Publikationsserver der Universitätsbibliothek Marburg

Titel:Transkriptionsregulation der Pyruvatdehydrogenase-Kinase 4 (PDK4), einem zentralen Schalter des Glukosestoffwechsels, durch Zelladhäsion und onkogene Signalwege beim humanen Ovarialkarzinom
Autor:Schnitzer, Evelyn
Weitere Beteiligte: Müller-Brüsselbach, Sabine (PD Dr.)
Veröffentlicht:2016
URI:https://archiv.ub.uni-marburg.de/diss/z2016/0601
URN: urn:nbn:de:hebis:04-z2016-06015
DOI: https://doi.org/10.17192/z2016.0601
DDC:610 Medizin
Titel (trans.):Transcriptional regulation of pyruvate dehydrogenase kinase 4 (PDK4), a key regulator of glucose metabolism, via cell adhesion and oncogenic signaling in human ovarian carcinoma
Publikationsdatum:2016-09-08
Lizenz:https://creativecommons.org/licenses/by-nc-sa/4.0

Dokument

Schlagwörter:
Life sciences, Pyruvatdehydrogenase-Kinase 4, Zelladhäsion, Eierstockkrebs, Signaltransduktion, Glucosestoffwechsel, Biowissenschaften, Transcriptional regulation, Genregulation

Zusammenfassung:
Das Ovarialkarzinom ist die gynäkologische Krebserkrankung mit der höchsten Letalität, was vor allem durch die passive Metastasierung über den Peritonealraum bedingt ist. Dabei breiten sich Tumorzellen als Einzelzellen oder mehrzellige Sphäroide über die Peritonealflüssigkeit aus, um an anderer Stelle Metastasen auszubilden. Der damit einhergehende Adhärenzverlust dieser Zellen ist demnach von großer klinischer Relevanz und bedarf weiterer funktioneller Analysen. Im Rahmen dieser Arbeit konnte mit PDK4 erstmals ein Gen in primären humanen Ovarialkarzinomzellen und in der Modellzelllinie SKOV-3 identifiziert werden, dessen Expression stark von Adhärenz und Adhärenzverlust beeinflusst wird. Die mit dem Adhärenzverlust einhergehende Induktion scheint mit dem glykolytischen Metabolismus dieser Zellen funktionell in Verbindung zu stehen, im Einklang mit der zentralen Rolle von PDKs als negative Regulatoren der Pyruvatdehydrogenase und somit der Energiegewinnung aus Glukose durch oxidative Phosphorylierung. Eine detaillierte Untersuchung der adhärenzvermittelten PDK4-Regulation zeigte, dass Interaktionen zwischen Komponenten der Extrazellulärmatrix und Integrinen dafür verantwortlich sind. Der weitere Fokus der vorliegenden Arbeit lag auf der detaillierten mechanistischen Aufklärung dieser transkriptionellen Kontrolle und die damit verbundene Identifizierung der verantwortlichen Signalwege anhand der Modellzelllinie SKOV-3. Hierzu wurde nach pharmakologischer Modulation bestimmter Signalwege oder einer RNAi-vermittelten Inhibition spezifischer Signalproteine die Phosphorylierung kritischer Signalkomponenten, Chromatinbindung und Regulation von PDK4 untersucht. Die hierbei erzielten Ergebnisse deuten auf eine Kooperation mehrerer Signalwege bei der Regulation des PDK4-Gens durch Adhärenzverlust hin. Hierzu zählen der SRC-PI3K-AKT-Signalweg, die GSK3-β-Catenin-Signalkaskade, der Estrogenrezeptor, der Transkriptionsfaktor C/EBPβ und Umstrukturierungen des Aktinzytoskeletts. Über die adhärenzvermittelte PDK4-Regulation hinaus liefern die Ergebnisse dieser Arbeit ein Bild zur Transkriptionsregulation des PDK4-Gens durch tumorbiologisch relevante Signale im humanen Ovarialkarzinom. So führen die Aktivierung des Adenylylcyclase-cAMP-PKA-Signalwegs, die Inhibition des SRC-PI3K-AKT-Signalwegs sowie Estrogen, Glukokortikoid und Zell-Zell-Kontakte zu einer Induktion der PDK4-Expression. Die komplexe Regulation von PDK4, insbesondere auch durch onkogene Signalwege, und die zentrale Funktion im Glukosemetabolismus unterstreichen die essentielle Rolle von PDK4 im Tumormetabolismus und weisen auf PDK4 als mögliches therapeutisches Ziel bei der Behandlung des Ovarialkarzinoms hin.

Bibliographie / References

  1. Naruhn, S., Meissner, W., Adhikary, T., Kaddatz, K., Klein, T., Watzer, B., MullerBrusselbach, S. and Muller, R. (2010) 15-hydroxyeicosatetraenoic acid is a preferential peroxisome proliferator-activated receptor beta/delta agonist. Mol Pharmacol, 77, 171-184.
  2. Campbell, S.E., Mehan, K.A., Tunstall, R.J., Febbraio, M.A. and Cameron-Smith, D. (2003) 17beta-estradiol upregulates the expression of peroxisome proliferatoractivated receptor alpha and lipid oxidative genes in skeletal muscle. J Mol Endocrinol, 31, 37-45.
  3. Connelly, J.T., Gautrot, J.E., Trappmann, B., Tan, D.W., Donati, G., Huck, W.T. and Watt, F.M. (2010) Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions. Nat Cell Biol, 12, 711-718.
  4. Miralles, F., Posern, G., Zaromytidou, A.I. and Treisman, R. (2003) Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell, 113, 329-342.
  5. Rullo, J., Becker, H., Hyduk, S.J., Wong, J.C., Digby, G., Arora, P.D., Cano, A.P., Hartwig, J., McCulloch, C.A. and Cybulsky, M.I. (2012) Actin polymerization stabilizes alpha4beta1 integrin anchors that mediate monocyte adhesion. J Cell Biol, 197, 115-129.
  6. Sun, M., Yang, L., Feldman, R.I., Sun, X.M., Bhalla, K.N., Jove, R., Nicosia, S.V. and Cheng, J.Q. (2003) Activation of phosphatidylinositol 3-kinase/Akt pathway by androgen through interaction of p85alpha, androgen receptor, and Src. J Biol Chem, 278, 42992-43000.
  7. Huveneers, S. and Danen, E.H. (2009) Adhesion signaling - crosstalk between integrins, Src and Rho. J Cell Sci, 122, 1059-1069.
  8. Li, Z., Van Calcar, S., Qu, C., Cavenee, W.K., Zhang, M.Q. and Ren, B. (2003) A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells. Proc Natl Acad Sci U S A, 100, 8164-8169.
  9. Diviani, D., Soderling, J. and Scott, J.D. (2001) AKAP-Lbc anchors protein kinase A and nucleates Galpha 12-selective Rho-mediated stress fiber formation. J Biol Chem, 276, 44247-44257.
  10. Wong, W. and Scott, J.D. (2004) AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol, 5, 959-970.
  11. Kaplon, J., Zheng, L., Meissl, K., Chaneton, B., Selivanov, V.A., Mackay, G., van der Burg, S.H., Verdegaal, E.M., Cascante, M., Shlomi, T., Gottlieb, E. and Peeper, D.S. (2013) A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature, 498, 109-112.
  12. Tanji, C., Yamamoto, H., Yorioka, N., Kohno, N., Kikuchi, K. and Kikuchi, A. (2002) Akinase anchoring protein AKAP220 binds to glycogen synthase kinase-3beta (GSK-3beta ) and mediates protein kinase A-dependent inhibition of GSK3beta. J Biol Chem, 277, 36955-36961.
  13. Fan, Y., Dickman, K.G. and Zong, W.X. (2010) Akt and c-Myc differentially activate cellular metabolic programs and prime cells to bioenergetic inhibition. J Biol Chem, 285, 7324-7333.
  14. Altomare, D.A., Wang, H.Q., Skele, K.L., De Rienzo, A., Klein-Szanto, A.J., Godwin, A.K. and Testa, J.R. (2004) AKT and mTOR phosphorylation is frequently detected in ovarian cancer and can be targeted to disrupt ovarian tumor cell growth. Oncogene, 23, 5853-5857.
  15. Rathmell, J.C., Fox, C.J., Plas, D.R., Hammerman, P.S., Cinalli, R.M. and Thompson, C.B. (2003) Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Mol Cell Biol, 23, 7315-7328.
  16. Elstrom, R.L., Bauer, D.E., Buzzai, M., Karnauskas, R., Harris, M.H., Plas, D.R., Zhuang, H., Cinalli, R.M., Alavi, A., Rudin, C.M. and Thompson, C.B. (2004) Akt stimulates aerobic glycolysis in cancer cells. Cancer Res, 64, 3892-3899.
  17. Grimes, D.R., Kelly, C., Bloch, K. and Partridge, M. (2014) A method for estimating the oxygen consumption rate in multicellular tumour spheroids. J R Soc Interface, 11, 20131124.
  18. Paoli, P., Giannoni, E. and Chiarugi, P. (2013) Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta, 1833, 3481-3498.
  19. Kim, Y.N., Koo, K.H., Sung, J.Y., Yun, U.J. and Kim, H. (2013) Anoikis resistance: an essential prerequisite for tumor metastasis. Int J Cell Biol, 2012, 306879.
  20. Wakeling, A.E., Dukes, M. and Bowler, J. (1991) A potent specific pure antiestrogen with clinical potential. Cancer Res, 51, 3867-3873.
  21. Mayers, R.M., Butlin, R.J., Kilgour, E., Leighton, B., Martin, D., Myatt, J., Orme, J.P. and Holloway, B.R. (2003) AZD7545, a novel inhibitor of pyruvate dehydrogenase kinase 2 (PDHK2), activates pyruvate dehydrogenase in vivo and improves blood glucose control in obese (fa/fa) Zucker rats. Biochem Soc Trans, 31, 1165-1167.
  22. Strobel, T. and Cannistra, S.A. (1999) Beta1-integrins partly mediate binding of ovarian cancer cells to peritoneal mesothelium in vitro. Gynecol Oncol, 73, 362-367.
  23. Casey, R.C., Burleson, K.M., Skubitz, K.M., Pambuccian, S.E., Oegema, T.R., Jr., Ruff, L.E. and Skubitz, A.P. (2001) Beta 1-integrins regulate the formation and adhesion of ovarian carcinoma multicellular spheroids. Am J Pathol, 159, 2071- 2080.
  24. Kaur, S., Kenny, H.A., Jagadeeswaran, S., Zillhardt, M.R., Montag, A.G., Kistner, E., Yamada, S.D., Mitra, A.K. and Lengyel, E. (2009) {beta}3-integrin expression on tumor cells inhibits tumor progression, reduces metastasis, and is associated with a favorable prognosis in patients with ovarian cancer. Am J Pathol, 175, 2184-2196.
  25. Daniels, D.L. and Weis, W.I. (2005) Beta-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat Struct Mol Biol, 12, 364-371.
  26. Aberle, H., Bauer, A., Stappert, J., Kispert, A. and Kemler, R. (1997) beta-catenin is a target for the ubiquitin-proteasome pathway. Embo J, 16, 3797-3804.
  27. Condello, S., Morgan, C.A., Nagdas, S., Cao, L., Turek, J., Hurley, T.D. and Matei, D. (2014) beta-Catenin-regulated ALDH1A1 is a target in ovarian cancer spheroids. Oncogene, 34, 2297-2308.
  28. Schaller, M.D. (2001) Biochemical signals and biological responses elicited by the focal adhesion kinase. Biochim Biophys Acta, 1540, 1-21.
  29. Soga, T. (2013) Cancer metabolism: key players in metabolic reprogramming. Cancer Sci, 104, 275-281.
  30. Cannistra, S.A. (2004) Cancer of the ovary. N Engl J Med, 351, 2519-2529.
  31. Kramer, A., Green, J., Pollard, J., Jr. and Tugendreich, S. (2014) Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics, 30, 523-530.
  32. Meng, E., Long, B., Sullivan, P., McClellan, S., Finan, M.A., Reed, E., Shevde, L. and Rocconi, R.P. (2012) CD44+/CD24- ovarian cancer cells demonstrate cancer stem cell properties and correlate to survival. Clin Exp Metastasis, 29, 939-948.
  33. Brunton, V.G., MacPherson, I.R. and Frame, M.C. (2004) Cell adhesion receptors, tyrosine kinases and actin modulators: a complex three-way circuitry. Biochim Biophys Acta, 1692, 121-144.
  34. Nelson, C.M. and Chen, C.S. (2002) Cell-cell signaling by direct contact increases cell proliferation via a PI3K-dependent signal. FEBS Lett, 514, 238-242.
  35. Carduner, L., Picot, C.R., Leroy-Dudal, J., Blay, L., Kellouche, S. and Carreiras, F. (2014) Cell cycle arrest or survival signaling through alphav integrins, activation of PKC and ERK1/2 lead to anoikis resistance of ovarian cancer spheroids. Exp Cell Res, 320, 329-342.
  36. Alessi, D.R., James, S.R., Downes, C.P., Holmes, A.B., Gaffney, P.R., Reese, C.B. and Cohen, P. (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol, 7, 261-269.
  37. Ince, T.A., Sousa, A.D., Jones, M.A., Harrell, J.C., Agoston, E.S., Krohn, M., Selfors, L.M., Liu, W., Chen, K., Yong, M., Buchwald, P., Wang, B., Hale, K.S., Cohick, E., Sergent, P., Witt, A., Kozhekbaeva, Z., Gao, S., Agoston, A.T., Merritt, M.A., Foster, R., Rueda, B.R., Crum, C.P., Brugge, J.S. and Mills, G.B. (2015) 124 Characterization of twenty-five ovarian tumour cell lines that phenocopy primary tumours. Nat Commun, 6, 7419.
  38. Wisdom, R., Johnson, R.S. and Moore, C. (1999) c-Jun regulates cell cycle progression and apoptosis by distinct mechanisms. Embo J, 18, 188-197.
  39. Rowles, J., Scherer, S.W., Xi, T., Majer, M., Nickle, D.C., Rommens, J.M., Popov, K.M., Harris, R.A., Riebow, N.L., Xia, J., Tsui, L.C., Bogardus, C. and Prochazka, M. (1996) Cloning and characterization of PDK4 on 7q21.3 encoding a fourth pyruvate dehydrogenase kinase isoenzyme in human. J Biol Chem, 271, 22376-22382.
  40. Anastassiadis, T., Deacon, S.W., Devarajan, K., Ma, H. and Peterson, J.R. (2011) Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nat Biotechnol, 29, 1039-1045.
  41. Bailly, M. (2003) Connecting cell adhesion to the actin polymerization machinery: vinculin as the missing link? Trends Cell Biol, 13, 163-165.
  42. Xu, S., Yang, Y., Dong, L., Qiu, W., Yang, L., Wang, X. and Liu, L. (2014) Construction and characteristics of an E-cadherin-related three-dimensional suspension growth model of ovarian cancer. Sci Rep, 4, 5646.
  43. Harris, R.A., Huang, B. and Wu, P. (2001) Control of pyruvate dehydrogenase kinase gene expression. Adv Enzyme Regul, 41, 269-288.
  44. Du, K. and Montminy, M. (1998) CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem, 273, 32377-32379.
  45. Kornhauser, J.M., Cowan, C.W., Shaywitz, A.J., Dolmetsch, R.E., Griffith, E.C., Hu, L.S., Haddad, C., Xia, Z. and Greenberg, M.E. (2002) CREB transcriptional activity in neurons is regulated by multiple, calcium-specific phosphorylation events. Neuron, 34, 221-233.
  46. Medina, M. and Wandosell, F. (2011) Deconstructing GSK-3: The Fine Regulation of Its Activity. Int J Alzheimers Dis, 2011, 479249.
  47. Schumann, T., Adhikary, T., Wortmann, A., Finkernagel, F., Lieber, S., Schnitzer, E., Legrand, N., Schober, Y., Nockher, W.A., Toth, P.M., Diederich, W.E., Nist, A., Stiewe, T., Wagner, U., Reinartz, S., Muller-Brusselbach, S. and Muller, R. (2015) Deregulation of PPARbeta/delta target genes in tumor-associated macrophages by fatty acid ligands in the ovarian cancer microenvironment. Oncotarget, 6, 13416-13433.
  48. Toth, P.M., Lieber, S., Scheer, F.M., Schumann, T., Schober, Y., Nockher, W.A., Adhikary, T., Muller-Brusselbach, S., Muller, R. and Diederich, W.E. (2016) Design and Synthesis of Highly Active Peroxisome Proliferator-Activated Receptor (PPAR) beta/delta Inverse Agonists with Prolonged Cellular Activity. ChemMedChem, 11, 488-496.
  49. Koci, L., Hyzd'alova, M., Vaculova, A., Hofmanova, J. and Kozubik, A. (2011) Detachment-mediated resistance to TRAIL-induced apoptosis is associated with stimulation of the PI3K/Akt pathway in fetal and adenocarcinoma epithelial colon cells. Cytokine, 55, 34-39.
  50. Sun, P., Enslen, H., Myung, P.S. and Maurer, R.A. (1994) Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev, 8, 2527-2539.
  51. Igishi, T., Fukuhara, S., Patel, V., Katz, B.Z., Yamada, K.M. and Gutkind, J.S. (1999) Divergent signaling pathways link focal adhesion kinase to mitogen-activated protein kinase cascades. Evidence for a role of paxillin in c-Jun NH(2)-terminal kinase activation. J Biol Chem, 274, 30738-30746.
  52. Gudi, R., Bowker-Kinley, M.M., Kedishvili, N.Y., Zhao, Y. and Popov, K.M. (1995) Diversity of the pyruvate dehydrogenase kinase gene family in humans. J Biol Chem, 270, 28989-28994.
  53. Danen, E.H., Sonneveld, P., Sonnenberg, A. and Yamada, K.M. (2000) Dual stimulation of Ras/mitogen-activated protein kinase and RhoA by cell adhesion to fibronectin supports growth factor-stimulated cell cycle progression. J Cell Biol, 151, 1413-1422.
  54. Cooper, J.A. (1987) Effects of cytochalasin and phalloidin on actin. J Cell Biol, 105, 1473-1478.
  55. Rinnankoski-Tuikka, R., Silvennoinen, M., Torvinen, S., Hulmi, J.J., Lehti, M., Kivela, R., Reunanen, H. and Kainulainen, H. (2012) Effects of high-fat diet and physical activity on pyruvate dehydrogenase kinase-4 in mouse skeletal muscle. Nutr Metab (Lond), 9, 53.
  56. Nelson, P.J. and Daniel, T.O. (2002) Emerging targets: molecular mechanisms of cell contact-mediated growth control. Kidney Int, 61, S99-105.
  57. Grassian, A.R., Metallo, C.M., Coloff, J.L., Stephanopoulos, G. and Brugge, J.S. (2011) Erk regulation of pyruvate dehydrogenase flux through PDK4 modulates cell proliferation. Genes Dev, 25, 1716-1733.
  58. Cheng, H., Isoda, F. and Mobbs, C.V. (2009) Estradiol impairs hypothalamic molecular responses to hypoglycemia. Brain Res, 1280, 77-83.
  59. van den Berg, D.L., Zhang, W., Yates, A., Engelen, E., Takacs, K., Bezstarosti, K., Demmers, J., Chambers, I. and Poot, R.A. (2008) Estrogen-related receptor beta interacts with Oct4 to positively regulate Nanog gene expression. Mol Cell Biol, 28, 5986-5995.
  60. Domcke, S., Sinha, R., Levine, D.A., Sander, C. and Schultz, N. (2013) Evaluating cell lines as tumour models by comparison of genomic profiles. Nat Commun, 4, 2126.
  61. Bowker-Kinley, M.M., Davis, W.I., Wu, P., Harris, R.A. and Popov, K.M. (1998) Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem J, 329 ( Pt 1), 191-196.
  62. Moser, T.L., Pizzo, S.V., Bafetti, L.M., Fishman, D.A. and Stack, M.S. (1996) Evidence for preferential adhesion of ovarian epithelial carcinoma cells to type I collagen mediated by the alpha2beta1 integrin. Int J Cancer, 67, 695-701.
  63. Hennessy, B.T., Smith, D.L., Ram, P.T., Lu, Y. and Mills, G.B. (2005) Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov, 4, 988- 1004.
  64. Hur, H., Xuan, Y., Kim, Y.B., Lee, G., Shim, W., Yun, J., Ham, I.H. and Han, S.U. (2013) Expression of pyruvate dehydrogenase kinase-1 in gastric cancer as a potential therapeutic target. Int J Oncol, 42, 44-54.
  65. Thamilselvan, V., Craig, D.H. and Basson, M.D. (2007) FAK association with multiple signal proteins mediates pressure-induced colon cancer cell adhesion via a Srcdependent PI3K/Akt pathway. Faseb J, 21, 1730-1741.
  66. Danen, E.H. and Yamada, K.M. (2001) Fibronectin, integrins, and growth control. J Cell Physiol, 189, 1-13.
  67. Huang, D., Khoe, M., Befekadu, M., Chung, S., Takata, Y., Ilic, D. and Bryer-Ash, M. (2007) Focal adhesion kinase mediates cell survival via NF-kappaB and ERK signaling pathways. Am J Physiol Cell Physiol, 292, C1339-1352.
  68. Furuyama, T., Kitayama, K., Yamashita, H. and Mori, N. (2003) Forkhead transcription factor FOXO1 (FKHR)-dependent induction of PDK4 gene expression in skeletal muscle during energy deprivation. Biochem J, 375, 365-371.
  69. Puthanveetil, P., Wan, A. and Rodrigues, B. (2012) FoxO1 is crucial for sustaining cardiomyocyte metabolism and cell survival. Cardiovasc Res, 97, 393-403.
  70. Piao, L., Sidhu, V.K., Fang, Y.H., Ryan, J.J., Parikh, K.S., Hong, Z., Toth, P.T., Morrow, E., Kutty, S., Lopaschuk, G.D. and Archer, S.L. (2013) FOXO1-mediated upregulation of pyruvate dehydrogenase kinase-4 (PDK4) decreases glucose oxidation and impairs right ventricular function in pulmonary hypertension: therapeutic benefits of dichloroacetate. J Mol Med (Berl), 91, 333-346.
  71. Barthel, A., Schmoll, D. and Unterman, T.G. (2005) FoxO proteins in insulin action and metabolism. Trends Endocrinol Metab, 16, 183-189.
  72. de Lange, P., Moreno, M., Silvestri, E., Lombardi, A., Goglia, F. and Lanni, A. (2007) Fuel economy in food-deprived skeletal muscle: signaling pathways and regulatory mechanisms. Faseb J, 21, 3431-3441.
  73. Yeh, W.L., Shioda, K., Coser, K.R., Rivizzigno, D., McSweeney, K.R. and Shioda, T. (2013) Fulvestrant-induced cell death and proteasomal degradation of estrogen receptor alpha protein in MCF-7 cells require the CSK c-Src tyrosine kinase. PLoS One, 8, e60889.
  74. Adhikary, T., Kaddatz, K., Finkernagel, F., Schonbauer, A., Meissner, W., Scharfe, M., Jarek, M., Blocker, H., Muller-Brusselbach, S. and Muller, R. (2011) Genomewide analyses define different modes of transcriptional regulation by peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta). PLoS One, 6, e16344.
  75. Shin, D.J., Joshi, P., Hong, S.H., Mosure, K., Shin, D.G. and Osborne, T.F. (2012) Genome-wide analysis of FoxO1 binding in hepatic chromatin: potential involvement of FoxO1 in linking retinoid signaling to hepatic gluconeogenesis. Nucleic Acids Res, 40, 11499-11509.
  76. Nikolova, D.N., Doganov, N., Dimitrov, R., Angelov, K., Low, S.K., Dimova, I., Toncheva, D., Nakamura, Y. and Zembutsu, H. (2009) Genome-wide gene expression profiles of ovarian carcinoma: Identification of molecular targets for the treatment of ovarian carcinoma. Mol Med Rep, 2, 365-384.
  77. Gao, H., Falt, S., Sandelin, A., Gustafsson, J.A. and Dahlman-Wright, K. (2008) Genome-wide identification of estrogen receptor alpha-binding sites in mouse liver. Mol Endocrinol, 22, 10-22.
  78. Kadmiel, M. and Cidlowski, J.A. (2013) Glucocorticoid receptor signaling in health and disease. Trends Pharmacol Sci, 34, 518-530.
  79. Kamarajugadda, S., Stemboroski, L., Cai, Q., Simpson, N.E., Nayak, S., Tan, M. and Lu, J. (2012) Glucose oxidation modulates anoikis and tumor metastasis. Mol Cell Biol, 32, 1893-1907.
  80. Hur, E.M. and Zhou, F.Q. (2010) GSK3 signalling in neural development. Nat Rev Neurosci, 11, 539-551.
  81. Prigione, A., Rohwer, N., Hoffmann, S., Mlody, B., Drews, K., Bukowiecki, R., Blumlein, K., Wanker, E.E., Ralser, M., Cramer, T. and Adjaye, J. (2014) HIF1alpha modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2. Stem Cells, 32, 364-376.
  82. Kim, J.W., Tchernyshyov, I., Semenza, G.L. and Dang, C.V. (2006a) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab, 3, 177-185.
  83. Papandreou, I., Cairns, R.A., Fontana, L., Lim, A.L. and Denko, N.C. (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab, 3, 187-197.
  84. Naruhn, S., Toth, P.M., Adhikary, T., Kaddatz, K., Pape, V., Dorr, S., Klebe, G., MullerBrusselbach, S., Diederich, W.E. and Muller, R. (2011) High-affinity peroxisome proliferator-activated receptor beta/delta-specific ligands with pure antagonistic or inverse agonistic properties. Mol Pharmacol, 80, 828-838.
  85. Kim, K.S., Sengupta, S., Berk, M., Kwak, Y.G., Escobar, P.F., Belinson, J., Mok, S.C. and Xu, Y. (2006b) Hypoxia enhances lysophosphatidic acid responsiveness in ovarian cancer cells and lysophosphatidic acid induces ovarian tumor metastasis in vivo. Cancer Res, 66, 7983-7990.
  86. Lee, J.H., Kim, E.J., Kim, D.K., Lee, J.M., Park, S.B., Lee, I.K., Harris, R.A., Lee, M.O. and Choi, H.S. (2012) Hypoxia induces PDK4 gene expression through induction of the orphan nuclear receptor ERRgamma. PLoS One, 7, e46324.
  87. Kim, J.W., Gao, P., Liu, Y.C., Semenza, G.L. and Dang, C.V. (2007) Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol, 27, 7381-7393.
  88. Pytela, R., Pierschbacher, M.D. and Ruoslahti, E. (1985) Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor. Cell, 40, 191-198.
  89. Feng, J., Park, J., Cron, P., Hess, D. and Hemmings, B.A. (2004) Identification of a PKB/Akt hydrophobic motif Ser-473 kinase as DNA-dependent protein kinase. J Biol Chem, 279, 41189-41196.
  90. Araki, M. and Motojima, K. (2006) Identification of ERRalpha as a specific partner of PGC-1alpha for the activation of PDK4 gene expression in muscle. Febs J, 273, 1669-1680.
  91. Gyorffy, B., Lanczky, A. and Szallasi, Z. (2012) Implementing an online tool for genome-wide validation of survival-associated biomarkers in ovarian-cancer using microarray data from 1287 patients. Endocr Relat Cancer, 19, 197-208.
  92. Lu, C.W., Lin, S.C., Chen, K.F., Lai, Y.Y. and Tsai, S.J. (2008) Induction of pyruvate dehydrogenase kinase-3 by hypoxia-inducible factor-1 promotes metabolic switch and drug resistance. J Biol Chem, 283, 28106-28114.
  93. Cross, D.A., Alessi, D.R., Cohen, P., Andjelkovich, M. and Hemmings, B.A. (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature, 378, 785-789.
  94. Kim, Y.I., Lee, F.N., Choi, W.S., Lee, S. and Youn, J.H. (2006c) Insulin regulation of skeletal muscle PDK4 mRNA expression is impaired in acute insulin-resistant states. Diabetes, 55, 2311-2317.
  95. Wiesner, S., Legate, K.R. and Fassler, R. (2005) Integrin-actin interactions. Cell Mol Life Sci, 62, 1081-1099.
  96. Beeson, C.C., Beeson, G.C., Buff, H., Eldridge, J., Zhang, A., Seth, A., Demcheva, M., Vournakis, J.N. and Muise-Helmericks, R.C. (2012) Integrin-dependent Akt1 activation regulates PGC-1 expression and fatty acid oxidation. J Vasc Res, 49, 89-100.
  97. Sawada, K., Ohyagi-Hara, C., Kimura, T. and Morishige, K. (2011) Integrin inhibitors as a therapeutic agent for ovarian cancer. J Oncol, 2012, 915140.
  98. Oktay, M., Wary, K.K., Dans, M., Birge, R.B. and Giancotti, F.G. (1999) Integrinmediated activation of focal adhesion kinase is required for signaling to Jun NH2-terminal kinase and progression through the G1 phase of the cell cycle. J Cell Biol, 145, 1461-1469.
  99. Schlaepfer, D.D., Hanks, S.K., Hunter, T. and van der Geer, P. (1994) Integrinmediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature, 372, 786-791.
  100. Frisch, S.M. and Ruoslahti, E. (1997) Integrins and anoikis. Curr Opin Cell Biol, 9, 701- 706.
  101. Hynes, R.O. (2002) Integrins: bidirectional, allosteric signaling machines. Cell, 110, 673-687.
  102. Giancotti, F.G. and Ruoslahti, E. (1999) Integrin signaling. Science, 285, 1028-1032.
  103. Schlaepfer, D.D. and Hunter, T. (1998) Integrin signalling and tyrosine phosphorylation: just the FAKs? Trends Cell Biol, 8, 151-157.
  104. Guo, W. and Giancotti, F.G. (2004) Integrin signalling during tumour progression. Nat Rev Mol Cell Biol, 5, 816-826.
  105. Desgrosellier, J.S. and Cheresh, D.A. (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer, 10, 9-22.
  106. Holness, M.J., Bulmer, K., Smith, N.D. and Sugden, M.C. (2003) Investigation of potential mechanisms regulating protein expression of hepatic pyruvate dehydrogenase kinase isoforms 2 and 4 by fatty acids and thyroid hormone. Biochem J, 369, 687-695.
  107. Van de Water, B., Jaspers, J.J., Maasdam, D.H., Mulder, G.J. and Nagelkerke, J.F. (1994) In vivo and in vitro detachment of proximal tubular cells and F-actin damage: consequences for renal function. Am J Physiol, 267, F888-899.
  108. Huang, B., Gudi, R., Wu, P., Harris, R.A., Hamilton, J. and Popov, K.M. (1998) Isoenzymes of pyruvate dehydrogenase phosphatase. DNA-derived amino acid sequences, expression, and regulation. J Biol Chem, 273, 17680-17688.
  109. Spector, I., Shochet, N.R., Kashman, Y. and Groweiss, A. (1983) Latrunculins: novel marine toxins that disrupt microfilament organization in cultured cells. Science, 219, 493-495.
  110. Maggi, A. (2011) Liganded and unliganded activation of estrogen receptor and hormone replacement therapies. Biochim Biophys Acta, 1812, 1054-1060.
  111. Olson, E.N. and Nordheim, A. (2010) Linking actin dynamics and gene transcription to drive cellular motile functions. Nat Rev Mol Cell Biol, 11, 353-365.
  112. Ravindran, S., Radke, G.A., Guest, J.R. and Roche, T.E. (1996) Lipoyl domain-based mechanism for the integrated feedback control of the pyruvate dehydrogenase complex by enhancement of pyruvate dehydrogenase kinase activity. J Biol Chem, 271, 653-662.
  113. Cowell, C.F., Yan, I.K., Eiseler, T., Leightner, A.C., Doppler, H. and Storz, P. (2009) Loss of cell-cell contacts induces NF-kappaB via RhoA-mediated activation of protein kinase D1. J Cell Biochem, 106, 714-728.
  114. Foster, D.W. (2012) Malonyl-CoA: the regulator of fatty acid synthesis and oxidation. J Clin Invest, 122, 1958-1959.
  115. Wu, P., Inskeep, K., Bowker-Kinley, M.M., Popov, K.M. and Harris, R.A. (1999) Mechanism responsible for inactivation of skeletal muscle pyruvate dehydrogenase complex in starvation and diabetes. Diabetes, 48, 1593-1599.
  116. Sugden, M.C. and Holness, M.J. (2006) Mechanisms underlying regulation of the expression and activities of the mammalian pyruvate dehydrogenase kinases. Arch Physiol Biochem, 112, 139-149.
  117. Sun, Y., Daemen, A., Hatzivassiliou, G., Arnott, D., Wilson, C., Zhuang, G., Gao, M., Liu, P., Boudreau, A., Johnson, L. and Settleman, J. (2014) Metabolic and transcriptional profiling reveals pyruvate dehydrogenase kinase 4 as a mediator of epithelial-mesenchymal transition and drug resistance in tumor cells. Cancer Metab, 2, 20.
  118. Anderson, A.S., Roberts, P.C., Frisard, M.I., McMillan, R.P., Brown, T.J., Lawless, M.H., Hulver, M.W. and Schmelz, E.M. (2013) Metabolic changes during ovarian cancer progression as targets for sphingosine treatment. Exp Cell Res, 319, 1431-1442.
  119. Huddleston, J.E. (2011) Metabolic regulation by ERK. Nat Rev Mol Cell Biol, 12, 546.
  120. Kim, Y.D., Kim, Y.H., Tadi, S., Yu, J.H., Yim, Y.H., Jeoung, N.H., Shong, M., Hennighausen, L., Harris, R.A., Lee, I.K., Lee, C.H. and Choi, H.S. (2012) Metformin inhibits growth hormone-mediated hepatic PDK4 gene expression through induction of orphan nuclear receptor small heterodimer partner. Diabetes, 61, 2484-2494.
  121. Kulkarni, S.S., Salehzadeh, F., Fritz, T., Zierath, J.R., Krook, A. and Osler, M.E. (2012) Mitochondrial regulators of fatty acid metabolism reflect metabolic dysfunction in type 2 diabetes mellitus. Metabolism, 61, 175-185.
  122. Lee, J.W. and Juliano, R. (2004) Mitogenic signal transduction by integrin- and growth factor receptor-mediated pathways. Mol Cells, 17, 188-202.
  123. Xu, H.E., Lambert, M.H., Montana, V.G., Parks, D.J., Blanchard, S.G., Brown, P.J., Sternbach, D.D., Lehmann, J.M., Wisely, G.B., Willson, T.M., Kliewer, S.A. and Milburn, M.V. (1999) Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol Cell, 3, 397-403.
  124. Pettersson, K., Grandien, K., Kuiper, G.G. and Gustafsson, J.A. (1997) Mouse estrogen receptor beta forms estrogen response element-binding heterodimers with estrogen receptor alpha. Mol Endocrinol, 11, 1486-1496.
  125. Leoni A., K.-S., Marina Kreutz, and Ruth Knuechel. (1998) Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology. Int J Exp Pathol.
  126. Colombo, N., Peiretti, M., Parma, G., Lapresa, M., Mancari, R., Carinelli, S., Sessa, C. and Castiglione, M. (2010) Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol, 21 Suppl 5, v23-30.
  127. Muller, M.R. and Rao, A. (2010) NFAT, immunity and cancer: a transcription factor comes of age. Nat Rev Immunol, 10, 645-656.
  128. Berger, J., Leibowitz, M.D., Doebber, T.W., Elbrecht, A., Zhang, B., Zhou, G., Biswas, C., Cullinan, C.A., Hayes, N.S., Li, Y., Tanen, M., Ventre, J., Wu, M.S., Berger, G.D., Mosley, R., Marquis, R., Santini, C., Sahoo, S.P., Tolman, R.L., Smith, R.G. and Moller, D.E. (1999) Novel peroxisome proliferator-activated receptor (PPAR) gamma and PPARdelta ligands produce distinct biological effects. J Biol Chem, 274, 6718-6725.
  129. Sznaidman, M.L., Haffner, C.D., Maloney, P.R., Fivush, A., Chao, E., Goreham, D., Sierra, M.L., LeGrumelec, C., Xu, H.E., Montana, V.G., Lambert, M.H., Willson, T.M., Oliver, W.R., Jr. and Sternbach, D.D. (2003) Novel selective small molecule agonists for peroxisome proliferator-activated receptor delta (PPARdelta)--synthesis and biological activity. Bioorg Med Chem Lett, 13, 1517-1521.
  130. Vartiainen, M.K., Guettler, S., Larijani, B. and Treisman, R. (2007) Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science, 316, 1749-1752.
  131. Wauson, E.M., Guerra, M.L., Barylko, B., Albanesi, J.P. and Cobb, M.H. (2013) Offtarget effects of MEK inhibitors. Biochemistry, 52, 5164-5166.
  132. Warburg, O. (1956) On the origin of cancer cells. Science, 123, 309-314.
  133. Vandevyver, S., Dejager, L. and Libert, C. (2012) On the trail of the glucocorticoid receptor: into the nucleus and back. Traffic, 13, 364-374.
  134. Beaufort, C.M., Helmijr, J.C., Piskorz, A.M., Hoogstraat, M., Ruigrok-Ritstier, K., Besselink, N., Murtaza, M., van, I.W.F., Heine, A.A., Smid, M., Koudijs, M.J., Brenton, J.D., Berns, E.M. and Helleman, J. (2014) Ovarian cancer cell line panel (OCCP): clinical importance of in vitro morphological subtypes. PLoS One, 9, e103988.
  135. Lengyel, E. (2010) Ovarian cancer development and metastasis. Am J Pathol, 177, 1053-1064.
  136. Ricci, F., Bernasconi, S., Perego, P., Ganzinelli, M., Russo, G., Bono, F., Mangioni, C., Fruscio, R., Signorelli, M., Broggini, M. and Damia, G. (2012) Ovarian carcinoma tumor-initiating cells have a mesenchymal phenotype. Cell Cycle, 11, 1966-1976.
  137. Anderson, A.S., Roberts, P.C., Frisard, M.I., Hulver, M.W. and Schmelz, E.M. (2014) Ovarian tumor-initiating cells display a flexible metabolism. Exp Cell Res, 328, 44-57.
  138. Arboleda, M.J., Lyons, J.F., Kabbinavar, F.F., Bray, M.R., Snow, B.E., Ayala, R., Danino, M., Karlan, B.Y. and Slamon, D.J. (2003) Overexpression of AKT2/protein kinase Bbeta leads to up-regulation of beta1 integrins, increased invasion, and metastasis of human breast and ovarian cancer cells. Cancer Res, 63, 196-206.
  139. Fujiwara, S., Kawano, Y., Yuki, H., Okuno, Y., Nosaka, K., Mitsuya, H. and Hata, H. (2013) PDK1 inhibition is a novel therapeutic target in multiple myeloma. Br J Cancer, 108, 170-178.
  140. Wigfield, S.M., Winter, S.C., Giatromanolaki, A., Taylor, J., Koukourakis, M.L. and Harris, A.L. (2008) PDK-1 regulates lactate production in hypoxia and is associated with poor prognosis in head and neck squamous cancer. Br J Cancer, 98, 1975-1984.
  141. Liu, Z., Chen, X., Wang, Y., Peng, H., Wang, Y., Jing, Y. and Zhang, H. (2014) PDK4 protein promotes tumorigenesis through activation of cAMP-response elementbinding protein (CREB)-Ras homolog enriched in brain (RHEB)-mTORC1 signaling cascade. J Biol Chem, 289, 29739-29749.
  142. Wagner, K.D. and Wagner, N. (2010) Peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) acts as regulator of metabolism linked to multiple cellular functions. Pharmacol Ther, 125, 423-435.
  143. Wende, A.R., Huss, J.M., Schaeffer, P.J., Giguere, V. and Kelly, D.P. (2005) PGC1alpha coactivates PDK4 gene expression via the orphan nuclear receptor ERRalpha: a mechanism for transcriptional control of muscle glucose metabolism. Mol Cell Biol, 25, 10684-10694.
  144. Dunbar, E.M., Coats, B.S., Shroads, A.L., Langaee, T., Lew, A., Forder, J.R., Shuster, J.J., Wagner, D.A. and Stacpoole, P.W. (2014) Phase 1 trial of dichloroacetate (DCA) in adults with recurrent malignant brain tumors. Invest New Drugs, 32, 452-464.
  145. Delcommenne, M., Tan, C., Gray, V., Rue, L., Woodgett, J. and Dedhar, S. (1998) Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc Natl Acad Sci U S A, 95, 11211-11216.
  146. Sarbassov, D.D., Guertin, D.A., Ali, S.M. and Sabatini, D.M. (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 307, 1098- 1101.
  147. Hemmings, B.A. and Restuccia, D.F. (2012) PI3K-PKB/Akt pathway. Cold Spring Harb Perspect Biol, 4, a011189.
  148. Schaller, M.D., Borgman, C.A., Cobb, B.S., Vines, R.R., Reynolds, A.B. and Parsons, J.T. (1992) pp125FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc Natl Acad Sci U S A, 89, 5192-5196.
  149. Lefterova, M.I., Zhang, Y., Steger, D.J., Schupp, M., Schug, J., Cristancho, A., Feng, D., Zhuo, D., Stoeckert, C.J., Jr., Liu, X.S. and Lazar, M.A. (2008) PPARgamma and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. Genes Dev, 22, 2941-2952.
  150. Ricote, M. and Glass, C.K. (2007) PPARs and molecular mechanisms of transrepression. Biochim Biophys Acta, 1771, 926-935.
  151. Gupta, R.A., Tan, J., Krause, W.F., Geraci, M.W., Willson, T.M., Dey, S.K. and DuBois, R.N. (2000) Prostacyclin-mediated activation of peroxisome proliferatoractivated receptor delta in colorectal cancer. Proc Natl Acad Sci U S A, 97, 13275-13280.
  152. Kwon, H.S., Huang, B., Unterman, T.G. and Harris, R.A. (2004) Protein kinase B-alpha inhibits human pyruvate dehydrogenase kinase-4 gene induction by dexamethasone through inactivation of FOXO transcription factors. Diabetes, 53, 899-910.
  153. Bissell, M.J. and Radisky, D. (2001) Putting tumours in context. Nat Rev Cancer, 1, 46- 54.
  154. Cadoudal, T., Distel, E., Durant, S., Fouque, F., Blouin, J.M., Collinet, M., Bortoli, S., Forest, C. and Benelli, C. (2008) Pyruvate dehydrogenase kinase 4: regulation by thiazolidinediones and implication in glyceroneogenesis in adipose tissue. Diabetes, 57, 2272-2279.
  155. Sutendra, G. and Michelakis, E.D. (2013) Pyruvate dehydrogenase kinase as a novel therapeutic target in oncology. Front Oncol, 3, 38.
  156. Jha, M.K. and Suk, K. (2013) Pyruvate dehydrogenase kinase as a potential therapeutic target for malignant gliomas. Brain Tumor Res Treat, 1, 57-63.
  157. Roche, T.E. and Hiromasa, Y. (2007) Pyruvate dehydrogenase kinase regulatory mechanisms and inhibition in treating diabetes, heart ischemia, and cancer. Cell Mol Life Sci, 64, 830-849.
  158. Jeoung, N.H. (2015) Pyruvate Dehydrogenase Kinases: Therapeutic Targets for Diabetes and Cancers. Diabetes Metab J, 39, 188-197.
  159. Pausawasdi, N., Ramamoorthy, S., Crofford, L.J., Askari, F.K. and Todisco, A. (2002) Regulation and function of COX-2 gene expression in isolated gastric parietal cells. Am J Physiol Gastrointest Liver Physiol, 282, G1069-1078.
  160. Cairns, R.A., Harris, I.S. and Mak, T.W. (2011) Regulation of cancer cell metabolism. Nat Rev Cancer, 11, 85-95.
  161. St-Germain, M.E., Gagnon, V., Parent, S. and Asselin, E. (2004) Regulation of COX-2 protein expression by Akt in endometrial cancer cells is mediated through NFkappaB/IkappaB pathway. Mol Cancer, 3, 7.
  162. Holness, M.J. and Sugden, M.C. (2003) Regulation of pyruvate dehydrogenase complex activity by reversible phosphorylation. Biochem Soc Trans, 31, 1143- 1151.
  163. Attia, R.R., Sharma, P., Janssen, R.C., Friedman, J.E., Deng, X., Lee, J.S., Elam, M.B., Cook, G.A. and Park, E.A. (2011) Regulation of pyruvate dehydrogenase kinase 4 (PDK4) by CCAAT/enhancer-binding protein beta (C/EBPbeta). J Biol Chem, 286, 23799-23807.
  164. Attia, R.R., Connnaughton, S., Boone, L.R., Wang, F., Elam, M.B., Ness, G.C., Cook, G.A. and Park, E.A. (2010) Regulation of pyruvate dehydrogenase kinase 4 (PDK4) by thyroid hormone: role of the peroxisome proliferator-activated receptor gamma coactivator (PGC-1 alpha). J Biol Chem, 285, 2375-2385.
  165. Connaughton, S., Chowdhury, F., Attia, R.R., Song, S., Zhang, Y., Elam, M.B., Cook, G.A. and Park, E.A. (2010) Regulation of pyruvate dehydrogenase kinase isoform 4 (PDK4) gene expression by glucocorticoids and insulin. Mol Cell Endocrinol, 315, 159-167.
  166. Hsieh, M.C., Das, D., Sambandam, N., Zhang, M.Q. and Nahle, Z. (2008) Regulation of the PDK4 isozyme by the Rb-E2F1 complex. J Biol Chem, 283, 27410-27417.
  167. Behal, R.H., Buxton, D.B., Robertson, J.G. and Olson, M.S. (1993) Regulation of the pyruvate dehydrogenase multienzyme complex. Annu Rev Nutr, 13, 497-520.
  168. Shaw, N., Elholm, M. and Noy, N. (2003) Retinoic acid is a high affinity selective ligand for the peroxisome proliferator-activated receptor beta/delta. J Biol Chem, 278, 41589-41592.
  169. Byun, J.K., Choi, Y.K., Kang, Y.N., Jang, B.K., Kang, K.J., Jeon, Y.H., Lee, H.W., Jeon, J.H., Koo, S.H., Jeong, W.I., Harris, R.A., Lee, I.K. and Park, K.G. (2015) Retinoic acid-related orphan receptor alpha reprograms glucose metabolism in glutamine-deficient hepatoma cells. Hepatology, 61, 953-964.
  170. Kramer, D.K., Al-Khalili, L., Guigas, B., Leng, Y., Garcia-Roves, P.M. and Krook, A. (2007) Role of AMP kinase and PPARdelta in the regulation of lipid and glucose metabolism in human skeletal muscle. J Biol Chem, 282, 19313-19320.
  171. Jeoung, N.H. and Harris, R.A. (2010) Role of pyruvate dehydrogenase kinase 4 in regulation of blood glucose levels. Korean Diabetes J, 34, 274-283.
  172. Jeoung, N.H., Wu, P., Joshi, M.A., Jaskiewicz, J., Bock, C.B., Depaoli-Roach, A.A. and Harris, R.A. (2006) Role of pyruvate dehydrogenase kinase isoenzyme 4 (PDHK4) in glucose homoeostasis during starvation. Biochem J, 397, 417-425.
  173. Minden, A., Lin, A., Claret, F.X., Abo, A. and Karin, M. (1995) Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell, 81, 1147-1157.
  174. Ji, J.Y., Jing, H. and Diamond, S.L. (2003) Shear stress causes nuclear localization of endothelial glucocorticoid receptor and expression from the GRE promoter. Circ Res, 92, 279-285.
  175. Strumilo, S. (2005) Short-term regulation of the mammalian pyruvate dehydrogenase complex. Acta Biochim Pol, 52, 759-764.
  176. Schlaepfer, D.D., Hauck, C.R. and Sieg, D.J. (1999) Signaling through focal adhesion kinase. Prog Biophys Mol Biol, 71, 435-478.
  177. Sotiropoulos, A., Gineitis, D., Copeland, J. and Treisman, R. (1999) Signal-regulated activation of serum response factor is mediated by changes in actin dynamics. Cell, 98, 159-169.
  178. Qi, D., Pulinilkunnil, T., An, D., Ghosh, S., Abrahani, A., Pospisilik, J.A., Brownsey, R., Wambolt, R., Allard, M. and Rodrigues, B. (2004) Single-dose dexamethasone induces whole-body insulin resistance and alters both cardiac fatty acid and carbohydrate metabolism. Diabetes, 53, 1790-1797.
  179. Lei, J. and Ingbar, D.H. (2011) Src kinase integrates PI3K/Akt and MAPK/ERK1/2 pathways in T3-induced Na-K-ATPase activity in adult rat alveolar cells. Am J Physiol Lung Cell Mol Physiol, 301, L765-771.
  180. Wu, P., Sato, J., Zhao, Y., Jaskiewicz, J., Popov, K.M. and Harris, R.A. (1998) Starvation and diabetes increase the amount of pyruvate dehydrogenase kinase isoenzyme 4 in rat heart. Biochem J, 329 ( Pt 1), 197-201.
  181. Huang, B., Wu, P., Popov, K.M. and Harris, R.A. (2003) Starvation and diabetes reduce the amount of pyruvate dehydrogenase phosphatase in rat heart and kidney. Diabetes, 52, 1371-1376.
  182. Wu, P., Blair, P.V., Sato, J., Jaskiewicz, J., Popov, K.M. and Harris, R.A. (2000) Starvation increases the amount of pyruvate dehydrogenase kinase in several mammalian tissues. Arch Biochem Biophys, 381, 1-7.
  183. Bapat, S.A., Mali, A.M., Koppikar, C.B. and Kurrey, N.K. (2005) Stem and progenitorlike cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res, 65, 3025-3029.
  184. Pratt, W.B. and Toft, D.O. (1997) Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev, 18, 306-360.
  185. Tian, W., Han, X., Yan, M., Xu, Y., Duggineni, S., Lin, N., Luo, G., Li, Y.M., Han, X., Huang, Z. and An, J. (2011) Structure-based discovery of a novel inhibitor targeting the beta-catenin/Tcf4 interaction. Biochemistry, 51, 724-731.
  186. Holness, M.J., Kraus, A., Harris, R.A. and Sugden, M.C. (2000) Targeted upregulation of pyruvate dehydrogenase kinase (PDK)-4 in slow-twitch skeletal muscle underlies the stable modification of the regulatory characteristics of PDK induced by high-fat feeding. Diabetes, 49, 775-781.
  187. Goc, A., Al-Husein, B., Katsanevas, K., Steinbach, A., Lou, U., Sabbineni, H., DeRemer, D.L. and Somanath, P.R. (2014) Targeting Src-mediated Tyr216 phosphorylation and activation of GSK-3 in prostate cancer cells inhibit prostate cancer progression in vitro and in vivo. Oncotarget, 5, 775-787.
  188. Zhang W, Z.S., Hu X, Tam KY. (2015) Targeting Tumor Metabolism for Cancer Treatment: Is Pyruvate Dehydrogenase Kinases (PDKs) a Viable Anticancer Target? . Int J Biol Sci, 11(12), 1390-1400.
  189. Oh, K.J., Park, J., Kim, S.S., Oh, H., Choi, C.S. and Koo, S.H. (2012) TCF7L2 modulates glucose homeostasis by regulating CREB- and FoxO1-dependent transcriptional pathway in the liver. PLoS Genet, 8, e1002986.
  190. Kalluri, R. and Weinberg, R.A. (2009) The basics of epithelial-mesenchymal transition. J Clin Invest, 119, 1420-1428.
  191. Levine, A.J. and Puzio-Kuter, A.M. (2010) The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science, 330, 1340-1344.
  192. Puthanveetil, P., Wang, Y., Wang, F., Kim, M.S., Abrahani, A. and Rodrigues, B. (2010) The increase in cardiac pyruvate dehydrogenase kinase-4 after shortterm dexamethasone is controlled by an Akt-p38-forkhead box other factor-1 signaling axis. Endocrinology, 151, 2306-2318.
  193. Attwell, S., Roskelley, C. and Dedhar, S. (2000) The integrin-linked kinase (ILK) suppresses anoikis. Oncogene, 19, 3811-3815.
  194. Shackelford, D.B. and Shaw, R.J. (2009) The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer, 9, 563-575.
  195. Christofk, H.R., Vander Heiden, M.G., Harris, M.H., Ramanathan, A., Gerszten, R.E., Wei, R., Fleming, M.D., Schreiber, S.L. and Cantley, L.C. (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature, 452, 230-233.
  196. Sayas, C.L., Moreno-Flores, M.T., Avila, J. and Wandosell, F. (1999) The neurite retraction induced by lysophosphatidic acid increases Alzheimer's disease-like Tau phosphorylation. J Biol Chem, 274, 37046-37052.
  197. Kurman, R.J. and Shih , I. (2010) The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. Am J Surg Pathol, 34, 433-443.
  198. Shi, Y., Hon, M. and Evans, R.M. (2002) The peroxisome proliferator-activated receptor delta, an integrator of transcriptional repression and nuclear receptor signaling. Proc Natl Acad Sci U S A, 99, 2613-2618.
  199. Miyata, K.S., McCaw, S.E., Marcus, S.L., Rachubinski, R.A. and Capone, J.P. (1994) The peroxisome proliferator-activated receptor interacts with the retinoid X receptor in vivo. Gene, 148, 327-330.
  200. Kennedy, S.G., Wagner, A.J., Conzen, S.D., Jordan, J., Bellacosa, A., Tsichlis, P.N. and Hay, N. (1997) The PI 3-kinase/Akt signaling pathway delivers an antiapoptotic signal. Genes Dev, 11, 701-713.
  201. Zhang, S., Hulver, M.W., McMillan, R.P., Cline, M.A. and Gilbert, E.R. (2014) The pivotal role of pyruvate dehydrogenase kinases in metabolic flexibility. Nutr Metab (Lond), 11, 10.
  202. Hill, C.S., Wynne, J. and Treisman, R. (1995) The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell, 81, 1159-1170.
  203. Constantin-Teodosiu, D., Constantin, D., Stephens, F., Laithwaite, D. and Greenhaff, P.L. (2012) The role of FOXO and PPAR transcription factors in diet-mediated inhibition of PDC activation and carbohydrate oxidation during exercise in humans and the role of pharmacological activation of PDC in overriding these changes. Diabetes, 61, 1017-1024.
  204. Peters, J.M., Shah, Y.M. and Gonzalez, F.J. (2012) The role of peroxisome proliferatoractivated receptors in carcinogenesis and chemoprevention. Nat Rev Cancer, 12, 181-195.
  205. Coso, O.A., Chiariello, M., Yu, J.C., Teramoto, H., Crespo, P., Xu, N., Miki, T. and Gutkind, J.S. (1995) The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell, 81, 1137-1146.
  206. Arend, R.C., Londono-Joshi, A.I., Straughn, J.M., Jr. and Buchsbaum, D.J. (2013) The Wnt/beta-catenin pathway in ovarian cancer: a review. Gynecol Oncol, 131, 772-779.
  207. Degenhardt, T., Saramaki, A., Malinen, M., Rieck, M., Vaisanen, S., Huotari, A., Herzig, K.H., Muller, R. and Carlberg, C. (2007) Three members of the human pyruvate dehydrogenase kinase gene family are direct targets of the peroxisome proliferator-activated receptor beta/delta. J Mol Biol, 372, 341-355.
  208. Bensaad, K., Tsuruta, A., Selak, M.A., Vidal, M.N., Nakano, K., Bartrons, R., Gottlieb, E. and Vousden, K.H. (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell, 126, 107-120.
  209. Mayr, B. and Montminy, M. (2001) Transcriptional regulation by the phosphorylationdependent factor CREB. Nat Rev Mol Cell Biol, 2, 599-609.
  210. Jeong, J.Y., Jeoung, N.H., Park, K.G. and Lee, I.K. (2012) Transcriptional regulation of pyruvate dehydrogenase kinase. Diabetes Metab J, 36, 328-335.
  211. Pilegaard, H. and Neufer, P.D. (2004) Transcriptional regulation of pyruvate dehydrogenase kinase 4 in skeletal muscle during and after exercise. Proc Nutr Soc, 63, 221-226.
  212. Yu, S. and Reddy, J.K. (2007) Transcription coactivators for peroxisome proliferatoractivated receptors. Biochim Biophys Acta, 1771, 936-951.
  213. Alberini, C.M. (2009) Transcription factors in long-term memory and synaptic plasticity. Physiol Rev, 89, 121-145.
  214. Penuel, E. and Martin, G.S. (1999) Transformation by v-Src: Ras-MAPK and PI3KmTOR mediate parallel pathways. Mol Biol Cell, 10, 1693-1703.
  215. Warburg , P.K., Negelein F. (1924) Uber den stoffwechsel der carcinomzelle. Biochem Z, 152, 319-344.
  216. Vander Heiden, M.G., Cantley, L.C. and Thompson, C.B. (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 324, 1029-1033.
  217. Slack-Davis, J.K., Atkins, K.A., Harrer, C., Hershey, E.D. and Conaway, M. (2009) Vascular cell adhesion molecule-1 is a regulator of ovarian cancer peritoneal metastasis. Cancer Res, 69, 1469-1476.
  218. Gatenby, R.A. and Gillies, R.J. (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer, 4, 891-899.
  219. Pate, K.T., Stringari, C., Sprowl-Tanio, S., Wang, K., TeSlaa, T., Hoverter, N.P., McQuade, M.M., Garner, C., Digman, M.A., Teitell, M.A., Edwards, R.A., Gratton, E. and Waterman, M.L. (2014) Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer. Embo J, 33, 1454- 1473.
  220. Baron, R. and Kneissel, M. (2013) WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med, 19, 179-192.
  221. Rosso, S.B., Sussman, D., Wynshaw-Boris, A. and Salinas, P.C. (2005) Wnt signaling through Dishevelled, Rac and JNK regulates dendritic development. Nat Neurosci, 8, 34-42.
  222. Lieber, S., Scheer, F., Meissner, W., Naruhn, S., Adhikary, T., Muller-Brusselbach, S., Diederich, W.E. and Muller, R. (2012) (Z)-2-(2-bromophenyl)-3-{[4-(1-methylpiperazine)amino]phenyl}acrylonitrile (DG172): an orally bioavailable PPARbeta/delta-selective ligand with inverse agonistic properties. J Med Chem, 55, 2858-2868.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten