Publikationsserver der Universitätsbibliothek Marburg

Titel:The role of PPARβ/δ in human macrophages
Autor:Bieringer, Tim
Weitere Beteiligte: Müller-Brüsselbach, Sabine (PD Dr.)
Veröffentlicht:2016
URI:https://archiv.ub.uni-marburg.de/diss/z2016/0566
DOI: https://doi.org/10.17192/z2016.0566
URN: urn:nbn:de:hebis:04-z2016-05666
DDC: Naturwissenschaften
Titel (trans.):Die Rolle von PPARβ/δ in humanen Makrophagen
Publikationsdatum:2016-08-24
Lizenz:https://creativecommons.org/licenses/by-nc-sa/4.0

Dokument

Schlagwörter:
Macrophage, Lipid, Makrophage, Lipide, Peroxisome-proliferator activated receptor, Tumorassoziierter Makrophage, Peroxisomen-Proliferator-aktivierter Rezeptor, Human

Zusammenfassung:
Macrophages represent the most diverse cell type in biology. They adapt selectively to many stimuli allowing for precise functionality in any environment without harming the organism. Consequently, they monitor their surroundings carefully and react to a plethora of signals. Fatty acids and their derivatives are important signaling mediators in this context, which besides other signals impinge on the lipid-regulated nuclear receptor peroxisome proliferator-activated receptor (PPARβ/δ). Studies conducted in mice have shown that ablation of PPARβ/δ results in the inability of adipose and liver macrophages to adopt an alternative anti-inflammatory activation state, demonstrating a prominent role of PPARβ/δ in macrophage function with implications for immune regulation. To date, however, systematic studies focusing on PPARβ/δ's role in human macrophages have not been reported. The first part of this thesis addresses the role of PPARβ/δ in human macrophages including its transcriptional network affecting a multitude of cellular processes. A major part of this network involves cell type independent canonical regulation, which is characterized by the binding of PPARβ/δ with its obligatory dimerization partner retinoid X receptor (RXR) to specific sites in the regulatory region of established and previously unreported target genes, their induction by agonists and repression by inverse agonists. Additionally, a new set of non-canonical regulated target genes is described. These genes lack chromatin-bound PPARβ/δ complexes, are repressed by agonists (inverse regulation) and are macrophage-selective. Consistent with the prevailing opinion and the induction of an IL4-like morphological phenotype by agonists, this mode of regulation inhibits pro-inflammatory signaling. Surprisingly, anti-inflammatory genes, such as CD32B, IDO1 and CD274 (PD-L1) were also repressed. Consistent with these results, immune functions such as CD8+ T cell activation were stimulated by these ligands. In combination, these findings point to a unique macrophage activation state induced by PPARβ/δ agonists with context dependent functions in immune regulation. The second part describes the PPARβ/δ-regulated transcriptome for tumor-associated macrophages (TAMs) from human serous ovarian carcinoma ascites. Interestingly, most canonical PPARβ/δ target genes were found to be upregulated and refractory to synthetic agonists as compared to monocyte-derived macrophages. This was not due to a TAM specific increase in PPARβ/δ protein level or recruitment to target genes. However, the unaffected response of these genes to inverse agonists hinted at the presence of endogenous activating ligands. Lipidomic analysis of malignancy-associated ascites indeed revealed very high concentrations of dietary polyunsaturated fatty acids (PUFAs), mainly linoleic and arachidonic acid. These PUFAs induced lipid droplet formation in macrophages which provide a potential reservoir for PPARβ/δ agonists and may serve as the causal nexus for target gene deregulation. Among the deregulated genes, ANGPTL4 is associated with shorter relapse-free survival, illustrating the potential clinical implications of these findings

Bibliographie / References

  1. Issemann, I. & Green, S., 1990. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature, 347(6294), pp.645-650.
  2. Bassaganya-Riera, J. et al., 2011. Activation of PPARγ and δ by dietary punicic acid ameliorates intestinal inflammation in mice. The British journal of nutrition, 106(6), pp.878-886.
  3. Chinetti, G. et al., 1998. Activation of proliferator-activated receptors alpha and gamma induces apoptosis of human monocyte-derived macrophages. J Biol Chem, 273(40), pp.25573-25580.
  4. Quinn, P.J., 1983. Adaptive Changes in Cell Membranes. Biochem. Sot. Trans., 11(April), pp.329-330.
  5. Kang, K. et al., 2008. Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. Cell metabolism, 7(6), pp.485-95.
  6. Nieman, K.M. et al., 2011. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nature Medicine, 17(11), pp.1498-1503.
  7. Lehmann, J.M. et al., 1995. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). The Journal of biological chemistry, 270(22), pp.12953-12956.
  8. Sprent, J. & Schaefer, M., 1990. Antigen-presenting cells for CD8+ T cells. Immunol Rev, 117(117), pp.213-34.
  9. Sprent, J., 1995. Antigen-presenting cells. Professionals and amateurs. Current biology : CB, 5(10), pp.1095-1097.
  10. Straus, D.S. & Glass, C.K., 2007. Anti-inflammatory actions of PPAR ligands: new insights on cellular and molecular mechanisms. Trends in Immunology, 28(12), pp.551-558.
  11. Brown, S. et al., 2002. Apoptosis disables CD31-mediated cell detachment from phagocytes promoting binding and engulfment. Nature, 418(6894), pp.200-203.
  12. Gallardo-Soler, A. et al., 2008. Arginase I induction by modified lipoproteins in macrophages: a peroxisome proliferator-activated receptor-gamma/deltamediated effect that links lipid metabolism and immunity. Molecular endocrinology (Baltimore, Md.), 22(June), pp.1394-1402.
  13. Müller, R., Kömhoff, M., et al., 2008. A Role for PPARbeta/delta in Tumor Stroma and Tumorigenesis. PPAR research, 2008, p.534294.
  14. Tania, M., Khan, M. a. & Song, Y., 2010. Association of lipid metabolism with ovarian cancer. Current Oncology, 17(5), pp.6-11.
  15. Muñoz, L.E. et al., 2010. Autoimmunity and chronic inflammation - two clearancerelated steps in the etiopathogenesis of SLE.
  16. Wanders, R.J. a & Waterham, H.R., 2006. Biochemistry of mammalian peroxisomes revisited. Annual review of biochemistry, 75, pp.295-332.
  17. Fujiwara, T. et al., 1988. Characterization of new oral antidiabetic agent CS-045. Studies in KK and ob/ob mice and Zucker fatty rats. Diabetes, 37(11), pp.1549- 1558.
  18. Dreyer, C. et al., 1992. Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell, 68(5), pp.879-87.
  19. Guan, H.-P. et al., 2005. Corepressors selectively control the transcriptional activity of PPARgamma in adipocytes. Genes & development, 19(4), pp.453-61.
  20. Renaud, J.P. et al., 1995. Crystal structure of the RAR-gamma ligand-binding domain bound to all-trans retinoic acid. Nature, 378(6558), pp.681-689.
  21. Pyonteck, S.M. et al., 2013. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nature medicine, 19(10), pp.1264-1272.
  22. Jones, J.R. et al., 2005. Deletion of PPARγ in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance. Proceedings of the National Academy of Sciences of the United States of America, 102(17), pp.6207-6212.
  23. Nencioni, A. et al., 2002. Dendritic cell immunogenicity is regulated by peroxisome proliferator-activated receptor gamma. Journal of immunology (Baltimore, Md. : 1950), 169(3), pp.1228-1235.
  24. Müller-Brüsselbach, S. et al., 2007. Deregulation of tumor angiogenesis and blockade of tumor growth in PPARbeta-deficient mice. The EMBO journal, 26(15), pp.3686- 98.
  25. Braissant, O. et al., 1996. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology, 137(1), pp.354-66.
  26. Daynes, R.A. & Jones, D.C., 2002. Emerging roles of PPARs in inflammation and immunity. Nature reviews. Immunology, 2(10), pp.748-59.
  27. Freeman, B.G.J. et al., 2000. Engagement of the PD-1 Immunoinhibitory Receptor by a Novel B7 Family Member Leads to Negative Regulation of Lymphocyte Activation. Journal of Experimental Medicine, 192(7), pp.1027-1034.
  28. Peters, J.M., Gonzalez, F.J. & Müller, R., 2015. Establishing the Role of PPARβ/δ in Carcinogenesis. Trends in Endocrinology and Metabolism, 26(11), pp.595-607.
  29. Laudet, V. et al., 1992. Evolution of the nuclear receptor gene superfamily. The EMBO journal, 11(3), pp.1003-13.
  30. Slavjanski, K., 1866. Experimentelle Beitraege zur Pneumonokoniosis-Lehre. Würzburger Medicinische Zeitschrift, Band IV, pp.326-332.
  31. Muoio, D.M. et al., 2002. Fatty acid homeostasis and induction of lipid regulatory genes in skeletal muscles of peroxisome proliferator-activated receptor (PPAR) α knockout mice. Evidence for compensatory regulation by PPARδ. Journal of Biological Chemistry, 277(29), pp.26089-26097.
  32. Kuhajda, F.P., 2006. Fatty Acid Synthase and Cancer: New Application of an Old Pathway. Cancer Research, 66(12), pp.5977-5980.
  33. Forman, B.M., Chen, J. & Evans, R.M., 1997. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proceedings of the National Academy of Sciences of the United States of America, 94(9), pp.4312-7.
  34. Michalik, L. et al., 2001. Impaired skin wound healing in peroxisome proliferatoractivated receptor (PPAR)alpha and PPARbeta mutant mice. The Journal of cell biology, 154(4), pp.799-814.
  35. Nolan, J.J. et al., 1994. Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. The New England journal of medicine, 331(18), pp.1188-93.
  36. Munn, D.H. & Mellor, A.L., 2013. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends in Immunology, 34(3), pp.137-143.
  37. Schneider, C. et al., 2014. Induction of the nuclear receptor PPAR-γ by the cytokine GM-CSF is critical for the differentiation of fetal monocytes into alveolar macrophages. Nature immunology, 15(11), pp.1026-1037.
  38. Coussens, L.M. & Werb, Z., 2002. Inflammation and cancer. Nature, 420 (December), pp.860-867.
  39. Janeway, C.A. & Medzhitov, R., 2002. INNATE IMMUNE RECOGNITION. Annual Review of Immunology, 20(1), pp.197-216.
  40. Shi, F.D., Ljunggren, H.G. & Sarvetnick, N., 2001. Innate immunity and autoimmunity: From self-protection to self-destruction. Trends in Immunology, 22(2), pp.97-101.
  41. Bensinger, S.J. & Tontonoz, P., 2008. Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature, 454(7203), pp.470-477.
  42. Metchnikoff, E., 1883. Intracellulare Verdauung bei wirbellosen Thieren. Arb Zool Inst Univ wien u Zool Stat Triest, 5, pp.141-168.
  43. Nolte, R.T. et al., 1998. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature, 395(6698), pp.137-143.
  44. Mills, C.D. et al., 2000. M-1/M-2 macrophages and the Th1/Th2 paradigm. Journal of immunology (Baltimore, Md. : 1950), 164, pp.6166-6173.
  45. Murray, P.J.J. et al., 2014. Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines. Immunity, 41(1), pp.14-20.
  46. Qian, B.-Z. & Pollard, J.W., 2010. Macrophage diversity enhances tumor progression and metastasis. Cell, 141(1), pp.39-51.
  47. Jager, N.A. et al., 2012. Macrophage folate receptor-β (FR-β) expression in autoimmune inflammatory rheumatic diseases: a forthcoming marker for cardiovascular risk? Autoimmunity reviews, 11(9), pp.621-6.
  48. Sica, A. & Mantovani, A., 2012. Macrophage plasticity and polarization: In vivo veritas. Journal of Clinical Investigation, 122(3), pp.787-795.
  49. Taylor, P.R. et al., 2005. Macrophage Receptors and Immune Recognition. Annual Review of Immunology, 23(1), pp.901-944.
  50. Lewis, J.S. et al., 1999. Macrophage responses to hypoxia: relevance to disease mechanisms. Journal of leukocyte biology, 66(6), pp.889-900.
  51. Sunderkötter, C. et al., 1994. Macrophages and angiogenesis. Journal of leukocyte biology, 55(March), pp.410-422.
  52. macrophages by fatty acid ligands in the ovarian cancer microenvironment.. 18 Discussion ................................................................................................. 21 4.1 The role of PPARβ /δ in human primary macrophages............................ 21 4.2 PPARβ /δ in the light of disease ................................................................. 22 Anand, P. et al., 2008. Cancer is a Preventable Disease that Requires Major Lifestyle Changes. Pharmaceutical Research, 25(9), pp.2097-2116.
  53. Diez-Roux, G. & Lang, R. a, 1997. Macrophages induce apoptosis in normal cells in vivo. Development (Cambridge, England), 124(18), pp.3633-8.
  54. Suter, S.L. et al., 1992. Metabolic effects of new oral hypoglycemic agent CS-045 in NIDDM subjects. Diabetes Care, 15(2), pp.193-203.
  55. Tauber, A.I., 2003. Metchnikoff and the phagocytosis theory. Nature reviews. Molecular cell biology, 4(11), pp.897-901.
  56. Crowther, M. et al., 2001. Microenvironmental influence on macrophage regulation of angiogenesis in wounds and malignant tumors. Journal of leukocyte biology, 70(4), pp.478-490.
  57. Reinartz, S. et al., 2014. Mixed-polarization phenotype of ascites-associated macrophages in human ovarian carcinoma: correlation of CD163 expression, cytokine levels and early relapse. International journal of cancer. Journal international du cancer, 134(1), pp.32-42.
  58. Berquin, I.M. et al., 2007. Modulation of prostate cancer genetic risk by omega-3 and omega-6 fatty acids. J lin Invest, 117(7), pp.1866-1875.
  59. Schwarz, R. et al., 2016. Monitoring Solution Structures of Peroxisome ProliferatorActivated Receptor β/δ upon Ligand Binding. PloS one, 11(3), p.e0151412.
  60. Leid, M., Kastner, P. & Chambon, P., 1992. Multiplicity generates diversity in the retinoic acid signalling pathways. Trends in biochemical sciences, 17(10), pp.427- 433.
  61. Gordon, S., 2002. Pattern recognition receptors: Doubling up for the innate immune response. Cell, 111(7), pp.927-930.
  62. 2004. Peroxisome proliferator-activated metabolism. Trends in Pharmacological Recalcati, S. et al., 2010. Differential regulation of iron homeostasis during human macrophage polarized activation. European Journal of Immunology, 40(3), pp.824-835.
  63. Rakhshandehroo, M. et al., 2010. Peroxisome proliferator-activated receptor alpha target genes. PPAR research, 2010, pp.1-20.
  64. Kanakasabai, S. et al., 2010. Peroxisome proliferator-activated receptor delta agonists inhibit T helper type 1 (Th1) and Th17 responses in experimental allergic encephalomyelitis. Immunology, 130(4), pp.572-88.
  65. Dunn, S.E. et al., 2010. Peroxisome proliferator-activated receptor delta limits the expansion of pathogenic Th cells during central nervous system autoimmunity. Journal of Experimental Medicine, 207(8), pp.1599-608.
  66. Klotz, L. et al., 2007. Peroxisome proliferator-activated receptor gamma control of dendritic cell function contributes to development of CD4+ T cell anergy. J Immunol, 178(4), pp.2122-2131.
  67. Introduction.................................................................................................. 8 2.1 Peroxisome Proliferator-Activated Receptors (PPARs) ............................... 8 2.1.1 PPAR subtypes: a short overview................................................................ 8 2.1.2 PPAR structure ............................................................................................ 9 2.1.3 PPAR transcriptional activity and ligand control ........................................ 10 2.1.4 PPARs in the context of immune regulation .............................................. 10 2.2 Macrophages and their role in immunology ................................................ 11 2.2.1 Macrophages in pathogen defense............................................................ 12 2.2.2 Macrophages of the tumor microenvironment ........................................... 12 2.3 Purpose and significance of this study ....................................................... 13 Results........................................................................................................ 15 3.1 The transcriptional PPARβ /δ network in human macrophages defines a unique agonist-induced activation state .............................................................. 15 3.2 Deregulation of PPARβ /δ target genes in tumor-associated
  68. Reddien, P.W., Cameron, S. & Horvitz, H.R., 2001. Phagocytosis promotes programmed cell death in C. elegans. Nature, 412(6843), pp.198-202.
  69. Ferwana, M. et al., 2013. Pioglitazone and risk of bladder cancer: a meta-analysis of controlled studies. Diabetic Medicine, 30(9), pp.1026-1032.
  70. Marx, N. et al., 2002. PPAR activators as antiinflammatory mediators in human T lymphocytes: Implications for atherosclerosis and transplantation-associated arteriosclerosis. Circulation Research, 90(6), pp.703-710.
  71. Kilgore, K.S. & Billin, A.N., 2008. PPARbeta/delta ligands as modulators of the inflammatory response. Current opinion in investigational drugs (London, England : 2000), 9(5), pp.463-469.
  72. Lee, C.-H. et al., 2006. PPARdelta regulates glucose metabolism and insulin sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 103, pp.3444-3449.
  73. Barish, G.D. et al., 2008. PPARdelta regulates multiple proinflammatory pathways to suppress atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 105(11), pp.4271-6.
  74. Mukundan, L. et al., 2009. PPAR-delta senses and orchestrates clearance of apoptotic cells to promote tolerance. Nature medicine, 15(11), pp.1266-72.
  75. Rosen, E.D. et al., 1999. PPARγ is required for the differentiation of adipose tissue in vivo and in vitro. Molecular Cell, 4(4), pp.611-617.
  76. Evans, R.M., 2004. PPARs and the complex journey to obesity. Keio Journal of Medicine, 53(2), pp.53-58.
  77. Hagemann, T. et al., 2008. “Re-educating” tumor-associated macrophages by targeting NF-kappaB. The Journal of experimental medicine, 205(6), pp.1261-1268.
  78. Müller, R., Rieck, M. & Müller-Brüsselbach, S., 2008. Regulation of Cell Proliferation and Differentiation by PPARbeta/delta. PPAR research, 2008, p.614852.
  79. Nathan, C., 2012. Secretory products of macrophages: Twenty-five years on. Journal of Clinical Investigation, 122(4), pp.1189-1190.
  80. Guijas, C. et al., 2012. Simultaneous activation of p38 and JNK by arachidonic acid stimulates the cytosolic phospholipase A2-dependent synthesis of lipid droplets in human monocytes. The Journal of Lipid Research, 53(11), pp.2343-2354.
  81. Tontonoz, P., Hu, E. & Spiegelman, B.M., 1994. Stimulation of Adipogenesis in Fibroblasts by PPARy2 , a Lipid-Activated Transcription. Cell, 79, pp.1147-1156.
  82. Topalian, S.L., Drake, C.G. & Pardoll, D.M., 2012. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Current Opinion in Immunology, 24(2), pp.207-212.
  83. Jiang, Y., Li, Y. & Zhu, B., 2015. T-cell exhaustion in the tumor microenvironment. Cell death & disease, 6, p.e1792.
  84. Mandard, S. et al., 2004. The direct peroxisome proliferator-activated receptor target fasting-induced adipose factor (FIAF/PGAR/ANGPTL4) is present in blood plasma as a truncated protein that is increased by fenofibrate treatment. Journal of Biological Chemistry, 279(33), pp.34411-34420.
  85. Mackaness, G.B., 1964. The immunological basis of acquired cellular resistance. The Journal of Experimental Medicine, 120(1), pp.105-120.
  86. Martinez, F.O. & Gordon, S., 2014. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000prime reports, 6(March), p.13.
  87. Fajas, L. et al., 1997. The organization, promoter analysis, and expression of the human PPARgamma gene. The Journal of biological chemistry, 272(30), pp.18779-18789.
  88. Francisco, L.M., Sage, P.T. & Sharpe, A.H., 2010. The PD-1 pathway in tolerance and autoimmunity. Immunological Reviews, 236(1), pp.219-242.
  89. Vosper, H. et al., 2001. The Peroxisome Proliferator-activated Receptor δ Promotes Lipid Accumulation in Human Macrophages. J. Biol. Chem., 276(47), pp.44258- 44265.
  90. Devchand, P.R. et al., 1996. The PPARalpha-leukotriene B4 pathway to inflammation control. Nature, 384(6604), pp.39-43.
  91. Bingle, L., Brown, N.J. & Lewis, C.E., 2002. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. The Journal of pathology, 196(3), pp.254-65.
  92. Kumar, R. & Thompson, E.B., 1999. The structure of the nuclear hormone receptors. Steroids, 64(5), pp.310-319.
  93. Rosen, E.D. et al., 2000. Transcriptional regulation of adipogenesis. Genes & Development, 14(11), pp.1293-1307. Available at: WOS:000087454900001.
  94. Desvergne, B., Michalik, L. & Wahli, W., 2006. Transcriptional regulation of metabolism. Physiological reviews, 86(2), pp.465-514.
  95. Lee, C.-H. et al., 2003. Transcriptional repression of atherogenic inflammation: modulation by PPARdelta. Science (New York, N.Y.), 302(October), pp.453-457.
  96. Schoppmann, S.F. et al., 2002. Tumor-Associated Macrophages Express Lymphatic Endothelial Growth Factors and Are Related to Peritumoral Lymphangiogenesis. American Journal of Pathology, 161(3), pp.947-956.
  97. Pollard, J.W., 2004. Tumour-educated macrophages promote tumour progression and metastasis. Nature Reviews Cancer, 4(January), pp.71-78.
  98. Metchnikoff, E., 1887. Ueber den Kampf der Zellen gegen Erysipelkokken. Arch. Pathol. Anat. [Virchow's Archiv.], 107, pp.209-249.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten