left) and the overexpression strain SG200Pcmu1-Scp2 (right). (D) Close-up pictures of maize leaves 

infected with the overexpression strain SG200Pcmu1-Scp2. The scale bars equal 1000 µm (left) and 100 µm (right). 
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2.4.1 Overexpression of scp2 under the cmu1 promoter induces plant defense reactions 

To investigate reasons for the reduced virulence in scp2 mutant strains and the strong virulence 

defect of SG200Pcmu1-Scp2 overexpression strains the proliferation of the respective strains was 

analyzed during plant colonization. To visualize fungal hyphae and plant cell walls infected 

leaves were stained with WGA-AF488/PI (wheat germ agglutinin / propidium iodide). WGA 

is a green fluorescent dye consisting of a lectin bound to Alexafluor 488. This lectin binds to 

chitin which is present in the fungal cell wall (Robin et al., 1986). Propidium iodide is a 

membrane-impermeable dye that binds the plant cell wall. In dead cells the cell membrane 

integrity is reduced and PI is able to reach the cell interior where it binds to double-stranded 

DNA or RNA.  

Leaves infected with SG200, SG200Δscp2 and SG200Pcmu1-Scp2, respectively, were harvested 

two days after infection, stained with WGA-AF488/PI and subsequently analyzed by confocal 

laser scanning microscopy. Scp2 mutant strains were able to colonize the plant tissue (Fig. 13). 

However, after two days post infection the extent of proliferation within the leaves was lower 

than what was observed for the SG200 progenitor strain (Fig. 13 A and B). In addition, more 

leaf areas displayed autofluorescence due to plant defense reactions upon infection with the 

scp2 mutant strain (Fig. 13 C, D and E). SG200Pcmu1-Scp2 strains expressing scp2 under control 

of the cmu1 promoter elicited plant defense reactions more frequently than SG200 and 

SG200Δscp2 (Fig. 13 F and G). Successful entry of SG200Pcmu1-Scp2 fungal hyphae into the 

plant tissue was extremely rare (Fig. 13 H) and did not lead to a massive proliferation within 

the plant. 

These results indicate that both the deletion as well as the overexpression of scp2 leads to 

defects during the penetration step that is accompanied by plant defense responses. 
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Fig. 13: WGA-AF488/PI staining of maize plants two days after infection with SG200, SG200Δscp2 and the 

overexpression strain SG200Pcmu1-Scp2. Fungal cells on top and within the plant tissue were stained with WGA-

AF488 and are depicted in green. Plant cell walls are stained with PI and are depicted in red. (A and B) Intracellular 

proliferating SG200 hyphae two days after plant infection. (C and E) Intracellular proliferating SG200Δscp2 

hyphae two days after plant infection. (D) SG200Δscp2 cells on the plant surface that induce plant defense. (F and 

G) SG200Pcmu1-Scp2 hyphae on the plant surface and hyphae within the plant tissue (empty arrowhead). (H) 

Intracellular proliferating SG200Pcmu1-Scp2 hyphae two days after plant infection. Scale bars for A, C, F and G 

equal 100 µm. Scale bars for B, D, E and H equal 25 µm. All pictures are maximum projections of confocal Z-

stacks. Autofluorescence of plant defense responses with the same spectral properties as PI are marked with white 

arrowheads.  

 

2.5 Scp2 is unconventionally secreted in low amounts 

Previous experiments provided evidence that Scp2 is a candidate for unconventional protein 

secretion (see introduction). To verify unconventional secretion of Scp2, colony secretion 

assays (CSA) were conducted to supplement the data generated in previous studies. For CSAs 

cells are cultivated on a nitrocellulose membrane. Secreted proteins are captured by the 

membrane and Strep-HA fusion proteins can be visualized by western blot analysis. All 

generated constructs were integrated into the ip locus of the AB33 progenitor strain. AB33 is a 
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FB2 derivative which contains the bE1 and bW2 genes under the control of the nitrate inducible 

nar promoter (Brachmann et al., 2001). AB33 therefore undergoes the morphological transition 

from saprophytic to filamentous growth in liquid medium when cells are shifted to nitrate 

minimal medium. All experiments included an AB33 strain that did not synthesize any Strep-

HA tagged proteins to exclude unspecific background signals on the nitrocellulose membrane. 

This empty control strain did not give a signal in the conducted CSAs (Fig. 14 A, 1). A strain 

expressing a cytoplasmic gfp-HA-strep fusion construct under the control of the otef promoter 

(AB33GFP-HA-Strep) was included in each experiment to exclude cell lysis as a reason for 

detected signals (Fig. 14 A, 2). No secretion of cytoplasmic GFP could be observed. As a 

positive control Strep-HA-Scp2 was fused to the secretion signal of the U. maydis effector 

protein Stp1 (Schipper, 2009). A strong signal was obtained for the classically secreted SP-

Strep-HA-Scp2 in all CSAs (Fig. 14 A, 5). To verify Scp2 secretion, strep-HA-scp2 was 

expressed either under control of the otef promoter or the endogenous scp2 promoter (Fig. 14 

A, 3 and 4). CSAs could show secretion of Strep-HA-Scp2 on NM-glc as well as on CM-glc 

medium independently of the utilized promoter (Fig. 14 A).  

To assay whether peroxisomal localization is crucial for Scp2 secretion a strain synthesizing a 

cytoplasmic version of the Strep-HA-Scp2 fusion protein (AB33Strep-HA-Scp2cyt) was 

included in the analysis. This cytoplasmic Scp2 version carries a mutation in the peroxisomal 

targeting site (AKL/AAA) rendering the peroxisomal targeting signal nonfunctional. When 

analyzed for secretion, lower amounts of the protein were detected on the membrane suggesting 

a higher Scp2 secretion efficiency when the protein resides within peroxisomes (Fig. 14 A, 6). 

A strain producing a peroxisomal GFP fusion protein was generated (AB33Strep-HA-GFPpex) 

to assay whether any protein that is localized in peroxisomes is able to reach the cell exterior 

(Fig. 14 A, 7). Peroxisomal localization of Strep-HA-GFPpex was verified by fluorescent 

microscopy (Fig. 14 B). Very low signals could be detected for Strep-HA-GFPpex in CSAs, 

making it unlikely that all proteins in peroxisomes can reach the extracellular space.  

Cell lysates of the respective AB33 derivatives were analyzed in western blot analysis to 

exclude variations in CSA signal intensity due to differences in protein abundance. All analyzed 

Strep-HA fusion proteins, except of SP-Strep-HA-Scp2, were shown to be present in 

comparable amounts (Fig. 14 C). Lower protein levels of SP-Strep-HA-Scp2 in cell extracts 

most likely resulted from the efficient export of the protein to the cell exterior (Fig. 14 A, 5).  
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Fig. 14: Strep-HA-Scp2 is secreted in low amounts. (A) CSAs on different media. The indicated strains were 

grown in YEPSlight to an OD600 of 0.6, washed in water and cultivated in NM-glc or Cm-glc for one hour. 

Subsequently, the cells were concentrated to an OD600 of 1.2 and 10 µl of the respective culture was spotted on 

nitrocellulose membranes. The plates were sealed and incubated overnight at 28 °C. In the morning, the cells were 

washed off the membrane and Strep-HA fusion proteins were detected by anti-HA western-blot analysis. (B) 

Localization of Strep-HA-GFPpex in AB33 Strep-HA-GFPpex grown in YEPSlight medium. (C) Protein quantities in 

cells lysates of sporidia were determined for each strain by Bradford protein assays. 10 µg of total protein was 

separated using SDS-PAGE. Western blot analysis was used to visualize total levels for Strep-HA-fusion proteins 

using an anti-HA antibody (top panel). An InstantBlue stained polyacrylamide gel served as a loading control to 

ensure that equal protein quantities were used for the western blot analysis (lower panel).  

 

The colony secretion analysis provides information about the secretion of a protein but does not 

specify the size of the secreted protein. Strep-HA-Scp2 was isolated from the CSA 

nitrocellulose membrane using acetone precipitation (Anderson, 1985) to prove that the Strep-

HA-Scp2 fusion protein is secreted as a full length version. Full length Strep-HA-Scp2 could 

be isolated from nitrocellulose and was detected using anti-HA western blot analysis (Fig. 15). 

A cell lysate of the respective strain and the AB33 progenitor strain were used as a positive and 

negative control, respectively (Fig. 15). This data shows that the full length Strep-HA-Scp2 

fusion protein is able to reach the cell exterior in low amounts via an unconventional secretion 

mechanism. 
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Fig. 15: Strep-HA-Scp2 is secreted as full length protein. For the isolation of secreted AB33 and AB33 Strep-

HA-Scp2 proteins from nitrocellulose membranes the same set-up was used as it was described for CSAs on NM-

glc and CM-glc with slight modifications (Fig. 14). To obtain higher quantities of protein, 500 µl of each culture 

were spotted on the nitrocellulose membrane. After washing off the cells a 1 cm2 piece of the nitrocellulose was 

dissolved in acetone as described in Anderson (1985). Secreted Strep-HA tagged proteins were precipitated and 

detected via anti-HA western blot analysis. A cell lysate of AB33 Strep-HA-Scp2 sporidia served as a positive 

control. Nitrocellulose incubated with the empty progenitor strain AB33 served as a negative control. A single 

replicate was performed. 

 

2.5.1 Investigation of a potential extracellular Scp2 function 

After verifying that a Strep-HA-Scp2 fusion protein can be secreted, the potential role of 

extracellular Scp2 during pathogenic development was analyzed. Previous experiments had 

shown that a classically secreted SP-Strep-HA-Scp2 (AKL/AAA) fusion protein cannot 

complement the scp2 deletion phenotype. This Scp2 derivative contained a mutated 

peroxisomal targeting sequence (AKL/AAA) to prevent dual targeting to peroxisomes and the 

secretory pathway (S. Krombach, unpublished). It has been hypothesized that the Scp2 C-

terminus might not only contain the PTS1 targeting signal but might additionally contribute to 

the ligand binding activity of Scp2 (García et al., 2000). To exclude that the lack of 

complementation observed for the SP-Strep-HA-Scp2 (AKL/AAA) fusion protein is caused by 

the inability of the protein to bind its ligand, a SP-scp2-GSA construct was generated. In this 

construct Scp2 was fused to the Stp1 secretion signal and expressed under transcriptional 

control of the endogenous scp2 promoter. To prevent peroxisomal targeting the C-terminus was 

extended by adding three amino acids (GSA) (Fig. 16 A). Blocked peroxisomal targeting of SP-

Scp2-GSA was verified by fluorescence microscopy of a GFP-fusion derivative of the 

respective construct (SP-GFP-Scp2-GSA). The plasmid carrying the sequence SP-gfp-scp2-

GSA was integrated into the ip locus of the peroxisomal marker strain AB31Pex. Colocalization 

experiments of peroxisomes and SP-GFP-Scp2-GSA confirmed the exclusive targeting to the 

secretory pathway/ER (Fig. 16 B).  

To test for complementation the SP-scp2-GSA construct was integrated into the ip locus of 

SG200Δscp2 and the resulting strain SG200Δscp2SP-Scp2-GSA was analyzed in plant 

infection experiments. Evaluation of plant symptom development twelve days after infection 
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showed no complementation of the scp2 deletion phenotype (Fig. 16 C). As a control construct 

scp2-AKL was generated and inserted into the ip locus of SG200Δscp2 to exclude that the fusion 

of three amino acids to the Scp2 C-terminus renders the protein nonfunctional. Rather than 

adding three random amino acids a second three amino acid long PTS1 signal (AKL) was added 

to the scp2 sequence. In plant infection experiments SG200Scp2-AKL induced virulence 

symptoms comparable to the SG200 progenitor strain (Fig. 16 C). Based on this, it is unlikely 

that the addition of amino acids at the C-terminus of Scp2 is the reason for the lack of 

complementation. These results show that a Scp2 protein that no longer resides in peroxisomes 

and that is targeted to the secretory pathway cannot complement the scp2 deletion phenotype 

during pathogenic development. 

 
Fig. 16: Virulence of the strains SG200Δscp2SP-Scp2-GSA and SG200Δscp2Scp2-AKL. (A) Illustration of 

the fusion constructs used for infection assays. A legend of the respective domains is depicted underneath the 

scheme. (B) Fluorescent microscopy of SP-GFP-Scp2-GSA and colocalization with the peroxisomal marker 

protein mCherrypex. Green fluorescence displays the SP-GFP-Scp2-GSA fusion construct localized in the secretory 

pathway while red fluorescence depicts the peroxisomal marker protein mCherry-SKL. The scale bar equals 10 

µm. (C) Infection symptoms on maize seedlings infected with SG200, SG200Δscp2, SG200Δscp2-c, 

SG200Δscp2SP-Scp2-GSA and SG200Δscp2Scp2-AKL, respectively. Infection symptoms were evaluated twelve 

days post infection. The respective symptom categories are depicted on the right hand side of the diagram. For the 

virulence assay average values of four independent infections were taken. The total number of plants (n) is depicted 

above each column.  
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2.6 Yarrowia lipolytica and human Scp2 can partially complement the function of  

U. maydis Scp2 

Sterol carrier proteins are conserved in bacteria, archaea and eukaryotes (Edqvist and 

Blomqvist, 2006). For the human sterol carrier protein 2 (hScp2) as well as for Scp2 from the 

yeast Yarrowia lipolytica (YLScp2) structural and experimental data is available (García et al., 

2000;  De Berti et al., 2013). Amino acid sequence alignments showed that the U. maydis Scp2 

(UmScp2) shares a sequence identity of 38.14 % and 41.8 % with its orthologs in human and 

Y. lipolytica, respectively (t-coffee alignment) (Fig. 17 A). Furthermore, the generation of a 

structural model of the U. maydis Scp2 protein revealed a conformation comparable to the ones 

described for hScp2 and YLScp2 (García et al., 2000;  De Berti et al., 2013) suggesting related 

functions (Fig. 17 B). U. maydis scp2 deletion strains were complemented using hscp2 and 

YLscp2, to demonstrate conserved functions between the three orthologs. 

 
Fig. 17: Conservation between UmScp2 and its two orthologs from human (hScp2) and Y. lipolytica 

(YLScp2) and a predicted structural model of the U. maydis Scp2 (UmScp2). (A) Amino acid sequence 

alignment of UmScp2 with its two orthologs hScp2 and YLScp2. The sequence logo displaying conserved amino 

acids is depicted underneath the alignment. The alignment was generated using the CLC Genomics Workbench 8. 

(B) The structural model of UmScp2 was generated using the Phyre2 web portal for protein modeling, prediction 

and analysis (http://www.sbg.bio.ic.ac.uk/phyre2/html) (Kelley et al., 2015). The model was generated with 100 

% of the residues modelled at >90 % confidence. The 3-dimensional structure of YLScp2 was one of the four 

protein structure templates that were used by the database to model the structure of UmScp2. 

 

The two genes were synthesized as codon optimized versions adapted for the expression in U. 

maydis. In mammals hScp2 is generated by posttranslational processing from a 143 amino acid 

precursor protein (pro-Scp2) (Stolowich et al., 2002). Therefore, a start codon was added to the 

synthesized gene sequence of hscp2. Both genes were expressed under the control of the U. 

maydis scp2 promoter and single copies of the respective constructs were integrated into the 

genome of SG200Δscp2 (SG200Δscp2-hScp2 and SG200Δscp2-YLScp2). The ability of hScp2 

and YLScp2 to complement the scp2 deletion phenotype was assayed in plant infection 

experiments. Single integrations of hscp2 and YLscp2 into SG200Δscp2 lead to a weak 

A B
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complementation of the scp2 mutant phenotype (Fig. 18 A). None of the strains showed defects 

in filamentation on charcoal supplemented medium (Fig. 18 B).  

 
Fig. 18: Virulence of scp2 deletion strains complemented with single and multiple integrations of hscp2 or 

YLscp2. (A) Infection symptoms on maize seedlings infected with SG200, SG200Δscp2, SG200Δscp2-c and the 

complementation strains SG200Δscp2-hScp2 and SG200Δscp2-YLScp2 carrying a single copy of the hscp2 and 

YLscp2 gene. Infection symptoms were evaluated twelve days post infection. The respective symptom categories 

are depicted on the right hand side of the diagram. For the virulence assay average values of three independent 

infections were taken. The total number of plants (n) is depicted above each column. (B) Filamentous growth of 

the respective strains on charcoal plates (top panel). Pictures of representative leaves from plant infections (lower 

panel). (C) Virulence of SG200Δscp2-hScp2 and SG200Δscp2-YLScp2 complementation strains carrying 

multiple copies of the respective genes hscp2 and YLscp2. Infections and scorings were performed as described in 

(A). (D) Filamentous growth of the respective strains on charcoal plates (top panel). Pictures of representative 

leaves from plant infections (lower panel). 

 

As the observed level of complementation was very low, scp2 deletion strains carrying multiple 

integrations of YLscp2 or hscp2 were analyzed in infection assays. Plant infection experiments 

showed that multiple integrations of hscp2 and YLscp2 led to a higher level of complementation 

(Fig. 18 C). None of the analyzed strains showed defects in filament formation on PD-charcoal 
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medium (Fig. 18 D). These results reinforce that Scp2 proteins from different organisms have 

a conserved function.  

2.7 Ligand binding specificity of the U. maydis Scp2 protein 

Sterol carrier proteins have been shown to be involved in the transport and distribution of 

various lipids such as fatty acids, fatty acyl-CoAs, phospholipids and sterols like cholesterol 

between intracellular membranes (Gallegos et al., 2001). To elucidate whether the U. maydis 

Scp2 might bind cholesterol or the fungal counterpart ergosterol SG200 and SG200Δscp2 were 

treated with the naturally fluorescent stain filipin. Filipin is an antifungal polyene antibiotic 

which forms complexes with sterols in the fungal membrane (Alvarez et al., 2007).  

In U. maydis SG200 sporidia filipin localized predominantly at the emerging bud, the bud tip 

and was further found in a dotted pattern along the membrane. These observations were in line 

with the findings of previous work which described that filipin accumulates at the sites of active 

growth and in ergosterol sterol-rich membrane domains, termed lipid rafts (Cánovas and Pérez-

Martín, 2009). The analysis of saprophytically growing cells revealed no significant differences 

between scp2 deletion strains and SG200 (Fig. 19 A).  

Since scp2 has been shown to be upregulated in early stages of plant infection, the sterol 

distribution in filamentous growing cells and in in vitro induced appressoria was analyzed. U. 

maydis filamentation and appressorium formation can be initiated by spraying cells on a 

hydrophobic surface like parafilm. Enhanced appressorium formation can be induced by the 

addition of hydroxy fatty acids (HFA) (16-hydroxyhexadecanoic acid) (Mendoza-Mendoza et 

al., 2009). Approximately sixteen hours after induction, the formed appressoria and filaments 

can be visualized by microscopy. In SG200 filaments filipin accumulated in a dotted pattern 

along the membrane and further localized to the tip of appressorium. The evaluation of the 

sterol distribution in SG200 and SG200Δscp2 filaments did not show a significant difference 

of staining patterns after filipin treatment (Fig. 19 B).  

Interestingly, in the course of analyzing the distribution of membrane sterols it was found that 

the majority of SG200Δscp2 filaments were unable to form appressoria on the hydrophobic 

surface (not shown). Accordingly, SG200Δscp2 appressorium formation was analyzed in more 

detail in chapter 2.8. 
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Fig. 19: Filipin staining of SG200 and SG200Δscp2. (A) SG200 and SG200Δscp2 were grown in YEPSlight to 

an OD600 of 0.6 and stained with 5 µM filipin in PBS for 5 min. Sterol distribution was visualized using 

fluorescence microscopy (DAPI channel) immediately after staining. (B) Filament and appressorium formation 

was induced by treating cells with 100 µM HFA and subsequently spraying the cells on parafilm. Sixteen hours 

after induction of filaments, the distribution of sterols was visualized using filipin staining as described above. 

Scale bars equal 10 µm. 

 

Differences in plasma membrane sterol content can change the resistance to polyene antibiotics 

like the described filipin or the related antibiotic nystatin (Berger et al., 2005). Like filipin the 

antifungal drug nystatin binds to ergosterols and causes permeabilization of the plasma 

membrane by the formation of ion channels.  

A nystatin growth assay was conducted to examine whether fungal membrane integrity might 

differ between SG200 and the scp2 mutant. In comparison to the SG200 progenitor strain no 

difference in resistance to nystatin was observed for scp2 mutant strains when treated with 2.5 

µg/ml or 5.0 µg/ml nystatin demonstrating that membrane integrity of scp2 deletion strains is 

intact (Fig. 20). It is therefore unlikely that Scp2 alters the sterol distribution or composition in 

the fungal plasma membrane.  

 

SG200∆scp2
DIC

B
SG200

SG200

A

SG200∆scp2

FilipinFilipin DICDIC

FilipinDIC FilipinDIC



Results  33 

Fig. 20: Sensitivity of scp2 deletion strains to nystatin. The respective strains were grown in YEPSlight to an 

OD600 of 0.8. Serial dilutions were spotted on CM-glc (control) as well as CM-glc supplemented with either 2.5 

µg/ml or 5.0 µg/ml nystatin. The plates were incubated at room temperature for two days (CM-glc), four days (2.5 

µg/ml) and six days (5.0 µg/ml), respectively. 

 

2.7.1 Scp2 shows binding affinity to phosphatidylinositol 4-phosphate and cardiolipin 

To determine whether the binding specificity of the U. maydis Scp2 is similar to the ligand 

specificity of its two orthologs hScp2 and YLscp2 a Strep-Scp2 fusion protein was 

heterologously expressed in E. coli and analyzed in a protein-lipid overlay assay. In protein-

lipid overlay assays a hydrophobic membrane is spotted with biologically relevant membrane 

lipids and then incubated with purified protein to determine the spectrum of potential lipid 

ligands. For the synthesis in E. coli the scp2 gene was amplified from U. maydis cDNA and 

fused N-terminally to a Strep affinity tag. The respective fusion construct strep-scp2 was 

inserted into a pET21a(+) expression vector resulting in the plasmid pSR226 which was 

transformed into the E. coli derivative Rosetta (DE3)pLysS. As a control for unspecific binding, 

the U. maydis effector Tin2 (TwinStrep-Tin2) (Tanaka et al., 2014) encoded in the plasmid 

pPR-IBA102-Tin2dSP was purified in parallel and included in the analysis. Protein synthesis 

of transformed E. coli cells grown in dYT complete medium was induced by treatment with 1 

mM IPTG for 4 hours at 37 °C. Both proteins were found to be soluble and synthesized in 

sufficient amounts. Successfully produced Strep-Scp2 and Twin-Strep-Tin2 were purified via 

Strep-affinity purification and subsequent gel-filtration chromatography (Fig. 21 A). The 

purified proteins were used for the protein-lipid overlay assay. Bound protein was detected by 

western blot analysis using an anti-Strep-HRP coupled antibody. A lipid strip membrane 

developed without the addition of any recombinant protein was used to exclude unspecific 

binding of the anti-Strep-HRP antibody (Fig. 21 B). The control protein TwinStrep-Tin2 did 

not display strong affinities for any of the provided lipids in the assay (Fig. 21 B). The Strep-

Scp2 protein, however, showed a specific interaction with cardiolipin as well as 

phosphatidylinositol 4-phosphate (PI4P) (Fig. 21 B). These results indicate that the U. maydis 

Scp2 protein binds the mitochondrial lipid cardiolipin and PI4P rather than cholesterol. 
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Fig. 21: Scp2 lipid binding properties. (A) Purified Strep-Scp2 and TwinStrep-Tin2 were separated by SDS-

PAGE and visualized using InstantBlue protein stain. Heterologously expressed recombinant Strep-Scp2 and 

TwinStrep-Tin2 were purified from E. coli Rosetta(DE3)pLysS transformed with the plasmids pSR226 and pPR-

IBA102-Tin2dSP, respectively. Protein synthesis was induced by treatment with 1 mM IPTG for 4 hours at 37 °C. 

Expressed proteins were purified using Strep-affinity purification and gel-filtration chromatography. Both proteins 

run slightly higher as expected in the performed SDS-PAGE (Strep-Scp2: 14.7 kDa and TwinStrep-Tin2: 24.0 

kDa) (B) Echelon membrane lipid strip assays for Strep-Scp2 and the control protein TwinStrep-Scp2. Left: The 

membrane was incubated without addition of any recombinant protein to exclude unspecific binding of the anti-

Strep-HRP coupled antibody to the membrane. Middle: The membrane was incubated with 0.5 µg/ml TwinStrep-

Tin2 to detect unspecific binding of a control protein subjected to the same practical scheme. Right: The membrane 

was incubated with 0.5 µg/ml Strep-Scp2 to determine the lipid binding specificity of the U. maydis Scp2 protein. 

For western blot analysis an anti-Strep-HRP-coupled antibody was used. Arrowheads indicate specific binding of 

Scp2 to cardiolipin and PI4P.  

 

2.8 Deletion of scp2 causes a defect in appressoria formation on artificial surfaces but 

not on planta 

During the analysis of membrane sterols in filaments of the scp2 deletion strain on parafilm a 

potential appressorium formation defect was noted (chapter 2.7). To examine scp2 mutant strain 

appressoria in more detail multiple copies of the appressorial marker 1 (AM1) were integrated 

into SG200Δscp2 (SG200Δscp2AM1). The marker construct am1 consists of a triple-gfp fusion 

which is expressed under the control of the appressorium-specific promoter P01779. The AM1-

marker therefore allows detection and quantification of filaments that induce the genetic 

program for appressorium formation by fluorescence microscopy (Mendoza-Mendoza et al., 

2009). U. maydis appressoria are characterized by a crook that precedes the development of the 

slightly swollen appressorium (Snetselaar, 1993). Appressorium and filament formation of 

SG200AM1 and SG200Δscp2AM1 on parafilm was induced as described in chapter 2.7.  

In an initial experiment it was assayed whether SG200AM1 and SG200Δscp2AM1 show a 

similar amount of filaments expressing the AM1 marker (AM-positive). Thereby, the 

morphology of the filaments was disregarded. Analysis of the AM1-marker expression on 

parafilm showed that the ratio between filaments expressing am1 and filaments not expressing 

the appressorial marker (AM1-negative) was comparable in SG200AM1 and SG200Δscp2AM1 
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(Fig. 22 A). In a second experiment the AM1-marker expressing filaments of SG200AM1 and 

SG200AM1Δscp2 were compared with respect to the formation of appressoria sixteen hours 

after spraying on parafilm. The quantification of appressoria in SG200AM1 and 

SG200Δscp2AM1 revealed that only around 10 % of the AM1-positive scp2 deletion strain 

filaments were able to form appressoria. In contrast to that, around 80 % of the SG200AM1 

filaments that expressed am1 formed appressoria (Fig. 22 B). 

To investigate whether the formation of appressoria in the scp2 deletion strains is reduced or 

only delayed appressoria development on parafilm was also analyzed 24 hours after spraying. 

While 87 % of SG200AM1 filaments formed an appressorium after 24 hours, only 5 % of 

SG200Δscp2AM1 had generated appressoria (Fig. 22 C). This experiment confirmed that the 

ability of scp2 deletion strains to form appressoria on a hydrophobic surface is significantly 

reduced in comparison to SG200AM1. Interestingly, the appressorium formation defect of 

SG200Δscp2AM1 on parafilm was not observed for filaments on the leaf surface (not shown). 

This indicates that additional plant derived signals are involved in the initiation of appressorium 

formation on the plant. 

U. maydis hyphae grow by extension of the cell apex and by the periodic insertion of septa at 

the posterior pole. The cytoplasm migrates towards the growing tip leaving empty sections in 

the hindmost part of the filament (Steinberg et al., 1998). The cytoplasm filled tip compartment 

of SG200Δscp2AM1 filaments which did not form an appressorium appeared thinner and 

longer in comparison to SG200AM1 (Fig. 22 D). The average length of the tip compartments 

in SG200AM1 and SG200Δscp2AM1 AM1-marker expressing filaments was determined 

starting at the hyphal tip until the first integrated septum. This quantification verified that the 

cytoplasm filled tip compartment of SG200Δscp2AM1 filaments was with an average length 

of 89.6 µm (± 8.0) significantly longer than in SG200AM1 filaments that only reached an 

average length of 54.0 µm (± 9.6) (n=15). 

These experiments show that although scp2 deletion strains do express the AM1-marker 

SG200Δscp2AM1 shows a significantly lower frequency of appressorium formation on 

parafilm than SG200AM1. Instead scp2 deletion strain filaments show extended growth of the 

cytoplasm filled tip compartment. 
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Fig. 22: Appressorium formation of scp2 deletion strains on parafilm. (A) Quantification of filaments 

expressing the AM1-marker on parafilm sixteen hours after spraying. Average values of three independent 

replicates are depicted in the graph. The error bars indicate the ± standard deviation. (B) Quantification of AM1-

marker expressing filaments that form appressoria on parafilm sixteen hours after spraying. Average values of four 

independent replicates are depicted in the graph. The error bars indicate the ± standard deviation. The majority of 

AM1-marker expressing SG200AM1 filaments formed appressoria while the frequency of appressoria formation 

in SG200Δscp2AM1 was significantly reduced. (C) Quantification of AM1-positive filaments that formed 

appressoria on parafilm 24 hours after spraying. A single replicate is depicted in the graph. The total number of 

evaluated cells (n) is depicted above each column. (D) Fluorescence microscopy of SG200AM1 and 

SG200Δscp2AM1 filaments on parafilm sixteen hours after induction. Filaments and appressoria were induced as 

described in chapter 2.7. Cytoplasmic GFP indicates the expression of the AM1-marker. White arrowheads 

indicate appressoria. Scale bars equal 10 µm. 

 

2.8.1 Mutants of scp2 display a higher mortality after growth on parafilm 

The elongation of the tip compartment might reduce the viability of the SG200Δscp2AM1 

hyphae. A viability assay was conducted to quantify the numer of living and dead cells for 

SG200 as well as for the scp2 mutant strain after induction of filament formation on parafilm. 

Filament and appressorium formation of SG200, SG200Δscp2 and the complementation strain 

SG200Δscp2-c were induced as described in chapter 2.7. After sixteen hours of incubation the 

parafilm slides were treated with a double fluorescent stain containing propidium iodide (PI) 
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and fluorescein diacetate (FDA). Propidium iodide only penetrates into dead cells while FDA 

is passively taken up by all cells and is subsequently converted to fluorescein. Non-viable cells 

are not able to hydrolyze FDA and therefore show no green fluorescence (Kwolek-Mirek and 

Zadrag-Tecza, 2014). The quantification of viable cells on parafilm showed that in comparison 

to SG200 and the complementation strain SG200Δscp2-c, SG200Δscp2 filaments displayed an 

approximately two-times higher mortality (15% versus 31% versus 12%) (Fig. 23).  

  
Fig. 23: Quantification of dead SG200, SG200Δscp2 and SG200Δscp2-c filaments on parafilm. Filament and 

appressorium formation was induced as described in chapter 2.7. Living and dead cells were visualized by a 

FDA/PI double stain. Dead filaments were stained in red (PI) and viable cells were stained in green (FDA). 

Average values of dead cells from two replicates are depicted in the graph. The total number of counted cells (n) 

is indicated above each column. Error bars indicate the ± standard deviation. 

 

2.9 Cuticle penetration and plant colonization is reduced in scp2 mutants 

Even though the appressorium formation defect of scp2 deletion strains on parafilm was not 

observed for filaments on the plant surface appressorial function might be compromised during 

plant cuticle penetration. A new penetration marker was established to monitor successful 

breaching of the plant cuticle and to determine whether appressorium mediated penetration is 

less efficient in scp2 mutants. 

2.9.1 Establishment of a marker for successful cuticle penetration 

The penetration marker construct was composed of two elements. First, it contained the already 

established AM1-marker (Mendoza-Mendoza et al., 2009) that indicates appressorium 

formation. Second, it comprised a mCherry-HA fusion under the control of the rsp3 promoter 

(Fig. 24 A) which had been shown to be expressed during penetration (L. Ma, unpublished). To 

study the generated penetration marker construct (AM1PM) the respective plasmid pSR422 

was integrated in single or multiple copies in the ip locus of the SG200 and the SG200Δscp2 

(SG200AM1PM and SG200Δscp2AM1PM). Maize plants were infected with SG200AM1PM 

carrying a single integration of the penetration marker to verify functionality of the construct. 
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Fig. 24: Vector map of the penetration marker construct pSR422 and microscopic analysis of 

SG200AM1PM on the plant surface. (A) Schematic drawing of pSR422 expressing both the AM1-marker and 

the penetration marker (PM). Egfp expression is controlled by the appressorium specific am1 promoter (Pam1) and 

indicates appressorium formation. Expression of cytoplasmic mcherry-HA under the control of the rsp3 promoter 

(Prsp3) serves as a marker for penetration (B) Confocal laser scanning microscopy of SG200AM1PM on the leaf 

surface sixteen hours after infection. Filaments on the leaf surface were stained with calcofluor white (CW). 

Expression of the appressorial marker construct (Pam1-egfp) is displayed in the green channel (AM1). Expression 

of the penetration marker construct (Prsp3-mcherry-HA) is depicted in the red channel (PM). Cells that do not 

penetrate glow in green due to appressorium formation but do not show red fluorescence that indicates successful 

penetration. An overlay of all channels is shown in the merge image. White arrowheads mark penetrating 

appressoria. Hollow arrowheads mark non-penetrating appressoria. The scale bar equals 10 µm. 

 

Confocal laser scanning microscopy of the plant surface sixteen hours post infection verified 

AM1-marker expression upon appressorium formation. In contrast to that, fluorescence of the 

penetration marker (PM) was only observed when appressoria successfully breached the plant 

cuticle (Fig. 24 B). To exclude unspecific expression of the penetration marker SG200AM1PM 

and SG200Δscp2AM1PM were sprayed on parafilm and expression of the two markers was 

analyzed sixteen hours after spraying. The hydrophobic composition of parafilm promotes U. 

maydis appressorium formation but does not allow penetration of the rigid parafilm surface. 

Due to this, egfp expression should be visible in filaments that initiate the genetic program for 

appressorium formation but no cytoplasmic mCherry-HA fluorescence should be detectable. 

Quantification of fluorescence signals in a single replicate experiment verified that only one 
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out of 141 (0.71%) AM1-positive SG200AM1PM filaments and one out of 153 (0.65%) AM1-

marker expressing SG200Δscp2AM1PM filaments showed a slight red fluorescence. These 

results confirm that the PM marker is specifically induced upon penetration of the plant 

epidermis. 

In infection assays virulence of strains carrying single and multiple copies of the construct were 

analyzed to exclude an impact of the penetration marker on biotrophic growth. While single 

integrations of the penetration marker construct did not influence virulence of SG200AM1PM 

and SG200Δscp2AM1PM, multiple integrations of the construct caused a slight reduction of 

disease severity in both strains (Fig. 25). No effect on filament formation was observed for any 

of the analyzed strains (Fig. 25). Based on these findings, only single integrations of the 

penetration marker construct were used for the evaluation of penetration efficiency of 

SG200AM1PM and SG200Δscp2AM1PM.  

 

Fig. 25: Virulence of the penetration marker strains SG200AM1PM and SG200Δscp2AM1PM. Infection 

symptoms on maize seedlings infected with SG200, SG200Δscp2 as well as SG200AM1PM and 

SG200Δscp2AM1PM carrying single (s) and multiple (m) integrations of the penetration marker construct 

pSR422. Infection symptoms were evaluated twelve days post infection. The respective symptom categories are 

depicted on the right hand side of the diagram. For the virulence assay a single round of infections was conducted. 

The total number of infected plants (n) is indicated above each column. Filamentous growth of the respective 

strains on PD charcoal plates is depicted above each column.  

 

2.9.2 Penetration efficiency of scp2 deletion strains is reduced 

After establishment of a functional penetration marker, the penetration efficiency of 

SG200AM1PM versus SG200Δscp2AM1PM was assayed on the plant surface. For this, maize 

seedlings were infected with SG200AM1PM and SG200Δscp2AM1PM, respectively, and the 

penetration efficiency of each strain was evaluated sixteen hours after infection by fluorescence 

microscopy. Quantification of AM1-marker expressing cells that successfully penetrated the 

plant surface revealed a penetration frequency of about 70 % for SG200AM1PM. In contrast, 

only around 35 % of the SG200Δscp2AM1PM appressoria were able to successfully breach the 
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plant cuticle (Fig. 26). These results support the previous hypothesis that appressoria formation 

and function might be influenced by the absence of Scp2. 

          

Fig. 26: Penetration efficiency of scp2 deletion strains on maize leaves. Seven day old maize seedling were 

infected with SG200AM1PM and SG200Δscp2AM1PM, respectively. Successful penetration events were 

quantified sixteen hours after plant infection by fluorescence microscopy using the PM-marker (red fluorescence). 

The graph shows successful penetration events in ratio to all quantified AM1-marker expressing filaments (green 

fluorescence). Average values of three independent experiments are shown with error bars indicating the ± 

standard deviation. The total number of evaluated AM1-marker expressing filaments (n) is given above each 

column. 

 

2.9.3 Plant tissue colonization is reduced in scp2 deletion strains  

To analyze whether the reduced penetration efficiency of scp2 deletion mutants causes a 

decrease of plant tissue colonization, the relative fungal biomass was quantified in SG200 and 

SG200Δscp2 infected maize plants. For this, seven day old maize seedling were infected with 

SG200 and SG200Δscp2 and leaf samples were harvested 20 hours, 2 days and 4 days after 

infection. All leaf samples, except of the 20 hour time point samples, were washed with 0.1 % 

Tween 20 and subsequently in H2O to remove sporidia that remained on the leaf surface. Plant 

and fungal gDNA was extracted from the leaves and a quantitative real-time PCR (qPCR) 

approach was used to amplify the fungal gene ppi and the plant derived gapdh for determining 

the ratio between fungal and maize plant biomass.  

Two days after infection the biomass assays showed that in comparison to SG200 the 

colonization of the maize plant tissue by scp2 deletion strains was reduced by factor 4.4. At 

four days post infection the relative biomass of SG200Δscp2 was reduced by factor 1.9 

compared to SG200 (Fig. 27). These experiments support the observation that scp2 deletion 

mutants penetrate the plant surface with a lower efficiency than the SG200 progenitor strain 

which in turn causes a reduction of overall plant tissue colonization at later stages of the 

infection. 
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Fig. 27: Colonization of the plant tissue by scp2 deletion mutants. Relative fungal biomass was determined by 

qPCR. For this, gDNA was prepared from infected maize leaves 20 hpi, 2 dpi and 4 dpi. The fungal gene ppi and 

the plant gene gapdh were used for the estimation of relative fungal biomass. SG200 biomass at 20 hpi was used 

as the reference and was set to 1. The average value of three biological replicates is depicted in the graph. Error 

bars indicate the ± standard deviation. Significance of differences between SG200 and SG200Δscp2 was calculated 

using the student's t-test: (*) P = 0.015, (**) P = 0.004. 

 

2.10 Deletion of isocitrate lyases attenuates growth and virulence 

A possible reason underlying the reduction of fungal penetration frequency is an alteration in 

energy metabolism pathways like the glyoxylate cycle (Dunn et al., 2009). It has been shown 

for M. oryzae and Colletotrichum lagenarium that deleting key enzymes of the glyoxylate cycle 

can affect virulence and reduce appressorium mediated plant cuticle penetration (Wang et al., 

2003;  Asakura et al., 2012). By using acetyl-CoA produced during fatty acid β-oxidation the 

glyoxylate cycle allows to retrieve 4-carbon units like succinate for energy production and 

biosynthesis (Voet and Voet, 2004). A key enzyme of the glyoxylate cycle is the enzyme 

isocytrate lyase (ICL) which catalyzes the cleavage of isocitrate to succinate and glyoxylate. 

To mimic a defect in energy metabolism the peroxisomal isocytrate lyase gene UMAG_04285 

(um04285) was deleted in the U. maydis strain SG200 (SG200Δ04285). Virulence of 

SG200Δ04285 in comparison to the SG200 progenitor strain and the scp2 deletion strain was 

analyzed in maize seedling infections (one mutant only).  

Deletion of the peroxisomal ICL Um04285 caused a weak reduction of normal and heavy tumor 

development. The observed phenotype did, however, not mimic the phenotype observed for the 

scp2 deletion strain (Fig. 28). The weak virulence defect of SG200Δ04285 could be 

complemented by integration of a gfp-um04285 fusion gene into the ip locus of the deletion 

strain (SG200Δ04285-c) (Fig. 28). 
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Fig. 28: Virulence of the peroxisomal ICL knock-out mutant SG200Δ04285. (A) Infection symptoms on maize 

seedlings infected with SG200, SG200Δscp2, the icl deletion strain SG200Δ04285 and the respective 

complementation strain SG200Δ04285-c. Infection symptoms were evaluated twelve days post infection. The 

respective symptom categories are depicted on the right hand side of the diagram. For the virulence assay average 

values of three independent infections were taken. The total number of plants (n) is indicated above each column. 

Filamentous growth of the respective strains on PD charcoal plates is depicted above each column.  

 

Since the peroxisomal isocitrate lyase had only a minor effect on virulence, a double deletion 

mutant lacking the peroxisomal ICL Um04285 as well as the mitochondrial ICL UMAG_01892 

(Um01892) was generated (SG200ICLΔΔ). Unfortunately, growth rates of two independent 

double deletion strains in liquid culture were strongly reduced. To verify the growth phenotype 

serial dilutions of the two mutants SG200ICLΔΔ #10 and #15 were spotted on CM-glc solid 

medium. Both strains displayed a strong reduction of colony size indicating a reduction of the 

overall growth rate (Fig. 29). On the basis of these findings, the icl double deletion strains were 

not analyzed in more detail. Since the phenotype of icl single and double deletions did not 

resemble the scp2 deletion phenotype it seems unlikely that the penetration defect observed in 

the absence of Scp2 is caused by a disturbed fatty acid driven energy metabolism. 

 
Fig. 29: Growth phenotype of ICL double deletion strains on CM-glc plates. Serial dilutions of SG200 and the 

two icl double deletion strains SG200ICLΔΔ #10 and #15 were spotted on CM-glc medium and incubated for 48 

hours at 28 °C. A close-up picture of the100 dilution colony was added for the respective strains on the left hand 

side of the figure to show colony morphology in more detail. A dark background was used for imaging the colonies.  
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2.11 Peroxisome distribution is altered in filaments of scp2 deletion strains  

Colocalization studies of a GFP-Scp2 fusion protein showed that the majority of Scp2 is 

targeted to peroxisomes (S. Krombach, unpublished). Furthermore, qPCR data revealed an 

upregulation of scp2 expression twenty hours after infection. This time point correlates with 

the initiation of appressorium formation and penetration on the plant surface. Based on these 

findings, peroxisome distribution and morphology during appressorium formation was 

analyzed in scp2 deletion strains.  

2.11.1 Peroxisome distribution is altered in scp2 deletion strains when filamentation is 

induced on parafilm or on the leaf surface 

Strains were generated expressing the peroxisomal marker protein GFP-PTS1 in addition to the 

appressorial AM1-marker to visualize peroxisome distribution. In contrast to the AM1-marker 

used previously, the appressorial marker used for this experiment consisted of a mCherry under 

transcriptional control of an appressorium specific promoter (Mendoza-Mendoza et al., 2009). 

The respective construct was integrated into the mig2 locus of SG200Pex and SG200Δscp2Pex 

already carrying a multiple integration of the peroxisomal maker construct gfp-PTS1 in their ip 

locus. The resulting strains SG200AM1Pex and SG200Δscp2AM1Pex allowed the examination 

of peroxisomes in filaments that activated the genetic program for appressorium formation. To 

exclude an impact of the integrated constructs on the pathogenicity of U. maydis the respective 

strains were tested in a single round of plant infection experiments. For both strains a slight 

reduction of normal tumor rate was observed (Fig. 30 A). Peroxisome distribution in 

SG200AM1Pex and SG200Δscp2AM1Pex was first analyzed in budding cells grown in 

YEPSlight. Confocal laser scanning microscopy revealed no significant differences in 

morphology or distribution of peroxisomes between SG200AM1Pex and SG200Δscp2AM1Pex 

(Fig. 30 B).  

SG200AM1Pex and SG200Δscp2AM1Pex were sprayed on parafilm to induce filament and 

appressorium formation as described in chapter 2.7. AM1-postive filaments were examined 

sixteen hours after spraying with respect to their peroxisome distribution using confocal 

microscopy. While SG200AM1Pex showed an even distribution of peroxisomes 

SG200Δscp2AM1Pex showed an accumulation of peroxisomes in the posterior part of the 

hyphal cytoplasm as well as in the hyphal tip (Fig. 31 A). In successive experiments, the 

percentage of filaments showing this altered distribution of peroxisomes was quantified for 

SG200AM1Pex and SG200Δscp2AM1Pex. Sixteen hours after induction approximately 60 % 

of the scp2 mutant filaments expressing the AM1-marker displayed a misdistribution of 
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peroxisomes (Fig. 31 B). In contrast, only 2 % of filaments with an altered distribution of 

peroxisomes were detected for SG200AM1Pex (Fig. 31 B). 

 
Fig. 30: Virulence of the peroxisomal marker strains SG200AM1Pex and SG200Δscp2AM1Pex. (A) 

Infection symptoms on maize seedlings infected with SG200, SG200AM1Pex, SG200Δscp2 and 

SG200Δscp2AM1Pex, respectively. Infection symptoms were evaluated twelve days post infection. The respective 

symptom categories are depicted on the right hand side of the diagram. For the virulence assay a single round of 

infections was conducted. The total number of infected plants (n) is indicated above each column. Filamentous 

growth of the respective strains on PD charcoal plates is depicted above each column. (B) Peroxisome distribution 

in saprophytically growing SG200AM1Pex and SG200Δscp2AM1Pex in liquid culture. Green fluorescence 

indicates localization of the peroxisomal marker protein GFP-PTS1. The scale bar equals 10 µm. 

 

A complementation strain was generated by integrating scp2, fused to a nourseothricin 

resistance cassette, into the ip locus of SG200Δscp2AM1Pex (SG200Δscp2AM1Pex-c) to 

verify that the observed defect is caused by the scp2 gene deletion. Since the ip locus of the 

respective strain was already occupied by the peroxisomal marker construct the integration was 

verified using a PCR based method targeting the open reading frame of scp2. Reintegration of 

scp2 into SG200Δscp2AM1Pex fully complemented the aberrant peroxisomal distribution (Fig. 

31 B). To determine whether the altered distribution is restricted to filaments expressing the 

AM1-marker the analysis was repeated in AM1-negative cells. For this, SG200AM1Pex, 

SG200Δscp2AM1Pex and SG200Δscp2AM1Pex-c were sprayed on parafilm without prior 
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HFA-treatment. On a hydrophobic surface without HFA-treatment filament formation can be 

observed but appressorium formation efficiency is significantly reduced (Mendoza-Mendoza et 

al., 2009). The quantification revealed that 76 % of AM1-negative filaments displayed the 

altered distribution of peroxisomes in scp2 mutants in comparison to 13 % and 11 % for 

SG200AM1Pex and SG200Δscp2AM1Pex-c, respectively (Fig. 31 C). These results indicate, 

that the altered peroxisomal distribution does not coincide with induction of the AM1-marker. 

 
Fig. 31: Distribution of peroxisomes in SG200AM1Pex and SG200Δscp2AM1Pex growing on parafilm. 

(A) Confocal microscopy of the peroxisomal distribution in SG200AM1Pex and SG200Δscp2AM1Pex on 

parafilm sixteen hours after spraying. Filament and appressorium formation was induced as described in chapter 

2.7. Red fluorescence shows expression of the appressorial AM1-marker. Green fluorescence shows localization 

of the peroxisomal marker protein GFP-PTS1. All pictures are maximum projections generated from confocal Z-

stacks. Scale bars equal 10 µm. (B) Distribution of peroxisomes in filaments expressing the AM1-marker. The 

percentage of all AM1-positive filaments with a misdistribution of peroxisomes was determined. Average values 

of three independent replicates are shown. Error bars indicate the ± standard deviation. (C) Quantification of 

peroxisomal misdistribution in filaments, which are not expressing the AM1-marker on parafilm. Only one 

replicate was performed. The total number (n) of analyzed filaments is indicated above each column. 
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To quantify the altered distribution of peroxisomes in SG200AM1Pex and 

SG200Δscp2AM1Pex filaments on parafilm fluorescence intensity plots of 15 AM1-positive 

filaments were generated by measuring the fluorescence intensity of the peroxisomal marker 

protein GFP-PTS1 over the entire length of the tip compartment. Fig. 32 shows the results in a 

bar diagram, whereby the fluorescence intensity of peroxisomes and the filament length have 

been normalized to allow direct comparison between tip compartments of variable length. 

 

Fig. 32: Visualization of peroxisome distribution in SG200AM1Pex and SG200Δscp2AM1Pex filaments 

using signal intensity plots. Filament and appressorium formation was induced as described in chapter 2.7. 

Sixteen hours after induction Z-stacks imaging the GFP-PTS1 fluorescence were taken in AM1-marker expressing 

filaments and transformed into maximum projections (Leica software). ImageJ was used to plot intensity values 

along a line that was drawn from the last septum to the tip of the cytoplasm filled tip compartment. The 

fluorescence intensity measured for GFP-PTS1 in each filament was normalized to values ranging from 0 -100 %. 

The length of all filaments was normalized to values ranging from 1 to 100 (artificial units). For each of the 100 

sections along the length of the filament the average fluorescence intensity was plotted. Bar graphs were generated 

using average values of 15 filaments per strain. Polynomial trend lines were added to illustrate the tendency of 

peroxisomal distribution throughout the filament. The total number of analyzed filaments (n) is depicted above 

each graph. A schematic distribution of peroxisomes within the hyphae is illustrated below each graph. Red arrows 

indicate the hyphal tip. 

 

These diagrams emphasize the low number of peroxisomes in the middle part of 

SG200Δscp2AM1Pex filaments and the accumulation at the tip and in proximity to the septum 

of the hyphal tip compartment. In SG200AM1Pex, a rather even distribution of peroxisomes 

was observed with an increase of intensity at the hyphal tip.  

Peroxisomal distribution in SG200AM1Pex and SG200Δscp2AM1Pex was further analyzed in 

filaments on the maize leaf surface to exclude that the peroxisomal misdistribution is an in vitro 

artefact. For this, maize seedlings were infected with the respective strains and peroxisome 

distribution was analyzed sixteen hours after infection using confocal microscopy. While 

peroxisomes in SG200AM1Pex filaments were mostly scattered throughout the cell, a high 

frequency of SG200Δscp2AM1Pex filaments displayed the unusual distribution of peroxisomes 

that was already observed on parafilm (Fig. 33). These experiments confirmed that the 
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peroxisomal distribution defect does not only occur on parafilm and thus might play a crucial 

role during plant infection. 

 

Fig. 33: Visualization of the peroxisomal misdistribution in SG200AM1Pex and SG200Δscp2AM1Pex on 

the plant surface. (A) Confocal microscopy of peroxisome distribution in SG200AM1Pex and 

SG200Δscp2AM1Pex filaments on the leaf surface. Seven day old maize seedlings were infected with the indicated 

strains. Sixteen hours after infection leaves were stained with calcofluor white (CW) to visualize cells on the leaf 

surface. Red fluorescence indicates expression of the appressorial marker (AM1) while green fluorescence 

indicates the localization of the peroxisomal marker protein GFP-PTS1. Appressoria are marked with white 

arrowheads. Scale bars equal 10 µm.  

 

2.11.2 The peroxisomal misdistribution is not visible in b induced filaments 

To elucidate whether the induction of filamentation or the contact to HFAs causes the altered 

peroxisome distribution, peroxisomes were analyzed in b-filaments of SG200AM1Pex and 

SG200Δscp2AM1Pex in liquid culture. Filament formation can be induced by incubation of 

exponentially growing cells in 2 % YEPSlight supplemented with 500 µM HFAs for at least six 

hours. Confocal microscopy of SG200AM1Pex and SG200Δscp2AM1Pex revealed that 

shifting the strains to filaments by using HFAs did not induce the misdistribution of 

peroxisomes that was observed on parafilm or on the plant surface (Fig. 34).  
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Fig. 34: Peroxisome distribution in SG200AM1Pex and SG200Δscp2AM1Pex filaments induced by HFA 

treatment. Filament formation was induced by shifting exponentially growing sporidia from complete medium to 

2% YEPSlight supplemented with 500 µM HFAs. Peroxisome distribution in filaments was analyzed after overnight 

incubation at 28 °C using confocal microscopy. Confocal Z-stacks were taken for each filament and illustrated as 

maximum projections. Scale bars equal 10 µm. 

 

Peroxisome distribution was also analyzed in b-filaments of the U. maydis strain AB33. In this 

strain b-filament formation can be induced by shifting saprophytically growing cells from 

ammonium-containing medium to nitrate minimal medium. The bE1 and bW2 genes of AB33 

are controlled by the nitrate inducible nar promoter allowing the transition from saprophytic to 

filamentous growth in liquid culture (Brachmann et al., 2001). For the microscopic analysis of 

peroxisomes the peroxisomal marker construct gfp-PTS1 was integrated into the ip locus of 

AB33 and AB33Δscp2 (AB33Pex and AB33Δscp2Pex). Analysis of saprophytically growing 

AB33Pex and AB33Δscp2Pex strains in YEPSlight medium revealed no differences in 

peroxisome distribution between the two strains (Fig. 35 A). To evaluate the distribution of 

peroxisomes in AB33 hyphae, b-filament formation was induced by transferring exponentially 

growing cell cultures to nitrate-minimal medium for six hours. A microscopic analysis revealed 

that the induction of b-dependent filaments did not induce a misdistribution of peroxisomes in 

the analyzed strains (Fig. 35 B).  

Taken together, these experiments confirm that the altered distribution of peroxisomes is not 

triggered by treatment with HFA or by activation of the b-cascade.  
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Fig. 35: Peroxisome distribution in AB33Pex and AB33Δscp2Pex sporidia and filaments in liquid culture. 

Peroxisome distribution of exponentially growing sporidia and b-induced filaments was analyzed using confocal 

microscopy. Z-stacks were taken for each cell and depicted as maximum projections. (A) Peroxisome distribution 

in exponentially growing sporidia. (B) Peroxisome distribution in AB33Pex and AB33Δscp2Pex filaments. 

Filament formation was induced by shifting exponentially growing sporidia from ammonium-containing medium 

to nitrogen-minimal medium. Forming filaments were analyzed after 6 hours of incubation at 28 °C. Scale bars 

equal 10 µm. 

 

2.12 Lipid droplet distribution is altered in scp2 deletion strains 

Apart from their impact on peroxisomes it is known that sterol carrier 2 proteins also modulate 

the protein and lipid composition of lipid droplets (Atshaves et al., 2001). Lipid droplets are 

dynamic organelles which are not exclusively involved in free fatty acid storage but have been 

shown to provide substrates for energy metabolism, membrane synthesis and for the production 

of several lipid-derived signaling molecules (Pol et al., 2014). More importantly, in different 

pathogenic fungi like M. oryzae and C. orbiculare lipid droplets have been shown to be essential 

for appressorium formation and appressorium mediated cuticle penetration (Wang et al., 2003;  

Asakura et al., 2012). Based on this, lipid droplet distribution and morphology was analyzed in 

SG200AM1 and SG200Δscp2AM1 filaments on parafilm. SG200AM1 and SG200Δscp2AM1 

filaments were induced as described in chapter 2.7 and intracellular lipid droplets were stained 

using the lipophilic dye nile red. Nile red is a benzophenoxazine dye which is almost non-

fluorescent in water but is strongly fluorescent in the presence of a hydrophobic environment 

(Greenspan et al., 1985). Confocal microscopy of SG200AM1 revealed a strong accumulation 

of lipid droplets in the posterior part of the filament cytoplasm. While the central part of the 

hyphae showed only few lipid droplets, several intermediate sized lipid droplets accumulated 

in the forming appressorium (Fig. 36). In SG200Δscp2AM1 the lipid depot in the posterior part 

AB33Pex

DIC

AB33Δscp2Pex

DIC

GFP-PTS1 GFP-PTS1

merge merge

AB33Pex AB33Δscp2Pex

DIC DIC

GFP-PTS1 GFP-PTS1

merge merge

A B



Results  50 

of the filament was comparable to the one observed in SG200AM1. In contrast to that, 

abundance of lipid droplets in SG200Δscp2AM1 decreased towards the tip of the filament and 

lipid droplets of a considerable size only rarely migrated into the hyphal tip (Fig. 36). 

 
Fig. 36: Visualization of lipid droplet distribution in SG200AM1 and SG200Δscp2AM1 filaments growing 

on parafilm. Filament and appressorium formation was induced as described in chapter 2.7. Lipid droplets were 

visualized with nile red. Confocal microscopy of the lipid droplet distribution in SG200AM1 and 

SG200Δscp2AM1 filaments growing on parafilm was performed sixteen hours after spraying. Green fluorescence 

shows expression of the AM1-marker. Red fluorescence shows localization of nile red stained lipid droplets. All 

pictures are maximum projections generated from confocal Z-stacks. Scale bars equal 10 µm.  

 

To quantify the altered distribution of lipid droplets in SG200AM1 and SG200Δscp2AM1 

filaments growing on parafilm, fluorescence intensity plots of 15 AM1-positive filaments were 

generated by measuring the fluorescence intensity of the lipid droplet stain nile red over the 

entire length of the tip compartment. Fig. 37 shows the results in a bar diagram whereby the 

fluorescence intensity and the filament length have been normalized to allow direct comparison 
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of different filaments of variable length. The graph emphasized the accumulation of lipid 

droplets in the most posterior and anterior parts of the SG200AM1 filaments. In contrast, lipid 

droplet intensity plots of SG200Δscp2AM1 illustrate the decreasing amount of lipid droplets 

towards the tip of the filaments (Fig. 37). 

  
Fig. 37: Visualization of lipid droplet distribution in SG200AM1 and SG200Δscp2AM1 filaments using 

signal intensity plots. Filament and appressorium formation was induced as described in chapter 2.7. Sixteen 

hours after induction, Z-stacks of nile red fluorescence were taken in AM1-marker expressing filaments and 

transformed into maximum projections (Leica software). ImageJ was used to plot intensity values along a line that 

was drawn from the septum to the tip of the cytoplasm filled tip compartment. The fluorescence intensity measured 

for nile red in each filament was normalized to values ranging from 0 -100 %. The length of all filaments was 

normalized to values ranging from 1 to 100 (artificial units). For each of the 100 sections along the length of the 

filament the average fluorescence intensity was plotted. Bar graphs were generated using average values of 15 

filaments per strain. Polynomial trend lines were added to illustrate the tendency of lipid droplet distribution 

throughout the filament. The total number of analyzed filaments (n) is depicted above each graph. A schematic 

distribution of peroxisomes within hyphae is illustrated below each graph. Red arrows indicate the hyphal tip. 

 

2.13 Distribution of early endosomes in scp2 deletion strains is not altered 

Peroxisomes and lipid droplets are known to transiently bind to early endosomes and thus to 

“hitchhike” along the cytoskeleton of the cell (Guimaraes et al., 2015). Defects in early 

endosome movement can cause the accumulation of these organelles at the hyphal tip 

(Salogiannis et al., 2016). To exclude that the altered distribution of peroxisomes and lipid 

droplets observed in scp2 deletion strains is caused by an alteration of early endosome 

movement, early endosome motility was analyzed in scp2 deletion strains. Strains were 

generated that simultaneously expressed the peroxisomal marker GFP-PTS1 and the early 

endosome marker mCherry-Rab5a (EE), to visualize peroxisomes and early endosomes 

(SG200PexEE and SG200Δscp2PexEE). Rab5a is small endosomal GTPase which has been 

shown to localize to early endosomes in U. maydis (Schuster et al., 2011). As expected, no 

difference of early endosome distribution or movement was observed in exponentially growing 

SG200PexEE or SG200Δscp2PexEE sporidia (Fig. 38 A). Filament and appressorium 

formation of SG200PexEE and SG200Δscp2PexEE on parafilm was induced as described in 
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chapter 2.7. Fluorescence microscopy of SG200PexEE peroxisomes and the highly motile early 

endosomes showed that both organelles were distributed evenly throughout the hyphae (Fig. 38 

B). Likewise, analysis of SG200Δscp2PexEE filaments that displayed an altered distribution of 

peroxisomes did not reveal any differences in early endosome localization or movement when 

compared to SG200PexEE (Fig. 38 B). These results suggest that the altered distribution of 

peroxisomes and lipid droplets is not caused by a defect of early endosome motility or 

distribution. 

     
Fig. 38: Peroxisome and early endosome distribution in SG200PexEE and SG200Δscp2PexEE. (A) 

Distribution of peroxisomes and early endosomes in saprophytically growing sporidia. Exponentially growing cell 

cultures of the respective strains were analyzed using fluorescence microscopy. Green fluorescence displays the 

localization of the peroxisomal marker protein GFP-PTS1. Red fluorescence displays the localization of the early 

endosome marker protein mCherry-Rab5a. The merge channel shows colocalization of peroxisomes and early 

endosomes. (B) Distribution of peroxisomes and early endosomes in filaments growing on parafilm. Filament and 

appressorium formation was induced as described in chapter 2.7. Scale bars equal 10 µm.
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3. Discussion 

Sterol carrier proteins are highly conserved throughout all domains of life. Their major task 

seems to be the intracellular binding and distribution of different lipid species between 

membranes and organelles. Dependent on the individual organism the functions of sterol carrier 

proteins can vary to meet the requirements of the distinct life styles. In the present work the 

peroxisomal U. maydis protein Scp2 was characterized and determined to be a pathogenicity 

factor with an important role during host plant infection. While saprophytically growing 

sporidia were found to be independent of Scp2 function, the protein seemed to be important 

upon appressorium formation and host plant penetration. Low amounts of a Strep-HA-Scp2 

fusion protein were found to reach the cell exterior by an unconventional secretion mechanism 

but no biological relevant function could be attributed to extracellular Scp2. Further 

experiments link Scp2 with the distribution of peroxisomes in U. maydis filaments during 

pathogenic development. In the following chapters the phenotypes of U. maydis scp2 deletion 

strains will be discussed with respect to the potential biological function of Scp2.  

3.1 Low amounts of Scp2 are secreted via an unconventional mechanism 

Unconventional secretion of proteins has been observed in various organisms and was 

established as an important eukaryotic secretion mechanism besides the classical secretory 

pathway. A multitude of unconventionally secreted proteins has been described in the past years 

(Rabouille et al., 2012). In the ascomycete fungus Magnaporthe oryzae it has been shown that 

effector proteins that target the plant cytoplasm undergo SP-mediated translocation into the ER 

but subsequently circumvent the Golgi-apparatus following a nonconventional secretion 

pathway. These unconventionally secreted effectors accumulate in the plant-derived biotrophic 

interfacial complex (BIC) before entering the plant host cell (Giraldo et al., 2013). Neurospora 

crassa chitin synthases (CHS) have been shown to be exported independently of the ER-Golgi 

system by microvesicles that are insensitive to the treatment with BFA, a drug that inhibits the 

classical secretory pathway. Unconventional secretion of the U. maydis endochitinase Cts1 has 

been shown to depend on the endosome-mediated transport of its mRNA along microtubules 

(Stock et al., 2012). Subsequent secretion of Cts1 was suggested to be mediated by 

multivesicular bodies that fuse with the plasma membrane and release the enclosed intracellular 

vesicles into the extracellular space (Shoji et al., 2014). Furthermore, the two isochorismatases 

PsIsc1 and VdIsc1 from P. sojae and V. dahlia, which seem to target the host plant cytoplasm 
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and are required for full virulence, are exported via an undefined unconventional secretion 

mechanism (Liu et al., 2014). 

These examples emphasize that a significant proportion of yet uncharacterized fungal effectors 

might be secreted by non-classical secretion mechanisms. 

Consistent with earlier studies (S. Krombach, unpublished) CSAs showed that a Strep-HA-

Scp2 fusion protein can be unconventionally secreted in low amounts by U. maydis filaments. 

Beyond that, the present study addressed new aspects of Strep-HA-Scp2 secretion. An 

important observation in the performed CSAs was that the cytoplasmic version of Scp2 (Strep-

HA-Scp2cyt) is not as efficiently exported as the peroxisomal Scp2 (Strep-HA-Scp2). Moreover, 

previous experiments showed that cytoplasmic Strep-HA-Scp2cyt cannot complement the 

virulence phenotype of scp2 deletion mutants (S. Krombach, unpublished). Therefore, 

peroxisomal targeting seems to be required for the unconventional secretion of Scp2. The 

reason why more peroxisomal Strep-HA-Scp2 is secreted remains unclear, but the binding to a 

peroxisome derived ligand could mediate changes in conformation, charge or hydrophobicity 

that allows the protein to traverse the fungal plasma membrane with a higher efficiency. This 

potential ligand might not or only rarely be present in the cytosol which in turn could lead to a 

less efficient secretion of Scp2 when it is forced to remain in the cytosolic compartment. Taken 

together, peroxisomal targeting seems to be important for efficient Scp2 secretion and Scp2 

function is disturbed when peroxisomal localization is hindered.  

Importantly, no secretion of peroxisomal localized GFP (Strep-HA-GFPpex) could be observed 

in CSAs, suggesting that unique Scp2 characteristics like ligand binding properties or its 

conformation allow the protein to be externalized. These experiments prove that peroxisomal 

localization per se is not sufficient for unconventional protein secretion. 

Externalization of Scp2 could be demonstrated but the mode of secretion remains unclear. 

Proteomic data from U. maydis exosomes suggests that Scp2 might reach the cell exterior via 

extracellular vesicles (EVs) which are released from U. maydis filaments (S. Uszkoreit and L. 

Lo Presti, personal communication). EVs represent an important mechanisms of intercellular 

communication by transporting proteins, lipids and RNA (Raposo and Stoorvogel, 2013). 

Furthermore, EVs have been shown to mediate the delivery of virulence factors to host cells in 

filamentous fungi (Silva et al., 2014). Interestingly, the Scp2 peptide detected in exosome 

fractions vanished when the vesicles were pre-treated with trypsin indicating that Scp2 adheres 

to the outside of exosomes (S. Uszkoreit and L. Lo Presti, personal communication). An 

exosome-based secretion mechanism has been shown for the unconventional secreted tissue 

transglutaminase (tTG). The mammalian cytoplasmic tTG is recruited to perinuclear recycling 
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endosomes by binding to phosphoinositide and is subsequently internalized and transported to 

the plasma membrane (Zemskov et al., 2011). 

The remaining question is whether Scp2 is actively secreted by U. maydis filaments because of 

an extracellular function, whether secretion occurs passively due to its lipid binding or 

biochemical properties or whether the unconventional secretion of Scp2 is part of a default 

turnover mechanism for cellular components.  

3.2 Is there a biologically relevant function of the extracellular form of Scp2?  

In previous experiments it was shown that an Scp2 protein which lacks the peroxisomal 

targeting sequence and is externalized via the conventional secretory pathway by fusing it to 

the signal peptide of the secreted effector Stp1 (Schipper, 2009) did not complement the scp2 

deletion phenotype in plant infection experiments (S. Krombach, unpublished). Since it was 

hypothesized that the C-terminus of Scp2 might contribute to lipid binding and function of Scp2 

(García et al., 2000), the original construct was modified in a way that the peroxisomal targeting 

sequence of Scp2 was kept intact but was concealed by the addition of three amino acid 

residues. The expression of this conventionally secreted form of Scp2 (SP-Scp2-GSA), 

however, did also not rescue the scp2 deletion phenotype during plant infections. In conclusion, 

two independent attempts to secrete Scp2 via the conventional secretory pathway failed to yield 

strains in which the virulence phenotype of the scp2 deletion mutant was at least partially 

complemented. 

This leaves several interpretations: First, Scp2 may have no biological function in the 

extracellular space and secretion might be an effect of passive diffusion due to the biochemical 

and physiological properties of Scp2 rather than to active secretion. Further, the transition 

through the ER-Golgi system might render Scp2 fusion proteins nonfunctional. For the 

unconventionally secreted fibroblast growth factor FGF2 was shown that its secretion through 

the ER-Golgi network was successful but the externalization via this pathway led to an artificial 

O-glycosylation resulting in a non-functional protein (Wegehingel et al., 2008). These 

observations led Wegehingel et al. (2008) to propose that unconventional secretion might be an 

ancient mechanism that allows secretion of proteins for which the secretion via the classical 

secretory pathway is fatal for protein function.  

Moreover, as mentioned in chapter 3.1 it might be crucial for cytoplasmically produced Scp2 

to bind a certain pathogenicity related ligand within or in close proximity to the peroxisome 

which is subsequently externalized by Scp2. Therefore, the inability of SP-Scp2-GSA to 



Discussion  56 

complement the scp2 deletion phenotype could be attributed to a missing Scp2-bound ligand 

rather than to posttranslational modifications within the secretory pathway. 

Another aspect of SP-mediated secretion is that the targeting to the secretory pathway causes 

secretion of the respective proteins once the mRNA is made. Unconventional secretion systems, 

by contrast, are often tightly regulated and many unconventional secretion pathways are only 

activated upon certain triggers as it has been shown for the Pichia pastoris Acb1 and the 

mammalian GAPDH (Manjithaya et al., 2010;  Takenouchi et al., 2015). Furthermore, SP-

mediated secretion of Scp2 led to large amounts of extracellular protein whereas protein levels 

of unconventionally secreted Scp2 were comparatively low. Both scenarios might interfere with 

the potential function of Scp2 in the extracellular space. 

Another reason for the lack of complementation could be that Scp2 belongs to the group of 

moonlighting proteins that do not only exhibit an extracellular function but which are also 

crucial for processes within the cell as it was shown for the unconventional secreted protein 

enolase (Karkowska-Kuleta and Kozik, 2014). Several moonlighting proteins are housekeeping 

enzymes that do not contain a classical secretion signal. Nonetheless, in several pathogens, 

including fungi, these proteins are able to reach the extracellular space via unconventional 

secretion mechanisms where they have been shown to fulfill critical roles in the interaction with 

the extracellular matrix or in the evasion of the host immune system (Karkowska-Kuleta and 

Kozik, 2014). 

Taken together, the combined results from the present and previous studies (S. Krombach, 

unpublished) indicate that the conventional secretion of Scp2 renders the protein non-functional 

and that the protein must access peroxisomes to fulfill its virulence related function. 

3.3 Deletion of scp2 causes an appressorium defect 

U. maydis forms non-melanized appressoria on the leaf surface that mediate the entry into the 

plant tissue. In contrast to Magnaporthe oryzae and Colletotrichum spp. that invade the host 

plant through melanized appressoria and mechanical force, appressoria of U. maydis seem to 

penetrate the plant cuticle by locally secreting plant cell wall degrading enzymes (Tucker and 

Talbot, 2001;  Schirawski et al., 2005). Several steps are important for successful appressoria 

formation and penetration. First, the pathogen needs to locate and perceive the host surface by 

detecting extracellular signals. These signals are transmitted to intracellular signaling cascades 

which initialize the reorganization of the fungal cytoskeleton thus allowing the formation of 

appressoria and the redirection of growth towards the plant surface prior to penetration (Tucker 

and Talbot, 2001;  Patkar et al., 2010). During this process the fungal appressorium has to 
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adhere tightly to the host surface to allow appressorium mediated entry into the host plant tissue 

(Tucker and Talbot, 2001). In U. maydis, appressorium formation can be induced in vitro by 

providing hydroxy-fatty acids and a hydrophobic surface as stimulus (Mendoza-Mendoza et 

al., 2009). 

A qPCR approach revealed an upregulation of scp2 during appressorium formation and 

penetration at around 20 hours after maize seedling infection. Microscopic analysis showed that 

filaments of scp2 deletion strains express the appressorial marker am1 on parafilm and on the 

leaf surface suggesting that the genetic program for appressorium formation has been initiated. 

However, scp2 deletion strains showed a significantly lower amount of appressoria on parafilm 

when compared to the respective progenitor strain sixteen hours after appressorium induction. 

This defect could not be attributed to a delayed appressorium initiation since 24 hours after 

induction no enhanced appressorium formation frequency was observed in the mutant. An 

impaired sensing of external fatty acid stimuli was excluded by demonstrating the induction of 

filament formation in liquid culture using HFA. Interestingly, the appressorial defect observed 

on parafilm was not apparent on the plant surface where appressoria could be frequently 

detected for scp2 deletion strains. 

The appressorium formation defect of scp2 mutants on parafilm coincided with an extension of 

the cytoplasm-filled part of the filaments. Compared to wild type hyphae in which the 

cytoplasm filled tip compartment had an average length of 54.0 µm (± 9.6) the tip compartments 

of scp2 mutants had an average length of 89.6 µm (± 8.0). This extension occurred without the 

additional integration of septa causing the formation of elongated hyphae and coincided with a 

higher mortality rate of filaments on parafilm when compared to the progenitor strain. 

During the elongation process several filaments appeared to attempt the formation of 

appressoria by forming a crook-like structure but failed to form an appressorium and continued 

hyphal growth. In M. oryzae, the loss of the polarized growth regulator Tea4 has been shown 

to cause a zigzag morphology in aerial hyphae and defects in appressoria formation on inductive 

surfaces while vegetative growth was mostly unaffected (Patkar et al., 2010). In contrast to the 

phenotype observed for the polarized growth mutants in M. oryzae, however, U. maydis scp2 

deletion strains are able to form appressoria on the maize leaf surface and to penetrate the host 

plant cuticle to a certain extent. Considering this, it seems unlikely that the observed scp2 

appressorium formation phenotype is caused by a defect in polarized growth of forming 

filaments.  

This might indicate that scp2 deletion strains are not impaired in polarized growth of filaments 

and are capable to initiate appressoria but that these appressoria are not firmly attached to the 



Discussion  58 

hydrophobic parafilm. Such an effect could be caused by a reduction of filament 

hydrophobicity. A general reduction of hydrophobicity in scp2 deletion mutant filaments, 

however, seems unlikely. First, the parafilm slides used for the analysis of appressoria were 

washed in water prior to microscopic examination. In case of a less effective overall attachment 

washing would have caused a significant loss of filaments. Further, the hydrophobicity of scp2 

deletion strain filaments was not significantly reduced. This was demonstrated by a water 

soaking assay (Müller et al., 2008). For this, water drops were spotted on filamentous growing 

SG200 and scp2 deletion strains on PD-charcoal solid medium and the time until the water drop 

was fully absorbed by the colony was measured as an indication for the surface hydrophobicity 

of the respective strains. No difference of hydrophobicity was observed for SG200 and 

SG200Δscp2 (not shown).  

Furthermore, the secretion of glycolipids such as mannosylerythritol lipids (MELs) leads to a 

reduced surface tension of U. maydis culture medium (Hewald, 2005). The biosynthesis of 

MELs takes partially place in peroxisomes and is coupled to peroxisomal fatty acid degradation 

(Freitag et al., 2014). The surface tension of liquid medium incubated with the U. maydis strains 

MB215 and MB215Δscp2, however, showed that both strains are able to reduce the surface 

tension of the medium to a comparable extent (not shown) indicating that Scp2 is not involved 

in MEL production. 

Adhesion of lily pollen tubes has been shown to depend on a lipid transfer-like protein (nsLTP), 

a class of extracellular cystein-rich proteins with a broad affinity for various lipids (Park et al., 

2000). In this system the secreted nsLTP either mediate adhesion of the pollen tube directly or 

act indirectly as a transporter of lipophilic compounds involved in signaling (Park et al., 2000). 

Even though sterol carrier proteins like Scp2 do not share specific motifs of lipid transfer 

proteins both protein classes contain a hydrophobic cavity that allows the unspecific transport 

of different lipid species (De Berti et al., 2013;  Liu et al., 2015). Interestingly, several fungal 

species produce an extracellular matrix (ECM) presumably consisting of glycoproteins, 

polysaccharides and lipids which promote appressorial adhesion (Tucker and Talbot, 2001;  

Ahn et al., 2004). This might indicate that components of the fungal ECM depend on nsLTP or 

sterol carrier protein mediated transport. With respect to this, the U. maydis Scp2 protein could 

be involved in the generation, transport or secretion of compounds that help the forming 

appressorium to effectively attach to the parafilm surface. On the maize leaf surface, however, 

additional factors like topography and structure or the presence of plant derived cuticle waxes 

and fatty acids could help to overcome the appressorium formation defect. 



Discussion  59 

3.3.1 Scp2 is required for efficient penetration of the host plant surface 

A question arising from the observed appressorium formation defect on parafilm was whether 

the presence of appressoria on planta necessarily correlates with appressorium functionality. 

This question was addressed by the quantification of penetration efficiency which showed that 

appressoria of scp2 deletion strains are less efficient in successful invasion of the epidermal 

layer of the leaf than wild type appressoria. The penetration defect indicates that although 

appressoria formation is restored on the plant surface scp2 deletion strain appressoria are less 

efficient in breaching the plant cuticle. This data was supported by the quantification of fungal 

biomass which revealed that scp2 deletion strains accumulate significantly less biomass within 

the maize plant when compared to the SG200 progenitor strain.  

A phenotype similar to that of scp2 deletion strains was observed for mutants of the plasma 

membrane spanning protein Sho1 and the transmembrane mucin Msb2. Both proteins are 

involved in the perception of surface signals and the induction of the MAP-kinase cascade that 

induces pathogenic development in U. maydis (Lanver et al., 2010). Single gene deletions of 

sho1 and msb2 caused a strong reduction of appressorium formation on parafilm. Interestingly, 

this defect was partially compensated on the plant surface. In contrast to scp2 deletion strains, 

however, sho1 and msb2 did not express the appressorial marker on parafilm indicating that 

Scp2 either functions downstream of the signaling cascade which triggers appressorium 

induction or is involved in a separate pathway. 

3.4 Scp2 deletion strains show a misdistribution of peroxisomes and lipid droplets 

Peroxisomes and lipid droplets are independent organelles but seem to be functionally and 

physically associated (Shai et al., 2016). In yeast it has been demonstrated that peroxisomes 

can stably adhere to lipid droplets. The two organelles can undergo hemifusion by so-called 

pexopodia which bring lipids and fatty acids in contact with the peroxisomal fatty acid oxidation 

machinery (Binns et al., 2006). In vitro induced filaments of scp2 deletion strains displayed an 

unusual distribution of peroxisomes and lipid droplets. In around 60 % of the hyphae growing 

on parafilm, peroxisomes accumulated in the posterior and anterior parts of the filaments. In 

contrast, lipid droplets mostly accumulated in the posterior part of the filament without 

migrating to the hyphal tip.  

The melanized appressoria of M. oryzae and Colletotrichum orbiculare penetrate the plant 

surface by mechanical force. The required turgor pressure is generated by the production of the 

osmolyte glycerol which is obtained through rapid lipolysis of lipid droplets (Thines et al., 

2000;  Asakura et al., 2012). Lipolysis is the lipase-mediated mobilization and break-down of 
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lipid droplet-derived triglycerides which allows cells to regain fatty acids for energy production, 

membrane synthesis and signaling functions (Zechner and Madeo, 2009). The process of 

lipolysis appears closely associated with the fatty-acid β-oxidation in peroxisomes (Shai et al., 

2016). The appressorium mediated penetration in U. maydis presumably depends on the 

localized secretion of cell wall-degrading enzymes rather than on turgor pressor and mechanic 

force. Therefore, it is unlikely that U. maydis depends on the generation of osmolytes from lipid 

droplets. Nevertheless, while lipid droplets accumulate in appressoria of SG200AM1 growing 

on parafilm only very few lipid droplets were detected in the tip of AM1-marker expressing 

filaments of the scp2 deletion strain suggesting that there might be a correlation of lipid droplet 

distribution and appressorium formation. In future experiments, it would be interesting to 

investigate the lipid droplet distribution in the 10 % of scp2 deletion strain filaments that did 

form appressoria on parafilm. 

Interestingly, the misdistribution of peroxisomes was not only visible in hyphae on parafilm but 

also in hyphae on the plant surface indicating that these defects might contribute to the 

decreased pathogenicity of scp2 deletion mutants. Further experiments, however, are required 

to determine whether the altered distribution of peroxisomes and lipid droplets is causing the 

inability of filaments to penetrate the epidermal layer of the host plant. 

In U. maydis, peroxisomes and lipid droplets have been shown to be distributed by hitchhiking 

on early endosomes. Defects in early endosome movement can cause a clustering of 

peroxisomes in the hyphal tip (Guimaraes et al., 2015). Colocalization experiments of 

peroxisomes and early endosomes in scp2 deletion mutants, however, demonstrated that in 

filaments which showed an altered peroxisomal distribution early endosome localization and 

motility was not affected. 

On a glass surface U. maydis is not able to form appressoria but filament formation can be 

induced by treatment with HFA. In the course of this work scp2 deletion strains were treated 

with HFA and applied to a glass slide to determine whether the presence of a solid surface 

induces the misdistribution of peroxisomes and lipid droplets. These experiments showed that 

the contact to a solid surface is not sufficient to induce the misdistribution (not shown). 

In contrast to that, filaments induced by HFA treatment on paraffin wax slides showed a similar 

misdistribution of peroxisomes as it was observed for scp2 deletion filaments on parafilm (not 

shown). These results suggest that either the strong hydrophobicity or distinct components of 

the wax and parafilm slides are the reason for the peroxisomal misdistribution. Both parafilm 

and the wax slides are composed of paraffin, a mixture of saturated hydrocarbons with a 

hydrocarbon chain length ranging from 20 to 30 carbon atoms (Mortimer and Müller, 2003). 
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Interestingly, waxes consisting of very long-chain fatty acids (VLCFAs) with carbon chains 

ranging from 20 to 40 carbon atoms have been shown to be a major component of the plant 

cuticle (Reina-Pinto and Yephremov, 2009). Further experiments like the treatment of scp2 

deletion strain filaments with VLCFAs like erucic acid (C22) or lignoceric acid (C24) could 

clarify whether the contact to these compounds induces the altered distribution of peroxisomes 

and/or lipid droplets. Although it was shown that the misdistribution does not necessarily 

correlate with the expression of the AM1-marker it has to be considered that the misdistribution 

could be initialized by intracellular changes prior to appressorium formation such as differences 

in gene expression or rearrangements of the fungal cytoskeleton. 

The altered accumulation of lipid droplets and peroxisomes in filaments of the scp2 deletion 

strain could also be caused by changes in the overall membrane phospholipid content of the two 

organelles. Peroxisomes and lipid droplets are not able to synthesize their own membrane lipids. 

Therefore, they depend on the provision of structural phospholipids such as 

phosphatidylcholine (PC) by extraperoxisomal pathways like the Kennedy pathway (Flis et al., 

2015). In yeast, defects in PC biosynthesis resulted in alterations of peroxisomal membrane 

properties and stability (Flis et al., 2015). Moreover, PC has been shown to act as a surfactant 

in the phospholipid monolayers that surrounds lipid droplets. The presence of PC prevents the 

coalescence of lipid droplets that would otherwise result in the formation of large, lipolysis-

resistant lipid droplet aggregates (Krahmer et al., 2011). Overexpression of murine Scp2 in 

mouse cells is suspected to influence key enzymes of the Kennedy pathway, thereby altering 

the synthesis of phospholipids like PC (Murphy et al., 2000). The absence of Scp2 could 

therefore alter the composition of peroxisomal and lipid droplet membranes. These alterations 

could either interfere with binding of peroxisomes and lipid droplets to the early endosome 

transport machinery or it could cause an accumulation of these organelles thereby preventing 

the efficient transport throughout the cell. Contradicting the above interpretation, Murphy and 

coworkers (Murphy et al., 2000) suspected that the overrepresentation of Scp2 causes a 

downregulation of PC. Therefore it has to be established how the deletion of scp2 influences 

the overall phospholipid composition in U. maydis.  

The assumption that the observed misdistribution of peroxisomes and lipid droplets might 

causes the virulence phenotype in scp2 deletion strains raised the question why the equal 

distribution of organelles is of such an importance during this specific stage of the fungal 

lifecycle. Considering the most prominent function of peroxisomes, their equal distribution 

might be important for the protection of U. maydis filaments from oxidative stress (Rodriguez-

Serrano et al., 2009). The accumulation of peroxisomes in certain areas of the hyphae would 
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therefore leave the midsection of the filament unprotected and vulnerable to plant derived 

defense reactions. But even though peroxisomes are usually regarded as hydrogen peroxide 

(H2O2) detoxifying organelles peroxisomes have also been shown to be important producers of 

potent signaling molecules like H2O2 and nitric oxide (·NO) in plants and in fungi (Corpas et 

al., 2001;  Del Río, 2011;  Wei et al., 2013). The aggregation of peroxisomes in a very restricted 

area of the filament might therefore cause the accumulation of toxic compound like H2O2 which 

might damage the cell from within during the sensitive state of host plant infection. Further, the 

equal distribution of organelles could support the distribution and exchange of lipid substrates 

between peroxisomes and lipid droplets (Gao and Goodman, 2015). Taken together, the even 

distribution of peroxisomes and lipid droplets might ensure a comprehensive protection of 

filaments from external factors like plant defense responses and allow the distribution of 

metabolic substrates within the cell. Preliminary experiments using DAB-stain suggested that 

scp2 deletion strains might elicit increased hypersensitive responses upon infection of maize 

leaves when compared to SG200 (not shown). Future experiments have to address whether the 

altered distribution of peroxisomes and lipid droplets is responsible for the presumably 

enhanced defense reaction. Expression analysis of maize genes involved in defense responses 

against pathogens like pr1, pr3 and pr5 (Heimel et al., 2013) or maize marker genes for 

enhanced ROS production (Campbell et al., 2015) could help to describe the defense reaction 

observed in scp2 deletion strains in a quantitative manner. 

3.5 Precise regulation of scp2 gene expression might be crucial for Scp2 function 

While the overexpression of scp2 under the native promoter did not influence U. maydis 

virulence, expression of scp2 under the control of the cmu1 promoter caused a severe virulence 

defect during plant infection. The defect was observed after single copy integration of the 

construct Pcmu1-scp2 into the SG200 as well as into the SG200Δscp2 genome, indicating that 

the overexpression of scp2 under the cmu1 promoter causes a dominant negative effect on 

virulence. This defect was characterized by the absence of anthocyanin and tumors and the 

presence of chlorotic lesions that were distributed throughout the entire leaf. Furthermore, 

WGA/PI stains of the respective leaves indicated that the overexpression strains elicit strong 

plant defense reactions in early stages of infection. An overloading of peroxisomes by the 

overexpressed Scp2 protein is considered unlikely because overexpression of a peroxisomal 

mCherrypex using the cmu1 promoter did not result in a comparable effect on SG200 virulence. 

In addition, several other fluorescent proteins as well as effector proteins were expressed in U. 

maydis using the cmu1 promoter without encountering a virulence phenotype comparable to 
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the phenotype observed for Scp2 overexpression strains (Tanaka et al., 2014;  Lo Presti et al., 

2016). RNAseq and qPCR data shows that scp2 is naturally downregulated two days after 

infection and expression increases again 4 dpi. Expression under control of the cmu1 promoter 

would not follow this pattern but would lead to a constitutive overexpression of scp2 in the 

plant. This could indicate that it is important to rapidly suppress scp2 expression during plant 

colonization, since excess of Scp2 at two days after infection elicits strong plant defense 

reactions. This is in line with the observation that scp2 deletion strains show a milder phenotype 

than the overexpression strain since here the presumably dangerous presence of Scp2 at later 

stages of plant infection is not given. Interestingly, besides Scp2, several other peroxisomal U. 

maydis proteins involved in metabolic processes like peroxisomal β-oxidation (Mfe2 and Scpx), 

the degradation of hydrogen peroxide (catalase) and the synthesis of glycolipids (Mac1 and 

Mac2) show a significant drop of expression two days after infection (D. Lanver, personal 

communication). This might indicate that the tight transcriptional regulation of peroxisomal 

proteins during pathogenic development is crucial for the establishment of the biotrophic 

interaction between plant and fungus. Analyzing the phenotype of genes like mfe2 and scpx 

under control of the cmu1 promotor could clarify whether the phenotype observed for 

SG200Pcmu1-Scp2 and SG200Δscp2Pcmu1-Scp2 is Scp2-specific or whether peroxisomal protein 

expression under the cmu1 promoter in general elicits a hypersensitive response in the host 

plant. 

3.6 Binding properties of Scp2 

Most of the known sterol carrier proteins in other organisms exhibit a high affinity for 

cholesterol. In contrast, no binding to cholesterol was observed for the U. maydis Scp2 protein 

in protein-lipid overlay assays. The fungal cholesterol counterpart ergosterol has a similar but 

not identical structure and further experiments have to be performed to elucidate whether 

ergosterol can be bound by the U. maydis Scp2. However, Scp2 showed a significant affinity 

for cardiolipin and the phospholipid PI4P. Cardiolipin is a non-bilayer phospholipid considered 

to be a signature lipid of mitochondrial membranes (Tatsuta and Langer, 2016). Cardiolipin 

initially seemed an unlikely candidate for interacting with Scp2 since it has been shown to 

mainly localize at the inner mitochondrial membrane in vivo. However, in the yeasts Pichia 

pastoris and S. cerevisiae cardiolipin was found to be present in peroxisomal membrane 

fractions (Zinser et al., 1991;  Wriessnegger et al., 2007). Interestingly, Y. lipolytica Scp2 was 

shown to transfer fatty acids by a collision-mediated mechanism and the transfer frequency of 

lipids to a certain target membrane could be significantly enhanced by enrichment of the 
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membranes with cardiolipin (Falomir Lockhart et al., 2009). This suggests that the fatty acid 

composition may dictate the binding of Scp2 proteins to their target membranes (Falomir 

Lockhart et al., 2009). The analysis of cardiolipin contents in U. maydis peroxisomes could 

help to determine the relevance of the cardiolipin-binding properties for the Scp2 function. 

PI4P has been localized to Golgi membranes but has also been associated with the plasma 

membrane as well as late endosomes and/or lysosomes and is thought to assist protein targeting 

to specific organelle membranes (Hammond et al., 2014). PI4P does not reside in peroxisomes 

which raises the question whether a small proportion of Scp2 functions as a lipid transfer protein 

in the cytoplasm. This assumption is supported by previous studies that could show that SCP-

2 of fibroblasts is not only localized in peroxisomes but that it is also present in the ER 

(Starodub et al., 2000). Immunogold labeling coupled with electron microscopy analysis could 

help to identify small amounts of Scp2 outside of peroxisomes and to evaluate the possibility 

that Scp2 binds to extraperoxisomal lipids in U. maydis. 

Several sterol carrier proteins have been shown to influence plasma membrane composition and 

robustness by binding and distributing sterols between membranes (Berger et al., 2005;  Zhao 

et al., 2014). However, filipin stains of sterols in the U. maydis membrane as well as nystatin 

sensitivity assays gave no clear cut indication that Scp2 is involved in the maintenance of fungal 

membrane integrity. Nevertheless, minor differences of overall sterol content in the fungal 

plasma membranes could be quantified using a lipidomic approach. Furthermore, previously 

performed stress assays which did not show differences in stress sensitivity (F. Bochen, 

personal communication) should be repeated by using filamentous growing cells since all 

defects of scp2 deletion strains were exclusively observed in filamentous hyphae. 

An interesting question concerning the binding specificity of Scp2 is why the two Scp2 

homologs hScp2 and YLScp2 are able to partially complement the U. maydis scp2 deletion 

phenotype even though the observed lipid binding capacity of the three proteins does not seem 

to coincide. A potential reason could be that Scp2 ligand binding is relatively unspecific. Rather 

than a lock-and-key mechanism sterol carrier proteins harbor their respective ligands loosely in 

a hydrophobic cavity that is formed by a conserved conformation of β-sheets and α-helices (De 

Berti et al., 2013). This fold has been shown to be conserved in sterol carrier proteins from 

various species including bacteria and mammals (De Berti et al., 2013). Due to this lack of 

specificity sterol carrier proteins were also termed nonspecific lipid transfer proteins. The 

mammalian Scp2 protein, for instance, has been shown to not only transfer cholesterol but to 

bind poly- and monounsaturated fatty acids, branched-chain isoprenoids and branched-chain 

phytol-derived fatty acids (Frolov et al., 1997). YLScp2 and hScp2 might thus be able to 
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transfer similar lipid ligands as the U. maydis Scp2 and are therefore able to partially 

complement the scp2 deletion phenotype. In contrast, the two Scp2 paralogs Um01850 and 

Um11277 do not seem to be able to exhibit a Scp2-like function. In case of a related function, 

the two paralogs should partially substitute for the Scp2 function and therefore the 

pathogenicity defect observed for the triple deletion strain SG200Δum01850Δum11277Δscp2 

should have been stronger than the one observed for scp2 deletion strains. The documented lack 

of complementation, however, could also be attributed to the different expression levels of the 

three genes. In axenic culture, expression levels of scp2 are approximately 5.0 times higher than 

um11277 and approximately 20 times higher than um01850. Twelve hours after infection the 

expression levels of scp2 are approximately 5.7 times higher than um11277 and approximately 

8.0 times higher than um01850 (D. Lanver, personal communication). Therefore, to substantiate 

the absence of complementation a scp2 deletion strain should be complemented with constructs 

that contain um01850 and um11277 under the control of the scp2 promoter.  

Furthermore it should be considered that the virulence related function of Scp2 is lipid binding-

independent. By using the structural information of hScp2 and YLScp2, essential amino acids 

in the U. maydis Scp2 hydrophobic cavity could be mutated to abolish lipid binding and to 

analyze whether the ligand binding characteristics are essential for Scp2 function. 

3.7 A potential model for the function of Scp2 during U. maydis infection 

In the following chapter a hypothetical model of the Scp2 function in U. maydis and potential 

ways to prove this model will be discussed.  

U. maydis Scp2 may function as an intracellular lipid carrier and pool former which binds and 

transfers a yet undetermined lipidic ligand. This transfer might not only occur within 

peroxisomes but could also include intracellular membranes like the fungal plasma membrane, 

the ER or the Golgi apparatus. The presence of Scp2 at the cytosolic phase of exosomal 

membranes could support the hypothesis that Scp2 is present in the cytoplasm of U. maydis 

filaments. Correct extraperoxisomal targeting of Scp2 could be supported by the presence of 

marker lipids like cardiolipin or PI4P in the destination organelles. As a lipid carrier Scp2 could 

help to maintain the equilibrium of structural phospholipid components in peroxisomes and 

lipid droplet membranes. Loss of Scp2 might therefore cause alterations of peroxisomal and 

lipid droplet membrane content which in turn could promote the coalescence of lipid droplets 

and an inefficient attachment of peroxisomes to the early endosome transport machinery (Fig. 

39). As a consequence, the access to certain metabolic products of peroxisomes and lipid 

droplets at the site of appressorium formation might be decreased and the attachment of 
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appressoria to surfaces weakened. This product could be a precursor lipid or glycolipid that 

serves as a glue for the appressorium and mediates its strong attachment to the respective 

surface (Fig. 40). Alternatively, the appressorium formation and adhesion defects might result 

from a lack of locally produced energy caused by the lipid droplet and peroxisome 

misdistribution. This defect would have to occur in early steps of lipolysis since defects in later 

stages of energy metabolism like defects in peroxisomal β-oxidation or the glyoxylate cycle did 

not resemble the scp2 deletion phenotype. The impaired appressorium function could manifest 

itself on the plant surface as a penetration defect resulting in reduced plant colonization and a 

reduction of overall symptom development. Appressoria that manage to gain access into the 

leaf tissue, however, proliferate effectively and are able to complete the entire biotrophic U. 

maydis life cycle, reinforcing a specific defect prior or during penetration. 

          

Fig. 39: Hypothetical model for the Scp2 function within U. maydis cells. (A) Scp2 could function as a pool 

former and lipid carrier that stabilizes the equilibrium of lipids within organelle membranes. Thereby Scp2 might 

function exclusively within peroxisomes or might be distributed throughout the cell. Peroxisomes [1] and lipid 

droplets [2] are transported through the cell by hitchhiking on early endosomes that travel via a motor 

protein/microtubule depended mechanism. (B) In the absence of Scp2 the membrane composition of peroxisomes 

and lipid droplets may be altered. The changes in lipid components might prohibit the binding of peroxisomes [1] 

and lipid droplets [2] to the early endosome transport machinery resulting in an accumulation of the organelles at 

the cell poles. Alternatively peroxisomes [3] and lipid droplets [4] might form aggregates as a result of changes in 

membrane lipid components, thereby prohibiting their effective transportation and distribution within the cell. 

 

Several experiments have to be performed to verify the proposed model. Peroxisomes and lipid 

droplets from SG200 and SG200Δscp2 filaments on parafilm have to be isolated and analyzed 

in terms of lipid composition. Differences between the two strains could indicate the 

involvement of Scp2 in the regulation of biosynthesis or the distribution of lipid compounds 

between intracellular membranes and organelles. Further, SG200 and SG200Δscp2 appressoria 

on parafilm have to be examined with respect to the extracellular matrix that potentially 

mediates appressorium adhesion. The extracellular matrix could be analyzed by 
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immunohistochemical examination and electron microscopy (Zelinger et al., 2006;  Inoue et 

al., 2008). The adhesion strength of filaments and appressoria to surfaces could be assessed by 

using single-cell force spectroscopy (SCFS) (Alsteens et al., 2013).  

The misdistribution of peroxisomes and lipid droplets on the plant surface has to be quantified 

to compare the frequency of misdistribution events between the in vitro and the in vivo system. 

In order to validate that an even organelle distribution is a prerequisite for effective cuticle 

penetration it should further be analyzed whether the misdistribution of peroxisomes and lipid 

droplets in filaments on the plant surface correlates with an unsuccessful penetration attempt. 

Besides the investigation of SG200 and SG200Δscp2 the inclusion of the overexpression strain 

SG200Pcmu1-Scp2 might give valuable clues on the function of Scp2 in the course of U. maydis 

infection. 

       

Fig. 40: Hypothetical model for the Scp2 function during U. maydis pathogenic development. The model 

summarizes the observed phenotypes of scp2 deletion strains on parafilm and on the plant surface in comparison 

to the respective progenitor strains, here termed wild type strains (WT). Lipid droplets are colored in yellow while 

peroxisomes are colored in purple. (A) Appressorium formation of wild type strains on parafilm. A large lipid 

droplet depot is localized in the posterior part of the filament and lipid droplets of intermediate size are evenly 

distributed throughout the cytoplasm. Peroxisomes are distributed evenly within the filament. The presence of an 

extracellular matrix (ECM) might mediate stable attachment of the appressorium to the parafilm surface. (B) 

Appressorium formation and penetration of WT filaments on the plant surface. Lipid droplet and peroxisome 

distribution correlates with the distribution on parafilm. The ECM might grant attachment to the plant cuticle 

allowing efficient appressorium-mediated penetration of the plant cuticle. (C) Appressorium formation defect of 

scp2 deletion strains on parafilm. A large lipid droplet depot is localized in the posterior part of the filament 

whereas lipid droplets only rarely migrate to the tip of the filament. Peroxisomes accumulate in the posterior and 

anterior parts of the hyphae. Some filaments seem to attempt appessorium formation but do not succeed and 

continue filamentous growth. This appressorium formation defect might be caused by the absence of an ECM that 

mediates the adhesion of the appressorium to the parafilm surface. (D) Appressorium formation and attempted 

penetration of scp2 deletion strains on the plant surface. The appressorium formation defect observed on parafilm 

does not manifest on the plant, probably due to physical or chemical leaf surface cues. The formed appressoria, 

however, display a reduction in penetration frequency that may result from the inability of appressoria to adhere 

tightly enough to the leaf cuticle. Peroxisomes seem to display a similar misdistribution as it was observed for 

scp2 deletion strains filaments on parafilm. The distribution of lipid droplets on the plant surface still has to be 

examined (yellow quotation mark). 
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4. Materials and Methods 

4.1 Materials and source of supplies 

4.1.1 Chemicals 

All chemicals used in this study were obtained from Becton Dickinson (BD) (Heidelberg, 

Germany), Merck (Darmstadt, Germany), Roth (Karlsruhe, Germany), Sigma-Aldrich 

(Munich, Germany), GE Healthcare (Freiburg, Germany), Roche Diagnostics (Mannheim, 

Germany) and Invitrogen (Karlsruhe, Germany). 

4.1.2 Solutions and buffers 

All standard solutions and buffers used in this study were prepared as described in Ausubel et 

al. (1987) and Sambrook et al. (1989). All additional solutions and buffers are listed in the 

corresponding method sections. All media, solutions and buffers were autoclaved for 5 min at 

121 °C. Heat-sensitive solutions were filter sterilized (pore size 0.2 µm; Merck, Darmstadt, 

Germany). 

4.1.3 Enzymes and antibodies 

All restriction enzymes, T4 DNA ligase, Polynucleotide kinase and Antarctic Phosphatase were 

obtained from New England Biolabs (NEB) (Frankfurt am Main, Germany). Phusion DNA 

Polymerase was obtained from Thermo Scientific (Darmstadt, Germany). KOD Extreme 

Polymerase was obtained from Merck (Darmstadt, Germany). Enzymatic digestion of RNA 

was accomplished using RNase A from Roth (Karlsruhe, Germany). Enzymatic digestion of 

cell walls was accomplished by using Novozym 234 (Interspex Products, Foster City, CA, 

USA). Antibodies were obtained from Sigma-Aldrich (Munich, Germany), Cell Signaling 

Technology (Leiden, Netherlands), Eurogentec (Seraing, Belgium) and IBA GmbH 

(Goettingen, Germany). A detailed table of all antibodies can be found in chapter 4.6.7 

(Antibodies). 

4.1.4 Utilized kits 

The following kits were used in this study according to the manufacturers' specifications: 

Wizard® SV Gel and PCR Clean-Up System (Promega, Mannheim, Germany) was used to 

purify PCR products and DNA fragments from agarose gels. QIAprep® Spin MiniPrep Kit 

(Qiagen, Hilden, Germany) was used to isolate and purify plasmid DNA before sequencing. 

The TOPO® TA Cloning® Kit (Invitrogen, Karlsruhe, Germany) was used for the cloning of 

PCR products. More specific kits are listed under the respective method descriptions. 
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4.2 Cell cultivation and media 

4.2.1 E. coli 

For the cultivation of E. coli, dYT liquid medium and YT solid medium were used (Ausubel et 

al., 1987; Sambrook et al., 1989). Ampicillin (Amp) was added to a final concentration of 100 

μg/ml. Liquid cultures were incubated at 37 °C and 200 rpm. Solid media were incubated under 

aerobic condition at 37 °C. For preparing frozen stocks exponentially growing cultures 

containing the appropriate antibiotic were mixed with dYT-glycerol at a 1:1 ratio and stored at 

-80 °C. 

dYT liquid medium   1.6 % (w/v) Tryptone (Bacto) 

1.0 % (w/v) Yeast-Extract (Bacto) 

0.5 % (w/v) NaCl (Roth) 

Dissolve in H2Obid and autoclave. 

 

YT solid medium   0.8 % (w/v) Tryptone (Bacto) 

0.5 % (w/v) Yeast-Extract (Bacto) 

0.5 % (w/v) NaCl (Roth) 

1.3 % (w/v) Agar (Bacto) 

Dissolve in H2Obid and autoclave.  

 

dYT glycerol medium   1.6 % (w/v) Tryptone (Bacto) 

1.0 % (w/v) Yeast-Extract (Bacto) 

0.5 % (w/v) NaCl (Roth) 

80.0 % (v/v) 87 % Glycerin (f. c. 69.6 %) 

Dissolve in H2Obid and autoclave. 

4.2.2 U. maydis 

U. maydis strains were grown on PD or CM-glc solid medium or cultivated in YEPSlight or CM-

glc liquid media. To select transformants hygromycin B (HY) (Duchefa, Haarlem, 

Netherlands), geneticin (NE) (Sigma G-8168), nourseothricin (trade name: clonNAT) (NA) 

(WERNER BioAgents GmbH, Jena, Germany) and carboxin (CB) (Sigma-Aldrich; Munich, 

Germany) were added to a final concentration of 200 g/ml (HY), 400 g/ml (NE), 75 g/ml 

(NA) and 2 g/ml (CB), respectively. To prepare frozen stocks exponentially growing cultures 

were mixed with NSY-glycerol at a 1:1 ratio and stored at -80 °C. 

YEPSlight liquid medium  1.0 % (w/v) Yeast-Extract (Bacto) 

0.4 % (w/v) Peptone (Bacto) 

 0.4 % (w/v) Sucrose (Roth) 

 Dissolve in H2Obid and autoclave. 

 

CM liquid medium (CM-glc)  0.25 % (w/v) Casaminoacids (Difco) 

0.1 % (w/v) Yeast-Extract (Bacto) 

1.0 % (v/v) Vitamin solution (Holliday, 1974) 
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6.25 % (v/v) Salt solution (Holliday, 1974) 

0.05 % (w/v) DNA from herring sperm degr.  

(Sigma, D-3159) 

0.15 % (w/v) NH4NO3 (Roth)  

1.0 % (v/v) 1 M Tris/HCl pH 8.0 (f. c.10 mM)  

Dissolve in H2Obid adjust pH to 7.0 with 5 M 

NaOH and autoclave. After autoclaving add  

4.0 % (v/v) 50 % glucose solution (f. c. 2 %). 

 

double CM solid medium  0.4 % (w/v) Casaminoacids (Difco) 

0.2 % (w/v) Yeast-Extract (Bacto) 

2.0 % (v/v) Vitamin solution (Holliday, 1974) 

25.0 % (v/v) Salt solution (Holliday, 1974) 

0.1 % (w/v) DNA from herring sperm degr.  

(Sigma, D-3159) 

0.6 % (w/v) NH4NO3 (Roth)  

1.0 % (v/v) 1 M Tris/HCl pH 8.0 (f. c.10 mM)  

2.0 % (w/v) Agar (Bacto) 

Dissolve in H2Obid adjust pH to 7.0 with 5 M 

NaOH and autoclave. After autoclaving add  

4.0 % (v/v) 50 % glucose solution (f. c. 2 %). 

 

Vitamin solution (Holliday, 1974)  0.1 ‰ (w/v) Thiamine hydrochloride  

(Sigma T-4625) 

0.05 ‰ (w/v) Riboflavin (Sigma R-4500) 

0.05 ‰ (w/v) Pyridoxine hydrochloride  

(Sigma P-9755) 

0.2 ‰ (w/v) D-Pantothenic acid hemicalcium salt 

(Sigma P-2250) 

0.05 ‰ (w/v) 4-Aminobenzoic acid  

(Sigma A-9878) 

0.2 ‰ (w/v) Nicotinic acid (Sigma N-4126) 

0.2 ‰ (w/v) Choline chloride (Sigma C-1879)  

 1.0 ‰ (w/v) myo-Inositol (Sigma I-5125) 

Dissolve in H2Obid prepare 40 ml aliquots in  

50 ml tubes and freeze at -20 °C. 

 

Salt solution (Holliday, 1974) 16.0 ‰ (w/v) KH2PO4 

 4.0 ‰ (w/v) Na2SO4 

 8.0 ‰ (w/v) KCl 

 2.0 ‰ (w/v) MgSO4 * 7H2O  

 1.32 ‰ (w/v) CaCl2 * 2H2O 

 8.0 ‰ (v/v) Trace elements 

 Dissolve in H2Obid and sterile filtrate. 

 

Trace elements (Holliday, 1974) 0.06 ‰ (w/v) H3BO3 

 0.14 ‰ (w/v) MnCl * 4H2O 

 0.4 ‰ (w/v) ZnCl2 

 0.4 ‰ (w/v) Na2MoO4 * 2H2O 

 0.1 ‰ (w/v) FeCl3 * 6H2O 
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 0.03 ‰ (w/v) CuSO4 

 Dissolve in H2Obid. 

 

50 % glucose solution  55.0 % (w/v) Glucose * H2O (Roth)  

Dissolve in H2Obid and sterile filtrate. 

 

PD solid medium  2.4 % (w/v) Potato Dextrose Broth (Difco) 

 2.0 % (w/v) Agar (Bacto)  

Dissolve in H2Obid and autoclave. 

 

PD charcoal solid medium  2.4 % (w/v) Potato Dextrose Broth (Difco)  

1.0 % (w/v) Charcoal (Sigma C-9157) 

 2.0 % (w/v) Agar (Bacto) 

 Dissolve in H2Obid and autoclave. 

 

NSY glycerol medium  0.8 % (w/v) Nutrient broth (Difco)  

0.1 % (w/v) Yeast-Extract (Bacto)  

0.5 % (w/v) Sucrose (Roth) 

 80.0 % (v/v) 87 % Glycerin (f. c. 69.6 %) 

Dissolve in H2Obid and autoclave. 

 

NM liquid medium 0.3 % (w/v) KNO3 

  6.25 % (v/v) Salt solution (Holliday ‘74) 

  1.0 % (v/v) 1 M Tris/HCl pH 8.0 

 Dissolve in H2Obid adjust pH to 7.0 with 5 M 

NaOH and autoclave. After autoclaving add  

4.0 % (v/v) 50 % glucose solution (f. c. 2 %). 

 

NM solid medium 0.3 % (w/v) KNO3 

  6.25 % (v/v) Salt solution (Holliday, 1974) 

 2.0 % (w/v) Agar (Bacto) 

 1.0 % (v/v) 1 M Tris/HCl pH 8.0 

 Dissolve in H2Obid adjust pH to 7.0 with 5 M 

NaOH and autoclave. After autoclaving add  

4.0 % (v/v) 50 % glucose solution (f. c. 2 %). 

 

4.2.2.1 Fatty acid growth assay 

The respective strains were grown to an OD600 of 0.8 in YEPSlight. Subsequently, the cells were 

washed twice in H2Obid (3,500 rpm, 5 min, RT) and adjusted to an OD600 of 1.0. Serial dilutions 

ranging from 100 to 10-4 were generated in H2Obid and 7 µl of each dilution were spotted on 

YNB-plates (w/o amino acids) supplemented with the respective fatty acid. The plates were 

incubated at 28 °C for 3-5 days. Fatty acids were purchased from Sigma-Aldrich (Munich, 

Germany). Following concentrations were used for the preparation of YNB fatty acid 

supplemented plates: 1.2 % stearic acid stock solution, 0.3 % palmitic acid stock solution, 0.3 

% oleic acid solution (Sigma O1008), 0.03 % linoleic acid solution (Sigma L1376). 
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Stearic acid stock solution    79.1 mM Stearic acid (Sigma S-4751) 

Dissolved in 100 % EtOH. 

 

Palmitic acid stock solution    281.2 mM Palmitic acid (Sigma P0500) 

Dissolved in 100 % EtOH. 

 

YNB w/o amino acids solid medium   0.67 % (w/v) yeast nitrogen base without 

amino acids (Difco) 

2.0 % (w/v) Agarose (Roth) 

  Dissolve in H2Obid and autoclave. 

4.2.2.2 Nystatin growth assay 

For nystatin growth assays serial dilutions of the respective strains were prepared as described 

in chapter 4.2.2.1 (Fatty acid growth assay). 7 µl of each dilution were spotted on CM-glc plates 

containing either only DMSO (as control) or 2.5 µg or 5.0 µg nystatin. 

Nystatin stock solution     5 mg/ml Nystatin (Sigma N3503) 

Dissolve in 100 % DMSO. 

 

4.2.3 Determination of cell density 

The cell density of liquid cultures was determined photometrically using an Ultrospec 3000 pro 

UV/Visible Spectrophotometer (Biochrom, Cambridge) at 600 nm (OD600). To determine the 

optical density cell cultures were diluted 1:10 in the respective medium. As a reference value 

the OD600 of sterile medium was used. For U. maydis cell cultures an OD600 of 1.0 equals 

approximately 1-5 x 107 cells. 

4.3 Strains, oligonucleotides and plasmids 

4.3.1 E. coli strains 

The E. coli strains DH5α and TOP10 were used for the cloning and amplification of plasmids 

while the E. coli strain Rosetta(DE3)pLysS was used for the IPTG-induced gene expression 

needed for the purification of U. maydis proteins from E. coli. 

DH5α (Thermo Scientific, Darmstadt, Germany): (F– endA1 glnV44 thi-1 recA1 relA1 gyrA96 

deoR nupG purB20 φ80dlacZΔM15 Δ(lacZYA-argF)U169, hsdR17(rK–mK+), λ–)  

TOP10 (Invitrogen, Karlsruhe, Germany): (F– mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 

ΔlacX74 recA1 araD139 Δ(ara leu) 7697 galU galK rpsL (StrR) endA1 nupG)  

Rosetta(DE3)pLysS (Novagen/Merck, Darmstadt, Germany): F- ompT hsdSB(RB- mB-) gal 

dcm λ(DE3 [lacI lacUV5-T7 gene 1 ind1 sam7 nin5]) pLysSRARE (CamR) 

 

4.3.2 U. maydis strains  

In the following chapter pre-existing U. maydis progenitor strains (Tab. 1), progenitor strains 

that were generated during this thesis (Tab. 2) and the strains utilized for this work (Tab. 3) are 
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listed. For the generation of deletion mutants, the respective gene was replaced by a resistance 

cassette as described in Kämper (2004) and in Brachmann et al. (2004). Plasmids containing a 

carboxin resistant ip-allele (ipR) (Broomfield and Hargreaves, 1992) were used for the 

integration of genes into the ip locus. These plasmids were integrated into the carboxin-sensitive 

ip-allele (ipS) of the U. maydis genome via homologous recombination. If not indicated 

otherwise all generated strains were verified via southern blot analysis and carry a single copy 

insertion of the respective plasmid in the ip locus. The plasmids that were used for the 

generation of the listed strains are described in chapter 4.3.4.  

Table 1. U. maydis progenitor strains. 

Serial 

number 
Name Genotype Resistance2 Reference 

SR18 SG200 a1: mfa2 bW2 bE1  PH Kämper et al., 2006 

SR142 SG200AM1 a1: mfa2 bW2 bE1 

ipR[Pum01779:egfp]ipS 

PH, CB Mendoza-Mendoza et 

al., 2009 

SR146 AB33 a2: Pnar: bW2 bE1 PH Brachmann et al., 

2001 

SR2561 AB33 Potef-GFP-

HA-Strep 

a2: Pnar: bW2 bE1 ipR[Potef-gfp-HA-

Strep]ipS 

PH, CB S. Krombach, 

unpublished 

SR3061 AB33 Potef-Strep-

HA-Scp2 

a2: Pnar: bW2 bE1 ipR[Potef- gfp -myc-

Strep-Potef-Strep-HA-um11938]ipS 

PH, CB S. Krombach, 

unpublished  

SR336 SG200Δscp2 a1: mfa2 bW2 bE1 Δum11938 HY, PH S. Kreibich, 

unpublished 

SR3881 SG200Δscp2-c 

#10 (m)  

a1: mfa2 bW2 bE1 Δum11938 

ipR[Pum11938-um11938]ipS 

HY, CB F. Ahrens, 

unpublished 

SR389 SG200Δscp2-c a1: mfa2 bW2 bE1 Δum11938 

ipR[Pum11938-um11938]ipS 

HY, CB, 

PH 

F. Ahrens, 

unpublished 

SR3901 SG200Δscp2-c 

#13 (m) 

a1: mfa2 bW2 bE1 Δum11938 

ipR[Pum11938-um11938]ipS 

HY, CB F. Ahrens, 

unpublished 

SR4051 SG200AM1Δscp2 a1: mfa2 bW2 bE1 Δum11938 

ipR[Pum01779-gfp]ipS 

PH, HY, 

CB 

S. Winterberg, 

unpublished 

SR460 AB31Pex a2: Pcrg: bW2 bE1 ect[Potef-mcherry-

SKL] 

PH, HY J. Freitag, 

unpublished 

SR5001 AB33 Pscp2-Strep-

HA-Scp2 

a2: Pnar: bW2 bE1 ipR[Pum11938-Strep-

HA-um11938]ipS 

PH, CB S. Krombach, 

unpublished 

SR523 FB1 a1 b1 - Banuett and 

Herskowitz, 1989  

SR524 FB2 a2 b2 - Banuett and 

Herskowitz, 1989  

SR704 SG200Δpex6 a1: mfa2 bW2 bE1 Δpex6 ect[Potef : 

mcherry-SKL] 

HY, PH, 

NA  

Freitag et al., 2012 

SR1057 SG200Δ04285 a1: mfa2 bW2 bE1 Δum04285 PH, HY L. Bender, 

unpublished 

SR1207 SG200Δ04285-c a1: mfa2 bW2 bE1 Δum04285 

ipR[Pum04285-gfp-um04285]ipS 

PH, HY, 

CB 

L. Bender, 

unpublished 

1 strains contain multiple integrations of the respective plasmid 
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2 phleomycin (PH), hygromycin (HY), carboxin (CB), neomycin (NE), nourseothricin (NA). 

 

Table 2. U. maydis progenitor strains generated in this study 

Serial 

number 
Name Genotype Resistance2 

Progenitor 

strain  
Plasmid 

SR727 AB33Δscp2 a2: Pnar: bW2 bE1 Δum11938 HY AB33 pSR209 

SR809 SG200Δscp2Δ11277 a1: mfa2 bW2 bE1 Δum11938 

Δum11277 

PH, HY, NE SR336 pSR239 

SR13341 SG200Δscp2Pex a1: mfa2 bW2 bE1 Δum11938 

ipR[Petef-gfp-PTS1]ipS 

PH, CB, HY SR336 JF1742 

SR13401 SG200Pex a1: mfa2 bW2 bE1 ipR[Petef-

gfp-PTS1]ipS 

PH, CB SG200 JF1742 

1 strains contain multiple integrations of the respective plasmid 
2 phleomycin (PH), hygromycin (HY), carboxin (CB), neomycin (NE), nourseothricin (NA). 

 

Table 3. U. maydis strains used in this study. 

Serial 

number 
Name Genotype Resistance2 

Progenitor 

strain  
Plasmid 

SR5401 AB33 Pscp2-SP-

Strep-HA-Scp2 

a2: Pnar: bW2 bE1 

ipR[Pum11938-SP-Strep-HA-

um11938]ipS 

PH, CB SR146 pSR140 

SR5581 AB33 Pscp2-

Strep-HA-

Scp2cyt 

a2: Pnar: bW2 bE1 

ipR[Pum11938-Strep-HA-

um11938(AKL/AAA)]ipS 

PH, CB SR146 pSR162 

SR728 FB2Δscp2 a2 b2 Δum11938 HY SR524 pSR209 

SR748 FB1Δscp2 a1 b1 Δum11938 HY SR523 pSR209 

SR812 SG200Δ11277 a1: mfa2 bW2 bE1 Δum11277 PH, NE SR18 pSR239 

SR822 SG200Δ01850 a1: mfa2 bW2 bE1 Δum01850 PH, NA SR18 pSR241 

SR8723 AB33Pex a2: Pnar: bW2 bE1 ipR[Petef-

gfp-PTS1]ipS 

PH, CB SR146 JF1742 

SR8753 AB33Δscp2Pex a2: Pnar: bW2 bE1 Δum11938 

ipR[Petef-gfp-PTS1]ipS 

PH, CB, HY SR727 JF1742 

SR930 SG200Δscp2 

Scp2-AKL 

a1: mfa2 bW2 bE1 Δum11938 

ipR[Pum11938-um11938-AKL]ipS 

CB, HY SR336 pSR263 

SR953 SG200Δscp2 

SP-Scp2-GSA 

a1: mfa2 bW2 bE1 Δum11938 

ipR[Pum11938-SP-um11938-

GSA]ipS 

CB, HY SR336 pSR261 

SR9591 AB31Pex SP-

GFP-Scp2-GSA 

a2: Pcrg: bW2 bE1 ect[Potef-

mcherry-SKL] ipR[Pum11938-

SP-gfp-um11938-GSA]ipS 

CB, HY, PH SR460 pSR319 

SR1213 SG200ΔΔΔ a1: mfa2 bW2 bE1 Δum11938 

Δum01850 Δum11277 

PH, HY, 

NA, NE 

SR809 pSR241 

SR1246 SG200ΔΔΔ-c a1: mfa2 bW2 bE1 Δum11938 

Δum01850 Δum11277 ipR 

[Pum11938-um11938]ipS 

PH, HY, 

NA, NE, CB 

SR1213 pSR110 
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SR1251 SG200ICLΔΔ 

#10 

a1: mfa2 bW2 bE1 Δum04285 

Δum01892 

PH, HY, NE SR1057 pSR324 

SR12521 AB31Pex GFP-

11277 

a2: Pcrg: bW2 bE1 ect[Potef-

mcherry-SKL] ipR[Pum11938-

gfp-um11277]ipS 

HY, PH, CB SR460 pSR398 

SR12561 AB31Pex GFP-

01850 

a2: Pcrg: bW2 bE1 ect[Potef-

mcherry-SKL] ipR[Pum11938-

gfp-um01850]ipS 

HY, PH, CB SR460 pSR399 

SR12581 AB33 Pscp2-

Strep-HA-

GFPpex 

a2: Pnar: bW2 bE1 

ipR[Pum11938-Strep-HA-gfp-

AKL]ipS 

PH, CB SR146 pSR397 

SR1261 SG200ICLΔΔ 

#15 

a1: mfa2 bW2 bE1 Δum04285 

Δum01892 

PH, HY, NE SR1057 pSR324 

SR12661 SG200Δscp2- 

hScp2 (m) 

a1: mfa2 bW2 bE1 Δum11938 

ipR[Pum11938-hScp2]ipS 

PH, HY, CB SR336 pSR395 

SR1267 SG200Δscp2- 

hScp2  

a1: mfa2 bW2 bE1 Δum11938 

ipR[Pum11938-hScp2]ipS 

PH, HY, CB SR336 pSR395 

SR1270 SG200Δscp2- 

YLScp2 

a1: mfa2 bW2 bE1 Δum11938 

ipR[Pum11938-YLScp2]ipS 

PH, HY, CB SR336 pSR396 

SR12711 SG200Δscp2- 

YLScp2 (m) 

a1: mfa2 bW2 bE1 Δum11938 

ipR[Pum11938-YLScp2]ipS 

PH, HY, CB SR336 pSR396 

SR12771 SG200 Pcmu1-

mCherrypex 

a1: mfa2 bW2 bE1 ipR[Pcmu1-

mcherry-AKL]ipS 

PH, CB SR18 pSR405 

SR1283 SG200 Pcmu1-

Scp2 

a1: mfa2 bW2 bE1 ipR[Pcmu1-

Scp2]ipS   

PH, CB SR18 pSR404 

SR1287 SG200Δscp2 

Pcmu1-Scp2 

a1: mfa2 bW2 bE1 Δum11938 

ipR[Pcmu1-Scp2]ipS 

PH, HY, CB SR336 pSR404 

SR1326 SG200AM1PM  a1: mfa2 bW2 bE1 

ipR[Pum01779-gfp_Pum03274-

mcherry]ipS 

PH, CB SR18 pSR422 

SR13281 SG200AM1PM 

(m) 

a1: mfa2 bW2 bE1 

ipR[Pum01779-gfp_Pum03274-

mcherry]ipS 

PH, CB SR18 pSR422 

SR1331 SG200Δscp2 

AM1PM 

a1: mfa2 bW2 bE1 Δum11938 

ipR[Pum01779-gfp_Pum03274-

mcherry]ipS 

PH, CB, HY SR336 pSR422 

SR13321 SG200Δscp2 

AM1PM (m) 

a1: mfa2 bW2 bE1 Δum11938 

ipR[Pum01779-gfp_Pum03274-

mcherry]ipS 

PH, CB, HY SR336 pSR422 

SR13601 SG200Δscp2 

AM1Pex 

a1: mfa2 bW2 bE1 Δum11938 

ipR[Petef-gfp-PTS1]ipS mig2-

6[Pum01779-mcherry] 

PH, NE, CB, 

HY 

SR1334 pMM69 

SR13611 SG200AM1Pex a1: mfa2 bW2 bE1 ipR[Petef-

gfp-PTS1] ipS mig2-6[Pum01779-

mcherry] 

PH, NE, CB, SR1340 pMM69 

SR1370 SG200PexEE a1: mfa2 bW2 bE1 ipR[Petef-

gfp-PTS1]ipS ect[Potef-

mcherry-rab5-1] 

PH, CB, NA SR1340 pomChrab5a 

SR1371 SG200Δscp2 

PexEE 

a1: mfa2 bW2 bE1 Δum11938 

ipR[Petef-gfp-PTS1]ipS 

ect[Potef-mcherry-rab5-1] 

PH, CB, 

HY, NA 

SR1334 pomChrab5a 

SR13824 SG200Δscp2 

AM1Pex-c  

a1: mfa2 bW2 bE1 Δum11938 

ipR[Petef-gfp-PTS1; Pum11938-

um11938]ipS mig2-6[Pum01779-

mcherry] 

PH, NE, CB, 

HY, NA  

SR1360 pSR429 

1 strains contain multiple integrations of the respective plasmid 
2 phleomycin (PH), hygromycin (HY), carboxin (CB), neomycin (NE), nourseothricin (NA). 
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3 integration of the respective plasmids was verified by microscopy 
4 integration of the respective plasmids was verified by PCR  

 

4.3.3 Oligonucleotides 

All oligonucleotides in this study were purchased from Eurofins Genomics (Ebersberg/Munich, 

Germany). The name, the nucleotide sequences, potential restriction sites integrated by the 

oligonucleotide and the respective applications are listed in Table 4. The primers were utilized 

for cloning of plasmids as well as for Quantitative Real-Time PCR. 

Table 4: Oligonucleotides used in this study 

Name Sequence1 
Restriction 

site 
Application2 

OLL248 TTTTGGTACCTGCGGCGTGGGGAAAA

CC 

kpnI Amplification of the cmu1 

(um05731) promoter sequence (f)  

(L. Lo Presti) 

OLL294 TTTTGGATCCCGTAACCTAGAGCTCTT

GC 

bamhI Amplification of the cmu1 

(um05731) promoter sequence (r) 

(L. Lo Presti) 

SI34 GTCGTCCTGGGCCTGAGTGGCCATGG

TGAGCAAGGGCG 

sfiI Amplification of gfp (f) 

SI35 AACGACGACGGCCGCGTTGGCCCTTG

TACAGCTCGTCCATGC 

sfiI Amplification of gfp (r) 

SK109 TTCGGCCATCTAGGCCTGTGGATATG

AGTGGTAGGTTGG 

sfiI Amplification of the scp2 left 

border (r) (S. Kreibich) 

SK110 CGCTCAAACGCAGTGGGTGGAAG / Amplification of the scp2 left 

border (f) (S. Kreibich) 

SR91 CATGGCGTGGTCGCACCCGCAGTTCG

AGAAGGCCTCGCCCTACCCCTA 

/ Oligo assembly:  

ncoI-Strep-HA-sfiI-sfiI-notI (f)  

SR92 CGACGTGCCCGACTACGCCGGCCTGA

GTGGCCACTGTACGAGGCCAACGCGG

CCCCTAAGC 

/ Oligo assembly:  

ncoI-Strep-HA-sfiI-sfiI-notI (f) 

SR93 TAGTCGGGCACGTCGTAGGGGTAGGG

CGAGGCCTTCTCGAACTGCGGGTGCG

ACCACGC 

/ Oligo assembly:  

ncoI-Strep-HA-sfiI-sfiI-notI (r) 

SR94 GGCCGCTTAGGGGCCGCGTTGGCCTC

GTACAGTGGCCACTCAGGCCGGCG 

/ Oligo assembly:  

ncoI-Strep-HA-sfiI-sfiI-notI (r) 

SR95 GATCCGGCCTGAGTGGCCACTGTACG

AGGCCAACGCGGCCCGGCGTCGT 

/ Oligo assembly:  

ncoI-sfiI-sfiI-HA-Strep-notI (f) 

SR96 ACCCCTACGACGTGCCCGACTACGCC

GCCTCGCCCTGGTCGCACCCGCAGTT

CGAGAAGTAAGC 

/ Oligo assembly:  

ncoI-sfiI-sfiI-HA-Strep-notI (f) 

SR97 CACGTCGTAGGGGTACGACGCCGGGC

CGCGTTGGCCTCGTACAGTGGCCACT

CAGGCCCC 

/ Oligo assembly:  

ncoI-sfiI-sfiI-HA-Strep-notI (r) 

SR98 GGCCGCTTACTTCTCGAACTGCGGGT

GCGACCAGGGCGAGGCGGCGTAGTC

GGG 

/ Oligo assembly:  

ncoI-sfiI-sfiI-HA-Strep-notI (r) 

SR116 TAGATGTCGGGCCTGAGTGGCCCAAT

GTCTGACTTCAAGTCCAAGG 

sfiI Amplification of scp2 (f) 

SR117 CTACGATCAGGCCGCGTTGGCCTTAG

AGCTTGGCCTTCTGG 

sfiI Amplification of scp2 (r) 
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SR135 AAAGAACACCGGACTTGG / qPCR primer, amplifies ppi (r) 

SR136 ACATCGTCAAGGCTATCG  / qPCR primer, amplifies ppi (f) 

SR137 CTTCGGCATTGTTGAGGGTTTG  / qPCR primer, amplifies gapdh (f) 

SR138 TCCTTGGCTGAGGGTCCGCT  / qPCR primer, amplifies gapdh (r) 

SR168 CCATCAACCTCTCCGATGAC / qPCR primer, amplifies scp2 (f)  

SR169 GCATGATGTTGCCCTTGAC / qPCR primer, amplifies scp2 (r) 

SR281 ATCGTCGGTGGTACCGTGCTCGCTCA

TTGATGTTC 

acc65I Amplification of the scp2 

promoter (f) 

SR282 AAGCATGACGCGGCCGCTTAGAGCTT

GGCCTTCTGG 

notI Amplification of the scp2 gene 

and promoter sequence (f) 

SR300 ACCCAGTCACCATGGTGTGGATATGA

GTGGTAGG 

ncoI Amplification of the scp2 

promoter (r) 

SR322 GGTCTAGGCCTGAGTGGCCATGCATT

CGCTGTAATG 

sfiI Amplification of the scp2 right 

border (f) 

SR323 ATCGGCTCTACTTGCTCTAC  / Amplification of the scp2 right 

border (r) 

SR334 CCAACCTACCACTCGGATCCAAATCT

AGAACAATGTCTGAC 

 

bamhI, xbaI Mutagenic primer that inserts 

restriction sites into the scp2 

promoter sequence (f) 

SR335 GACTGGATCCATGGTGAGCAAGGGC

GAGG 

bamhI Amplification of gfp (f) 

SR336 AGTCTCTAGAGGTGGCGATCGAGCGC

TTGTACAGCTCGTCC 

xbaI Amplification of gfp (r) 

SR338 CTCAAGTCCCAGAAGGCCGCGGCCTA

AGCGGCCGCCCGGCTGCAG 

/ Mutagenic primer that changes 

the scp2 PTS1 from AKL to AAA 

(f) 

SR341 GATCCATGAGAGCCGTGCTCTCGCTC

AACA 

/ Oligo assembly:  

bamhI-SP-HA-Strep-xbaI (f) 

SR342 TGACCAAGCTGCTCGCCTTGTTGCTG

GTCATCCTGCCGAT 

/ Oligo assembly:  

bamhI-SP-HA-Strep-xbaI (f) 

SR343 ACTTGTCGCCGTTCAGGCCTGGTCGC

ACCCGCAGTTCGAG 

/ Oligo assembly:  

bamhI-SP-HA-Strep-xbaI (f) 

SR344 AAGGCCTCGCCCTACCCCTACGACGT

GCCCGACTACGCCT 

/ Oligo assembly:  

bamhI-SP-HA-Strep-xbaI (f) 

SR345 CGAGCAGCTTGGTCATGTTGAGCGAG

AGCACGGCTCTCATG 

/ Oligo assembly:  

bamhI-SP-HA-Strep-xbaI (r) 

SR346 TGAACGGCGACAAGTATCGGCAGGA

TGACCAGCAACAAGG 

/ Oligo assembly:  

bamhI-SP-HA-Strep-xbaI (r) 

SR347 GTAGGGCGAGGCCTTCTCGAACTGCG

GGTGCGACCAGGCC 

/ Oligo assembly:  

bamhI-SP-HA-Strep-xbaI (r) 

SR348 CTAGAGGCGTAGTCGGGCACGTCGTA

GGG 

/ Oligo assembly:  

bamhI -SP-HA-Strep-xbaI (r) 

SR387 ACGACCACTCAGTCTAGACTTGTACA

GCTCGTCCATGC 

xbaI Amplification of gfp/mcherry (f) 
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SR388 TGCACGTTCGTATCTAGAATGGTGAG

CAAGGGCGAGG 

xbaI Amplification of gfp/mcherry (r) 

SR390 GATCCATGAGAGCCGTGCTCTCGCTC

AACATGACCAAGCTGCTCG 

bamhI Oligo assembly:  

bamhI-SP-bamhI (f) 

SR391 CCTTGTTGCTGGTCATCCTGCCGATAC

TTGTCGCCGTTCAGGCCG 

/ Oligo assembly:  

bamhI-SP-bamhI (f) 

SR392 TGACCAGCAACAAGGCGAGCAGCTT

GGTCATGTTGAGCGAGAGCACGGCTC

TCATG 

/ Oligo assembly:  

bamhI-SP-bamhI (r) 

SR393 GATCCGGCCTGAACGGCGACAAGTAT

CGGCAGGA 

bamhI Oligo assembly:  

bamhI-SP-bamhI (r) 

SR435 CATATGTGGAGCCACCCGCAGTTCG

AAAAATCGGGCTCTGACTTCAAGTCC

AAGG 

ndeI Amplification of scp2, inserts N-

terminal Strep-tag (f) 

SR436 GGATCCTTAGAGCTTGGCCTTCTGGG bamhI Amplification of scp2 (r) 

SR457 TACTTTCTCGAGAATAGGAACTTCTG

GCCATCTAGGCCGGTGCGTAGGTGAT

CAAGG 

sfiI Amplification of the um11277 left 

border (r) (Drag&Drop) 

SR458 GTAACGCCAGGGTTTTCCCAGTCACG

ACGAATATTCCTGTCTCGGTATCATG

AAC 

sspI Amplification of the um11277 left 

border (f) (Drag&Drop) 

SR459 TTCTCGAGAAAGTATAGGAACTTCTG

GCCTGAGTGGCCGTTCGGCATGCTGT

CTGCTGC 

sfiI Amplification of the um11277 

right border (f) (Drag&Drop) 

SR460 GCGGATAACAATTTCACACAGGAAAC

AGCAATATTGGTTCTAACTCGACCGA

CAG 

sspI Amplification of the um11277 

right border (r) (Drag&Drop) 

SR461 GTAACGCCAGGGTTTTCCCAGTCACG

ACGAATATTAACTAAAGCGGGCACA

AAGC 

sspI Amplification of the um01850 left 

border (r) (Drag&Drop) 

SR462 GCGGCCGCAATTGTCACGCCATGGTG

GCCATCTAGGCCCGTGATGGGTTAAG

CTCC 

sfiI Amplification of the um01850 left 

border (f) (Drag&Drop) 

SR463 GCGGATAACAATTTCACACAGGAAAC

AGCAATATTATCGTCTCAAGTGCGTT

AGG 

sspI Amplification of the um01850 

right border (r) (Drag&Drop) 

SR464 CTGTAGGAGTGCGGCCGCATTAATAG

GCCTGAGTGGCCTTGGCGTAGTTGGC

GTATCG 

sfiI Amplification of the um01850 

right border (f) (Drag&Drop) 

SR507 AACGACGACGCGGCCGCTTAGGCCG

AGCCGAGCTTGGCCTTCTGG 

notI Amplification of scp2, adds the 

amino acids GSA to the Scp2 C-

terminus (r) 

SR510 AACGACGACGCGGCCGCTTAGAGCTT

GGCGAGCTTGGCCTTCTGG 

notI Amplification of scp2, adds the 

amino acids AKL to the Scp2 C-

terminus (r) 

SR526 GTCGTCGTTGGTACCCCTGTCTCGGT

ATCATGAAC 

kpnI Amplification of the um11277 

gene and promoter sequence (f) 

SR527 AACGACGACGCGGCCGCTCAAAGCCT

TGCGCGATCG 

notI Amplification of the um11277 

gene and promoter sequence (r) 

SR528 GTCGTCGTTGGTACCAGCTGAGCAGT

GATGGTTTG 

kpnI Amplification of the um01850 

gene and promoter sequence (f) 

SR529 AACGACGACGCGGCCGCCTAGAGCTT

TGCAACCCTGG 

notI Amplification of the um01850 

gene and promoter sequence (r) 

SR530 GGCGACCTTGATCACTCTAGACTACG

CACCATGTCC 

xbaI Mutagenic primer that inserts 

restriction sites into the um11277 

promoter sequence (f) 
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SR574 TCCATCCGGATGGCTCGAGTTTTTCA

GCAAAATATTTTGAGCTATCGAGCAG

TAGG 

sspI Amplification of the um01892 left 

border (f) (Gibson cloning) 

SR575 TACTTTCTAGAGAATAGGAACTTCTG

GCCATCTAGGCCGATGATGCTCGATC

AGTAGAGG 

sfiI Amplification of the um01892 left 

border (r) (Gibson cloning)  

SR576 TCTAGAAAGTATAGGAACTTCTGGCC

TGAGTGGCCATGTTTGTTGCGAATCA

GAATAC 

sfiI Amplification of the um01892 

right border (f) (Gibson cloning) 

SR577 CTGAGAATATTGTAGGAGATCTTCTA

GAAACCGGGACAGTCGATGAGGTTG

AGTAG 

sspI Amplification of the um01892 

right border (r) (Gibson cloning) 

SR594 GCTTAACCCATCACGGGATCCAAATC

TAGAATGGCTAAAAACGAAGAACAC

G 

bamhI, xbaI Mutagenic primer that inserts 

restriction sites into the um01850 

promoter sequence (f) 

SR715 GATCGGATCCATGTGGTCGCACCCGC

AG 

bamhI Amplifies the sequence Strep-HA-

gfp-AKL (f) 

SR716 GATCGCGGCCGCCTAGAGCTTGGCCT

TGTACAGCTCGTCCATGC 

notI Amplifies the sequence Strep-HA-

gfp-AKL (r) 

SR717 GTGCTTAGTTCTAGAATGGTGAGCAA

GGGCGAGG 

xbaI Amplifies the sequence mcherry-

AKL (f) 

SR718 ACTAAGCACGCGGCCGCTTAGAGCTT

GGCCTTGTACAGCTCGTCC 

notI Amplifies the sequence mcherry-

AKL (r) 

SR743 TGCTTAGTGGTACCCCTCGAGCCTCG

TCCCTG 

kpnI Amplification of the um01779 

promoter (f) 

SR744 ACTAAGCACCATGGCTTGAGCGAAGG

TTTACC 

ncoI Amplification of the um01779 

promoter (r) 

SR745 TGCTTAGTGATATCTATGTATGTGCA

GAACAG 

ecoRV Amplifies the construct Prsp3-

mcherry-HA (f) 

SR746 ACTAAGCAGATATCCTCATGTTTGAC

AGCTTATC 

ecoRV Amplifies the construct Prsp3-

mcherry-HA (r) 

1 Restriction sites encoded within the primer sequence are underlined 
2 The oligo nucleotide either hybridizes with the sense-strand (r) or the antisense strand (f) of the respective   

   gene. 

 

4.3.4 Plasmids 

In the following chapter the progenitor plasmids used in this study and plasmids constructed 

for this study are described. All plasmids were verified via enzymatic restriction prior to use. 

After the insertion of PCR amplified fragments the nucleotide sequences were analyzed by 

sequencing (Eurofins Genomics, Ebersberg/Munich, Germany). Primers used for sequencing 

are not listed separately. Sequencing always covered parts of the backbone, the transition sites 

as well as the inserts. All plasmids carry a resistance cassette mediating resistance to ampicillin. 

4.3.4.1 Plasmids for the expression in E. coli 

 

pET21a(+) (Novagen, Darmstadt, Germany): 

The plasmid allows the IPTG-induced expression of 

genes in E. coli. The vector contains the lac operator 

downstream of the T7 promoter. The pET21a(+) 

vector carries an N-terminal T7-tag sequence and an 

optional C-terminal His-tag sequence. The gene of 

interest can be inserted into the multiple cloning side 

between the two tags. The transcription is terminated 

by the T7 terminator. pET21a(+) confers ampicillin 

resistance. 
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pSR226 (PT7-Strep-scp2): 

The pET21a(+) derivative was used for the 

expression of N-terminal Strep affinity tagged Scp2 

in E. coli. The plasmid contains the scp2 sequence 

excluding introns under the control of the T7 

promoter and the T7 terminator. The plasmid was 

generated by amplifying the scp2 sequence from U. 

maydis cDNA using the primer pair SR435/SR436. 

The resulting 0.4 kb fragment was inserted by blunt-

end cloning into the intermediate vector pJET-

stuffer. From there the fragment was extracted using 

NdeI/BamHI and inserted into the vector pET21a(+). 

pSR226 confers ampicillin resistance. 

 

pPR-IBA102 (IBA, Goettingen, Germany): 

The plasmid allows the IPTG-induced expression of 

genes in E. coli. The vector can be utilized for the 

expression of N-terminal Twin-Strep affinity tagged 

fusion proteins. The expression cassette is under 

transcriptional control of the strong bacteriophage 

T7 promoter. pPR-IBA102 confers ampicillin 

resistance. 

 

pPR-IBA102-Tin2dSP (S. Tanaka, unpublished): 

The pPR-IBA102 derivative was used for the 

expression of N-terminal Twin-Strep affinity tagged 

Tin2 in E. coli. The plasmid contains the tin2 

(um05302) sequence, excluding the first 75 

nucleotides encoding for the Tin2 signal peptide, 

under the control of the T7 promoter and the T7 

terminator. pPR-IBA102-Tin2dSP confers 

ampicillin resistance. 

 

4.3.4.2 Plasmids for the generation of stable U. maydis mutants 

Progenitor plasmids: 

p123 (Aichinger et al., 2003): 

Used as a progenitor construct. The plasmid contains 

the gfp gene under the control of the otef promoter 

and the nos terminator. For stable integration, the 

plasmid was cut using SspI and integrated into the U. 

maydis ip locus. 

 

p123-mCherry-HA #4 (T. Brefort, unpublished): 

The p123 derivative allows the expression of 

mcherry with a C-terminal HA affinity tag under the 

control of the otef promoter and the nos terminator. 

For stable integration, the plasmid was cut using 

SspI and integrated into the U. maydis ip locus. 

 

pCRII-TOPO (Invitrogen, Karlsruhe): 

The topoisomerase I-activated pCRII-TOPO vector 

was used as a progenitor construct for the cloning of 

PCR products. The vector can be used for blue-white 

screenings. 

 

pHwtFRT (Y. Khrunyk et al., 2010): 

The plasmid pHwtFRT contains the hph gene 

(hygromycin resistance) under the control of the U. 

maydis hsp70 promoter and the nos terminator 

flanked by directly repeated FRT sites and sfiI sites 

at both ends. 

 

pJET-stuffer (K. O. Schink and M. Bölker, personal 

communication): 

The pJET1 derivative (Fermentas, St. Leon-Rot) is a 

linearized plasmid for the cloning of blunt-end 

DNA-fragments. Re-circularized pJET1 expresses a 

lethal restriction enzyme (Eco47IR) after 

transformation into E. coli. pJET-stuffer contains a 

0.6 kb protective sequence within the orf of eco47IR 

which allows the amplification in E. coli. For the 

cloning of DNA fragments, the protective sequence 

can be excised with EcoRV and replaced by the 

sequence of interest.  

pLW174 (Prsp3-gfp) (L. Wang, unpublished): 

The p123 derivative allows the expression of gfp 

under control of the native rsp3 promoter and the nos 

terminator. For stable integration, the plasmid can be 

linearized using AgeI and integrated into the U. 

maydis ip locus. 

 

pMF1-n (Brachmann et al., 2004): 

Used as a progenitor construct. The plasmid contains 

a nourseothricin resistence cassette. The nat1 gene 

from Streptomyces noursei (Krügel et al., 1988) is 

expressed under the control of the gapdh promoter 

(from U. maydis) and the cyc1 terminator (from S. 

cerevisiae). The 1.4 kb resistance cassette can be 

extracted using SfiI. 

 

pMM001 (pHwtFRT-G) (M. Moretti, unpublished): 

The plasmid pMM001 contains the neo resistance 

gene (geneticin resistance) under the control of the 

otef promoter and the cyc1 terminator. The resistance 

cassette can be extracted by using SfiI. 

 

pSI14 (Potef-gfp-HA-Strep) 

(S. Krombach, unpublished): 

The p123 derivative allows the expression of gfp as 

a C-terminal Strep-HA affinity tagged fusion under 

the control of the otef promoter and the nos 

terminator. The plasmid was generated by 

amplifying the gfp gene from the plasmid p123 by 

using the primer pair SI34/SI35. The resulting 0.7 kb 

fragment was cut using SfiI and inserted into the 

vector pSR60. For stable integration, the plasmid 

was cut using SspI and integrated into the U. maydis 

ip locus. 

 

pRS426 (Christianson et al., 1992): 

The plasmid was used as an intermediate vector for 

“Drag&Drop cloning in yeast“ (Jansen et al., 2005). 

pRS426 is a yeast high-copy-number (20 copies per  
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cell) shuttle vector based on the backbone of the 

phagemid vector pBluescript II SK (+). The plasmid 

contains an URA3 selection marker for yeast and the 

ampicillin resistance marker for the amplification in 

E. coli. 

 

pSR57 (Potef-Strep-HA-sfiI) 

(S. Reißmann, unpublished): 

The p123 derivative was used as a progenitor 

plasmid for N-terminal Strep-HA tagged gene 

fusions. The plasmid allows the expression of the 

respective genes under the control of the otef 

promoter and the nos terminator. The Strep-HA 

sequence is followed by two sfiI restriction sites that 

can be used for inserting the respective gene of 

interest. pSR57 was generated by de novo synthesis 

(oligo assembly) of a di-codon optimized Strep-HA-

sfiI-sfiI construct using the primers SR91-SR94. The 

resulting fragment was integrated into the plasmid 

p123 (NcoI/NotI). 

 

pSR60 (Potef-sfiI-HA-Strep)  

(S. Reißmann, unpublished): 

The p123 derivative was used as a progenitor 

plasmid for C-terminal Strep-HA tagged gene 

fusions. The plasmid allows the expression of the 

respective genes under the control of the otef 

promoter and the nos terminator. Upstream of the 

Strep-HA sequence are two sfiI restriction sites that 

can be used for inserting the respective gene of 

interest. pSR60 was generated by de novo synthesis 

(oligo assembly) of a di-codon optimized SfiI-SfiI-

HA-Strep construct using the primers SR95-SR98. 

The resulting fragment was integrated into the 

plasmid p123 (NcoI/NotI). 

 

pSR67 (Potef-Strep-HA-scp2) 

(S. Reißmann, unpublished): 

The p123 derivative was used as a progenitor 

plasmid for the generation of pSR115. The plasmid 

allows the expression of scp2 (um11938) with an N-

terminal Strep-HA affinity tag under the control of 

the otef promoter and the nos terminator. pSR67 was 

generated by amplifying the scp2 gene sequence 

including introns from U. maydis gDNA using the 

primer pair SR116/SR117. The 1.0 kb PCR product 

was cut using SfiI and inserted into the plasmid 

pSR57. For stable integration, the plasmid was cut 

using SspI and integrated into the U. maydis ip locus. 

 

pSR115 (Pscp2-Strep-HA-scp2) 

(S. Reißmann, unpublished): 

The p123 derivative was used as a progenitor 

plasmid for the generation of pSR162. The plasmid 

allows the expression of scp2 as an N-terminal Strep-

HA affinity tagged fusion under the control of the 

native scp2 promoter and the nos terminator. The 

plasmid was generated by amplifying the 1.0 kb 

promoter sequence of scp2 from U. maydis gDNA 

using the primer pair SR281/SR300. The PCR 

product was cut using Acc65I/NcoI and integrated 

into the plasmid pSR67. For stable integration, the 

plasmid was cut using SspI and integrated into the U. 

maydis ip locus.  

 

pSR141 (Pscp2-(xbaI-bamhI)-scp2) 

(S. Krombach, unpublished): 

The p123 derivative was used as a progenitor 

plasmid for the generation of pSR140. The plasmid 

allows the expression of the scp2 gene under the 

control of the native scp2 promoter and the nos 

terminator. pSR141 was generated by performing a 

QuikChange™ PCR with the mutagenic primer 

SR334 on the progenitor plasmid pSR110. SR334 

integrates an xbaI and a bamhI restriction site into 

the plasmid sequence between the scp2 promoter and 

scp2. For stable integration, the plasmid was cut 

using SspI and integrated into the U. maydis ip locus. 

 

pSR146 (Pscp2-scp2(AKL/AAA)) 

(S. Krombach, unpublished): 

The p123 derivative was used as a progenitor 

plasmid for the generation of pSR162. The plasmid 

allows the expression of cytoplasmic Scp2. The scp2 

gene is expressed under the control of the native scp2 

promoter and the nos terminator. The C-terminal 

scp2 PTS1 sequence was mutated from the amino 

acids AKL to AAA by QuikChange™ PCR using the 

mutagenic primer SR338 on the template plasmid 

pSR110. For stable integration, the plasmid was cut 

using SspI and integrated into the U. maydis ip locus. 

 

pSR149 (p123 Pscp2-gfp-scp2) 

(S. Krombach, unpublished): 

The p123 derivative allows the expression of Scp2 

as an N-terminal GFP fusion under the control of the 

native scp2 promoter and the nos terminator. The 

plasmid was generated by amplifying gfp from the 

plasmid pSI14 using the primer pair SR335/SR336. 

The PCR product was cut using XbaI/BamHI and 

inserted into the vector pSR141. For stable 

integration, the plasmid was cut using SspI and 

integrated into the U. maydis ip locus. 

 

pSR175 (Pscp2-SP-Strep-HA-gfp-scp2) 

(S. Krombach, unpublished): 

The p123 derivative was used to express a 

fluorescently labeled Scp2 fusion protein that is 

targeted to the secretory pathway. The plasmid 

contains an N-terminal Strep-HA affinity tagged gfp-

scp2 construct under the control of the native scp2 

promoter and the nos terminator. The fusion protein 

Strep-HA-GFP-Scp2 further contains the signal 

peptide from the effector protein Stp1 at its N-

terminus which targets the protein to the secretory 

pathway. pSR175 was generated by amplifying the 

gfp gene from the vector p123 by using the primer 

pair SR387/SR388. The PCR product was cut using 

XbaI and subsequently inserted into the plasmid 

pSR140. 
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pSR176 (Pscp2-SP-Strep-HA-mcherry-scp2) 

(S. Krombach, unpublished): 

The p123 derivative resembles the vector pSR175 

but contains a mcherry gene instead of a gfp gene. 

pSR176 was generated by amplifying the mcherry 

gene from the plasmid p123-mCherry-HA #4 using 

the primer pair SR387/SR388 which insert xbaI 

restriction sites. The PCR product was cut using 

XbaI and subsequently inserted into the plasmid 

pSR140. For stable integration, the plasmid was cut 

using SspI and integrated into the U. maydis ip locus. 

 

pSR262 (Pscp2-scp2-GSA) (this thesis): 

The p123 derivative was used as a progenitor 

plasmid for the generation of pSR261. The plasmid 

contains the scp2 gene under the control of the native 

scp2 promoter and the nos terminator and allows the 

cytoplasmic expression of Scp2. pSR262 was 

generated by performing a PCR with the primer pair 

SR281/SR507 on the plasmid pSR141 to achieve the 

primer based insertion of the three additional amino 

acids GSA at the Scp2 C-terminus. The 2.0 kb PCR 

product was cut using Acc65I7/NotI and reintegrated 

into the plasmid pSR141. For stable integration, the 

plasmid was cut using SspI and integrated into the U. 

maydis ip locus. 

 

pSR285 (Pum11277-um11277) (this thesis): 

The p123 derivative was used as a progenitor 

plasmid for the generation of pSR288. The plasmid 

allows the expression of um11277 under control of 

the native um11277 promoter and the nos terminator. 

The plasmid was generated by amplifying the 

um11277 promoter and gene sequence from U. 

maydis gDNA using the primer pair SR526/SR527. 

The 1.9 kb PCR product was cut using KpnI/NotI 

and integrated into the plasmid p123. For stable 

integration, the plasmid was cut using AgeI and 

integrated into the U. maydis ip locus. 

 

pSR286 (Pum01850-um01850) (this thesis): 

The p123 derivative was used as a progenitor 

plasmid for the generation of pSR336. The plasmid 

allows the expression of um01850 under control of 

the native um01850 promoter and the nos terminator. 

pSR286 was generated by amplifying the um01850 

promoter and gene sequence from U. maydis gDNA 

using the primer pair SR528/SR529. The 1.6 kb PCR 

product was cut using KpnI/NotI and inserted into 

the plasmid p123. For stable integration, the plasmid 

was cut using SspI and integrated into the U. maydis 

ip locus.   

 

pSR288 (Pum11277-(xbaI)-um11277) (this thesis): 

The p123 derivative was used as a progenitor 

plasmid for the generation of pSR291. The plasmid 

allows the expression of um11277 under control of 

the native um11277 promoter and the nos terminator. 

The C-terminal part of the um11277 promoter 

sequence contains an xbaI restriction site for the 

generation of mCherry or GFP fusion constructs. 

The plasmid was generated by performing a 

QuikChange™ PCR with the mutagenic primer 

SR530 on the plasmid pSR285. For stable 

integration, the plasmid was cut using AgeI and 

integrated into the U. maydis ip locus. 

 

pSR291 (Pum11277-gfp-um11277) (this thesis): 

The p123 derivative allows the expression of 

um11277 as an N-terminal GFP fusion under the 

control of the native um11277 promoter and the nos 

terminator. The plasmid was generated by extracting 

the sequence encoding gfp from pSR175 using XbaI 

and inserting it into pSR288. For stable integration, 

the plasmid was cut using AgeI and integrated into 

the U. maydis ip locus. 

 

pSR336 (Pum01850-(bamhI-xbaI)-um01850) (this thesis): 

The p123 derivative was used as a progenitor 

plasmid for the generation of pSR337. The plasmid 

allows the expression of um01850 under control of 

the native um01850 promoter and the nos terminator. 

pSR336 was generated by performing a 

QuikChange™ PCR on the plasmid pSR286 using 

the mutagenic primer SR594 which inserts a bamhI 

and xbaI restriction site in the C-terminus of the 

um01850 promoter sequence. For stable integration, 

the plasmid was cut using SspI and integrated into 

the U. maydis ip locus.  

 

pSR337 (Pum01850-gfp-um01850) (this thesis): 

The p123 derivative was used for the visualization of 

the Scp2 paralog Um01850. The plasmid allows the 

expression of um01850 as an N-terminal GFP fusion 

under the control of the native um01850 promoter 

and the nos terminator. The plasmid was generated 

by excising the gfp encoding sequence from pSR149 

using BamHI/XbaI and inserting it into the plasmid 

pSR336. For stable integration, the plasmid was cut 

using SspI and integrated into the U. maydis ip locus. 

 

pSR393 (Prsp3-mcherry-HA) (this thesis): 

The p123 derivative was used for the expression of 

cytoplasmic mCherry upon penetration. The plasmid 

allows the expression of mcherry as a C-terminal HA 

affinity tagged fusion under the control of the 

penetration specific rsp3 (um03274) promoter and 

the nos terminator. pSR393 was generated by 

extracting the mcherry-HA construct from p123-

mCherry-HA #4 using BamHI/NotI and inserting the 

0.8 kb fragment into the vector pLW174. For stable 

integration, the plasmid was linearized using AgeI 

and integrated into the U. maydis ip locus. 

 

 

pSR398 (Pscp2-gfp-um11277) (this thesis): 

The p123 derivative was used for the localization of 

the Scp2 paralog Um11277 in U. maydis. The 

plasmid contains a gfp-um11277 fusion construct 

under the control of the native scp2 promoter and the 

nos terminator. pSR398 was generated by excising 

um11277 from the plasmid pSR291 using XbaI/NotI 

and inserting it into the vector pSR149. For stable 
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integration, the plasmid was cut using SalI and 

integrated into the U. maydis ip locus. 

 

pSR421 (Pam1-gfp) (this thesis): 

The p123 derivative was used as a marker construct 

for appressorium formation. The plasmid contains a 

single gfp under the control of the um01779 (am1) 

gene promoter and the nos terminator (Mendoza-

Mendoza et al., 2009). pSR421 was generated by 

amplifying the 1.2 kb um01779 promoter sequence 

from U. maydis gDNA by using the primer pair 

SR743/SR744. The PCR product was cut using 

KpnI/NcoI and inserted into the vector p123.

 

Plasmids used in this thesis: 

JF1742 (J. Freitag, AG M. Bölker): 

The plasmid was used to visualize peroxisomes. The 

plasmid contains the gene gfp under control of the 

etef promoter and the nos terminator. The gfp gene 

was C-terminally fused with the peroxisomal 

targeting sequence 1 from the gene gapdh. The 

targeting sequence consists of the 36 nucleotides at 

the C-terminus of gapdh and encode for the 12 amino 

acid PTS1 sequence: MAQKDSAGASRL. For 

stable integration, the plasmid was cut using SspI 

and integrated into the U. maydis ip locus. 

 

pMM69 (M. Moretti, unpublished): 

The plasmid was used for the appressorium specific 

expression of cytoplasmic mCherry. It contains the 

gene mcherry under control of the am1 (um01799) 

promoter (Mendoza-Mendoza et al., 2009) and the 

nos terminator. pMM69, further, encodes for a 

neomycin resistance gene (neo) under the control of 

the otef promoter and the cyc1 terminator. The mig2-

6 locus encoded in the vector was used for the 

integration of the plasmid into the U. maydis 

genome. For stable integration, the plasmid was 

linearized in the mig2-6 locus using EcoNI and 

integrated into the U. maydis mig2-6 locus. 

 

pomChrab5a (Schuster et al., 2011): 

The plasmid was used to visualize early endosomes. 

The p123 derivative contains a mcherry-rab5a 

fusion construct under control of the otef promoter 

and the native rab5a terminator. The plasmid, 

further, encodes for a nourseothricin resistance 

cassette upstream of the otef promoter. For stable 

integration, the plasmid was cut using HpaI and SspI, 

the resulting 5.3 kb fragment was extracted and 

integrated ectopically into the U. maydis genome. 

 

pSR110 (Pscp2-scp2) (F. Ahrens, unpublished): 

The p123 derivative served as a complementation 

construct for um11938 (scp2) deletion strains. The 

plasmid contains the gene scp2 under the control of 

the native scp2 promoter and the nos terminator. 

pSR110 was generated by amplifying the promoter 

and gene sequence of scp2 from U. maydis gDNA 

using the primer pair SR281/SR282. The resulting 

1.9 kb PCR product was cut using Acc65I/NotI and 

integrated into the plasmid p123. For stable 

integration, the plasmid was cut using SspI and 

integrated into the U. maydis ip locus. 

 

 

pSR140 (Pscp2-SP-Strep-HA-scp2)  

(S. Krombach, unpublished): 

The p123 derivative was used for the signal peptide 

(SP) mediated secretion of Scp2 via the classical 

secretory pathway. The plasmid allows the 

expression of scp2 as an N-terminal Strep-HA 

affinity tagged fusion under the control of the native 

scp2 promoter and the nos terminator. The scp2 gene 

is N-terminally fused to the signal peptide sequence 

of the effector Stp1. The SP-HA-Strep construct was 

generated de novo (oligo assembly) with the primers 

SR341-SR348 and integrated into the plasmid 

pSR141 (BamHI/XbaI). For stable integration, the 

plasmid was cut using SspI and integrated into the U. 

maydis ip locus. 

 

pSR162 (Pscp2-Strep-HA-scp2 (AKL/AAA))  

(S. Krombach, unpublished): 

The p123 derivative was used for the expression of 

cytoplasmic Scp2. The plasmid allows the 

expression of scp2 as an N-terminal Strep-HA 

affinity tagged fusion under the control of the native 

scp2 promoter and the nos terminator. The C-

terminal scp2 PTS1 sequence AKL was replaced by 

the mutant version AAA to prohibit peroxisomal 

targeting. pSR162 was generated by extracting the 

0.8 kb mutated version of the scp2 C-terminus from 

the plasmid pSR146 by using the restriction enzymes 

MluI and NotI. The mutated scp2 C-terminus 

extracted from pSR146 subsequently replaced the 

non-mutated C-terminus of scp2 in the progenitor 

plasmid pSR115. For stable integration, the plasmid 

was cut using SspI and integrated into the U. maydis 

ip locus. 

 

pSR209 (TOPOΔum11938-Hyg) (this thesis): 

The construct was generated for the deletion of the 

gene um11938 (scp2). The plasmid contains the hph 

gene (hygromycin resistance) under the control of 

the U. maydis hsp70 promoter and the nos terminator 

flanked by the 1.0 kb left border and 1.1 kb right 

border of the gene um11938 (scp2). The left and 

right border of scp2 were amplified using the primer 

pairs SK109/SK110 and SR322/SR323, 

respectively. In an intermediate cloning step both 

flanks were integrated into the pCRII-TOPO vector. 

The hygromycin resistance cassette was extracted 

from the plasmid pHwtFRT using SfiI. The right 

scp2 border was extracted from its intermediate 

vector by using the restriction enzymes SfiI and 

NotI. The intermediate vector harboring the left scp2 
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border linearized with SfiI and NotI served as the 

backbone vector. A three fragment ligation was 

performed to assemble the deletion construct 

pSR209. For stable integration, the plasmid was cut 

using EcoRI and the resulting 4.9 kb fragment was 

extracted and transformed into the U. maydis 

genome. 

 

pSR239 (Δum11277-Neo) 

(S. Reißmann, unpublished): 

Generated for the deletion of the gene um11277. The 

plasmid contains the geneticin resistance cassette 

under the otef promoter and the cyc1 terminator 

flanked by the 1.1 kb left border and the 1.1 kb right 

border of the gene um11277. The left and right 

border of um11277 were amplified using the primer 

pairs SR457/SR458 and SR459/SR460, 

respectively. The geneticin resistance cassette was 

extracted from the plasmid pMM001 using SfiI. The 

yeast vector pRS426 linearized using BamHI/KpnI 

served as a backbone. pSR239 was assembled using 

“Drag&Drop cloning in yeast“ (Jansen et al., 2005). 

For stable integration, the plasmid was cut using 

SspI and the resulting 4.2 kb fragment was extracted 

and transformed into the U. maydis genome. 

 

pSR241 (Δum01850-Nat) 

(S. Reißmann, unpublished): 

The construct was generated for the deletion of the 

gene um01850. The plasmid contains the nat gene 

(nourseothricin resistance (ClonNat)) under the 

control of the gapdh promoter and the cyc1 

terminator flanked by the 1.1 kb left border and 1.1 

kb right border of the gene um01850. The left and 

right border of um01850 were amplified using the 

primer pairs SR461/SR462 and SR463/SR464, 

respectively. The nourseothricin resistance cassette 

was extracted from the plasmid pMF1-n using SfiI. 

The yeast vector pRS426 linearized using 

BamHI/KpnI served as a backbone. pSR241 was 

assembled using “Drag&Drop cloning in yeast“ 

(Jansen et al., 2005). For stable integration, the 

plasmid was cut using PvuII and the resulting 3.7 kb 

fragment was extracted and transformed into the U. 

maydis genome. 

 

pSR261 (Pscp2-SP-scp2-GSA) (this thesis): 

The p123 derivative was used for the signal peptide 

(SP) mediated secretion of Scp2 via the classical 

secretory pathway. The plasmid contains the scp2 

gene under the control of the native scp2 promoter 

and the nos terminator. The scp2 gene is N-

terminally fused to the signal peptide sequence of the 

effector Stp1. The C-terminal scp2 PTS1 sequence 

AKL is masked by the addition of the three amino 

acids GSA. The Stp1 signal peptide was generated 

by de novo synthesis (oligo assembly) using the 

primers SR390-SR393 and integrated into the vector 

pSR262 (BamHI). For stable integration, the plasmid 

was cut using SspI and integrated into the U. maydis 

ip locus. 

 

pSR263 (Pscp2-scp2-AKL) (this thesis): 

The p123 derivative contains the scp2 gene under the 

control of the native scp2 promoter and the nos 

terminator and allows the cytoplasmic expression of 

Scp2. pSR263 was generated by performing a PCR 

with the primer pair SR281/SR510 on the plasmid 

pSR141 to achieve the primer based insertion of the 

three additional amino acids AKL at the Scp2 C-

terminus. The 2.0 kb PCR product was cut using 

Acc65I7/NotI and reintegrated into the plasmid 

pSR141. For stable integration, the plasmid was cut 

using SspI and integrated into the U. maydis ip locus. 

 

pSR319 (Pscp2-gfp-scp2-GSA) (this thesis): 

The p123 derivative was used to analyze the 

localization of GFP-Scp2 with a masked 

peroxisomal targeting sequence. The plasmid 

contains a gfp-scp2 fusion construct under the 

control of the native scp2 promoter and the nos 

terminator. The peroxisomal targeting sequence of 

scp2 is thereby masked by the addition of the three 

amino acids GSA at the C-terminus of the protein. 

The plasmid was generated by amplifying the gfp 

gene from the plasmid pSI14 using the primer pair 

SR387/SR388. After restriction of the 0.8 kb PCR 

product with XbaI the fragment was integrated into 

the plasmid pSR261. For stable integration, the 

plasmid was cut using SspI and integrated into the U. 

maydis ip locus. 

 

pSR324 (Δum01892-Neo) 

(S. Reißmann, unpublished) 

The pJET derivative was generated for the deletion 

of the mitochondrial U. maydis isocitrate lyase 

um01892. The plasmid contains the neo gene 

(geneticin resistance) under the control of the otef 

promoter and the cyc1 terminator flanked by the 0.7 

kb left border and 0.9 kb right border of the gene 

um01892. The left and right border of um01892 were 

amplified using the primer pairs SR574/SR575 and 

SR576/SR577, respectively. The geneticin 

resistance cassette was extracted from the plasmid 

pMM001 using SfiI. pSR324 was assembled using 

the DNA assembly method described in Gibson et 

al., 2009 . For stable integration, the plasmid was cut 

using SspI and the resulting 4.0 kb fragment was 

integrated into the U. maydis genome. 

 

pSR395 (Pscp2-hscp2) (this thesis): 

The p123 derivative was used for the expression of 

human scp2 (hscp2). The plasmid allows the 

expression of hscp2 under control of the native U. 

maydis scp2 promoter and the nos terminator. The 

synthesized codon optimized version of hscp2 

contained xbaI/notI restriction sites that were used to 

insert the sequence into the vector pSR141. For 

stable integration, the plasmid was cut using SspI 

and integrated into the U. maydis ip locus. 

 

pSR396 (Pscp2-YLscp2) (this thesis): 

The p123 derivative was used for the expression of 

Yarrowia lipolytica Scp2 (YLscp2). The plasmid 
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allows the expression of YLscp2 under control of the 

native U. maydis scp2 promoter and the nos 

terminator. The synthesized codon optimized 

version of YLscp2 contained xbaI/notI restriction 

sites that were used to insert the sequence into the 

vector pSR141. For stable integration, the plasmid 

was cut using SspI and integrated into the U. maydis 

ip locus. 

 

pSR397 (Pscp2-Strep-HA-gfp-AKL) (this thesis): 

The p123 derivative was used to express 

peroxisomal GFP. The plasmid allows the 

expression of gfp as an N-terminal Strep-HA affinity 

tagged fusion under the control of the native scp2 

promoter and the nos terminator. In addition, the 

peroxisomal targeting sequence 1 (AKL) was fused 

to the C-terminus of gfp. The plasmid was generated 

by amplifying a Strep-HA-gfp fusion construct from 

the plasmid pSR175 using the primer pair 

SR715/SR716. The PCR product was cut using 

BamHI/NotI and subsequently inserted into the 

plasmid pSR141. For stable integration, the plasmid 

was cut using SspI and integrated into the U. maydis 

ip locus. 

 

pSR399 (Pscp2-gfp-um01850) (this thesis): 

The p123 derivative was used for the localization of 

the Scp2 paralog Um01850 in U. maydis. The 

plasmid contains a gfp-um01850 fusion construct 

under the control of the native scp2 promoter and the 

nos terminator. pSR399 was generated by excising 

um01850 from the plasmid pSR337 using XbaI/NotI 

and inserting it into the vector pSR149. For stable 

integration, the plasmid was cut using SspI and 

integrated into the U. maydis ip locus. 

 

pSR404 (Pcmu1-scp2) (this thesis): 

The p123 derivative was used for the overexpression 

of the gene scp2 during plant infections. The plasmid 

contains the gene scp2 under the control of the cmu1 

(um05731) promoter and the nos terminator. pSR404 

was generated by amplifying the 0.9 kb cmu1 

promoter sequence from U. maydis gDNA using the 

primer pair OLL248/OLL294. The PCR product was 

cut using KpnI/BamHI and integrated into the vector 

pSR141. For stable integration, the plasmid was cut 

using SspI and integrated into the U. maydis ip locus. 

 

pSR405 (Pcmu1-mcherry-AKL) (this thesis): 

The p123 derivative was used for the overexpression 

of peroxisomal mCherry during plant infections. The 

plasmid contains mcherry with a C-terminal 

peroxisomal targeting sequence 1 (AKL). The fusion 

construct is under the control of the cmu1 (um05731) 

promoter and the nos terminator. pSR405 was 

generated by amplifying mcherry-AKL from the 

plasmid pSR176 by using the primer pair 

SR717/SR718. The PCR product was cut using 

XbaI/NotI and integrated into the vector pSR404. 

For stable integration, the plasmid was cut using 

SspI and integrated into the U. maydis ip locus. 

 

pSR422 (Pum01779-gfp_Prsp3-mcherry-HA) 

(this thesis): 

The p123 derivative was used as a marker construct 

for appressorium formation and penetration of the 

plant cuticle, simultaneously. The plasmid allows the 

appressorium specific expression of a single gfp 

under the control of the um01779 (am1) gene 

promoter and the nos terminator (Mendoza-

Mendoza et al., 2009). In addition pSR422 expresses 

a mcherry gene under the control of the native rsp3 

(um03274) promoter and the nos terminator that 

contains a C-terminal HA-affinity tag. Rsp3 is 

upregulated upon penetration and therefore allows 

the visualization of successful penetration events. 

pSR422 was generated by amplifying the Prsp3-

mcherry-HA construct from the plasmid pSR393 

using the primer pair SR745/SR746. The 2.7 kb PCR 

product was cut using EcoRV and inserted into the 

vector pSR421. For stable integration, the plasmid 

was cut using AgeI and integrated into the U. maydis 

ip locus. 

 

pSR429 (Pscp2-scp2-Nat) (this thesis): 

The p123 derivative served as a complementation 

construct for scp2 deletion strains. The plasmid 

contains the gene scp2 under the control of the native 

scp2 promoter and the nos terminator. The plasmid 

further contains a nat resistance gene that confers 

resistance to nourseothricin. The plasmid was 

generated by extracting the resistance cassette from 

the plasmid pMF1-n (Brachmann et al., 2004) by 

using PvuII and the subsequent insertion into the 

vector pSR110. For stable integration, the plasmid 

was cut using SspI and integrated into the U. maydis 

ip locus. 
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4.4 Microbiological and cell biology methods 

4.4.1 Competent cell preparation and transformation of E. coli 

Competent cell preparation and chemical transformation of E. coli were modified from Cohen 

et al. (1972). E. coli TOP10 cells were grown in 20 ml dYT medium at 37 °C and 200 rpm 

overnight. Cultures were diluted 1:50 in 100 ml dYT medium supplemented with MgCl2 and 

MgSO4 to a final concentration of 10 mM, respectively. Cultures were grown to a cell density 

OD600 of about 0.6 at 37 °C and 200 rpm for 2-2.5 hours. The culture was transferred to a 

microcentrifuge tube, incubated on ice for 30 min and centrifuged at 4 °C for 8 min at 3,000 

rpm. The supernatant was discarded and cells were resuspended in 33 ml (1/3 of the initial 

volume) of pre-chilled RF1-solution and incubated for 30 min on ice at 4 °C. The suspension 

was centrifuged at 4 °C for 8 min at 3,000 rpm and the supernatant was discarded. E. coli cells 

were resuspended in 1/20 culture volume (5 ml) of pre-chilled RF2-solution and incubated for 

30 min on ice. Finally, 50 µl aliquots of competent cell suspension in pre-chilled 1.5-ml 

microcentrifuge tubes were kept on ice for direct use or stored at - 80 °C for later use. 

RF1-solution 100 mM Rubidium chloride 

50 mM Manganese(II) chloride x 4H2O 

30 mM Kaliumacetate* 

10 mM Calcium chloride x 2H2O 

15 % (w/v) Glycerol  

pH was adjusted to 5.8 (glacial acetic acid) and 

sterile filtered (Store at 4 °C) 

* Use 1 M Kaliumacetate solution adjusted to pH=7.5 using glacial acetic acid. 

RF2-solution 10 mM MOPS* 

10 mM Rubidium chloride 

75 mM Calcium chloride x 2H2O 

15 % (w/v) Glycerol  

pH was adjusted to 5.8 (NaOH) and sterile 

filtered (Store at 4 °C) 

* Use 0.5 M MOPS adjusted to pH=6.8 using NaOH 

 

To transform E. coli, 50 µl aliquots of competent E. coli cells were thawed on ice for 2 min. 

Subsequently, up to 10 µl DNA solution was added (re-transformation of plasmids: 1 µl of a 

plasmid miniprep; ligation: 1 µl of ligation product), gently mixed and incubated on ice for 20 

min. E. coli cells were then heat shocked at 42 °C for 30 sec and immediately cooled on ice. 

For the recovery of the cells, 600 µl dYT medium (without antibiotics) was added and cells 

were incubated on a heating block (Eppendorf, Wesseling-Berzdorf) at 850 rpm for 15 min (for 

transformations using ampicillin) at 37 °C. The E. coli cell suspension was centrifuged at 6,000 

rpm. Half of the supernatant was discarded and the cells were resuspended in the remaining 
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supernatant. Finally, the entire cell suspension was plated on YT-agar containing the 

appropriate selective antibiotic and incubated at 37 °C overnight. 

4.4.2 Protoplast preparation and transformation of U. maydis 

Protoplast preparation and transformation of U. maydis strains was performed as described in 

Schulz et al. (1990). U. maydis cells were incubated overnight in 50 ml YEPSlight medium at 

28° C and 200 rpm. In the morning, cell cultures were diluted to a cell density of OD600 0.1-0.2 

and grown to a cell density of OD600 0.8-1.0. Cells were harvested by centrifugation at 4 °C for 

5 min at 3,000 rpm, washed in 25 ml SCS and resuspended in 2 ml SCS containing 3.5 mg/ml 

Novozyme. Cells were incubated for about 5 min at room temperature to digest the cell wall, 

which was monitored under the microscope. Afterwards, U. maydis cells were washed three 

times with 10 ml ice cold SCS and centrifuged at 2,400 rpm for 5 min at 4 °C. This was followed 

by an additional wash with ice cold STC and centrifugation step. Finally, protoplast pellets were 

carefully resuspended in 0.5 ml of ice cold STC, and 60 µl of protoplasts were aliquoted into 

pre-chilled 1.5 ml microcentrifuge tubes for immediate use, or stored at -80 °C for later use. 

For transformation of protoplasts, 1 µl heparin (stock solution 15 mg/ml) and up to 10 µl of 

DNA (3-5 µg) was added to the protoplast aliquot and incubated for 10 min on ice. Afterwards, 

500 µl STC/PEG were added to the protoplasts, mixed gently, and incubated for another 15 min 

on ice. The transformation mix was plated on regeneration agar plates. Transformed colonies 

appeared after 4-6 days and were singled out on PD-agar plates containing the appropriate 

antibiotic. Single colonies were picked and saved on PD-plates. The regeneration agar plates 

were prepared by first pouring a bottom phase with 10 ml regeneration agar containing the 

appropriate concentration of antibiotic (twice the amount as indicated for solid medium plates, 

chapter 4.2.2). Subsequently, 10 ml of regeneration agar without antibiotics was poured on top 

and solidified.  

SCS solution  Solution 1 
 0.6 % (w/v) Sodium citrate * 2H2O (f. c. 20 mM) 

 18.2 % (w/v) Sorbitol (Sigma S-1876) (f. c. 1 M) 

 

Solution 2 

0.4 % (w/v) Citric acid * H2O (f. c. 20 mM) 

 18.2 % (w/v) Sorbitol (Sigma S-1876) (f. c. 1 M) 

 

Dissolve each in H2Obid. Add enough solution 2 

to solution 1 to reach pH 5.8 (The ratio between 

solution 1 to solution 2 is approximately 5:1) and 

autoclave. 
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STC solution 10 mM Tris-Cl, pH 7.5 

100 mM CaCl2 

1 M Sorbitol 

Dissolve in H2Obid and sterile filtrate 

 

STC/PEG solution 60.0 % (v/v) STC-buffer 

40.0 % (w/v) PEG (Sigma P-3640) 

 Mix and sterile filtrate 

 

Regeneration agar U. maydis 1.0 % (w/v) Yeast-Extract (Bacto) 

 0.4 % (w/v) Peptone (Bacto) 

 0.4 % (w/v) Sucrose (Roth) 

18.22 % (w/v) Sorbitol (Sigma S-1876) (f.c. 1 M) 

1,5 % (w/v) Agar (Bacto) 

 Dissolve in H2Obid and autoclave. 

 

4.4.3 Induction of filaments and appressoria in vitro 

The in vitro induction of b-filaments and appressoria was accomplished as described in 

Mendoza-Mendoza (2009) with slight changes. Parafilm M (Pechiney Plastic Packaging, 

Chicago/USA) was used as an artificial hydrophobic surface. Respective strains were grown 

until reaching OD600 0.6 and subsequently harvested by centrifugation at 3,500 g for 5 min at 

room temperature. The supernatant was discarded and the cell pellet diluted in 2 % YEPSlight 

(in H2Obid) to an OD600 of 0.1. The cell suspension was supplemented with 100 µM 16-hydroxy 

hexadecanoic acid (HFA) (Sigma-Aldrich, Munich, Germany). For this a 10 mM stock solution 

(in ethanol) was diluted to a ratio of 1:100 with the cell suspension. Subsequently, the cell 

suspensions were sprayed on parafilm (EcoSpray, Roth, Karlsruhe) with a drops size of not 

more than 1 mm. The microscope slide was transferred to a petri dish containing moist filter 

paper, sealed with parafilm and incubated at 28 °C for 16 h.  

Prior to the microscopic analysis sporidia that remained on the parafilm surface were washed 

off with water. For the microscopic quantification of filaments expressing the appressorial 

AM1-marker (Mendoza-Menodza et al., 2009), the percentage of AM1-positive hyphae was 

determined relative to the total number of filaments. For the microscopic quantification of 

appressoria, the percentage of AM1-positive filaments displaying a thickening of the hyphal tip 

was determined relative to the total number of AM1-positive filaments.  

For the induction of SG200 b-filaments in liquid culture using HFA the cells were cultivated as 

described earlier for applying cells on parafilm. One milliliter of the cell suspension was filled 

into a 2 ml reaction tube and supplemented with 500 µM 16-hydroxyhexadecanoic acid (HFA). 

The cells were incubated on a rotating incubator for 16 hours and forming filaments were 

analyzed by microscopy.  
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For the induction of b-filaments in AB33 derivatives the strains were cultivated to an OD600 of 

0.6 in YEPSlight and harvested by centrifugation at 3,500 g for 5 min at RT. Subsequently, the 

cells were washed twice with pre-warmed (28 °C) H2Obid to remove residual medium. The cell 

pellet was dissolved in pre-warmed (28 °C) NM-glc. The formation of b-filaments was observed 

microscopically after approximately 6 hours of incubation at 28 °C. 

4.5 Molecular biological methods 

4.5.1 In vitro modification of nucleic acids 

Standard molecular biology methods, such as purification, precipitation, electrophoresis of 

DNA or molecular cloning techniques were performed following the protocols described in 

Ausubel et al. (1987) and Sambrook et al. (1989). The concentration of nucleic acids was 

determined by photometry. Photometric measurements were performed using a NanoDrop 2000 

spectrophotometer (Life Technologies GmbH, Darmstadt, Germany). The purity of nucleic 

acids was determined by the ratio of A260 to A280. For purified DNA and RNA samples, the 

A260 to A280 ratios were about 1.8 and 2.0, respectively. 

4.5.1.1 Restriction of DNA 

The restriction of DNA fragments was accomplished by type II restriction endonucleases (NEB, 

Frankfurt, Germany) for 2-16 hours at enzyme specific temperatures. The amount of utilized 

DNA ranged from 0.5 µg to 5 µg.  

Restriction reaction: 

0.5 - 5 μg  plasmid DNA 

2 μl   enzyme specific 10x NEB-Puffer 1-4 

2 μl   10x BSA 

0.5 U   restriction endonuclease 

20 μl vol. with H2Obid 
 

4.5.1.2 Dephosphorylation of linear DNA 

Dephosphorylation was done whenever necessary in the cloning procedure such as blunt-end 

ligations. Dephosphorylation using the Antarctic phosphatase (NEB, Frankfurt, Germany) was 

utilized to remove phosphate groups from the 5´-ends of DNA fragments. 

Dephosphorylation reaction: 

20 µl  restriction reaction 

10 μl  Antarctic phosphatase buffer 

25 U  Antarctic phosphatase 

100 μl vol. with H2Obid. 
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4.5.1.3 Ligation of DNA fragments 

For the ligation of DNA fragments the T4 DNA ligase (NEB, Frankfurt, Germany) was 

used. In ligation reactions in which a linearized vector was ligated with an insert the 

corresponding DNA was used in a molar ratio of 1:3. For three-fragment-ligations a molar ratio 

of 1:1:1 was used. Commonly 20 µl reactions contained one U of T4 DNA ligase and were 

incubated for at least 2 hours at room temperature or overnight in a 16 °C circulating water 

bath. The amount of utilized DNA ranged from 50 ng to 2 µg. 

4.5.1.4 Self-assembly reaction of oligonucleotides (Oligo assembly) 

For the de novo synthesis of small DNA fragments a self-assembly reaction was performed. 

Overlapping primers were designed that covered the whole length of the desired construct. The 

primers positioned at the 3´and 5´ end of the assembled construct were designed to generate 

cohesive ends allowing the immediate ligation of the construct into the target vector without 

previous restriction enzyme treatment. For the oligo assembly reaction all oligos were 

phosphorylated in separate reactions using the Polynucleotide kinase (PNK) (NEB, Frankfurt, 

Germany) for 30 min at 37 °C. The PNK was subsequently inactivated for 20 min at 65 °C.  

Phosphorylation reaction (oligo assembly): 

5 µl  oligo (100 pmol/µl) 

5 µl  T4 DNA ligase buffer (10x) 

39 µl  H2Obid 

1 µl  Polynucleotide kinase (NEB, Frankfurt, Germany) 

 

The phosphorylated oligos were combined in a single reaction tube and denatured at 99 °C for 

15 min on a heating block. Subsequently, the heating block was turned off and the reaction was 

slowly cooled down to room temperature. The following annealing reaction combined the 

phosphorylated oligos and simultaneously mediated the insertion into the respective vector 

backbone. The backbone vector was linearized with restriction enzymes beforehand and 

dephosphorylated to prevent self-ligation (chapter 4.5.1.2). The ligation reaction was incubated 

overnight in a 16 °C circulating water bath. 

Ligation reaction (Oligo assembly): 

5 µl  linearized vector backbone 

1 µl  denatured oligo mix 

1 µl  T4 DNA ligase buffer (10x) 

39 µl  H2Obid 

1 µl  T4 DNA ligase 
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4.5.1.5 De novo synthesis of genes 

The sequence of the human Scp2 precursor protein (GenBank: M55421.1), the protein sequence 

of the mature human 13 kDa Scp2 protein (PDB: 1QND_A) and the Yarrowia lipolytica Scp2 

sequence (accession number P80547.4) were derived from the “National Center of 

Biotechnology Information” (NCBI; http://www.ncbi.nlm.nih.gov/). The synthetic genes of 

hscp2 and YLscp2 were purchased from Eurofins Genomics (Ebersberg/Munich, Germany). 

The respective gene sequences were ordered as optimized versions for U. maydis codon usage 

and contained an xbaI restriction site at the 5` and a notI restriction site at the 3` end for further 

cloning. The following restriction sites were determined to be excluded from the synthesized 

sequences: bamhI, notI (except at the 3` end), pvuII, sspI and xbaI except at the 5` end). The de 

novo synthesized genes were subcloned and delivered in a standard vector from which they 

were excised using XbaI and NotI. 

4.5.1.6 Site-directed mutagenesis  

The site-specific mutation of plasmids was performed using the “QuikChange Lightning Site-

Directed Mutagenesis Kit” (Agilent Technologies, Santa Clara, CA, USA) which allows the 

insertion of site-specific mutations in double-stranded plasmids. The mutagenesis was 

performed according to the manufacturers' specifications. 

4.5.1.7 Polymerase Chain Reaction (PCR) 

To amplify DNA fragments for cloning or for analytical purposes, the polymerase chain 

reaction (PCR) was used (Mullis et al., 1986). Depending on the application, different 

polymerases were used. For amplification of DNA for cloning purposes Phusion DNA 

polymerase was used (Thermo Fisher Scientific, Dreieich, Germany). For Colony-PCR/Screens 

on a large scale the RedMix premix (Bioline, Luckenwalde, Germany) was used which 

contained the Taq polymerase. Typical approaches for the individual polymerases are described 

below. The respective PCR program used is represented by the following scheme: Initial 

denaturation - [denaturation - annealing - elongation] x number of cycles - final elongation. The 

elongation time was chosen based on the expected fragment size and rate of synthesis by the 

polymerase used. The annealing and melting temperatures of the oligonucleotides were 

calculated by the Clone Manager 9.0 software (Sci-Ed Software, Cary / USA) in silico. All PCR 

reactions were performed in a TProfessional Standard Gradient Thermocycler (Biometra, 

Goettingen, Germany). 

 



Material and Methods  92 

PCR approach with Phusion DNA polymerase: 

50 ng  template DNA 

250 µM dNTPS (1:1:1:1 ratio) 

1 μM  primer 1 (binds on 5´Strand) 

1 μM  primer 2 (binds on 3´Strand) 

0.5 U Phusion DNA polymerase 

1x concentrated HF buffer (Thermo Fisher Scientific, Dreieich, Germany) 

Program: 98 °C/1 m - [98 °C/10 s - 55-74 °C/20 s - 72 °C/20 s/kb] x 35 cycles - 72 °C/7 m 

 

PCR approach with RedMix: 

1.25 μM primer 1 (binds on 5´Strand) 

1.25 μM primer 2 (binds on 3´Strand) 

1 μl  cell culture or 1 colony (fungi or bacteria)  

1x concentrated RedMix (Bioline) 

Program: 94 °C/2 m - [94 °C/10 s -50-65 °C/30 s - 72 °C/30 s/kb] x 35 cycles - 72 °C/8 m 

 

4.5.1.8 TOPO TA cloning 

TOPO TA cloning of DNA fragments containing blunt ends or A-overhangs into the pCRII-

TOPO vector was performed using the TOPO® TA Cloning® Kit (Invitrogen, Karlsruhe, 

Germany) according to the manufacturers' specifications. 

4.5.1.9 Sequencing of nucleic acids 

All generated plasmids and constructs were checked by sequencing for unwanted mutations. 

Sequencing was carried out by Eurofins MWG Synthesis (Ebersberg/Munich, Germany) using 

the cycle sequencing method (dideoxy chain termination/cycle sequencing) on ABI370XL 

sequencing machines.  

4.5.2 Isolation of nucleic acids 

4.5.2.1 Isolation of plasmid DNA from E. coli  

E. coli plasmid preparation was performed using the Qiaprep® Spin Miniprep Kit (250) (Qiagen 

GmbH, Hilden, Germany) according to the manufacturers' specifications. 

4.5.2.2 Isolation of genomic DNA from U. maydis 

U. maydis cultures were grown in YEPSlight at 28 °C and 200 rpm for 24 hours. Individual 

clones were saved by dropping 6 µl of each culture on PD plates. U. maydis cultures were then 

transferred to 2 ml microcentrifuge tubes containing 300 mg glass beads, and centrifuged for 1 

min at 13,000 rpm. The supernatant was discarded and 400 µl of Ustilago-lysis buffer 

and 500 µl of TE-phenol/chloroform was added. The cells were lysed on a Vibrax-VXR shaker 

(IKA) at 1,600 rpm for 15-20 min. Next, samples were centrifuged for 15 min at 



Material and Methods  93 

13,000 rpm and 400 µl of the aqueous phase was transferred to a new 1.5-ml microcentrifuge 

tube. Afterwards, 1 ml of ethanol was added and mixed by inverting 2-3 times. Subsequently 

the mixtures were centrifuged for 5 min at 13,000 rpm. The DNA pellets were washed once 

with 75 % ethanol as described above. Then, the pellets were centrifuged for an additional 

minute at 13,000 rpm and leftover ethanol was removed using a pipette. Finally, DNA pellets 

were dissolved in 50 µl TE buffer containing 50 µg/ml RNase A, and incubated in a heating 

block at 55 °C with gentle shaking for 15 min. Genomic DNA was stored at 4 °C. 

Ustilago-lysis buffer  2% (v/v) Triton X-100 

1% (w/v) SDS 

100 mM NaCl 

 10 mM Tris-Cl, pH 8.0 

1 mM EDTA 

dissolve in H2Obid  

TE-phenol/chloroform  Mixture of phenol (in TE-buffer) and chloroform 

in a 1:1 ratio  

 

4.5.2.3 Isolation of genomic DNA from infected plant material 

For the isolation of total gDNA from U. maydis infected plant tissue, U. maydis strains were 

injected into the corn variety Early Golden Bantam as described in chapter 4.7.2 (Pathogenicity 

assays). Infected leaf tissue was harvested at 20 hours post infection (hpi), 2 and 4 days post 

infection (dpi) in three independently conducted experiments (biological replicates). 

Approximately 2.0 cm of the third leaf (below the injection holes) of the infected plants was 

dissected, washed in 0.1 % Tween-20 (to remove sporidia remaining on the leaf surface) and 

rinsed in H2Obid. The 20 hpi leaf samples were excluded from the washing step. Subsequently, 

infected leaf tissue was patted dry with a paper towel. The samples were stored in 50 ml 

Falcon™ tubes, flash frozen in liquid nitrogen, and directly used for gDNA isolation or stored 

at -80 °C for later use. Genomic plant and fungal DNA was extracted from approximately 300 

µl grinded leaf material following the protocol in chapter 4.5.2.2 (Isolation of genomic DNA 

from U. maydis) starting with the Ustilago-lysis buffer and TE-phenol/chloroform step (without 

glass beads). gDNA samples were stored at +4 °C until use. 

4.5.2.4 Isolation of U. maydis RNA from axenic culture 

TRIzol® Reagent (Thermo Scientific, Darmstadt, Germany) was used for total RNA isolation 

according to the manufacturers' specifications. 4 ml of U. maydis overnight culture with a cell 

density of OD600 1.0 was harvested in a 2 ml microcentrifuge tube by centrifugation at 3,500 g 

for 5 min. The pellet was dissolved in 1.0 ml Trizol reagent, 300 mg of glass beads were added 

to the pellet and homogenized by shaking for 30 min on a Vibrax-VXR shaker (IKA) set to 
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1,600. Afterwards, tubes were centrifuged for 10 min at 12,000 g and 4 °C and the supernatant 

was transferred to an RNase free tube. 200 µl of chloroform were added to the samples before 

inverting them several times followed by an incubation step for 5 min at room temperature. 

Samples were centrifuged for 15 min at 12,000 g and 4 °C. The upper aqueous phase (500 µl) 

was transferred to a new 1.5 ml RNase free microcentrifuge tube. RNA was precipitated by 

addition of 500 µl isopropanol and incubated for 10 min at room temperature. After 

centrifugation for 10 min at 12,000 g and 4 °C the pellets were washed once with 1 ml of 75 % 

ethanol (freshly prepared using nuclease-free water), centrifuged for 5 min at 7,500 g and air 

dried. Finally, the RNA pellet was dissolved in 45 µl RNase free water and incubated with its 

lid open in a heating block for 10 min at 55 °C with gentle shaking. To remove traces of DNA, 

RNA samples were treated with Turbo DNase (Ambion/Applied Biosystems, Darmstadt, 

Germany). 5 µl of 10x Turbo DNase buffer and 0.5 µl of Turbo DNase were added to 45 µl of 

total RNA. Samples were incubated for 30 min at 37 °C. Another 0.5 µl of Turbo DNase was 

added followed by another 30 min of incubation at 37 °C. 5 µl of DNase inactivation reagent 

was added to the samples with subsequent incubation at room temperature for 5 min (mix in 

between). Samples were centrifuged for 90 sec at 10,000 rpm. The supernatant was transferred 

into a new RNase-free PCR-tube and the samples were stored at -80 °C until further use. 

4.5.2.5 Isolation of RNA from infected plant material 

Infected leaf tissue was harvested as described in chapter 4.5.2.3 (Isolation of genomic DNA 

from infected plant material). Samples were taken at 20 hours post infection, 2, 4 and 12 days 

post infection. Plants infected with water (“mock”) served as control. Total RNA was extracted 

from frozen homogenized infected plant tissue using Trizol reagent (Invitrogen, Karlsruhe, 

Germany) as described in the previous section 4.5.2.4 (Isolation of U. maydis RNA from axenic 

culture). For plant samples a 1.5 ml reaction tube filled up to 0.3-0.5 ml with grinded plant 

material was used starting the protocol by adding 1 ml TRIzol® Reagent without using glass 

beads.  

4.5.3 Separation and detection of nucleic acids 

4.5.3.1 Agarose gel electrophoresis 

For a size-specific separation of nucleic acids, agarose gel electrophoresis was performed. Due 

to its negative charge, DNA migrates towards the anode if an electric field is applied. 

Concentrations of agarose gels varied between 0.8 and 2 %, depending on the size of the 

fragments to be separated. The respective amount of agarose was dissolved in 1x TAE or 0.5x 

TBE buffer by boiling. After the solution was cooled down to 60 °C ethidium bromide (f. c. 
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0.25 µg/ml) was added. The gel was poured into an appropriate gel casting tray. After 

solidifying, the gel was transferred into a running gel chamber and covered with 1x TAE or 

0.5x TBE buffer, respectively. Samples were mixed with non-denaturing loading dye, loaded 

on the gel at the side of the cathode, and separated by applying a constant voltage of 90-120 V. 

DNA was visualized by UV irradiation at 254 nm on a UV table (2UV™ Transilluminator, 

UVP, Upland, CA, USA) and documented using the UV solo TS Imaging system (Biometra 

GmbH, Goettingen, Germany). 

50x TAE buffer  2 M Tris base 

2 M acetic acid 

50 mM EDTA, pH 8.0 

dissolve in H2Obid 

5x TBE buffer 440 mM Tris base 

440 mM boric acid 

10 mM EDTA, pH 8.0 

dissolve in H2Obid  

6x DNA loading dye 50 % (w/v) sucrose 

0.1 % (v/v) bromophenol blue 

dissolve in 1x TE buffer, sterile filtrate 

and store at 4 °C 

1x TE buffer      10 mM Trizma® base (Sigma T6066) 

       1 mM Na2-EDTA *2H2O 

dissolve in H2Obid, adjust pH to 8.0 with 

HCl and autoclave   

    

4.5.3.2 DNA blotting and hybridization (Southern analysis) 

For southern analysis (Southern, 1975) 10 µl of genomic DNA, isolated as described in chapter 

4.5.2.2 (Isolation of genomic DNA from U. maydis), was treated with the respective restriction 

enzyme overnight. Digestions were separated on a 1x TAE 0.8 % agarose gel for 3 h at 90 V. 

After depurination with 0.25 M HCl for 15 min, which is a prerequisite for transfer of large 

DNA fragments, and subsequent neutralization with 0.4 M NaOH for 15 min, the DNA was 

transferred from the gel to a nylon membrane (Hybond-N+, GE Healthcare Munich, Germany). 

The transfer was facilitated by a capillary blot with 0.4 M NaOH as transfer solution. 

Afterwards the membrane was placed into a hybridization tube, in which all subsequent steps 

were carried out. The membrane was pre-hybridized with 20 ml Southern hybridization buffer 

in a hybridization oven (HB-1000 Hybridizer, UVP) at 68 °C for 30 min. Immobilized DNA 

was detected by DIG-labeled probes. To generate such probes, DNA fragments were labeled 

with PCR-based DIG-High Prime labeling mix (Roche Diagnostics, Mannheim, Germany) 

according to the manufacturers' specifications. Probes were denatured at 95 °C for 10 min and 

added to 20 ml pre-warmed Southern hybridization buffer (68 °C). After prehybridization of 
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the membrane with Southern hybridization buffer, the buffer was removed and the prepared 

probe solution was added. Hybridization was performed at 68 °C for at least 6 h. Afterwards 

the membrane was washed twice with Southern wash buffer at 68 °C for 15 min. All subsequent 

steps were performed at room temperature. The membrane was washed once with DIG wash 

buffer for 5 min followed by a 30 min blocking step with DIG2 buffer. After blocking, 20 ml 

of the DIG antibody solution was added. Membrane and antibody solution were incubated for 

30 min followed by three 15 min washing steps in DIG wash buffer to remove residual antibody. 

The membrane was equilibrated in DIG3 buffer for 5 min. Subsequently, the membrane was 

incubated in CDP star solution for 5 min. After an incubation of 15 min at 37 °C, to activate 

the light emitting reaction, DNA fragments were visualized using X-ray films (AGFA 

HealthCare, Mortsel, Belgium) and a developer machine (Fuji Medical Film Processor, 

Fujifilm).  

Southern hybridization buffer  50 % (v/v) Na-phosphate buffer, pH 7.0  

(f. c. 0.5 M)  

35 % (v/v) 20 % SDS 

dissolve in H2Obid  

  

Southern wash buffer  10.0 % (v/v) 1 M Na-phosphate buffer, pH 7.0 

(f. c. 0.1 M)  

5.0 % (v/v) 20 % SDS (f. c. 1 %)  

dissolve in H2Obid  

 

1 M Na-phosphate buffer, pH 7.0 Solution 1: 1 M Na2HPO4 

Solution 2: 1 M NaH2PO4xH2O 

Add Solution 2 to Solution 1 until pH reaches 7.0 

in H2Obid  

 

DIG wash buffer    0.3 % (v/v) Tween-20 in DIG1 

 

Anti-DIG antibody solution   Anti-DIG AB 1:10,000 in DIG2 

 

DIG1 (1x)  0.1 M maleic acid 

0.15 M NaCl 

dissolve in H2Obid, adjust pH to 7.5 (NaOH) 

 

DIG2 (1x)     1 % (w/v) milk powder in DIG1 

 

DIG3 (1x)  0.1 M Tris-HCl (pH 9.5) 

0.1 M NaCl 

50 mM MgCl2 

dissolve in H2Obid, adjust pH to 9.5 (Tris-HCl) 

and sterile filtrate  

 

CDP-Star Solution    CDP-Star (Roche) 1:100 in 10 ml DIG3 
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4.5.3.3 Quantitative Real-Time-PCR (qPCR) 

For expression analysis of genes total RNA was obtained from axenic culture samples (chapter 

4.5.2.4) as well as from infected leaf material (chapter 4.5.2.5). Removal of DNA 

contaminations from RNA samples was performed with the Turbo DNA-free Kit (Thermo 

Fisher Scientific) according to the manufacturers' specifications. The purity of RNA samples 

was accessed by determining the ratio of absorbance at 260 nm and 280 nm using the NanoDrop 

2000 Spectrophotometer (Life Technologies GmbH, Darmstadt, Germany). A sample ratio of 

2.0 is generally accepted as pure RNA. The approximate total amount of RNA was visualized 

by gel electrophoreses. After removal, the pure RNA was subjected to reverse transcription to 

generate cDNA from mRNA. mRNA was transcribed into cDNA employing the Super III First 

Strand Synthesis Super Mix Kit (Invitrogen, Karlsruhe, Germany). Reverse transcription was 

performed according to the manufacturers' specifications. Each reaction contained 1-3 µg 

DNase-treated total RNA. Reverse transcription was performed using oligo-d(T)-primers. The 

synthesized cDNA was diluted with a ration of 1:10 in RNase free water and stored at -80 °C 

until use.  

Quantitative Real-Time-PCR was performed on a Bio-Rad iCycler using the Platinum® SYBR® 

Green qPCR SuperMix-UDG (Invitrogen, Karlsruhe, Germany) and 1 µl of the diluted cDNA. 

As a reference dye Fluorescein isothiocyanate (FITC) Sigma-Aldrich (Munich, Germany) was 

used. 

FITC stock solution    1 mM in H2Obid (Sigma F4274) 

FITC working solution   1 µM in H2Obid 

qPCR reaction: 

12.5 µl   SYBR green 

1 µl   FIT-C (internal standard) 

1 µl   cDNA (diluted as described above) 

1µl   primers (1:1 mixture of the respective primers (10 µM each)) 

9.5 µl H2Obid 

 

The Bio-Rad iCycler was run with the following settings: 95 °C/2min - [95 °C/30 s - 62 °C/30 

s - 72 °C/30 s] x 45 cycles. The specificity of the reaction was ensured by melting curve 

calculations after the qPCR run. The determination of threshold cycles was performed with the 

Bio-Rad Software. Relative expression values were calculated with the 2-∆∆Ct method (Livak 

and Schmittgen, 2001). The oligonucleotides utilized for the qPCR are listed in chapter 4.3.3. 
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4.5.3.4 Determination of fungal biomass during plant colonization (Biomass assay) 

A biomass assay was performed to analyze the plant colonization process of SG200Δscp2 

(SR336) in comparison to SG200. SG200 and SG200Δscp2 infected plant material was 

harvested as described in chapter 4.5.2.3 (Isolation of genomic DNA from infected plant 

material). The isolated gDNA was diluted in H2Obid in two steps. First gDNA concentration 

was measured using a NanoDrop 2000 Spectrophotometer (Life Technologies GmbH, 

Darmstadt, Germany) and adjusted to 500 ng in 30 µl. Concentrations were measured once 

more and adjusted to 25 ng/µl. For the quantification of plant colonization the reference genes 

ppi (fungus) (SR135/SR136) and gapdh (plant) (SR137/SR138) were used. The Biomass assay 

was run on a Bio-Rad iCycler system as described in chapter 4.5.3.3 (Quantitative Real-Time 

PCR (qPCR)). 

qPCR reaction (determination of biomass): 

2 µl   gDNA (25 ng/µl)  

12.5 µl   SYBRgreen 

1.0 µl   FITC 

1.0 µl   primer mix (1:1 ratio of forward and reverse primer (10 pmol) for one gene) 

8.5 µl   H2Obid 

4.6 Protein and biochemical methods 

4.6.1 Purification of proteins expressed in E. coli 

Recombinant E. coli Rosetta™(DE3)pLysS cells (Merck Chemicals GmbH, Darmstadt, 

Germany) containing plasmids encoding Strep-Scp2 (pSR226) or TwinStrep-Tin2 (pPR-

IBA102-Tin2dSP) were grown overnight in a 250 ml baffled flask containing 25 ml dYT 

medium supplemented with 55 µg/ml chloramphenicol and 100 μg/ml ampicillin at 200 rpm at 

37 °C. 10 ml of pre-culture was inoculated into 1 L of pre-warmed fresh medium and grown 

until OD600 absorption reached 0.6-0.8. After addition of 1 mM (f. c.) IPTG the cells were 

incubated for four hours and subsequently centrifuged for 20 min at 8,000 rpm and 4 °C. All 

following steps were carried out on ice. The pellet was resuspended in 5 ml 1x PBS per gram 

of cells and incubated with 1.5 mg lysozyme per gram cells (SIGMA 62970-5G-F) for 30 min 

on ice. Subsequently, the cells were ruptured by sonication for 9 x 30 sec (40 % duty cycle, 

output control 4, Branson Sonifier 250; Danbury, USA). Cell debris and intact cells were 

removed by centrifugation for 20 min at 30,000 g and 4 °C.The supernatant was transferred to 

a fresh tube and kept on ice until use. Protein samples were sterile filtrated prior to affinity 

chromatography using a 0.2 µm filter unit (GE Healthcare, Munich, Germany). Protein 

purification via Strep-affinity chromatography was performed according to the manufacturers` 
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specifications using a 400 µl Strep-Tactin® Sepharose resin (IBA, GmbH Goettingen, 

Germany). The final elution step was conducted using six times 100 µl of the elution buffer 

described in the IBA Strep-tag® Purification Protocol (100 mM Tris-HCl pH 8, 150 mM NaCl, 

1 mM EDTA, 2.5 mM desthiobiotin). For subsequent gel filtration chromatography the purified 

protein was mixed with 6 ml sterile filtrated Buffer W as described in the Strep-tag® Purification 

Protocol (100 mM Tris-HCl pH 8, 150 mM NaCl, 1 mM EDTA). Gel filtration chromatography 

was perfomed using a Superdex 75 prep grade column with the dimension 1.6 x 60 cm (EMBL, 

Heidelberg, Germany) and an ÄKTA FPLC system (GE Healthcare, Munich, Germany). The 

column was washed with 10 ml Buffer W before loading of the protein sample. 1 ml gel 

filtration elution fractions were collected separately, peak fractions pooled and concentrated 

using an Amicon® Ultra-4 Centrifugal Filter Unit (3 K cut-off) (Merck, Darmstadt, Germany) 

following the user manual. The protein concentration was determined by Bradford assay using 

Roti®-Quant solution (Carl Roth GmbH, Karlsruhe, Germany) (chapter 4.6.4). 

4.6.2 Protein-lipid overlay assay 

Membrane Lipid Strips (P-6002) were purchased from Echelon Biosciences (Salt Lake City, 

USA). The membrane was blocked in PBST-BSA (3 % (w/v) fatty acid-free BSA (Sigma A-

7030) in PBST) overnight at 4 °C. The blocking buffer was discarded. The membrane was then 

incubated in 10 ml PBST-BSA containing 0.5 µg/ml of the indicated protein for 1 hour under 

gentle agitation. The membrane was washed three times. For antibody treatment the membrane 

was incubated with a 1:10,000 dilution of primary anti-Scp2 polyclonal antibody (Eurogentec, 

Seraing, Belgium) or anti-Strep antibody (Strep-Tactin®-HRP, IBA GmbH, Goettingen, 

Germany) for 1 h. The membrane was washed three times as before, and then incubated with a 

1:10,000 dilution of anti-mouse or anti-rabbit secondary antibody (Cell Signaling Technology 

(NEB), Frankfurt, Germany) for 1 h. Finally, the membrane was washed again three times for 

10 min in PBST, and membrane bound protein was detected by enhanced chemiluminescence 

using the ECL chemiluminescent detection reagent (GE Healthcare, Munich, Germany). 

PBS (10x)  0.89 % (w/v) Na2HPO4 (f. c. 79 mM) 

1.97 % (w/v) KH2PO4 (f. c. 145 mM) 

0.09 % (w/v) MgCl2 x 6 H2O (f. c. 5 mM) 

0.2 % (w/v) KCl (f. c. 27 mM) 

8.0 % (w/v) NaCl (f. c. 1.37 M) 

Dissolve in H2Obid, adjust pH to 7.2 (HCl) and 

autoclave 

PBST 0.1 % (v/v) Tween-20 in 1x PBS buffer 
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4.6.3 Protein isolation from U. maydis cultures  

For the analysis of protein expression in U. maydis cells the respective strains were grown in 

50 ml YEPSlight to an OD600 of 0.6-0.8. The cells were harvested by centrifugation at 3,500 g 

for 5 min at RT. The cell pellet was transferred into a 2 ml screw cap reaction tube. 300 µl 

Buffer W (chapter 4.6.1, Purification of proteins expressed in E. coli) containing protease 

inhibitor and approximately 200 µl of silica spheres (Lysing Matrix B Bulk, MP Biomedicals, 

Irvine, Californien, USA) were added to the cells. The cells were disrupted mechanically using 

the Fast-Prep®-24 sample preparation system (MP Biomedicals, Irvine, Californien, USA) for 

3 times at 6 m/s for 1 min and cooled on ice in between the steps. Cell debris was removed by 

centrifugation at 300 g for 15 min at 4 °C. The supernatant was transferred into a new reaction 

tube and the protein concentration was determined by Bradford protein assay as described in 

chapter 4.6.4 (Protein quantitation assay according to Bradford). 

4.6.4 Protein quantitation assay according to Bradford 

The quantitation of protein levels was carried out following the method of Bradford (Bradford, 

1976) using Roti®-Quant Bradford solution (Carl Roth GmbH, Karlsruhe Germany). To create 

a calibration curve bovine serum albumin (BSA) was used as standard. 

4.6.5 SDS polyacrylamide gel electrophoresis 

The separation of proteins was performed by SDS polyacrylamide gel electrophoresis (SDS-

PAGE) according to Laemmli (1970). During SDS-PAGE proteins are separated in an electric 

field according to their size. To achieve separation, proteins were denatured by addition of 1x 

SDS loading dye and incubation for 10 min at 98 °C. Negatively charged SDS molecules bind 

to proteins, which leads to a negative charge that correlates with the molecular mass of each 

protein. After denaturation, samples were loaded on a vertical SDS polyacrylamide gel 

composed of stacking and separation gel (Mini Protean System, Bio-Rad). The stacking gel 

facilitates protein concentration before the proteins enter the separation gel. In the separation 

gel proteins are separated according to their molecular weight, smaller proteins migrate faster 

than bigger proteins. The higher the concentration of acrylamide, the higher is the density of 

the meshed molecular network. While gels with high acrylamide concentrations are used for 

separation of the small proteins, low percentage gels are preferred for the separation of large 

proteins. As reference for the molecular weight of the separated proteins the PageRuler 

Prestained Protein ladder (ThermoFisher Scientific) was used. The separation of proteins was 

performed with a current of 20 mA until proteins were concentrated in the stacking gel followed 

by 25 mA for separation. 
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1 SDS gel (10.5 x 11.5 x 1 cm): 

 

Stacking gel (5 %)      0.5 ml 0.5 M Tris-HCl pH 6.8 

0.333 ml 30 % Polyacrylamide (PAA) 

20 µl 10 % SDS 

1.125 ml H2Obid 

For the initiation of polymerization: 

20 µl 10 % Ammonium persulfate (APS) 

2 µl Tetramethylethylenediamine 

(TEMED) 

 

Stacking gel (15 %)      1.25 ml 1.5 M Tris-HCl pH 8.8 

2.49 ml 30 % Polyacrylamide (PAA) 

50 µl 10 % SDS 

1.17 ml H2Obid 

For the initiation of polymerization: 

50 µl 10 % Ammonium persulfate (APS) 

5 µl Tetramethylethylenediamine 

(TEMED) 

 

4x SDS-gel loading buffer     10 ml 1.5 M Tris-HCl pH 6.8 

       30 ml glycerin 

       6 ml 20 % SDS 

       5 mg bromophenol blue 

       3 g DTT (f. c. 400 mM) 

       Fill up to 50 ml with H2Obid 

 

SDS running buffer  25 mM Tris-HCl, pH 8.0 

192 mM glycin 

4 mM SDS 

 

4.6.6 Immunological protein detection by chemiluminescence (Western blot) 

Proteins separated by SDS-PAGE were transferred to a PVDF nitrocellulose membrane by 

using the semi-dry Trans-Blot Turbo Transfer System (BioRad, Munich, Germany). The 

blotting procedure was performed according to the manufacturers' specifications using the 

Trans-Blot Turbo blotting apparatus as well as the membranes and protein blotting consumables 

provided for the system. The Bio-Rad preprogrammed protocol “Mixed MW (Turbo) for 

proteins with a molecular weight ranging from 5-150 kDa (7 min) was used by default. The 

Transfer was performed at 1.3 A; up to 25 V (one Mini format gel) or at 2.5 A; up to 25 V (two 

Mini format gels). After the transfer, the membrane was incubated in blocking solution for 1 

hour at RT. The blocking solution was replaced with antibody solution containing the primary 

antibody. The membrane was incubated for approximately 16 hours at 4 °C. Thereafter, the 

membrane was washed three times for 10 min with TBS-T buffer followed by incubation for 1 

hour at RT in TBS-T buffer containing the secondary antibody. The antibodies used in this 



Material and Methods  102 

study are listed in Table 5. After three more washes with TBS-T buffer for 10 min each, the 

membrane was incubated for 5 min with ECL chemiluminescent detection reagent (GE 

Healthcare, Munich, Germany). The blots were sealed in a plastic bag and developed using X-

ray films (CEA, Hamburg, Germany) and the Agfa CP 1000 film processor (AGFA HealthCare, 

Mortsel, Belgium). The exposure time ranged from 1-60 min, depending on the intensity of the 

signal observed. 

TBS-T   50 mM Tris-HCl, pH 7.5 

150 mM NaCl 

0.1 % (v/v) Tween 20 

 

Blocking solution  5 % (w/v) milk powder in TBS-T 

 

Antibody solution  antibody diluted in 2.5 % (w/v) milk 

powder in TBS-T 

 

4.6.7 Antibodies 

The primary and secondary antibodies used in this study are summarized in table 5. The peptide 

specific antibody for Scp2 was ordered and generated by Eurogentec (Seraing, Belgium). For 

the generation of the polyclonal antibody the rabbit “Speedy Mini program” with a 28-day 

immunisation was selected. The peptide specific antibody was generated against the Scp2 

peptide: DLKKNAEAYEGKAKG. 

Table 5: Utilized antibodies with the respective dilution and manufacturer information  

Antibody Usage Manufacturer 

Mouse anti-HA Monoclonal primary antibody derived from mouse 

for detection of HA-fusion proteins (1:10,000 

dilution) 

 

Sigma-Aldrich 

(Munich, Germany) 

Anti-mouse IgG Horse anti-mouse HRP-linked secondary antibody for 

detection of primary antibodies derived from mouse 

(1:10,000 dilution) 

 

Cell Signaling Technology 

(Leiden, Netherlands) 

Rabbit anti-Scp2 Custom anti-peptide specific 

(DLKKNAEAYEGKAKG) polyclonal primary 

antibody derived from rabbit for detection of the 

Scp2 protein (1:10,000 dilution) 

 

Eurogentec  

(Seraing, Belgium) 

Anti-rabbit IgG Goat anti-rabbit HRP-linked secondary antibody for 

detection of primary antibodies derived from rabbit 

(1:10,000 dilution) 

 

Cell Signaling Technology 

(Leiden, Netherlands) 

Anti-Strep Strep-Tactin® HRP conjugate (Strep-Tactin® labeled 

with horseradish peroxidase) for detection of Strep-

tag® II fusion proteins. (1:4,000 dilution) 

IBA GmbH 

(Goettingen, Germany) 
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4.6.8 Colony secretion analysis 

To assay the secretion of affinity-tagged fusion proteins in U. maydis colony secretion assays 

were performed. To assay secretion, an ECL-nitrocellulose membrane (GE Healthcare, 

Munich, Germany) was activated in sterile water and placed on CM-glc or NM-glc solid 

medium. The respective U. maydis strains were cultivated in YEPSlight to an OD600 of 0.6-0.8. 

To attain equal cell densities for the secretion analysis the OD600 was adjusted to 0.6. The 

sporidia were washed twice in pre-warmed (28 °C) H2Obid (3,500 g, 5 min, RT) before 

dissolving the cell pellet in the respective CM-glc or NM-glc liquid medium. The cultures were 

incubated for one hours at 28 °C to allow the adaption to the new medium. Following this, the 

cells were concentrated to a cell density of 1.2 before spotting 10 µl of each strain on the 

nitrocellulose membrane. The plates were sealed with parafilm and incubated at 28 °C 

overnight. In the morning, the cells were removed from the nitrocellulose under running tap 

water using a silicone brush. Secreted proteins were detected following the protocol for Western 

analysis (chapter 4.6.6) starting with the incubation of the membrane in blocking solution. 

4.6.9 Recovery of nitrocellulose-bound proteins 

The method is based on the protocol from Anderson (Anderson, 1985). To isolate proteins from 

a nitrocellulose membrane a colony secretion assay was performed as described in chapter 

4.6.8. To attain sufficing protein levels for the analysis 500 µl of cell culture were spotted on 

the nitrocellulose membrane. After incubation overnight the cells were removed as described 

in chapter 4.6.8 and a 1 cm x 1 cm piece of the membrane previously covered with cells was 

excised using a scalpel. The membrane was cut into small pieces and transferred into a 2 ml 

reaction tube. To disintegrate the membrane 1 ml of 100 % acetone was added to the membrane 

fragments (don´t use cold acetone since this disturbs the disintegration process) and vortexed 

until the membrane completely dissolved. 13 % of H2Obid was added and the reaction was 

inverted several times. After centrifugation at 13,000 rpm for 15 min at RT the supernatant was 

discarded and the forming pellet was dried at 50 °C for approximately 5 min. Subsequently, the 

precipitated proteins were dissolved in 50 µl 4x SDS sample buffer, denatured at 98 °C for 10 

min and analyzed by SDS-PAGE and Western analysis. 

4.6.10 Instant blue staining  

For the visualization of proteins after SDS-PAGE gels were stained using the ready to use 

Coomassie protein stain InstantBlue™ (Expedeon Inc., San Diego, CA, USA) in accordance to 

the manufacturers' specifications. 
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4.7 Plant methods 

4.7.1 Cultivation of Z. mays 

For the conducted infection assays of this thesis the maize variant Early Golden Bantam (EGB) 

(UrbanFarmers, New York City, USA) was used. All corn plants were cultivated in a 

temperature controlled greenhouse with a light-dark cycle of 28 °C for 14 hours and 20 °C for 

10 hours. During the day phase, the illumination intensity was at least 25 kLux - 30 kLux (with 

additional sunlight up to 90 kLux). For qPCR and biomass experiments, maize plants were 

grown in a phytochamber (Vötsch Industrietechnik GmbH, Balingen-Frommern, Germany) 

with the same conditions as described above whereas phytochamber daytime phases included a 

one hour simulation of sunrise (13 hours +1 hour sunrise) and nighttime phases one hour for 

the simulation of the sunset (9 hours +1 hour sunset) (ramping). Humidity was set to 60 % 

during daytime phases and to 40 % during nighttime phases. Four corn grains were sowed per 

pot. EGB was grown in Fruhstorfer soil type “T” and watered once a day. 

4.7.2 Pathogenicity assays 

Pathogenicity assays were performed as described in Kämper et al., 2006. For maize (Zea mays) 

infections, cultures of U. maydis strains were grown to an OD600 of 0.8-1.0 in YEPSlight, 

harvested by centrifugation at 3,500 g, 5 min, RT (Heraeus Multifuge 4 KR) and the OD600 of 

each culture was adjusted in H2Obid to 1.0. Compatible strains were mixed in the ration 1:1. By 

default, 500 μl of cell suspension was injected into 7-day-old maize seedlings using a syringe. 

The injection site was chosen to be approximately 0.5 cm above the soil. Disease symptoms 

were scored according to severity 12 days after plant infection (Kämper et al., 2006).  

Table 6: Classification of symptoms of infected maize seedlings 

Symptoms Description 

no symptoms No infection symptoms are visible 

chlorosis The plant displays yellowish discoloration on infected leaves 

swelling of the ligula  The plant displays a slight swelling of the ligula 

small tumors (< 1 mm) Only few and/or little tumors (< 1 mm) are visible 

normal tumors (> 1 mm) The biggest tumors visible are > 1 mm  

heavy tumors/ stunted growth The plant displays a change of growth axis as a result of tumor 

formation 

dead plants The plant died due to the infection with U. maydis 
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4.8 Staining and microscopy 

4.8.1 Staining methods 

4.8.1.1 Preparation of cells for microscopy 

For the analysis of U. maydis sporidia and filaments in liquid culture a 2 % agarose pad was 

placed on a microscope slide (2 % agarose in H2Obid) to prevent the floating of cells during 

microscopy. 

4.8.1.2 WGA Alexa fluor/Propidium iodide staining 

Infected leaf tissue was harvested from maize plants 2 and 4 dpi and discolored in ethanol 

overnight. The next day, the samples were washed in water before treatment with 10 % KOH 

at 85 °C for 3-4 h. The leaves were subsequently washed twice with 1 ml 1x PBS (pH 7.4). For 

visualizing hyphae in the plant vasculature, fungal hyphae were stained with Alexafluor 488, 

WGA (Invitrogen, Karlsruhe, Germany). Plant cell walls were visualized using Propidium 

Iodide (Sigma-Aldrich, Munich, Germany). The samples were incubated in WGA/PI staining 

solution for 30 min. During the incubation the leaves were vacuum infiltrated 3 times 2 min 

with 2 min break in-between. Following this, the leaves were washed in 1x PBS and analyzed 

by confocal microscopy using a Leica TCS SP5 confocal microscope. 

Propidium iodide stock solution  10 mg/ml PI (Sigma 81845) in 1x PBS  

(store at 4 °C) 

 

WGA-AF488 stock solution   1mg/ml in H2O (store at 4 °C in the dark) 

 

WGA/PI staining solution   20 µg/ml Propidium iodide 

      10 µg/ml WGA-AF488 

      0.02 % Tween20 

      in PBS (pH 7.4) (store at 4 °C in the dark) 

4.8.1.3 Calcofluor white staining 

Calcofluor white binds to chitin, cellulose and other b-1,4-linked carbohydrates and is used for 

the visualization of plant and fungal cell walls. For staining of leaf samples with calcofluor 

white, seven days old maize plants were infected with respective U. maydis strains. After 16 

hours the most inner leave of the plant was isolated and incubated in calcofluor staining solution 

for 30 sec. 

Calcofluor stock solution 10 mg/ml (Sigma F3543) in DMSO 

 (store at -20 °C, protect from light) 

 

Calcofluor staining solution Calcofluor stock solution was diluted 1:1,000 in 

H2Obid (or 0.2 M Tris pH 8) 
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4.8.1.4 Nile red staining 

For the visualization of lipid droplets of in vitro induced filaments on parafilm (chapter 4.4.3) 

the objective slides were washed in water and subsequently placed up-side-down in calcofluor 

staining solution (chapter 4.8.1.3) for one minute. Following this, the objective slide was dipped 

in water and placed up-side-down in nile red staining solution for 10 min. 

Nile red stock solution  500 µg/ml in acetone  

(store at -20 °C, protect from light) 

Nile red staining solution  Dilute nile red stock solution in a ratio 1:1,000 in 

75 % glycerin 

4.8.1.5 Filipin staining 

For filipin stains the Filipin III from Streptomyces filipinensis (Sigma, Munich, Germany) was 

used. U. maydis strains were cultivated to an OD600 of 0.6 and harvested by centrifugation at 

3,500 g for 5 min at RT. The cell pellet was dissolved in 1x PBS and 1 µl of 5 mg/ml filipin 

stock solution was added (f. c. 5 µg/ml). The cells were incubated for 5 min in the dark at RT. 

Subsequently, the cells were centrifuged at 3,500 g for 5 min at RT, the supernatant was 

discarded and the cell pellet was dissolved to an OD600 of 1.2 in fresh 1x PBS.  

For visualizing the sterol distribution of in vitro induced filaments on parafilm (chapter 4.4.3) 

the objective slides were washed in water and placed up-side-down in filipin staining solution. 

After 5 min incubation in the dark the objective slides were dipped in water and analyzed. 

Filipin fluorescence was visualized using fluorescence microscopy (DAPI channel). 

Filipin stock solution   5 mg/ml (Sigma F4767) in DMSO* 

Filipin staining solution   5 µg/ml in 1 x PBS 

* Filipin is light and oxygen sensitive, therefore the generation and the partition of the stock solution 

was performed in an oxygen-free environment and under red light conditions. Aliquots of the stock 

solution were stored at -80 °C and only thawed prior to use. 

4.8.1.6 Propidium iodide (PI) /fluorescein diacetate (FDA) staining 

For assaying the mortality rate of U. maydis filaments on parafilm a PI/FDA stain was 

performed (Kwolek-Mirek and Zadrag-Tecza, 2014). In vitro filaments were induced as 

described in chapter 4.4.3. The parafilm slides were subsequently washed in water to remove 

remaining sporidia and placed upside-down in PI/FDA staining solution for 20 min in the dark. 

To prevent the crushing of cells, the microscope slide was propped up on thin roles of parafilm. 

PI/FDA fluorescence was examined under a fluorescence microscope. Viable cells displayed 

green fluorescent while dead cells displayed red fluorescent. 

PI stock solution    10 mg/ml PI (Sigma 81845) in 1x PBS  

(store at 4 °C) 
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PI staining solution    5 µg/ml PI stock solution 1x PBS 

FDA stock solution    1 mg/ml FDA (Sigma F7378) in acetone  

FDA staining solution   10 µg/ml FDA stock solution 1x PBS 

 

4.8.2 Microscopy methods 

4.8.2.1 Confocal microscopy 

For confocal microscopy the Leica TCS SP5 confocal microscope was used and for the 

processing of images, the Leica Application Suite Advanced Fluorescence (LAS AF) software. 

Table 7: Laser and emission wave lengths for confocal microscopy 

Fluorecent protein/Fluorophore Laser Emission 

mCherry 561 (DPSS laser) 610 (600-620) nm 

GFP (eGFP) 488 (Argon laser) 507 (497-517) nm 

Nile red 488 (Argon laser) 580 (570-590) nm 

Fluorescent brightner (Calcofluor white) 405 diode 435 (425-445) nm 

AF488 488 (Argon laser) 500-540 nm 

 

PI 561 (DPSS laser) 580-660 nm 

 

4.8.2.2 Epifluorescence and binocular microscopy  

Epifluorescence microscopy was performed with a Zeiss Axioplan 2 imaging microscope (Carl 

Zeiss AG, Oberkochen, Germany). All microscopic observations were done using a 

CoolSNAP-HQ charge-coupled device camera (Photometrics, Tucson, AZ, USA) controlled by 

the imaging software MetaMorph (Universal Imaging, Downingtown, PA, USA). Binocular 

images were taken using a Leica M165FC binocular microscope (Leica Microsystems, Wetzlar, 

Germany). 

4.9 Bioinformatic analyses 

4.9.1 Databases, servers and softwares 

U. maydis gene and protein sequences were derived from the PEDANT 3 database 

(http://pedant.gsf.de/). The prediction of non-classical secreted proteins was performed using 

the SecretomeP 2.0 Server (http://www.cbs.dtu.dk/services/SecretomeP/). Amino acid 

sequence alignments were performed using the “T-Coffee multiple sequence alignment 

program” (http://www.ebi.ac.uk/Tools/msa/tcoffee/). Homologous amino acid sequences were 

compared with “CLC Main Workbench v7.0.2” (Qiagen). Protein domains were identified 
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using the Simple Modular Architecture Research Tool “SMART” (http://smart.embl-

heidelberg.de/). Signal sequences were predicted using the “SignalP 4.1 Server” 

(http://www.cbs.dtu.dk/services/SignalP/). The generation of the structural model for the U. 

maydis Scp2 was performed using the “Phyre2” web portal for protein modeling, prediction 

and analysis (http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index). The virtual cloning 

of plasmids was performed using the “Clone Manager 9” software (Scientific & Educational 

Software, Denver, CO, USA). 

4.9.2 Quantification of peroxisomal and lipid droplet misdistribution 

To visualize the misdistribution of lipid droplets and peroxisomes confocal Z-stacks of 

peroxisomes (GFP-PTS1) or lipid droplets (nile red) were taken in AM1-marker expressing 

filaments and converted to maximum projections using the Leica Application Suite Advanced 

Fluorescence (LAS AF) software. The filament length was determined starting from the hyphal 

tip until the first septum (cytoplasm filled tip compartment) using the ImageJ software 

(https://imagej.nih.gov/ij/). Fluorescence signal intensity plots of peroxisomes or lipid droplets 

were generated along a line drawn througout the entire cytoplasm filled tip compartment of the 

respective filaments. The signal intensity from the generated intensity plots was normalized to 

intensities ranging from 0 to 100 % with the highest value determined for each individual 

filament equaling 100 %. The length of the tip compartments differed between filaments and 

was therefore normalized to values between 1 and 100 to allow a direct comparison between 

filaments with different length. Average values of fluorescence intensities within each of the 

100 sections was plotted. Average values of 15 filaments per strain were calculated and 

visualized in a bar diagram. 
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