Publikationsserver der Universitätsbibliothek Marburg

Titel:Quandles and Hurwitz Orbits
Autor:Rehman, Naqeeb ur
Weitere Beteiligte: Heckenberger, I. (Prof. Dr.)
Veröffentlicht:2016
URI:https://archiv.ub.uni-marburg.de/diss/z2016/0652
DOI: https://doi.org/10.17192/z2016.0652
URN: urn:nbn:de:hebis:04-z2016-06528
DDC: Mathematik
Titel (trans.):Quandles und Hurwitz-Bahnen
Publikationsdatum:2016-09-20
Lizenz:https://creativecommons.org/licenses/by/4.0

Dokument

Schlagwörter:
Hurwitz-Bahnen, Racks, Quandles, Hurwitz Orbits, Racks, Quandles

Summary:
In this thesis we study quandles and Hurwitz orbits. A quandle is a self-distributive algebraic structure whose binary operation is like the conjugation in a group. The algebraic structure of quandles can be studied as sequences of permutations. The cycle structure of the permutations of an indecomposable quandle is well-behaved because the permutations of an indecomposable quandle are mutually conjugate and hence have the same cycle structure. We study the cycle structure of quandles with the main focus on a conjecture in [18] saying that any permutation of an indecomposable quandle has cycles whose cycle lengths divide the largest among them. Hurwitz orbits are the orbits of a braid group action on the powers of a quandle. The Hurwitz orbits for the action of the braid group on three strands are used in [21] and [22] for the classiVcation of certain Hopf algebras. This classiVcation is based on a combinatorial invariant called a plague on the Hurwitz orbits. The immunity on a Hurwitz orbit is the quotient of the size of the minimal plague and the size of the Hurwitz orbit. An estimation on the immunity of the Hurwitz orbits is provided in [22] by using Schreier graphs of the Hurwitz orbit quotients and the weights on the Hurwitz orbits, where the weight on an Hurwitz orbit is deVned by the cycle structure of that Hurwitz obit. In this study only few Schreier graphs of the Hurwitz orbit quotients with small cycles are considered. We introduce a new method to calculate plagues on the Hurwitz orbits for inVnitely many Schreier graphs of the Hurwitz orbit quotients with all cycles. Our method is based on the posets of robust subgraphs of pointed Schreier graphs of the Hurwitz orbit quotients. By using this method we estimate the immunity on the Hurwitz orbits through a case-by-case analysis of inVnitely many pointed Schreier graphs of the Hurwitz orbit quotients.

Bibliographie / References

  1. [16] Graña, M., Vendramin, L.: Rig, A GAP package for racks and Nichols algebras. http://code.google. com/p/rig/.
  2. [8] Brieskorn, E.: Automorphic sets and braids and singularities, In Braids (Santa Cruz, CA, 1986), Cont. Math. 78 45-115, Amer. Math. Soc., Providence, (1988).
  3. [5] Balogh, J., Pittel, B. G.: Bootstrap percolation on the random regular graph, Random Structures and Algorithms, 30(1-2), 257-286 (2007).
  4. [21] Heckenberger, I., Lochmann, A., Vendramin, L.: Braided racks, Hurwitz actions and Nichols algebras with many cubic relations. Transform. Groups 17(1), 157-194 (2012).
  5. [26] Kassel, C., Turaev, V.: Braid groups, volume 247 of Graduate Texts in Mathematics. Springer, New York, (2008).
  6. [12] Dehornoy, P.: Braids and Self-Distributivity. Progress in Mathematics, vol. 192. Birkhäuser Verlag, Basel (2000).
  7. [18] Hayashi, C.: Canonical forms for operation tables of Vnite connected quandles. Comm. Algebra, 41(9), 3340-3349 (2013).
  8. [9] Ceccherini-Silberstein, T., Coornaert, M.: Cellular automata and groups. Springer Monographs in Mathematics. Springer-Verlag, Berlin, (2010).
  9. [20] Heckenberger, I.: ClassiVcation of arithmetic root systems. Adv. Math., 220(1), 59-124 (2009).
  10. [24] Hulpke, A. Stanovský, D., Vojtěchovský, P.: Connected quandles and transitive groups. J. Pure Appl. Algebra 220, 735-758 (2016).
  11. [10] Clark, W.E., Elhamdadi, M., Hou, X., Saito, M., Yeatman, T.: Connected quandles associated with pointed abelian groups, PaciVc J. Math. 264(1), 31-60 (2013).
  12. [17] Guest, S., Spiga, P.: Finite primitive groups and regular orbits of group elements, Trans. Am. Math. Soc., arxiv 1406.1702., (2016).
  13. [3] Andruskiewitsch, N., Graña, M.: From racks to pointed Hopf algebras. Adv. Math. 178(2), 177-243 (2003).
  14. [4] Balogh, J., Bollobás, B., Morris, R.: Graph bootstrap percolation, Random Structures and Algorithms, 41(4), 413-440 (2012).
  15. [14] Graña, M.: Indecomposable racks of order p2. Beiträge Algebra Geom., 45(2), 665-676 (2004).
  16. [13] Etingof, P., Soloviev, A., and Guralnick, R.: Indecomposable set-theoretical solutions to the quantum Yang-Baxter equation on a set with a prime number of elements. J. Algebra, 242(2), 709-719 (2001).
  17. [30] Rankin, R. A.: Modular forms and functions. Cambridge University Press, Cambridge, (1977).
  18. [15] Graña, M., Heckenberger, I., Vendramin, L.: Nichols algebras of group type with many quadratic relations, Adv. Math. 227 (2011).
  19. [22] Heckenberger, I., Lochmann, A., Vendramin, L.: Nichols algebras with many cubic relations. Trans. Am. Math. Soc., 367 (9), 6315-6356 (2015).
  20. [2] Andruskiewitsch, N., Fantino, F., García, G. A., Vendramin, L.: On Nichols algebras associated to simple racks. Contemp. Math. 537, 31-56 (2011).
  21. [31] Vendramin, L.: On the classiVcation of quandles of low order. J. Knot Theory Ramif. 21(9), (2012).
  22. [1] Andruskiewitsch, N., Fantino, F., García, G. A., Vendramin, L.: On twisted homogeneous racks of type D. Rev. Un. Mat. Argentina 51(2), 1-16 (2010).
  23. [11] Conder, M.: Schreier Coset Graphs and Their Applications. RIMS Kokyuroku. 794, 169-175, (1992).
  24. [25] Joyce, D.: Simple quandles. J. Algebra, 79(2), 307-318 (1982).
  25. Remark 1.4.2. Since (x imm(ΣHi2 ) ≤ npii22 = npii11−−22++132 ≤ nni1i1−−22++21+23 = 4(ni1−2+12) 4 ni1−2+14 If Hj1−2 ≺1 Hj1−1 ≺1 Hj1, then nj1 ≤ nj1−2 + 6. Now consider Figure 3.3.20, where vj1 ∈ Vxy such that vj1 ∈ Hj1 \ Hj1−1 and Hj1−2 ≺2 Hj1−1 ≺1 Hj1.
  26. [29] McCarron, J.: Small homogeneous quandles. In Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation, ISSAC '12, pages 257-264, New York, USA, (2012).
  27. [19] Heckenberger, I.: The Weyl groupoid of a Nichols algebra of diagonal type. Invent. Math., 164(1), 175-188 (2006).
  28. [23] Hurwitz, A.: Ueber Riemann'sche Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 39 (1891).


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten