Publikationsserver der Universitätsbibliothek Marburg

Titel:Discovery and insight into the unique tailoring of the paeninodin lasso peptide from paenibacillus dendritiformis C454
Autor:Zhu, Shaozhou
Weitere Beteiligte: Marahiel, Mohamed A. (Prof. Dr.)
Veröffentlicht:2016
URI:https://archiv.ub.uni-marburg.de/diss/z2016/0481
URN: urn:nbn:de:hebis:04-z2016-04813
DOI: https://doi.org/10.17192/z2016.0481
DDC: Chemie
Titel (trans.):Entdeckung und Mechanismen der einyigartigen Modifikation des Lassopeptides Paeninodin aus Paenibacillus dendritiformis C454
Publikationsdatum:2016-08-24
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Paeninodin, Paeninodin, modification, Phosphorylierung, Lassopeptid, Biosynthese, lasso peptide, Modifikation, Bacillus, Bio-Produkt

Summary:
Lasso peptides, such as microcin J25, BI-32169, lariatin and capistruin, are a structurally unique and pharmacologically relevant class of RiPPs (ribosomally synthesized and posttranslationally modified peptides) natural products. Compared with other intensively modified RiPPs, such as lantibiotics, lasso peptides only have a unique knotted topology in which the tail of the peptide is threaded through an N-terminal macrolactam ring and trapped by steric hindrance of bulky side chains stabilizing the entropically disfavored lasso structure. Except for this unusual knot structure, further posttranslational modifications on lasso peptides are very rare. Besides, lasso peptides have so far only been isolated from Proteo- and Actinobacterial sources. In this thesis, the lasso gene cluster from the Firmicute P. dendritiformis was investigated. Paeninodin, a new lasso peptide with an unusual phosphorylation at the side chain of the last serine was discovered by expression of this cluster in a heterologous host. The Paeninodin lasso peptide was isolated from a culture pellet. Mass spectrometric, carboxypeptidase Y assays and IM-MS studies proved paeninodin to be a new representative of lasso peptides. Morever, the biosynthetic pathway of modified lasso peptide was delineated through in vivo and in vitro studies. The kinase turned out to be a novel lasso peptide precursor kinase with wide substrate specificity. These results provide a way for the generation of novel lasso peptide analogs and, thereby, would facilitate lasso peptide engineering in the future.

Bibliographie / References

  1. 129. Zhu, S., Hegemann, J. D., Fage, C. D., Zimmermann, M., Xie, X., Linne, U., and Marahiel, M. A. (2016) Insights into the Unique Phosphorylation of the Lasso Peptide Paeninodin, Journal of Biological Chemistry .doi: 10.1074/jbc.M116.72210
  2. 78. Donia, M. S., Ravel, J., and Schmidt, E. W. (2008) A global assembly line for cyanobactins, Nat Chem Biol 4, 341-343.
  3. 79. Williams, A. B., and Jacobs, R. S. (1993) A marine natural product, patellamide D, reverses multidrug resistance in a human leukemic cell line, Cancer Letters 71, 97-102.
  4. 42. Kersten, R. D., Yang, Y.-L., Xu, Y., Cimermancic, P., Nam, S.-J., Fenical, W., Fischbach, M. A., Moore, B. S., and Dorrestein, P. C. (2011) A mass spectrometry-guided genome mining approach for natural product peptidogenomics, Nat Chem Biol 7, 794-802.
  5. 28. Ling, L. L., Schneider, T., Peoples, A. J., Spoering, A. L., Engels, I., Conlon, B. P., Mueller, A., Schaberle, T. F., Hughes, D. E., Epstein, S., Jones, M., Lazarides, L., Steadman, V. A., Cohen, D. R., Felix, C. R., Fetterman, K. A., Millett, W. P., Nitti, A. G., Zullo, A. M., Chen, C., and Lewis, K. (2015) A new antibiotic kills pathogens without detectable resistance, Nature 517, 455-459.
  6. 16. Arias , C. A., and Murray , B. E. (2009) Antibiotic-Resistant Bugs in the 21st Century - A Clinical Super-Challenge, New England Journal of Medicine 360, 439-443.
  7. 14. Martínez, J. L. (2008) Antibiotics and Antibiotic Resistance Genes in Natural Environments, Science 321, 365-367.
  8. 53. Delves-Broughton, J., Blackburn, P., Evans, R. J., and Hugenholtz, J. Applications of the bacteriocin, nisin, Antonie van Leeuwenhoek 69, 193-202.
  9. 128. Burkhart, B. J., Hudson, G. A., Dunbar, K. L., and Mitchell, D. A. (2015) A prevalent peptide-binding domain guides ribosomal natural product biosynthesis, Nat Chem Biol 11, 564-570.
  10. 26. Fischbach, M. A., and Walsh, C. T. (2006) Assembly-Line Enzymology for Polyketide and Nonribosomal Peptide Antibiotics:  Logic, Machinery, and Mechanisms, Chemical Reviews 106, 3468-3496.
  11. 35. Giessen, T. W., von Tesmar, A. M., and Marahiel, M. A. (2013) A tRNA-Dependent TwoEnzyme Pathway for the Generation of Singly and Doubly Methylated Ditryptophan 2,5- Diketopiperazines, Biochemistry 52, 4274-4283.
  12. 95. Stein, T. (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions, Molecular Microbiology 56, 845-857.
  13. 61. Bassler, B. L., and Losick, R. (2006) Bacterially Speaking, Cell 125, 237-246.
  14. 51. Chatterjee, C., Paul, M., Xie, L., and van der Donk, W. A. (2005) Biosynthesis and Mode of Action of Lantibiotics, Chemical Reviews 105, 633-684.
  15. 17. Finking, R., and Marahiel, M. A. (2004) Biosynthesis of Nonribosomal Peptides, Annual Review of Microbiology 58, 453-488.
  16. 111. Hegemann, J. D., Zimmermann, M., Xie, X., and Marahiel, M. A. (2013) Caulosegnins I-III: A Highly Diverse Group of Lasso Peptides Derived from a Single Biosynthetic Gene Cluster, Journal of the American Chemical Society 135, 210-222.
  17. 116. Zimmermann, M., Hegemann, J. D., Xie, X., and Marahiel, M. A. (2014) Characterization of caulonodin lasso peptides revealed unprecedented N-terminal residues and a precursor motif essential for peptide maturation, Chemical Science 5, 4032-4043.
  18. 108. Li, Y., Ducasse, R., Zirah, S., Blond, A., Goulard, C., Lescop, E., Giraud, C., Hartke, A., Guittet, E., Pernodet, J.-L., and Rebuffat, S. (2015) Characterization of Sviceucin from Streptomyces Provides Insight into Enzyme Exchangeability and Disulfide Bond Formation in Lasso Peptides, ACS Chemical Biology 10, 2641-2649.
  19. 107. Elsayed, S. S., Trusch, F., Deng, H., Raab, A., Prokes, I., Busarakam, K., Asenjo, J. A., Andrews, B. A., van West, P., Bull, A. T., Goodfellow, M., Yi, Y., Ebel, R., Jaspars, M., and Rateb, M. E. (2015) Chaxapeptin, a Lasso Peptide from Extremotolerant Streptomyces leeuwenhoekii Strain C58 from the Hyperarid Atacama Desert, The Journal of Organic Chemistry 80, 10252-10260.
  20. 54. de Ruyter, P. G., Kuipers, O. P., and de Vos, W. M. (1996) Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin, Applied and Environmental Microbiology 62, 3662-3667.
  21. 77. Sivonen, K., Leikoski, N., Fewer, D. P., and Jokela, J. (2010) Cyanobactins-ribosomal cyclic peptides produced by cyanobacteria, Applied Microbiology and Biotechnology 86, 1213-1225.
  22. 33. Sauguet, L., Moutiez, M., Li, Y., Belin, P., Seguin, J., Le Du, M.-H., Thai, R., Masson, C., Fonvielle, M., Pernodet, J.-L., Charbonnier, J.-B., and Gondry, M. (2011) Cyclodipeptide synthases, a family of class-I aminoacyl-tRNA synthetase-like enzymes involved in nonribosomal peptide synthesis, Nucleic Acids Research. 39(10):4475-89
  23. 31. Gondry, M., Sauguet, L., Belin, P., Thai, R., Amouroux, R., Tellier, C., Tuphile, K., Jacquet, M., Braud, S., Courcon, M., Masson, C., Dubois, S., Lautru, S., Lecoq, A., Hashimoto, S.-i., Genet, R., and Pernodet, J.-L. (2009) Cyclodipeptide synthases are a family of tRNA-dependent peptide bond-forming enzymes, Nat Chem Biol 5, 414-420.
  24. 139. Alippi, A. M., López, A. C., and Aguilar, O. M. (2002) Differentiation of Paenibacillus larvae subsp. larvae, the Cause of American Foulbrood of Honeybees, by Using PCR and Restriction Fragment Analysis of Genes Encoding 16S rRNA, Applied and Environmental Microbiology 68, 3655-3660.
  25. 113. Maksimov, M. O., and Link, A. J. (2013) Discovery and Characterization of an Isopeptidase That Linearizes Lasso Peptides, Journal of the American Chemical Society 135, 12038-12047.
  26. 50. Knerr, P. J., and Donk, W. A. v. d. (2012) Discovery, Biosynthesis, and Engineering of Lantipeptides, Annual Review of Biochemistry 81, 479-505.
  27. 122. Yan, K.-P., Li, Y., Zirah, S., Goulard, C., Knappe, T. A., Marahiel, M. A., and Rebuffat, S. (2012) Dissecting the Maturation Steps of the Lasso Peptide Microcin J25 in vitro, ChemBioChem 13, 1046-1052.
  28. 11. Knight, V., Sanglier, J.-J., DiTullio, D., Braccili, S., Bonner, P., Waters, J., Hughes, D., and Zhang, L. (2003) Diversifying microbial natural products for drug discovery, Applied Microbiology and Biotechnology 62, 446-458.
  29. 118. Maksimov, M. O., Koos, J. D., Zong, C., Lisko, B., and Link, A. J. (2015) Elucidating the Specificity Determinants of the AtxE2 Lasso Peptide Isopeptidase, Journal of Biological Chemistry 290, 30806-30812.
  30. 59. Jones, A. M., and Helm, J. M. (2012) Emerging Treatments in Cystic Fibrosis, Drugs 69, 1903-1910.
  31. 44. Oman, T. J., and van der Donk, W. A. (2010) Follow the leader: the use of leader peptides to guide natural product biosynthesis, Nat Chem Biol 6, 9-18.
  32. 66. Hughes, R. A., and Moody, C. J. (2007) From Amino Acids to HeteroaromaticsThiopeptide Antibiotics, Nature's Heterocyclic Peptides, Angewandte Chemie International Edition 46, 7930-7954.
  33. 72. Bowers, A. A., Walsh, C. T., and Acker, M. G. (2010) Genetic Interception and Structural Characterization of Thiopeptide Cyclization Precursors from Bacillus cereus, Journal of the American Chemical Society 132, 12182-12184.
  34. 38. Kolter, R., and Moreno, F. (1992) Genetics of Ribosomally Synthesized Peptide Antibiotics, Annual Review of Microbiology 46, 141-161.
  35. 73. Leikoski, N., Liu, L., Jokela, J., Wahlsten, M., Gugger, M., Calteau, A., Permi, P., Kerfeld, Cheryl A., Sivonen, K., and Fewer, David P. (2013) Genome Mining Expands the Chemical Diversity of the Cyanobactin Family to Include Highly Modified Linear Peptides, Chemistry & Biology 20, 1033-1043.
  36. 41. Velásquez, J. E., and van der Donk, W. A. (2011) Genome mining for ribosomally synthesized natural products, Current Opinion in Chemical Biology 15, 11-21.
  37. 140. Sirota-Madi, A., Olender, T., Helman, Y., Brainis, I., Finkelshtein, A., Roth, D., Hagai, E., Leshkowitz, D., Brodsky, L., Galatenko, V., Nikolaev, V., Gutnick, D. L., Lancet, D., and Ben-Jacob, E. (2012) Genome Sequence of the Pattern-Forming Social Bacterium Paenibacillus dendritiformis C454 Chiral Morphotype, Journal of Bacteriology 194, 2127-2128.
  38. 15. Demain, A. L. (1974) HOW DO ANTIBIOTIC-PRODUCING MICROORGANISMS AVOID SUICIDE?*, Annals of the New York Academy of Sciences 235, 601-612.
  39. 138. Poncet, S., Mijakovic, I., Nessler, S., Gueguen-Chaignon, V., Chaptal, V., Galinier, A., Boël, G., Mazé, A., and Deutscher, J. (2004) HPr kinase/phosphorylase, a Walker motif Acontaining bifunctional sensor enzyme controlling catabolite repression in Gram-positive bacteria, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1697, 123-135.
  40. 137. Nessler, S., Fieulaine, S., Poncet, S., Galinier, A., Deutscher, J., and Janin, J. (2003) HPr Kinase/Phosphorylase, the Sensor Enzyme of Catabolite Repression in Gram-Positive Bacteria: Structural Aspects of the Enzyme and the Complex with Its Protein Substrate, Journal of Bacteriology 185, 4003-4010.
  41. 45. Crone, W. J. K., Leeper, F. J., and Truman, A. W. (2012) Identification and characterisation of the gene cluster for the anti-MRSA antibiotic bottromycin: expanding the biosynthetic diversity of ribosomal peptides, Chemical Science 3, 3516-3521.
  42. 43. Begley, M., Cotter, P. D., Hill, C., and Ross, R. P. (2009) Identification of a Novel TwoPeptide Lantibiotic, Lichenicidin, following Rational Genome Mining for LanM Proteins, Applied and Environmental Microbiology 75, 5451-5460.
  43. 57. Stone, D. K., Xie, X. S., and Racker, E. (1984) Inhibition of clathrin-coated vesicle acidification by duramycin, Journal of Biological Chemistry 259, 2701-2703.
  44. 134. Knappe, T. A., Linne, U., Robbel, L., and Marahiel, M. A. (2009) Insights into the Biosynthesis and Stability of the Lasso Peptide Capistruin, Chemistry & Biology 16, 1290-1298.
  45. 52. Yu, Y., Zhang, Q., and van der Donk, W. A. (2013) Insights into the evolution of lanthipeptide biosynthesis, Protein Science 22, 1478-1489.
  46. 36. Giessen, Tobias W., von Tesmar, Alexander M., and Marahiel, Mohamed A. (2013) Insights into the Generation of Structural Diversity in a tRNA-Dependent Pathway for Highly Modified Bioactive Cyclic Dipeptides, Chemistry & Biology 20, 828-838.
  47. 56. Navarro, J., Chabot, J., Sherrill, K., Aneja, R., Zahler, S. A., and Racker, E. (1985) Interaction of duramycin with artificial and natural membranes, Biochemistry 24, 4645- 4650.
  48. 119. Knappe, T. A., Manzenrieder, F., Mas-Moruno, C., Linne, U., Sasse, F., Kessler, H., Xie, X., and Marahiel, M. A. (2011) Introducing Lasso Peptides as Molecular Scaffolds for Drug Design: Engineering of an Integrin Antagonist, Angewandte Chemie International Edition 50, 8714-8717.
  49. 142. Muller, S., Garcia-Gonzalez, E., Genersch, E., and Sussmuth, R. D. (2015) Involvement of secondary metabolites in the pathogenesis of the American foulbrood of honey bees caused by Paenibacillus larvae, Natural Product Reports 32, 765-778.
  50. 133. Jeanne Dit Fouque, K., Afonso, C., Zirah, S., Hegemann, J. D., Zimmermann, M., Marahiel, M. A., Rebuffat, S., and Lavanant, H. (2015) Ion Mobility-Mass Spectrometry of Lasso Peptides: Signature of a Rotaxane Topology, Analytical Chemistry 87, 1166-1172.
  51. 127. Knappe, T. A., Linne, U., Zirah, S., Rebuffat, S., Xie, X., and Marahiel, M. A. (2008) Isolation and Structural Characterization of Capistruin, a Lasso Peptide Predicted from the Genome Sequence of Burkholderia thailandensis E264, Journal of the American Chemical Society 130, 11446-11454.
  52. 49. Willey, J. M., and van der Donk, W. A. (2007) Lantibiotics: Peptides of Diverse Structure and Function, Annual Review of Microbiology 61, 477-501.
  53. 104. Gavrish, E., Sit, Clarissa S., Cao, S., Kandror, O., Spoering, A., Peoples, A., Ling, L., Fetterman, A., Hughes, D., Bissell, A., Torrey, H., Akopian, T., Mueller, A., Epstein, S., Goldberg, A., Clardy, J., and Lewis, K. (2014) Lassomycin, a Ribosomally Synthesized Cyclic Peptide, Kills Mycobacterium tuberculosis by Targeting the ATP-Dependent Protease ClpC1P1P2, Chemistry & Biology 21, 509-518.
  54. 97. Hegemann, J. D., Zimmermann, M., Xie, X., and Marahiel, M. A. (2015) Lasso Peptides: An Intriguing Class of Bacterial Natural Products, Accounts of Chemical Research 48, 1909-1919.
  55. 112. Hegemann, J. D., Zimmermann, M., Zhu, S., Klug, D., and Marahiel, M. A. (2013) Lasso peptides from proteobacteria: Genome mining employing heterologous expression and mass spectrometry, Peptide Science 100, 527-542.
  56. 98. Maksimov, M. O., Pan, S. J., and James Link, A. (2012) Lasso peptides: structure, function, biosynthesis, and engineering, Natural Product Reports 29, 996-1006.
  57. 74. Donia, Mohamed S., and Schmidt, Eric W. (2011) Linking Chemistry and Genetics in the Growing Cyanobactin Natural Products Family, Chemistry & Biology 18, 508-519.
  58. 75. McIntosh, J. A., and Schmidt, E. W. (2010) Marine Molecular Machines: Heterocyclization in Cyanobactin Biosynthesis, ChemBioChem 11, 1413-1421.
  59. 121. Clarke, D. J., and Campopiano, D. J. (2007) Maturation of McjA precursor peptide into active microcin MccJ25, Organic & Biomolecular Chemistry 5, 2564-2566.
  60. 130. Bailey, T. L., Williams, N., Misleh, C., and Li, W. W. (2006) MEME: discovering and analyzing DNA and protein sequence motifs, Nucleic Acids Research 34, W369-W373.
  61. 86. Freeman, M. F., Gurgui, C., Helf, M. J., Morinaka, B. I., Uria, A. R., Oldham, N. J., Sahl, H.- G., Matsunaga, S., and Piel, J. (2012) Metagenome Mining Reveals Polytheonamides as Posttranslationally Modified Ribosomal Peptides, Science 338, 387-390.
  62. 125. Rosengren, K. J., Clark, R. J., Daly, N. L., Göransson, U., Jones, A., and Craik, D. J. (2003) Microcin J25 Has a Threaded Sidechain-to-Backbone Ring Structure and Not a Head-toTail Cyclized Backbone, Journal of the American Chemical Society 125, 12464- 12474.
  63. 58. Märki, F., Hänni, E., Fredenhagen, A., and van Oostrum, J. (1991) Mode of action of the lanthionine-containing peptide antibiotics duramycin, duramycin B and C, and 122 cinnamycin as indirect inhibitors of phospholipase A2, Biochemical Pharmacology 42, 2027-2035.
  64. 106. Inokoshi, J., Matsuhama, M., Miyake, M., Ikeda, H., and Tomoda, H. (2012) Molecular cloning of the gene cluster for lariatin biosynthesis of Rhodococcus jostii K01-B0171, Applied Microbiology and Biotechnology 95, 451-460.
  65. 25. Sieber, S. A., and Marahiel, M. A. (2005) Molecular Mechanisms Underlying Nonribosomal Peptide Synthesis:  Approaches to New Antibiotics, Chemical Reviews 105, 715-738.
  66. 123. Cheung, W. L., Pan, S. J., and Link, A. J. (2010) Much of the Microcin J25 Leader Peptide is Dispensable, Journal of the American Chemical Society 132, 2514-2515.
  67. 29. von Nussbaum, F., and Süssmuth, R. D. (2015) Multiple Attack on Bacteria by the New Antibiotic Teixobactin, Angewandte Chemie International Edition 54, 6684-6686.
  68. 9. Hertweck, C. (2015) Natural Products as Source of Therapeutics against Parasitic Diseases, Angewandte Chemie International Edition 54, 14622-14624.
  69. 6. Newman, D. J., and Cragg, G. M. (2007) Natural Products as Sources of New Drugs over the Last 25 Years, Journal of Natural Products 70, 461-477.
  70. 2. Newman, D. J., Cragg, G. M., and Snader, K. M. (2003) Natural Products as Sources of New Drugs over the Period 1981−2002, Journal of Natural Products 66, 1022-1037.
  71. 4. Harvey, A. L. (2008) Natural products in drug discovery, Drug Discovery Today13, 894-901.
  72. 1. Cragg, G. M., Newman, D. J., and Snader, K. M. (1997) Natural Products in Drug Discovery and Development, Journal of Natural Products 60, 52-60.
  73. 55. Stevens, K. A., Sheldon, B. W., Klapes, N. A., and Klaenhammer, T. R. (1991) Nisin treatment for inactivation of Salmonella species and other gram-negative bacteria, Applied and Environmental Microbiology 57, 3613-3615.
  74. 109. Xie, X., and Marahiel, M. A. (2012) NMR as an Effective Tool for the Structure Determination of Lasso Peptides, ChemBioChem 13, 621-625.
  75. 18. Schwarzer, D., Finking, R., and Marahiel, M. A. (2003) Nonribosomal peptides: from genes to products, Natural Product Reports 20, 275-287.
  76. 23. Velkov, T., and Lawen, A. (2003) Non-ribosomal peptide synthetases as technological platforms for the synthesis of highly modified peptide bioeffectors - Cyclosporin synthetase as a complex example, In Biotechnology Annual Review, pp 151-197, Elsevier.
  77. 141. Timmusk, S., Grantcharova, N., and Wagner, E. G. H. (2005) Paenibacillus polymyxa Invades Plant Roots and Forms Biofilms, Applied and Environmental Microbiology 71, 7292-7300.
  78. 81. Schmidt, E. W., Nelson, J. T., Rasko, D. A., Sudek, S., Eisen, J. A., Haygood, M. G., and Ravel, J. (2005) Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella, Proceedings of the National Academy of Sciences of the United States of America 102, 7315-7320.
  79. 8. Winkle, W. V., and Herwick, R. P. (1945) Penicillin-a review, Journal of the American Pharmaceutical Association 34, 97-109.
  80. 12. Demain, L. A. Pharmaceutically active secondary metabolites of microorganisms, Applied Microbiology and Biotechnology 52, 455-463.
  81. 96. Allenby, N. E. E., Watts, C. A., Homuth, G., Prágai, Z., Wipat, A., Ward, A. C., and Harwood, C. R. (2006) Phosphate Starvation Induces the Sporulation Killing Factor of Bacillus subtilis, Journal of Bacteriology 188, 5299-5303.
  82. 132. Ficarro, S. B., McCleland, M. L., Stukenberg, P. T., Burke, D. J., Ross, M. M., Shabanowitz, J., Hunt, D. F., and White, F. M. (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae, Nat Biotech 20, 301-305.
  83. 60. Mohr, K. I., Volz, C., Jansen, R., Wray, V., Hoffmann, J., Bernecker, S., Wink, J., Gerth, K., Stadler, M., and Müller, R. (2015) Pinensins: The First Antifungal Lantibiotics, Angewandte Chemie International Edition 54, 11254-11258.
  84. 19. Walsh, C. T. (2004) Polyketide and Nonribosomal Peptide Antibiotics: Modularity and Versatility, Science 303, 1805-1810.
  85. 85. Hamada, T., Matsunaga, S., Yano, G., and Fusetani, N. (2005) Polytheonamides A and B, Highly Cytotoxic, Linear Polypeptides with Unprecedented Structural Features, from the Marine Sponge, Theonella swinhoei, Journal of the American Chemical Society 127, 110-118.
  86. 83. Hamada, T., Sugawara, T., Matsunaga, S., and Fusetani, N. (1994) Polytheonamides, unprecedented highly cytotoxic polypeptides, from the marine sponge theonella swinhoei : 1. Isolation and component amino acids, Tetrahedron Letters 35, 719-720.
  87. 82. Hamada, T., Sugawara, T., Matsunaga, S., and Fusetani, N. (1994) Polytheonamides, unprecedented highly cytotoxic polypeptides from the marine sponge Theonella swinhoei 2. Structure elucidation, Tetrahedron Letters 35, 609-612.
  88. 46. Gomez-Escribano, J. P., Song, L., Bibb, M. J., and Challis, G. L. (2012) Posttranslational [small beta]-methylation and macrolactamidination in the biosynthesis of the bottromycin complex of ribosomal peptide antibiotics, Chemical Science 3, 3522-3525.
  89. 117. Maksimov, M. O., Pelczer, I., and Link, A. J. (2012) Precursor-centric genome-mining approach for lasso peptide discovery, Proceedings of the National Academy of Sciences 109, 15223-15228.
  90. 99. Maksimov, M. O., and Link, A. J. (2013) Prospecting genomes for lasso peptides, Journal of Industrial Microbiology & Biotechnology 41, 333-344.
  91. 87. Flühe, L., and Marahiel, M. A. (2013) Radical S-adenosylmethionine enzyme catalyzed thioether bond formation in sactipeptide biosynthesis, Current Opinion in Chemical Biology 17, 605-612.
  92. 120. Hegemann, J. D., De Simone, M., Zimmermann, M., Knappe, T. A., Xie, X., Di Leva, F. S., Marinelli, L., Novellino, E., Zahler, S., Kessler, H., and Marahiel, M. A. (2014) Rational Improvement of the Affinity and Selectivity of Integrin Binding of Grafted Lasso Peptides, Journal of Medicinal Chemistry 57, 5829-5834.
  93. 71. Li, C., and Kelly, W. L. (2010) Recent advances in thiopeptide antibiotic biosynthesis, Natural Product Reports 27, 153-164.
  94. 110. Ogawa, T., Ochiai, K., Tanaka, T., Tsukuda, E., Chiba, S., Yano, K., Yamasaki, M., Yoshida, M., and Matsuda, Y. (1995) RES-701-2,-3 and-4, novel and selective endothelin type B receptor antagonists produced by Streptomyces sp. I. Taxonomy of producing strains, fermentation, isolation, and biochemical properties, The Journal of antibiotics 48, 1213-1220.
  95. 48. Yang, X., and van der Donk, W. A. (2013) Ribosomally Synthesized and PostTranslationally Modified Peptide Natural Products: New Insights into the Role of Leader and Core Peptides during Biosynthesis, Chemistry - A European Journal 19, 7662- 7677.
  96. 40. Arnison, P. G., Bibb, M. J., Bierbaum, G., Bowers, A. A., Bugni, T. S., Bulaj, G., Camarero, J. A., Campopiano, D. J., Challis, G. L., Clardy, J., Cotter, P. D., Craik, D. J., Dawson, M., Dittmann, E., Donadio, S., Dorrestein, P. C., Entian, K.-D., Fischbach, M. A., Garavelli, J. S., Goransson, U., Gruber, C. W., Haft, D. H., Hemscheidt, T. K., Hertweck, C., Hill, C., Horswill, A. R., Jaspars, M., Kelly, W. L., Klinman, J. P., Kuipers, O. P., Link, A. J., Liu, W., Marahiel, M. A., Mitchell, D. A., Moll, G. N., Moore, B. S., Muller, R., Nair, S. K., Nes, I. F., Norris, G. E., Olivera, B. M., Onaka, H., Patchett, M. L., Piel, J., Reaney, M. J. T., Rebuffat, S., Ross, R. P., Sahl, H.-G., Schmidt, E. W., Selsted, M. E., Severinov, K., Shen, B., Sivonen, K., Smith, L., Stein, T., Sussmuth, R. D., Tagg, J. R., Tang, G.-L., Truman, A. W., Vederas, J. C., Walsh, C. T., Walton, J. D., Wenzel, S. C., Willey, J. M., and van der Donk, W. A. (2013) Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature, Natural Product Reports 30, 108-160.
  97. 39. Papagianni, M. (2003) Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications, Biotechnology Advances 21, 465- 499.
  98. 69. Morris, R. P., Leeds, J. A., Naegeli, H. U., Oberer, L., Memmert, K., Weber, E., LaMarche, M. J., Parker, C. N., Burrer, N., Esterow, S., Hein, A. E., Schmitt, E. K., and Krastel, P. (2009) Ribosomally Synthesized Thiopeptide Antibiotics Targeting Elongation Factor Tu, Journal of the American Chemical Society 131, 5946-5955.
  99. 62. Kodani, S., Lodato, M. A., Durrant, M. C., Picart, F., and Willey, J. M. (2005) SapT, a lanthionine-containing peptide involved in aerial hyphae formation in the streptomycetes, Molecular Microbiology 58, 1368-1380.
  100. 103. Solbiati, J. O., Ciaccio, M., Farías, R. N., González-Pastor, J. E., Moreno, F., and Salomón, R. A. (1999) Sequence Analysis of the Four Plasmid Genes Required To Produce the Circular Peptide Antibiotic Microcin J25, Journal of Bacteriology 181, 2659-2662.
  101. 101. Ducasse, R., Yan, K.-P., Goulard, C., Blond, A., Li, Y., Lescop, E., Guittet, E., Rebuffat, S., and Zirah, S. (2012) Sequence Determinants Governing the Topology and Biological Activity of a Lasso Peptide, Microcin J25, ChemBioChem 13, 371-380.
  102. 80. Long, P. F., Dunlap, W. C., Battershill, C. N., and Jaspars, M. (2005) Shotgun Cloning and Heterologous Expression of the Patellamide Gene Cluster as a Strategy to Achieving Sustained Metabolite Production, ChemBioChem 6, 1760-1765.
  103. 131. Chiu, J., March, P. E., Lee, R., and Tillett, D. (2004) Site-directed, Ligase-Independent Mutagenesis (SLIM): a single-tube methodology approaching 100% efficiency in 4 h, Nucleic Acids Research 32, e174.
  104. 84. Hamada, T., Matsunaga, S., Fujiwara, M., Fujita, K., Hirota, H., Schmucki, R., Güntert, P., and Fusetani, N. (2010) Solution Structure of Polytheonamide B, a Highly Cytotoxic Nonribosomal Polypeptide from Marine Sponge, Journal of the American Chemical Society 132, 12941-12945.
  105. 5. South East Asian Quinine Artesunate Malaria Trial, g. Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial, The Lancet 366, 717-725.
  106. 22. Steller, S., Vollenbroich, D., Leenders, F., Stein, T., Conrad, B., Hofemeister, J., Jacques, P., Thonart, P., and Vater, J. (1999) Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3, Chemistry & Biology 6, 31-41.
  107. 65. Hou, Y., Tianero, M. D. B., Kwan, J. C., Wyche, T. P., Michel, C. R., Ellis, G. A., VazquezRivera, E., Braun, D. R., Rose, W. E., Schmidt, E. W., and Bugni, T. S. (2012) Structure and Biosynthesis of the Antibiotic Bottromycin D, Organic Letters 14, 5050-5053.
  108. 105. Metelev, M., Tietz, Jonathan I., Melby, Joel O., Blair, Patricia M., Zhu, L., Livnat, I., Severinov, K., and Mitchell, Douglas A. (2015) Structure, Bioactivity, and Resistance Mechanism of Streptomonomicin, an Unusual Lasso Peptide from an Understudied Halophilic Actinomycete, Chemistry & Biology 22, 241-250.
  109. 124. Choudhury, H. G., Tong, Z., Mathavan, I., Li, Y., Iwata, S., Zirah, S., Rebuffat, S., van Veen, H. W., and Beis, K. (2014) Structure of an antibacterial peptide ATP-binding cassette transporter in a novel outward occluded state, Proceedings of the National Academy of Sciences 111, 9145-9150.
  110. 93. Kawulka, K. E., Sprules, T., Diaper, C. M., Whittal, R. M., McKay, R. T., Mercier, P., Zuber, P., and Vederas, J. C. (2004) Structure of Subtilosin A, a Cyclic Antimicrobial Peptide from Bacillus subtilis with Unusual Sulfur to α -Carbon Cross-Links:  Formation and Reduction of α-Thio-α-Amino Acid Derivatives, Biochemistry 43, 3385-3395.
  111. 94. Kawulka, K., Sprules, T., McKay, R. T., Mercier, P., Diaper, C. M., Zuber, P., and Vederas, J. C. (2003) Structure of Subtilosin A, an Antimicrobial Peptide from Bacillus subtilis with Unusual Posttranslational Modifications Linking Cysteine Sulfurs to α -Carbons of Phenylalanine and Threonine, Journal of the American Chemical Society 125, 4726- 4727.
  112. 91. BABASAKI, K., TAKAO, T., SHIMONISHI, Y., and KURAHASHI, K. (1985) Subtilosin A, a New Antibiotic Peptide Produced by Bacillus subtilis 168: Isolation, Structural Analysis, and Biogenesis, Journal of Biochemistry 98, 585-603.
  113. 47. Huo, L., Rachid, S., Stadler, M., Wenzel, Silke C., and Müller, R. (2012) Synthetic Biotechnology to Study and Engineer Ribosomal Bottromycin Biosynthesis, Chemistry & Biology 19, 1278-1287.
  114. 102. Pavlova, O., Mukhopadhyay, J., Sineva, E., Ebright, R. H., and Severinov, K. (2008) Systematic Structure-Activity Analysis of Microcin J25, Journal of Biological Chemistry 283, 25589-25595.
  115. 27. Walsh, C. T., Chen, H., Keating, T. A., Hubbard, B. K., Losey, H. C., Luo, L., Marshall, C. G., Miller, D. A., and Patel, H. M. (2001) Tailoring enzymes that modify nonribosomal peptides during and after chain elongation on NRPS assembly lines, Current Opinion in Chemical Biology 5, 525-534.
  116. 34. Lautru, S., Gondry, M., Genet, R., and Pernodet, J.-L. (2002) The Albonoursin Gene Cluster of S. noursei: Biosynthesis of Diketopiperazine Metabolites Independent of Nonribosomal Peptide Synthetases, Chemistry & Biology 9, 1355-1364.
  117. 114. Zimmermann, M., Hegemann, Julian D., Xie, X., and Marahiel, Mohamed A. (2013) The Astexin-1 Lasso Peptides: Biosynthesis, Stability, and Structural Studies, Chemistry & Biology 20, 558-569.
  118. 136. Nessler, S. (2005) The bacterial HPr kinase/phosphorylase: A new type of Ser/Thr kinase as antimicrobial target, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1754, 126-131.
  119. 24. Du, L., Sánchez, C., Chen, M., Edwards, D. J., and Shen, B. (2000) The biosynthetic gene cluster for the antitumor drug bleomycin from Streptomyces verticillus ATCC15003 supporting functional interactions between nonribosomal peptide synthetases and a polyketide synthase, Chemistry & Biology 7, 623-642.
  120. 3. Koehn, F. E., and Carter, G. T. (2005) The evolving role of natural products in drug discovery, Nat Rev Drug Discov 4, 206-220.
  121. 100. Knappe, T. A., Linne, U., Xie, X., and Marahiel, M. A. (2010) The glucagon receptor antagonist BI-32169 constitutes a new class of lasso peptides, FEBS Letters 584, 785- 789.
  122. 10. Peláez, F. (2006) The historical delivery of antibiotics from microbial natural products-Can history repeat?, Biochemical Pharmacology 71, 981-990.
  123. 7. Vane, J. R., and Botting, R. M. (2003) The mechanism of action of aspirin, Thrombosis Research 110, 255-258.
  124. 30. Belin, P., Moutiez, M., Lautru, S., Seguin, J., Pernodet, J.-L., and Gondry, M. (2012) The nonribosomal synthesis of diketopiperazines in tRNA-dependent cyclodipeptide synthase pathways, Natural Product Reports 29, 961-979.
  125. 88. Wieckowski, B. M., Hegemann, J. D., Mielcarek, A., Boss, L., Burghaus, O., and Marahiel, M. A. (2015) The PqqD homologous domain of the radical SAM enzyme ThnB is required for thioether bond formation during thurincin H maturation, FEBS Letters 589, 1802-1806.
  126. 90. Flühe, L., Knappe, T. A., Gattner, M. J., Schäfer, A., Burghaus, O., Linne, U., and Marahiel, M. A. (2012) The radical SAM enzyme AlbA catalyzes thioether bond formation in subtilosin A, Nat Chem Biol 8, 350-357.
  127. 126. Pan, S. J., Rajniak, J., Maksimov, M. O., and Link, A. J. (2012) The role of a conserved threonine residue in the leader peptide of lasso peptide precursors, Chemical Communications 48, 1880-1882.
  128. 92. Shelburne, C. E., An, F. Y., Dholpe, V., Ramamoorthy, A., Lopatin, D. E., and Lantz, M. S. (2007) The spectrum of antimicrobial activity of the bacteriocin subtilosin A, Journal of Antimicrobial Chemotherapy 59, 297-300.
  129. 64. Waisvisz, J. M., van der Hoeven, M. G., and Nijenhuis, B. t. (1957) The Structure of the Sulfur-containing Moiety of Bottromycin, Journal of the American Chemical Society 79, 4524-4527.
  130. 37. Giessen, T., and Marahiel, M. (2014) The tRNA-Dependent Biosynthesis of Modified Cyclic Dipeptides, International Journal of Molecular Sciences 15, 14610.
  131. 70. Arndt, H.-D., Schoof, S., and Lu, J.-Y. (2009) Thiopeptide Antibiotic Biosynthesis, Angewandte Chemie International Edition 48, 6770-6773.
  132. 67. Bagley, M. C., Dale, J. W., Merritt, E. A., and Xiong, X. (2005) Thiopeptide Antibiotics, Chemical Reviews 105, 685-714.
  133. 68. Liao, R., Duan, L., Lei, C., Pan, H., Ding, Y., Zhang, Q., Chen, D., Shen, B., Yu, Y., and Liu, W. (2009) Thiopeptide Biosynthesis Featuring Ribosomally Synthesized Precursor Peptides and Conserved Posttranslational Modifications, Chemistry & Biology 16, 141- 147.
  134. 21. Watanabe, K., Hotta, K., Praseuth, A. P., Koketsu, K., Migita, A., Boddy, C. N., Wang, C. C. C., Oguri, H., and Oikawa, H. (2006) Total biosynthesis of antitumor nonribosomal peptides in Escherichia coli, Nat Chem Biol 2, 423-428.
  135. 32. Ortiz-Castro, R., Díaz-Pérez, C., Martínez-Trujillo, M., del Río, R. E., Campos-García, J., and López-Bucio, J. (2011) Transkingdom signaling based on bacterial cyclodipeptides with auxin activity in plants, Proceedings of the National Academy of Sciences 108, 7253-7258.
  136. 89. Flühe, L., Burghaus, O., Wieckowski, B. M., Giessen, T. W., Linne, U., and Marahiel, M. A. (2013) Two [4Fe-4S] Clusters Containing Radical SAM Enzyme SkfB Catalyze Thioether Bond Formation during the Maturation of the Sporulation Killing Factor, Journal of the American Chemical Society 135, 959-962.
  137. 13. Williams, D. H., Stone, M. J., Hauck, P. R., and Rahman, S. K. (1989) Why Are Secondary Metabolites (Natural Products) Biosynthesized?, Journal of Natural Products 52, 1189-1208.
  138. 76. Leikoski, N., Fewer, D. P., and Sivonen, K. (2009) Widespread Occurrence and Lateral Transfer of the Cyanobactin Biosynthesis Gene Cluster in Cyanobacteria, Applied and Environmental Microbiology 75, 853-857.
  139. 20. Marahiel, M. A. (2009) Working outside the protein-synthesis rules: insights into nonribosomal peptide synthesis, Journal of Peptide Science 15, 799-807.
  140. 115. Hegemann, J. D., Zimmermann, M., Zhu, S., Steuber, H., Harms, K., Xie, X., and Marahiel, M. A. (2014) Xanthomonins I-III: A New Class of Lasso Peptides with a Seven-Residue Macrolactam Ring, Angewandte Chemie International Edition 53, 2230-2234.
  141. 135. Fieulaine, S., Morera, S., Poncet, S., Mijakovic, I., Galinier, A., Janin, J., Deutscher, J., and Nessler, S. (2002) X-ray structure of a bifunctional protein kinase in complex with its protein substrate HPr, Proceedings of the National Academy of Sciences 99, 13437- 13441.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten