Publikationsserver der Universitätsbibliothek Marburg

Titel:Charakterisierung NFATc1-abhängiger transkriptioneller Mechanismen während der inflammationsinduzierten Pankreaskarzinomentstehung
Autor:Regul, Lisanne
Weitere Beteiligte: Ellenrieder, Volker (Prof.Dr.med.)
Veröffentlicht:2016
URI:https://archiv.ub.uni-marburg.de/diss/z2016/0577
DOI: https://doi.org/10.17192/z2016.0577
URN: urn:nbn:de:hebis:04-z2016-05778
DDC: Medizin
Titel (trans.):Characterisation of NFATc1-dependent mechanisms in inflammationinduced pancreatic Carcinoma
Publikationsdatum:2016-09-01
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Pancreatic Carcinoma, NFATc1, Sox9, Sox9, acinar-to-ductal metaplasia, Pankreaskarzinom, EGFR, Azinär-duktale Metaplasie, NFATc1, EGFR

Zusammenfassung:
Die onkogene aktivierende Mutation von Kras stellt ein Schlüsselereignis in der Entstehung eines Pankreaskarzinoms (PDAC) dar und findet sich bereits in metaplastischen exokrinen Arealen des Organs. Allerdings ist die isolierte onkogene Aktivierung von Kras nicht suffizient, um die Pankreaskarzinogenese über die Stadien der Präinvasivität hinaus zu akzelerieren, sondern setzt die funktionelle Kooperation mit inflammatorischen Signalwegen voraus, die z.B. im Kontext einer chronischen Pankreatitis induziert werden. Zu den zentralen inflammationsresponsiven Ereignissen in der Karzinogenese des Pankreas zählt die Aktivierung EGFR-abhängiger Signalwege. Trotz zahlreicher Arbeiten, die die Relevanz der EGFR-Signaltransduktion in der Entstehung und Progression des Pankreaskarzinoms untersuchten, blieb der Mechanismus der EGFR-abhängigen azinär-duktalen Transdifferenzierung bisher ungeklärt. In Vorarbeiten charakterisierte die Arbeitsgruppe von Prof. Ellenrieder den inflammatorischen Transkriptionsfaktor Nuclear Activated Factor of T-cells c1 (NFATc1) als essentielles onkogenes Protein in der Genese und Progression des Pankreaskarzinoms. In der vorliegenden Arbeit sollte die Funktion von NFATc1 innerhalb der inflammationsgetriggerten, EGFR-abhängigen Pankreaskarzinomentstehung untersucht werden. Die Ergebnisse dieser Arbeit zeigen eine robuste EGFR-abhängige Induktion der NFATc1-Expression in metaplastischen Pankreasarealen. Mechanistisch begünstigt die Aktivierung des EGFR-Signalwegs die Bildung eines NFATc1;c-Jun-Partnerkomplexes, der durch direkte Promotorbindung die transkriptionelle Aktivierung des epithelialen Transkriptionsfaktors Sox9 kontrolliert und somit azinär-duktale Transdifferenzierungsvorgänge initiiert. Die pharmakologische und genetische NFATc1-Inhibition hingegen führt sowohl in vitro als auch in vivo zu einer Reduktion der EGFR-vermittelten azinär-duktalen Transdifferenzierung und Pankreasmetaplasie. Diese Arbeit beschreibt NFATc1 als zentralen Mediator duktaler Transdifferenzierungsprozesse in der EGFR-vermittelten Pankreaskarzinomentstehung und charakterisiert den Transkriptionsfaktor als vielversprechendes Zielprotein für pharmakologische Ansätze der Pankreaskarzinomprophylaxe bei Patienten mit chronischer Pankreatitis.

Bibliographie / References

  1. Journal of Biological Chemistry, 289(9), 6311-22 Zhu, L., Shi, G., Schmidt, C. M., Hruban, R. H. & Konieczny, S. F. (2007). Acinar cells contribute to the molecular heterogeneity of pancreatic intraepithelial neoplasia.
  2. (2011). An EGFR-ERK-SOX9 signaling cascade links urothelial development and regeneration to cancer. Cancer Research, 71(11), 3812-21 Liu, F., Hon, G. C., Villa, G. R., Turner, K. M., Ikegami, S., Yang, H., … Mischel, P. S.
  3. Journal of Biological Chemistry, 285(35), 27241-50 Singh, S. K., Chen, N.-M., Hessmann, E., Siveke, J., Lahmann, M., Singh, G., … Ellenrieder, V. (2015). Antithetical NFATc1-Sox2 and p53-miR200 signaling networks govern pancreatic cancer cell plasticity. The EMBO Journal, 34(4), 517- 530 Spalding, D. & Williamson, R. C. N. (2007). Pancreatic cancer. Medicine, 35(6), 325-329 Talamini, G., Falconi, M., Bassi, C., Sartori, N., Salvia, R., Caldiron, E., … Cavallini, G.
  4. Jain, J., Burgeon, E., Badalian, T. M., Hogan, P. G., & Rao, A. (1995). A similar DNAbinding motif in NFAT family proteins and the Rel homology region. Journal of Biological Chemistry, 270, 4138-45 Jauliac, S., López-Rodriguez, C., Shaw, L. M., Brown, L. F., Rao, A. & Toker, A. (2002).
  5. Carboxyl-terminal 15-amino acid sequence of NFATx1 is possibly created by tissue-specific splicing and is essential for transactivation activity in T cells. Journal of Immunology (Baltimore, Md. : 1950), 161, 3455-63.
  6. Chronic pancreatitis is associated with increased concentrations of epidermal growth factor receptor, transforming growth factor alpha, and phospholipase C gamma. Gut, 35(10), 1468-73 Larsson, S. C., Permert, J., Håkansson, N., Näslund, I., Bergkvist, L. & Wolk, A. (2005).
  7. Coexpression of epidermal growth factor receptor and ligands in human pancreatic cancer is associated with enhanced tumor aggressiveness. Anticancer Research, 13(3), 565-569 Yarden, Y. (2001). The EGFR family and its ligands in human cancer. signalling mechanisms and therapeutic opportunities. European Journal of Cancer, 37 Suppl 4, S3-S8 Yarden, Y. & Kelman, Z. (1991). Transmembrane signalling receptors for cytokines and Yi, T., Tan, K., Cho, S. G., Wang, Y., Luo, J., Zhang, W., … Liu, M. (2010). Regulation of embryonic kidney branching morphogenesis and glomerular development by KISS1 receptor (Gpr54) through NFAT2- and Sp1-mediated Bmp7 expression.
  8. (2015). EGFR Mutation Promotes Glioblastoma through Epigenome and Transcription Factor Network Remodeling. Molecular Cell, 60(2), 307-318 Lopez-Rodríguez, C., Aramburu, J., Rakeman, A. S. & Rao, a. (1999). NFAT5, a constitutively nuclear NFAT protein that does not cooperate with Fos and Jun.
  9. (2010). EGFR regulates the expression of keratinocyte-derived granulocyte/macrophage colony-stimulating factor in vitro and in vivo. The Journal of Investigative Dermatology, 130(3), 682-693 McBride, K., & Nemer, M. (1998). The C-terminal domain of c-fos is required for activation of an AP-1 site specific for jun-fos heterodimers. Molecular and Cellular Biology, 18(9), 5073-81 Means, A. L., Meszoely, I. M., Suzuki, K., Miyamoto, Y., Rustgi, A. K., Coffey, R. J., … Leach, S. D. (2005). Pancreatic epithelial plasticity mediated by acinar cell transdifferentiation and generation of nestin-positive intermediates.
  10. Hunter, T. & Cooper, J. A. (1981). Epidermal growth factor induces rapid tyrosine phosphorylation of proteins in A431 human tumor cells. Cell, 24(3), 741-752.
  11. (2003). Epidermal growth factor receptor expression in human pancreatic cancer: Significance for liver metastasis. International Journal of Molecular Medicine, 11(3), 305-309 Ullrich, A. & Schlessinger, J. (1990). Signal transduction by receptors with tyrosine kinase activity. Cell, 61(2), 203-212 Ushiro, H. & Cohen, S. (1980). Identification of phosphotyrosine as a product of epidermal growth factor-activated protein kinase in A-431 cell membranes.
  12. Identification of a putative regulator of early T cell activation genes. Science (New York, N.Y.), 241(11), 202-205 Simmons, D. L. (2004). Cyclooxygenase Isozymes: The Biology of Prostaglandin Synthesis and Inhibition. Pharmacological Reviews, 56(3), 387-437 Singh, G., Singh, S. K., König, A., Reutlinger, K., Nye, M. D., Adhikary, T., … Ellenrieder, V. (2010). Sequential activation of NFAT and c-Myc transcription factors mediates the TGF-β switch from a suppressor to a promoter of cancer cell proliferation.
  13. (2012). Identification of Sox9-dependent acinar-to-ductal reprogramming as the principal mechanism for initiation of pancreatic ductal adenocarcinoma. Cancer Cell, 22(6), 737-750 Korc, M., Chandrasekar, B., Yamanaka, Y., Friess, H., Buchier, M. & Beger, H. G. (1992).
  14. Nature Reviews. Immunology, 5(June), 472-484 Macián, F., García-Rodríguez, C. & Rao, A. (2000). Gene expression elicited by NFAT in the presence or absence of cooperative recruitment of Fos and Jun. The EMBO Journal, 19(17), 4783-95 Maitra, A. & Hruban, R. H. (2008). Pancreatic cancer. Annual Review of Pathology, 3, 157-188 Maitra, A., Fukushima, N., Takaori, K., Hruban, R. (2005). Precursors to Invasive Pancreatic Cancer. Advances in Anatomic Pathology, 12(2), 81-91 Malka, D. (2002). Risk of pancreatic adenocarcinoma in chronic pancreatitis. Gut, 51(6), 849-852 Mallen-St Clair, J., Soydaner-Azeloglu, R., Lee, K. E., Taylor, L., Livanos, A., PylayevaGupta, Y., … Bar-Sagi, D. (2012). EZH2 couples pancreatic regeneration to neoplastic progression. Genes & Development, 26(5), 439-444 Mancini, M. & Toker, A. (2009). NFAT proteins: emerging roles in cancer progression.
  15. (1999). Incidence of cancer in the course of chronic pancreatitis. The American Journal of Gastroenterology, 94(5), 1253-60 Tobita, K., Kijima, H., Dowaki, S., Kashiwagi, H., Ohtani, Y., Oida, Y., … Makuuchi, H.
  16. Induction and expression of heparin-binding EGF-like growth factor in human pancreatic cancer. Biochemical and Biophysical Research Communications, 202(3), 1705-09 König, A., Linhart, T., Schlengemann, K., Reutlinger, K., Wegele, J., Adler, G., … Kopp, J. L., von Figura, G., Mayes, E., Liu, F.-F., Dubois, C. L., Morris, J. P., … Sander, M.
  17. Molecular and Cellular Biology, 28(23), 7168-81 90 Rozakis-Adcock, M., van der Geer, P., Mbamalu, G. & Pawson, T. (1995). MAP kinase phosphorylation of mSos1 promotes dissociation of mSos1-Shc and mSos1-EGF receptor complexes. Oncogene, 11(7), 1417-26 Salomon, D. S., Brandt, R., Ciardiello, F. & Normanno, N. (1995). Epidermal growth factor-related peptides and their receptors in human malignancies. Critical Reviews in Oncology/hematology, 19(3), 183-232 Santini, M. P., Talora, C., Seki, T., Bolgan, L. & Dotto, G. P. (2001). Cross talk among calcineurin, Sp1/Sp3, and NFAT in control of p21(WAF1/CIP1) expression in keratinocyte differentiation. Proceedings of the National Academy of Sciences of the United States of America, 98(17), 9575-80 Schreiber, M., Kolbus, A., Piu, F., Szabowski, A., Mohle-Steinlein, U., Tian, J., … Wagner, E. F. (1999). Control of cell cycle progression by c-Jun is p53 dependent. Genes & Development, 13(5), 607-619 Seufferlein, T., Porzner, M., Becker, T., Budach, V., Ceyhan, G., Esposito, I., … Yekebas, E. (2013). S3-Leitlinie zum exokrinen Pankreaskarzinom. Zeitschrift Fur Gastroenterologie, 51, 1395-40 Seymour, P. A., Freude, K. K., Tran, M. N., Mayes, E. E., Jensen, J., Kist, R., … Sander, M.
  18. Nature Reviews. Cancer, 9, 810-820 Mascia, F., Cataisson, C., Lee, T.-C., Threadgill, D., Mariani, V., Amerio, P., … Pastore, S.
  19. European Surgical Research, 24(1), 29-39 Wu, A., Ericson, K., Chao, W., & Low, W. C. (2010). NFAT and AP1 are essential for the expression of a glioblastoma multiforme related IL-13Ra2 transcript. Cellular Oncology, 32, 313-329 Yadav, D. & Lowenfels, A. B. (2013). The epidemiology of pancreatitis and pancreatic cancer. Gastroenterology, 144(6), 1252-61 Yamanaka, Y., Friess, H., Kobrin, M. S., Buchler, M., Beger, H. G. & Korc, M. (1993).
  20. Journal of Biological Chemistry, 285(23), 17811-20 Yiu, G. K. & Toker, A. (2006). NFAT induces breast cancer cell invasion by promoting the induction of cyclooxygenase-2. Journal of Biological Chemistry, 281(18), 12210-17 Yokouchi, M. (1999). Ligand-induced Uubiquitination of the epidermal growth factor receptor involves the interaction of the c-Cbl RING Finger and UbcH7. Journal of Biological Chemistry, 274(44), 31707-12 Zhu, H., Guariglia, S., Li, W., Brancho, D., Wang, Z. V., Scherer, P. E., & Chow, C.-W.
  21. Proceedings of the National Academy of Sciences of the United States of America, 96(June), 7214-19 Macian, F. (2005). NFAT proteins: key regulators of T-cell development and function.
  22. Overall obesity, abdominal adiposity, diabetes and cigarette smoking in relation to the risk of pancreatic cancer in two Swedish population-based cohorts. British Journal of Cancer, 93(11), 1310-15 Lawrence, M. C., Bhatt, H. S. & Easom, R. a. (2014). NFAT Regulates Insulin Gene Promoter Activity in Response to Synergistic Pathways Induced by Glucose and Glucagon-Like Peptide-1, 51(3), 691-698 Levkowitz, G., Waterman, H., Ettenberg, S. A., Katz, M., Tsygankov, A. Y., Alroy, I., … Yarden, Y. (1999). Ubiquitin ligase activity and tyrosine phosphorylation underlie Ling, S., Chang, X., Schultz, L., Lee, T. K., Chaux, A., Marchionni, L., … Berman, D. M.
  23. Overexpression of the epidermal growth factor receptor in human pancreatic cancer is associated with concomitant increases in the levels of epidermal growth factor and transforming growth factor alpha. The Journal of Clinical Investigation, 90(4), 1352-60 Korc, M., Friess, H., Yamanaka, Y., Kobrin, M. S., Buchler, M. & Beger, H. G. (1994).
  24. Journal of Biological Chemistry, 255(18), 8363-65 Vincent, A., Herman, J., Schulick, R., Hruban, R. H. & Goggins, M. (2011). Pancreatic cancer. The Lancet, 378(9791), 607-620 Von Hoff, D., Ervin, T., Arena, F.P., Chiorean, E.G., Infante, J., Moore, M., … Renschler, Walters, R. D., Drullinger, L. F., Kugel, J. F. & Goodrich, J. A. (2013). NFATc2 recruits cJun homodimers to an NFAT site to synergistically activate interleukin-2 transcription. Molecular Immunology, 56(1-2), 48-56 Wang, J.-Y., Chen, B.-K., Wang, Y.-S., Tsai, Y.-T., Chen, W.-C., Chang, W.-C., … Chang, W.-C. (2012). Involvement of store-operated calcium signaling in EGF-mediated COX-2 gene activation in cancer cells. Cellular Signalling, 24(1), 162-169 Wells, A. (1999). EGF receptor. The International Journal of Biochemistry & Cell Biology, 31(6), 637-643 Willemer, S., Elsässer, H.-P. & Adler, G. (1992). Hormone-Induced Pancreatitis.
  25. (2010). Pancreatic cancer in chronic pancreatitis; aetiology, incidence, and early detection. Best Practice & Research. Clinical Gastroenterology, 24(3), 349-358 Ramaekers, F., van Niekerk, C., Poels, L., Schaafsma, E., Huijsmans, A., Robben, H., … Vooijs, P. (1990). Use of monoclonal antibodies to keratin 7 in the differential diagnosis of adenocarcinomas. The American Journal of Pathology, 136(3), 641- 655 Ranger, M., Gerstenfeld, L. C., Wang, J., Kon, T., Bae, H., Gravallese, E. M., … Glimcher, L. H. (2000). The nuclear factor of activated T cells (NFAT) transcription factor NFATp (NFATc2) is a repressor of chondrogenesis. The Journal of Experimental Medicine, 191(1), 9-22 Rao, A., Luo, C. & Hogan, P. G. (1997). Transcription factors of the NFAT family: regulation and function. Annual Review of Immunology, 15, 707-747 Rauscher, F. J., Voulalas, P. J., Franza, B. R. & Curran, T. (1988). Fos and Jun bind cooperatively to the AP-1 site: reconstitution in vitro. Genes & Development, 2(12B), 1687-99 Ravid, T., Heidinger, J. M., Gee, P., Khan, E. M. & Goldkorn, T. (2004). c-Cbl-mediated ubiquitinylation is required for epidermal growth factor receptor exit from the early endosomes. Journal of Biological Chemistry, 279(35), 37153-62 Robbs, B. K., Cruz, A. L. S., Werneck, M. B. F., Mognol, G. P. & Viola, J. P. B. (2008). Dual roles for NFAT transcription factor genes as oncogenes and tumor suppressors.
  26. Hingorani, S. R., Petricoin, E. F., Maitra, A., Rajapakse, V., King, C., Jacobetz, M. A., … Tuveson, D. A. (2003). Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell, 4(6), 437-450 Hingorani, S. R., & Tuveson, D. a. (2003).
  27. (2005). Recapitulation of elements of embryonic development in adult mouse pancreatic regeneration. Gastroenterology, 128(3), 728-741 Joseph, P. (2001). Cadmium-Induced Cell Transformation and Tumorigenesis Are Associated with Transcriptional Activation of c-fos, c-jun, and c-myc ProtoOncogenes: Role of Cellular Calcium and Reactive Oxygen Species. Toxicological Sciences, 61(2), 295-303 Kaatsch, P., Spix, C. & Hentschel, S. (2013). Krebs in Deutschland 2009/2010.
  28. Gesundheitsberichterstattung des Bundes Klee, C. B., Ren, H. & Wang, X. (1998). Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. Journal of Biological Chemistry, 273, 13367-70 Kobrin, M. S., Funatomi, H., Friess, H., Buchler, M. W., Stathis, P. & Korc, M. (1994).
  29. (2014). Role of Extracellular Signal-regulated Kinase 5 in Adipocyte Signaling.
  30. (2007). SOX9 is required for maintenance of the pancreatic progenitor cell pool.
  31. Proceedings of the National Academy of Sciences of the United States of America, 104(6), 1865-70 Shaulian, E., Schreiber, M., Piu, F., Beeche, M., Wagner, E. F. & Karin, M. (2000). The Mammalian UV Response. Cell, 103(6), 897-908 Shaw, J. P., Utz, P. J., Durand, D. B., Toole, J. J., Emmel, E. A. & Crabtree, G. R. (1988).
  32. Hruban, R. H., Maitra, A. & Goggins, M. (2008). Update on pancreatic intraepithelial neoplasia. International Journal of Clinical and Experimental Pathology, 1, 306- 316.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten