Publikationsserver der Universitätsbibliothek Marburg

Titel:Psychobiological mechanisms underlying the stress-reducing effects of music listening in daily life
Autor:Linnemann, Alexandra
Weitere Beteiligte: Nater, Urs M. (Prof. Dr.)
Veröffentlicht:2016
URI:https://archiv.ub.uni-marburg.de/diss/z2016/0495
URN: urn:nbn:de:hebis:04-z2016-04956
DOI: https://doi.org/10.17192/z2016.0495
DDC: Psychologie
Titel (trans.):Stressreduzierende Effekte von Musikhören im Alltag - zugrundeliegende psychobiologische Mechanismen
Publikationsdatum:2016-09-06
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
HHNA, alpha-amylase, stress, Musikhören, psychobiologische Mechanismen, Stress, daily life, Alltag, Alpha-Amylase, cortisol, ANS, Cortisol, music listening

Summary:
Stress is a threat to health with an increasing number of reports indicating that stress is ubiquitous in daily life. Therefore, interventions targeting stress in daily life are essential. Music listening might be one of them, as people have always been using music intuitively for health-beneficial effects. Although evidence from lab-based experimental studies suggests that music listening is, indeed, associated with health-beneficial effects, yet we do not know how effective music is and which underlying mechanisms are responsible for its beneficial effects. Particularly as music listening is a popular activity of daily life, there lies a great potential in revealing mechanisms underlying the positive impact of music listening on stress reduction directly in daily life. This thesis aims at investigating the stress-reducing effect of music listening in daily life. Thus, it is examined what is stress-reducing about music listening in daily life and which mechanisms are underlying these effects. A framework which suggests health-beneficial effects of music listening being mediated by a reduction in psychobiological stress (as measured by subjective stress levels, secretion of salivary cortisol and activity of alpha-amylase) is postulated. This thesis comprises six successive papers. The first paper is methodological in nature and provides a protocol for assessing the effects of music listening on psychobiological stress in daily life. In the second paper, mechanisms underlying the stress-reducing effect of music listening are investigated with regard to characteristics of the music (e.g., valence and arousal of the music) and characteristics of the situation (e.g., appraisal of situation as stressful, reasons for music listening). In the third paper, it is tested whether the stress-reducing effect of music listening varies depending on social characteristics of the listening situation (here: presence of others while listening to music). The aim of the fourth paper is to further investigate the role of social characteristics of the listening situation by investigating the stress-reducing effect of music listening in a dyadic context examining couples in their daily life. The fifth paper investigates a clinical sample, namely female patients with fibromyalgia syndrome – a chronic pain condition. It is tested whether pain-reducing effects of music listening are mediated by a reduction in psychobiological stress. In a follow-up analysis, paper six examines whether characteristics of the person account for inter-individual differences in the ability to benefit from music listening for stress reduction purposes. All studies consistently indicate that music listening, per se, has limited or even no stress-reducing effects. Rather, characteristics of the music (here: perceived arousal of the music), characteristics of the situation (here: reasons for music listening, presence of others, interaction with romantic partner, appraisal of situation as stressful), and characteristics of the person (here: habitual experience of music-induced chills) contribute to the nature of the stress-reducing effect of music listening. In a patient population, the health-beneficial effect of music listening is not mediated by a reduction in psychobiological stress. However, in this patient population characteristics of the person account for inter-individual differences in the stress-reducing effect of music listening. Concerning underlying mechanisms, music listening differentially affects stress-sensitive systems in the body. All studies provide evidence that music listening in daily life is associated with stress-reducing effects depending on characteristics of the music, the situation, and the person. Underlying mechanisms are closely linked to music’s ability to modulate activity in the hypothalamic-pituitary-adrenal (HPA) axis and the autonomic nervous system (ANS). Interestingly, music listening differentially affects these stress-sensitive systems in the body. It seems that different stages of music processing in the brain affect different stress-sensitive systems in the body. Thus, characteristics of the music affect ANS activity, whereas characteristics of the situation influence HPA axis activity. Furthermore, a complex interplay among characteristics of the music, the situation, and the person are observed when examining health-beneficial effects of music listening. Consequently, a one-size-fits-all approach is not favorable when implementing music for stress reduction purposes. Furthermore, a multi-dimensional approach assessing underlying mechanisms is warranted as music listening differentially affects HPA axis and ANS activity.

Bibliographie / References

  1. Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161-1178.
  2. Kunkel, M., Pramstaller, C., Grant, P., & von Georgi, R. (2008). A construct-psychological approach to the measurement of chill-sensations. Samples, 7.
  3. Salimpoor, V. N., Benovoy, M., Larcher, K., Dagher, A., & Zatorre, R. J. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 14(2).
  4. Juslin, P. N., Liljeström, S., Västfjäll, D., Barradas, G., & Silva, A. (2008). An experience sampling study of emotional reactions to music: Listener, music, and situation. Emotion, 8(5), 668-683.
  5. Krumhansl, C. L. (1997). An exploratory study of musical emotions and psychophysiology. Canadian Journal of Experimental Psychology, 51(4), 336-353.
  6. Craig, D. G. (2005). An Exploratory Study of Physiological Changes during “Chills” Induced by Music. Musicae Scientiae, 9(2), 273-287.
  7. Singer, J. D., & Willett, J. B. (2003). Applied Longitudinal Data Analysis:Modeling Change and Event Occurrence: Modeling Change and Event Occurrence: Oxford University Press, USA.
  8. Nater, U. M., Skoluda, N., & Strahler, J. (2013). Biomarkers of stress in behavioural medicine. Current Opinion in Psychiatry, 26(5), 440-445.
  9. Weissbecker, I., Floyd, A., Dedert, E., Salmon, P., & Sephton, S. (2006). Childhood trauma and diurnal cortisol disruption in fibromyalgia syndrome. Psychoneuroendocrinology, 31(3), 312-324.
  10. Grewe, O., Katzur, B., Kopiez, R., & Altenmüller, E. (2011). Chills in different sensory domains: Frisson elicited by acoustical, visual, tactile and gustatory stimuli. Psychology of Music, 39(2), 220-239.
  11. Preacher, K. J., Curran, P. J., & Bauer, D. J. (2006). Computational tools for probing interactions in multiple linear regression, multilevel modeling, and latent curve analysis. Journal of Educational and Behavioral Statistics, 31(4), 437-448.
  12. Nater, U. M., Rohleder, N., Schlotz, W., Ehlert, U., & Kirschbaum, C. (2007). Determinants of the diurnal course of salivary alpha-amylase. Psychoneuroendocrinology, 32(4), 392- 401.
  13. Champaneri, S., Xu, X., Carnethon, M. R., Bertoni, A. G., Seeman, T., DeSantis, A. S., . . . Golden, S. H. (2013). Diurnal salivary cortisol is associated with body mass index and waist circumference: the Multiethnic Study of Atherosclerosis. Obesity, 21(1), 20047.
  14. Shiffman, S., Stone, A. A., & Hufford, M. R. (2008). Ecological Momentary Assessment. Annual Review of Clinical Psychology, 4(1), 1-32.
  15. Onieva-Zafra, M. D., Castro-Sánchez, A. M., Matarán-Peñarrocha, G. A., & Moreno-Lorenzo, C. (2013). Effect of Music as Nursing Intervention for People Diagnosed with Fibromyalgia. Pain Management Nursing, 14(2), e39-e46.
  16. Randall, W. M., Rickard, N. S., & Vella-Brodrick, D. A. (2014). Emotional outcomes of regulation strategies used during personal music listening: A mobile experience sampling study. Musicae Scientiae, 18(3), 275-291.
  17. Thoma, M. V., Ryf, S., Mohiyeddini, C., Ehlert, U., & Nater, U. M. (2011). Emotion regulation through listening to music in everyday situations. Cognition & Emotion, 26(3), 550- 560.
  18. Skanland, M. S. (2013). Everyday music listening and affect regulation: the role of MP3 players. International Journal of Qualitative Studies on Health and Well-being, 8(20595), 20595.
  19. Wolfe, F., Clauw, D. J., Fitzcharles, M. A., Goldenberg, D. L., Häuser, W., Katz, R. S., . . . Winfield, J. B. (2011). Fibromyalgia criteria and severity scales for clinical and epidemiological studies: a modification of the ACR Preliminary Diagnostic Criteria for Fibromyalgia. Journal of Rheumatology, 38(6), 1113-1122.
  20. Lange, M., Karpinski, N., Krohn-Grimberghe, B., & Petermann, F. (2010). Geschlechtsunterschiede beim Fibromyalgiesyndrom. Der Schmerz, 24(3), 262-266.
  21. Colver, M. C., & El-Alayli, A. (2015). Getting aesthetic chills from music: The connection between openness to experience and frisson. Psychology of Music.
  22. Raudenbush, S. W., Bryk, A. S., & Congdon, R. (2004). HLM 6 for Windows [Computer software]. Skokie, IL: Scientific Software International, Inc.
  23. Blood, A. J., & Zatorre, R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences of the United States of America, 98(20), 11818-11823.
  24. Grewe, O., Nagel, F., Kopiez, R., & Altenmüller, E. (2007). Listening To Music As A ReCreative Process: Physiological, Psychological, And Psychoacoustical Correlates Of Chills And Strong Emotions. Music Perception, 24(3), 297-314.
  25. Tak, L. M., Cleare, A. J., Ormel, J., Manoharan, A., Kok, I. C., Wessely, S., & Rosmalen, J. G. (2011). Meta-analysis and meta-regression of hypothalamic-pituitary-adrenal axis activity in functional somatic disorders. Biological Psychology, 87(2), 183-194.
  26. Picard, L. M., Bartel, L. R., Gordon, A. S., Cepo, D., Wu, Q., & Pink, L. R. (2014). Music as a sleep aid in fibromyalgia. Pain Research & Management 19(2), 97-101.
  27. DeNora, T. (1999). Music as a technology of the self. Poetics, 27(1), 31-56.
  28. Linnemann, A., Ditzen, B., Strahler, J., Doerr, J. M., & Nater, U. M. (2015). Music listening as a means of stress reduction in daily life. Psychoneuroendocrinology, 60(0), 82-90.
  29. Garza-Villarreal, E. A., Wilson, A. D., Vase, L., Brattico, E., Barrios, F. A., Jensen, T. S., . . . Vuust, P. (2014). Music reduces pain and increases functional mobility in fibromyalgia. Frontiers in Psychology, 5, 90.
  30. Garza-Villarreal, E. A., Jiang, Z., Vuust, P., Alcauter, S., Vase, L., Pasaye, E. H., . . . Barrios, F. A. (2015). Music reduces pain and increases resting state fMRI BOLD signal amplitude in the left angular gyrus in fibromyalgia patients. Frontiers in Psychology, 6(1051).
  31. Vorderer, P., & Schramm, H. (2004). Musik nach Maß. Situative und personenspezifische Unterschiede bei der Selektion von Musik. Musikpsychologie, 17, 89-108.
  32. Linnemann, A., Thoma, M. V., & Nater, U. M. (2015). Offenheit für Erfahrungen als Indikator für Offenohrigkeit im jungen Erwachsenenalter? Individuelle Unterschiede und Stabilität der Musikpräferenz. Musikpsychologie, 24, 198-222.
  33. Kreutz, G., Murcia, C. Q., & Bongard, S. (2012). Psychoneuroendocrine Research on Music and Health: An Overview. In R. A. R. MacDonald, G. Kreutz & L. Mitchell (Hrsg.), Music, Health & Wellbeing (S. 457-476). Oxford: Oxford University Press.
  34. Hodges, D. A. (2011). Psychophysiological measures. In P. N. Juslin & J. Sloboda (Hrsg.), Handbook of music and emotion (S. 279-311). Oxford: Oxford University Press.
  35. Walker, E., Keegan, D., Gardner, G., Sullivan, M., Bernstein, D., & Katon, W. J. (1997). Psychosocial Factors in Fibromyalgia Compared With Rheumatoid Arthritis: II. Sexual, Physical, and Emotional Abuse and Neglect. Psychosomatic Medicine, 59(6), 572-577.
  36. Kirschbaum, C., & Hellhammer, D. H. (1994). Salivary cortisol in psychoneuroendocrine research: Recent developments and applications. Psychoneuroendocrinology, 19(4), 313-333.
  37. Nater, U. M., Krebs, M., & Ehlert, U. (2005). Sensation Seeking, Music Preference, and Psychophysiological Reactivity to Music. Musicae Scientiae, 9(2), 239-254.
  38. Nusbaum, E. C., & Silvia, P. J. (2011). Shivers and Timbres: Personality and the Experience of Chills From Music. Social Psychological and Personality Science, 2(2), 199-204.
  39. Chrousos, G. P. (2009). Stress and disorders of the stress system. Nature Reviews Endocrinology, 5(7), 374-381.
  40. Wolfe, F., Clauw, D. J., Fitzcharles, M.-A., Goldenberg, D. L., Katz, R. S., Mease, P., . . . Yunus, M. B. (2010). The American College of Rheumatology Preliminary Diagnostic Criteria for Fibromyalgia and Measurement of Symptom Severity. Arthritis Care & Research, 62(5), 600-610.
  41. Martinez-Lavin, M. (2002). The Autonomic Nervous System and Fibromyalgia. Journal of Musculoskeletal Pain, 10(1-2), 221-228.
  42. Grewe, O., Kopiez, R., & Altenmüller, E. (2009). The chill parameter: Goose bumps and shivers as promising measures in emotion research. Music Perception, 27(1), 61-74.
  43. Maruskin, L. A., Trash, T. M., & Ellior, A. J. (2012). The Chills as a Psychological Construct: Content Universe, Factor Structure, Affective Composition, Elicitors, Trait Antecedents, and Consequences. Journal of Personality and Social Psychology, 103(1), 135-157.
  44. Thoma, M. V., La Marca, R., Brönnimann, R., Finkel, L., Ehlert, U., & Nater, U. M. (2013). The Effect of Music on the Human Stress Response. PLoS One, 8(8), e70156.
  45. Guetin, S., Ginies, P., Siou, D. K., Picot, M. C., Pommie, C., Guldner, E., . . . Touchon, J. (2012). The effects of music intervention in the management of chronic pain: a singleblind, randomized, controlled trial. Clinical Journal of Pain, 28(4), 329-337.
  46. Linnemann, A., Kappert, M. B., Fischer, S., Doerr, J. M., Strahler, J., & Nater, U. M. (2015). The effects of music listening on pain and stress in the daily life of patients with fibromyalgia syndrome. Frontiers in Human Neuroscience, 9.
  47. Panksepp, J. (1995). The Emotional Sources of "Chills" Induced by Music. Music Perception: An Interdisciplinary Journal, 13(2), 171-207.
  48. Burckhardt, C. S., Clark, S. R., & Bennett, R. M. (1991). The fibromyalgia impact questionnaire: development and validation. Journal of Rheumatology, 18(5), 728-733.
  49. van Goethem, A., & Sloboda, J. (2011). The functions of music for affect regulation. Musicae Scientiae, 15(2), 208-228.
  50. Klinitzke, G., Romppel, M., Hauser, W., Brahler, E., & Glaesmer, H. (2012). [The German Version of the Childhood Trauma Questionnaire (CTQ): psychometric characteristics in a representative sample of the general population]. Psychotherapie Psychosomatik und Medizinische Psychologie, 62(2), 47-51.
  51. Chanda, M. L., & Levitin, D. J. (2013). The neurochemistry of music. Trends in Cognitive Science, 17(4), 179-193.
  52. Schäfer, T., Sedlmeier, P., Stadtler, C., & Huron, D. (2013). The psychological functions of music listening. Frontiers in Psychology, 4(511), 1-33.
  53. Thoma, M. V., & Nater, U. M. (2011). The Psychoneuroendocrinology of Music Effects in Health. In A. Costa & E. Villalba (Hrsg.), Horizons in Neuroscience Research (Band 6). Hauppauge, New York: Nova Science Publishers, Inc.
  54. Goldstein, A. (1980). Thrills in response to music and other stimuli. Physiological Psychology, 8(1), 126-129.
  55. North, A. C., Hargreaves, D., & Hargreaves, J. J. (2004). Uses of music in everyday life. Music Perception, 22(1), 41-77.
  56. Häuser, W., Schild, S., Kosseva, M., Hayo, S., von Wilmowski, H., Alten, R., . . . Glaesmer, H. (2010). Validierung der deutschen Version der regionalen Schmerzskala zur Diagnose des Fibromyalgiesyndroms. Der Schmerz, 24(3), 226-235.
  57. Elo, A. L., Leppanen, A., & Jahkola, A. (2003). Validity of a single-item measure of stress symptoms. Scandinavian Journal of Work, Environment & Health, 29(6), 444-451.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten