Publikationsserver der Universitätsbibliothek Marburg

Titel:Microscopic Theory of Semiconductor Laser Material Systems
Autor:Berger, Christian
Weitere Beteiligte: Koch, Stephan W. (Prof. Dr.)
Veröffentlicht:2016
URI:https://archiv.ub.uni-marburg.de/diss/z2016/0472
URN: urn:nbn:de:hebis:04-z2016-04729
DOI: https://doi.org/10.17192/z2016.0472
DDC: Physik
Titel (trans.):Mikroskopische Theorie von Halbleiterlaser Materialsystemen
Publikationsdatum:2016-08-24
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Optisch gepumpter Halbleiterlaser, Physik, Halbleiter, Typ-II, Theoretische Physik, Type-II, Quantenwell, Heterostruktur, Laser, Optischer Ge, Halbleiterphysik

Summary:
This Thesis provides an overview on microscopic theories for the description of semiconductor laser material systems. Therefore, it gives an overview about three theoretical models used for the description of different properties of semiconductors. First, an extension to the original Jaynes-Cummings model (JCM) is introduced. It is later used for the investigation of quantum dots hosting multiple electronic levels placed inside a microcavity. Advancing to a different approach, second, the semiconductor Bloch equations (SBEs) are discussed together with the system Hamiltonian and the resulting measurable macroscopic quantities, i.e. absorption and refractive index change. As third model, the semiconductor luminescence equations (SLEs) are presented to calculate photoluminescence (PL) spectra where the quantized properties of the light are taken into account. Last, the evaluation of photomodulated reflectance (PR) spectroscopy based on the SBEs is presented. Additionally, it reviews and extends all investigations made in the context of type-II band-aligned "W"-systems. Besides the content presented in these publications, it starts with a general introduction of type-II and especially "W"-aligned multiple quantum-well heterostructures (MQWHs). They are compared to traditional type-I systems in terms of temperature and charge carrier density dependence. The differences are studied based on the SBEs. Subsequently, as part of the closed-loop process, an experiment--theory comparison for PL measurements of epitaxially grown "W"-MQWHs is presented. Based on the nominal parameters, i.e. quantum-well thickness and concentration, the material gain of this structure is computed. Excitonic transitions and their spatial recombination path are investigated to identify their type-II character. Subsequently, a systematic analysis of the "W"-VECSEL sample is carried out. Here, charge carrier dependent reflection spectra are presented to confirm the experimentally determined lasing wavelength. The investigation of the VECSEL concludes with the determination of detuning and modal gain of the sample. In addition, optimization capabilities are discussed by the means of the carrier confinement due to graded interfaces and different barrier materials. As a last point, material compositions suitable to increase the emission wavelength to 1300 nm are suggested based on calculations. Unexpected oscillations in the emission of optically pumped semiconductor quantum-dot microcavities are discussed and analyzed. The usual linear slope of the I/O characteristics of this setup is modified. To figure out the origin of the nonlinearities, a systematic theoretical investigation is applied which identifies them as genuine quantum-memory effect. They are found to be directly addressable by utilizing the quantum-optical fluctuations of the exciting light field.

Bibliographie / References

  1. W. W. Chow and H. C. Schneider, “Charge-separation effects in 1.3 μm GaAsSb type-II quantum-well laser gain,” Appl. Phys. Lett., vol. 78, no. 26, p. 4100, 2001.
  2. S. Sprengel, A. Andrejew, F. Federer, G. K. Veerabathran, G. Boehm, and M.-C. Amann, “Continuous wave vertical cavity surface emitting lasers at 2.5 μm with InP-based type-II quantum wells,” Appl. Phys. Lett., vol. 106, no. 15, p. 151102, 2015.
  3. W. W. Chow, O. B. Spahn, H. C. Schneider, and J. F. Klem, “Contributions to the large blue emission shift in a GaAsSb type-II laser,” IEEE J. Quantum Electron., vol. 37, no. 9, pp. 1178-1182, 2001.
  4. S. Gies, C. Kruska, C. Berger, P. Hens, C. Fuchs, A. Ruiz Perez, N. W. Rosemann, J. Veletas, S. Chatterjee, W. Stolz, S. W. Koch, J. Hader, J. V. Moloney, and W. Heimbrodt, “Excitonic transitions in highly efficient (GaIn)As/Ga(AsSb) type-II quantum-well structures,” Appl. Phys. Lett., vol. 107, no. 18, p. 182104, Nov. 2015.
  5. J. F. Klem, O. Blum, S. R. Kurtz, I. J. Fritz, and K. D. Choquette, “GaAsSb/InGaAs type-II quantum wells for long-wavelength lasers on GaAs substrates,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct., vol. 18, no. 3, p. 1605, 2000.
  6. S. Ranta, M. Tavast, T. Leinonen, N. Van Lieu, G. Fetzer, and M. Guina, “1180 nm VECSEL with output power beyond 20 W,” Electron. Lett., vol. 49, no. 1, pp. 59-60, 2013.
  7. R. Kaspi, A. Ongstad, G. C. Dente, J. Chavez, M. L. Tilton, and D. Gianardi, “High power and high brightness from an optically pumped InAs/InGaSb type-II midinfrared laser with low confinement,” Appl. Phys. Lett., vol. 81, no. 3, p. 406, 2002.
  8. G. Bacher, H. Schweizer, J. Kovac, A. Forchel, H. Nickel, W. Schlapp, and R. Lösch, “Influence of barrier height on carrier dynamics in strained InGaAs/GaAs quantum wells,” Phys. Rev. B, vol. 43, no. 11, p. 9312, 1991.
  9. M. Peter, R. Kiefer, F. Fuchs, N. Herres, K. Winkler, K.-H. Bachem, and J. Wagner, “Light-emitting diodes and laser diodes based on a GaInAs/GaAsSb type II superlattice on InP substrate,” Appl. Phys. Lett., vol. 74, no. 14, pp. 1951-1953, 1999.
  10. Chia-Hao Chang, Zong-Lin Li, Hong-Ting Lu, Chien-Hung Pan, Chien-Ping Lee, G. Lin, and Sheng-Di Lin, “Low-Threshold Short-Wavelength Infrared InGaAs/GaAsSb "W"-Type QW Laser on InP Substrate,” IEEE Photon. Technol. Lett., vol. 27, no. 3, pp. 225-228, 2015.
  11. R. H. Miles, D. H. Chow, Y.-H. Zhang, P. D. Brewer, and R. G. Wilson, “Midwave infrared stimulated emission from a GaInSb/InAs superlattice,” Appl. Phys. Lett., vol. 66, no. 15, p. 1921, 1995.
  12. V.-M. Korpijarvi, E. L. Kantola, T. Leinonen, R. Isoaho, and M. Guina, “Monolithic GaInNAsSb/GaAs VECSEL Operating at 1550 nm,” IEEE J. Sel. Top. Quantum Electron., vol. 21, no. 6, pp. 480-484, 2015.
  13. C. Berger, C. Möller, P. Hens, C. Fuchs, W. Stolz, S. W. Koch, A. Ruiz Perez, J. Hader, and J. V. Moloney, “Novel type-II material system for laser applications in the near-infrared regime,” AIP Adv., vol. 5, no. 4, p. 047105, Apr. 2015.
  14. B. Heinen, F. Zhang, M. Sparenberg, B. Kunert, M. Koch, and W. Stolz, “On the Measurement of the Thermal Resistance of Vertical-External-Cavity Surface-Emitting Lasers (VECSELs),” IEEE J. Quantum Electron., vol. 48, no. 7, pp. 934-940, 2012.
  15. W. W. Chow and S. W. Koch, Semiconductor-Laser Fundamentals: Physics of the Gain Materials (Springer, Berlin, Heidelberg, New York, 1999).
  16. J. Hader, G. Hardesty, G. Hardesty, M. J. Yarborough, Y. Kaneda, J. V. Moloney, B. Kunert, W. Stolz, and S. W. Koch, “Predictive Microscopic Modeling of VECSELs,” IEEE J. Quantum Electron., vol. 46, no. 5, pp. 810-817, 2010.
  17. H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 5th ed. (World Scientic Publ., Singapore, 2009).
  18. M. Scheller, J. M. Yarborough, J. V. Moloney, M. Fallahi, M. Koch, and S. W. Koch, “Room temperature continuous wave milliwatt terahertz source,” Opt. Express, vol. 18, no. 26, pp. 27112-27117, 2010.
  19. S. Calvez, J. E. Hastie, M. Guina, O. G. Okhotnikov, and M. D. Dawson, “Semiconductor disk lasers for the generation of visible and ultraviolet radiation,” Laser Photon. Rev., vol. 3, no. 5, pp. 407-434, 2009.
  20. B. Heinen, C. Moller, K. Jandieri, B. Kunert, M. Koch, and W. Stolz, “The Thermal Resistance of High-Power Semiconductor Disk Lasers,” IEEE J. Quantum Electron., vol. 51, no. 5, pp. 1-9, 2015.
  21. J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett., vol. 89, no. 6, p. 061114, 2006.
  22. J. R. Meyer, C. A. Hoffman, F. J. Bartoli, and L. R. Ram-Mohan, “Type-II quantum-well lasers for the midwavelength infrared,” Appl. Phys. Lett., vol. 67, no. 6, p. 757, 1995.
  23. B. Heinen, T. L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous wave output power from a vertical-external-cavity surface-emitting laser (VECSEL),” Electron. Lett., vol. 48, no. 9, p. 516, 2012.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten