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Abbreviations 

AA   Arachidonic acid 

ALA   α-Linolenic acid 

ANGPTL4  Angiopoietin-like 4 

AP-1   Activator protein 1 

APC   Antigen presenting cell 

CD   Cluster of differentiation 

ChIP   Chromatin immunoprecipitation 

DC   Dendridic cell 

DHA   Docosahexaenoic acid 

EGF   Epidermal growth factor 

EPA   Eicosapentaenoic acid 

FA   Fatty acid 

FCS   Fetal calf serum 

INF-γ   Interferon γ 

IL   Interleukin 

IPA   Ingenuity Pathway Analysis 

LA   Linoleic acid 

LBD   Ligand binding domain 

LC-MS/MS  Liquid chromatography–mass spectrometry/mass spectrometry 

LPS   Lipopolysaccharide 

MDM   Monocyte-derived macrophages 

MMP   Matrix-metalloproteinase 

mRNA   Messenger ribonucleic acid 

NF-κB   nuclear factor kappa-light-chain-enhancer of activated B cells 

PAMP   Pathogen-associated-molecular-pattern 

PDK4   Pyruvate dehydrogenase kinase 4 

PPAR   Peroxisome proliferator-activated receptor 

PRR   Pattern recognition receptor 

PPRE   PPAR response element 

PUFA   Polyunsaturated fatty acid 

RT-qPCR  Reverse transcription quantitative polymerase chain reaction 

RXR   Retinoid X receptor 

STAT   Signal transducer and activator of transcription 

TAM   Tumor-associated macrophage 
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TZD   Thiazolidindion 

VEGF   Vascular endothelial growth factor 
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1 Summary 

Macrophages represent the most diverse cell type in biology. They adapt selectively to 

many stimuli allowing for precise functionality in any environment without harming the 

organism. Consequently, they monitor their surroundings carefully and react to a 

plethora of signals. Fatty acids and their derivatives are important signaling mediators 

in this context, which besides other signals impinge on the lipid-regulated nuclear 

receptor peroxisome proliferator-activated receptor (PPARβ/δ). 

Studies conducted in mice have shown that ablation of PPARβ/δ results in the 

inability of adipose and liver macrophages to adopt an alternative anti-inflammatory 

activation state, demonstrating a prominent role of PPARβ/δ in macrophage function 

with implications for immune regulation. To date, however, systematic studies focusing 

on PPARβ/δ's role in human macrophages have not been reported. 

The first part of this thesis addresses the role of PPARβ/δ in human 

macrophages including its transcriptional network affecting a multitude of cellular 

processes. A major part of this network involves cell type independent canonical 

regulation, which is characterized by the binding of PPARβ/δ with its obligatory 

dimerization partner retinoid X receptor (RXR) to specific sites in the regulatory region 

of established and previously unreported target genes, their induction by agonists and 

repression by inverse agonists. Additionally, a new set of non-canonical regulated 

target genes is described. These genes lack chromatin-bound PPARβ/δ complexes, 

are repressed by agonists (inverse regulation) and are macrophage-selective. 

Consistent with the prevailing opinion and the induction of an IL4-like morphological 

phenotype by agonists, this mode of regulation inhibits pro-inflammatory signaling. 

Surprisingly, anti-inflammatory genes, such as CD32B, IDO1 and CD274 (PD-L1) were 

also repressed. Consistent with these results, immune functions such as CD8+ T cell 

activation were stimulated by these ligands. In combination, these findings point to a 

unique macrophage activation state induced by PPARβ/δ agonists with context 

dependent functions in immune regulation. 

The second part describes the PPARβ/δ-regulated transcriptome for tumor-

associated macrophages (TAMs) from human serous ovarian carcinoma ascites. 

Interestingly, most canonical PPARβ/δ target genes were found to be upregulated and 

refractory to synthetic agonists as compared to monocyte-derived macrophages. This 

was not due to a TAM specific increase in PPARβ/δ protein level or recruitment to 

target genes. However, the unaffected response of these genes to inverse agonists 

hinted at the presence of endogenous activating ligands. Lipidomic analysis of 
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malignancy-associated ascites indeed revealed very high concentrations of dietary 

polyunsaturated fatty acids (PUFAs), mainly linoleic and arachidonic acid. These 

PUFAs induced lipid droplet formation in macrophages which provide a potential 

reservoir for PPARβ/δ agonists and may serve as the causal nexus for target gene 

deregulation. Among the deregulated genes, ANGPTL4 is associated with shorter 

relapse-free survival, illustrating the potential clinical implications of these findings. 
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Zusammenfassung 
Makrophagen stellen den divergentesten Zelltyp dar. Sie beeinflussen und modellieren 

ihre Umgebung auf vielfältige Weise. Folglich müssen diese Zellen die auf sie 

wirkenden Umwelteinflüsse wahrnehmen und verarbeiten, um eine adäquate 

Adaptation zu gewährleisten. Nur so kann eine Schädigung des Organismus bei 

gleichzeitigem Erhalt der Funktionalität ausgeschlossen werden. Ein in diesem Kontext 

wichtiger Faktor ist die Verfügbarkeit und Zusammensetzung von Fettsäuren und ihren 

Derivaten, welche nebst anderen Signalen, auf den lipidregulierten Kernrezeptor 

Peroxisome Proliferator-Activated Receptor (PPARβ/δ) einwirken. 

Versuche in Mäusen haben gezeigt, dass dessen genetische Ablation dazu führt, 

dass Fettgewebs- und Leber- Makrophagen nicht mehr befähigt sind einen alternativen 

anti-inflammatorischen Aktivierungszustand einzunehmen. Diese Ergebnisse 

unterstreichen die wichtige Rolle von PPARβ/δ in Makrophagen und der 

Immunregulation. Dennoch liegen bis heute keine systematischen Studien, die sich auf 

die Rolle von PPARβ/δ in humanen Makrophagen fokussieren, vor. 

Die vorliegende Arbeit beschreibt die Rolle von PPARβ/δ in humanen 

Makrophagen inklusive seines transkriptionellen Netzwerks, das auf eine Vielzahl 

zellulärer Prozesse einwirkt. Zum einen wird dies durch die zelltypunabhängige 

kanonische Regulation bewirkt. Dabei bindet PPARβ/δ mit seinem obligatorischen 

Dimerisierungspartner Retenoid X Receptor (RXR) direkt an spezielle Stellen in den 

regulatorischen Regionen bereits bekannter und neubeschriebener spezifischer 

Zielgene, wodurch die Transkription durch Agonisten induziert und durch inverse 

Agonisten reprimiert wird. Zum anderen wird eine neue Klasse von nicht-kanonisch 

regulierten Zielgenen beschrieben. Diese Gene weisen keine chromatinassozierten 

PPARβ/δ Komplexe auf, werden durch Agonisten reprimiert und sind makrophagen-

selektiv (inverse Regulation). Im Einklang mit der vorherrschenden Ansicht und der 

Induktion eines IL4-ähnlichen morphologischen Phänotyps durch Agonisten, inhibiert 

diese Art der Regulation pro-inflammatorische Funktionen. Überraschenderweise 

werden jedoch gleichzeitig auch anti-inflammatorische Gene, unter anderen CD32B, 

IDO1 und CD274 (PD-L1) reprimiert. Entsprechend konnte eine makrophagen-

abhängige Stimulation der CD8+ T-Zell Aktivierung durch diese Liganden beobachtet 

werden. In Kombination deuten diese Beobachtungen auf eine besondere Rolle von 

PPARβ/δ mit kontextabhängiger Funktion in der Immunregulation hin. 

Der zweite Teil beschreibt das durch PPARβ/δ regulierte Transkriptom tumor-

assoziierter Makrophagen (TAMs) aus dem Aszites von Patientinnen mit serösem 

Ovarialkarzinom. Beachtenswerterweise ist im Vergleich zu monozyten-abgeleiteten 
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Makrophagen die Mehrheit der PPARβ/δ Zielgene überexprimiert und refraktär 

gegenüber Agonisten, was weder auf ein erhöhtes Proteinlevel noch die vermehrte 

Rekrutierung an Zielgene zurückzuführen ist. Der Einfluss von inversen Agonisten auf 

TAMs war gleichzeitig unverändert, was auf die Gegenwart von endogenen 

aktivierenden Liganden hindeutete. Analysen von Aszitesproben hinsichtlich der 

Lipidzusammensetzung offenbarten tatsächlich stark erhöhte Konzentrationen 

mehrfachungesättigter Fettsäuren, vor allem Linolsäure und Arachidonsäure. Diese 

Fettsäuren verursachten die Bildung von Lipidtröpfchen in Makrophagen, welche 

ihrerseits ein potentielles Reservoir für PPARβ/δ Agonisten darstellen könnten, was 

wiederum eine Erklärung für die Deregulierung von PPARβ/δ Zielgenen bietet. Unter 

den deregulierten Genen findet sich ANGPTL4, dessen erhöhte Expression mit einem 

verkürzten rezidivfreien Überleben assoziiert ist und somit die potentielle klinische 

Bedeutung dieser Beobachtungen unterstreicht. 
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2 Introduction 

2.1 Peroxisome Proliferator-Activated Receptors (PPARs) 

Peroxisome proliferator-activated receptors were named after their potential to bind 

peroxisome proliferators (Issemann & Green 1990), a diverse group of chemical 

substances that increase size and number of peroxisomes in rodents. Peroxisomes are 

organelles especially associated with fatty acid α and β oxidation although exerting 

other functions such as the biosynthesis of ether phospholipids or the reduction of 

hydrogen peroxide (Wanders & Waterham 2006). These ligand-regulated transcription 

factors are members of the nuclear receptor superfamily. In mammals three types of 

PPARs with diverse tissue distribution have been characterized PPARα, PPARβ/δ and 

PPARγ (Dreyer et al. 1992; Braissant et al. 1996). All three subtypes are in vivo 

sensors and transcriptional effectors of dietary fatty acids and their derivatives (Forman 

et al. 1997). They act through the control of specific gene subsets which strongly 

influence metabolic functions, making these modulators intriguing pharmacologic 

targets. 

2.1.1 PPAR subtypes: a short overview 

The alpha isoform is predominantly expressed in tissue involved in lipid catabolism 

such as liver, brown fat, heart and intestine (Braissant et al. 1996; Rakhshandehroo et 

al. 2010), where its major role is regulation of lipid metabolism and energy 

homeostasis. Fibrates, synthetic ligands specifically activating PPARα, are therefore 

used to treat hypercholesterolemia since the 1930s. 

PPARβ/δ is ubiquitously expressed and associated with a wide range of 

functions. It is involved in regulating intermediary metabolism (Desvergne et al. 2006), 

especially fatty acid oxidation, showing overlap with PPARα, but also glucose 

homeostasis (Muoio et al. 2002; Lee et al. 2006). Moreover PPARβ/δ has been 

reported to exert important roles in differentiation, wound healing, tumorigenesis and 

modulation of cell proliferation and immune function (Peters et al. 2000; Michalik et al. 

2001; Müller-Brüsselbach et al. 2007; Müller, Rieck, et al. 2008; Müller, Kömhoff, et al. 

2008; Kilgore & Billin 2008; Peters et al. 2015). Nonetheless these reports are due to in 

part deviating murine models. Efforts to study PPARβ/δ in the light of pathophysiology 

and immunology have been perpetuated particularly through the advent of selective 

ligands (Oliver Jr. et al. 2001; Sznaidman et al. 2003). These ligands permit modulation 

of PPARβ/δ specific transcription with potential for clarifying its role in biological 
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systems on one side and investigating the role as potential therapeutic target on the 

other. In fact the potential for GW501516, a specific PPARβ/δ agonist, in treating 

dyslipidemia has been evaluated in two phase-two studies. 

PPARγ is found mainly in adipose tissue. Through alternative transcription start 

sites and splicing PPARγ has two distinct isoforms in man: PPARγ2 and the 

predominantly expressed PPARγ1. PPARγ1 is found in a variety of tissues including 

immune cells while the PPARγ2 isoform is restricted to adipose tissue (Fajas et al. 

1997). PPARγ is eminently important for adipogenesis, shown by the fact that forced 

expression of PPARγ in fibroblasts leads to terminal adipocyte differentiation (Rosen et 

al. 1999; Rosen et al. 2000; Tontonoz et al. 1994). On the other hand, mice deficient in 

PPARγ expression fail to generate adipose tissue, even if fed a high fat diet (Jones et 

al. 2005). Thiazolidinedione (TZD) was revealed to be a highly specific agonistic ligand 

for PPARγ causing increased lipid storage into adipocytes (Lehmann et al. 1995). The 

reduction of free fatty acids in circulation in combination with altered adipose-derived 

endocrine factors results in reduced systemic insulin resistance, which is favorable for 

the treatment of diabetes mellitus type 2 (Evans 2004; Rangwala & Lazar 2004). In fact 

Troglitazone was found to improve insulin resistance and used to treat type 2 diabetes 

prior to the discovery of its mode of action through PPARγ in 1995 (Fujiwara et al. 

1988; Suter et al. 1992; Nolan et al. 1994). Today, however, TZDs prescription to treat 

insulin resistance is no longer advised due to various side effects. As of 2011, 

Pioglitazone remains the only approved TZD on the European market, although being 

associated with increased risk for bladder cancer (Ferwana et al. 2013). 

2.1.2 PPAR structure 

PPARs are members of the nuclear receptor family and are thus composed of the 

same structurally definable domains all nuclear receptors share (Laudet et al. 1992; 

Kumar & Thompson 1999). At the N-terminus of the protein, there is a highly various 

domain that contains an activation function known to be ligand independent (Wärnmark 

et al. 2003). Secondly, a DNA binding domain containing two zinc-finger motifs is 

present. This domain binds the hormone response elements specific for each receptor. 

The third structure module is a flexible hinge, which is followed by the C-terminal ligand 

binding domain (LBD). This alpha helical domain consists of twelve helices and a four-

stranded β-sheet forming not only the binding pocket for the ligand but contributing also 

to the dimerization and co-factor binding ability (Xu et al. 1999; Zoete et al. 2007; 

Schwarz et al. 2016). Moreover it harbors the ligand dependent second activation 

function, most important for full transcriptional activation (Wärnmark et al. 2003). 



Introduction 

 

10 

 

2.1.3 PPAR transcriptional activity and ligand control 

PPAR transcriptional activity is regulated by ligands and depends on obligate 

heterodimerization with retinoid X receptor (Nolte et al. 1998). These heterodimers bind 

to PPAR response elements (PPRE) in the promoter region of PPAR target genes. 

PPAR response elements are composed of direct repeats with the consensus 

sequence AGGTCA, spaced by one base pair (Leid et al. 1992; Adhikary et al. 2011). 

In the absence of ligand, PPARs recruit co-repressor complexes. Upon binding of an 

agonistic ligand the co-repressor complex is dismissed and co-activator complexes, 

leading to histone hyperacetylation and subsequent transcriptional activation, are 

recruited (Guan et al. 2005). 

Specific ligands that fit the binding pocket of the LBD influence the 

transcriptional activity markedly. The amino acid residues comprising the surface of the 

ligand-binding pocket located in the LBD are 80% conserved between the three 

subtypes (Zoete et al. 2007). The remaining residues mediate ligand selectivity, 

although this pocket is by far the largest among nuclear receptors. The reason for this 

apparent paradox can be explained by the “mouse trap” model proposed as early as 

1995 (Renaud et al. 1995). In this model, the binding of a specific ligand results in 

conformational changes of the LBD. In sum, this leads to a compacted structure where 

the highly motile helix twelve forms a lid contributing to the binding pocket surface. 

Consequently, this induced fit enhances the ligand enclosure and creates stable 

binding sites on the exterior necessary for full activation. Inverse agonists on the other 

hand, recruit co-repressors resulting in repressed transcriptional activity. 

2.1.4 PPARs in the context of immune regulation 

All PPAR subtypes have been implicated to play a role in immune regulation (Daynes & 

Jones 2002). The first report describing this link revealed leukotriene B4 to be a 

PPARα activating ligand controlling the duration of the inflammatory response 

(Devchand et al. 1996). Following this first publication, a number of reports found anti-

inflammatory properties for PPARα mainly in murine models (Straus & Glass 2007; 

Bensinger & Tontonoz 2008). Since then, activation of both PPARα and PPARγ have 

been shown to limit pro-inflammatory cytokine production in T-cells and induce 

apoptosis in human macrophages (Chinetti et al. 1998; Marx et al. 2002).  

PPARγ has since become the best studied subtype in the context of immune 

regulation. Its part in macrophage and dendritic cell (DC) function has been studied 

extensively (Nencioni et al. 2002; Szatmari et al. 2006). Activating ligands inhibit DC 

maturation as well as pro-inflamatory cytokine and chemokine production by these 
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cells. In combination, these effects lead to reduced antigen presentation and thereby 

impaired T-cell activation (Klotz et al. 2007). Adding to the complexity mechanisms by 

which cytokines affect the myeloid cell function via PPARγ have also been reported 

(Szanto et al. 2010; Schneider et al. 2014). 

To date, knowledge about the precise role of PPARβ/δ in immune regulation is 

scarce. Studies, mostly in murine models, have however emphasized an involvement 

in inflammation and wound healing (Michalik et al. 2001; Tan et al. 2001; Lee et al. 

2003; Welch et al. 2003; Tan et al. 2004). PPARβ/δ was soon linked to a role in 

macrophage function where it modulates a multitude of inflammatory pathways e.g. 

activator protein 1 (AP-1), nuclear factor kappa-light-chain-enhancer of activated B 

cells (NF-κB) and signal transducers and activators of transcription (STATs) (Barish et 

al. 2008; Zingarelli et al. 2010). Other studies showed the potential of PPARβ/δ specific 

agonistic ligands to dampen T-cell-mediated experimental autoimmune 

encephalomyelitis by blocking interleukin 17 and interferon γ (IFN-γ) production 

(Kanakasabai et al. 2010; Dunn et al. 2010). Ablation of PPARβ/δ underlined its 

importance for development of an alternatively activated macrophage phenotype and 

led, for instance, to a reduced production of anti-inflammatory cytokines (Gallardo-

Soler et al. 2008; Kang et al. 2008; Odegaard et al. 2008; Mukundan et al. 2009). The 

anti-inflammatory effect of the pan-PPAR agonist punicic acid, for example, was 

compromised in immune cell-specific Ppard knockout mice compared to wild type 

individuals, as was shown for experimental inflammatory bowel disease (Bassaganya-

Riera et al. 2011). Tanaka and colleagues were able to show that such observations, at 

least for the gut, may also be attributed in part to the direct PPARβ/δ target CD300a 

(Tanaka et al. 2014).  

2.2 Macrophages and their role in immunology 

Macrophages are myeloid cells that have first been described in 1863 (Slavjanski 

1866). They were recognized for their phagocytic activity by Élie Metchnikoff 

(Metchnikoff 1883; Metchnikoff 1887), who, by studying metazoan embryology, realized 

that phagocytosis is a fundamental function of tissue remodeling and wound healing. In 

his phagocytosis theory he later also advocated the phagocytes role in pathogen 

defense (Tauber 2003). Since Metchnikoffs insights at the end of the 19th century, the 

functions of macrophages have been investigated with great effort identifying, for 

example, their role in apoptosis (Reddien et al. 2001; Brown et al. 2002) and 

angiogenesis (Sunderkötter et al. 1994; Diez-Roux & Lang 1997). Nevertheless, 

macrophages remain best known for their essential role in immunity (Mackaness 1964; 
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Nathan 2012). Today, macrophages are often described as the gatekeepers of 

immunity. They patrol most tissues and exert their immunologic functions upon 

detection of pathogens. These are commonly described by a bipolar activation pattern 

with pathogen removal and Th1 activation on one side and suppression of inflammation 

through Th2 function on the other (Mills et al. 2000; Sica & Mantovani 2012). Currently 

this M1/M2 terminology is being reconsidered due to the diversity of macrophage 

activation and function (Martinez & Gordon 2014; Murray et al. 2014). This diversity is 

most likely due to microenvironmental features, e.g. growth factors and cytokines, 

which in turn can impact strongly on the immune response to the point of suppression 

or even reversal, as seen in autoimmunity or cancer (Crowther et al. 2001; Muñoz et al. 

2010; Jager et al. 2012). 

2.2.1 Macrophages in pathogen defense 

During acute infection, macrophages present the hosts first line of defense. As 

mentioned above, the tissue resident cells continuously screen their environment with 

an array of germline-encoded receptors (Taylor et al. 2005). Among these are 

receptors specific for pathogens called pattern recognition receptors (PRR) directed 

against common molecules displayed by pathogens, e.g. lipoteichoic acid, 

lipopolysaccharides (LPS), flagellin or double-stranded RNA. These conserved 

structures are referred to as pathogen-associated-molecular-patterns (PAMPs) and are 

used by innate immunity to discriminate self from nonself molecules and subsequently 

induce effector mechanisms, e.g. iron withdrawal, increased phagocytosis or secretion 

of cytokines and chemokines (Janeway & Medzhitov 2002; Gordon 2002; Recalcati et 

al. 2010). Moreover, macrophages may engulf pathogens or internalize their 

associated molecules to be processed and coupled to antigen presenting complexes. 

These in turn will be displayed on the surface of the antigen-presenting cell to activate 

effector cells of adaptive immunity (Sprent & Schaefer 1990; Sprent 1995). 

2.2.2 Macrophages of the tumor microenvironment 

The aforementioned surveillance receptors expressed by macrophages help to 

maintain the steady state in vivo. Changes in the environment are sensed and 

reactions to any stimuli are modulated in an orchestrated manner to ensure the 

balance between inflammation and tissue repair, thereby protecting the organism from 

damage to healthy tissue as well as abnormal growth, possibly leading to cancer (Shi 

et al. 2001; Shankaran 2001). Consequently, factors tilting this balance may lead to 

neoplastic growth (Coussens & Werb 2002). Infection alone is estimated to contribute 
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to every sixth neoplasm worldwide (Anand et al. 2008). It has become very clear over 

the past decades that the microenvironment contributes strongly to cancerous disease. 

Immune cells, especially macrophages, are therefore linking immunity and cancer. The 

special role of macrophages is underlined by their enormous repertoire of secretable 

factors (Crowther et al. 2001). These include angiogenic factors and chemoattractants 

that can impact strongly on surrounding cells (Sunderkötter et al. 1994; Schoppmann et 

al. 2002).  

Additionally, macrophages of the tumor microenvironment, often referred to as 

tumor-associated macrophages (TAMs), are linked closely to disease progression and 

outcome in various cancers (Bingle et al. 2002; Reinartz et al. 2014). A set of 

macrophage-secreted factors, e.g. vascular endothelial growth factor (VEGF), matrix-

metalloproteinases (MMPs) or epidermal growth factor (EGF) have been shown to 

directly impact on tumor progression and metastasis (Schoppmann et al. 2002; Pollard 

2004; Wyckoff et al. 2004). Yet, this complex interplay of environmental factors as well 

as autocrine and paracrine relations is difficult to grasp, particularly if the progression 

dependent nature of the TAM phenotype is taken into account. As outlined in a 2010 

review, TAMs implement various pro-tumorigenic traits at different stages of cancer 

development ranging from initiation to invasion and metastasis (Qian & Pollard 2010). 

TAMs may therefore be a promising therapeutic target in the struggle against cancer. 

Thus, great effort has been put into the exploration of a possible re-education of TAMs 

and the tumor microenvironment in order to obtain an anti-tumor phenotype in the last 

years (Hagemann et al. 2008; Topalian et al. 2012; Pyonteck et al. 2013; Jiang et al. 

2015). Ovarian cancer itself presents as an exceptional model for studies on tumor 

associated macrophages due to the fact of being frequently accompanied with 

peritoneal ascites. This malignant fluid accumulation often harbors large quantities of 

tumor and tumor-associated cells while at the same time giving insight into the actual 

microenvironment of these cells. 

2.3 Purpose and significance of this study 

The apparent interplay between lipid molecules, PPARβ/δ target genes, and immune 

regulation leads to the idea of this study. There are no sufficient studies addressing the 

role of PPARβ/δ in human macrophages despite the fact that the importance of this 

transcription factor in the context of immune regulation has been implied by murine 

studies (Lee et al. 2003; Kang et al. 2008; Odegaard et al. 2008). To obtain data that 

resembles the in vivo situation in humans appropriate genome wide approaches in 
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primary cells are necessary. This data will also establish reliable grounds for future 

investigation.  

In the light of disease, the influence of lipid sensors and their impact on immune 

regulation is also of particular interest. Since very little is known about the influence of 

lipids on macrophage function, there is desperate need to address this issue.  

This study is designed to investigate PPARβ/δs precise role in human 

macrophages identifying the regulated transcriptome in these cells. Thereby new 

insight into the functional implications will be obtained. Additional experiments in tumor-

associated macrophages will also demonstrate whether PPARβ/δ takes part in their 

specific phenotype. 
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3 Results 

3.1 The transcriptional PPARβ/δ network in human macrophages 
defines a unique agonist-induced activation state 

Till Adhikary*, Annika Wortmann*, Tim Schumann*, Florian Finkernagel*, Sonja 
Lieber, Katrin Roth, Phil ipp M. Toth, Wibke E. Diederich, Andrea Nist, Thorsten 
Stiewe, Lara Kleinesudeik, Silke Reinartz, Sabine Müller-Brüsselbach and Rolf 
Müller (2015) Nucleic Acids Research. 43(10): 5033–5051 DOI: 
10.1093/nar/gkv331 
* These authors contributed equally to the paper as first authors. 

 

To investigate the PPARβ/δ ligand regulated transcriptome in primary human 

macrophages, peripheral blood mononuclear cells were isolated from healthy 

volunteering adults by density gradient centrifugation followed by positive selection of 

adherent cells. The obtained cluster of differentiation (CD) 14 positive cells were 

differentiated to monocyte-derived macrophages (MDM) in RPMI1640 medium 

supplemented with 10% fetal calf serum (FCS). Surface staining for macrophage 

markers (CD32, CD64, CD86, CD206, HLA-DR) and intracellular CD68 analysis by 

flow cytometry on day three and five revealed the presence of macrophage markers 

(Figure S3). 

The transcript level of PPARD mRNA was assessed using reverse transcription 

quantitative polymerase chain reaction (RT-qPCR) at different time points during 

differentiation. A transcript level increase over time peaking around day five was seen 

(Figure 1A). The PPARβ/δ protein level, as assessed by western blot, was similarly 

rising over time showing the strongest signal around day six (Figure 1B, Figure S1). To 

verify functionality PPARβ/δ specific ligands were added to the cultured cells at 

different points. After one-day incubation the established target genes PDK4 transcript 

level was measured by RT-qPCR. The strongest ligand-inducibility compared to solvent 

was detected at day six post isolation (Figure 1C). Additionally chromatin 

immunoprecipitation (ChIP) showed localized enrichment of PPARβ/δ and RXR at the 

PDK4 enhancer. Re-ChIP experiments verified PPARβ/δ and RXR complex formation 

at the PDK4 enhancer region (Figure S2). Taken together, day six MDMs appear as 

very suitable model to explore the effects of PPARβ/δ ligands on macrophage 

differentiation and activation.  

Subsequent genome wide analysis using RNA- and ChIP- sequencing identified 

ligand regulated transcripts and PPARβ/δ as well as RXR enriched chromatin sites. In 

total 285 protein-coding putative direct target genes were upregulated by L165,041, a 
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PPARβ/δ specific agonist, while 388 were repressed. The inverse PPARβ/δ agonist 

treatment resulted in 246 downregulated genes and 174 genes with increased 

transcript frequency (Figure 2A and B, Table S2). A large number of genes showed 

inverse regulation by the ligands as opposed to the canonical concept. The increased 

transcript level of genes by inverse agonist and vice versa gave rise to the idea that an 

effect unrelated to PPARβ/δ might be responsible. However, data of bone marrow-

derived macrophages from Ppard null mice in comparison to wild type rejected this 

theory (Figure 2F). These genes were from here on classified as inverse target genes. 

ChIP-sequencing revealed 3798 and 32720 genes within 50 kb of enrichment 

sites for PPARβ/δ and RXR respectively (Figure 3A). 3502 genes were co-occupied 

and 66,4% of these showed enrichment specifically at transcription start sites, within 

introns or upstream locations (Figure 3C). Of the 285 L165,041 induced genes 132 

showed PPARβ/δ binding, the rest showed RXR binding. Among the solely RXR 

occupied genes we found angiopoietin-like 4 (ANGPTL4) a previously described 

canonical target gene (Mandard et al. 2004). Genes showing RXR binding in 

combination with L165,041-induction are therefore regarded to be canonical PPARβ/δ 

targets. 

The highest correlation of canonical target genes was found with lipid 

metabolism using Ingenuity Pathway Analysis (IPA) disease and function annotation 

(Figure 3E). Interestingly, other target genes were linked to cell motility or negatively 

correlated with systemic autoimmune disease. The aforementioned inverse PPARβ/δ 

targets, as analyzed by IPA upstream regulator analysis, were predominantly 

connected to cytokine signaling (Figure 4C). Subsequent functional annotation 

confirmed the link between PPARβ/δ in primary human macrophages and immune 

regulation (Figure 4F). Not surprisingly several immune regulatory genes were found 

among the inverse target genes, including chemokines, cytokines and members of the 

CD1 family (Table 1). 

To test for PPARβ/δ participation in immune regulation morphological changes 

in PPARβ/δ ligand treated MDMs were addressed. MDMs treated with respective 

ligand for six days during differentiation were Giemsa stained and analyzed. MDMs 

cultured in the presence of LPS or interleukin 4 (IL-4), initiating M1 and M2 polarization 

respectively, were used to judge similarity. Resemblance between L165,041 and IL-4 

treated MDMs was just as clear as between PT-S264, an inverse agonist, and LPS 

(Figure 6A-E, Figure S5A-F). A FITC-dextran uptake assay emphasized that the 

morphological resemblance between agonist and IL-4 treatment also correlated with an 

accompanying functional reduction in phagocytic/macropinocytotic activity (Figure 6F). 
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The reduction in the uptake as a result of agonist treatment was paralleled by a 

corresponding rise in T cell activation (Figure 7A). MDMs pretreated with CEFT-peptide 

in combination with L165,041 or solvent were co-cultured with autologous T cells. Their 

ability to present antigen and activate T cells, was assessed by flow cytometry, 

measuring the percentage of IFN-γ+, CD8+ cells. 

Evidence that PPARβ/δ agonists impact on macrophage phenotype was also 

given by experiments focusing on the protein products of inverse target genes CD274, 

CD32 and IDO1 (Figure 7C-H). All of these were readily reduced by agonist treatment 

including the supernatant concentration of the IDO1 enzyme product kynurenine.  

The functional annotation of L165,041 regulated genes predicted a positive effect 

on cell death of immune cells. We tested this in light of hypoxia as it resembles a stress 

situation commonly encountered by macrophages (Lewis et al. 1999). As figure 7I and 

supplementary figure 8 clearly show, PPARβ/δ agonists improve the viability while 

inverse agonists sensitize MDMs to hypoxic stress. 

At last we compared the datasets from MDMs treated with PPARβ/δ ligands to 

datasets of a human breast cancer (MDA-MB-231) and a myofibroblastic cell line 

(WPMY-1). The results point to cell type-specific functions of PPARβ/δ. While a small 

fraction of target genes with PPARβ/δ peaks are mutual (n=129) and related to energy 

homeostasis or lipid metabolism, none of the inverse target genes are shared by all 

three datasets. 

 

Author contribution to this publication: Development of methodology and acquisition of 
experimental data Figure 1A-C, Figure 2A-B, Figure 3A, Figure 4A, Figure 6, Figure 
7B-C, I, Figure 9A-B, Table 1, Figure S1, Figure S4, Figure S5, Figure S7, Figure S8, 
Table S2. 
Collaborating groups at Center for Tumor Biology and Immunology: PPARβ/δ selective 
inverse agonists were synthesized and generously provided by Philipp M. Toth and 
Wibke E. Diederich, Medicinal Chemistry Core Facility and Institute of Pharmaceutical 
Chemistry. RNA and ChIP sequencing were performed by Andrea Nist and Thorsten 
Stiewe, Genomics Core Facility. Kathrin Roth at Cellular Imaging Core Facility 
performed time-lapse video microscopy. FACS phenotyping and T cell activation 
assays were performed by Lara Kleinesudeik and Silke Reinartz, Clinic for Gynecology, 
Gynecological Oncology and Gynecological Endocrinology. 
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3.2 Deregulation of PPARβ/δ target genes in tumor-associated 
macrophages by fatty acid ligands in the ovarian cancer 
microenvironment 

Tim Schumann*, Til l  Adhikary*, Annika Wortmann*, Florian Finkernagel, Sonja 
Lieber, Evelyn Schnitzer, Nathalie Legrand, Yvonne Schober, W. Andreas 
Nockher, Phil ipp M. Toth, Wibke E. Diederich, Andrea Nist, Thorsten Stiewe, Uwe 
Wagner, Silke Reinartz, Sabine Müller-Brüsselbach and Rolf Müller (2015) 
Oncotarget 6(15): 13416-33 DOI: 10.18632/oncotarget.3826 
* These authors contributed equally to the paper as first authors. 

 

In order to learn more about the influence of PPARβ/δ in disease, focus was set on 

studying its role in TAMs of serous ovarian carcinoma (Schumann et al. 2015). These 

cells were isolated from malignant ascites by positive selection of CD14+ cells by 

means of magnetic cell sorting or adherent selection. TAMs kept in autologous ascites 

showed high transcript level of CD163 and low levels of MMP9 as compared to MDM 

cultures, which is consistent with their phenotype in vivo as we have described earlier 

(Reinartz et al. 2014) (Figure 1A). To address ligand responsiveness, TAMs and MDMs 

were treated with L165,041 or solvent for eight days in autologous ascites or cell 

culture medium respectively. As illustrated by figure 1B-E the morphological changes in 

response to PPARβ/δ agonist treatment was absent in TAMs while MDMs reacted as 

expected, and TAMs were non-responsive to exogenous agonist (Adhikary et al. 2015). 

To elucidate whether the TAMs’ lack in responsiveness is due to a deficiency in 

PPARβ/δ binding to chromatin, ChIP experiments were done. As presented for the 

PDK4 enhancer region monocytes, MDMs and TAMs collectively showed enrichment 

of RXR and PPARβ/δ, with approximately equal enrichment factors between MDMs 

and TAMs (Figure 2A). Subsequent comparative transcriptome analysis of TAMs and 

MDMs cultured in the presence of agonistic or inverse-agonistic ligand revealed that 

less than one third of agonist induced targets in MDMs was also upregulated in TAMs 

(Figure 2B). On the other hand, the number of inverse-agonist repressed genes in 

TAMs (50) was substantially larger compared to MDMs (18), hinting at the presence of 

agonistic ligands in TAMs.  

Validation of these findings by RT-qPCR for PDK4 and ANGPTL4 using MDMs 

and TAMs cultured in ascites or culture medium, correlated with the transcriptome 

data. Moreover culture conditions only had minor effect on TAM target gene induction, 

questioning the immediate influence of ascites (Figure 2D). Comparing the prior 

defined target genes (Table S3) in freshly isolated TAMs from 10 different patients and 

MDMs, using the obtained transcriptome data, demonstrated that a large fraction of 
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targets (54) had increased transcript levels in TAMs (Figure 3A) including about half of 

the genes upregulated in TAMs in vitro. Most of these genes not only showed higher 

expression in TAMs but also showed impaired induction by agonist (Figure 3C, Table 

1). These observations were confirmed by RT-qPCR analysis of three exemplary target 

genes in 12 MDM and TAM probes respectively (Figure 3D). Likewise PDK4 protein 

level in MDMs and TAMs cultured with and without L165,041, as illustrated by western 

blot, further supports the idea of deregulated and agonist insensitive PPARβ/δ target 

genes in TAMs (Figure 3E). In the case of ANGPTL4 this deregulation has direct 

implications for disease prognosis, as its secreted product is readily detectable in 

ovarian cancer patients’ ascites (Figure 3F). Moreover a strong negative correlation of 

the soluble ANGPTL4 level with relapse-free survival can be determined for serous 

ovarian cancer (Figure 3G). 

As a cause of the deregulation of PPARβ/δ targets, soluble agonists present in 

TAMs can be proposed. Culture of MDMs in the presence of malignancy-associated 

ascites followed by analysis of change in target gene transcription resulted in increased 

levels equivalent to L165,041 in some cases (Figure 5A). In the presence of ascites the 

agonist effect of L165,041 is strongly diminished (Figure 5B). This effect is clearly 

PPARβ/δ dependent as experiments with Ppard null mice compared to wild type 

animals show (Figure 5D). Here the induction of Pdk4 and Angptl4 by ascites is only 

present in wild type mice, which also show impaired agonist induction in the presence 

of ascites. The PPRE-dependence of the ascites-mediated target gene induction can 

also be seen in figure 5C. The three PPREs present in the enhancer region of 

PPARβ/δ target PDK4 were progressively mutated showing increasing reduction in 

ascites-mediated induction of transcript levels (Adhikary et al. 2015).  

In summation, these data strongly suggest the presence of endogenous 

agonistic ligands in the malignancy-associated ascites. Lipidomic analysis of 38 ascites 

samples by liquid chromatography–mass spectrometry/mass spectrometry (LC-

MS/MS) revealed high concentrations of polyunsaturated fatty acids (PUFAs) 

previously described to bind PPARβ/δ (Figure 6A, Table S6). Most prominent were 

linoleic acid (LA) with extremely high average concentrations (180µM), arachidonic acid 

(AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Evidently 

addition of LA, AA and DHA at a concentration of 20µM to the culture of MDMs resulted 

in upregulation of PDK4 (Figure 6B). As Figure 6C illustrates PDK4 transcript level 

rises dose-dependently upon LA concentration. The same holds true for the LA 

derivatives (9)Z, (11)E LA and (10)E, (12)Z LA. Compared to L165,041, LA exhibited 

comparable upregulation of PPARβ/δ targets in MDMs after 24h (Figure 6D). 
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Interestingly dose-dependent repression of PPARβ/δ targets by synthetic inverse-

agonists was still possible in MDMs cultured in ascites. As figure 6E shows the 

remedial influence of the inverse agonist PTS264 is especially strong for LRP5 and 

ANGPTL4 transcripts since a repression down to basal levels, compared to RPMI1640 

culture medium, can be achieved at concentrations around 2 µM (Figure 6E). 

Intriguingly, TAMs seem to stagnate in a deregulated state even if cultured in 

absence of ascites (Figure 2D). Fluorescent Nile Red staining of freshly isolated as well 

as four day cultured TAMs in presence and absence of serum however elucidated the 

cause for this apparent discrepancy. Freshly isolated TAMs were stained brightly red, 

displaying large quantities of intracellular lipid droplets which remained almost 

unchanged even if the cells were serum starved for four days (Figure 7A and B). The 

presence of lipid droplets was associated with impaired target gene upregulation by 

L165,041 (Figure 7C). MDMs cultured in the presence of LA, at concentrations 

resembling those of the ascites, readily accumulated lipid droplets (Figure 7D and E). 

These also remained stable over a period of four days which rendered PPARβ/δ target 

genes refractory to agonist-treatment despite serum starvation (Figure 7F). 

 

Author contribution to this publication: Development of methodology and acquisition of 
experimental data Figure 1, Figure 2B-E, Figure 3A-E, Figure 5A-B, Figure 6A-D, 
Figure 7, Table 1, Figure S3, Table S1, Table S3, Table S5, Table S6. 
Collaborating groups at Center for Tumor Biology and Immunology: PPARβ/δ selective 
inverse agonists were synthesized and kindly provided by Philipp M. Toth and Wibke E. 
Diederich, Medicinal Chemistry Core Facility and Institute of Pharmaceutical 
Chemistry. Andrea Nist and Thorsten Stiewe, Genomics Core Facility, performed RNA 
and ChiP sequencing. Patient samples were acquired by Uwe Wagner and Silke 
Reinartz, Clinic for Gynecology, Gynecological Oncology and Gynecological 
Endocrinology. 
Collaborating groups at Philipps University Marburg: Lipidomic analysis was performed 
at the Metabolomics Core Facility and Institute of Laboratory Medicine and 
Pathobiochemistry by Yvonne Schober and W. Andreas Nockher. 
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4 Discussion 

4.1 The role of PPARβ/δ in human primary macrophages 

Despite various reports hinting at a role for PPARβ/δ in the context of immune 

regulation especially in macrophages no study has focused on this interplay. This 

report underlines the important role of this transcription factor in human macrophage 

function. 

The substantial increase in functional PPARβ/δ protein highlighting the 

significance of this factor in macrophage biology. In combination with the transcriptomic 

analyses performed, the insight into the complexity of PPARβ/δ transcriptional 

regulation in the context of human primary macrophages has been improved 

significantly. Additional to the prior known canonical target genes a new subgroup of 

regulated genes was identified that has apparent implications in immune regulation. 

Intriguingly, these targets were regulated solely in macrophages by agonistic ligands as 

shown by comparison with two distinct human cell lines. Further, a deviating concept of 

target gene regulation by PPARβ/δ emerged from the collected data. These inverse 

target genes are modulated by a different mechanism but also modulate in a cell type 

selective fashion. In case of primary macrophages mostly immune regulatory genes 

were modulated e.g. ARG2, BCL3, CCL24, CD1A, IDO1, IL10, PD-L1and TNF. 

The influence of PPARβ/δ selective ligands, as illustrated by the morphological 

changes in differentiating macrophages, point to a fundamental link between PPARβ/δ 

ligands and macrophage phenotype. In the light of biological relevance, functional 

consequences were addressed in this study and the results clearly underline the 

proposed connection. Special influence in T cell activation can be inferred from the 

data presented namely by the involvement of PD-L1, an inhibitory protein that engages 

the PD-1 receptor present on T cells, consequentially leading to impaired T cell 

activation (Freeman et al. 2000; Francisco et al. 2010). Likewise, IDO1 by means of 

kynurenine production in combination with L-tryptophan consumption is a potent 

inhibitor of the T cell response causing functional anergy in CD8+ T cells (Munn & 

Mellor 2013). Experimental data from macrophages treated with PPARβ/δ agonists 

concur as the result was an increase in CD8+ T cell activity. 

Furthermore, agonist treatment also increased the resilience of macrophages 

against hypoxic stress, which is often an accompanying factor of infection, tumor or 

wounds (Lewis et al. 1999). The significance of these implications in vivo, however, 

remains uncertain until further investigation. Nonetheless, these data validate the 
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paramount role for PPARβ/δ in macrophages and strongly underlines its contribution to 

immune modulation. 

4.2 PPARβ/δ in the light of disease 

In order to acquire further insight into the newly obtained role for PPARβ/δs impact on 

macrophage function in the light of disease, serous ovarian carcinoma was chosen as 

a model. Progression of this gynecological cancer is frequently related to the 

development of malignancy-associated ascites. This fluid accumulation often harbors 

vast amounts of tumor and tumor-associated cells and allows investigation of the tumor 

microenvironment. 

TAMs obtained from patients’ ascites showed the expected and previously 

described phenotype (Reinartz et al. 2014). Despite the presence of functional 

PPARβ/δ, these cells were non-responsive to ligands with respect to morphologic 

changes. Subsequent transcriptome analysis and further experiments revealed obvious 

differences between MDMs and TAMs. We established that a strong influence was 

caused by the microenvironment and went on to focus on ascites composition with 

special respect to ascites-borne PPARβ/δ ligands. Since PPARβ/δ is a known lipid 

sensor and activation leads to intracellular lipid accumulation (Vosper et al. 2001), 

binding fatty acids and derivatives thereof, lipidomic analyses were undertaken. The 

results of 38 ascites samples for 97 compounds confirmed the theory of ascites 

harboring substantial amounts of PPARβ/δ ligands. First and foremost polyunsaturated 

fatty acids stood out with extremely high concentrations, the highest of which was 

measured for linoleic acid, averaging at ~180 µM. Secondly, arachidonic acid and 

docosahexaenoic acid at average concentrations around 30 µ M were found. 

Noticeably, these concentrations far exceeded the determined range for sufficient 

PPARβ/δ binding (Xu et al. 1999). Moreover, these PUFAs were able to induce 

PPARβ/δ target genes in MDM cultures readily at a concentration of 20 µM . Most 

intriguing, LA in several cases reached the activation level achieved by synthetic 

ligand. Eicosapentaenoic acid and α-linolenic acid (ALA), which also have the 

propensity to bind PPARβ/δ as possible ligands had no significant effect on the 

transcript level of PPARβ/δ target PDK4, although the concentration used exceeded 

the detected level of EPA in ascites (ALA was not detected). The potential as agonistic 

ligand appears to be shared among the common ω-6 FA but does not extend to the 

ω-3 fraction of dietary FAs. 

When examining ex vivo TAMs large accumulation of lipid droplets emerged, 

thus providing an intracellular reservoir of accumulated lipids (Guijas et al. 2012). The 
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data of serum starved TAM and MDM cultures suggest this intracellular pool may 

provide previously stored endogenous ligands possibly for quite long periods, as a four 

day culture period only had minimal effects on the lipid stores and deregulated target 

gene levels. 

Interestingly, synthetic inverse agonists, such as PT-S264, were able to 

abrogate the effects seen with the ω-6 PUFAs in a dose-dependent manner. These 

ligands were able to restore the basal state of MDMs even in the presence of ascites. 

Inferring from these data, inverse agonist may be used to alleviate the effects of 

PUFAs on macrophages. This has exceptional implications as our previous study and 

functional annotations of PPARβ/δ targets showed their involvement in cell survival, 

cell migration and inflammation (Adhikary et al. 2015). The tumor microenvironment 

may therefore at least in part mitigate the phenotype observed for TAMs, which is 

associated with poor prognosis, exemplified in this study by the PPARβ/δ target 

ANGPTL4.  

To date, there are numerous reports stating the negative implications of de 

novo fatty acid synthesis in cancer (Kuhajda 2006). In the center of these reports is the 

fatty acid synthase, which is overexpressed in a variety of cancers. This enzyme allows 

mammals to synthesize FAs from acetyl- and malonyl-CoA, which in cancer is 

correlated with aggressive tumors, enhanced growth and survival. Consequently, this 

pathway is being pharmacologically targeted to improve outcome in cancer. Scarce 

effort has been put into elucidating the role of dietary fatty acids in this context. 

Several studies have earlier associated fatty acids with the clinical outcome of 

ovarian cancer (Tania et al. 2010). In the background of diet, it has been postulated 

that high levels of LA are correlated with higher membrane fluidity, enhanced cell 

motility and increased metastasis (Quinn 1983). A study has also shown that in ovarian 

cancer patients the percentage of LA in peripheral adipose tissue and omentum is 

decreased as result of FA mobilization from these sources (Yam et al. 1997). In 

combination with a report of controlled experiments performed on mice, advocating the 

negative influence of ω-6 FAs in a prostate cancer model, the implications are 

devastating (Berquin et al. 2007). Validation of this theory has already been proposed 

by an animal study demonstrating the negative influence of direct lipid transfer from 

adipocytes of the omentum to tumor cells (Nieman et al. 2011). As a result ovarian 

cancer metastasis and tumor growth were increased. 

This report clearly connects the tumor promoting phenotype of TAMs to the lipid 

composition of the tumor microenvironment, with special emphasis on PUFA level and 

composition. Although the presented data were obtained solely from ovarian cancer 
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patients, implications reach beyond this model, highlighting the importance of the fatty 

acid sensor PPARβ/δ not only in macrophage regulation but also in tumor biology. Yet, 

this work is only the basis for urgently needed further investigation elucidating the 

relation of lipid sensors and immune regulation in detail.  

Along this direction, our current investigations are addressing the molecular basis 

for FAs impacting on signaling pathways in human macrophages. Intriguingly we have 

observed that inverse regulation by PPARβ/δ affects to a large part STAT1 and NF-κB 

target genes. This places FAs at a central point in inflammation control and thereby 

cancer therapy. We hope to acquire detailed information on the interplay of PUFAs and 

macrophage function, hopefully leading to a better understanding and possibly an 

intervening strategy for cancer therapy. 
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