Publikationsserver der Universitätsbibliothek Marburg

Titel:Der Einfluss der Phosphorylierung von Marburgvirus NP auf den viralen Lebenszyklus
Autor:Kelterbaum, Anne
Weitere Beteiligte: Becker, Stephan (Prof. Dr.)
Veröffentlicht:2016
URI:https://archiv.ub.uni-marburg.de/diss/z2016/0543
DOI: https://doi.org/10.17192/z2016.0543
URN: urn:nbn:de:hebis:04-z2016-05439
DDC:610 Medizin
Titel (trans.):Phosphorylation of Marburgvirus NP and its influence on the viral life cycle
Publikationsdatum:2016-07-26
Lizenz:https://creativecommons.org/licenses/by-nc-sa/4.0

Dokument

Schlagwörter:
Marburgvirus, Marburgvirus, viral life cycle, Phosphorylierungsregion VII, phosphorylation region VI, viraler Replikationszyklus, Nukleoprotein, Nucleoprotein, phosphorylation region VII, Replikation, Transkription, Phosphorylierung, Phosphorylierungsregion VI

Zusammenfassung:
Das Marburgvirus (MARV) bildet zusammen mit Ebolavirus (EBOV) und Lloviuvirus (LLOV) die Familie der Filoviridae und besitzt ein einzelsträngiges RNA-Genom negativer Orientierung. Filoviren werden als BSL-4-Pathogene klassifiziert, da sie schwere hämorrhagische Fieber bei Menschen und Affen verursachen. Das Nukleoprotein NP bildet zusammen mit den viralen Proteinen VP30, VP35, VP24 und der Polymerase L das Nukleokapsid, das die virale RNA umschließt. Frühere Studien haben gezeigt, dass NP an C-terminalen Serin- und Threoninresten phosphoryliert ist. Während in infizierten Zellen sowohl die phosphorylierte als auch die unphosphorylierte Form von NP nachgewiesen werden können, wird in neu gebildete Viruspartikel ausschließlich die phosphorylierte Form eingebaut, was auf eine Funktion der Phosphorylierung in der Bildung neuer Viruspartikel hinweist. Für NP wurden sieben Phosphorylierungsregionen beschrieben, wovon bisher eine (Phosphorylierungsregion II) näher funktionell charakterisiert wurde. In der vorliegenden Arbeit wurden die Phosphorylierungsregionen VI und VII genauer untersucht und die Funktion der Phosphorylierung der Serinreste in diesen Regionen charakterisiert. Mit Hilfe phosphomimetischer Mutanten konnte nachgewiesen werden, dass die Phos-phorylierung eines einzelnen Serinrests (S602) in Phosphorylierungsregion VI für die Konformationsänderung von NP ausreicht. Eine Phosphorylierung von NP an Position S602 bewirkt im Vergleich zur unphosphorylierten Form einen verbesserten Transport von den viralen inclusion bodies als den Orten viraler Replikation und Transkription zur Plasmamembran, womit bevorzugt phosphoryliertes NP zum Zusammenbau und zur Freisetzung neuer Viren zur Verfügung steht. Die Phosphorylierung vom einzigen Serinrest (S619) in Phosphorylierungsregion VII wurde ebenso mit phosphomimetischen Mutanten untersucht: Ist NP an Position S619 nicht phosphoryliert, so werden Replikation und/oder Transkription unterstützt, damit zur Freisetzung neuer Viren ausreichend virale Proteine und virale RNA zur Verfügung stehen. Für eine effiziente Interaktion mit dem weiteren Nukleokapsidprotein VP24 und damit die Bildung funktioneller Nukleokapside ist allerdings die Phosphorylierung von S619 essentiell. Die im Rahmen der vorliegenden Arbeit generierten Ergebnisse unterstreichen die Wichtigkeit der Phosphorylierung des Nukleoproteins für den viralen Replikationszyklus: Die dynamische Phosphorylierung verschiedener Aminosäuren führt zu einem breiten Spektrum verschiedener Funktionen von NP, die zu verschiedenen Zeitpunkten im Replikationszyklus von Bedeutung sind.

Bibliographie / References

  1. 24:2975-2986 Warfield, K. L., and M. J. Aman. 2011. Advances in virus-like particle vaccines for filoviruses. J Infect Dis. 204 Suppl 3:S1053-1059 Warfield, K. L., D. L. Swenson, D. L. Negley, A. L. Schmaljohn, M. J. Aman, and S.
  2. Mech, and D. S. Reed. 2010. Aerosol Exposure to the Angola Strain of Marburg Virus Causes Lethal Viral Hemorrhagic Fever in Cynomolgus Macaques. Vet Pathol. 47:831- 851 Bale, S., J. P. Julien, Z. A. Bornholdt, C. R. Kimberlin, P. Halfmann, M. A. Zandonatti, J. Kunert, G. J. Kroon, Y. Kawaoka, I. J. MacRae, I. A. Wilson, and E. O. Saphire. 2012.
  3. 2000. Apoptosis induced in vitro and in vivo during infection by Ebola and Marburg viruses. Lab Invest. 80:171-186 Gramberg, T., H. Hofmann, P. Möller, P. F. Lalor, A. Marzi, M. Geier, M. Krumbiegel, T. Winkler, F. Kirchhoff, D. H. Adams, S. Becker, J. Münch, and S. Pöhlmann. 2005.
  4. Mühlberger, E., M. Weik, V. E. Volchkov, H. D. Klenk, and S. Becker. 1999. Comparison of the Transcription and Replication Strategies of Marburg Virus and Ebola Virus by Using Artificial Replication Systems. J Virol. 73:2333-2342 Mulherkar, N., M. Raaben, J. C. de la Torre, S. P. Whelan, and K. Chandran. 2011.
  5. Grolla, E. A. Fritz, F. Feldmann, H. Feldmann, and S. M. Jones. 2006. Cross-protection against Marburg virus strains by using a live, attenuated recombinant vaccine. J Virol.
  6. Parsy, S. Becker and J. A. G. Briggs. 2011. Cryo-Electron Tomography of Marburg Virus Particles and Their Morphogenesis within Infected Cells. PLoS Biol. 9:e1001196.
  7. Geier, J. Eisemann, N. Turza, B. Saunier, A. Steinkasserer, S. Becker, P. Bates, H. Hofmann, and S. Pöhlmann. 2004. DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus.
  8. Pratt, and J. Y. Dong. 2006. De novo syntheses of Marburg virus antigens from adenovirus vectors induce potent humoral and cellular immune responses. Vaccine.
  9. Hutchison, J. E. Echevarría, W. J. Lipkin, and A. Tenorio. 2011. Discovery of an ebolavirus-like filovirus in europe. PLoS Pathog. 7:e1002304 Neumann, G., S. Watanabe, and Y. Kawaoka. 2009. Characterization of Ebolavirus Regulatory Genomic Regions. Virus Res. 144:1-7 Peterson, A. T., D. S. Carroll, J. N. Mills, and K. M. Johnson. 2004. Potential mammalian filovirus reservoirs. Emerg Infect Dis. 10:2073-2081 Peyrol, J., C. Thizon, J. C. Gaillard, C. Marchetti, J. Armengaud, and F. Rollin-Genetet.
  10. White, and M. T. McIntosh. 2009. Discovery of swine as a host for the Reston ebolavirus. Science 325:204-206 Becker, S., and E. Mühlberger. 1999. Co- and posttranslational modifications and functions of Marburg virus proteins. Curr Top Microbiol Immunol. 235:23-34 Becker, S., M. Spiess, and H. D. Klenk. 1995. The asialoglycoprotein receptor is a potential liver-specific receptor for Marburg virus. J Gen Virol. 76:393-399 Becker, S., Rinne C., Hofsäss U., Klenk H. D. and E. Mühlberger. 1998. Interactions of Marburg virus nucleocapsid proteins. Virology. 249:406-417.
  11. Salam, J. Shantha, V. Wolfman, S. Yeh, A. K. Chan, and S. Mishra. 2015. Early clinical sequelae of Ebola virus disease in Sierra Leone: a cross-sectional study. Lancet Infect Dis. 16:331-338 Médecins Sans Frontières. 2008. Filovirus Haemorrhagic Fever Guideline Mehedi, M., A. Groseth, H. Feldmann, and H. Ebihara. 2011. Clinical aspects of Marburg hemorrhagic fever. Future Virol. 6:1091-1106 Misasi, J., K. Chandran, J. Y. Yang, B. Considine, C. M. Filone, M. Côté, N. Sullivan, G.
  12. 344:64-70 Hartman, A. L., J. S. Towner, and S. T. Nichol. 2010. Ebola and marburg hemorrhagic fever. Clin Lab Med. 30:161-177 Henao-Restrepo, A. M., I. M. Longini, M. Egger, N. E. Dean, W. J. Edmunds, A. Camacho, M. W. Carroll, M. Doumbia, B. Draguez, S. Duraffour, G. Enwere, R. Grais, S.
  13. Sahr. 2015. Ebola RNA Persistence in Semen of Ebola Virus Disease Survivors - Preliminary Report. N Engl J Med. 2015 Oct 14. [Epub ahead of print] DiCarlo, A., N. Biedenkopf, B. Hartlieb, A. Klussmeier and S. Becker. 2011. Phosphorylation of Marburg virus NP region II modulates viral RNA synthesis. J Infect Dis.
  14. Feldmann and H. J. Schnittle. 2011. Ebola virus enters host cells by macropinocytosis and clathrin-mediated endocytosis. J Infect Dis. 204 Suppl 3:957-967 Alves, D.A., A. R. Glynn, K. E. Steele, M. G. Lackemeyer, N. L. Garza, J. G. Buck, C.
  15. Whelan, K. Chandran, and T. R. Brummelkamp. 2011. Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature. 477:340-343 Christie, A., G. J. Davies-Wayne, T. Cordier-Lassalle, D. J. Blackley, A. S. Laney, D. E.
  16. Nanbo, A., M. Imai, S. Watanabe, T. Noda, K. Takahashi, G. Neumann, P. Halfmann, and Y. Kawaoka. 2010. Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner. PLoS Pathog. 6:e1001121 Nanyonga, M., J. Saidu, A. Ramsay, N. Shindo, and D. G. Bausch. 2016. Sequelae of Ebola Virus Disease, Kenema District, Sierra Leone. Clin Infect Dis. 62:125-126 Naruse, H., Y. Nagai, T. Yoshida, M. Hamaguchi, T. Matsumoto, S. Isomura, and S.
  17. Le Guenno. 1999. Ebola virus outbreak among wild chimpanzees living in a rain forest of Côte d'Ivoire. J Infect Dis 179 Suppl 1:S120-126 Formenty, P., C. Hatz, B. Le Guenno, A. Stoll, P. Rogenmoser, and A. Widmer. 1999.
  18. Kieny, and J. A. Røttingen. 2015. Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial. Lancet. 386:857-866 Hensley, L. E., D. A. Alves, J. B. Geisbert, E. A. Fritz, C. Reed, T. Larsen, and T. W.
  19. Feldmann, H., T. W. Geisbert, P. B. Jahrling, H. D. Klenk, S. V. Netesov, C. J. Peters, A. Sanchez, R. Swanepoel, and V. E. Volchkov. 2005. Family Filoviridae. In Fauquet C.
  20. Fabozzi, L. Hensley, and J. Cunningham. 2012. Filoviruses require endosomal cysteine proteases for entry but exhibit distinct protease preferences. J Virol. 86:3284-3292 Mittler, E., L. Kolesnikova, T. Strecker, W. Garten, and S. Becker. 2007. Role of the transmembrane domain of marburg virus surface protein GP in assembly of the viral envelope. J Virol. 81:3942-3948 Modrof, J., C. Möritz, L. Kolesnikova, T. Konakova, B. Hartlieb, A. Randolf, E. Mühlberger, and S. Becker. 2001. Phosphorylation of Marburg virus VP30 at serines 40 and 42 is critical for its interaction with NP inclusions. Virology. 287:171-182 Modrof, J., E. Mühlberger, H. D. Klenk, and S. Becker. 2002. Phosphorylation of VP30 impairs ebola virus transcription. J Biol Chem. 277:33099-33104 Monath, T. P. 1999. Ecology of Marburg and Ebola viruses: speculations and directions for future research. J Infect Dis. 179 Suppl 1:127-138 Moyer, S. A., and D. F. Summers. 1974. Phosphorylation of vesicular stomatitis virus in vivo and in vitro. J Virol. 13:455-465 Mühlberger, E. 2004. Genome organization, replication and transcription of filoviruses. Horizon Bioscience, Norfolk, U.K.
  21. Human infection due to Ebola virus, subtype Côte d'Ivoire: clinical and biologic presentation. J Infect Dis 179 Suppl 1:S48-53 Fowler, T., S. Bamberg, P. Möller, H. D. Klenk, T. F. Meyer, S. Becker, and T. Rudel.
  22. Feldmann, T. Irimura, and Y. Kawaoka. 2004. Human macrophage C-type lectin specific for galactose and N-acetylgalactosamine promotes filovirus entry. J Virol. 8:2943- 2947 Tarrant, M. K., and P. A. Cole. 2009. The chemical biology of protein phosphorylation.
  23. 2005. Inhibition of Marburg virus protein expression and viral release by RNA interference. J Gen Virol. 86:1181-1188 Fritz, E. A., J. B. Geisbert, T. W. Geisbert, L. E. Hensley, and D. S. Reed. 2008. Cellular immune response to Marburg virus infection in cynomolgus macaques. Viral Immunol. 21:355-363 Fuentes, S. M., D. Sun, A. P. Schmitt, and B. He. 2010. Phosphorylation of paramyxovirus phosphoprotein and its role in viral gene expression. Future Microbiol. 5:9-13 Geisbert, T. W., and P. B. Jahrling. 1995. Differentiation of filoviruses by electron microscopy.
  24. Leroy. 2009. Large serological survey showing cocirculation of Ebola and Marburg viruses in Gabonese bat populations, and a high seroprevalence of both viruses in Rousettus aegyptiacus. BMC Infect Dis 9:159 Qiu, X., G. Wong, J. Audet, A. Bello, L. Fernando, J. B. Alimonti, H. FaustherBovendo, H. Wei, J. Aviles, E. Hiatt, A. Johnson, J. Morton, K. Swope, O. Bohorov, N.
  25. LSECtin interacts with filovirus glycoproteins and the spike protein of SARS coronavirus. Virology. 340:224-236 Grubman, M. J., C. Mebus, B. Dale, M. Yamanaka, and T. Yilma. 1988. Analysis of the polypeptides synthesized in rinderpest virus-infected cells. Virology. 163:261-267 Hagiwara, K., H. Sato, Y. Inoue, A. Watanabe, M. Yoneda, F. Ikeda, K. Fujita, H.
  26. Klenk. 1992. Marburg virus, a filovirus: messenger RNAs, gene order, and regulatory elements of the replication cycle. Virus Res. 24:1-19.
  27. A. Fritz, T. Larsen, and L. E. Hensley. 2007. Marburg Virus Angola Infection of Rhesus Macaques: Pathogenesis and Treatment with Recombinant Nematode Anticoagulant Protein c2. J Infect Dis. 196 Suppl 2:S372-381 Geisbert, T. W., L. E. Hensley, T. R. Gibb, K. E. Steele, N. K. Jaax, and P. B. Jahrling.
  28. Annu Rev Biochem. 78:797-825 Towner, J. S., X. Pourrut, C. G. Albariño, C. N. Nkogue, B. H. Bird, G. Grard, T. G. Ksiazek, J. P. Gonzalez, S. T. Nichol, and E. M. Leroy. 2007. Marburg virus infection detected in a common African bat. PLoS One 2:e764 Vainiopää, R., B. Ziola, and A. Salmi. 1978. Measles virus polypeptides in purified virions and in infected cells. Acta Pathol Microbiol Scand B. 86B:379-385 Valmas, C., M. N. Grosch, M. Schümann, J. Olejnik, O. Martinez, S. M. Best, V. Krähling, C.F. Basler, and E. Mühlberger. 2010. Marburg Virus Evades Interferon Responses by a Mechanism Distinct from Ebola Virus. PLoS Pathog. 6:e1000721 Varkey, J. B., J. G. Shantha, I. Crozier, C. S. Kraft, G. M. Lyon, A. K. Mehta, G. Kumar, J. R. Smith, M. H. Kainulainen, S. Whitmer, U. Ströher, T. M. Uyeki, B. S. Ribner, and S. Yeh. 2015. Persistence of Ebola Virus in Ocular Fluid during Convalescence. N Engl J Med. 372:2423-2427 Volchkov, V. E., V. A. Volchkova, A. A.Chepurnov, V. M. Blinov, O. Dolnik, S. V. Netesov, and H. Feldmann. 1999. Characterization of the L gene and 5' trailer region of Ebola virus. J Gen Virol. 80:355-362 Volchkov, V. E., V. A. Volchkova, U. Ströher, S. Becker, O. Dolnik, M. Cieplik, W. Garten, H. D. Klenk, and H. Feldmann. 2000. Proteolytic processing of Marburg virus glycoprotein. Virology. 68:1-6 Wang, D., A. L. Schmaljohn, N. U. Raja, C. M. Trubey, L. Y. Juompan, M. Luo, S. B.
  29. Bavari. 2004. Marburg virus-like particles protect guinea pigs from lethal Marburg virus infection. Vaccine. 22:3495-3502 Warren, T. K., J. Wells, R. G. Panchal, K. S. Stuthman, N. L. Garza, S. A. Van Tongeren, L. Dong, C. J. Retterer, B. P. Eaton, G. Pegoraro, S. Honnold, S. Bantia, P. Kotian, X. Chen, B. R. Taubenheim, L. S. Welch, D. M. Minning, Y. S. Babu, W. P. Sheridan, and S. Bavari. 2014. Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430. Nature. 508:402-405 Watanabe, S., T. Noda, P. Halfmann, L. Jasenosky, and Y. Kawaoka. 2007. Ebola virus (EBOV) VP24 inhibits transcription and replication of the EBOV genome. J Infect Dis.
  30. Marburg virus VP35 can both fully coat the backbone and cap the ends of dsRNA for interferon antagonism. PLoS Pathog. 8:e1002916 Bamberg, S., L. Kolesnikova, P. Möller, H. D. Klenk and S. Becker. 2005. VP24 of Marburg Virus Influences Formation of Infectious Particles. J Virol. 79:13421-13433 Barrette, R. W., S. A. Metwally, J. M. Rowland, L. Xu, S. R. Zaki, S. T. Nichol, P. E. Rollin, J. S. Towner, W. J. Shieh, B. Batten, T. K. Sealy, C. Carrillo, K. E. Moran, A. J.
  31. Munster, J. Pettitt, K. Prieto, B.W. Humrighouse, U. Ströher, J.W. DiClaro, L.E. Hensley, R.J. Schoepp, D. Safronetz, J. Fair, J.H. Kuhn, D.J. Blackley, A.S. Laney, D.E. Williams, T. Lo, A. Gasasira, S.T. Nichol, P. Formenty, F.N. Kateh, K.M. De Cock, F. Bolay, M. Sanchez-Lockhart, and G. Palacios. 2015. Molecular Evidence of Sexual Transmission of Ebola Virus. N Engl J Med. 373:2448-2454 Mateo, M., C. Carbonnelle, M. J. Martinez, O. Reynard, A. Page, V. A. Volchkova, and V. E. Volchkov. 2011. Knockdown of Ebola Virus VP24 Impairs Viral Nucleocapsid Assembly and Prevents Virus Replication. J Infect Dis. 204(S3):S892-S896 Matsuno, K., N. Kishida, K. Usami, M. Igarashi, R. Yoshida, E. Nakayama, M. Shimojima, H. Feldmann, T. Irimura, Y. Kawaoka, and A. Takada. 2010. Different potential of C-type lectin-mediated entry between Marburg virus strains. J Virol. 84:5140-5147 Mattia, J. G., M. J. Vandy, J. C. Chang, D. E. Platt, K. Dierberg, D. G. Bausch, T.
  32. 2013. Multiple phosphorylable sites in the Zaire Ebolavirus nucleoprotein evidenced by high resolution tandem mass spectrometry. J Virol Methods. 187:159-165 Pourrut, X., M. Souris, J. S. Towner, P. E. Rollin, S. T. Nichol, J. P. Gonzalez, and E.
  33. 2014. Newly identified minor phosphorylation site threonine-279 of measles virus nucleoprotein is a prerequisite for nucleocapsid formation. J Virol. 88:1140-1149 Sugai, A., H. Sato, M. Yoneda, and C. Kai. 2013. Phosphorylation of measles virus nucleoprotein affects viral growth by changing gene expression and genomic RNA stability. J Virol. 87:11684-11692 Swanepoel, R., S. B. Smit, P. E. Rollin, P. Formenty, P. A. Leman, A. Kemp, F. J. Burt, A. A. Grobbelaar, J. Croft, D. G. Bausch, H. Zeller, H. Leirs, L. E. Braack, M. L. Libande, S. Zaki, S. T. Nichol, T. G. Ksiazek, J. T. Paweska, and I. S. a. T. C. f. M. H. F. C. i. t. D.
  34. Geisbert. 2011. Pathogenesis of Marburg Hemorrhagic Fever in Cynomolgus Macaques. J Infect Dis. 204 Suppl 3:S1021-1031 Hoenen, T., and H. Feldmann. 2014. Ebolavirus in West Africa, and the use of experimental therapies or vaccines. BMC Biol. 12:80 Hsu, C. H., and D. W. Kingsbury. 1982. Topography of phosphate residues in Sendai virus proteins. Virology. 120:225-234 Huang, M., H. Sato, K. Hagiwara, A. Watanabe, A. Sugai, F. Ikeda, H. Kozuka-Hata, M. Oyama, M. Yoneda M, and C. Kai. 2011. Determination of a phosphorylation site in Nipah virus nucleoprotein and its involvement in virus transcription. J Gen Virol.
  35. 37:256-267 Sokol, F., and H. F. Clark. 1973. Phosphoproteins, structural components of rhabdoviruses. Virology. 52:246-263 Spiegelberg, L., V. Wahl-Jensen, L. Kolesnikova, H. Feldmann, S. Becker, and T. Hoenen. 2011. Genus-specific recruitment of filovirus ribonucleoprotein complexes into budding particles. J Gen Virol. 92:2900-2905 Sugai, A., H. Sato, K. Hagiwara, H. Kozuka-Hata, M. Oyama, M. Yoneda, and C. Kai.
  36. 2008. Phosphorylation of measles virus nucleoprotein upregulates the transcriptional activity of minigenomic RNA. Proteomics. 8:1871-1879 Hartlieb, B., and W. Weissenhorn. 2006. Filovirus assembly and budding. Virology.
  37. Sieh, A. Gasasira, F. Bolay, F. N. Kateh, T. G. Nyenswah, K. M. De Cock. Centers for Disease Control and Prevention (CDC). 2015. Possible sexual transmission of Ebola virus - Liberia, 2015. MMWR Morb Mortal Wkly Rep. 64:479-481 Côté, M., J. Misasi, T. Ren, A. Bruchez, K. Lee, C. M. Filone, L. Hensley, Q Li, D. Ory, K. Chandran, and J. Cunningham. 2011. Small molecule inhibitors reveal NiemannPick C1 is essential for Ebola virus infection. Nature. 477:344-348 Daddario-DiCaprio, K. M., T. W. Geisbert, J. B. Geisbert, U. Ströher, L. E. Hensley, A.
  38. 196 Suppl 2:S284-290 Watanabe, S., T. Watanabe, T. Noda, A. Takada, H. Feldmann, L. D. Jasenosky, and Y. Kawaoka. 2004. Production of novel Ebola virus-like particles from cDNAs: an alternative to Ebola virus generation by reverse genetics. J. Virol. 78:999-1005 Watt, A., F. Moukambi, L. Banadyga, A. Groseth, J. Callison, A. Herwig, H. Ebihara, H. Feldmann, and T. Hoenen. 2014. A novel life cycle modeling system for Ebola virus shows a genome length-dependent role of VP24 in virus infectivity. J Virol. 88:10511- 10524 Welsch, S., L. Kolesnikova, V. Krähling, J. D. Riches, S. Becker, and J. A. Briggs. 2010.
  39. Recombinant Marburg virus expressing EGFP allows rapid screening of virus growth and real-time visualization of virus spread. J Infect Dis. 204 Suppl 3:S861-870 Schudt, G., L. Kolesnikova, O. Dolnik, B. Sodeik, and S. Becker. 2013. Live-cell imaging of Marburg virus-infected cells uncovers actin-dependent transport of nucleocapsids over long distances. Proc Natl Acad Sci U S A. 110:14402-14407.
  40. Virus Res. 39:129-150 Geisbert, T. W., and H. Feldmann. 2011. Recombinant vesicular stomatitis virus-based vaccines against Ebola and Marburg virus infections. J Infect Dis. 204 Suppl 3:S1075-1081 Geisbert, T. W., and N. K. Jaax. Marburg hemorrhagic fever: report of a case studied by immunohistochemistry and electron microscopy. 1998. Ultrastruct Pathol. 22:3-17 Geisbert, T. W., K. M. Daddario-DiCaprio, J. B. Geisbert, H. A. Young, P. Formenty, E.
  41. Mühlberger. 2006. Rescue of recombinant Marburg virus from cDNA is dependent on nucleocapsid protein VP30. J Virol. 80:1038-1043.
  42. Whaley, B. Xu, J. E. Strong, L. Zeitlin, and G. P. Kobinger. 2014. Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature. 514:47-53 Richman, D. D., P. H. Cleveland, J. B. McCormick, and K. M. Johnson. 1983. Antigenic analysis of strains of Ebola virus: identification of two Ebola virus serotypes. J Infect Dis 147:268-271 Robbins, S. J., and R. H. Bussell. 1979. Structural phosphoproteins associated with purified measles virions and cytoplasmic nucleocapsids. Intervirology. 12:96-102 Ryabchikova, E., L. Strelets, L. Kolesnikova, O. Pyankov, and A. Sergeev. 1996. Respiratory Marburg virus infection in guinea pigs. Arch Virol. 141:2177-2190 Saeed, M. F., A. A. Kolokoltsov, T. Albrecht, and R. A. Davey. 2010. Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes. PLoS Pathog. 6:e1001110 Sänger, C., E. Mühlberger, B. Lötfering, H. D. Klenk, and S. Becker. 2002. The Marburg virus surface protein GP is phosphorylated at its ectodomain. Virology. 295:20- 29 Schmidt, K. M., M. Schümann, J. Olejnik, V. Krähling, and E. Mühlberger. 2011.
  43. Volchkov. 2011. Role of VP30 phosphorylation in the Ebola virus replication cycle. J Infect Dis. 204 Suppl 3:S934-940 Martini, G. A. 1973. Marburg Virus Disease. Postgrad Med J. 49:542-546 Martini, G. A., and H. A. Schmidt. 1968. Spermatogene Übertragung des „Virus Marburg“ (Erreger der „Marburger Affenkrankheit“). Klin Wochenschr. 46:398-400 Marzi, A., T. Gramberg, G. Simmons, P. Möller, A. J. Rennekamp, M. Krumbiegel, M.
  44. 2015. Safety and immunogenicity of a chimpanzee adenovirus-vectored Ebola vaccine in healthy adults: a randomised, double-blind, placebo-controlled, dose-finding, phase 1/2a study. Lancet Infect Dis. 16:311-320 Deen, G. F., B. Knust, N. Broutet, F.R. Sesay, P. Formenty, C. Ross, A.E. Thorson, T.A.
  45. Bharat, T. A., T. Noda, J. D. Riches, V. Kraehling, L. Kolesnikova, S. Becker, Y. Kawaoka, and J. A. Briggs. 2012. Structural dissection of Ebola virus and ist assembly determinants using cryo-electron tomography. Proc Natl Acad Sci U S A. 109:4275- 4280 Biedenkopf, N., B. Hartlieb, T. Hoenen, and S. Becker. 2013. Phosphorylation of Ebola virus VP30 influences the composition of the viral nucleocapsid complex: impact on viral transcription and replication. J Biol Chem. 288:11165-11174 Biedenkopf, N., C. Lier, and S. Becker. 2016. Dynamic Phosphorylation of VP30 is essential for Ebola virus life cycle. J Virol. 90:4914-4925 Biek, R., P. D. Walsh, E. M. Leroy, and L. A. Real. 2006. Recent common ancestry of Ebola Zaire virus found in a bat reservoir. PLoS Pathog 2:e90 Bowen, E. T., G. Lloyd, W. J. Harris, G. S. Platt, A. Baskerville, and E. E. Vella. 1977.
  46. R. o. Congo. 2007. Studies of reservoir hosts for Marburg virus. Emerg Infect Dis 13:1847-1851 Swenson, D. L., K. L. Warfield, D. L. Negley, A. Schmaljohn, M. K. Aman, and S.
  47. Termini of all mRNA species of Marburg virus: sequence and secondary structure. Virology. 223:376-380 Mühlberger, E., B. Lötfering, H. D. Klenk, and S. Becker. 1998. Three of the Four Nucleocapsid Proteins of Marburg Virus, NP, VP35, and L, Are Sufficient To Mediate Replication and Transcription of Marburg Virus-Specific Monocistronic Minigenomes.
  48. 92(Pt 9):2133-2141 Huang, Y., L. Xu, Y. Sun, and G. J. Nabel. 2002. The Assembly of Ebola Virus Nucleocapsid Requires Virion-Associated Proteins 35 and 24 and Posttranslational Modification of Nucleoprotein. Mol Cell. 10:307-316 Hunt, C. L., A. A. Kolokoltsov, R. A. Davey, and W. Maury. 2011. The Tyro3 receptor kinase Axl enhances macropinocytosis of Zaire ebolavirus. J Virol. 85:334-347 Hunt, L., and V. Knott. 2015. Serious and common sequelae after Ebola virus infection. Lancet Infect Dis. 16:270-271 Hunter, T. 2000. Signaling-2000 and beyond. Cell. 100:113-127 Kolesnikova, L., H. Bugany, H. D. Klenk, and S. Becker. 2002. VP40, the matrix protein of Marburg virus, is associated with membranes of the late endosomal compartment. J Virol. 76:1825-1838 MacNeil, A., E. C. Farnon, J. Wamala, S. Okware, D. L. Cannon, Z. Reed, J. S. Towner, J. W. Tappero, J. Lutwama, R. Downing, S. T. Nichol, T. G. Ksiazek, and P. E. Rollin.
  49. The Ebola virus glycoprotein mediates entry via a non-classical dynamin-dependent macropinocytic pathway. Virology. 419:72-83 Murphy, F. A., G. Van der Groen, S. G. Whitfield, and J. V. Lange. 1978. Ebola and Marburg virus morphology and taxonomy. Elsevier/North Holland, Amsterdam, The Netherlands.
  50. Faix, J., and K. Rottner. 2006. The making of filopodia. Curr Opin Cell Biol. 18:18-25 Feldmann, H., H. D. Klenk, and A. Sanchez. 1993. Molecular biology and evolution of filoviruses. Arch Virol Suppl. 7:81-100 Feldmann, H., E. Mühlberger, A. Randolf, C. Will, M. P. Kiley, A. Sanchez, and H.-D.
  51. Mühlberger. 2009. The marburg virus 3' noncoding region structurally and functionally differs from that of ebola virus. J Virol. 83:4508-4519.
  52. Becker, S., S. Huppertz, H. D. Klenk and H. Feldmann. 1994. The nucleoprotein of Marburg virus is phosphorylated. J Gen Virol. 75:809-818.
  53. Suzuki. 1981. The polypeptides of mumps virus and their synthesis in infected chick embryo cells. Virology. 112:119-130 Negredo, A., G. Palacios, S. Vázquez-Morón, F. González, H. Dopazo, F. Molero, J.
  54. Shimojima, M., A. Takada, H. Ebihara, G. Neumann, K. Fujioka, T. Irimura, S. Jones, H. Feldmann, and Y. Kawaoka. 2006. Tyro3 family-mediated cell entry of Ebola and Marburg viruses. J Virol. 80:10109-10116 Smith, G. W., and L. E. Hightower. 1981. Identification of the P proteins and other disulfide-linked and phosphorylated proteins of Newcastle disease virus. J Virol.
  55. Viral haemorrhagic fever in southern Sudan and northern Zaire. Preliminary studies on the aetiological agent. Lancet. 1:571-573 Carette, J. E., M. Raaben, A. C. Wong, A. S. Herbert, G. Obernosterer, N. Mulherkar, A. I. Kuehne, P. J. Kranzusch, A. M. Griffin, G. Ruthel, P. Dal Cin, J. M. Dye, S. P.
  56. Bavari. 2005. Virus-like particles exhibit potential as a pan-filovirus vaccine for both Ebola and Marburg viral infections. Vaccine. 23:3033-3042 Takada, A., K. Fujioka, M. Tsuiji, A. Morikawa, N. Higashi, H. Ebihara, D. Kobasa, H.
  57. M., M. A. Mayo, J. Maniloff, U. Desselberger, and L. A. Ball: Virus Taxonomy - Eighth Report of the International Committee on Taxonomy of Viruses. 645-653 Formenty, P., C. Boesch, M. Wyers, C. Steiner, F. Donati, F. Dind, F. Walker, and B.
  58. 204:S927-933 Dolnik, O., L. Kolesnikova, L. Stevermann, and S. Becker. 2010. Tsg101 is recruited by a late domain of the nucleocapsid protein to support budding of Marburg virus-like particles. J Virol. 84:7847-7856 Dolnik, O., L. Kolesnikova, S. Welsch, T. Strecker, G. Schudt, and S. Becker. 2014. Interaction with Tsg101 is necessary for the efficient transport and release of nucleocapsids in marburg virus-infected cells. PLoS Pathog. 10:e1004463 World Health Organization. Ebola virus disease. Fact sheet No 103. Updated August 2015 http://www.who.int/mediacentre/factsheets/fs103/en/ Enterlein, S., K. M. Schmidt, M. Schümann, D. Conrad, V. Krähling, J. Olejnik, and E.
  59. 2010. Proportion of deaths and clinical features in Bundibugyo Ebola virus infection, Uganda. Emerg Infect Dis 16:1969-1972 World Health Organization. Marburg haemorrhagic fever. Fact sheet. November 2012 http://www.who.int/mediacentre/factsheets/fs_marburg/en/ Martinez, M. J., V. A. Volchkova, H. Raoul, N. Alazard-Dany, O. Reynard, and V. E.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten