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Zusammenfassung

Diese Arbeit widmet sich der effizienten Komponierbarkeit von algorithmischen Skeletten,
einer Abstraktion von gängigen parallelen Programmierschemen, die sich in der funk-
tionalen parallelen Programmiersprache Eden in einfacher Weise als Funktionen höherer
Ordnung darstellen lassen. Durch algorithmische Skelette lässt sich paralleles Program-
mieren extrem erleichtern, da sie die kniffligen Details paralleler Abläufe bereits beinhalten
und sich durch bloße Bereitstellung problemspezifischer Funktionen auf konkrete Anwen-
dungen spezialisieren lassen. Dabei kommt der effizienten Komponierbarkeit von parallelen
Skeletten eine besondere Bedeutung zu, da sich hierdurch komplexe, spezialisierte Skelette
aus einfacheren Basisskeletten zusammensetzen lassen. Die so gewonnene Modularität ist
gerade für funktionales Programmieren wichtig und sollte insbesondere in einer funktionalen
parallelen Sprache nicht fehlen. Komposition wird hier in drei Kategorien unterteilt:

Verschachtelung: Ein Skelett wird aus einem anderen Skelett heraus instanziiert. Kom-
munikation findet baumartig entlang der Aufrufhierarchie statt. Dies wird in Eden
direkt unterstützt.

Verkettung oder Hintereinanderausführung: Das Ergebnis einer Skelettberechnung wird
zur Eingabe eines Folgeskeletts. Komposition von Funktionen wird in Haskell mit
dem Kompositionsoperator ( ◦ ) ausgedrückt. Aus Performanzgründen sollen die
Prozesse beider Skelette Ergebnisse direkt austauschen können, ohne diese über
den Aufrufprozess schicken zu müssen. Hierfür wird das Remote-Data-Konzept
eingeführt.

Iteration: Ein Skelett wird variabel oft hintereinander ausgeführt. Dies kann durch Rekur-
sion und Hintereinanderausführung definiert werden. Optimiert werden die Anzahl
der Skelett-Instanzen, die Kommunikation zwischen den Iterationsschritten und die
Kontrolle der Schleifendurchläufe. Dazu dient ein eigens entwickeltes Iterationsframe-
work, in dem Iterationsskelette aus Kontroll- und Rumpfskeletten zusammengefügt
werden.

In dieser Arbeit haben wir neue Konzepte zur verteilten Skelettkomposition erforscht. Wir
wollten weder von einer speziellen Kompilerunterstützung zur Realisierung der Kompo-
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sition abhängig sein, noch wollten wir einfach einen Satz aus vordefinierten verteilten
Datenstrukturen bereitstellen, die nach ihrer Implementierung eine feste API mit einer
begrenzten Anzahl an unterstützten Datenstrukturen haben. Dennoch sollte eine perfor-
mante Implementierung der Skelettkomposition auf Basis unserer Konzepte umgesetzt
werden. Die Konzepte sollten sich reibungslos in den Kontext funktionaler Program-
mierung einbetten lassen, also Merkmale funktionaler Sprachen wie Funktionen als Werte,
Rekursion und nicht strikte Datenstrukturen unterstützen. Anders ausgedrückt behandeln
wir die Frage:

Was sind konzeptionelle Bausteine, die performante Skelettkomposition er-
lauben, einfach zu benutzen sind und hohe Flexibilität in Bezug auf Konnektiv-
ität, Erweiterbarkeit und Transformierbarkeit gewährleisten?

Eine Schlüsselrolle bei unserem Kompositionskonzept kommt Remote Data zu. An Stelle
der eigentlichen Daten kann ein Remote-Data-Handle verschickt werden, das an seinem
Zielort benutzt wird, um die referenzierten Daten anzufordern. Remote Data kann in
beliebigen Containertypen ähnlich wie verteilte Datenstrukturen zur effizienten Skelettkom-
position benutzt werden. Die freie Zusammensetzung von Remote Data mit beliebigen
Containertypen sorgt dabei für einen sehr hohen Grad an Flexibilität. Der Program-
mierer ist nicht auf vordefinierte verteilte Schnittstellen oder (Um-)Verteilungsfunktionen
festgelegt und kann damit auch in eleganter Weise Prozesstopologien erzeugen.

Für den Spezialfall der Iteration algorithmischer Skelette versuchen wir den sukzessiven
Auf- und Abbau eines Skeletts in jedem Iterationsschritt zu verhindern, der bei der
rekursiven Benutzung von Skeletten üblich ist. Dies minimiert den parallelen Overhead für
Prozess- und Kanalerzeugung und ermöglicht es Daten lokal auf persistenten Prozessen zu
belassen. Dazu stellen wir ein Iterations Framework bereit. Dieses Konzept ist unabhängig
von der Benutzung von Remote Data, lässt sich aber durch die Benutzung von Remote
Data flexibel erweitern.

Beide oben genannte Ansätze zeigen für unsere Fallbeispiele vergleichbare Laufzeiten zu
Programmen mit identischem parallelem Aufbau, bei denen das zugrunde liegende Skelett
aber nicht aus einfacheren Basisskeletten komponiert, sondern als monolithisches Skelett
implementiert wurde.

Des weiteren präsentieren wir Erweiterungen der Programmiersprache Eden, mit denen
wir Komposition besser unterstützen können: Verallgemeinerung der überladenen Kommu-
nikation, verallgemeinerte Prozessinstanziierung, kompositionelle Prozessplatzierung und
Erweiterung von Box-Typen zum Anpassen von Kommunikationsverhalten.



Abstract

This thesis is dedicated to the efficient compositionality of algorithmic skeletons, which
are abstractions of common parallel programming patterns. Skeletons can be implemented
in the functional parallel language Eden as mere parallel higher order functions. The use
of algorithmic skeletons facilitates parallel programming massively. This is because they
already implement the tedious details of parallel programming and can be specialised for
concrete applications by providing problem specific functions and parameters. Efficient
skeleton compositionality is of particular importance because complex, specialised skeletons
can be compound of simpler base skeletons. The resulting modularity is especially
important for the context of functional programming and should not be missing in a
functional language. We subdivide composition into three categories:

Nesting A skeleton is instantiated from another skeleton instance. Communication is tree
shaped, along the call hierarchy. This is directly supported by Eden.

Composition in sequence The result of a skeleton is the input for a succeeding skeleton.
Function composition is expressed in Eden by the ( ◦ ) operator. For performance
reasons the processes of both skeletons should be able to exchange results directly
instead of using the indirection via the caller process. We therefore introduce the
remote data concept.

Iteration A skeleton is called in sequence a variable number of times. This can be defined
using recursion and composition in sequence. We optimise the number of skeleton
instances, the communication in between the iteration steps and the control of the
loop. To this end, we developed an iteration framework where iteration skeletons
are composed from control and body skeletons.

Central to our composition concept is remote data. We send a remote data handle instead
of ordinary data, the data handle is used at its destination to request the referenced
data. Remote data can be used inside arbitrary container types for efficient skeleton
composition similar to ordinary distributed data types. The free combinability of remote
data with arbitrary container types leads to a high degree of flexibility. The programmer
is not restricted by using a predefined set of distributed data types and (re-)distribution
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functions. Moreover, he can use remote data with arbitrary container types to elegantly
create process topologies.

For the special case of skeleton iteration we prevent the repeated construction and
deconstruction of skeleton instances for each single iteration step, which is common for the
recursive use of skeletons. This minimises the parallel overhead for process and channel
creation and allows to keep data local on persistent processes. To this end we provide
a skeleton framework. This concept is independent of remote data, however the use of
remote data in combination with the iteration framework makes the framework more
flexible.

For our case studies, both approaches perform competitively compared to programs with
identical parallel structure but which are implemented using monolithic skeletons – i.e.
skeleton not composed from simpler ones.

Further, we present extensions of Eden which enhance composition support: generalisation
of overloaded communication, generalisation of process instantiation, compositional process
placement and extensions of Box types used to adapt communication behaviour.
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CHAPTER 1

Introduction

Parallel computing has gained more and more importance with the emergence of manifold
modern parallel hardware like multicore-CPUs, GPGPUs, parallel co-processors (like
Intels manycore co-processor Xeon Phi) or computer clusters, typically already containing
parallel hardware. Such heterogeneous, potentially hierarchical parallel systems are hard
to program, especially if the code ought to be independent of the concrete hardware in
place. In this setting, functional languages with their high level of abstraction and features
like referential transparency, compositionality, laziness or type classes offer a great deal of
advantages. Abstraction often has a price in terms of performance, but modern compilers
increasingly manage to reduce the gap to low-level approaches. Moreover, adopting low-
level approaches to modernised hardware is costly whereas high-level approaches are often
easily portable and – at the same time – may profit from compiler development.

These features of functional languages have a great impact on parallel functional program-
ming:

Referential transparency: Purely functional programs are deterministic. In the parallel
setting, this guarantees freedom from race conditions through the absence of side
effects.

Compositionality: Higher-order functions allow functions as input and output parameters.
Functions are first class citizens and can be flexibly composed, combined or nested.

Laziness: Values are evaluated in a demand-driven way. This allows for process networks
interconnected through lazy lists (streams) and thus the easy implementation e.g. of
simple pipelines, but also cyclic process networks using self referential streams.

Type classes: Overloaded functions allow for a high degree of flexibility. The definition
of overloaded functions depends on their input or output types. In parallel, we can
control e.g. communication modes of channels alone through their input type.
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2 1 Introduction

In the following we concentrate on the definition of skeletons.

1.1 Algorithmic Skeletons

A major concept for abstraction in parallel programs are algorithmic skeletons [Col89].
These are parallel computation patterns including specification and implementation for
whole algorithm classes like divide and conquer, map, reduce, etc., abstracting from
the concrete algorithm in question. Skeletons are supplied with the concrete, typically
sequential details of the algorithm in question to realise a parallel implementation of the
algorithm. Typically, several different parallel implementations are provided for each
parallel skeleton. Each implementation is further associated with a cost model. The cost
model for a skeleton is applied to parameters of a parallel architecture and an algorithm to
yield the cost of the different skeleton implementations. Thus, cost models help to decide
for the best suited parallel implementation for a given situation.
However, we choose to not use cost models for the work at hand. We focus rather on
the conceptual and technical details of skeleton composition. Therefore we use a slightly
different definition of algorithmic skeletons. There may be manifold skeletons for a single
algorithm class, where each skeleton exploits parallelism differently. For example skeletons
for the well known divide and conquer scheme may create parallelism (processes or threads)
recursively along the divide and conquer recursion scheme (distributed expansion scheme),
or they may alternatively do some initial recursion steps sequentially, create parallelism to
compute the sequential divide and conquer algorithm for all the expanded tasks in parallel
and combine the upper most divide and conquer levels again sequentially (flat expansion
scheme) [BDLL09].
The application programmer still has to choose the parallel behaviour by choosing a
suitable skeleton from the skeleton library, but he or she is liberated from the gory details
of parallel programming. This concept is independent from the functional setting, but
integrates nicely in functional languages as algorithmic skeletons are implemented as mere
parallel higher-order functions.

Typically, two kinds of skeletons are distinguished, namely task parallel and data parallel
skeletons [Pel03, KC02, Alt07]. In task-parallel skeletons, different tasks are processed in
parallel, like in pipeline, master worker or divide and conquer skeletons. In data-parallel
skeletons, input data like e.g. matrices are split and processed in parallel. We use the
further category topology skeletons, like pipeline, ring or torus skeletons which are named
according to the process topology in use. This classification in categories is orthogonal to
the others! Topology skeletons are often data parallel, distributing the input data over the
processes, but not necessarily as e.g. the task parallel pipeline skeleton.
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Language vs. library approach

Skeleton frameworks may be either implemented in own languages or language extensions
with appropriate compiler support or they may be supplied in a library on top of an
existing language [KC02]. The language approach gives more flexibility to the skeleton
framework’s design and allows for extensive compiler optimisations, where the library
approach is easier to maintain and poses less barriers to the programmer, who may already
be familiar with the base language and the corresponding tools (compiler, IDE-support,
etc.).

In the following section, we will discuss several skeleton frameworks focusing on their
treatment of skeleton composition. All the presented frameworks use a distributed memory
model, where optimised communication is crucial for efficient skeleton composition. For
shared memory systems, this aspect is not relevant.

1.2 Skeleton Composition in Literature

When parallelism is encapsulated in algorithmic skeletons, the problem of efficient skeleton
composition arises. Cole argued in his seminal thesis [Col89], that skeletons should not be
nestable:

“If we are to avoid falling into the trap of trying to implement a universal
language automatically, it seems that we must restrict ourselves to exploiting
only the parallelism inherent in the basic structure of each skeleton. The lower
level problem specific functions may or may not be parallelizable, but we should
ignore them, since to attempt deeper analysis leads us into the original trap
of “universality”. The implementation task is to parallelize the distribution
and manipulation of data implied by the highest level structure, leaving other
functions to be executed entirely sequentially on individual processors as
required, just as user code would slot directly into the structure of an entirely
sequential implementation.”1

Hence, the original skeleton set of 4 skeletons proposed by Cole2 and as well as the first
version of his skeleton library ESkel [BC02] implemented in C and MPI do not allow
composition, they are flat skeletal systems. Pelegatti commented on flat skeletal systems:

“In principle, flat systems could be extended with new skeletons if needed,
however this makes systems very large and impractical. It also forces some of

1 [Col89, page 20]
2 The original set comprises a divide and conquer skeleton, an iterative combination skeleton, a cluster

skeleton and a task queue (pipeline) skeleton.
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the skeletons to be quite complex, providing combinations of much simpler
patterns to match the structure of a specific application.”3

The second version of Cole’s skeleton library ESkel(2) [BC02] adds support for skeleton
nesting. In [BC05], Benoit and Cole describe fundamental concepts in skeletal programming.
They use the terms activities and interactions. Activities correspond to processes or threads,
and may internally be parallel. Interactions correspond to messages or communication via
shared memory. Relevant for skeleton composition is the concept nesting mode with the
variants:

Transient Nesting: Activities can invoke skeletons (sub-skeletons in the hierarchy) to solve
sub tasks. If the invoking activity processes a stream of inputs, then the decision to
invoke a sub-skeleton must be made for every single stream element, the sub-skeletons
are terminated after processing a stream element. In the work at hand, we call this
alternating skeleton invocations and terminations the heartbeat effect [DHBL13].

Persistent Nesting: The decision to invoke a sub skeleton must be taken for the entirety
of an activity’s input. Input streams are passed to the sub-skeletons, which do not
terminate before the input stream, the parent process or the application terminates.
The activities and interactions of the sub skeleton interact directly with the activities
and interactions of the enclosing skeleton and replace the calling activity effectively.
In this thesis, we call persistent nestings stable process systems.

We can use this concept to characterise previous work on skeleton composition.

An interesting early approach to skeleton composition is the Pisa parallel programming
language (P3L) [Pel03]. P3L is implemented with C and MPI, skeletons are provided
in a library as implementation templates. A cross compiler converts the user defined
composition into an optimised implementation. There are data- task- and control parallel
skeletons. Data parallel composition works without distributed data types [DPP97]. The
data parallel skeletons (parallel map, reduce, scan and comp (composition)) define the
data distribution as annotations in the body in-list of a skeleton call. The cross compiler
optimises the communication patterns in between the skeleton calls, which are implemented
by collective MPI operations. This optimisation works e.g. “by eliminating gather and
scatter of the same data with the same distribution strategy [...] [or] substituting pairs
of operations with more efficient combined ones”4 (e.g. reduce broadcast with reduce-
broadcast). The task parallel skeletons (pipe and farm5) process a stream of independent
input data. At the root level a program is a pipe with an initial stage, which provides
the input stream and a final stage to consume the result. The detection of the end of the

3 [Pel03, page 156]
4 [DPP97, page 626]
5 A dynamically load balancing farm
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input stream by every process initiates termination. Control skeletons are seq f x for
sequential code which is used to instantiate parallel skeletons and skeleton loop c f x,
which iterates an arbitrary skeleton f without adding additional processes. P3L programs
have a two-tier structure: “At a finer level, parallelism is expressed using DP tasks [data
parallel skeletons]. Then, coarse interaction between DP tasks is expressed according to
task parallel skeletons. To achieve this, P3L forbids the nesting of task parallel skeletons
with data parallel ones. Control skeletons have no restrictions as they do not modify the
parallel structure of a computation”6. The skeleton nesting of a program is persistent.

Darlington et al. [DGTY95b] present an alternative solution to skeleton composition,
the structured coordination language (SCL) which integrates task and data parallelism.
They define a two-tier structure, where the upper level handles the parallel aspects of
programming and the lower level contains the sequential computation written in any
sequential base language. Parallel programs are defined by composing procedures in the
base language, using skeletons which work on distributed data structures. Darlington
distinguishes between configuration, elementary and computational skeletons. Configura-
tion skeletons define data partitioning, distribution and alignment explicitly, following
the model of High Performance Fortrans [Lov93] data distribution directives closely. Ele-
mentary skeletons are map, fold, scan and skeletons for data communication rotate and
brdcast, which work as expected. The computational skeletons abstract control flow.
There is e.g. a farm skeleton, (unlike in P3L) realising a static task distribution and an
iterUntil skeleton, which abstracts until iterations, where an iteration is executed until
a termination condition is matched. The presentation of SCL in [DGTY95b, DGTY95a]
does not mention stream processing of skeleton input or output. We suspect therefore that
Darlington et al. use transient skeleton composition an do not reuse skeleton instances
when implementing skeleton iteration.

Kuchen and Cole [KC02] present a skeleton library for C++ and MPI which borrows the
two-tier model of P3L, where data parallel skeletons may be nested inside task parallel
ones, but not vice versa. Data parallelism and composition are based on distributed
data structures. Communication is always explicit using communication skeletons which
correspond mostly to the collective operations of MPI (allToAll, gather, broadcastRow...).
Data parallel skeletons are e.g. mapIndexInPlace (the map function takes the index position
as additional input), fold, scan, zip (combining the elements of two distributed lists).
Data parallel operations are object functions of the distributed data types and partial
application is supported, which allows a concise and powerful notation of skeleton calls
using partially applied function parameters.
“A task parallel skeleton consumes a stream of input values and produces a stream of
output values. This behavior corresponds to the behavior of an atomic process. Due to

6 [Pel03, page 159]
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this property, a skeleton, like e.g. a pipeline, which coordinates several processes, may
as well coordinate skeletons. Thus, skeletons can be arbitrarily nested.”7 Task parallel
skeletons are e.g. pipeline, farm8 and parallel composition, where several workers process
the same duplicated input stream in parallel, their output is merged nondeterministically.
Further, there is a control parallel loop skeleton [Kuc02], which creates a persistent loop
with a cyclic process topology. A loop is applied to a parameter skeleton for the loop body
and additionally to two control functions propagate and feedback. If function propagate

applied to a loop result yields true, then the result is propagated to the successor skeleton
of the loop. If function feedback applied to a loop result yields true, then the result is fed
back to the loop. Both, one or none of the functions may yield true. In fact, the whole
upper tier, the task parallel skeleton composition is persistent after construction. The
lower data parallel tier allows transient nesting via direct function calls[BC05].

Alt[Alt07] presents a grid programming framework with skeletons written in Java using
Java’s Remote Methode Invocation (RMI ) mechanism for skeleton invocation. He
distinguishes skeleton composition of multi-server or single-server skeletons. For multi
server skeleton composition, he uses RArrays, a distributed array structure. Single server
skeleton composition is realised by two succeeding RMI’s of the skeletons. This bears a
performance problem, as the result of the first server is send back to the calling client
before it is passed to the second server (see Figure 1.1a). Alt and Gorlatch present three
optimisation steps, called lazy RMI, localised RMI and future based RMI [AG03, AG04,
Alt07]. Lazy RMI is the first optimisation step, it replaces the data passed via the client
by a remote reference, which is used to reference the result directly by the second server.
Localised RMI, the second optimisation step is based on lazy RMI and adds optimised
communication for composition on the same server, avoiding message passing in this case.
Future based RMI is the final optimisation step which allows to pass the reference to the
second server before the result is actually computed on the first server (see Figure 1.1b).

The language in which we perform our studies and implement our composition concepts is
Eden [LOMP05], a parallel Haskell dialect. Though studied and implemented in a single

client

server 1

server 2

(a) RMI
client

server 1

server 2

(b) Future based RMI

Figure 1.1: Single server skeleton composition using 2 Java RMI variants

7 [Kuc02, page 23]
8 load balancing farm, like in P3L
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language, the concepts are of general nature.

For the functional language Eden, Peña and Rubio [PR01] discussed the issue of skeleton
composition in earlier work: “From the language point of view, composition is trivial as
skeletons are just functions. The real problem is how to assign processors to the skeletons
in order to achieve good performance. We do not see this problem as an implementation
issue but as a program design one. In our opinion, the programmer should be involved in
this assignment.”9 Parallel composition in general can be distinguished as three categories
[Fos95, chapter 4]: sequential composition, where instances are executed one after the other
and use identical machines, parallel composition, where instances are executed in parallel
using distinct machines and exchanging data and concurrent composition, where composed
instances may use arbitrary machines, are interconnected via channels and execute in a
data driven manner. “Current Eden features do not support an easy way of splitting the
processors into subsets and assigning them to skeletons.”9 However, recent versions of
Eden support explicit process placement, which can be used to express a partitioning of
the available machines, e.g. by using a ticket mechanism as presented in Chapter 3.1.
Besides process placement issues, skeleton composition in Eden has a performance issue.
Composing two skeletons in sequence with the predefined function composition operator
skel2 ◦ skel1, all data will be gathered and redistributed in between the skeleton calls.
As Eden is designed to be used in a distributed setting, this gathering and redistribution
of data may be very time-consuming. Rubio [Rub01] designed compiler optimisations at
core Haskell level to optimise such indirections automatically. Unfortunately, these are
not included in the current Eden compiler. Eden is developing from a language approach
with an own compiler to a library approach, working with any standard Haskell compiler.
The current stable implementation [Ber08] uses parallel runtime system support built into
GHC [GHC15], leaving the originary compile process untouched. A full library approach
is currently under development10 and in prototype status. Hence, the above described
compiler optimisations can not be realised in the future Eden system any more, but must
be handled on library level if possible. All the novel Eden specific features presented
in this thesis are implemented at library level and would work equally well with a full
library implementation. Such a library implementation may also include optimisation of
local messages, as has been described in the context of localised RMI above. Such an
optimisation has been added to the Edens parallel runtime system recently.

9 [PR01, page 194]
10 Our goal is to drastically reduce the maintenance effort for the Eden system and to reach a broader

audience, as interested programmers need only a standard Haskell-compiler and Eden libraries.
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Conclusions

For the subject of efficient skeleton composition in distributed memory settings, language
approaches have a certain advantage, as they may optimise the composition topology
by the compiler. The second common approach is to use distributed data structures to
efficiently pass data between skeleton calls, without the need for intermediate gathering
and redistribution of the data. As a functional language, Eden has certain advantages
when coping with skeleton composition, as composition is natural in functional languages.
However, it neither has compiler support to optimise indirections in communication
(library approach) nor supports distributed data structures. We will work with remote
data (Chapter 2.3) to realise an alternative approach to skeleton composition similar to
future based RMI, which was used only to connect single server skeletons.

Skeleton iteration is a subject which has been specially treated by all the composition
frameworks discussed above. Here, with a persistent composition of skeletons, intercon-
nected by streams of data like in P3L or Kuchen and Cole’s skeleton library, skeleton
iteration can be treated by a simple control construct.

1.3 A Framework Supporting Skeleton Compositionality

In this thesis we want to investigate new concepts for distributed skeleton composition.
We want neither to depend on specialised compiler support for efficient composition, nor
do we seek for a pool of pre-defined distributed data types which, once implemented has
a fixed API and provides a limited amount of data structures. However, we want an
implementation based on the concepts to provide good performance. The concepts shall
fit smoothly in the functional programming context, thus naturally support functional
features like functions as values, recursion or lazy data structures. In other words:

What are alternative conceptual building blocks, which enable performant
skeleton compositionality, are easy to use and provide high flexibility in terms
of connectivity, extensibility and transformability?

The central publications underlying this thesis are:

• Mischa Dieterle, Thomas Horstmeyer and Rita Loogen
Skeleton Composition using Remote Data.
In Carro, Manuel; Peña, Ricardo, editors, Practical Aspects of Declarative Languages
12th International Symposium, PADL 2010, LNCS 5937, pages 73-87, Madrid, Spain,
January 2010. Springer, 2010. (awarded most practical paper of PADL’10)



1.3 A Framework Supporting Skeleton Compositionality 9

• Mischa Dieterle, Thomas Horstmeyer, Jost Berthold and Rita Loogen
Iterating Skeletons - Structured Parallelism by Composition.
In Ralf Hinze and Andy Gill (Eds.), IFL 2012, 24th Symposium on Implementation
and Application of Functional Languages, Revised Selected Papers, LNCS 8241,
pages 18-36. Springer, 2013.

• Mischa Dieterle, Thomas Horstmeyer, Rita Loogen, and Jost Berthold.
Skeleton composition vs. stable process systems in Eden.
Journal of functional Programming, Vol. 26, to appear. Cambridge University Press,
2016.

1.3.1 Contributions

Remote data: We present remote data, providing lightweight handles for physical data.
Remote data handles can be passed cheaply among processes in place of the referenced
data. The referenced data is fetched directly at the target machine using the remote
data handles.

Skeleton composition: We introduce a scheme for efficient skeleton composition using
lists of remote data as skeleton interfaces. More general, we can use arbitrary
Traversable data containers with remote data elements.

Process topology creation: We show how to create process topologies and topology
skeletons by transforming arbitrary sequential data containers containing remote
data.

Data redistribution: Similar to the topology creation using remote data, we can use
arbitrary sequential data containers with remote data to redistribute data in
between skeleton calls. In this step, we can also convert the container type,
enabling skeleton composition among skeletons with incompatible container
types.

Iteration framework: We define a framework for persistent skeleton iteration. The frame-
work defines an iteration scheme, which is compound of an iteration control function
and iteration body skeleton. The body skeleton uses a persistent process topology.
Iteration body and iteration control are interconnected by a stream of data, where
each stream element contains the input of an iteration step. In an optimisation step,
we switch from a single iteration stream to parallel iteration streams connecting
the processes using persistent communication channels. We introduce parallel itera-
tion control skeletons to allow for efficient iteration control of the parallel iteration
streams.

Lifting to iterable skeletons: Iteration body skeletons need a stream interface to be
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used in the iteration framework. We call such skeletons iterable. We show how
many skeletons can be lifted to iterable versions by merely lifting their parameter
functions. This is possible, if the skeletons input to output transformation can
be sufficiently controlled by parameter functions of the skeleton.

Communication: Enhanced typeclass approach for custom communication We allow to de-
fine stream or concurrent communication for arbitrary data types. The user has
merely to define a transformation of the data type to lists, or tuples respectively,
and the inverse transformation. In General, we allow a user defined encoding
of data for the communication process, enabling e.g. automatic chunking,
compression and encryption.

Overloaded parallel input containers: We define a generic spawn function to allow
for eager process instantiation of processes and data in arbitrary Traversable

container types. Function spawn only instantiates the processes, establishing
input and output channels for each process, which are connected to the caller.
Various process topologies can be created by moving remote data handles along
the structure of a container type.

Overloaded process placement: We propose a type class based solution which allows
for process placement determined by the parallel skeleton input. Thus, the
placement information is propagated implicitly when composing skeletons and
does not have to be indicated explicitly for each skeleton call. Further we define
location aware remote data that can be used for the same purpose.

Distributed Data: We define type support for arbitrary distributed data types, com-
pound of remote data elements, Traversable container types and placement
information.

Dynamic boxes to override default communication: Communication cost is crucial
for the performance of parallel programs. Boxes [DHLB16] are a way of changing
the communication behaviour of arbitrary data. We introduce dynamic boxes
and a type class for boxes.

PA-Monad: We introduce a monad for parallel actions in Eden. We allow to run parallel
actions and to use their result in the functional Eden code.

1.3.2 Outline

This thesis is structured as follows:
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Chapter 2: Eden

In the following chapter, we give a short introduction to Eden, also introducing two
extensions to Eden which originate in this thesis:

• The PA-Monad which allows to define custom sequences of parallel actions which
will be executed eagerly. These custom sequences can be freed from the monad,
wrapped in a function and used in Eden programs in a functional style.

• Remote data (RD) allows creating a handle of data by function release and to use
the handle on a different machine to fetch the referenced data with function fetch.
The RD handle is light weight and can be passed among processes with low overhead.
Remote data was originally published in PADL10DHL, where the introduction to remote
data is taken from.

We will introduce some Eden skeletons and show that topology skeletons are easily defined
using remote data.

In the subsequent chapters, we focus on the principal part of skeleton composition. For
this, we found the following distinction of composition approaches appropriate:

Skeleton nesting: A skeleton is called by the leaf processes of another skeleton, leading
to tree-shaped process topologies. This is typically a form of parallel composition
(using distinct processors for sub skeletons), but may also be concurrent composition
– in Eden especially if no mind is put to process placement issues.

Skeleton composition in sequence: Skeletons are lined up, e.g. using function composition.
This is typically sequential composition, but may be also parallel composition, e.g.
a skeleton pipeline where skeletons are interconnected by streams.

Skeleton iteration: Is a special case of composition in sequence, where the same [sequence
of] skeleton[s] is called many times. Skeleton iteration should not be mixed up with
parallel for loops like in OpenMP, where (partially) independent sequential iteration
steps are calculated in parallel. We rather evaluate a sequence of already parallel
iteration steps.

Chapter 3: Skeleton nesting

We distinguish between skeleton nesting and skeleton composition in sequence, because
of the data flow among the processes. We use the term skeleton nesting for tree shaped
topologies which are constructed by nesting skeletons, e.g. when constructing the divide
and conquer tree or hierarchical master worker skeletons. Here, the call tree corresponds
to the desired channel topology.
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Communication in Eden is set up implicitly along the hierarchy of process creation which
is optimal for skeleton nesting. If a one-to-one process to processor placement is favoured,
process placement has to be defined manually by the programmer to achieve a parallel
composition of child skeletons. In Chapter 3.1, we show how a simple ticket mechanism
can be used to organise this.
This ticket mechanism in the context of divide and conquer skeletons was originally published
in [BDLL09]. The nested master worker skeletons were originally published by Priebe in
[Pri06], our revised version is taken from [BDLP08].

Chapter 4: Skeleton composition in sequence

In imperative languages, composition is sometimes realised by a sequence of skeletons
which is nested in a pipeline skeleton, e.g. [Pel03, KC02]. In the functional setting, we can
use the function composition operator directly to compose a sequence of skeletons. In both
cases, the data flow via the caller (pipeline or function composition) is not desired and we
seek to optimise it. For our terminology, it does not matter if the skeleton sequence is
achieved by composition or nesting in a pipeline, we refer to it as composition in sequence.
We present three example skeletons, which where composed by hand. The distributed
workpool skeleton (based on [DBL10] and [Die07]), the Eden implementation of Google map-
reduce(based on [BDL09]) and the Eden implementation of the distributed homomorphism
skeleton (based on [LBDL09]). We extracted a monolithic version of the allToAll skeleton
which we used to implement revised versions of the Google map-reduce skeleton and the
distributed homomorphism skeleton presented in Chapter 4.1.3 and Chapter 4.1.4.

In Eden, optimised communication does not come implicitly when using function composi-
tion on skeletons. As presented earlier, this is due to the lack of distributed data structures
and the missing compiler optimisations to eliminate communication indirections. Our
approach to optimise communication among processes is based on remote data, which we
put in arbitrary container structures such as lists or trees. A list of remote data handles
can be used similar to a distributed data structure to interconnect succeeding skeleton
calls in a distributed way, but it is much more flexible. Skeletons with a remote data
interface (e.g. [RD a]) are thus efficiently composable, if they use fetch and release on
the processes in an appropriate way. This was first described in PADL10DHL, which is the
base version of Chapter 4.2 and Chapter 4.3.2. Common languages offer a limited set of
distributed data structures (e.g. array and matrix) each associated with a fixed set of
redistribution functions. We can further manipulate the data container and the order of
the remote data elements by recursion, pattern matching and predefined library functions.
Thus, we can redistribute the data or convert it to another container type. This can be
used to make skeletons with incompatible container signatures compatible. We also use
this technique skeleton internally to define a core set of communication skeletons similar
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to MPI’s collective operations like allToAll, reduce or allReduce.
We further compare monolithic skeletons to skeletons composed by component skeletons
with remote data interface and evaluate them by some example case studies.

Chapter 5: Skeleton iteration

For skeleton iteration, we present an iteration framework for persistent skeleton iteration
in Eden. Eden skeletons are usually transient, they terminate after evaluating their results.
Eden allows for persistent skeletons by using streams as process input and output. The
iteration framework consists of control- and body skeletons, both with stream interfaces.
The control skeleton may be a single process or a parallel skeleton connected to the body
in parallel via a remote data interface. A control skeleton transforms the initial input to
a skeleton body input, transforms the result from the body skeleton to the loop input
for the body skeleton and decides about termination and the final result. Body skeletons
are mostly standard Eden skeletons, lifted to a stream interface simply by lifting the
parameter functions to a stream.
Chapter 5 - Chapter 5.2 are a revised version of [DHBL13], Chapter 5.4.2 is taken from
[DHLB16].

Chapter 6: Types and Type Class Support for Efficient Composition

This chapter describes original, unpublished work.
In Chapter 6, we propose some extensions for Eden to improve composition support. We
introduce new versions of the type class for overloaded communication, namely class Trans

for transformable data (high level communication semantics, reduced by transformation
to ...) and class Transmissible for transmissible data (... the low level communication
semantics). The Trans class is used to define communication semantics of a type by
reducing it to the communication semantics of a type already defined in the Transmissible

class. Thus, e.g. a tree can be streamed by default by transforming it to a stream type.
The inverse transformation has to be added as well and has to be unambiguous, such
that the transformation can be undone at the receiver side. Interesting use cases include
automatic chunking of data to reduce streaming overhead or automatic data compression
in order to minimise communication cost. Our main purpose is to allow nested streams
inside iterations.

Eden’s instantiation function spawn is defined for lists. In order to allow more general
parallel input we generalise spawn to work with arbitrary Spawnable containers, which
are essentially Traversable containers plus process placement information. We also
generalise function fetchAll, which is an eager version of map fetch to work on arbitrary
Traversable container types with remote data elements. We allow for Targetted container
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types (enriched with process placement information) and standard container types to be
instantiated by a single function spawn, which allows us to generalise skeleton definitions
with or without process placement information. Both enables us to create skeletons with
arbitrary container types, which can be composed with other skeletons with concrete
or arbitrary interface types when instantiated with a matching input type. We define
further a type class for distributed data types (container with remote data) and introduce
location-aware remote data, which can be used e.g. to achieve corresponding placement
for two composed skeletons which are interconnected using remote data.

We present boxes, simple wrapper types to escape the communication behaviour of a
contained type. Boxes may define special evaluation forms when evaluated with rnf. This
allows e.g. to send values unevaluated in a lazy box or to send streams as single elements
in a strict box. Boxes were first introduced in [DHLB16]. Furthermore, we present a type
class for boxes and dynamic boxes, with parametric evaluation strategy which may change
the evaluation degree.

Chapter 8 concludes and Chapter 7 presents related work.

The following chapter contains a small introduction to Eden.



CHAPTER 2

Eden

Eden is a semi-explicit parallel functional language, originally designated for distributed
memory settings, which works equally well on shared memory systems. Eden works with
a distributed memory model, thus we use the categories machines, processes and threads
for the different parallel entities.
An Eden program is started with n virtual machines on m physical machines. Each virtual
machine contains a sequential runtime system instance with separate scheduler and heap.
We will use the term physical machines explicitly if we want to refer to them and use the
term machines for such virtual machines. The machines are executed by OS Threads,
which works well in parallel if there are sufficiently many cores available. The machines
communicate by a middleware like MPI or PVM. When working on a single physical
machine, we additionally offer the “copy way”, a special way for the Eden runtime system
which works by directly copying data among the different heaps exploiting the shared
memory and without involving a separate middleware. Such connected runtime systems
together form the parallel runtime system of the Eden compiler.

Eden has an explicit process concept with explicit process creation, but mostly implicit
communication. Processes are executed on the available machines. Processes which share
the same machine are executed concurrently, but don’t explore further parallelism as they
are scheduled by a sequential runtime system.11

Eden extends Haskell by a small set of functions and a type class for overloaded communi-
cation. This type class Trans for transmissible data determines how data is communicated.
Before sending, data is evaluated to normal form, thus class Trans has an NFData context:
NFData a ⇒ Trans a. There are three sending modes:

Lists are evaluated and sent element wise as a (possibly infinite) stream. Nested lists are

11 This may change, we plan to combine Eden’s parallel runtime system with GHC’s [GHC15] threaded
runtime system.

15
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only streamed at top-level.

Tuples are evaluated and send concurrently for all tuple elements. Tuples of lists are
streamed concurrently, lists of tuples are streamed with single messages. Tuples of
tuples are only send concurrently at top-level.

Other values are evaluated and sent in a single chunk.

Eden has a push communication semantics, it puts demand on values to be sent. This
differs from Haskell’s lazy evaluation semantics.

Eden uses Haskells light weight threads for concurrency, which incur only minor overhead.
Like processes, threads in Eden are scheduled by the sequential runtime system.

2.1 Language Definition

Basic Operations

Eden’s basic operations are process creation and instantiation:
process :: (Trans a, Trans b) ⇒ (a → b) → Process a b
(#) :: (Trans a, Trans b) ⇒ Process a b → a → b

The process function applied to a function f ::⇒ a → b creates a process abstraction.
The (#) operator instantiates a process abstraction Process a b with a corresponding
input x of type a. This leads to the creation of a process, the evaluation of the input x to
normal form and its sending to the newly created process. The process evaluates f x and
returns the result to the caller process. Inputs and outputs are sent via implicit channels.
More convenient is the combination of process and #, which creates directly a remote
process from a function:
($#) :: (Trans a, Trans b) ⇒ (a → b) → a → b
($#) f x = process f # x

A problem arises when multiple processes shall be instantiated, e.g. by:
zipWith ($#) [f1,f2] [x1,x2]

Here, Haskells lazy evaluation causes that the instantiation f2 $# x2 is delayed until the
weak head normal form (whnf ) of f1 $# x1 has been evaluated in the caller process, which
is when the caller process receives (some part of) the first processes result. We call this
effect distributed sequentiality. Thus, Eden has been extended by functions:
spawn :: (Trans a, Trans b) ⇒ [Process a b] → [a] → [b]
spawnF :: (Trans a, Trans b) ⇒ [a → b] → [a] → [b]
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to eagerly instantiate lists of processes and lists of functions respectively, where spawn is
equal to zipWith (#) and spawnF is equal to zipWith ($#) except of demand control.

Usually, process placement takes place implicitly – with a machine local round robin
scheme among the available machines. There are variants spawnAt and spawnFAt of spawn
which take additionally a list of id’s to explicitly determine the machines for placing the
different processes.
type Places = [Int]
spawnAt :: (Trans a, Trans b) ⇒ Places → [Process a b] → [a] → [b]
spawnFAt :: (Trans a, Trans b) ⇒ Places → [a → b] → [a] → [b]

Machines are cyclically reused, thus spawnAt [1..n+1] uses machine 1 twice if there are
only n machines available. Places are also cyclically reused if they are not sufficiently
available, e.g. spawnAt [1] [f,g] [1,2] will instantiate f and g on machine 1. Place 0 is
specially treated by using the automatic placement. Thus spawn = spawnAt [0].

Nondeterminism

Eden programs are basically deterministic, but for efficient programming it is crucial to
have a notion of parallelism degree and process position. Here Eden provides the constants
noPe :: Int giving the total number of connected machines and selfPe :: Int, which is
the machine id where the current process resides. Of course these constructs may lead to
different results dependent on the number of machines in the current runtime environment.
This is most obvious for the program:
main = return noPe

However, programs using noPe and selfPe run deterministically on the same number of
machines.

The second source of nondeterminism is function merge :: [[a]] → [a] which merges
nondeterministically a list of lists (or incoming streams) by the order of arrivals. This is
necessary to define e.g. systems for dynamic load balancing. A program using merge is not
purely functional. However, nondeterministic results can be avoided when the programmer
takes care e.g. to manually re-establish the original order of the resulting elements.

Dynamic Channels

A limitation of the basic set of functions is that we can only produce implicit channels
along the caller hierarchy which is always tree shaped. Therefore Eden provides also
explicit communication channels of type ChanName a for the creation of arbitrary process
topologies with functions:
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new :: Trans a
⇒ (ChanName a --parameter function that takes a channel name

→ a → b) --and a substitute for the lazily received value.
→ b --forwarded result

parfill :: Trans a
⇒ ChanName a --ChanName to connect with
→ a --data that will be sent
→ b --forwarded to result
→ b --result

Function new produces a new channel consisting of an open inport where data will be
received by the local process and a channel name (handle) for sending the data from
an arbitrary process. new works in a continuation passing style taking a function as
parameter which describes how the result depends on the name and the contents of the
newly generated channel.
Function parfill is the counterpart of new used on the sender side to fill a channel. It
takes a channel handle of type ChanName a, a value of type a and a continuation of type
b which is directly returned as result. parfill forks a thread for the evaluation of the
value and the execution of the sending operation. Note that channel creation and use
are non functional features. new’s and parfill’s purpose is to trigger a side effect, the
channel creation and channel use, respectively, not to calculate a result. The forwarded
results of both functions are artificially added, to allow for these functions to be integrated
in the demand string. This may easily lead to problems, e.g. deadlocks, as we show in
the subsequent example. We also trigger side effects by using the instantiation operator
($#), but we supply ($#) with an input and we are interested in the output. Apart from
strictness issues, it makes no difference in denotational semantics if we use ($#) or ($),
the difference is basically where and to which degree we calculate the result.

A dynamic channel created with new can only be used once with parfill. After the use, the
inport at the receiver side is closed and further messages will not be received. Multiple
use of a single channel leads to a runtime error in the current implementation.

We can connect two processes directly using new and parfill. A small example is depicted
in Figure 2.1. f1 and f2 define the functionality of two processes. f1 takes x of type
Int and, lazily supplied in the second tuple component, a channel handle ch' of type
ChanName Int. It forks a thread to evaluate x+1 and to send the result via ch' and
returns the dummy value (). f2 ignores its unit input and creates a channel ch'' of type
ChanName Int to receive a value y of type Int. It returns y+1 and the channel handle ch'.
We instantiate f1 with the input inp and lazily, with the channel which will be created by
f2. By instantiating f2 with f1’s dummy result z, we enforce the evaluation of z due to
Eden’s eager communications semantics. If there would be no demand for z in f (here by
supplying f2 directly with () instead of z), then f1 would never be instantiated due to
Haskell’s lazy evaluation and f would deadlock.
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f :: Int → Int --
f inp = res where

f1 :: (Int, ChanName Int) → ()
f1 (x,ch') = parfill ch' (x+1) ()

f2 :: () → (Int, ChanName Int)
f2 = const $ new (λch'' y → (y+1,ch''))

z = f1 $# (inp, ch)
(res,ch) = f2 $# z

(a) code

f

p1 p2

(Int, ChanName Int)

() ()

(Int, ChanName Int)

Int

(b) process scheme

0.0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.001

P3:Sys

P3:1

P2:Sys

P2:1

P1:Sys

P1:1

(c) runtime trace: processes per machines view

0.0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.001

T3:Sys:3
T3:1:2
T3:1:1

T2:Sys:3
T2:1:2
T2:1:1

T1:Sys:5
T1:1:4
T1:1:3
T1:1:2
T1:1:1

(d) runtime trace: threads view

Figure 2.1: A simple example for dynamic channel usage
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2.2 Analysis of Runtime Behaviour

The runtime traces in Figure 2.1c and 2.1d visualised by Eden’s Trace Viewer EdenTV
[BL07b] reveal the runtime behaviour of function f. EdenTV is a post mortem trace
visualisation tool which depicts runtime behaviour of machines, processes or threads,
depending on the view, in horizontal bars12 and overlays message communication by black
and red arrows (lines with a dot at the end), black arrows for normal communication, red
arrows for process instantiation. Time is depicted on the x-axis. The bars are coloured
in green if the computation unit (machine/process/thread) was running, yellow if it was
runnable but not running (e.g. because other processes were using the physical resources
or garbage collection takes place) and red if it was blocked (e.g. waiting for data) at this
moment.

The trace visualisation in Figure 2.1c shows the processes per machines view, we can
see that the main process (P1:1)13 instantiates first process P2:1 (red arrow), which
corresponds to f2 in the code. f2 is instantiated prior to f1, because there is demand on
its result res. After process creation, the process evaluating f2 sends a channel handle to
receive its unit input (this happens after each process creation) and the dynamic channel
handle ch to the main process. Now, there is demand to evaluate f2’s unit input z,
which happens always concurrently by a separate thread (T1:1:214 in the thread view,
Figure 2.1d). This causes the instantiation of the process P3:1 evaluating f1 with result
z. f1 directly returns a channel handle for its input and the unit result z, after forking a
thread (T3:1:2) to evaluate x+1 and sending it over the dynamic channel. Thread T3:1:2
is blocked on the missing input x and the channel handle ch; after receiving both, x+1 is
send to f2, which returns y+1 ((x+1)+1) to the main process. On each machine, there is
an additional system process performing finaliser tasks, which has nothing to do with the
program code.

12 one bar per computation unit (machine/process/thread, depending on the current view)
13 Notation in Process view: Pmachine:process
14 Notation in Thread view: Pmachine:process:thread
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2.2.1 Test Environments

Our runtime experiments were executed on the following parallel machines:

name type details
igor: multi-core processor Intel Core i7-3770K@3.50GHz with

4 cores (hyperthreaded) and 16GB
RAM at the Philipps-Universität
Marburg.

hex: multi-core multiprocessor 4 × AMD Opteron Processor
6378@2.40GHz with each 16 cores
(64 cores total) and total 64GB RAM
at the Philipps-Universität Marburg.

Beowulf: cluster of multi-core multiprocessors 32 machines with each 12GB RAM
and 2 × Intel Xeon E5504@2.00GHz
with each 4 cores (256 cores total)
at the Heriot-Watt University, Edin-
burgh.

2.3 Remote Data

The idea is to use lightweight handles for data – called remote data – which can be passed
cheaply between machines and used at the destination machine to retrieve the data directly
from the point of origin.

This section follows and reuses the corresponding presentation in [DHL10]:
We develop the concept of remote data in the context of our parallel functional language
Eden, although the concept itself is language-independent. It could equally well be added
to other parallel languages, see [AG03, AG04, Alt07] for a realisation in Java.

We will introduce a new data type RD a representing a handle for remote data of type
a and provide interface functions release :: a → RD a and fetch :: RD a → a. The
function release yields a remote data handle that can be passed to other processes, which
will in turn use the function fetch to access the remote data. The data transmission
occurs automatically from the processes that released the data to the process which
uses the handle to fetch the remote data. Skeleton composition skel2 ◦ skel1 of type
a → c where skel2 of type [b] → c and skel1 of type a → [b] will now be replaced
by skel2' ◦ skel1' of type a → c where skel2' is of type [RD b] → c and skel1' is of
type a → [RD b]. The modified skeleton definitions differ from the original ones only in
additional applications of release in the processes of skel1' and fetch in the processes of
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skel2'. These small modifications solve our problem while preserving the original program
structure. We will show that complex communication structures like an all-to-all scheme
can easily and elegantly be defined using remote data.

Eden Implementation of remote data

The implementation of remote data in Eden (Figure 2.2) is simple and elegant. To release

local data x of type a we create – using the function new – a channel name cc of type
ChanName (ChanName a) via which a channel c of type ChanName a will be received. Using
parfill a thread is forked that subsequently sends the local data x via the channel c. The
result of the release function is the newly created channel cc :: ChanName (ChanName a).
Note that the remote data type RD a is a synonym of cc’s type. Data of type RD a is
merely a channel name and thus very lightweight with low communication costs. To access
remote data we need to fetch it by again creating a channel c :: ChanName a using the
function new. This channel is sent via the remote data handle, i.e. the channel cc of type
RD a. The proper data is then received via channel c and returned as the result of the
fetch function.

The communication using remote data creates a slight overhead. In comparison to the
common way of defining explicit communication we have an additional channel per direct
connection that is used only before the transmission of the actual data begins. However, as
this channel only transports a value of type ChanName a which is quite small the increase
in communication cost should not be noticeable in most cases.

Example: We show a small example where the remote data concept is used to establish
a direct channel connection between the sibling processes. Given functions f and g, one
can calculate (g ◦ f) a in parallel creating a process for each function. Figure 2.3 shows
two different ways to implement this. Simply replacing the function calls by process
instantiations

r1 a = g $# (f $# a)

-- remote data
type RD a = ChanName (ChanName a)

-- convert local data into corresponding remote data
release :: Trans a ⇒ a → RD a
release x = new (λcc c → parfill c x cc)

-- convert remote data into corresponding local data
fetch :: Trans a ⇒ RD a → a
fetch cc = new (λc x → parfill cc c x)

Figure 2.2: Remote data definition
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Figure 2.3: Using remote data

leads to the following behaviour (visualised in the left part of Fig. 2.3): Function r1

instantiates first the process calculating g. Then r1 instanciates the process remotely
calculating f in order to evaluate g’s input. r1 passes its input to this process and receives
the remotely calculated result and passes the result to process g. The output of the process
g is also sent back to the caller. The drawback of this approach is that the result of the
process f will not be sent directly to process g. This causes unnecessary communication
costs.

We use remote data RD a in the second implementation
r2 a = (g ◦ fetch) $# ((release ◦ f) $# a).

It uses function release to produce a handle of type RD a for data of type a. Calling
fetch with remote data returns the value released before. Function r2 is identical to r1

except for the conversion of the result type of f’s process and the input type of g’s process
to remote data. The use of remote data leads to a direct communication of the actual
data between the processes of f and g (see the right part of Fig. 2.3). The remote data
handles are treated like the original data in the first version and the basic structure of the
program, i.e. the composition of two process instantiations, remains the same.

This is similar to the previous process composition example using dynamic channels in
Figure 2.1, where the structure of the process composition had to be changed because
of the receiver initiated channel creation. We had to be very careful to put demand on
the instantiation of process 1 in order to avoid a deadlock situation. A revised version
of the process composition example using remote data is depicted in Figure 2.4a and
Figure 2.4b. With remote data, the demand problem vanishes, as we use remote data
structurally like the original data, also the demand structure of the original program is
preserved. The runtime trace visualisations in Figure 2.4c and Figure 2.4d reveal that the
runtime behaviour is similar. The remote data example uses 1 thread and 1 message less
than the example using dynamic channels. This is due to the tuple usage in the previous
example, causing the use of an additional thread and a additional message per tuple in or
output. Even though the use of remote data also involves the creation of an additional
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f' :: Int → Int --
f' inp = res where

f1 :: Int → RD Int
f1 x = release $ x+1

f2 :: RD Int → Int
f2 rd_y = fetch rd_y + 1

z = f1 $# inp
res = f2 $# z

(a) code

f’

p1 p2

Int

RD IntRD Int

Int

Int

ChanName Int

(b) process scheme

0.0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.001 0.0011 0.0012

P3:Sys
P3:1

P2:Sys
P2:1

P1:Sys
P1:1

(c) runtime trace: processes per machines view

0.0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.001 0.0011 0.0012

T3:Sys:3

T2:Sys:3

T1:Sys:4

T3:1:2
T3:1:1

T2:1:2
T2:1:1

T1:1:3
T1:1:2
T1:1:1

(d) runtime trace: threads view

Figure 2.4: A simple example for remote data usage
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thread and an additional message, the overhead caused by two tuples outweighs the use of
one remote data handle. Comparing the effective runtime, we observe that the remote
data example is about 0.0001 seconds slower. This is because the extra channels for the
tuple in and outputs are used concurrently while the extra channel for the remote data
handle is used in sequence, delaying the execution. ◁

A problem arises when remote data needs to be duplicated. Channel names (of type
ChanName a) cannot be used more than once to retain referential transparency [LOMP05].
As remote data is implemented as a specialised channel name, it must not be duplicated
and fetched several times in parallel. To duplicate Remote Data on a node it is necessary
to fetch the data and release it again repeatedly.

Runtime support has been implemented for optimised communication on the same ma-
chine15. Communication is avoided if the released data of the sending process is referenced
by the fetched data on the receiving process which both share the same heap (machine).
This optimisation applies to all Eden channels, independent of their construction (remote
data channels, dynamic channels or implicit channels).

2.4 Eden Implementation

The Eden implementation is split into parallel runtime system support and primitive
parallel operations, which are built into the Eden version of GHC, a branch of the upstream
GHC [GHC15], and wraped on library level in the ParPrim module. The Eden module
defines the previously introduced Eden functions based on the ParPrim module. Both are
part of the edenmodules package available on hackage:

http://hackage.haskell.org/package/edenmodules.

Parallel Primitives

The Eden module is based on the primitive parallel operations of the Eden compiler,
which are wrapped at Haskell level in the module Control.Parallel.Eden.ParPrim. The
parPrim module exposes functions
noPe :: IO Int
selfPe :: IO Int

which are versions of the previously presented selfPe and noPe in the IO-Monad. Eden’s
channel handles of type ChanName include overloaded send functions and are based on
primitive channels

15 This was implemented by Jost Berthold, thanks.
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data ChanName' a = Chan Int# Int# Int# deriving Show

which are mere triples of primitive integers to identify machine, process and inport,
corresponding to a primitive channel created by the IO action:
createC :: IO ( ChanName' a, a )

Before sending data, we have to connect to a channel
connectToPort :: ChanName' a → IO ()

Then we can send data to the connected receiver in a custom mode.
sendData :: Mode → a → IO ()

data Mode = Data -- data to send is single value
| Stream -- data to send is element of a list/stream
| Instantiate Int -- data is IO(), receiver to create a thread for it
| Connect -- announce sender at receiver side

where messages in

• Data mode are sent in a single chunk.

• Stream mode are sent element wise (only for lists).

• Instantiate mode cause a process creation on the receiver side, the contained
message is here the function which will be evaluated by the process.

• Connect mode announce the sender at the receiver machine. This allows to close the
channel and inform the sender about the breakup by the receiver if a message or
remainder of a stream is no longer needed.

For further implementation details see [BL07a].

PA-Monad

The Parallel Action Monad (PA-Monad) is used to wrap the IO-Monad for parallel actions
defined in the Eden module:
newtype PA a = PA { fromPA :: IO a } deriving (Monad,MonadFix,

Functor,Applicative)
runPA :: PA a → a
runPA = unsafePerformIO ◦ fromPA
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The PA constructor is not exported by the Eden Module, thus it is not possible to put an
arbitrary IO action into the PA-Monad16. Inside the Eden Module, there are some actions
defined in the PA-Monad17 which can be freed from the Monad using runPA, a wrapper
for unsafePerformIO. One can define a custom sequence of parallel actions eagerly using
runPA, without the need for unsafePerformIO to get rid of the Monad. Of course, runPA
is basically the same, but it can only be used to free selected actions from the Monad.
This way we basically declare “it is fine to use runPA”. We do not need to encourage
programmers to use unsafePerformIO.

Type class Trans

Central to the Eden implementation is the type class Trans for transmissible data.
class NFData a ⇒ Trans a where

write :: a → IO ()
write =...
createComm :: IO (ChanName a, a)
createComm =...

newtype ChanName a = Comm (Trans a ⇒ a → IO())

It defines the function createComm, which produces a Channel with an open in-port at
the local machine. createComm returns a handle of type ChanName a to the channel and a
variable of type a which will contain the value of the channel after receiving it. The handle
itself is merely an IO-monadic send function, which will be used at the sender side and is
based on the overloaded function write. write is only used to implement createComm, it
is not used outside of the Trans class. Details of the instance declarations of Trans will be
discussed in Chapter 6.1.2.

Re-Implementing Remote Data

We implemented PA-Monadic versions of fetch and release, to allow for custom sequences
of parallel actions generating and using remote data.

To release a value val, we use createComm to create a channel handle, value pair, where
the channel handle cc is synonym for the remote data handle, which will be used to send a
second channel handle Comm sendValC to the process currently evaluating releasePA. We

16 Of course it is possible to define e.g. return(putStrLn "unsafeIO") :: PA (IO ()),
but PA (putStrLn "unsafeIO") :: PA (), and thus runPA (PA (putStrLn "unsafeIO"))
:: () is not possible.

17 like instantiate or fetchPA
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fork a thread to evaluate the send function sendValC applied to val after receiving the
channel handle18 and return the remote data handle cc immediately:
releasePA :: Trans a

⇒ a -- ^ The original data
→ PA (RD a) -- ^ The remote data handle

releasePA val = PA $ do
(cc , Comm sendValC) ← createComm
fork (sendValC val)
return cc

To fetch a value, we create a channel handle, value pair, where the channel handle c will
be sent to the releasing process using the send function sendValCC wrapped inside the
remote data handle. Thus we can receive and return the actual data val:
fetchPA :: Trans a

⇒ RD a -- ^ The remote data handle
→ PA a -- ^ The original data

fetchPA (Comm sendValCC) = PA $ do
(c,val) ← createComm
fork (sendValCC c)
return val

Now we can re-implement fetch and release by runPA ◦ fetchPA and runPA ◦ releasePA.
We also define the eager version fetchAll of fetch for lists based on fetchPA:
fetchAll :: Trans a

⇒ [RD a] -- ^ The Remote Data handles
→ [a] -- ^ The original data

fetchAll ras = runPA $ mapM fetchPA ras

For convenience, we define releaseAll :: [RD a] → [a] similarly using releasePA, even
though map release has no demand problem because the released handles are generated
immediately. Note that fetchAll and releaseAll will block on partially defined input
lists structures, as the sequence of actions has to be triggered as a whole in order to yield
a result.

18 Note: This implies that the evaluation of the value val is also stalled until we receive the channel handle
(after fetchPA is called on the receiver side), because this evaluation is defined by the send function
sendValC which is part of the channel handle. This applies equally for the previous implementation,
but the cause is more transparent in the new implementation.
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Process Creation

Function createComm is also used to define a process abstraction:
data Process a b

= Proc (ChanName b → -- send back result, overloaded
ChanName' (ChanName a) → -- send input Comm., not overloaded
IO ()

)

process :: (Trans a, Trans b) ⇒ (a → b) → Process a b
process f = Proc f_remote

where f_remote (Comm sendResult) inCC
= do (sendInput, input) ← createComm

connectToPort inCC
sendData Data sendInput
sendResult (f input)

Function process converts a function of type (a→b) to a process abstraction of type
Process a b, which describes the processes behaviour on the remote machine. The first
parameter of the process abstraction (Comm sendResult) is a channel handle which will be
used to send the processes result back to the caller process. The second parameter inCC, a
nested primitive channel is similar to a remote data handle to fetch the processes input.
Here, the use of the primitive channel avoids the creation of an additional thread which
would be the case by using an overloaded channel of type ChanName a. The remote process
creates a channel which will be used to receive its input. The channel handle is passed to
the caller process as well as the result of f applied to the input. The whole do block of the
process definition would be equivalent to sendResult ◦ f ◦ fetch $ inCC (except the
additional thread) if it would be defined with remote data instead of the nested primitive
channel.

A process abstraction can be instantiated by function instantiate:
instantiate :: (Trans a, Trans b) ⇒ Int -- ^Machine number

→ Process a b -- ^Process abstraction
→ a -- ^Process input
→ PA b -- ^Process output

instantiate p (Proc f_remote) procInput
= PA $ do (sendResult, r) ← createComm -- result communicator

(inCC, Comm sendInput) ← createC -- reply: input communicator
sendData (Instantiate p)

(f_remote sendResult inCC)
fork (sendInput procInput)
return r

Firstly, instantiate creates a channel to receive the processes result r. Below, the use of
sendData with mode Instantiate instantiates p on a remote machine. The rest of the
code makes the processes input procInput remotely available. Here is the corresponding
code using remote data instead of the nested primitive channel:



30 2 Eden

= do (sendResult, r) ← PA createComm -- result communicator
inCC ← releasePA procInput -- remote input
PA (sendData (Instantiate p)

(f_remote sendResult inCC))
return r

We release the procInput and send the released input handle inCC with the instantiate
action.

With instantiate we can define the (#) operator simply as:
(#) :: (Trans a, Trans b) ⇒ Process a b → a → b
p # x = runPA $ instantiateAt 0 p x

Function spawnAt for eager process instantiation of lists can be defined as a simple sequence
of instantiate actions, which are escaped to the functional world by runPA:
spawn :: (Trans a, Trans b)

⇒ [Process a b] -- ^Process abstractions
→ [a] -- ^Process inputs
→ [b] -- ^Process outputs

spawn ps is = runPA $ zipWithM (instantiateAt 0) ps is

Similarly, the skeleton programmer can define custom instantiation actions, e.g. to eagerly
instantiate tuples with different types:
spawnT2 :: (Trans a, Trans b, Trans c, Trans d)

⇒ (Process a b, Process c d) -- ^Process abstractions
→ (a,c) -- ^Process inputs
→ (b,d) -- ^Process outputs

spawnT2 (p1,p2) (i1,i2)
= runPA $ do r1 ← instantiateAt 0 p1 i1

r2 ← instantiateAt 0 p2 i2
return (r1,r2)

These monadic-style functions conflict with the functional programming notation of Eden
programs, but when defined in separate function definitions with a pure interface, they
are a feasible and easy way to overcome laziness which in turn conflicts with the necessity
of eager execution of parallel actions like process instantiations.

Dynamic Channels

With createComm we can also define dynamic channel creation and use:
new :: Trans a ⇒ (ChanName a → a→ b) → b
new chanValCont = unsafePerformIO $ do

(chan , val) ← createComm
return (chanValCont chan val)
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The definition of new is straight forward. It takes function parameter chanValCont and
uses createComm to create a channel. new provides chanValCont with channel handle chan

and the subsequently received value val.

We use a channel handle (Comm sendVal) to send a value val with function parfill:
parfill :: Trans a ⇒ ChanName a → a → b → b
parfill (Comm sendVal) val cont

= unsafePerformIO (fork (sendVal val) » return cont)

parfill forks a thread to concurrently send value val with the send function sendVal.
The third parameter cont is returned as the functions result.

Both functions, new and parfill use unsefePerformIO to escape the IO-monad.

2.5 Algorithmic Skeletons in Eden

Eden provides a skeleton library edenskel which is available on hackage:
http://hackage.haskell.org/package/edenskel.

In the following, we present a small set of skeletons from the skeleton library which we
will use later in this thesis.

The Parallel Map Skeleton

Skeletons can be easily expressed in Eden as parallel higher order functions. A simple
example is parMap, a parallel map variant which produces one process per list element. It
can be easily expressed using spawnF:

parMap :: (Trans a, Trans b) ⇒ (a → b) → [a] → [b]
parMap f xs = spawnF (repeat f) xs

The Ranch Skeleton

The ranch is a parallel map variant which takes arbitrary input of type a, a transform

function which generates the parallel map input list and a function to reduce the parallel
result. Each process evaluates f on its input:
ranch :: (Trans b, Trans c)

⇒ (a → [b]) -- ^input transformation function
→ ([c] → d) -- ^result reduction function
→ (b → c) -- ^worker function
→ a -- ^input
→ d -- ^output

ranch transform reduce f xs = reduce ◦ parMap f ◦ transform $ xs
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The Farm Skeleton

The farm is a parallel map variant which increases work granularity per process. It can
be implemented using the ranch skeleton. It is controlled by function parameters distr

and combine for input distribution and result combination, which implement a static task
distribution19. Each process evaluates f on a stream of data:

farm :: (Trans a, Trans b)
⇒ ([a] → [[a]]) -- ^input distribution function
→ ([[b]] → [b]) -- ^result combination function
→ (a → b) -- ^map function
→ [a] -- ^input
→ [b] -- ^output

farm distr combine f xs = ranch distr combine (map f) xs

The Ring Skeleton

A typical topology skeleton is the ring. In Listing 2.1 we present a simple version. The
ring takes a list of ring-worker functions (cycled) and a list of inputs, one for each process
respectively. The processes take further a ring input of type i from their left neighbor. If
the type of the ring input is a list (i ~ [i']), then the ring processes are connected by a
stream of data, thus the ring is something like a cycled pipeline. The ring connections are
exchanged via the caller process, where we right-rotate the ring inputs and re-feed them
lazily to the processes. This indirection of messages is inefficient, especially if there are
ring inputs of bigger size or if the ring processes are connected by streams.

In an optimised version we use dynamic channels to shortcut the indirection (see Listing 2.2).

Listing 2.1: A simple ring skeleton
ringFlSimpleAt :: (Trans a,Trans b,Trans r)

⇒ Places -- ^where to put workers
→ [(a → r → (b,r))] -- ^ring process functions
→ [a] -- ^ring input
→ [b] -- ^ring output

ringFlSimpleAt pls fs as = bs where
(bs, ringOuts) = unzip $ spawnFAt pls (map uncurry (cycle fs))

(zip as $ lazy ringIns)
ringIns = rightRotate ringOuts

rightRotate :: [a] → [a]
rightRotate [] = []
rightRotate xs = last xs : init xs

19 Unlike the farm in [BDO+95] and [Kuc02], which implement dynamic task distribution
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Listing 2.2: A ring skeleton interconnected by dynamic channels
ringFlChanAt :: (Trans a, Trans b, Trans r)

⇒ Places -- ^where to put workers
→ [(a → r → (b,r))] -- ^ring process functions
→ [a] -- ^ring input
→ [b] -- ^ring output

ringFlChanAt pls fs as = bs where
(bs, ringOuts) = unzip $ spawnFAt pls (map (link ◦ uncurry) (cycle fs))

(zip as $ lazy ringIns)
ringIns = leftRotate ringOuts

link :: (Trans i, Trans o, Trans r)
⇒ ((i,r) → (o,r)) -- ^ ring process function f
→ ((i, ChanName r) → (o, ChanName r)) -- ^ f with dynamic channels

link f (i, ch) = new (λch' ringIn → let (o, ringOut) = f (i, ringIn)
in parfill ch ringOut (o,ch') )

leftRotate :: [a] → [a]
leftRotate [] = []
leftRotate (x:xs) = xs ++ [x]

Listing 2.3: A ring skeleton interconnected by remote data
ringFlAt :: (Trans a,Trans b,Trans r)

⇒ Places -- ^where to put workers
→ [(a → r → (b,r))] -- ^ring process functions
→ [a] -- ^ring input
→ [b] -- ^ring output

ringFlAt pls fs as = bs where
(bs, ringOuts) = unzip $ spawnFAt pls (map (toRD ◦ uncurry) (cycle fs))

(zip as $ lazy ringIns)
ringIns = rightRotate ringOuts

toRD :: (Trans i, Trans o, Trans r) ⇒
((i,r) → (o,r)) -- ^ ring process function f
→ ((i, RD r) → (o, RD r)) -- ^ f with remote data

toRD f (i, ringIn) = (o, release ringOut)
where (o, ringOut) = f (i, fetch ringIn)

Instead of returning the ring outputs, the processes use function link to create dynamic
channels and pass the channel handles to the caller, in order to receive their ring inputs
directly from their left neighbours. Inversely to the simple version, the caller has to
left-rotate the channel handles before returning them to the processes.

The same optimisation can be made using remote data (see Listing 2.3). Analogously to
function link we use function toRD to lift the ring functions to remote data in their second
component. Due to the use of remote data, this function lifting is the only change to the
original skeleton. We don’t need to change the code structurally, in this case the direction
of the rotation.
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Listing 2.4: A simple master worker skeleton
mw :: (Trans t, Trans r)

⇒ Int → Int -- #workers, prefetch
→ (t → r) -- worker function
→ [t] → [r] -- what to do

mw np prefetch wf tasks = ress
where
(reqs, ress) = unzip ◦ merge ◦ tagF $ outs
tagF = zipWith zip [[i,i..] | i ← [0..np-1]]
outs = parMap (map wf) inputs
inputs = distribute np (initReqs ++ reqs) tasks
initReqs = concat $ replicate prefetch [0..np-1]

The Master Worker Skeleton

Master Worker skeletons implement dynamic load balancing among workers. The load
balancing is actively generated by a single master process. The skeleton takes the number
of worker processes np, a prefetch parameter, the worker function wf which will be mapped
on the tasks by the worker processes and the tasks as input. The tasks are dynamically
split into np sublists inputs. This split is defined by auxiliary function distribute (from
Control.Parallel.Eden.Auxiliary) and controlled by a list of requests reqs. The workers
are instantiated using parMap with the inputs. Each process receives one task per request.
Initially, each process shall get a buffer of prefetch tasks and accordingly, prefetch

initial requests initReqs are generated. The worker outputs are tagged with the process
ids and nondeterministically merged by the order of arrival. After merging, these tags
are used as additional work request reqs. Each worker gets an additional task for each
result. This simple workpool does not sort the results by the initial task order. See
Control.Parallel.Eden.Workpool for sorting versions.
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Skeleton Nesting

In functional languages, nesting of skeletons works typically out of the box. This is because
they are implemented as higher order functions. One can nest arbitrary skeletons using
a skeleton as function parameter of another skeleton. The process tree of the parameter
skeleton will be appended to the process tree of the caller skeleton. Skeleton nesting is
hence the natural way of composing skeletons in functional languages.

3.1 Divide and Conquer Skeletons

A simple example for the latter case of skeleton nesting is a parallel divide and conquer
skeleton which can be defined exploiting a distributed expansion scheme by nesting itself:
parDC :: (Trans a, Trans b)

(a → Bool) -- trivial?
→ (a → b) -- solve
→ (a → [a]) -- split
→ (a → [b] → b) -- combine
→ a -- input
→ b -- result

parDC trivial solve split combine x
| trivial x = solve x
| otherwise = combine x $ parMap dc $ split x
where dc = parDC trivial solve split combine

The skeleton takes function parameters to

• check if a task is trivial,

• to solve a trivial task,

• to split a task into sub-tasks and

• to combine solved sub-tasks.

35
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M1 M2 M3 M4 M5 M6 M7 M8 M9

Level1

Level2

Level3

1 1 2 3 4 4 3 2 1#Procs

Figure 3.1: 4-ary tree, depth 2; implicit process placement

The parDC skeleton splits tasks recursively into sub-tasks until a task is trivial. Skeleton
parMap is used with function parameter parDC to realise the recursion in parallel. Skeleton
parDC will call parMap again until a trivial task is met. The problem of such recursive
process instantiations in Eden is the mapping of processes to machines. Edens current
implementation uses by default an implicit mechanism to assign processes to machines
in turn, meaning round robin among the machines. Eden does not use a global counter,
instead each machine has its own counter. This leads to an uneven mapping of processes
to machines for the case of implicit process placement when instantiating process trees
(see Figure 3.1).

An even mapping of process to machines is desirable. This was realised for regular divide
and conquer problems with a fixed branching degree on every level (see Figure 3.2) and a
ticket mechanism, which can be used in combination with explicit process placement.

“Figure 3.3 shows a distributed expansion divide and conquer skeleton for
k-ary task trees. Besides the standard parameter functions, the skeleton
takes the branching degree, and a ticket list with PE numbers to place newly
created processes. The left-most branch of the task tree is solved locally, other
branches are instantiated using the Eden function spawnAt, which instantiates
a collection of processes (given as a list) with respective input, on explicitly
specified PEs. Results are combined by the combine function.

Explicit Placement via Tickets. The ticket list is used to control the
placement of newly created processes. First, the PE numbers for placing the
immediate child processes are taken from the ticket list. Then, the remaining
tickets are distributed to the children in a round-robin manner using the
function unshuffle :: Int → [a] → [[a]] which unshuffles a given list into
as many lists as the first parameter tells. Child computations will be performed
locally when no more tickets are available. The explicit process placement via
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1

2

3
5 7 6

4
8

(a) Binary tree, depth 3

1

2

5 13 69 1410

3

7 11 15

4

8 12 16

(b) 4-ary tree, depth 2

Figure 3.2: Divide and conquer; explicit process placement

dcN :: (Trans a, Trans b) ⇒
Int → [Int] → -- branch degree / tickets
DivideConquer a b

dcN k tickets trivial solve split combine x
| null tickets = seqDC x
| trivial x = solve x
| otherwise

= childRes `seq` -- demand control: ...
rnf myRes `seq` ... first start children
rnf localIns `seq` -- then evaluate locally
combine ( myRes:childRes ++ localRess )

where
-- sequential computation
seqDC x = if trivial x then solve x

else combine (map seqDC (split x))
-- child process generation
childRes = spawnAt childTickets childProcs procIns
childProcs = map (process ◦ rec_dcN) theirTs
rec_dcN ts = dcN k ts trivial solve split combine
-- ticket distribution
(childTickets, restTickets) = splitAt (k-1) tickets
(myTs: theirTs) = unshuffle k restTickets
-- input splitting
(myIn:theirIn) = split x
(procIns, localIns)

= splitAt (length childTickets) theirIn
-- local computations
myRes = rec_dcN myTs myIn
localRess = map seqDC localIns

Figure 3.3: Distributed expansion divide and conquer skeleton for k-ary task trees.
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ticket lists is a simple and flexible way to control the distribution of processes as
well as the recursive unfolding of the task tree. If too few tickets are available,
computations are performed locally. Duplicate tickets can be used to allocate
several child processes on the same PE. The numbers in Figures 3.2a and 3.2b
give the PE numbers when the ticket lists [2..8] and [2..16] are used for
placement, respectively.

Demand Control. As Haskell’s lazy evaluation would suppress any parallel
evaluation, we need to add explicit demand for starting parallel child processes
and to ensure early evaluation of local subresults. In the dcN skeleton (lines 8
and 9 in Figure 3.3), we first force the creation of the child processes (using
seq), and then fully evaluate all local computations (using the rnf strategy) ,
before combining all subresults to the overall result.”20

For the presented divide and conquer skeletons, skeleton nesting is the principle of their
construction. We will next look at master worker skeletons. Here the basic skeleton version
is unnested, but it can be nested to create a hierachical master worker skeleton.

3.2 Hierarchical Master Worker Skeletons

The basic master worker skeleton implements dynamic load balancing among worker
process via a single master process (see Figure 3.4). The skeleton input is a list of tasks.
Every worker gets an initial amount (prefetch) of tasks. Each time when a task is solved
by a worker, it returns the result and a request to the master, which will respond with a
new task until the task-pool is exhausted. The skeleton is non recursive and not nested.

mw :: (Trans task, Trans result)
⇒ Int --number of workers
→ Int --prefetch of tasks
→ (task → result) --worker function
→ [task] → [result] --what to do

(a) Signature

master

worker workerworker

merge

...

tasks

(requests

,results)

tasks results

(b) Visualisation

Figure 3.4: Master worker skeleton

20 [BDLL09, pages 49-50]
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The bottleneck of this architecture is the master process, which can slow down the whole
system when it is overloaded. To unload the master, one can introduce a hierarchy of
submasters, which are served by a master and serve on their part further submaster process
or worker processes. This can be defined by nesting the skeleton.

“To simplify the nesting, the basic skeleton mw is modified in such a way that
it has the same type as its worker function. We therefore assume a worker
function wf :: [t] → [r], and replace the expression (map wf) in the worker
process definition with wf. This leads to a slightly modified version of mw,
denoted by mw' in the following. An elegant nesting scheme (taken from
[Pri06]) is defined in Figure 3.5. The parameters specify the branching degrees
and prefetch values per level, starting with the root parameters. The length of
the parameter lists determines the depth of the generated hierarchical system.

The nesting is achieved by folding the zipped branching degree and prefetches
lists, using the proper worker function, of type [t] → [r], as the starting
value. The folding function corresponds to the mw' skeleton applied to the
branching degree and prefetch value parameters taken from the folded list and
the worker function produced by folding up to this point.

The parameters in the nesting scheme above allow to freely define tree shape
and prefetch values for all levels. As the mw skeleton assumes the same worker
function for all workers in a group, it generates a regular hierarchy, one cannot
define different branching or prefetch within the same level. It is possible to
define a version of the static nestable work pool which is even more flexible (not
considered here), yet more simple skeleton interfaces are desirable, to provide
access to the hierarchical master worker at different levels of abstraction.”21

Once again, Eden’s default instantiation mechanism leads to an uneven mapping of
processes to machines. The ticket mechanism described in the previous section can also
be used here, the nesting is a bit more complicated with the ticket mechanism and we
implemented it with recursion (see Chapter A.1 for an implementation).

So far, we have investigated skeleton nesting where each nested skeleton was called by
(hence connected to) a single process of the caller skeleton. Now we change the subject
slightly, we compose skeletons in sequence and we want to connect arbitrary processes of
the involved skeletons.

21 [BDLP08, page 251]
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mwNested :: (Trans t, Trans r) ⇒
[Int] → [Int] → -- branching/prefetches per level
([t] → [r]) → -- worker function
[t] → [r] -- tasks, results

mwNested ns pfs wf = foldr (uncurry mw') wf (zip ns pfs)

(a) Code

master

merge

tasks

(requests

,results)

tasks results

master

workerworker

merge

...

tasks

master

worker worker

merge

...

tasks

...

(requests

,results)

(requests

,results)

(b) Visualisation

Figure 3.5: Static nesting with equal level-wise branching



CHAPTER 4

Skeleton Composition: Sequences

“Skeletons should be small and simple to instantiate to increase the ease and
flexibility of their use. In particular, it should be possible to compose and nest
skeleton instantiations arbitrarily. This means for the case of a distributed
memory setup and structured data that must be passed from one skeleton to
the next that the result of the first skeleton is gathered in a single process and
redistributed for the following skeleton execution. This causes unnecessary
communication and holds the danger of a communication bottleneck in the
caller process (see Figure 4.1 (a)). A typical example is the composition of two
parallel maps (parallel task farms) producing a two dimensional matrix with
an intermediate transpose.

There exist several proposals to avoid the gathering and redistribution of
distributed data. One could introduce a new distributed data type as common
in languages with a data-parallel concept [KC02, DGTY95b] where data can be
passed in a distributed manner. In this case, one needs special transformation
and conversion functions to redistribute the distributed data or to switch
between distributed and common data types. Another simple alternative
would be to design a new integrated skeleton for the composition by merging
the two skeleton instantiations and organising the redistribution explicitly

Skel1 Skel2 Skel1 Skel2

(a) collection and redistribution (b) direct redistribution

Figure 4.1: Data transfer between composed skeleton instances

41
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within the new skeleton context. This approach has the disadvantage that the
programmer has to go into the internals of skeleton design and that the clarity
of the original composition is lost.”22

On the other hand, this approach of manually merging skeletons is the only possibility of
optimisation when lacking a concept for efficient skeleton composition. In the following
section, we discuss some examples for manually merged skeleton compositions which
initially motivated this thesis.

4.1 Skeleton Sequencing by Hand: Monolithic Skeletons

To overcome the gathering and redistribution of data in between different skeleton instances,
it has often been necessary to integrate two skeletons in a single, optimised skeleton. We
will exemplify this by three case studies, a Distributed Workpool Skeleton which is logically
composed from a reduce skeleton built from a hierarchy of collector processes and a ring
skeleton of worker processes. In the second example, we present the implementation of
the Google map-reduce framework as Eden skeleton [BDL09] and as third case study we
present a parallel map-and-transpose skeleton, which we used to calculate FFT [LBDL09].
The latter two skeletons can be defined as an application of a more general all2All

skeleton, introduced in Chapter 4.1.2.

4.1.1 Distributed Workpool Skeletons

Distributed workpool skeletons – like Master-Worker skeletons – implement dynamic
load balancing among worker processes, but – unlike Master-Worker skeletons – the load
balancing is performed without a central master process in a distributed way. In [DBL10]
(based on [Die07]), an implementation of such a distributed workpool skeleton has been
described:

“The distributed work pool skeleton uses a set of workers to solve a list of
initial tasks received from the caller. Each worker holds a local task pool, and
maybe a local state. New tasks may be created and added while solving the
initial task set. Load balancing is achieved by a demand-driven exchange of
surplus tasks.

Skeleton Interface and Application
Fig. 4.2 shows the interface of the skeleton, which allows to customise its func-
tionality by a large set of parameter functions. While the last two parameters

22 [DHL10, pages 73-74]
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distribWP :: (Trans t, Trans r, Trans s, NFData r') ⇒
Int → -- no of processes
-- task processing and result post processing
([(t,s)] → [(Maybe (r',s),[t])]) → -- worker function wf
([Maybe (r',s)] → s → [r]) → -- result transform function resTf
([[r]] → [r]) → -- result merge function
-- work pool transformation
([t] → [t] → s → [t]) → -- attach function ttAf
([t] → s → ([t],[t])) → -- split function ttSplitf
([t] → s → ([t],Maybe (t,s))) → -- detach function ttDf
-- state comparison function
(s → s → Bool) → -- compare function cpSf
-- initialisation
s → [t] → -- initial state initS/tasks initTs
[r] -- results

Figure 4.2: Interface of the General Distributed Work Pool Skeleton

provide the initial state and task list, the first parameter specifies the number
of processes to be created. The skeleton creates a ring of worker processes
together with a hierarchy of collector processes. The latter is used to speed-up
result post-processing. Three functions determine task processing and result
post processing, i.e. the proper worker functionality. The work pool is manipu-
lated with the following three parameter functions of the general skeleton: the
task pool transformation and attach function ttAf is used to extend the work
pool with newly created tasks, the function ttSplitf is used to split the work
pool when an external work request arrives, and the function ttDf detaches
a single task for local evaluation. Different selection strategies can be used
for serving oneself via ttDf and other workers via ttSplitf. Finally, the state
comparison function is used for branch-and-bound algorithms to select the
optimal solution (state).”23

As the quotation states, the skeleton is highly customisable and is implemented on top of
a ring topology and a hierarchy of collector processes is included. We actually need some
more parameters of the skeleton to customise the shape of the collector hierarchy, which
have been omitted in this presentation for the sake of simplicity. We could leave these
parameters out and remove the collector hierarchy from the skeleton if we would compose
the skeleton from a collectors/reducer skeleton and a basic distributed workpool skeleton
(built from a ring skeleton) which would also reduce the complexity of the implementation,
compared to the monolithic implementation originally developed in [Die07]. It may seem
that the functionality could be composed from a ring of workers nested within a tree of
collectors. But by nesting the ring in a tree-shaped reducer skeleton, we would have to
call it from the leaf processes of the reducer skeleton. Then it would get instantiated once

23 [DBL10, pages 339-340]
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legend

worker

collector

Figure 4.3: Ring of worker and tree of collector processes

for each leaf process, this is not what we seek. The leaf processes should rather correspond
to a subset of the ring processes of a single ring instance (see Figure 4.3). We present a
compositional implementation at the end of this chapter.

Listing 4.1: The monolithic allToAll skeleton
allToAll :: (Trans a, Trans b, Trans c) ⇒

(Int → a → [b]) -- function before allToAll exchange
→ ([b] → c) -- function after allToAll exchange
→ [a] → [c] -- input / output

allToAll f1 f2 as = cs where
myProcs = unzip ◦ (parMap $ uncurry $ allToAllWorker np f1 f2)
(cs,chanss) = np `pseq` myProcs $ zip as (lazy $ transpose chanss)
np = length as

allToAllWorker :: Trans b ⇒ Int → (Int → a → [b]) → ([b] → c) →
a → [ChanName b] → (c,[ChanName b])

allToAllWorker np f1 f2 a theirChanNs
= let (myChanNs, bs') = createChans np

bs = f1 np a
cs = f2 bs'

in (multifill theirChanNs bs cs, myChanNs)

--create n (channels,inputs)
createChans :: Trans x ⇒ Int → ([ChanName x], [x])

--send n outputs over n channels and return input b
multifill :: Trans x ⇒ [ChanName x] → [x] → b → b
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4.1.2 The allToAll Skeleton

The allToAll skeleton realises an all-to-all data exchange – a distributed transpose phase
– in between two parallel computation phases and is used for the implementation of the
next two case studies: the Google map-reduce framework as Eden skeleton [BDL09] and a
parallel map-and-transpose skeleton. The code of the skeleton is listed in Listing 4.1.

The skeleton is controlled by two function parameters and the input list as. By calling
parMap on the input list24, the skeleton creates one process per list element, which each use
the first function f1 and the assigned list element a to generate a second list bs, which will
be distributed among all processes, one element per process. Therefore we use multifill25

on a list of dynamic channels to all processes theirChanNs and the list of intermediate
results bs. Beforehand, we need to create and exchange channels among all processes
using auxiliary function createChans26. Data (lazily) received via the channel names can
be accessed in the second component of the result tuple of createChans. Thus the created
channel names myChans are returned in the second component of the processes result to
the main process, where they will be transposed and again passed to the processes, hence
each gets one channel from all the other processes.
After receiving the list of values bs' from the other processes, the second function parameter
f2 is applied to define the final result cs, which is returned to the main process27.

4.1.3 The Parallel Google Map-Reduce Skeleton

“The computation scheme of Google map-reduce is depicted in Figure 4.4.
In a nutshell, a Google map-reduce instance first transforms key/value pairs into

mapF

input data
reduceF k(1)

reduceF k(2)

reduceF k(j)

reduceF k(n)

output data
intermediate
data groups

Figure 4.4: Computation scheme of Google map-reduce

24 actually, the initial inputs as are zipped with the lazily supplied communication channels from all
processes transpose chanss. Initially only the as are available

25 like parfill, but for lists of channels and inputs.
26 Creates np channels and a corresponding list of received values.
27 The 3rd argument of multifill is directly passed as the result
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(intermediate) other key/value pairs, using a mapF function. After this, each
collection of intermediate data with the same key is reduced to one resulting
key/value pair, using a reduceF function. In-between the transformation
and the reduction, the intermediate data is grouped by keys, so the whole
computation has two logical phases.

[...]

Our optimised implementation uses direct stream communication between map-
pers and reducers, as depicted in Figure 4.5. Furthermore, instances of mapper
and reducer are gathered in one process, which saves some communication.
In order to directly send the respective parts of each mapper’s output to the
responsible reducer process via channels, a unidirectional m : n communication
must be set up. Each process creates a list of m channels and passes them on to
the caller. The latter thus receives a whole matrix of channels (one line received
from each worker process) and passes them on to the workers column-wise.
Intermediate data can now be partitioned as before, and intermediate grouped
pairs directly sent to the worker responsible for the respective part.”28

We present in Figure 4.6 a revised version of our Google map-reduce skeleton which is
implemented as instance of the allToAll skeleton of Listing 4.1. Thus, this new version
focuses on the mapper and reducer functionality, leaving the communication details to the
underlying allToAll skeleton. This implementation works with lists of tuples instead of

mapF
 1

reduceF k(1)

reduceF k(2)

reduceF k(j)

reduceF k(n)

distributed
output data

k1
k2

kj

kn

mapF
 2

k1
k2

kj

kn

mapF
m-2

k1
k2

kj

kn

mapF
m-1

k1
k2

kj

kn

mapF
 m

k1
k2

kj

kn

input
data

partitioned
input
data

m Mapper
Processes

n Reducer
Processes

...
...

...
...

...

distributed
intermediate
data (groups)

Figure 4.5: Parallel Google map-reduce using distributed transpose functionality

28 [BDL09, pages 993-997, based on [Ber08]]
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mapReduceList :: forall k1 k2 v1 v2 v3 v4 ◦
(Trans k1, Trans k2,
Trans v1, Trans v2, Trans v3, Trans v4,
Ord k2)
⇒ Int -- Number of partitions
→ (k2 → Int) -- Partitioning for keys
→ (k1 → v1 → [(k2,v2)]) -- The ∗'λmap'∗ function
→ (k2 → [v2] → Maybe v3) -- The ∗'λcombiner'∗ function
→ (k2 → [v3] → Maybe v4) -- The ∗'λreduce'∗ function
→ [[(k1,v1)]] -- Distributed input data (list)
→ [[(k2,v4)]] -- Distributed output data

mapReduceList parts keycode mAP cOMBINER rEDUCE input = ress where
ress = allToAll (const mapper) reducer $ unshuffle parts input
mapper :: [[(k1,v1)]] → [[(k2,v3)]]
mapper = map concat ◦ transpose

◦ partitionParts ◦ mapCombine where
mapCombine :: [[(k1,v1)]] → [[(k2,v3)]]
mapCombine = map (reducePerKeyList cOMBINER)

◦ map groupByKeyList
◦ map (concatMap (uncurry mAP))

partitionParts :: [[(k2,v3)]] → [[[(k2,v3)]]]
partitionParts = map (partition parts keycode)

reducer :: [[(k2,v3)]] → [(k2,v4)]
reducer = reducePerKeyList rEDUCE

◦ mergeByKeyList ◦ merge

Figure 4.6: Implementing GMR as instance of the allToAll skeleton

Maps, but a convenient interface using the Map type can easily be added. The input list
is already chunk-ed into sub-lists, to allow coarse grained stream-processing of the data.
This input stream, distributed round robin among the processes by function unshuffle, is
processed by the allToAll skeleton. Each process of the skeleton applies first the mapper,
which, per chunk, is composed of mapping the mAP function to the sub-lists, then the results
are grouped by keys and pre-reduced by the cOMBINER function to save communication
cost. In preparation of the communication step, the elements are partitioned by a keycode,
and rearranged such that each keycodes partition is streamed to its corresponding reducer
process in the communication step. Thus each process receives map-result streams from
all processes for one keycode. The streams are merged nondeterministically by the order of
their arrival using function merge and reduced per key using function rEDUCE. The use of
merge improves the performance and is feasible if function rEDUCE is commutative, which
is a general requirement for function reduce of the Google map-reduce skeleton.

The auxiliary functions are taken from [Ber08]. The implementation based on the allToAll

skeleton is only possible because it contains function parameters which are applied before
and after the transposition in the processes. A real compositional implementation would
be composed of three skeletons: parMap' ◦ parTranspose' ◦ parMap' where parMap' and
parTranspose' are suitable parallel map and transpose implementations. In Chapter 4.3.3,
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we present such a compositional implementation of Google map-reduce.

4.1.4 The Distributed Homomorphism Skeleton

Gorlatch [Gor98] introduced the notion of distributed homomorphisms, which are a subclass
of divide and conquer algorithms, where the split step splits the list at its centre29, the
solve step is id and the combine step is zip(⊕)(u,v) ++zip(⊗)(u,v):

Definition 4.1 For binary operations, ⊕ and ⊗, a distributable homomorphism is a
function (⊕ ↕ ⊗) : [α] → [α], such that for arbitrary lists x and y of equal lengths30:

(⊕ ↕ ⊗)(x ++y) = zip(⊕)(u,v) ++zip(⊗)(u,v),
where u = (⊕ ↕ ⊗)x, v = (⊕ ↕ ⊗)y

A simple distributed computation scheme can be derived directly from the definition
(see Figure 4.7). A distributed homomorphism could be implemented with an butterfly-
reduction skeleton (Chapter 4.2.1.4) if it is allowed to use different reduce functions for
the left and right part.

Gorlatch presents a more general distributed computation scheme.

Definition 4.2 Let an input list with length 2l be nested with d + 1 dimensions, 1 ≤ d < l

and distributed on d dimensions, such that each PE has a simple list. Let the number of

Figure 4.7: Visualisation of the distributed homomorphism computation pattern

29 splitIntoN 2 from Control.Parallel.Eden.Auxiliary
30 [Gor98], page 8
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sub-lists on all dimensions further be equal. The distributed version
∼

h(d) of a distributed
homomorphism h for such an input list can be calculated as follows31:

∼
h(d) = d◦

i=1
chdim(i,i+1) ◦ d+1◦

i=1
mapdh ◦ chdim(i,d+1)

where

• mapdh maps h to the inner list of the d + 1-dimensional input,

• chdim(i,j) flips dimension i and j of the input and

• n◦
i=m

denotes function compositions32 for i from m to n.

This mathematical description of the implementation is elegant and concise. However, it is
hard to implement this for arbitrary dimensions in Eden because the number of necessary
skeleton compositions is parametric. One can use standard function composition in between
the skeleton calls, and thus introduce the overhead of gathering and distributing the data
in between all the composition steps. But it is really hard to build a monolithic skeleton,
which optimises the communication of the variable number of skeleton compositions by
hand. We will pick this example up again at the end of this chapter. For now, let us
consider the special case with d = 1:

∼
h(1) = 1◦

i=1
chdim(i,i+1) ◦ 2◦

i=1
map h ◦ chdim(i,2)

= chdim(1,2) ◦ map h ◦ chdim(1,2) ◦ map h ◦ chdim(2,2)

= transpose ◦ map h ◦ transpose ◦ map h

Thus we can use a map ◦ transpose ◦ map skeleton to implement the distributed homo-
morphism skeleton for d = 1. We want a parallel skeleton for functionality

map ◦ transpose ◦ map

which agglomerates the input row-wise, say round robin to reduce parallel overhead and
thus increase performance.

The parMapTransposeShuffle skeleton presented in Listing 4.2 realises this. It is a variant
of the allToAll skeleton (see Listing 4.1) and we can implement it as instance of the
allToAll skeleton. The map phases of the skeleton are implemented as farms, where map

input is distributed by unshuffle round robin among the processes. On each process, prior
to the all-to-all communication step, phase1 is applied to the input. It maps f1 to a subset
of the input. We want to transpose the overall matrix, so subsequently, we transpose

31 [Gor98], page 9
32 The order is the typing order, not the evaluation order: 2◦

i=1
(+i) = (+1) ◦ (+2)
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Listing 4.2: The monolithic parallel map-and-transpose skeleton
parMapTransposeShuffle :: (Trans a, Trans b, Trans c) ⇒

Int -- noPe
→ (a → [b]) -- map function before transpose
→ ([b] → c) -- map function after transpose
→ [a] → [c] -- input / output

parMapTransposeShuffle np f1 f2 as
= shuffle $ allToAll phase1 phase2 (unshuffle np as)
where

phase1 np = unshuffle np ◦ transpose ◦ map f1
phase2 = map (f2 ◦ shuffle) ◦ transpose

[[ 1, 2, 3, 4],

  [ 9,10,11,12],  

  [17,18,19,20],  

  [25,26,27,28]]

[[ 1, 9,17,25],

 [ 2, 10,18,26],

 [ 3, 11,19,27],

 [ 4, 12,20,28]]

transpose unshu e 2

[[[ 1, 9,17,25],

  [ 3, 11,19,27]],

 [[ 2,10,18,26],

  [ 4, 12,20,28]]]

[[ 5, 6, 7, 8],

  [13,14,15,16],

  [21,22,23,24],

  [29,30,31,32]]

[[ 5,13,21,29],

 [ 6,14,22,30],

 [ 7,15,23,31],

 [ 8,16,24,32]]

transpose unshu e 2

[[[ 5,13,21,29],

  [ 7,15,23,31]],

 [[ 6,14,22,30],

  [ 8,16,24,32]]]

[[[ 1, 9,17,25],

  [ 3,11,19,27]],

 [[ 5,13,21,29],

  [ 7,15,23,31]]] 

[[[ 2,10,18,26],

  [ 4,12,20,28]],

 [[ 6,14,22,30],

  [ 8,16,24,32]]]

all2All

transpose

transpose

[[[ 1, 9,17,25],

  [ 5,13,21,29]],

 [[ 3,11,19,27],

  [ 7,15,23,31]]] 

[[[ 2,10,18,26],

  [ 6,14,22,30]],

 [[ 4,12,20,28],

  [ 8,16,24,32]]]

map shuffle

map shuffle

[[ 1, 5, 9,13,17,21,25,29],

 [ 3, 7,11,15,19,23,27,31]] 

[[ 2, 6,10,14,18,22,26,30],

 [ 4, 8,12,16,20,24,28,32]]

[[ 1, 2, 3, 4],

 [ 5, 6, 7, 8],

 [ 9,10,11,12],

 [13,14,15,16],

 [17,18,19,20],

 [21,22,23,24],

 [25,26,27,28],

 [29,30,31,32]]

unshuffle 2

[[[ 1, 2, 3, 4],

  [ 9,10,11,12],  

  [17,18,19,20],  

  [25,26,27,28]],  

 [[ 5, 6, 7, 8],

  [13,14,15,16],

  [21,22,23,24],

  [29,30,31,32]]

spawnpre parallel

phase 1

PE1

PE2

phase 2

PE1

PE2

post parallel

[[[ 1, 5, 9,13,17,21,25,29],

  [ 3, 7,11,15,19,23,27,31]],

 [[ 2, 6,10,14,18,22,26,30],

  [ 4, 8,12,16,20,24,28,32]]]

unshuffle 2

[[ 1, 5, 9,13,17,21,25,29],

 [ 2, 6,10,14,18,22,26,30], 

 [ 3, 7,11,15,19,23,27,31],

 [ 4, 8,12,16,20,24,28,32]] 

Figure 4.8: Example: Transformation steps of the map-and-transpose skeleton

Listing 4.3: The monolithic 2-dimensional distributed homomorphism skeleton
dh2DMono :: Trans a ⇒ Int → ([a] → [a]) → [[a]] → [[a]]
dh2DMono np h = transpose ◦ parMapTransposeShuffle np h h
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the matrices on each machine. This is exemplified in Figure 4.8 using a 4 × 8 matrix,
but the map step is omitted (map function = id]) to focus on the transformation steps.
Then we distribute the rows to the np processes using unshuffle. After receiving the
sub-results from all partners, each process transposes the list of sub-results to group the
i-th inner result lists of each process. Then, we apply shuffle to each group of sub-result
lists (using map) to merge each to a single list and finally apply f2 to each list (omitted in
the example). We see in the example that after the main process receives the results and
applies unshuffle, the matrix is the transposed original matrix. An implementation of
the distributed homomorphism for the 2-dimensional case can be realised by a simple use
of the parMapTransposeShuffle skeleton (see Listing 4.3).

4.2 Skeleton Composition using Remote Data

This section is a revised and extended version of [DHL10].

Here we present an alternative approach that allows the direct passing of distributed
result data from one skeleton instance to the next one (see Figure 4.1 (b)). The main
idea is to replace the data by handles to it, called remote data, which are gathered and
redistributed instead. The handles can then be used to pull the real data directly to
the target. This concept which has independently been suggested by Alt and Gorlatch
[AG03, AG04, Alt07] can be easily used: normal data is replaced by the corresponding
remote data handles and skeletons that operate on the new remote data can be composed
as before. Only that now the gathering and redistribution of complex data is replaced by
the gathering and exchange of small remote data handles which are used for the direct
data exchange between processes within different skeleton instances. Thus, remote data
handles for data which may be located elsewhere can be used like the original data but
cause only low communication costs. They can occur everywhere where ordinary data
may occur, e.g. in lists or trees to model distributed data structures. As we will show,
this concept is flexible to use and still type-safe.

4.2.1 Composable Skeletons: Basic Building Blocks

Before handling the composition of skeletons using the remote data concept, we show the
lifting of a simple parallel map skeleton to a remote data interface. Then we define a parallel
all-to-all skeleton which generates a number of processes each of which exchanges data
with any of the others. Using these skeletons with their remote data interfaces enables us
to define a sequence consisting of a parallel map, a parallel transpose and a second parallel
map. This can be useful in an implementation of a distributed homomorphism skeleton
(see Chapter 4.1.4 and [LBDL09]) or a Google Map-Reduce skeleton (see Chapter 4.1.3 and
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[BDL09]). In [BDL09, LBDL09], corresponding parallel map-transpose skeletons have been
defined as monolithic skeletons without composing simpler skeletons. With the remote data
interface, we can define the same skeleton as a composition of component skeletons. This
leads to a much better understandable definition while achieving competitive performance,
as we will show later. Finally, we present other elegant and concise definitions of even more
complex communication pattern: a binary tree scheme which is used to define a binary
reduction skeleton and a butterfly scheme which is used to define an all-reduce-skeleton.

4.2.1.1 The parmapRD Skeleton

A parallel map creates a process for each element of the input list. In Eden, it can easily
be defined using the function spawnF (see Fig. 4.9a). Using a remote data interface, each
process only gets a handle to its list element. It can then use this handle to fetch the
element directly from the remote place where this element is located. In order to achieve
this behaviour, we simply replace the parameter function f in the process abstraction by its
lifted pendant liftRD f (see Fig. 4.9a). The function liftRD is used to lift functions acting
on data to functions performing the same computation on remote data. This leads to the
skeleton parmapRD where the ending RD stands for directly composable due to the Remote
Data interface33. This interface makes it possible for skeletons to receive distributed input
and to produce distributed output which is crucial for an efficient composition of skeletons.
Fig. 4.9b visualises the behaviour and communication paths of the parmapRD skeleton. The
upper circle represents the process evaluating the parmapRD instantiation. It generates
the other processes whose task is to apply the parameter function f to input of type a

and produce output of type b. Note that only remote data handles for the input and the

parmap :: (Trans a, Trans b)
⇒ (a→b) → [a] → [b]

parmap f xs = spawnF fs xs
where fs = repeat f

parmapRD :: (Trans a,Trans b)
⇒ (a→b) → [RD a] → [RD b]

parmapRD f xs = spawnF fs xs
where fs = repeat (liftRD f)

liftRD :: (Trans a, Trans b)
⇒ (a→b) → RD a → RD b

liftRD f = release ◦ f ◦ fetch

(a) Code

parmapDC

f

f

f

0 0’

1

2

3

1’

2’

3’

↓RD a / RD b↑

[RD a] [RD b]

a

a

a b

b

b

(b) Visualisation

Figure 4.9: The parmap and parmapRD Skeletons

33 Alternatevely: parMapRD f = parMap (liftRD f)
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output values are communicated between the generator process and its child processes.
The proper data is communicated via dynamic channel connections indicated by dashed
lines.

4.2.1.2 The allToAllRD Skeleton

In Figure 4.10 we present an all-to-all skeleton allToAllRD. This skeleton depends inher-
ently on its inner communication pattern which we will implement using remote data.
The input of the allToAllRD skeleton is a list of remote data with, say, n elements and

allToAllRDAt :: forall a b i. (Trans a, Trans b, Trans i)
⇒ (Int → a → [i]) -- ^transform before all-to-all
→ (a → [i] →b) -- ^transform after all-to-all
→ [RD a] → [RD b]

allToAllRDAt t1 t2 xs = res where
n = length xs --same amount of procs as #xs
(res,iss) = n `pseq` unzip $ parMap (uncurry p) inp
inp = zip xs $ lazy $ transpose iss

p :: RD a→ [RD i]→ (RD b,[RD i])
p xRD theirIs = (resF theirIs, myIsF x) where
x = fetch xRD
myIsF = releaseAll ◦ t1 n
resF = release ◦ t2 x ◦ fetchAll

--lazy list
lazy :: [a] → [a]
lazy ~(x:xs) = x : lazy xs

spawn

releaseAll.t1.fetch

transpose

release.t2.fetchAll

res

function process

0 0’

1

2

3

1’

2’

3’

RD a [RD i] [RD i] RD b

[RD a] [RD b]

a

a

a b

b

b

i

i

i

Figure 4.10: The allToAllRD skeleton: code and visualisation. (The darker shading
of the arrows from the uppermost child process emphasizes the connectivity of a single
process.)
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two transformation functions t1 and t2 to allow the processes to transform the input
data before sending data to all other processes and after receiving data from all other
processes, respectively. The length of the input list determines the number of processes
to be created by parMap. Every process will fetch its remote input x and transform it
with the transformation function t1. This yields a list of intermediate data for each child
process which is released element-wise by releaseAll, giving the list myIsF x :: [RD i]

with remote data handles. Note that this list must have the same number n of elements as
the input list. This list of remote data handles is returned to the root process in the second
component of each process’s result tuple. The root process receives one such list from each
of its child processes resulting in the n × n matrix iss :: [[RD i]]. It transposes this
matrix and sends the result back to the processes as its second, lazily supplied parameter
theirIs. Each process gets thus one remote intermediate value of type RD i of each sibling
process and of itself. The values are gathered using fetchAll, transformed together with
the initial input x by the second parameter function t2 to the output type b and released.
The visualisation in Fig. 4.10 again shows the exchange of remote data handles between
the root process the child processes and using dashed arrow the direct communication of
data between the processes.

4.2.1.3 The parRedRD Skeleton

The binary tree or tournament scheme is a common pattern in parallel programming
to calculate reductions or to gather data in ⌈log2 p⌉ parallel steps for p processes. The
communication pattern is simple to express using a binary-representation of the processes
indexes. In step i, those processes communicate which differ only in bit i and which do not
have any bit set at all positions smaller than i. The process with a bigger index sends its
message to the process with the smaller index. An example using 16 processes is depicted
in Figure 4.11a. We define a functional version of this pattern as Eden skeleton using
remote data. We do not use any bit arithmetic, instead we use a transformational way to
determine the communication partners. An observation of the example in Figure 4.11a
reveals that in the first step, every odd process sends data (depicted red) and every even
process receives data (depicted blue). After sending data, processes get inactive (white).
In the subsequent steps again, every second active process sends data (red) and the other
active processes receive data (blue). In our implementation, we move remote data in a list
from the position of the sending processes to the position of the receiving processes.

The topology is defined in function partnering of Figure 4.11b. The input list of type a,
where a is typically a remote data handle, contains at position i the value of process i.
The list length is expected to be a power of 2, the inner lists are expected to be singleton
or empty lists (similar to Maybe a), empty lists are used to fill the top-level list to the next
power of two, if the number of processes is no power of two. The result tuple contains the
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P0000 P0001 P0010 P0011 P0100 P0101 P0110 P0111 P1000 P1001 P1010 P1011 P1100 P1101 P1110 P1111

step 1

step 2

step 3

step 4

(a) Tournament scheme with 16 processes

partnering :: [[a]] → ([[a]], a)
partnering [x] = case x of [res] → ([[]],res)

[] → error "first element must not be empty"
partnering unassigned = (assigned, res) where
[unassigned', fetchNow] = unshuffle 2 unassigned
(assigned', res) = partnering unassigned'
assigned'' = zipWith (++) fetchNow assigned'
assigned = take (length unassigned) $ shuffle [assigned'', repeat []]

(b) Moving values to positions of partners

(c) Example: partnering with 6 processes

Figure 4.11: Definition of the tournament scheme
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original values which are moved according to the tournament scheme, where the first part
of the result tuple is the list containing at position i (the remote data representation of)
the list of values which will be fetched by process i. The second part of the output tuple
is the final result (the output of process 0). In the function body, unshuffle 2 splits the
input list of unassigned values into even and odd elements. Even elements (unassigned')
correspond to remote data which is not fetched in this step (depicted blue). This data
will be assigned' to processes in one of the subsequent steps, thus we call partnering
recursively with the unassigned' values. The recursive call also returns the final result
res. The assigned' values represent the tournament scheme for the subset of even inputs.
The odd elements, which will be fetched in the current step, are in the list fetchNow. We
concatenate this list element-wise with list of assigned' values and interleave the result
with empty lists to generate the tournament scheme assigned for the whole input.

In Figure 4.11c, an example for the transformations done by the partnering function is
presented. Instead of remote data values, we use process ids in binary encoding to clarify
the data movement. The input list has 8 elements, 6 singleton lists containing process ids
and 2 empty lists. The rectangles depict the different recursion steps and include local
values of the different variables. In the assigned output we can read e.g. that process
000 receives the values from process 001, 010 and 100 and process 001 receives no data at
all.

Listing 4.4: The parRedRD skeleton
parRedRDAt :: forall a. Trans a

⇒ Places
→ (a → a → a) -- reduction function
→ [RD a] -- input
→ RD a -- ouput

parRedRDAt _ _ [] = error "need min 1 element to reduce"
parRedRDAt places rf xs = result where

p :: RD a → [RD a] → RD a
p rda rdas = release out where

inp = fetch rda
partners = fetchAll rdas
out = partners `pseq` inp `pseq`

foldl' rf' inp partners
rf' xs ys = zs `using` rnf where
zs = rf xs ys

toReduce = parMapAt places (uncurry p) (zip xs (lazy toReduce'''))
toReduce' = map (:[]) toReduce ++ repeat [] --fill with empty lists...
toReduce'' = take (nextPow $ length xs) toReduce' --up to the next power of 2
(toReduce''', result) = partnering toReduce'' --assign communication partners

--next power of 2
nextPow :: Int → Int
nextPow i = 2 ^ (ceiling $ logBase 2 $ fromIntegral i)
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The parRedRD-skeleton of Listing 4.4 defines a parallel reduction using the tournament
topology defined in Figure 4.11. It takes the reduction function rf, which applied to
the current own value and a received value determines the next own value. The input
list xs zipped with a lazily supplied list toReduce''' forms the input to the processes p,
which are instantiated using skeleton parMap. Each process fetches the initial input and
reduces it and the list partners (fetched from the lazily supplied list rdas, which contains
remote data handles) containing the reduction results from the partner processes with
the reduce function rf. The result of this sequence of reduce steps out is released and
returned to the caller. The rest of the process definition introduces demand control to
assure that all sub-results are evaluated early without waiting to receive all results from
the communication partners. In the caller process, the list toReduce containing the results
from all processes is lifted to a list of lists and filled to the next power of 2 with empty
lists. Then, list toReduce'' can be processed by function partnering which defines the
lazy input for the processes and the final output.

The demand control in the definition of parRedRD ensures that evaluation of the fold rf

invocation progresses as far as possible even though the input from the reduce partners

is only defined for the first elements – the evaluation of early applications of the reduce
function does not stop when data for the evaluation of the overall fold rf result is missing.
This works well for single input elements, but there is also a drawback when processing a
stream of input and successively producing a stream of output. Sub-results of each reduce
function invocation are not returned until the whole result of a reduce function invocation
is evaluated to normal form, thus early streaming of sub-results is suppressed, the skeleton
is not incremental. An example for this is depicted in Figure 4.12. The main function calls

redSkel ◦ mapSkel $ [1..n],
where mapSkel and redSkel are listed in Figure 4.12a. We use parMapAt in combination
with unshuffle to distribute the input round robin among the machines and release it
at the processes34. The parRedRDAt skeleton sorts the distributed, pre-sorted elements by
merging them successively. The runtime trace for p = 8 processes and n = 100000 input
elements (see Figure 4.12b) reveals clearly that communication is separated strictly into
the log2 p = 3 reduce phases. This conflict between early demand on the sub-results and
early streaming of overall results is hard to resolve, especially with the means of sequential
demand control.

The parRedStreamRD skeleton is an incremental version of parRedRD (see Figure 4.13a). It
uses sequences of alternating parallel fetchPA and releasePA actions in the definition of
function foldlRD to introduce demand and concurrency. The optimised local communi-
cation ensures that no data is actually copied or sent because of the local remote data

34 We use unboxed vectors from Data.Vector.Unboxed for the input distribution to minimise commu-
nication overhead
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mapSkel :: (Trans a, V.Unbox a) ⇒ [a] → [RD [a]]
mapSkel xs = parMapAt [1..noPe] (release ◦ V.toList) (map V.fromList $

unshuffle noPe xs)

redSkel :: (Trans a, Ord a) ⇒ [RD [a]] → [a]
redSkel = fetch ◦ parRedRDAt [1..noPe] sortMerge

(a) Code redSkel ◦ mapSkel $ [1..n]

0.0 0.075 0.15 0.225 0.3 0.375 0.45 0.525 0.6 0.675 0.75 0.825

P8:Sys

P8:2

P8:1

P7:Sys

P7:2

P7:1

P6:Sys

P6:2

P6:1

P5:Sys

P5:2

P5:1

P4:Sys

P4:2

P4:1

P3:Sys

P3:2

P3:1

P2:Sys

P2:2

P2:1

P1:Sys

P1:3

P1:2

P1:1

(b) Trace for parRed sortMerge ◦ parMap release with input size
100000 on 8 machines

Figure 4.12: Streaming Example: parRed sortMerge

use. Thus, several threads will eagerly evaluate each invocation of reduce function rf. We
use the PA Monad to force the eager evaluation of the fetchPA and releasePA sequence.
We use foldlRD instead of foldl' in process p and remove the demand control, expect
partners `pseq`... which ensures the early evaluation of fetchAll on the remote input.
We repeat the last experiment with parRedStreamRDAt skeleton instead of parRedRDAt,
called by function redSkelStream (see Figure 4.13a). The main function calls

redSkelStream ◦ mapSkel $ [1..n]

and we use the same parameters as before. A runtime trace is depicted in Figure 4.13c.
The 3 reduce phases are clearly interleaved, but the runtime is close to the previous version.
Even though we can not measure a better runtime for this example because of the bad
ratio of input size to computation complexity, there are problems with higher computation
complexity per input element which probably profit from the early streaming of results.
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parRedStreamRDAt :: forall a. Trans a
⇒ Places
→ (a → a → a) -- reduction function
→ [RD a] -- input
→ RD a -- ouput

parRedStreamRDAt _ _ [] = error "need min 1 element to reduce"
parRedStreamRDAt places rf xs = result where

p :: RD a → [RD a] → RD a
p rda rdas = runPA out where
partners = fetchAll rdas
out = partners `pseq` foldlRD rf rda partners

toReduce = parMapAt places (uncurry p) (zip xs (lazy toReduce'''))
toReduce' = map (:[]) toReduce ++ repeat [] --fill with empty lists...
toReduce''= take (nextPow $ length xs) toReduce' --up to the next power of 2
(toReduce''',result) = partnering toReduce'' --assign communication partners

foldlRD :: Trans a ⇒ (a → b → a) → RD a → [b] → PA (RD a)
foldlRD f x ys = go x ys where

go x [] = return x
go x (y:ys) = do x' ← fetchPA x

z ← releasePA $ f x' y
go z ys

(a) Code parRedStreamRDAt

redSkelStream :: (Trans a, Ord a) ⇒ [RD [a]] → [a]
redSkelStream = fetch ◦ parRedStreamRDAt [1..noPe] sortMerge

(b) Code redSkelStream for redSkelStream ◦ mapSkel $ [1..n]

0.0 0.075 0.15 0.225 0.3 0.375 0.45 0.525 0.6 0.675 0.75 0.825

P8:Sys

P8:2

P8:1

P7:Sys

P7:2

P7:1

P6:Sys

P6:2

P6:1

P5:Sys

P5:2

P5:1

P4:Sys
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(c) Trace for parRedStream sortMerge ◦ parMap release with input
size 100000 on 8 machines

Figure 4.13: Streaming Example: parRedStream sortMerge
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4.2.1.4 The allReduceRD Skeleton

The all-reduce skeleton combines distributed data using a binary reduction function.
It leaves the result duplicated on all processes involved in the reduction. Usually, it
is implemented using the classical butterfly scheme (see [Qui94, p. 57]) which is also
a common way to efficiently synchronise data between parallel processes. As for the
allToAllRD skeleton, it is crucial for the all-reduce skeleton that data is transferred to and
from the skeleton in a distributed way. The butterfly reduction for n processes is done in
log n parallel communication and local reduction steps. In each step, the communication
partner of process k is calculated with the Boolean function k xor 2step−1 (see Figure 4.14a).
Figure 4.14b shows the definition of the function partnering2 which applies the following
transformation to determine the communication partner for the current step. The input list
xs contains at position j the value of process j. xs is distributed round robin to d=(2^step)

sublists. The values to be exchanged are in the same columns of the transformed matrix.
Their indexes differ by 2step−1 which equals d `div` 2 or half the number of inner lists.
We flip the first half of inner lists with the second half and achieve the desired value
exchange. A function call to shuffle re-establishes the original list structure.

Example: input size: 24, step: 2

step 1

step 2

step 3

step 4

P0000 P0001 P0010 P0011 P0100 P0101 P0110 P0111 P1000 P1001 P1010 P1011 P1100 P1101 P1110 P1111

(a) Butterfly scheme with 16 processes

partnering2 :: Int → [a] → [a]
partnering2 step xs = (shuffle ◦ flipAtHalfF ◦ unshuffle d) xs where

d = (2 ^ step)
flipAtHalfF xs = let (xs1, xs2) = splitAt (d `div` 2) xs

in xs2 ++ xs1

(b) Move values for the current step

Figure 4.14: Definition of the butterfly scheme
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[0000,0001,0010,0011,0100,0101,0110,0111,
1000,1001,1010,1011,1100,1101,1110,1111]

unshuffle 4↷
[[0000,0100,1000,1100],
[0001,0101,1001,1101],
[0010,0110,1010,1110],
[0011,0111,1011,1111]]

flipAtHalfF↷
[[0010,0110,1010,1110],
[0011,0111,1011,1111],
[0000,0100,1000,1100],
[0001,0101,1001,1101]]

shuffle 4↷
[0010,0011,0000,0001,0110,0111,0100,0101,
1010,1011,1000,1001,1110,1111,1100,1101]

◁

The allReduceRD skeleton (see Listing 4.5) uses the function partnering2 to rearrange
lists of remote data in the caller process which represent the results of the intermediate
reduction steps of the skeleton’s processes. The rearranged lists are sent back to the
processes. Thus, each process gets the remote values released by one partner in every step.
Fetching these values establishes the butterfly communication topology.

Listing 4.5: The allReduceRD skeleton
allReduceRD :: forall a. Trans a ⇒

(a → a → a) → --reduce function
[RD a] → [RD a]

allReduceRD redF toReduce = intermediates !! steps where
steps = floor ◦ logBase 2 ◦ fromIntegral ◦ length $ toReduce
toReduce' = take (2^steps) toReduce --cut input to power of 2

-- topology, inputs and instantiation
intermediates = (transpose ◦ parMap (uncurry p)) inp --steps in rows
bufly = zipWith partnering2 [1..steps] intermediates --only init rdBss
inp = zip toReduce' (lazy $ transpose bufly) --steps in cols

-- process functionality and abstraction
p :: Trans a ⇒ RD a → [RD a] → [RD a]
p rdA intermediates = (releaseAll ◦ scanl1 redF) toReduce where
toReduce = fetch rdA : fetchAll intermediates'
intermediates'= zipWith const (lazy intermediates) [0..steps]



62 4 Skeleton Composition: Sequences

The skeleton’s input is a list with 2steps remote data handles35. For each handle a process
will be instantiated. The skeleton takes the parameter function redF :: b → b → b

which should be associative and commutative and is applied in each step to the results
of the previous step of a process and of its partner. This behaviour can concisely be
expressed with scanl1 redF applied to the stream toReduce of values to be reduced. The
stream toReduce is composed of the initial value and the stream input intermediates. The
latter contains the partners’ values for all steps. Note that the complete list structure of
intermediates is already built in intermediates' even before its first element is received.
Thus the request for all remote values can be eagerly initiated by the function fetchAll

which would otherwise block on an incomplete list structure. The result of the scanl1

application is element-wise released in every process, resulting in a list of remote data
which is also generated in advance. This happens because the evaluation of releaseAll
equally depends only on its parameter list’s structure. Thus the exchange of remote data
handles via the root process can happen in advance, independently of the parallel reduction
steps.

The caller process gathers the result streams of all processes in a nested list. We transpose
this list to have all remote values of a step in each inner list of intermediates. Applying
the function partnering2 to the first steps lists permutes these according to the butterfly
scheme. We transpose this permutation bufly such that each process’s input is located in
one inner list. This transposed list is lazily zipped with the initially supplied input list
toReduce using function lazy and passed back to the processes. The final result consists
of the results of the last reduction step, i.e. the last element of the list intermediates.

We have tested the allReduceRD skeleton with a dummy example which we executed on an
8 core Intel Xeon machine. The initial transformation function initF serves as generator
and generates the list [1..nElems], where nElems is a parameter of the program and in
our example set to 200000. The trace visualisation in Fig. 4.15 reveals interchanging
computation and communication phases. The butterfly interconnection scheme can clearly
be recognised in the messages exchanged between the processes. The generation of elements
is depicted as the first “running” phase. The reduction network has been set up before, by
exchanging the remote data messages via the root process on Machine 1 (initial messages).
Three reduction phases follow. First the direct neighbours exchange their lists leading
to the typical butterfly pattern of messages. The processes reduce their lists using the
reduction function redF which is set to zipWith (+). For the next steps, the distance
to the partner process is doubled every time. Finally, a parmapRD skeleton is called to
consume the data and return an empty list to the root process.

35 The allReduceRD skeleton only works for input lists where the length is a power of two. Other lists
are cut to the next smaller power of two. Further, this version works only for commutative operations.
A generalised version which works for all input sizes and non-commutative operations can be found in
the Appendix A.2
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Figure 4.15: Runtime behaviour of the allReduceRD skeleton

4.3 Composed Skeletons

In this section we examine some examples of concrete applications and skeletons which
are built from sequences of smaller skeletons and we compare example applications
using monolithic and compositional implementations of those skeleton sequences. We
argue that compositional implementations are more comprehensible, more flexible and
competitive in performance. In the following section we create a composed version of the
distributed workpool and the parRed skeleton. In Chapter 4.3.2, we present some versions
of compositional parallel map - transpose - map implementations, a basic pattern which
we will use in many of the subsequent examples.

Listing 4.6: Adjusted distributed workpool skeleton
distribWPAt :: forall t i r s r'. (Trans t,Trans i,Trans r,Trans s,NFData r',

Show r', Show s)
⇒ Places -- ^ where to put workers
→ ((t,s) → (Maybe (r',s),[t])) -- ^ worker function
→ (i → [t]) -- ^ initial taskpool transform
→ ([Maybe (r',s)] → s → r) -- ^ result transform
→ ([t]→[t]→s→[t]) -- ^ taskpool transform attach function
→ ([t]→s→([t],Maybe (t,s))) -- ^ taskpool transform detach f. (local)
→ ([t]→s→([t],[t])) -- ^ taskpool transform split f. (remote)
→ (s→s→Bool) -- ^ state comparison (take new state?)
→ s -- ^ initial state (offline input)
→ [i] -- ^ input (numElems → numWorkers)
→ [r] -- ^ results of workers

distribWPAt pl wf initF resT ttA ttD ttSplit sUpdate st is
= ringFlAt pl id id workers is where ...
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4.3.1 Distributed Workpool - Reduce

We want to reconsider the distributed workpool example of Chapter 4.1.1. We use remote
data to realise a distributed reduction of the workpools results without statically including
the required tree topology functionality in the workpool skeleton. Before we define the
skeleton composition to accomplish this, we adjust the skeleton signature slightly for better
composability (see Listing 4.6). We now use explicit placement to allow for co-located
sibling processes among composed skeletons. We drop the number of processes parameter,
instead we produce one process for each input element. After receiving the inputs in the
processes, we use the added initial transform function to make the input compatible with
the type we want to manage in the taskpool. This gives us higher flexibility, particularly
let a processes input be of type RD [t] (RD [t] ~ i). Thus the input may be fetched
using the initial taskpool transform function. We can use the already included result
transform function to release remote data after processing the data.

The implementation is based on the ring-skeleton ringFlAt (see Listing 2.3), which takes
a list of ring-worker functions (cycled) and a list of inputs, one function for each process
respectively. The processes take further a ring input of type i from their left neighbour.
If the type of the ring input is a list (i ~ [i']), then the ring processes are connected by
a stream of data, that corresponds in the distributed workpool application to the request
stream. See [Die07] for an implementation of the workers.

One use case for a distributed reduction is to restore the order of the worker results, which
were produced in non-deterministic order. Here the result transform function can be used
to pre-sort the results and we compose the workpool skeleton with the reducer skeleton of
Chapter 4.2.1.3 to add a distributed merge phase of the presorted results.

Here a compositional version of the distributed workpool - reduce:
distribWPRedCompAt pl wf initF resT redF ttA ttD ttSplit sUpdate st

= fetch
◦ parRedRDAt pl redF
◦ distribWPAt pl wf initF resT' ttA ttD ttSplit sUpdate st where

resT' res s = release $ resT res s

The definition is straight forward. The only difficulty is that we need to release the result
of the distributed workpool processes in the resT' function and to fetch the result of the
parRedRDAt skeleton. This is because the distributed workpool has no remote data in its
signature and the parRedRDAt has a remote data signature.

We need to redefine the distribWPAt skeleton to generate a monolithic version with
equivalent computation pattern. In the implementation of the skeleton given in Listing 4.6,
we use the ringFlAt skeleton to define the basic topology. Thus, we can include the
functionality of the parRed skeleton by including it in the ringFlAt skeleton (see Listing 4.7).
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Listing 4.7: The ringReduceFl skeleton
ringReduceFlAt :: forall a b r i. (Trans a,Trans b,Trans r) ⇒

Places -- ^where to put workers
→ (i → [a]) -- ^distribute input
→ (b → b → b) -- ^reduce function
→ [(a → r → (b,r))] -- ^ring process fcts
→ i -- ^ring input
→ b -- ^ring output

ringReduceFlAt places distrib rf fs i = fetch result where
(toReduce, ringOuts)

= unzip $ spawnFAt places (map uncurry3 (map p $ cycle fs))
(zip3 xs (lazy ringIns) (lazy toReduce'''))

-----------------------ring code-------------------------
xs = distrib i
ringIns = rightRotate ringOuts
p :: (a → r → (b,r)) → a → RD r → [RD b] → (RD b, RD r)
p f a rIn rdbs = (release bOut, rOut) where
(ringRes, rOut) = toRD (uncurry f) $ (a,rIn)

----------------------parRed code-------------------------
partners = fetchAll rdbs
bOut = partners `pseq` (ringRes `using` rnf) `pseq`

foldl' rf' ringRes partners
rf' xs ys = zs `using` rnf where

zs = rf xs ys
toReduce' = map (:[]) toReduce ++ repeat [] --fill with empty lists...
toReduce'' = take (nextPow $ length xs) toReduce' --up to the next power of 2
(toReduce''', result) = partnering toReduce'' --assign communication partners

We separate the code roughly in three parts. A part originating from the ring skeleton (cf.
Listing 2.3), a part originating from the parRedRD skeleton (cf. Listing 4.4) and the call
of spawnFAt to instantiate the processes and provide them with the inputs for the other
two parts. The ring part is basically untouched while we use the ring result ringRes in
the parRed part directly after forcing its evaluation, instead of fetching the remote data
input. The integrated distribWPRedAt skeleton (see Listing 4.8) is then defined by the
ringReduceFlAt skeleton, providing an binary reduce function redf as additional input.

4.3.2 Map - Transpose - Map

“The allToAllRD skeleton can be used to express arbitrary data exchange that
requires an all-to-all network. A common special case is the transposition
of a matrix which is distributed over several processes. The way the matrix

Listing 4.8: The distribWPRedAt skeleton
distribWPRedAt pl wf initF resT redF ttA ttD ttSplit sUpdate st is

= ringReduceFlAt pl id redF workers is where ...
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mtmRD :: (Trans a, Trans b, Trans c)
⇒ (a→[[b]]) → ([[b]]→c) → [RD a] → [RD c]

mtmRD f g = parmapRD g ◦ parTransposeRD ◦ parmapRD f

parTransposeRD :: Trans b ⇒ [RD [[b]]]→[RD[[b]]]
parTransposeRD = allToAllRD (λ n → unshuffleN n ◦ transpose)

(map shuffle ◦ transpose)

-- round robin / segmented distribution
unshuffleN , splitEvery :: Int → [a] → [[a]]
unshuffleN n xs = transpose $ splitEvery n xs
shuffle :: [[a]] → [a] -- inverse function
shuffle = concat ◦ transpose

Figure 4.16: Composition of parmap and transpose skeletons

is distributed over the processes can be manifold. Each process might be
assigned e.g. to one row or — more general — to several rows of the matrix. In
the example skeleton parTransposeRD of Figure 4.16, we implement the more
general case. Thus, we are not restricted to 1:1 relations between rows and
processes. We assume that rows are distributed round robin over the processes.
The advantage against a block distribution is that the matrix can be assigned
partially to the processes without knowledge of the overall number of rows.
Hence, the transposition skeleton has to assign the columns of the overall
matrix (rows of the transposed matrix) round robin to the processes. The
first transformation function of type Int → [[b]] → [[[b]]] first transposes
a list of rows to get the list of the former columns. In a second step, these
are round robin distributed to sublists, one for each process. Process i will
consequently receive one row-sliced and column-sliced partial matrix from each
process. The second transformation of type [[[b]]] → [[b]] will shuffle the
row-slices (transposed column-slices) into each other to recover the rows of the
overall transposed matrix. This is done by flipping the outer dimension (the
list of partial matrices) with the row-dimension using transpose. Thus every
outer list element contains all partial rows belonging to the same row of the
overall matrix. The transformation map shuffle re-establishes each row.

Now, we can combine the parmapRD skeleton of Fig. 4.9a and the parallel trans-
pose skeleton parTransposeRD in the function mtmRD (cf. Figure 4.16), a parallel
version of the function composition map g ◦ transpose ◦ map f. Without re-
mote data a naive parallel implementation would be

parmap g ◦ unshuffle n ◦ transpose ◦ shuffle ◦ parmap f

This version gathers the data for the intermediate transposition step in the
caller process.
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We compared runtime activity profiles of the mtmRD skeleton with the naive
version. In our example executions, the parameter functions f and g have been
set to the dummy function map (scanl1 (+)) which creates rows of prefix
sums. The input matrix contained the number 1 in each position.

In order to focus on communications in the middle part of the composed
skeletons, input and output communications have been suppressed in the
runtime traces underlying the activity profiles. Moreover, the default streaming
mode of the communication has been replaced by a single message mode to
reduce the number of messages exchanged between the processes.

Each skeleton was instantiated with an input matrix of size 800 × 800 and
evaluated on 8 Intel Core 2 Duo machines with a Fast Ethernet connection,
where each processor core hosted two virtual machines of the Eden runtime
system. In Fig. 4.17, we present the activity profiles of the corresponding
runtime traces for the two skeletons. [...]

The upper left trace in Fig. 4.17 clearly reveals the distributed transposition
by the multitude of messages exchanged right after the initial data generation
phase and the first map-phase, which is depicted “running” in the trace. The
exchange of remote data starts very early overlapping the map-phase and
forming dense bundles of messages. The second map-phase at the end of the
program execution is rather short. Note that the overall runtime was less than
0.5 seconds.

We have placed the ith process of every skeleton on the same machine, such
that communication costs are low36. The lower zoomed view of the figure
shows the activity bars of the three processes located on the virtual machine
16. The lowest bar belongs to a child of the first parmapRD-instantiation. The
upper two bars show the processes of the parallel transpose skeleton and the
second parmap instantiation. With this information, we can easily identify the
different types of messages. During phase 1 the process of the first parmapRD

skeleton sends its results to the parTransposeRD process. In the second phase
the intermediate data is exchanged with the processes on the other machines.
Finally, in phase 3, the result of the transposition is passed on to the second
parmapRD process.

The upper right trace in Fig. 4.17 belongs to the naive version which performs
a local transposition in the root process. As expected, this version is much
slower with an overall runtime of approximately 3 seconds. The conspicuously
fast communication between machine 1 and machine 10 is because the two

36 This experiment has been parformed before local communication has been optimised
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Figure 4.17: Runtime behaviour of the skeleton mtmRD in the global view(left), the
zoomed process on Machine 16 (bottom) vs. the local transposition version (right).
(Note the different scaling of the x-axes in the upper traces and that the zoomed view has
been taken from a processes-per-machine view, here showing the activity bars of the three
processes on Machine 16.)

virtual machines share the same physical machine. Further tests with varying
input sizes (not shown) confirmed the enormous runtime advantages of the
distributed version.”37

Instead of using allToAllRD, we can define the parallel version of composition
map f2 ◦ transpose ◦ map f1 directly using remote data:
parMap (f2 ◦ fetchAll) ◦ transpose ◦ parMap (releaseAll ◦ f1)

The additional overhead should be minor and the composed code is more comprehensive.
We use this pattern to implement a compositional version of the Google map-reduce
skeleton, introduced in Chapter 4.1.3.

The functionality of skeleton mtmRD of Figure 4.16 is similar to the monolithic
parMapTransposeShuffle skeleton of Listing 4.2. In Figure 4.18, we give an equivalent com-
positional definition parMapTransposeShuffleComp without using the allToAllRD skeleton.
We will compare both versions for the distributed homomorphism FFT implementations
in Chapter 4.3.4.

37 [DHL10, pages 81-83]
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parMapTransposeShuffleComp :: (Trans a, Trans b, Trans c)
⇒ Int -- noPe
→ (a → [b]) -- map function before transpose
→ ([b] → c) -- map function after transpose
→ [a] → [c] -- input / output

parMapTransposeShuffleComp np f1 f2 as
= shuffle
◦ parMap (map (f2 ◦ shuffle) ◦ transpose ◦ fetchAll)
◦ transpose
◦ parMap (releaseAll ◦ unshuffle np ◦ transpose ◦ map f1)
◦ unshuffle np $ as

Figure 4.18: A compositional implementation of parMapTransposeShuffle

4.3.3 The Google map-reduce Skeleton

We present in Figure 4.19 a revised version of our Google map-reduce skeleton which is
implemented by means of:
parMap(reducer ◦ fetchAll) ◦ transpose ◦ parMap(releaseAll ◦ mapper)

The local definitions are equivalent to the monolithic skeleton mapReduceList of Chap-
ter 4.1.3 and are thus omitted.

4.3.4 Distributed Homomorphism

In Chapter 4.1.4 we discussed the distributed homomorphism skeletnon and presented a
monolithic implementation in Eden for the two dimensional case. Here, we want to adapt

mapReduceListComp :: forall k1 k2 v1 v2 v3 v4.
(Trans k1, Trans k2,
Trans v1, Trans v2, Trans v3, Trans v4,
Ord k2)
⇒ Int -- Number of partitions
→ (k2 → Int) -- Partitioning for keys
→ (k1 → v1 → [(k2,v2)]) -- The ∗'λmap'∗ function
→ (k2 → [v2] → Maybe v3) -- The ∗'λcombiner'∗ function
→ (k2 → [v3] → Maybe v4) -- The ∗'λreduce'∗ function
→ [[(k1,v1)]] -- Distributed input data (list)
→ [[(k2,v4)]] -- Distributed output data

mapReduceListComp parts keycode mAP cOMBINER rEDUCE input = ress where
ress = parMap (reducer ◦ fetchAll)

◦ transpose
◦ parMap (releaseAll ◦ mapper)

$ unshuffle parts input
...

Figure 4.19: Implementing GMR as instance of the allToAll skeleton
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Listing 4.9: A simple compositional version of the 2-dimensional distributed homomor-
phism implementation of FFT.

dh2DSimpleComp :: Trans a ⇒ ([a] → [a]) → [[a]] → [[a]]
dh2DSimpleComp h = transpose ◦ parMap (h ◦ fetchAll)

◦ transpose ◦ parMap (releaseAll ◦ h)

Listing 4.10: The compositional 2-dimensional distributed homomorphism skeleton.
dh2DComp :: Trans a ⇒ Int → ([a] → [a]) → [[a]] → [[a]]
dh2DComp np h = transpose ◦ parMapTransposeShuffleComp np h h

the two dimensional implementation to a compositional version, compare the behaviour
and performance of both implementations.

We use again the parMap - transpose pattern to define a first simple compositional version of
the 2-dimensional distributed homomorphism implementation presented in Listing 4.3. In
the implementation of Listing 4.9, the transposition combined with usage of fetchAll and
releaseAll in the processes establishes an all-to-all topology to transpose the distributed
matrix. This straight forward implementation uses 2k processes for each parMap instance,
where 2k is the length of the top level input list. In an optimised version dh2DComp (see
Listing 4.10), we want to determine the number of processes independently of the input size.
We use the compositional parMapTransposeShuffleComp skeleton (see Listing 4.13) for row-
wise round robin distributed matrices. The usage of skeletons parMapTransposeShuffle

and parMapTransposeShuffleComp is the same, the compositional skeleton is more intuitive
at the expense of additional processes.

4.4 Case Studies

4.4.1 Mandelbrot with Distributed Workpool - Reduce

The Mandelbrot set [Man80] is a subset of the complex plain, it contains all numbers c for
which the sequence given by z0 = 0 and zn+1 = z2

n +c remains bounded. The subset can be
approximated for a grid C representing a finite subset of the complex plain with resolution
n × m, with any (parallel) map function. The pixels on the grid which do not belong
to the Mandelbrot set are usually coloured, where the colour depends on the number of
recursion steps needed to exceed a bound. We use the Mandelbrot implementation from
[Ber08], which originally returned (String,Int,Int) to represent the result grid. The
graph packing needed to send data introduced a lot of overhead because of the String

representation of the rows of the result grid. We use unboxed vectors of Chars instead
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(Vector Char), which drastically reduces packing overhead when sending the results. We
calculate the Mandelbrot set for sub-intervals of a grid C in parallel. A static block
distribution of C into sub-intervals, we used the farm skeleton with splitIntoN, leads to
an uneven load among the processes (see the runtime trace visualisation of Figure 4.20a),
as the different areas of the grid have varying computation costs. The uneven system load
can be optimised using a different static distribution, e.g. round robin distribution, or
using dynamic (re-)distribution provided e.g. by the distributed workpool skeleton. A
runtime trace visualisation for distributed workpool skeleton with initial block distribution
is depicted in Figure 4.20b. The messages in between the working processes reveal work
redistribution to balance the load when processes run out of tasks. The results of the
distributed workpool skeleton are not in the right order, hence they have to be sorted by
the initial distribution order. We use the result transformation function of the distributed
workpool to pre-sort the results prior to releasing them. Now we can sort the workers
results by successively merging them in the caller process. The trace picture reveals that
this result sorting has only minimal impact on the runtime (it starts not before messages
arrive on P1:1). However, we will use the Mandelbrot program with this result merging as
an example to compare a version of the workpool skeleton with build in parallel reduction
vs. the composition of the parRedRD (cf. Listing 4.4) and the distributed workpool skeleton
(cf. Listing 4.6) implementing the result merging phase in parallel. In the first case, we can
simply compose parRedRDAt ◦ distribWPAt with appropriate parameters. In the second
case we need the specialised monolithic version distribWPRedAt (cf. Listing 4.8).

We compare the behaviour of both versions by trace visualisations of Mandelbrot compu-
tations with grid resolution 5000 × 5000 on 8 machines38 (see Figure 4.21). Apart from
the additional processes for the compositional version (see Figure 4.21a), the runtime
behaviour of both versions is close to identical. In the composed version (zoomed view,
Figure 4.21c) we see that passing the data from the workpool to the parRedRD skeleton,
right after the dense communication phase (representing termination detection in the
distributed workpool) and before the second processes of the even machines start working,
happens in an instant. A close observation reveals small blue arrows representing the local
messages from P1:2 to P1:3 or PX:1 to PX:2 for the other machines.

A systematic comparison of runtimes and speedups measured on a 64-Core machine39

with input sizes 5000 × 5000 and 500 × 500 is presented in Figure 4.22. Figure 4.22a
and Figure 4.22b show runtimes and speedups for the bigger input size, Figure 4.22d
and Figure 4.22e show runtimes and speedups for the smaller input size. Runtimes are
mean values of 5 program runs. Speedups increase for the bigger input size until 64 PEs,
but are far from optimal. Speedups decrease after 32 PEs for the smaller input size due

38 on hex (see Chapter 2.2.1)
39 on hex (see Chapter 2.2.1)
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Figure 4.20: Mandelbrot traces on 8 Machines with grid resolution 5000 x 5000 and block
distribution

to increasing parallel overhead. Runtimes of compositional and monolithic versions are
always close to identical for both input sizes (ranging from −2.6% to +3.0%).

4.4.2 NAS EP with Google map-reduce

The NAS Embarisingly Parallel benchmark is part of the NAS parallel benchmarks
compilation [NAS94]. The benchmark will “generate a set of Gaussian random deviates
[...] and tabulate the number of pairs in successive square annuli”40. The generation of the
Gaussian random deviates is done by the mappers. The keys are 10 different square annuli
and we use one reducer per key. The trace visualisations depicted in Figure 4.23 show
the runtime behaviour on a 64 core machine41 for problem size 10.000.000 and chunking
size 100.000, we used the compositional Google map-reduce skeleton to implement the
program for Figure 4.23a and the monolithic Google map-reduce skeleton for Figure 4.23b.
Map and reduce phases overlap, as we can see clearly in the communication pattern. The

40 [NAS94], page 14
41 on hex (see Chapter 2.2.1)
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Figure 4.21: Mandelbrot with parallel merging of results on 8 Machines with grid resolu-
tion 5000 x 5000 and block distribution
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(b) Speedups for grid size 5000 × 5000

sequential implementation of Mandelbrot: 197.29 sec.
PEs distribWPRed parRed . distribWP overhead

2 99.01 s 98.90 s -0.12%
4 51.63 s 52.50 s 1.67%
8 26.54 s 26.50 s -0.15%
16 15.03 s 15.18 s 1.02%
32 9.19 s 9.18 s -0.08%
64 6.59 s 6.44 s -2.21%

(c) Runtime table for grid size 5000 × 5000
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(d) Runtimes for grid size 500 × 500
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(e) Speedups for grid size 500 × 500

sequential implementation of Mandelbrot: 1.974 sec.
PEs distribWPRed parRed . distribWP overhead

2 1.03 s 1.01 s -1.99%
4 0.56 s 0.56 s 0.39%
8 0.36 s 0.37 s 1.93%
16 0.28 s 0.28 s 0.85%
32 0.23 s 0.22 s -2.56%
64 0.31 s 0.32 s 2.98%

(f) Runtime table for grid size 500 × 500

Figure 4.22: Runtimes and speedups of Mandelbrot program with parallel merging of
results and block distribution
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Figure 4.23: Traces of the NAS EP benchmark with Google map-reduce on 8 Machines
with problem size 10.000.000 and chunk size 100.000 on hex.

trace of Figure 4.23a reveals that most computation is done by the mappers, while the
reducers are running rarely. Apart from the additional reducer processes, the program
behaviour of both versions is similar.

Figure 4.24 presents mean runtimes and speedups based on 5 program runs of the NAS EP
benchmark for problem size 10.000.000 executed on the Beowulf cluster (see Chapter 2.2.1).
Measures scale well up to 64 PEs but runtimes increase for 128 PEs. Compositional and
monolithic versions perform equally well (from 4 to 64 PEs the compositional version is
up to 4.5% faster), with minimal advantages for the monolithic version for 128 PEs (the
difference is 7.21%, with small runtimes around 1.6s).

In a second setup, we measured runtimes for problem size 200.000.000 (see Figure 4.25a).
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(b) Speedups

runtime of sequential implementation 77.71 sec.
PEs monolithic compositional overhead

2 34.73 s 34.87 s 0.40%
4 18.55 s 17.74 s -4.32%
8 9.01 s 8.92 s -0.97%
16 4.60 s 4.49 s -2.30%
32 2.39 s 2.35 s -1.72%
64 1.39 s 1.38 s -0.93%
128 1.53 s 1.65 s 7.21%

(c) Runtime table

Figure 4.24: Runtimes and speedups of the NAS-EP benchmark with Google map-reduce
for problem size 10.000.000 and chunking size 10.000 on Beowulf

A single machine on the Beowulf cluster ran out of memory, thus Figure 4.25b presents
relative speedups based on the doubled runtime for 2 PEs. The benchmark scales well
up to 128 PEs. Both versions perform similar, surprisingly with better runtimes for the
compositional version with 64 PEs (−9.29%) and 128 PEs (−23.14%). Differences for 2 to
32 PEs are < 1.6%.

4.4.3 FFT with Distributed Homomorphism

An application which can be implemented using a distributed homomorphism skeleton
is the fast Fourier transform (FFT). FFT is a fast way to calculate the discrete Fourier
transform using the divide and conquer principle. Function

fft :: RealFloat a ⇒ [Complex a] → [Complex a]

takes a list of complex numbers and calculates a list of the same length, where the ith
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sequential implementation ran out of memory.
PEs monolithic compositional overhead

2 820.92 s 824.49 s 0.43%
4 412.31 s 413.71 s 0.34%
8 206.72 s 209.95 s 1.54%
16 104.43 s 105.40 s 0.92%
32 56.63 s 56.85 s 0.37%
64 31.25 s 28.35 s -9.29%
128 20.79 s 15.98 s -23.14%

(c) Runtime table

Figure 4.25: Runtimes and speedups of the NAS EP benchmark with Google map-reduce
for problem size 200.000.000 and chunking size 10.000 on a Beowulf cluster

element of the resulting list is defined from the input list by:

(fft x)i =
n−1
k=0

xkωki
n

=
n/2−1

k=0
x2kωki

n/2 + ωi
n

n/2−1
k=0

x2k+1ωki
n/2

= (fft u)i mod (n/2) + ωi
n(fft v)i mod (n/2) where (u,v) = unshuffle 2 x

(see [Gor98]). Here ωn = e2π
√

−1/n is the nth root of unity. A simple realisation using
divide and conquer skeletons can be implemented straightforwardly from this definition
(see [BDLL09]). We focus in the following on an optimised parallel implementation using
a distributed homomorphism skeleton.

4.4.3.1 Implementation

We use a version of FFT called fft3 from [Gor98], which is modified to fit the requirements
of the distributed homomorphism definition. Together with the distributed homomorphism
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computation scheme for d = 1, we get the following algorithm:

The following paragraph is a slightly edited version of what we have written in [LBDL09].
The input vector is divided into rows of a matrix with side lengths l = 2k. Thus, the input
vector has length n = l2 = 4k. The algorithm consists of three phases:

1. pre-processing: permutation of input in bit reverse order; tagging input elements
with their position and their segments length; split into segments of length 2k

2. central processing: transpose ◦ local fft3 ◦ a global transpose ◦ local fft3

3. post-processing: remove tags ◦ concat 42

The key difference between the ordinary sequential FFT and fft3 is that the latter
operates on triples which contain additional information: a position tag and the length of
the lists to be joined in the current simulated combine step (the width of the combine
step), which is initially 1 and will be doubled at each step. It works with global twiddle
factors (roots of unity) to simulate a contiguous, single-dimensional FFT algorithm. The
divide step is a trivial split of lists. The combine step needs to be modified using
the additional information in the triples, namely the length of lists in the current global
divide-and-conquer step and the position of the current element in the global list. Because
of the permuted input, it is possible to perform FFT locally on the available subsets of
global lists in a global manner. For more details, see [Gor98].
We can use any 2-dimensional distributed homomorphism skeleton to implement the central
processing phase of the algorithm described above. These distributed homomorphism
skeletons can also be used for the distributed-memory FFT algorithms proposed in [Pea62,
GHSJ94].

In Listing 4.11, we present the implementation of a parallel FFT-function based on the

Listing 4.11: Parallel FFT using the monolithic parallel map-and-transpose skeleton
fft3_2D :: Int → [Complex Double]
fft3_2D base = out ◦ dh2DMono noPe h ◦ inF $ [1..n] where

h :: [(Complex Double, Int, Int)] → [(Complex Double, Int, Int)]
h = fft3 base --the fft3 implementation
n = base^2

inF xs = chunk base $ zip3 (bitReverse xs) [0,1..] [1,1..]
bitReverse xs = inv n $ map fromIntegral xs

out = map fst3 ◦ concat
fst3 (a,_,_) = a

inv :: Int → [a] → [a] -- permutes [a] in bit-reverse order

42 The final transpose step is often omitted in practice, then the transposed output has to be annotated.
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dh2Mono skeleton of Listing 4.3. In our application the function parameter h to the dh2Mono

skeleton are sequential fft3 invocations. The skeleton is supplied with base2 input
elements inp (for base = 2i, i ∈ N) in bit-reverse order, which are tagged with each inputs
position in the original list and the initial combine step width 1. The output transformation
map fst ◦ concat ◦ transpose puts the result in the right order and removes the tags.

A direct compositional implementation is presented in Listing 4.12. We use the auxiliary
function unshuffle noPe to distribute the input rows round robin among the processes
prior to the parallel phase and we shuffle the results back into the original order after the
parallel phase. Thus in each process of the first parMap phase, we need to map the fft3

function to the local subset of rows. In order to distribute the results of this application
according to the round robin distribution of tasks, we use unshuffle noPe ◦ transpose

and thus group the submatrices required by the other processes. In the second parMap phase,
we use map (fft3 base ◦ shuffle) ◦ transpose to reassemble the received submatrices
and apply fft3 column-wise.

The same sequence of skeleton calls is encoded in the compositional version of the 2
dimensional distributed homomorphism skeleton dh2DComp of Listing 4.10, thus we can
equally well use the skeleton dh2DComp (see Listing 4.13).

4.4.3.2 Experimental Results

We tested the parallel FFT implementations on a Beowulf cluster (see Chapter 2.2.1) for
input sizes 10242 and 20482. We compare the parallel runtimes to a purely sequential FFT

Listing 4.12: A compositional version of the 2-dimensional distributed homomorphism
implementation of FFT using noPe processes.

fft3_2DComp :: Int → [Complex Double]
fft3_2DComp base = out

◦ shuffle
◦ parMap (map (h ◦ shuffle) ◦ transpose ◦ fetchAll)
◦ transpose
◦ parMap (releaseAll ◦ unshuffle np ◦ transpose ◦ map h)
◦ unshuffle np
◦ inF $ [1..n] where

h = fft3 base ...

Listing 4.13: A compositional version of the 2-dimensional distributed homomorphism
implementation of FFT based on parMapTransposeShuffleComp.

fft3_2DCompSkel :: Int → [Complex Double]
fft3_2DCompSkel base = out ◦ dh2DComp noPe h ◦ inF $ [1..n] where
h = fft3 base ...
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(b) Speedups, input size 10242

time for sequential fft with 38.59 sec.
PEs mono. list comp. list overhead mono. vec. comp. vec. overhead

2 22.63 s 23.00 s 1.61% 16.57 s 16.47 s -0.55%
4 16.38 s 16.40 s 0.16% 10.48 s 10.41 s -0.76%
8 11.93 s 12.14 s 1.68% 6.87 s 7.07 s 2.88%
16 10.03 s 10.62 s 5.59% 5.27 s 5.26 s -0.11%
32 9.58 s 9.63 s 0.47% 4.70 s 4.63 s -1.56%
64 9.38 s 9.19 s -1.99% 4.62 s 4.49 s -2.81%
128 8.94 s 9.01 s 0.78% 4.40 s 4.48 s 1.77%

(c) Runtime table, input size 10242
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(e) Speedups, input size 20482

time for sequential fft with 182.72 sec.
PEs mono. list comp. list overhead mono. vec. comp. vec. overhead

2 102,407 s 100,952 s -1.42% 75,457 s 76,5002 s 1.36%
4 73,0979 s 72,1585 s -1.29% 46,8388 s 46,0393 s -1.71%
8 55,6188 s 55,5654 s -0.10% 34,0457 s 34,156 s 0.32%
16 43,5637 s 43,2518 s -0.72% 23,9065 s 24,0775 s 0.71%
32 40,0367 s 40,5543 s 1.28% 19,9424 s 20,5395 s 2.91%
64 38,5933 s 39,0292 s 1.12% 18,9483 s 18,8805 s -0.36%
128 36,5792 s 36,9997 s 1.14% 17,6825 s 17,7416 s 0.33%

(f) Runtime table, input size 20482

Figure 4.26: Runtimes and speedups of FFT with 2 dimensional distributed homomor-
phism skeleton
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implementation. For better performance, we additionally tested slightly modified versions,
where we converted the rows of the matrix to vectors before sending them and converted
them back to lists after receiving them. All versions include further chunking of rows
(always 5 rows per chunk) to reduce the message overhead. The results are presented in
Figure 4.26. Most importantly, runtimes for the monolithic versions and the compositional
versions are always very close. They differ from −2.9% to +5.6%, but are mostly within
a range of +/ − 2%. The versions using vector based communication are clearly faster
than the basic list versions. The runtime improvement is a relatively constant amount of
time43. Even though speedups for the vector versions are clearly better, both versions do
not scale well.

An examination of runtime traces confirms the close resemblance of runtime behaviour
between compositional and monolithic versions. Figure 4.27a and Figure 4.27b depict
a trace of a program run with 8 PEs and input size 10242 for the monolithic and the
compositional vector version. Apart from the additional processes, the behaviour is the
same. Figure 4.27c and Figure 4.27d show the program behaviour for the monolithic
version with 16 and 32 PEs, which reveal the reason for the bad scalability of the program.
The sequential input and output transformations take a relatively constant amount of
time. Despite the fact that the parallel processing phase decreases constantly, speedups
are limited due to the substantial sequential overhead.

We will discuss a FFT implementation based on the general distributed homomorphism
skeleton in the iteration Chapter 5.

4.4.4 Parallel Sorting by Regular Sampling (PSRS)

The PSRS section is a revised version of [DHLB16]:
In the area of distributed parallel sorting, PSRS: Parallel Sorting by Regular Sampling
[LLS+93] is a specialised version of mergesort aimed at good scaling properties. Its
complexity is optimal, O(n·log(n)

p ), if the number n of values to be sorted is greater than p3,
where p is the number of available PEs. The PSRS algorithm takes a distributed unsorted
list and produces a distributed sorted list. Therefore, the distribution of the input list from
one source and the collection of the result lists to one destination is not a necessary part
of the sorting algorithm — in contrast to parallel mergesort, which performs a non-trivial
reduction with sortMerge44 when collecting the workers’ results. This property ensures
that the PSRS algorithm can be efficiently composed with other skeletons for distributed
data processing.

43 5-6 sec. for input size 10242, 20-25 sec. for input size 20482.
44 Function sortMerge merges pre-sorted lists.



82 4 Skeleton Composition: Sequences

0.0 0.75 1.5 2.25 3.0 3.75 4.5 5.25 6.0 6.75

P8:Sys

P8:1

P7:Sys

P7:1

P6:Sys

P6:1

P5:Sys

P5:1

P4:Sys

P4:1

P3:Sys

P3:1

P2:Sys

P2:1

P1:Sys

P1:2

P1:1

(a) monolithic using allToAll, 8PEs, processes per machine view

0.0 0.75 1.5 2.25 3.0 3.75 4.5 5.25 6.0 6.75

P8:Sys
P8:2
P8:1

P7:Sys
P7:2
P7:1

P6:Sys
P6:2
P6:1

P5:Sys
P5:2
P5:1

P4:Sys
P4:2
P4:1

P3:Sys
P3:2
P3:1

P2:Sys
P2:2
P2:1

P1:Sys
P1:3
P1:2
P1:1

(b) compositional, 8PEs, processes per machine view

0.0 0.75 1.5 2.25 3.0 3.75 4.5 5.25

M16

M15

M14

M13

M12

M11

M10

M9

M8

M7

M6

M5

M4

M3

M2

M1

(c) monolithic, 16PEs, machine view

0.0 0.75 1.5 2.25 3.0 3.75 4.5

M32
M31
M30
M29
M28
M27
M26
M25
M24
M23
M22
M21
M20
M19
M18
M17
M16
M15
M14
M13
M12
M11
M10
M9
M8
M7
M6
M5
M4
M3
M2
M1

(d) monolithic, 32PEs, machine view

Figure 4.27: Traces of FFT with 2 dimensional distributed homomorphism skeleton with
vector based communication for input size 10242
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The parallel algorithm on p PEs operates by segmenting pre-sorted sub-lists into p segments.
Assuming that input is provided in p segments of equal size, PSRS consists of 4 phases:

1. In parallel: Each process sorts one segment and selects a sample of p elements;

2. The main process collects and sorts all p2 samples (p samples from each process),
selects (p − 1) pivot elements and broadcasts them to all processes;

3. In parallel: Each process decomposes its segments into p partitions (according to the
pivot elements) and sends partition j to process j (1 ≤ j ≤ p), keeping one partition;

4. In parallel: Each process merges p − 1 partitions received from siblings with its own.

4.4.4.1 Compositional Definition of PSRS in Eden

The PSRS algorithm can be implemented straightforwardly in Eden, using the remote data
based composition technique and the parMap skeleton. Figure 4.28 shows the essentials
of the implementation. The four phases of PSRS correspond exactly to the functions
composed in the top level definition.

In Phase 1, the parMapAt processes fetch their remote input data, sort it locally, and
return to the parent process both a list of samples and a handle to the sorted data.
The parent process gathers all samples and extracts the global pivots (a sample of all
samples), which are then distributed back to the other processes for Phase 3 (as the
first tuple component). The data handles are left untouched in-between the two parMap

instances (second tuple component); they only forward the data between the different
co-located mapper processes. In Phase 3, each parallel process partitions its sorted local
data according to the global pivots, and creates a list of p remote handles, one for each of
the p partitions45. These handles are returned to the parent process, which transposes
the matrix of p × p handles and returns them to the child processes. Hence, every process
of Phase 4 is responsible for one of the partitions: It fetches the respective partitions
from all other processes, merges these (sorted) partitions, and releases its segment of the
globally-sorted distributed data.

The process network is depicted in Figure 4.29. Figure 4.30 shows a runtime trace on
8 PEs with input size n = 1000000 and p = 7 worker PEs (PE 1 was dedicated to the
main process). The different phases can be clearly recognised from the activity shown in
the processes-per-machine view. We see different processes in the worker PEs for Phases
1, 3, and 4. Worker PEs are most active in Phase 1 (local sorting). Phases 3 and 4,
after the parent has processed the samples, are marked by communication with other

45 This includes a handle for the partition that should be kept, making extra code for this special case
unnecessary. Due to the optimised local communication this incurs no overhead.
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psrs :: forall a. (Trans a, Ord a)
⇒ Int → [RD [a]] → [RD [a]]

psrs p =
--(4) merge partitioned, presorted lists
parMapAt [2..p+1] (release ◦ mergeAll ◦ fetchAll)

◦ transpose -- assign partitions to corresponding processes

--(3) partition presorted lists by global samples
◦ parMapAt [2..p+1] (releaseAll ◦ partition)

--(2) gather local-, derive & distrib. global samples
◦ uncurry zip ◦ first processSamples ◦ unzip

--(1) sort segments and get local samples
◦ parMapAt [2..p+1] (sortNSample ◦ fetch)

where
sortNSample :: [a] → ([a], RD [a])
sortNSample cs = let ys = sort cs

in (getSamples p ys, release ys)

processSamples :: [[a]] → [[a]]
processSamples = replicate p ◦ getGlobalSamples p ◦ mergeAll

partition :: ([a], RD [a]) → [[a]]
partition (pivots, handle)

= decompose pivots ◦ fetch $ handle

Figure 4.28: PSRS in Eden

siblings. The input is distributed by releaseAll ◦ unshuffle beforehand, and collected
by concat ◦ fetchAll after the computation. Runtime is dominated by this distribution
(message blocks in the beginning) and result list collection (black area in the end) phases,
which overlap with the distributed processing phases.

4.4.4.2 Definition of PSRS using the alltoAllRD Skeleton

The parMap - transpose pattern in phases 3-4 of our PSRS implementation:
parMap(t2 ◦ fetchAll) ◦ transpose ◦ parMap(releaseAll ◦ t1)

is quite common in parallel algorithms. The transposition combined with fetchAll and
releaseAll establishes an all-to-all topology to transpose the distributed matrix. We find
this pattern e.g. in our definition of the googleMapReduce skeleton [BDL09], our parallel
FFT implementation [LBDL09] or the n-body simulation presented in Chapter 5.2.2 of
this paper. Therefore, this pattern is provided as a general topology skeleton allToAllRD

[DHL10], which performs both map computations in the same set of processes, using Eden’s
tuple concurrency to provide the two inputs lazily when available (see Fig 4.31, definition
of inp and two-component worker function p in arrow notation).
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Figure 4.29: PSRS Process Network
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Figure 4.30: Activity Profile of PSRS: Final Phase and Communication
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allToAllRD :: forall a b i. (Trans a, Trans b, Trans i)
⇒ (Int → a → [i])
→ (a → [i] → b)
→ [RD a] → [RD b]

allToAllRD t1 t2 xs = res where
n = length xs -- no of processes
(res,iss) = n `pseq` unzip $ parMap p inp
inp = zip xs $ lazy $ transpose iss
p :: (RD a, [RD i]) → (RD b, [RD i])
p = (release ∗∗∗ releaseAll)

◦ ((uncurry t2) &&& (t1 n ◦ fst))
◦ (fetch ∗∗∗ fetchAll)

Figure 4.31: The allToAllRD skeleton

Also note a necessary invariant which cannot be expressed in the (standard) Haskell type
system: As the transposed input is supplied to n child processes (second input component),
each process should compute n intermediate values from the argument to function t1

(first input component). t1 is supplied by the application programmer. Therefore, the
skeleton includes a first parameter n to t1 which can determine the number of list elements
that the function will yield (of course, this number will be inherently known in many
applications).

4.4.4.3 Experimental Evaluation

To compare the compositional implementation and the one using the allToAll skeleton,
we focus on the distributed computation phase of the PSRS algorithm. Figure 4.33 shows
the runtime trace of the two PSRS versions (compositional implementation on the left),
with input size 1000000 and p = 8 worker PEs. The allToAll version (right trace) works
with one process less per PE, but runtimes and process activities of both versions are
largely similar, with slightly better runtimes here for the compositional version. This is
confirmed by the runtimes and speedups of PSRS on an increasing number of processors
with input sizes 10,000,000 and 60,000,000 (see Figure 4.34). Apart from the 2 PE run for
input size 60,000,000 with a difference of −14.26%, runtimes are within a range of −7.5 to

psrsA2A :: (Trans a, Ord a) ⇒ Int → [RD [a]] → [RD [a]]
psrsA2A p

= allToAllRDAt [2..p+1] (const partition) (const mergeAll)
◦ releaseAll ◦ uncurry zip ◦ first processSamples ◦ unzip
◦ parMapAt [2..p+1] (sortNSample ◦ fetch)

where ◦ ..
-- sortNSample, processSamples, partition are as before

Figure 4.32: PSRS using all-to-all in Eden
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PSRS: Input Size 1000000
9 Machines, 33/25 Processes, 282/298 Threads, 2060 Messages

Figure 4.33: PSRS Compositional (left) and using All-To-All (right) with 9 PEs (8 Work-
ers) Input Size 1000000, Zoom into Distributed Phase

6%. The close correspondence between both versions is independent from the input size.
The algorithm scales well when input and output stay distributed.

Comparing the results of this chapter, we get the following table:

Mandelbrot NAS EP FFT (2D-DH) PSRS
min -2.56 % -23.14 % -2.81 % -14.26 %
max 2.98 % 7.21 % 2.91 % 5.85 %
mean 0.14 % -2.25 % 0.17 % -2.55 %

abs mean 1.33 % 3.85 % 1.30 % 3.96 %

Apart of the minimal (min) and the maximal deviation (max) of runtimes between
monolithic and compositional versions, we present mean values of the percental deviation
(mean) and mean values for the absolute percental deviation (abs mean). If the abs
mean value differs substantially from the absolute value of the mean value, then there
are differences of runtimes in both directions which partially neutralise themselves on an
average. One version constantly outperforms the other if the absolute value of the mean
value and the abs mean value are identical.

The abs mean values are always below 4%. The mean values are between -2.55 % and
0.17%, thus monolithic and compositional versions perform really close. Surprisingly we
get slightly better results for the compositional version, which may as well be caused by
the concrete selection of case studies. We compared program versions constructed by a
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Input size 60,000,000

Figure 4.34: PSRS Runtimes and Speedups, only Distributed Phase
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single skeleton composition step to monolithic ones or in the case of PSRS, we compared
two composition steps to a single composition step. Our results indicate that skeleton
composition using remote data performs competitive to monolithic skeletons for a single
composition step.





CHAPTER 5

Skeleton Iteration

Chapter 5 - Chapter 5.2 are revised versions of [DHBL13].

The skeleton approach of “parallel building blocks” constitutes a problem when the
parallel algorithm involves iterations – applying the same skeleton repeatedly to succes-
sively improving data. Each skeleton incurs a certain overhead of thread and process
creation, termination detection and communication/synchronisation. Repeatedly using
one and the same skeleton leads to a repetition of this parallel overhead for every skeleton
instantiation.

Example. Consider a simple genetic algorithm which computes the development of a
population of individuals under some mutation until a termination criterion is met.

initial population

test

select

recomb

rate

terminate

Figure 5.1:
Flowchart

The flowchart in Figure 5.1 shows the iterated steps of the algo-
rithm.

type Individual = (Genome, Rating)
test :: Individual → Bool -- terminate?
select :: [Individual] → [(Genome, Genome)]

-- parents for next gen.
recomb :: (Genome, Genome) → [Genome]

-- generate offspring
rate :: Genome → Individual -- evaluation

A straightforward parallel version of the algorithm using recursion
is listed beneath. It tests whether at least one individual of a given

population fulfills the termination criteria. If not, genomes are selected based on their
fitness (i.e. their relative rating) and paired as parents for the next generation. A parallel
map implementation (parMap) is used to recombine the parents (already distributed into
n sublists, one for each PE) and rate the offspring – working on each sublist of the
population in an own parallel process. The results of all processes are gathered and passed

91
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to a recursive call of the main function ga. The algorithm terminates when one of the new
individuals passes the test.
ga :: [[Individual]] → Individual
ga pop = case (test_select pop) of

Left parentss → ga $ parMap recomb_rate parentss
Right solution → solution

test_select :: [[Individual]]
→ Either [[(Genome, Genome)]] Individual

recomb_rate :: [(Genome, Genome)] → [Individual]

In this parallel implementation, new parMap processes are created for each recursive
call of ga. However, it would be much better to reuse processes, initialisation data,
and communication channels across the different parMap invocations, especially when
running the parallel program in a distributed environment. Also, if processes were reused,
they would work on localised data and could even share a local state across the entire
computation.

As the parallel behaviour is encapsulated inside a skeleton’s implementation, it is generally
very hard to optimise the repeated use of a skeleton without modifying the skeleton itself.
On the other hand, a solution that involves rewriting parallel skeletons for every concrete
sequence of applications is not favourable; we seek for a more general method to compose
skeletons for iterative computations, which we call skeleton iteration46 subsequently.

Our Approach. We propose a general functional iteration scheme iter which is a meta-
skeleton (combinator) using an iteration control function and an iteration body skeleton
as parameter functions. Specific control and body functionality can be freely combined
to express a wide range of iterative algorithmic patterns. We show how to lift ordinary
skeletons in a systematic way to persistent skeletons which work on communication
streams such that they can be used as body skeletons or for control in our iteration
scheme. Involving special types for describing iterative processing improves programming
comfort and safety. Special support is provided for iteratively processing distributed data
structures.

We have implemented our iteration framework in the parallel Haskell dialect Eden [LOMP05].
The functional approach makes it easy to precisely state interfaces and to identify con-
ceptional requirements from our implementation. Two non-trivial case studies, K-means
and N-body, have been used to compare the performance of the framework with the
straightforward approach of recursive skeleton instantiations and, at least for K-means,

46 Skeleton iteration should not be confused with parallel for-loops or parallel map, where a sequential
block is executed in parallel by multiple threads, instead of several times. We focus on computations
defined by algorithmic skeletons which are by themselves already parallel and will be executed several
times in sequence.
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with a monolithic customised parMap iteration skeleton [PR01]. In the K-means case
study, our framework performs much better than the straightforward recursive approach
and is competitive with the specialised monolithic skeleton. In the N-body case study,
our approach scales better and clearly produces less overhead than the straightforward
recursive approach. However, we observe slightly better overall runtimes for the recursive
approach on small numbers of processors.

In total, our skeleton iteration framework allows for targeted optimisations of iterative
algorithms, with respect to minimising data transfers and controlling dependencies. It
drastically improves code structure and readability and provides an acceptable performance
with low effort.

5.1 Iterating Skeletons

The Haskell prelude function iterate defines the iteration of a parameter function
f, producing an infinite list (or: stream) of all intermediate results of the iteration:
[x,(f x),(f (f x)),...]. The same stream can be defined in a different way, using the
map function and a feedback of the result stream instead of a recursive function call.
iterate :: (a → a) → a → [a]
iterate f x = x : iterate f (f x)

streamIterate :: (a → a) → a → [a]
streamIterate f x = xs

where xs = x : map f xs

We are especially interested in the case where the parameter f of map is a parallel
skeleton, i.e. when evaluation of f involves the creation of threads and/or processes and
communication of data between these parallel entities. Both the iterate function and
the variant streamIterate above would in this case repeatedly construct and destroy the
parallel process system evaluating f in every iteration step. As an illustrative example,
consider the case where the parameter function f of map is itself a parallel map skeleton
(parMap), i.e. creates a parallel process for each input list element to apply the parameter
function to it.
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The following specialised version of streamIterate implements this:
iterateParMap0 :: Trans a ⇒ (a → a) → [a] → [[a]]
iterateParMap0 g xs = xss

where xss = xs : map (parMap g) xss

Note that, in the result type of iterateParMap0, type [[a]] denotes a stream of lists,
i.e. the outer list is infinite, while the inner lists are finite and computed in parallel (by
parMap g of type [a] → [a]).

As the function is always the same, it would be desirable to use just one set of processes for
all iterations, instead of creating a new set of processes in each step. This can be achieved
by first transposing the input into a list of streams and then applying parMap (map g) to
it; and finally restoring the original order with a second transposition.
iterateParMap1 :: Trans a ⇒ (a → a) → [a] → [[a]]
iterateParMap1 g xs = xss

where xss = xs : transpose (parMap (map g) (transpose xss))

Now the iteration via map takes place within the processes created by parMap only once,
saving the process creation overhead.

It is by virtue of streaming and the use of map to express the iteration that we can lift
the body skeleton to work on streams and push the iteration inside the processes. Just
swapping map and parMap in the definition (leading to parMap (map g) xss) would instead
lead to a pseudo-parallelisation over the stream instead of over the lists. However, this
variant has correct type, due to a missing distinction between lists (for parallelism) and
streams (for iteration). In the following, we will propose special types and mechanisms to
generalise this approach and make a clear distinction between the iteration stream and
the list of inputs to the parallel processes. We will also add special control functions for
the iteration to improve locality and performance.

5.1.1 Iteration Type and Body Skeletons

Communication-related properties of Eden processes are determined by types, using over-
loaded communication functions in the type class Trans for transmissible data. Instances
for Trans determine different send modes: while the default mode is to fully evaluate and
send data as a single item, product types (tuples) can be decomposed and sent concurrently,
and recursive types (such as lists) can be transmitted as streams, element by element.
The important aspect here is that the type of a process determines the communication
mode for its in- and outputs. In our framework, we use self-referential streams of data to
describe iteration data as opposed to parallel input to worker processes.
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Special Stream Type for Iteration.

In our example above, streams were modeled as lists, leading to a potential pseudo-
parallelisation of the algorithm when parallelisation is applied at the outer level. In order
to have a clear distinction of the (sequential) iteration stream and the (parallel) input to
the iteration body, we introduce a special iteration type Iter (see Figure 5.2), which is
isomorphic to lists but different with respect to the communication mode. This enables
the programmer and the type checker to identify iteration inputs and outputs in type
signatures and thereby increases readability and type safety. Furthermore, the intended
streaming behaviour can be defined in a targeted manner by an appropriate Trans instance
for Iter, while other lists can be communicated as single items47.

Aside from the new data type, Figure 5.2 shows auxiliary functions for common uses
of Iter data when defining efficiently iterable skeletons. The functor instance of Iter
provides fmap, lifting a function of type a → b to iteration streams, Iter a → Iter b.
fmap is used to realise iteration of the body skeleton. Function distribWith splits a single
iteration stream into many iteration streams, where the i’th element of each output stream
is generated from the i’th element of the input stream. The function parameter f produces
a list of output elements for each element of the input iteration stream; these lists are
then distributed into a list of output streams using map Iter ◦ transposeRt. Consider
the special case of f = id, which implies a = [b] and merely interchanges an outer Iter

and an inner list. One subtle detail here is that f must produce lists of identical length for
all its arguments (elements of the iteration stream), and the transposition needs to use a
custom function transposeRt for rectangular matrices which fixes the length of its result
list to the length of the first inner list of its input. In other words, the number of output
streams, which defines the parallelism degree, is determined by the first incoming stream
element. Finally, the function combineWith defines the inverse transformation (and does

newtype Iter a = Iter {fromIter :: [a]}

instance Functor Iter where
fmap f = Iter ◦ map f ◦ fromIter

distribWith :: (a→[b]) → Iter a → [Iter b]
distribWith f = map Iter ◦ transposeRt ◦ map f ◦ fromIter

combineWith :: ([b]→a) → [Iter b] → Iter a
combineWith f = Iter ◦ map f ◦ transpose ◦ map fromIter

Figure 5.2: Iter type and auxiliary functions

47 The original Eden definition specifies that top-level lists are communicated as streams. In this work,
we use a modified Trans class which gives programmers more control of streaming through separate
stream types.
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not impose restrictions on the transposition used).

simpleParMapIter :: forall b c. (Trans b, Trans c)
⇒ (b→c) → Iter [b] → Iter [c]

simpleParMapIter f xss = yss where
xss' = distribWith id xss :: [Iter b]
yss' = parMap (fmap f) xss' :: [Iter c]
yss = combineWith id yss'

Figure 5.3: Parallel map as an iteration body

With these tools at hand, it is easy to define the efficient iterable version of parMap in
a more readable and type-safe way (see Figure 5.3). Now transforming inputs of type
Iter [b] element by element to outputs of type Iter [c], simpleParMapIter can be used
as an iteration body, transforming a stream of input lists (of equal length, see above) in a
set of parallel mapper processes; suitable for an iteration loop. Effectively, this is achieved
by only using the type conversion and the transposeRt inside distribWith (but setting
the transformation function to id), to generate a list of streams from the stream of lists.
The resulting stream of lists is transformed using parMap (fmap f), and the results of type
Iter c streamed back to the caller (bound by yss' :: [Iter c]), after reordering them
again using function combineWith.

In the same way we can define a iterable version of function spawnF:
simpleSpawnFIter :: forall b c.

(Trans b, Trans c)
⇒ [Iter b → Iter c]
→ Iter [b]
→ Iter [c]

simpleSpawnFIter fs = combineWith id ◦ spawnF fs ◦ distribWith id

Here we do not map the functions to the inputs. We rather allow that the functions work
on the whole input of a process.

5.1.2 Iteration Scheme

Iteration control consists of linking together the two "loose ends" of the iteration streams,
to produce new input and decide termination. The body skeleton’s input stream must be
started by initial data, and the result stream must be conditionally fed back to the body
skeleton, or terminated by closing the input stream and returning a final result. This can
be defined in terms of a generic iteration scheme:
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simpleIter :: (a → Iter c → (Iter b,d)) --control
→ (Iter b → Iter c) --body
→ a → d --in/out

simpleIter control body a = d where
(iterB,d) = control a iterC
iterC = body iterB

body

Iter b

Iter cda

control

The meta-skeleton simpleIter takes two function parameters: an iteration control function
which produces initial input and handles the two loose ends of the iteration stream, also
determining the final result, and an iteration body function. While not restricted to it, the
iteration body is typically an iterable skeleton like simpleParMapIter, the body skeleton.
All parallelism is encapsulated in the two parameter functions, simpleIter only deals with
the interconnection, and thereby provides a very liberal interface to combine iteration
control functions and body skeletons.

The body skeleton is allowed to transform input of type Iter b to a different type
Iter c. Thus, output cannot be fed back directly by the control function, but needs to be
transformed back from Iter c to Iter b, in an element-wise fashion. The iteration control
function also needs to check a termination condition, and to produce the final output
from the iteration body’s output upon termination. Two simple examples for iteration
control functions are loopControl, which performs exactly n iterations by forwarding n

inputs without any transformation, and whileControl, which takes a function parameter
checkNext to transform the initial input and iteration output of type a to a new iteration
input of type b (Left alternative). It stops the iteration with a result of type d (Right
alternative).

loopControl :: Int → a → Iter a → (Iter a, a)
loopControl n a as = (Iter as', a') where
(as',~(a':_)) = splitAt n $ a : fromIter as

whileControl :: (a → Either b d) → a → Iter a → (Iter b,d)
whileControl checkNext a (Iter as) = (Iter $ lefts bs, d) where

(bs,~((Right d):_)) = (break isRight ◦ map checkNext) (a:as)

The expressiveness of whileControl is limited because the control function checkNext only
considers the output of a single iteration step to decide termination or to compute the
input for the next step. The general control function type in simpleIter is much more
liberal, in fact it is not even required that the control function generates exactly one
iteration body input for each iteration body output. It appears more suitable to use a
state-based control function. This can be provided by a generic function parameterised
with a state transformation function for a single iteration step, thereby combining safety
and flexibility of the approach. We stick to stateless versions at the moment for reasons of
simplicity. We have implemented a generic stateful version, use it in our measurements
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and present it in Chapter 5.3.1.

5.1.2.1 Running Example.

The genetic algorithm presented earlier is an example of a parallel map iterated with a
conditional control function:
gaBody :: Iter [[(Genome, Genome)]] → Iter [[Individual]]
gaBody = simpleParMapIter recomb_rate

gaControl :: [[Individual]] → Iter [[Individual]]
→ (Iter [[(Genome, Genome)]], Individual)

gaControl = whileControl test_select

gaIter :: [[Individual]] → Individual
gaIter = simpleIter gaControl gaBody

The body skeleton is constructed from recomb_rate by simpleParMapIter, and iteration
control uses the test_select function inside whileControl. Function simpleIter combines
gaControl and gaBody to implement the genetic algorithm with parallel recombination
and rating.

5.1.3 Performance Tweaking

The main potential for optimisation of iteration steps lies in reducing communication
overhead. One obvious bottleneck is that data is gathered in the control function and then
redistributed to the body skeleton in each step. One approach to optimise communication
is to keep all data distributed between the iterations. In Eden, this can be done using
remote data [DHL10].

In our scenario of iterative algorithms, termination can often be decided from only a small
fraction of data, while most of the data remains unmodified across several iteration steps.
When the body-skeleton’s inputs and outputs are lifted to remote data, data will be passed
directly from the output of a process to its input for the following iteration step. It is
straightforward to define a variant of the simpleParMapIter skeleton for remote data, by
lifting its parameter function to the remote data interface:
simpleParMapIterRD :: (Trans b, Trans c)

⇒ (b → c) → Iter [RD b] → Iter [RD c]
simpleParMapIterRD f = simpleParMapIter (release ◦ f ◦ fetch)

This variant can now be combined with control function loopControl n to iterate a
computation n times on input (already supplied as remote data), and data will never
be gathered and redistributed in-between the iteration steps. In every iteration step,
input for each process will be fetched for local processing using function f, and released



5.1 Iterating Skeletons 99

afterwards, only to be fetched within one and the same process in the next iteration step.
Well-understood, other control functions, like e.g. whileControl, need to gather data
in-between iteration steps to decide termination and provide input for further iteration
steps. Therefore, a parallel iteration control skeleton should be used to achieve locality
and save communication without compromising abstraction by a manual decomposition of
iteration data.

5.1.4 Parallel Iteration Control Skeletons

In many cases where the iteration body uses a skeleton to work on distributed data, a
corresponding control skeleton with parallel processes can be used to inspect the distributed
data, exchanging only the parts of it that are needed globally (see Figure 5.4a48). In
addition, corresponding processes of control and body skeleton can be placed on the same
processor element to avoid communication49. This concept can be used with arbitrary
distributed data structures, in our implementation we focused on the special case of
iterations over distributed lists (lists of remote data).

Two different types of parallel iteration control can be distinguished: local and global
iteration control, with respect to the data dependencies in each one of the control processes.

Control Body

Input

Output

Distributed
iteration input

Distributed
iteration output

(a) Iteration scheme

a

d

Iter b

Iter c

(b) local control

a
d

Iter b

Iter c

communication

(c) global control

Figure 5.4: Parallel iteration control

48 Note that the number of arrows in between control and body is not the same as the other way around.
This indicates that the parallelism degree does not have to be identical for both directions in general,
even though this is typically the case.

49 The parallel Haskell dialect Eden supports explicit placement of computations in a multi-node parallel
system. We have omitted placement aspects from our code for simplicity throughout.
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5.1.4.1 Local Iteration Control

Local iteration control means that tasks of iteration control can be fulfilled without
exchanging data with other control processes – data dependency is local, as depicted in
Figure 5.4b. Otherwise, a global data exchange is necessary, as depicted in Figure 5.4c.

A local iteration control skeleton for lists of remote data is given in Listing 5.1. The
implementation is similar to the implementation of parMapIterRD, but takes the two
input values and the tuple output –both containing remote data handles– into account.
The control processes will connect both to their predecessor processes that produce the
distributed list beforehand and to the processes of the body skeleton, fetching required data
on-demand, or else passing on the RD handles. Functionality in each process is described
by the process-local control function which transforms the initial input and the output of a
process in the iteration body (stream-wise) in the respective control process. This skeleton
can implement several common iteration control variants simply by partially applying
the control skeleton to a suitable control function. E.g. a variant of whileControl where
termination can be decided from local data would be:
simpleLocalWhileCtrl :: (Trans a, Trans b, Trans d)

⇒ (a → Either b d)
→ [RD a] → Iter [RD a] → (Iter [RD b],[RD d])

simpleLocalWhileCtrl checkNext = simpleLocalControl (whileControl checkNext)

The control function checkNext works on the local part of a distributed list (of type
[RD a]), and either produces input for the next iteration or the final output (again a
distributed list).

Listing 5.1: Process-local iteration control skeleton
simpleLocalControl :: forall a b c d. (Trans a, Trans b, Trans c, Trans d)
⇒ (a → Iter c → (Iter b, d)) -- ^process local control:
→ [RD a] -- ^initial Input
→ Iter [RD c] -- ^output of loops
→ (Iter [RD b], [RD d]) -- ^input for loops, final result

simpleLocalControl controlF as css = (combineWith id bss, ds) where

css' = distribWith id css
(bss,ds) = unzip $ parMap f $ zip as $ lazy css'

f :: (RD a, Iter (RD c)) → (Iter (RD b), RD d)
f (a, cs) = (fmap release bs, release d) where

(bs,d) = controlF (fetch a) (fmap fetch cs)
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5.1.4.2 Global Iteration Control
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Figure 5.5: all-gather control

If the control function needs information from
multiple processes to calculate the next input
for the body or to determine termination, the
processes of the control skeleton need to ex-
change these data. As an example of this kind
of control skeleton, consider an all-gather pat-
tern where all processes gather selected data
of all other processes in a distributed manner.
We only discuss the signature of the skeleton
here, given in Figure 5.6. Aside from the iteration body output (distributed list of type
[RD c], iterated), the input for the next iteration and the final result (distributed lists
[RD b] and [RD d]) depend on additional synchronisation data (of type sc, iterated).
Combine function cmb produces the local next input and result, but considers the entire
list of synchronisation data (iterated) and the own position in the list of processes (Int).
Select function sct yields the local synchronisation data which will be communicated to
all other control processes.

A skeleton simpleAllGatherWhileControl can be defined as a specialisation of skeleton
allGatherControl with simpler interface, where type a=c. The select and combine function
of this skeleton work on single elements of the iteration stream. The encoding of the
termination condition in cmb is similar to the simple whileControl function presented in
Chapter 5.1.2.

5.1.4.3 Running Example.

In order to implement our genetic algorithm with a parallel control skeleton, we use a
global control variant, as functions test and select from the genetic algorithm must

simpleAllGatherControl::(Trans a, Trans b, Trans c, Trans d, Trans sc)
⇒ (a → Iter c → Iter sc) --sct
→ (Int → a → Iter c → Iter [sc] → ((Iter b),d)) --cmb
→ [RD a]→ Iter [RD c] → (Iter [RD b],[RD d]) --controlType

simpleAllGatherWhileControl :: (Trans a, Trans b, Trans d, Trans sc)
⇒ (a → sc) --sct
→ (Int → a → [sc] → Either b d) --cmb
→ [RD a]→ Iter [RD a] → (Iter [RD b],[RD d]) --controlType

Figure 5.6: Global control: the simpleAllGatherControl Skeleton
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consider the whole population. We use allGatherWhileControl with test_select and
parMapIterRD with function recomb_rate to define control and body of the iteration.
gaBodyRD :: Iter [RD[(Genome,Genome)]] → Iter [RD[Individual]]
gaBodyRD = parMapIterRD recomb_rate

gaControlRD :: [RD [Individual]] → Iter [RD [Individual]]
→ (Iter [RD [(Genome,Genome)]], [RD Individual])

gaControlRD = allGatherWhileControl id cmb where
cmb self _ pop = case test_select pop of

Left next → Left $ next !! self
Right res → Right res

gaIterRD :: [RD [Individual]] → Individual
gaIterRD = head ◦ fetchAll ◦ simpleIter gaControlRD gaBodyRD

In the control part, we synchronise the whole local population (sct=id) with all processes,
such that every process can use the whole global population in function cmb. To implement
the latter, we use test_select on the whole global population pop. If this doesn’t
yield termination (Right res), test_select returns the input Left next for all the body
processes. We use the process position (self) to select the part for one body process.

5.1.5 Inlining the Iteration Streams

In the previous two sections, we focused on input/output data of type [RD a/b], which is
something like a distributed list type. For the iterated body and the control skeletons, we
used the interface Iter [RD a/b] because we defined in the simpleIter scheme that data
of type a will be passed during the iteration using type Iter a. There are two drawbacks
of the implementations based on this signature:

1. The channel connections between the processes of the body and the control skeleton
have to be rebuilt in every iteration step.

2. In the skeleton definitions, we have to drag the iteration stream from the outside of
the iterated list to its elements.

In the definition of simpleParMapIter, we used function distributeWith and reversed its
effects by combineWith when defining the skeleton’s result. Similar transformations are
necessary for other body skeletons as well as control skeletons. What is actually desired is a
remote data connection list that itself carries iterated data, leading to type [RD (Iter a)].
If we had this type, a stream of data would be communicated over remote data connections
established only once. The following parMap variant with modified interface implements
these static remote data connections:
parMapIter :: (Trans b, Trans c)

⇒ (b → c) → [RD (Iter b)] → [RD (Iter c)]
parMapIter f = parMap (release ◦ fmap f ◦ fetch)



5.1 Iterating Skeletons 103

Notice that we can express the iterable skeleton simply by transforming the function
parameter. We observed that the transformation of more complex topology skeletons, such
as allToAllRD and allReduceRD (both developed in the context of remote data [DHL10]),
are similarly easy, only involving the respective function parameters (all transformations
done by the nodes are function parameters to these skeletons). The allToAllRD skeleton
can e.g. be adapted for Iteration streams essentially by lifting its parameter functions
appropriately. Function t1 generates the inputs for the all-to-all connection, t2 combines
the outputs from the all-to-all connections, and both are lifted using distribWith and
combineWith'50:
allToAllIter :: (Trans b, Trans c, Trans i) ⇒
(Int→b→[i]) → (b→[i]→c)
→ [RD (Iter b)] → [RD (Iter c)]

allToAllIter t1 t2 = allToAllRD t1Iter t2Iter where
t1Iter p = distribWith $ t1 p
t2Iter = combineWith' t2

combineWith' :: (c→[b]→a) → Iter c → [Iter b] → Iter a
combineWith' f (Iter bs) = Iter ◦ zipWith f bs ◦ transpose ◦ map fromIter

Lifting skeleton allReduceRD to allReduceIter (which uses a butterfly scheme for a more
efficient reduction than the former allToAllRD), is similarly easy.
allReduceIter :: (Trans b, Trans c) ⇒
(b → c) → (c → c → c) → [RD (Iter b)] → [RD (Iter c)]

allReduceIter t r = allReduceRD (fmap t) (liftIter2 r)
liftIter2 :: (a → b → c) → Iter a → Iter b → Iter c
liftIter2 f (Iter bs1) (Iter bs2) = Iter $ zipWith f bs1 bs2

It uses two function parameters, function t transforms the initial input of each process
to the reduction type. The reduce function r is then applied log(n) times in all the
nodes of the butterfly scheme. We lift t using fmap, and r using liftIter2. The latter
is implemented similarly to fmap but uses zipWith instead of map because r takes two
parameters.

The iteration streams to and from all body processes have to be processed by a control
function or skeleton which exactly matches the particular distributed data shape. This
constraint can be fulfilled by adjusting the previous iteration meta-skeleton to a different
type signature (iterD, with an implementation identical to the earlier simpleIter):
iterD :: (a → [RD (Iter c)] → ([RD (Iter b)],d))

→ ([RD (Iter b)] → [RD (Iter c)])
→ a → d

Further to using iterD, we need to define specialised versions of local and global iteration
control for this interface, which is again a simplification of the existing implementations.

50 combineWith' is a variant of combineWith with an additional input.
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Here the implementation of localControl:
localControl :: forall a b c d. (Trans a, Trans b, Trans c, Trans d)
⇒ (a → Iter c → (Iter b, d)) -- ^process local control
→ DList a -- ^initial Input
→ Iterated (DList c) -- ^output of loops
→ (Iterated (DList b),DList d) -- ^input for loops and final result

localControl controlF as css = (bss, ds) where

(bss,ds) = unzip $ parMap f $ zip as $ lazy css

f :: (RD a, RD (Iter c)) → (RD (Iter b), RD d)
f (a, cs) = (release bs, release d) where

(bs,d) = controlF (fetch a) (fetch cs)

This version works without distribWith and combineWith on the iteration stream and
manages to fetch and release each Iter stream on the processes as a whole.

5.1.6 Unifying the Interface

The adjusted signature of iterD of the last section is not compatible to the simpleIter

function, even though their implementations are identical. It is easy to specify a more
general type for the iteration combinator,
type generalIter = (a → iterC → (iterB,d))

→ (iterB → iterC)
→ a → d

but we lose type safety when dropping the type of the Iter streams. But this problem
can be addressed using a type family which describes iteration types used to interconnect
iteration control and iteration body skeleton. We want to have special instances for
distributed data types. As an example we define a special type for distributed finite
lists.
type family Iterated a :: ∗

newtype DList a = DList [RD a] --Distributed List
type instance Iterated (DList a) = DList (Iter a)

The distributed list type DList a is defined, containing a list of remote data which
represent the distributed elements of type a. Exchanging the iteration stream and the
distribution by [RD _] is now done automatically in the type instance for DList of the
Iterated type family, which yields DList (Iter a) – isomorphic to type [RD (Iter a)].
Other distributed data types and Iterated instances can be defined in the same way, e.g.
distributed trees or distributed matrices.

We use the simple type mapping type instance Iterated a = Iter a for ordinary types
a — those types that use the simpleIter scheme. It is not possible to allow overlapping
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iter :: (b → c -- b/c to typecheck Iterated b/c
→ a → Iterated c → (Iterated b,d)) --control

→ (Iterated b → Iterated c) --body
→ a → d --in/out

iter control body a = d where
(iterB,d) = control undefined undefined a iterC
iterC = body iterB

Figure 5.7: General iteration skeleton

instances for type families, so we have to define these instances for every base-type
separately. The following constraint CSimpleIter a for a type a can be used in the type
context of a skeleton to allow only input with according type family mapping:
type CSimpleIter a = Iterated a ~ Iter a

Quite advisedly, we have defined DList a as newtype, so an instance for lists can be defined
without overlapping Iterated DList a:
type instance Iterated [a] = Iter [a]

The type family enables us to define a generic but type-safe iteration skeleton iter (see
Figure 5.7) that works for both DLists and for any other reasonable type instance of
Iterated. The small caveat is that two dummy parameters b and c are introduced in
the control function, in order for the typechecker to check the types Iterated b and
Iterated c. This is needed because the type family mapping might not be injective.

5.2 Evaluation

We measured the performance of our iteration framework on the Beowulf cluster (see
Chapter 2.2.1). The cluster provides a total of 256 processor cores. However, as it could
not be used exclusively, measurements are limited to a maximum of 128 processor cores.
All program versions where tested on 2i processors with i ranging from 0 to 7. The
reported runtimes are mean values of 5 program runs. They are presented in diagrams
with logarithmically scaled axes, with runtimes corresponding to a linear speedup indicated
by dotted lines. In the following we present measurement results for two non-trivial case
studies: k-means and n-body.

5.2.1 K-means

K-means clustering is a heuristic method to partition a given data set of n d-dimensional
vectors into k clusters. In an iterative approximation, the method identifies clusters such
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that the average distance (a metric such as the euclidian or Manhattan distance) between
each vector and its nearest cluster centroid is minimal [Mac03]. The algorithm proceeds
as follows:

• Randomly choose k vectors from the data set as starting centroids.

• Define clusters by assigning each vector to the nearest centroid.

• Compute the centroids of these clusters.

• Repeat the last two steps until the clusters do not change anymore.

The iteration body takes a list of cluster centroids as input and computes the list of new
centroids as output. The iteration continues until two subsequent iteration results are
equal or their differences fall below a threshold.

The cluster assignment and part of the centroid computation can be parallelised using
parMap. Each parallel process receives a subset of the vectors, and the whole list of centroids.
Every process then computes a list of weighted sub-centroids which are combined to the
list of new centroids by the iteration control.

We measured the runtimes of this parallel k-means algorithm with a data set of 600000
vectors and k = 25 cluster centroids. The whole computation comprised 142 iterations.
Three different implementations were compared:

• recursive parMap is a naïve implementation which creates new processes and re-
distributes not only the centroids but also the (unchanged) list of vectors in each
iteration step. Here we do not use remote data. As the parallel processes are newly
created for each step, there is no way to share the vector list across iterations.

• untilControl/simpleParMapIter uses our iteration scheme with stateful versions
of untilControl and simpleParMapIter. Only the centroids are gathered and dis-
tributed for each iteration step, while the data vectors are once distributed and then
kept in the worker states during the iteration.

• monolithic iterUntil uses the monolithic iteration skeleton iterUntil presented in
[PR01]. Like the composed version above, it uses a stable process system and holds
the data set in local states. While being a perfect match for the parallel k-means,
other iterative algorithms would require a complete re-design and re-write of the
skeleton.
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Figure 5.8: Runtimes for k-means with 600000 vectors,
25 clusters, 142 iterations

Figure 5.8 shows the mean run-
times plotted against the number
of processors. The modular skele-
ton untilControl/
simpleParMapIter performs as
well as the specialised monolithic
iterUntil version. Both scale well,
showing an almost linear speedup
up to 8 processors. On more
than 32 processors, initialising and
distributing the vectors increas-
ingly influences runtime, leading
to lower speedup.

PEs iterUntil (1) untilControl/
parMapIter (2)

recursive
parMap (3)

(1) vs (2) (1) vs (3) (2) vs (3)

1 503.37 s 485.21 s 637.08 s -3.61% 20.99% 23.84%
2 260.56 s 250.66 s 897.20 s -3.80% 70.96% 72.06%
4 128.92 s 122.98 s 849.33 s -4.61% 84.82% 85.52%
8 65.30 s 63.24 s 512.98 s -3.16% 87.27% 87.67%
16 36.40 s 36.54 s 390.97 s 0.37% 90.69% 90.65%
32 20.15 s 20.34 s 291.33 s 0.94% 93.08% 93.02%
64 13.56 s 13.79 s 255.73 s 1.67% 94.70% 94.61%
128 12.14 s 12.51 s 232.88 s 2.98% 94.79% 94.63%

The naïve recursive parMap version performs dramatically worse. The overhead of dis-
tributing the vectors for every iteration enormously slows down the computation.

5.2.2 N-body

The n-body problem is a simulation of the movement of n particles in a 3-dimensional
space taking into account their mutual gravitational forces. In a straightforward parallel
n-body algorithm, particles are distributed to processes and each process computes the
new velocity and position for its own particles. To update its particles’ velocities, each
process needs position and mass (but not velocity) of all other particles. This information
needs to be exchanged in-between the iterations, leading to considerable communication
between the parallel processes, in contrast to the parallel k-means algorithm described
earlier. These functions are used before and after the exchange:
getMassPoint :: Body → MassPoint
updateAll :: [Body] → [[MassPoint]] → [Body]
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We used variants of the skeleton allToAllRD:
allGatherRD, allGatherIter and simpleAllGatherIter

to parallelise the iteration body. These skeletons simply are defined by setting the transfor-
mation function t1' of the respective all-to-all variant to t1' n x = replicate n (t1 x),
where t1 :: a → b is a transformation function of the allGather skeleton. Each process
holds a subset of the particles and processes exchange particle information in every iteration
step in a distributed manner using the all-to-all topology. We implemented the following
versions:

(1) recursive allGatherRD recursively instantiates the skeleton allGatherRD. As the
corresponding processes are allocated on the same processor in each iteration, all
data transfers occur between processes on the same processors. The Eden runtime
system optimises this processor-local communication by passing references to existing
data instead of serialising and sending it. I.e. processor-local communications do
not incur any overhead apart from evaluating rnf when sending local messages.
doStepsAllGatherStream :: Int → [Body] → [Body]
doStepsAllGatherStream n = shuffle ◦ fetchAll

◦ doStepsAllGatherStream' n
◦ releaseAll ◦ unshuffle noPe

doStepsAllGatherStream':: Int → [RD [Body]]
→ [RD [Body]]

doStepsAllGatherStream' 0 bs = bs
doStepsAllGatherStream' s bs = doStepsAllGatherStream' (s-1) new_bs where

new_bs = allGatherRD (map getMassPoint) updateAll bs

In the recursive allGatherRD implementation, the particles are passed locally between
the processes of the different skeleton instances. Thus, the only remaining overhead
consists of the repeated process and all-to-all topology creations.

(2) localLoopControl/allGatherIter instantiates our iterD scheme with the skeletons
localLoopControl for the iteration control and allGatherIter for the body51. It
uses persistent remote data connections. The drawback is that the output streams
from the body processes have to be fetched in the control processes for iteration
counting and released again when forwarding them to the body-processes. This
involves an additional use of rnf.
doStepsAllGatherIterStream :: Int → [Body] → [Body]
doStepsAllGatherIterStream n bs = shuffle ◦ fetchAll $ rdBs' where

dlBs = DList [1..noPe] (releaseAll ◦ unshuffle noPe $ bs)

(DList _ rdBs') = iter (localLoopControl n) (allGatherIter t1 t2) dlBs
t1 = map getMassPoint
t2 = updateAll

51 Note: here we use a slightly extended version of DList including Places
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(3) simpleLoopControl/simpleAllGatherIter instantiates our simpleIter scheme with
the skeletons simpleLoopControl for the iteration control and simpleAllGatherIter

for the body. The remote data from body-processes output to body-processes input
are repeadedly established (not the all-to-all connections, these are persistent).
doStepsSimpleAllGatherIterStream :: Int → [Body] → [Body]
doStepsSimpleAllGatherIterStream n bs = shuffle ◦ fetchAll $ dBs' where
dBs = releaseAll ◦ unshuffle noPe $ bs

dBs' = iter (simpleLoopControl n) (simpleAllGatherIter t1 t2) dBs
t1 = map getMassPoint
t2 = updateAll

In the first setting, we ran the n-body simulation for 20 iterations with 20000 bodies. This
constitutes a relatively high workload and large amounts of data have to be exchanged in
every iteration. Runtimes and steedups are presented in Figure 5.9.

Surprisingly, the recursive allGatherRD version performs better than the iteration frame-
work versions on up to 64 processors. Only on 128 and 248 processors, the iteration
framework versions are faster than the recursive version. An analysis of runtime behaviours
revealed that the recursive allGatherRD has no disadvantage in the communication steps
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sequential runtime: 624.35 s
PEs rec (1) iterD (2) iterSimple (3) (1) vs (2) (1) vs (3) (2) vs (3)

2 302.11 s 340.94 s 322.03 s 11.39% 6.19% -5.55%
4 153.43 s 173.73 s 167.47 s 11.68% 8.38% -3.60%
8 79.47 s 94.55 s 92.87 s 15.95% 14.43% -1.77%
16 41.48 s 48.42 s 48.59 s 14.33% 14.62% 0.34%
32 22.20 s 26.32 s 26.81 s 15.68% 17.20% 1.81%
64 14.02 s 15.89 s 14.85 s 11.75% 5.54% -6.58%
128 13.13 s 13.15 s 11.42 s 0.14% -13.03% -13.15%
248 23.19 s 15.63 s 14.23 s -32.61% -38.63% -8.93%

(c) Runtime table

Figure 5.9: N-body with 20000 bodies, 20 iterations and chunk size 30
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due to the optimised local communications, but the computation phases seem to be shorter,
although sharing the same sequential code base with the iteration scheme version. Pending
further investigation, we assume that the differences originate from the runtime system,
maybe the garbage collection does not work as effectively for the data streams in our
iteration scheme version. The simpleIter version performs mostly better than the iterD

version, but both versions are close.

In the second setting, we reduced the workload and amount of data to be communicated
for every iteration step. We used 5000 bodies but increased the number of iteration steps
to 200. Runtimes and steedups are presented in Figure 5.10. This time, the recursive
allGatherRD version performs slightly better than the iter framework versions up to 8
processors, but the latter versions are clearly faster than the recursive version from 16
processors on. Also the simpleIter version performs slightly better than the iterD variant,
except for 248 processors.

In the third setting, we used only 1000 bodies but increased the number of iteration steps
to 600, in order to measure the parallelism overhead. Runtimes and speedups are presented
in Figure 5.11. Here, both iteration framework versions clearly outperform the recursive
allGatherRD version, which has about half the speed of the other versions for 16 processors,
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(b) speedup

sequential runtime: 374.17 s
PEs rec (1) iterD (2) iterSimple (3) (1) vs (2) (1) vs (3) (2) vs (3)

2 198.31 s 219.02 s 205.36 s 9.46% 3.43% -6.24%
4 104.29 s 110.40 s 108.55 s 5.54% 3.92% -1.68%
8 56.73 s 57.84 s 57.04 s 1.92% 0.54% -1.39%
16 32.92 s 33.21 s 29.80 s 0.87% -9.48% -10.27%
32 21.67 s 22.53 s 16.54 s 3.82% -23.68% -26.59%
64 22.37 s 14.87 s 11.49 s -33.50% -48.63% -22.75%
128 46.51 s 14.40 s 14.14 s -69.04% -69.60% -1.82%
248 155.22 s 27.70 s 29.69 s -82.15% -80.87% 6.71%

(c) Runtime table

Figure 5.10: N-body with 5000 bodies, 200 iterations and chunk size 30
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(b) speedup

sequential runtime: 44.75 s
PEs rec (1) iterD (2) iterSimple (3) (1) vs (2) (1) vs (3) (2) vs (3)

2 28.91 s 28.69 s 25.40 s -0.76% -12.13% -11.46%
4 18.47 s 16.15 s 13.64 s -12.54% -26.13% -15.54%
8 13.01 s 10.37 s 7.75 s -20.27% -40.42% -25.27%
16 11.76 s 6.45 s 5.06 s -45.12% -56.92% -21.51%
32 15.10 s 4.85 s 4.83 s -67.88% -68.00% -0.37%
64 35.45 s 5.76 s 6.65 s -83.74% -81.24% 13.32%
128 129.08 s 16.27 s 18.58 s -87.39% -85.61% 12.39%
248 528.44 s 62.60 s 70.35 s -88.15% -86.69% 11.03%

(c) Runtime table

Figure 5.11: N-body with 1000 bodies, 600 iterations and chunk size 30

with increasing differences for increasing numbers of processors. The simpleIter version
performs better than the iterD version up to 32 processors and worse afterwards. However,
speedups are decreasing for all versions with more than 32 processors, the results in this
area are not crucial for practical purposes.

The recursive allGatherRD version performs better than the iteration framework versions
when the number of bodies per processor is relatively high, while the iteration framework
versions perform better than the recursive allGatherRD version when the number of bodies
per processor falls beneath a certain threshold – e.g. when we increase the number of
processes for a fixed input size. There seems to be a trade off between the process and
channel creation overhead for the recursive version (here the overhead for repeatedly
creating the all-to-all topology increases quadraticly) and some other overhead for the
iteration framework version (increasing with the number of bodies per process), which we
have not yet identified.
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5.3 Introducing State

The control function and the iteration body skeleton must adhere to constraints that
cannot be expressed in its Haskell type: They have to process their argument stream
incrementally and produce an incremental output stream. Even more severe a restriction,
they have to produce exactly one element of the output stream when consuming one
element of the (second) argument stream. In practice, there exist pairs of iteration control
and iteration body that do not have these properties, but are still useful to compute
iteration results. However, our intention is definitely lost in these cases. As often, the
price of the increased flexibility is a less robust interface.

Introducing an explicitly stateful control function to the iteration interface would give the
desired robustness, but the final iteration result could not be incremental. Therefore, we
make this optional by providing a safe interface without jeopardizing the general character
of iter.

5.3.1 Stateful Iteration Control

We distinguish between simple control functions from the simpleIter scheme where the
iteration stream is not inlined and control functions with inlined iteration streams as
presented in Chapter 5.1.5.

5.3.1.1 Simple Iteration Control

A suitable control function for the simpleIter scheme can be constructed from a stateful
interface, as shown in Listing 5.2. The construction takes two stateful parameter functions

Listing 5.2: Stateful control interface
simpleControlS :: (a → State s (Either b d))

→ (c → State s (Either b d))
→ s -- ^initial state
→ b -- ^dummy b needed to typecheck Iterated b
→ c -- ^dummy c needed to typecheck Iterated c
→ a -- ^initial Input
→ (Iter c) -- ^input from body
→ (Iter b,d) -- ^output to body and final result

simpleControlS c1 c2 s _ _ a (Iter cs)
= (Iter $ lefts bs, head $ rights ds) where

(bs,ds) = break isRight $ evalState sCas s
sCas = do init ← c1 a

rest ← mapM c2 cs
return (init:rest)
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Listing 5.3: Loop control with transform function and simple interface
simpleLoopControlFS :: Int

→ (Int → b → b)
→ b -- ^dummy b needed to typecheck Iterated b
→ b -- ^dummy c needed to typecheck Iterated c
→ b -- ^initial Input
→ (Iter b) -- ^input from body
→ (Iter b,b) -- ^output to body and final result

simpleLoopControlFS n cf _ _ x xs = simpleControlS' loopFC loopFC 0 x xs where
loopFC x' = do i ← get

if i<n then do put (i+1)
return $ Left $ cf i x'

else return $ Right x'

that define how to convert single control inputs (which are the initial input of type a or
the bodie’s outputs of type c) to either the bodie’s input or the final result. Together with
an initial state, this yields an internally stateful control function. This version includes
the two dummy parameters needed to typecheck the function iter. For convenience, we
define function simpleControlS', a slight verison of simpleControlS without the dummy
parameters:
simpleControlS' c1 c2 s = simpleControlS c1 c2 s undefined undefined

We can use simpleControlS' to define specialised control functions, e.g. simpleLoopControlFS
of Listing 5.3 which triggers exactly n iteration steps and transforms each input using
function parameter cf with the current iteration step.

5.3.1.2 Distributed Iteration Control

We will now focus on local iteration control skeletons as introduced in Chapter 5.1.4.1. An
implementation of a stateful skeleton for distributed lists is given in Listing 5.4. When run,
the control processes will connect both to their predecessor processes that produced the
distributed list beforehand and to the processes of the body skeleton. The functionality of
each process is expressed by function simpleControlS', which is used in the respective
control process to transform the initial input and the output of an iteration body’s process
(stream-wise) into the iteration body’s input and the final result. Two stateful control
functions c1 and c2 are parameters for simpleControlS' and specify the concrete local
functionality, and likewise, a list of initial states is needed to run simpleControlS' with
c1 and c2. The functionality of the processes is defined by function f. They each take
one of the initial states sts, one of the distributed input elements as and the loop-back
output of the body css. The latter is of course initially not available, thus we supply the
list lazily, such that function zip3 can assemble the processes’ input immediately.



114 5 Skeleton Iteration

Listing 5.4: Stateful process-local iteration control skeleton
localControlS ::

forall a b c d s. (Trans a, Trans b, Trans c, Trans d, Trans s)
⇒ (a → State s (Either b d))
→ (c → State s (Either b d))
→ [s] -- ^initial states
→ DList b -- ^dummy b needed to typecheck Iterated b
→ DList c -- ^dummy c needed to typecheck Iterated c
→ DList a -- ^initial Input
→ Iterated (DList c) -- ^input from loops
→ (Iterated (DList b),DList d) -- ^output to loops and final result

localControlS c1 c2 sts _ _ (DList places as) ~(DList _ css)
= (DList places bss, DList places ds) where

(bss,ds) = unzip $ parMapAt places (uncurry f) $ zip sts inp
inp = zip as $ lazy css

f :: s → (RD a, RD (Iter c)) → (RD (Iter b),RD d)
f s (a, cs) = (release bs, release d) where

(bs,d) = simpleControlS' c1 c2 s (fetch a) (fetch cs)

This skeleton can implement several common iteration control variants, e.g. a simple
counter of fixed iterations (localLoopControlS, see Listing 5.5)

Listing 5.5: Control Skeleton localLoopControlS

localLoopControlS n = localControlS loopC loopC (repeat 0) where
loopC :: a → State Int (Either a a)
loopC inp = do i ← get

if (i < n) then do put (i+1)
return $ Left inp

else return $ Right inp

Listing 5.6: Stateful map skeleton simpleParMapIterSAt with simple iteration type
simpleParMapIterSAt :: forall b c s. (Trans b, Trans c, Trans s)

⇒ Places
→ (b → State s c)
→ [s]
→ Iter [b]
→ Iter [c]

simpleParMapIterSAt places f states xss = combineWith id yss where
xss' = distribWith id xss :: [Iter b]
yss = parMapAt places (uncurry f') $ zip states xss' :: [Iter c]
f' :: s → Iter b → Iter c
f' s (Iter bs) = Iter $ evalState (mapM f bs) s
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5.3.2 Stateful Body Skeletons

Listing 5.6 presents a stateful iterable parMap variant with simple interface. The skeleton
uses a stateful52 map-function and a list of initial states has to be provided, one for every
process. In each process, the map function f is mapped on the iteration stream with
the initial state, transforming the state in each iteration step. Function evalState is
needed to run the stateful computation and retrieve the stream of outputs. The skeleton
uses auxiliary functions distribWith and combineWith similar to simpleParMapIter to
distribute and combine the iteration stream to and from the processes.

The parMapIterS skeleton works similar to the simpleParMapIterS skeleton, but addi-
tionally uses liftRD to establish the remote data connections while not using functions
distrib and combine.

Listing 5.7: Stateful map skeleton parMapIterS with distributed iteration type
parMapIterS :: (Trans b, Trans c, Trans s)

⇒ (b → State s c)
→ [s]
→ Iterated (DList b)
→ Iterated (DList c)

parMapIterS f states (DList places xsRDs)
= DList places $ parMapAt places (uncurry f') $ zip states xsRDs
where f' s = liftRD (λ(Iter bs) → Iter $ evalState (mapM f bs) s)

52 using State from module Control.Monad.State.Lazy, a strict state would not work
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5.4 Case Studies

5.4.1 FFT

We already implemented FFT with distributed homomorphism skeletons. The 2-dimensional
distributed homomorphism skeletons of Chapter 4.1.4 and Chapter 4.3.4 are a special case
of the general distributed implementation of a distributed homomorphism described by
Gorlatch [Gor98].

5.4.1.1 Distributed Homomorphism - the General Case

Remember, a distributed homomorphism can be implemented in parallel as follows:

∼
h

(d)
= d◦

i=1
chdim(i,i+1) ◦ d+1◦

i=1
mapdh ◦ chdim(i,d+1)

Here h is a distributed homomorphism function, the input list is of size 2l. Function
∼
h

(d)

(d ∈ 0...l − 1) works on the list distributed into d + 1 dimensions where d dimensions are
distributed among the processes. mapdh maps h to the inner list of the d + 1-dimensional
input. chdim(i,j) flips dimension i and j of the input and n◦

i=m
denotes function compositions

for i from m to n53.

A recursive transient general distributed homomorphism skeleton dhSkelRec can be con-
structed using remote data (see Listing 5.8). To keep it simple, we work with a list of lists,
where each inner list contains the input for one process. We do not generalise the data
type to a d dimensional structure, because this would involve type arithmetic if d shall be
variable. We rather assume a virtual d dimensional space, with a fixed base length base

Listing 5.8: A simple recursive distributed homomorphism skeleton for the d-dim. case
dhNDFlatRec :: Trans a

⇒ Int --base
→ Int --n = d+1 dims, including local dim
→ ([a] → [a])
→ [[RD a]]
→ [[RD a]]

dhNDFlatRec base d h = chdims base d ◦ loop d where
loop 0 xss = xss
loop i xss = loop (i-1) (parMap h' ◦ chdim base d d i $ xss)
h' = releaseAll ◦ h ◦ fetchAll

53 The order is the typing order, not the evaluation order: 2◦
i=1

(+i) = (+1) ◦ (+2)
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for all dimensions (the length of each inner list):

The mapping of each sublist to a single process implies that each data exchange between
two processes due to chdim invocations involves only a single data element. The missing
agglomeration leads to massive parallel overhead. Even though this is not a competitive
implementation, we can use this version very well for runtime analysis. Each element of an
inner list is lifted to remote data, such that each element of each process can be exchanged
with an arbitrary process. The functionality is composed of loop d and chdims, where
the latter implements d◦

i=1
chdim(i,i+1). loop d calls d times chdim and parMapAt with the

homomorphism h, lifted to remote data.

We need to implement function chdim, which swaps 2 dimensions of an n dimensional grid
(chdim base n i j= chdim(i,j)) and function chdims, which is defined as chdims base n=
n−1◦
i=1

chdim(i,i+1). We implement these via auxiliary function chdimArr (see Listing 5.9),
which works on a flat array and reorders the elements efficiently using prelude function
ixmap.

The input array is a flattened version of a n = d + 1 dimensional grid with base length
base. Function partnerF calculates for each position of the flat array the position after
the dimension swap in the n dimensional grid. We chose this low-level approach based
on bit arithmetic because it is reliable, efficient and easy to implement. A high level
transformational implementation where the nested lists are recursively recombined like
for the reduce and allReduce skeletons of Chapter 4.2.1.3 and Chapter 4.2.1.4 seems very

Listing 5.9: Function chdim for arrays
chdimArr :: (Ix i, Integral i) ⇒

i --base length
→ i --n-Dims
→ i --ChDim1
→ i --ChDim2
→ Array i a
→ Array i a

chdimArr base d cd1 cd2 arr
| cd1 > 0 && cd1 ≤ d && cd2 > 0 && cd2 ≤ d

= if cd1 == cd2 then arr else ixmap (bounds arr) partnerF arr
| otherwise = error "ChDim ≤ 0 | | > n-Dims"
where pot1 = base^ (d-cd1)

pot2 = base^ (d-cd2)
partnerF ix | val1 == val2 = ix

| otherwise = ix - bigVal1 - bigVal2 + bigVal1' + bigVal2'
where
val1 = ix `div` pot1 `mod` base
bigVal1 = val1 ∗ pot1
bigVal1' = val1 ∗ pot2
val2 = ix `div` pot2 `mod` base
bigVal2 = val2 ∗ pot2
bigVal2' = val2 ∗ pot1
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difficult to implement, not least because of the (virtually) arbitrary number of dimensions
of the input.

Apart from the bit arithmetics, the implementation of the distributed homomorphism
skeleton is simple and straight forward. The drawback of this implementation is that it
creates one channel for each element in each parMap phase. It is hard to optimise the
number of channels by agglomerating n dimensional blocks, because of the variable number
of dimensions. Anyway, it is not the purpose of this example to create a highly optimised
version of the distributed homomorphism skeleton, rather we want to show how it can be
done conceptually.

Further, we call the parMap skeleton in the loop function n times, which includes the
overhead of process creation for every recursion step.

A version of skeleton dhNDFlatRec called dhNDFlatIter using persistent iterable skeleton
simpleParMapIter instead of parMap is presented in Listing 5.10. It uses the stateful simple
control function simpleLoopControlFS from Listing 5.3 with function chdimCF to transform
the input, where:
chdimCF :: Int -- n-Dims

→ Int -- base length
→ Int -- act-dim
→ [[a]] -- n-dim Grid (flatened) in
→ [[a]] -- n-dim Grid (flatened) out

chdimCF base d i = chdim base d (d-i) d

The simple versions of the iteration skeletons use a persistent process topology, but do not
use persistent channel connections between the processes. This includes more overhead
for the channel creation, but gives more flexibility allowing for different communication
partners in every iteration step. This is exactly what we need, as the change of dimensions
will always happen at different dimensions involving different communication partners.

Listing 5.10: A simple persistent distributed homomorphism skeleton for the d-dim. case
dhNDFlatIter :: (Trans a, CSimpleIter ([[RD a]]))

⇒ Int --base
→ Int --n = d+1 dims, including local dim
→ ([a] → [a])
→ [[RD a]]
→ [[RD a]]

dhNDFlatIter base d h
= chdims base d
◦ iter (simpleLoopControlFS d $ chdimCF base d) (simpleParMapIter h')
where h' = releaseAll ◦ h ◦ fetchAll
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Listing 5.11: A transient (processes and channels); n-dimensional distributed homomor-
phism FFT implementation

fft3_NDRec :: Int --base
→ Int --n-Dims
→ [Complex Double]

fft3_NDRec base d = out ◦ dhNDFlatRec base d h $ inF [1..n] where
h :: [(Complex Double, Int, Int)] → [(Complex Double, Int, Int)]
h = fft3 base --the fft3 implementation
n = base^d

inF :: [Int] → [[RD (Complex Double, Int, Int)]]
inF xs = chunk base $ releaseAll $ zip3 (bitReverse xs) [0,1..] [1,1..]
bitReverse xs = inv n $ map fromIntegral xs

out = map fst3 ◦ fetchAll ◦ concat
fst3 (a,_,_) = a

Listing 5.12: A persistent processes; transient channels; n-dimensional distributed homo-
morphism FFT implementation

fft3_NDIter :: Int --base
→ Int --n-Dims
→ [Complex Double]

fft3_NDIter base d = out ◦ dhNDFlatIter base d h $ inF [1..n] where
h = fft3 base ...

5.4.1.2 FFT Implementation

We compare two FFT implementations based on the two distributed homomorphism
skeletons from the previous section. A version for the recursive skeleton with transient
processes (see Listing 5.11) and a version using the iteration framework with persistent
processes (see Listing 5.12). Both versions are identical apart from the different skeletons
used. They differ from the two dimensional versions of Chapter 4.4.3 by the additional
dimension parameter d and the additional use of releaseAll to prepare the skeleton input
and fetchAll to gather the skeleton output.

5.4.1.3 Experimental Results

We conducted our experiments on a Beowulf cluster (see Chapter 2.2.1) and used different
distributions for each input size. E.g. we can distribute input size 64 into 26 elements
(base = 2, d = 5: 2 elements on each process and 25 = 32 processes in a virtual hypercube)
or into 43 elements (base = 4, d = 2: 4 elements on each process and 42 = 16 processes in
a virtual hypergrid). In general: Input distribution basen means that we have d = n − 1
dimensions in the hypergrid topology, where the n’th dimension with base elements is
process local. The runtime trace visualisations of Figure 5.12 presents parallel FFT
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Figure 5.12: Traces of FFT with N dimensional distributed homomorphism skeleton for
input size 64
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input 212 46 163

PEs iter rec overhead iter rec overhead iter rec overhead
2 6.02 s 7.64 s 21.17% 2.07 s 2.23 s 6.82% 0.98 s 1.00 s 2.40%
4 4.06 s 5.37 s 24.29% 1.75 s 1.90 s 7.92% 1.03 s 1.08 s 4.45%
8 3.19 s 3.78 s 15.60% 1.58 s 1.78 s 11.18% 1.14 s 0.98 s -14.15%
16 2.79 s 3.52 s 20.78% 1.58 s 1.65 s 4.02% 0.97 s 1.03 s 5.68%
32 3.19 s 4.52 s 29.44% 1.69 s 1.88 s 10.26% 1.20 s 1.28 s 6.19%
64 3.98 s 5.42 s 26.51% 2.00 s 2.39 s 16.33% 1.42 s 1.55 s 8.26%
128 5.48 s 7.29 s 24.77% 2.86 s 3.54 s 19.18% 2.17 s 2.09 s -3.64%

(d) Runtime table

Figure 5.13: Runtimes of FFT with N dimensional distributed homomorphism skeleton,
input size 4096
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invocations for input size 64. We only show communication between the worker processes
and hide input and output communication, which would overlap much of the traces.
Figure 5.12a and Figure 5.12b show program invocations for the iteration framework and
the recursive version with input distribution 26 on 32 PEs in the machine view. Here, the
iteration framework version is slightly faster than the recursive version and communication
phases are somewhat closer to each other, but the overall behaviour is similar. The
message communication pattern of the hypercube is visible, where in the initial step,
neighbouring elements are exchanged and subsequently the step width of communication
increases. Figure 5.12c and Figure 5.12d show program invocations for data distribution
43 on 16 PEs in processes per machines view. Except using a single or three processes per
machine, both versions are again similar. Here, the runtime of both versions is similar,
but communication of the recursive version seems to be slightly more dense.

Figure 5.13 depicts runtime comparisons of both versions for input size 4096. We used
varying input distributions: 212 (Figure 5.13a), 46 (Figure 5.13b) and 163 (Figure 5.13c).
Apart from the 16 PE and 128 PE measurements in the 163 setting, the iteration framework
always performs clearly better. Runtimes are best with a number of processes around 8 to
16.

The second setup compares runtimes for input sizes 16384 for input distribution 214 in
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(b) distribution 47

input 214 47

PEs iter rec overhead iter rec overhead
4 50.16 s 60.14 s 16.60% 17.82 s 16.14 s -9.44%
8 30.99 s 32.11 s 3.48% 13.45 s 12.08 s -10.16%
16 25.56 s 24.48 s -4.22% 11.61 s 10.26 s -11.62%
32 25.94 s 23.49 s -9.43% 11.72 s 11.36 s -3.06%
64 27.27 s 27.68 s 1.51% 12.80 s 12.86 s 0.48%

(c) Runtime table

Figure 5.14: Runtimes of FFT with N dimensional distributed homomorphism skeleton,
input size 16384
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Figure 5.14a and 47 in Figure 5.14b. Here, the recursive version often performs better
than the iteration framework implementation, but runtimes are mostly close.

In the last setting, we used 65536 input elements with input distributions 216 in Figure 5.15a,
48 in Figure 5.15b, 164 in Figure 5.15a and 2562 in Figure 5.15e. The results are inverse
to the first setting. Here the recursive version performs clearly better in most cases and
slightly worse in few cases.

5.4.2 Conjugate Gradient (CG)

This section is a revised versions of [DHLB16], Section 3.2.
Conjugate gradient is an efficient iterative algorithm for solving large linear systems whose
matrix is symmetric and positive definite [Saa96]. It generates vector sequences of iterates
which are successive approximations to the solution, residual vectors corresponding to the
iterates and search directions used in updating the iterates and the residuals.

The Haskell code given in Figure 5.16 follows the presentation of [Bre98]. A data type ISol

is used for representing an iterative solution comprising an iterate x, a residual r, a search
direction p and an iteration counter. The cg code uses common basic matrix and vector
operations (scalar and dot product, vector arithmetics, and matrix-vector multiplication
matVec), whose definitions are omitted here. We use the library Data.Vector.Unboxed for
the representation of vectors. A Matrix is a list of vectors. The use of unboxed vectors
instead of lists accelerated our programs by the factor 10.

5.4.2.1 Recursive Process Instantiations

This iterative program is parallelised by decomposing the matrix-vector multiplication
into as many tasks as PEs are available. The matrix is split into chunks of row vectors
and the vector is broadcast to all worker processes, such that each worker process can
compute a chunk of the result vector. The parallel version differs from the sequential one
by only two small changes:

1. q = matVec a p is replaced with
q = concat $ parMap (uncurry matVec) (zip aSplit (repeat p)))

2. and a respective decomposition aSplit of the matrix in the outer where-block
aSplit = splitIntoN np a :: [[Matrix]].

Each process receives a matrix chunk and the whole vector. The number of PEs np

becomes an additional parameter of the function cg. The drawback of this parallelisation
is that the matrix chunks would repeatedly be distributed by the main process to all
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input 216 48

PEs iter rec overhead iter rec overhead
4 1554.11 s 1681.51 s 7.58% 324.01 s 325.48 s 0.45%
8 700.39 s 663.57 s -5.26% 194.72 s 150.77 s -22.57%
16 478.01 s 275.35 s -42.40% 149.50 s 104.76 s -29.92%
32 399.47 s 209.84 s -47.47% 139.87 s 99.97 s -28.52%
64 376.68 s 191.25 s -49.23% 138.62 s 102.23 s -26.25%

(c) Runtime table
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(e) distribution 2562

input 164 2562

PEs iter rec overhead iter rec overhead
4 94.38 s 84.41 s -10.57% 65.13 s 65.14 s 0.01%
8 80.89 s 72.08 s -10.88% 61.48 s 60.55 s -1.51%
16 76.55 s 68.20 s -10.91% 62.51 s 61.23 s -2.05%
32 79.29 s 75.22 s -5.12% 67.20 s 67.94 s 1.10%
64 86.47 s 78.95 s -8.70% 73.92 s 74.23 s 0.41%

(f) Runtime table

Figure 5.15: Runtimes of FFT with N dimensional distributed homomorphism skeleton,
input size 65536
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data ISol = IterSol Vector Vector Vector Int
-- ISol x r p i means iterate x, residual vector r,
-- search direction p, iteration counter i

cg :: Matrix → Vector → ISol
cg a v = until converge (nextIter a) (initSol v)

where
converge :: ISol → Bool
converge (IterSol _ r _ _) = dotProd r r < epsilon

where epsilon = 0.01

nextIter :: Matrix → ISol → ISol
nextIter a (IterSol x r p k)

= (IterSol x' r' p' (k+1))
where

-- matrix vector multiplication
q = matVec a p

pq = dotProd p q
rr = dotProd r r
qq = dotProd q q
alpha = rr / pq
beta = alpha ∗ qq / (pq - 1)
r' = vecSub r $ scalMult alpha q
x' = vecAdd x $ scalMult alpha p
p' = vecAdd r' $ scalMult beta p

initSol vector = IterSol (zero vector) vector vector 0

Figure 5.16: Haskell Implementation of Conjugate Gradient

child processes. A better approach is to forward the matrix chunks locally between the
corresponding processes in the iteration, using remote data and co-allocation to reduce
communication overhead. Moreover, it is advantageous to suppress stream by boxing the
matrix chunks into a special lazy box LBox:
newtype LBox a = LBox {unLbox :: a}
instance NFData a ⇒ NFData (LBox a)
where rnf (LBox x) = () -- rnf x is avoided

instance Trans a ⇒ Trans (LBox a)

Data in a lazy box will not be evaluated to normal form before sending. This is especially
useful for data that is known to be in normal form. The repeated traversal of the data by
rnf is suppressed. Lazy boxes will be sent in a single message, i.e. streaming or concurrent
sending will be suppressed. The resulting program code is given in Figure 5.17.

The iteration function nextIter now receives the list of handles to the boxed matrix
chunks as an additional parameter of type [RD (LBox Matrix)]. It is important that each
process produces a new handle to be passed to its successor (via the main process) because
a handle can only be used once. The worker processes are created using the parMapAt

skeleton with the desired placement on successive processor elements (PEs) starting with
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PE 2 (indicated by the first parameter [2..]).

Figure 5.18 shows three views of a trace of a program run for a matrix and vectors of size
20000 on 8 PEs. 10 iterations are performed. The machines view in Figure 5.18 (a) and the
processes-per-machine view in Figure 5.18 (b) have messages overlayed. In Figure 5.18 (c)
the processes-per-machine view is shown without messages. The computation starts
with the distributed evaluation of the input matrix chunks by auxiliary processes. This
evaluation takes about half a second. Then the parallel iteration phase starts. In Figure 5.18
(a) and (b) the iterations are clearly separated by the message exchanges between the
main PE and main process, respectively, and all other PEs and processes. The message
traffic consists of the following communications: First the main process sends process
instantiation messages to all PEs. As a reply it receives a message with the input channels
from each process. Then it sends the processes’ input via the received channels. The
input consists of the matrix chunk handle and the vector. The processes perform a matrix
vector multiplication with their matrix chunk and the input vector and return their result
vector which is a chunk of the overall result vector to the main process. The main process
decides whether to terminate or to start another iteration step. This synchronisation by
the master induces that slow worker processes may slow down the whole computation, as
can be observed in iteration steps 6 and 7, where the worker processes on PEs 5 and 7

cgpar :: Int → Matrix → Vector → ISol
cgpar np a v

= snd $ until converge nextIter (aSplit, (initSol v))
where

converge :: ([RD (LBox Matrix)], ISol) → Bool
converge (_, (IterSol _ r _ _)) = dotProd r r < epsilon
where epsilon = 0.01

aSplit :: [RD (LBox Matrix)]
aSplit = map (release.LBox) $ splitIntoN np a

nextIter :: ([RD (LBox Matrix)], ISol)
→ ([RD (LBox Matrix)], ISol)

nextIter (hbms, IterSol x r p k)
= (map fst ress, IterSol x' r' p' (k+1))

where
ress = parMapAt [1..]

(λ (hbm, vec) →
let bm = fetch hbm

hbm = release bm -- new handle
mat = unLbox bm -- matrix chunk

in (hbm, matVec mat vec)
(zip hbms (repeat p))

q = concat $ map snd ress
-- following code as before
pq = ◦ ..

Figure 5.17: Parallel Conjugate Gradient With Recursive Process Instantiations
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(a) Machines View With Messages Overlay
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(d) Statistics
Input Parameters: Matrix Dimension 20000, 10 Iterations, Time for Iterations: 2,529
Total Runtime: 3,066135s, 8 Machines, 89 Processes, 513 Threads, 473 Messages

Figure 5.18: Activity Profile of Parallel CG Program with Recursive Process Instantia-
tions
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need more time which leads to blocking phases in the other PEs. In iteration step 7, the
worker on PE 2 is the slowest. Although the computation is very regular and each worker
has to perform computations with the same complexity, such imbalances in computation
time can be caused by concurrent computations performed on the physical machine which
could not be used exclusively.

In the processes-per-machine view in Figure 5.18 (b) and (c), it can be observed that the
main process starts eight new parMap processes per iteration. The short process bars overlap
slightly which can more clearly be seen without the message overlay (Figure 5.18 (c)). The
overlap is due to the passing of the matrix chunk from one process to its successor process.
Each process terminates as soon as it has sent its matrix chunk. Because subsequent
processes are co-allocated and share their PEs heap, passing the matrix chunk reduces to
a simple pointer exchange.

The statistics in Figure 5.18 (d) shows that 89 processes have been created, the main
processes, 8 auxiliary processes to compute the matrix chunks and finally 10 times 8
processes for the ten parallel iteration steps on 8 PEs. 513 threads are created: the
main thread, 8 system threads (1 per PE), 1 input and 2 output threads per auxiliary
process and, in particular, three input and three output threads for each of the 80 worker
processes - two inputs and two outputs from and to the main process and one input and
output from the predecessor process and to the successor process, i.e. in total there are
1 + 8 + 3 · 8 + 6 · 80 = 513 threads.

5.4.2.2 Parallel Implementation using the iterUntil Skeleton

The Eden skeleton library provides the iterUntil skeleton for the evaluation of simple
parallel iterative computations. A set of worker processes is created, which perform a
parallel map as the iteration body, while a controlling main (or master) process decides
about termination and provides the input for each iteration. Both the workers and the
master process keep a local state. Internally, data are exchanged between workers and
master as streams of tasks (from the master to all workers) and results (from all workers
to the master), one element per iteration step and worker, respectively.

The iterUntil skeleton’s interface is shown in Figure 5.19. The behaviour of the skeleton
is controlled by three functions:

1. The input transformation function transforms the input into lists of worker states
and of worker inputs and a master state.

2. The worker function takes a state and an input and produces a result and a state.

3. The combine function is used by the master to decide about termination. It takes
the master state and the list of worker results and produces either a final result or a
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iterUntil :: (Trans sw, Trans iw, Trans rw) ⇒
(inp → ([sw],[iw],sm)) -- ^input transformation function
→ (sw → iw → (rw,sw)) -- ^worker function
→ (sm → [rw] → Either r ([iw],sm)) -- ^combine function
→ inp -- ^input
→ r -- ^result

Figure 5.19: Interface of iterUntil iteration skeleton

list of worker inputs and a master state.

The conjugate gradient algorithm can easily be parallelised using the iterUntil skeleton.
Figure 5.20 shows the necessary definitions of the three function parameters. In each
iteration, the current vector is replicated as input for all workers. The matrix chunks
are the worker states, which actually do not change during the entire computation. The
master state is the iterative solution of type ISol. The worker function computes its
chunk of the matrix vector multiplication and keeps its matrix part as the local worker
state. The master concatenates all vector chunks received from the workers, and checks
for termination (using converge as defined before). The nextIter function is adapted to
take the current vector, which is the result of the matrix vector multiplication, instead of

cg_par_skel :: Int → Matrix → Vector → ISol
cg_par_skel np mat vec

= iterUntil transform workerfct combine (mat,vec)
where

transform :: (Matrix,Vector) → ([Matrix],[Vector],ISol)
transform (matrix,vector)

= (splitIntoN np matrix, replicate np vector,
IterSol (zero vector) vector vector 0)

workerfct :: Matrix → Vector → (Vector, Matrix)
workerfct a v = (matVec a v, a)

combine :: ISol → [Vector] → Either ISol ([Vector],ISol)
combine itersol@(IterSol x r p k) vs

| converge itersol' = Left itersol'
| otherwise = Right (replicate n p', itersol')
where
itersol'@(IterSol _ _ p' _)

= nextIter (concat vs) itersol

nextIter :: Vector → ISol → ISol
nextIter q (IterSol x r p k)

= (IterSol x' r' p' (k+1))
where
-- following code as before
pq = ◦ ..

Figure 5.20: Parallel Implementation of Conjugate Gradient Using iterUntil skeleton
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(a) Machines View With Messages Overlay
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(b) Processes per Machines View With Messages Overlay
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(c) Statistics
Input Parameters: Matrix Dimension 20000, 10 Iterations, Time for Iterations: 2,393s
Parallel Runtime: 2,932605s, 8 Machines, 17 Processes, 209 Threads, 233 Messages

Figure 5.21: Activity Profile of Parallel iterUntil CG Program
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the matrix as parameter, as the matrix vector multiplication is computed in parallel by
the worker processes.

Figure 5.21 shows two views of an activity profile of this iterUntil-based version, run
with the same program parameters as in the activity profile shown in Figure 5.18 for the
compositional (recursive) program version. For this program version, the machines view
in Figure 5.21 (a) is very similar to the machines view in Figure 5.18 (a). The processes-
per-machine views, however, reveal the different approaches. With the iterUntil skeleton
exactly one process is generated per machine and these communicate with the main process
between the different iterations, see Figure 5.21 (b). The message streams overlay would
cover most of the activity bars. As in Figure 5.18 there is an imbalance, by chance in the
same iterations 6 and 7 as in Figure 5.18, but due to different PEs causing the delays. The
machines views in Figures 5.21 and 5.18 (a) do not reveal whether processes are started for
each iteration or whether a process system is stable during the whole computation. Only
by looking at the processes-per-machine view, one detects the different approaches. The
statistics in Figure 5.21 (c) show that only 17 processes have been created, namely the
main process, 8 auxiliary processes and 8 iterUntil processes. Accordingly, less threads
have been created and less messages have been exchanged. The compositional version is a
tenth of a second slower than the iterUntil skeleton version in this experiment, a very
small difference given the total runtimes are close to 3 seconds.

5.4.2.3 Parallel Implementation using the Iteration Framework

We used also the iteration framework to implement the conjugate gradient algorithm
using a stable process system. The implementation (see Listing 5.13) is similar to the
iterUntil version, but we have to chose additionally the concrete type of the iteration.
We use the stateful control function from Listing 5.2 and the iterable version of spawn.
The latter allows us to map over the input iteration stream and to fetch an initial static
input – the subset of the matrix – which is different for each process. This allows initially
to receive an already distributed matrix, which will give this version a small advantage in
our runtime experiments of the next Section. The control function is similar to the one
from the iterUntil version, but uses the (lazy) State monad and a flipped encoding of
the result in the Eiter type.

5.4.2.4 Experimental Evaluation

The advantage of the compositional parallel CG program is that it is very close to the
original sequential program. Only local changes to the sequential program led to a parallel
program which shows the same overall behaviour as the iterUntil instantiation when
looking at the machine level only.
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Listing 5.13: Parallel Implementation of Conjugate Gradient Using the iteration frame-
work

cg_par_iter :: Int → Matrix → Vector → ISol
cg_par_iter np a v = iter (simpleControlS combine' combine' $ initSol v)

(simpleSpawnFIter $ map workerfct' aSplit) $
replicate np v where

converge :: ISol → Bool
converge (IterSol x r p k) = dotProd r r < epsilon where

epsilon = 0.1

aSplit :: [RD (LBox Matrix)]
aSplit = map (release.LBox) $ splitIntoN np a

combine' :: [Vector] → State ISol (Either [Vector] ISol)
combine' qs = do itersol@(IterSol x r p k) ← get

let itersol'@(IterSol _ _ p' _)
= nextIter (joinVectors qs) itersol

put itersol'
return $ if converge itersol' then Right itersol'

else Left $ replicate np p'

workerfct' :: RD (LBox Matrix) → Iter Vector → Iter Vector
workerfct' hwl ts = srs where

(LBox wl) = fetch hwl
f t = matVec wl t
srs = fmap f ts

nextIter :: Vector → ISol → ISol
nextIter q (IterSol x r p k)

= (IterSol x' r' p' (k+1)) where
pq = ...

We compare program runs with input sizes 20,000 and 50,000 for all three versions on the
Beowulf cluster (see Chapter 2.2.1). The results are shown in Figure 5.22. We measured
runtimes from 2 to 128 PEs. We show relative speedups based on the doubled runtime
for 2 PEs. The program scales well until 32 PEs with speedups up to 18. Speedups
are better for the bigger input size. Runtimes of the three different implementations are
close. Differences are within a range of 14 %, mostly beneath 10%. Here the iteration
framework version performs slightly better than the monolithic iterUntil skeleton and the
compositional version. Runtimes of the two lattes versions are mostly very close. With the
modular approach of the iteration framework, we can match the problem more specifically
then using the iterUntil skeleton and gain more performance, even though we use the
same problem specific functions.

In order to measure only the core phase of the parallel computation, we compute the
corresponding matrix chunks in parallel on all PEs and pass remote data handles to the
processes of the iterUntil skeleton and the iteration framework, respectively. In the
iterUntil case, we are forced to repeatedly fetch and release the local matrix chunks
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64 3.97 s 3.78 s 4.14 s -4.70% 4.13% 8.63%
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Figure 5.22: Runtimes (in seconds) and Speedup of Parallel Conjugate Gradient Pro-
grams for Input Sizes 20000 and 50000 and 30 Iterations including Iteration Framework
Measurements
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on all the workers in every iteration step, because the skeleton does not include special
treatment for the initial step. This local bypassing is efficiently supported by the runtime
system, but even though incurs a certain overhead. The more flexible iteration framework
allows us to define a version where the initial input (the matrix chunk) is fetched only
once and then kept as local state of the worker processes.

In this chapter we compared compositional versions with many composition steps to persis-
tent process systems constructed by the monolithic iterUntil skeleton or the compositional
iteration framework:

K-means:
iterUntil vs
i-framework

n-body: rec vs
simpleIter54

FFT(ND-DH) CG: iterUntil
vs Iter

CG: rec vs Iter

min -4.61% -80.87 % -49.23 % -14.00 % -6.19 %
max 2.98 % 17.20 % 29.44 % -1.31 % 13.56 %
mean -1.15 % -13.10 % -1.37 % -5.87 % -7.41 %

abs mean 2.64 % 22.39 % -13.02 % 5.87 % 8.3 %

For the K-means example we compared the iterUntil skeleton to the iter framework
and a compositional version without remote data. The compositional version with the
sub-optimal communication structure performed dramatically worse. We summarise here
only the other two versions which perform competitive. The mean value is only −1.15%
and the abs mean is only 2.64%.
For the n-body example the results depend a lot on the input size. The recursive version
performed better for bigger input sizes and the iteration framework for smaller sizes. Thus
in this overview we leave out the results for the small input size 1000 because we do not
want to overemphasise small input sizes. Yet these numbers show how much the results
differ. The abs mean value (22.39 %) is around 9% bigger than the absolute value of the
mean value (-13.1%). The mean result can be influenced a lot by the chosen input sizes.
If we would include bigger input sizes, then the sign of the mean value would switch from
− to +.
The FFT ND-distributed homomorphism example displays runtimes which also differ a lot.
However, we should not attach much weight to this case study as it was not agglomerated.
Runtimes are dominated by parallel overhead, there are no speedups but only slowdowns.
For the conjugate gradient example, the results are more homogeneous. The mean values
are close to the abs mean values. The iter framework version performs best, but the mean
differences with 5.87 % to the iterUntil skeleton version and with 7.41 % to the recursive
version are still small.

54 without input size 1000



5.4 Case Studies 135

In our experiments the iteration framework performed competitive to the monolithic
iterUntil skeleton. We observed varying performance gaps between the iteration frame-
work and recursive skeleton compositions using remote data.





CHAPTER 6

Types and Type Class Support for Efficient Composition

By now, we treated composition techniques using remote data and its optimisations for
iterated skeletons. In doing so, we detected some conceptual gaps which we seek to fill in
this chapter.

Custom communication: We want to allow stream communication for user defined Trans
instances, which is not possible with the original Eden module. An example is the
streaming of the Iter type in Chapter 5.1, where we already had to modify the
Eden module to enable this. Likewise, we want to allow to send not only tuples, but
arbitrary product types concurrently. → Chapter 6.1

Interfaces: As yet, we used lists of remote data as parallel interfaces to compose skeletons.
We want to generalise this to process e.g. trees or matrix shaped input data in
parallel. Thus, we need a more general version of function spawn to allow eager
process instantiation for various process topologies. → Chapter 6.2.1

Process Placement: We distinguish between skeleton versions with and without explicit
placement. There are actually two versions of most skeletons in our library. We
propose a type class based solution which makes this distinction superfluous for most
skeletons and still allows simple skeleton interfaces without placement parameters,
leading to a more concise skeleton library. → Chapter 6.2.2

Distributed Data: As a generalisation of type DList introduced in Chapter 5.1, we define
type support for arbitrary distributed data types. → Chapter 6.2.3

Optimising Communication: Communication cost is crucial for the performance of parallel
programs. We discuss boxes [DHLB16] as a way of changing the communication
behaviour of arbitrary data. → Chapter 6.3

A major feature of Eden is its overloaded communication through type class Trans. This
means that the communication behaviour of Eden programs and skeletons is usually

137
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implicitly determined by the types of the input data. On the one hand, this bears the
risk of sub-optimal performance when used by an unaware user. However, this can be
prevented by experienced programmers or with well-designed end user skeletons. On the
other hand, the overloaded communication has important advantages e.g. when lifting
skeletons to iterable skeletons, where the iterable ones can often be derived through mere
specification of parameter functions of the original skeleton. We want to strengthen
this unique characteristic of Eden – the data driven controlability of skeletons – by the
modifications we present hereafter.

6.1 New Trans and Transmissible Class

The design of Eden’s Trans class enables overloaded communication, but defining further
Trans instances with concurrent or streaming behaviour is no simple task. In order to
define concurrent sending behaviour for a custom type, one needs to encode the concrete
concurrent sending behaviour explicitly in the Trans instance. This low-level task should
not be left to an ordinary skeleton programmer. To a greater degree, the definition of
further Trans instances with Streaming behaviour is impossible, because it is hard-coded
in the runtime system that the received elements are combined with (:) constructors of
Haskell’s list type.

We therefore undertook a general redesign of the Trans class55 to provide more flexibility in
the definition of user defined Trans instances. The new Trans class provides a transforma-
tion function from the origin type to a representation which will actually be sent. The new
Transmissible class defines the actual sending behaviour. Accordingly, the Transmissible

class defines what before was done in the old Trans class from an implementational point
of view, where instances of the new Trans class are used exactly how and where old Trans

instances have been used by an Eden programmer.

6.1.1 The Transmissible Class

The Transmissible class has basically three instances and must not be extended by Eden
users:

Mono a describes data that will be sent all at once, in a single message.
newtype Mono a = Mono {fromMono :: a}

(a,b,...): 56 Tuples will be sent concurrently, by one thread per tuple element.

55 This is joint work with my colleague Thomas Horstmeyer.
56 These are truly many instances –one for each arity– which work analogously.
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Stream a contains a list of elements, which will be sent one by one in stream mode.
newtype Stream a = Stream {fromStream :: [a]}

class NFData a ⇒ Trans a where
createComm :: IO (ChanName a, a)
write :: a → IO ()

createComm = do (cx,x) ← createC
return (Comm (sendVia cx) , x)

write x = rdeepseq x `pseq` sendData Data x

sendVia :: Trans a ⇒ ChanName' a → a → IO()
sendVia c d = do connectToPort c

sendData Connect d
write d

(a) Old Trans class with default definitions

class NFData a ⇒ Transmissible a where
createComm' :: PA (ChanName a, a)

instance NFData a ⇒ Transmissible (Mono a) where
createComm' = PA $ do (cx,x) ← createC

return (Comm (sendVia cx), x)
where

sendVia :: NFData a ⇒ ChanName' a → a → PA()
sendVia cx x = do link cx x

PA (rdeepseq x `pseq` sendData Data x) --"write x"

link :: ChanName' a → a → PA()
link c d = PA $ do connectToPort c

sendData Connect d

(b) New Transmissible class with Mono instance

Figure 6.1: Comparison of old Trans with new Transmissible class

In the following, we will compare the definition and instances of the old Trans class and
the new Transmissible class, to show the differences in detail.

Comparing Class Definitions and Mono Instance

The old type class Trans (Figure 6.1 (a)) had two functions:

createComm returns a channel handle and the value to be received via the associated
channel in the IO monad.

write sends a value via an already connected channel.

The problem with the old type class is that we use overloaded function write inside
createComm, which might belong to another type instance. This is problematic e.g. when
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we use tuples of streams, where write of the stream instance is called by createComm of
the tuple instance. We discuss this in detail at the end of this Section. Class Transmissible
(Figure 6.1 (b)) has only one function: createComm' which works like createComm, but
encodes also the functionality of write.

The default instance of old class Trans and the Mono instance of class Transmissible are
presented in Figure 6.1. In function createComm and createComm' respectively, createC
is used to create a primitive channel/value pair. The primitive channel is then wrapped
inside the send function sendVia. Function sendVia works basically the same way in both
cases. The changes are owed to the fact, that in the Transmissible class we can not
overload write in the definition of sendVia, so the whole function sendVia must be a
local definition to createComm'. The new link function corresponds to the part of the old
sendVia version which is not overloaded and can thus be defined toplevel for reuse. The
write functionality is now inlined because we only need it here.

instance (Trans a, Trans b) ⇒ Trans (a,b)
where createComm = do (cx,x) ← createC

(cy,y) ← createC
return (Comm (write2 (cx,cy)),(x,y))

--write from default instance

write2 :: (Trans a, Trans b)
⇒ (ChanName' a, ChanName' b) → (a,b) → IO ()

write2 (c1,c2) (x1,x2) = do fork (sendVia c1 x1)
sendVia c2 x2

(a) Old Trans instance of (a,b)

instance (Transmissible a, Transmissible b) ⇒ Transmissible (a,b)
where createComm' = do (cx, x) ← createComm'

(cy, y) ← createComm'
return (Comm (write2 (cx,cy)), (x, y))

write2 :: (Transmissible a, Transmissible b)
⇒ (ChanName a, ChanName b) → (a,b) → PA ()

write2 (Comm send1,Comm send2) (x1,x2) = do forkPA (send1 x1)
send2 x2

(b) New Transmissible instance of (a,b)

Figure 6.2: Comparison of tuple instances (concurrent mode)

Comparing Instances for Concurrent Sending

The tuple instances of old class Trans and class Transmissible (see Figure 6.2) both create
two channel/value pairs, one for each tuple component. In Figure 6.2 (a), primitive channels
are created using createC. In Figure 6.2 (b) we use overloaded function createComm'

on the inner tuple types. The new implementation will therefore send nested tuples



6.1 New Trans and Transmissible Class 141

concurrently on all levels, where the original implementation only sends the first level
concurrently.

The concurrency is created in function write2, which will be wrapped in the returned
channel handle. It defines the send function by forking an extra thread for the send
operation on the first channel. In the first case, it uses sendVia and thus overloaded
function write on the primitive channels. In the second case, the overloaded send functions
of the tuples inner types are used directly.

instance Trans a ⇒ Trans [a] where
--createComm from default instance
write l = do mapM write' l

sendData Data []
where

write' :: NFData a ⇒ a → IO ()
write' x = rdeepseq x `pseq` sendData Stream x

(a) Old Trans instance of [a]

instance NFData a ⇒ Transmissible (Stream a) where
createComm' = PA $ do (cx,x) ← createC

return (Comm (sendVia cx), Stream x)
where

sendVia :: NFData a ⇒ ChanName' [a] → Stream a → PA()
sendVia cx (Stream l) = do link cx l

mapM write l
PA $ sendData Data []

write :: NFData a ⇒ a → PA ()
write x = PA $ rdeepseq x `pseq` sendData ParPrim.Stream x

(b) New Transmissible instance of Stream a

Figure 6.3: Comparison of streaming instances

Comparing Instances for Stream Sending

The list instance of the old Trans class and the Stream instance of class Transmissible

are semantically identical (see Figure 6.3). The technical differences are, that in the latter
case, createComm' is completely overloaded, where in the former case only write has to
be redefined. The link part of sendVia of the latter version is also part of the former
sendVia version, called by createComm. The only remaining differences are the different,
but isomorphic types. In the second version, we use pattern matching to get rid of the
Stream constructor in the second parameter of sendVia and we wrap the resulting list with
the Stream constructor in the second result value of createComm'.

Note: Something similar would not work inside the old Trans class. Assume
we want to define an old Trans instance for a given type a and actually send a
transformed type b. We would need a transformation inside createComm and
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the inverse transformation for function write. Assume further that we want to
send a tuple (a,b). The createComm instance of the tuple would call createC
and not createComm for the inner type a to establish a channel connection.
Thus, write would transform a before sending, but createC would not do the
inverse transformation after receiving the result. Hence, the recursive use of
createComm in the tuple instance is necessary to send a type different to the
one indicated by the Transmissible instance.

6.1.2 The Trans Class

The Trans class describes data which is transformable to Transmissible data (see Fig-
ure 6.4). Instances can be defined for arbitrary types. Each instance declaration contains
an associated type ComType a, which has to be one of the just defined Transmissible types.
A transform function defines the transformation to the representation which will actually
be sent. The retransform definition gives the inverse function, which will be applied after
a value is received.
class Transmissible (ComType a) ⇒ Trans a where

type ComType a :: ∗
transform :: a → (ComType a)
retransform :: (ComType a) → a

Figure 6.4: Class Trans

With the functions of class Trans and Transmissible at hand, we define function createComm,
giving us a channel handle and the value to be received via the associated channel.
createComm :: Trans a ⇒ PA (ChanName a, a)
createComm = do (Comm sendVal, out) ← createComm'

return (Comm (λinn → sendVal (transform inn)),retransform out)

It uses overloaded function createComm' to create the channel handle and the placeholder
for the received value. The returned (channel, value) pair is then modified by using
transform and retransform before and after sending.

createComm itself is not overloaded. We use createComm', transform or retransform only
to define createComm, which is used to define core Eden functions like process, instantiate
or new.

Dual to the PA monadic version of createComm, we define a PA-monadic send operation.
Following Erlang [Arm07] syntax, we use the ! operator for sending a value over a
channel:
(!) :: Trans a ⇒ ChanName a -- ^ @ChanName@ to connect with

→ a -- ^ Data that will be send
→ PA ()
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(!) (Comm c) a = forkPA $ c a where

Trans instances

To define custom Trans instances is now very simple. One does not need to tackle the
challenge to define a custom sending behaviour with a new Transmissible instance, but
has only to define a transformation to a type with predefined sending behaviour. Typical
Mono transformations would be like:
instance Trans Int where

type ComType Int = Mono Int
transform = Mono
retransform = fromMono

Or more general as CPP pattern:

#define instanceTransSimple(myType) \

instance Trans myType where{ \

type ComType myType = Mono myType; \

transform = Mono; \

retransform = fromMono}

We chose to stream the new type Stream.
instance (Trans a) ⇒ Trans (Stream a) where

type ComType (Stream a) = Stream (ComType a)
transform = fmap transform
retransform = fmap retransform

but stop streaming lists, because we want to have streaming behaviour only if it is explicitly
indicated by the user.
instance Trans a ⇒ Trans [a] where

type ComType [a] = Mono [ComType a]
transform = Mono ◦ map transform
retransform = map retransform ◦ fromMono

In both cases we use transform recursively on the inner elements. This is because we
can use transform not only to change sending behaviour but also e.g. to automatically
compress or encrypt data before sending it.

Streaming nested streams

In Eden, lists are only streamed top-level or inside of tuples. Inner lists of lists or lists
inside other data types are sent in a single message. When confronted with iteration
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skeletons, we had to find a solution to stream inner lists, as for iterations over lists, the
streaming behaviour should be preserved in the iteration steps.

We want to define the Trans instance of Iter similar to the instance for Stream, with the
difference that streams inside of Iter shall also be streamed. The first problem is to define
different instances for Trans (Iter a) and Trans (Iter (Stream a)), such that they do
not overlap.

Our solution is based on the definition of the Show class, where similar, it is desired to
have a different output method for [a] and [Char]57. The trick in the Show class definition
for type a is, that there are functions showsPrec :: Int → a → String → String and
showList :: [a] → String → String. One can define a Show instance by defining only
function showPrec. The Show instance for [a] is defined as showsPrec _ = showList,
which is overloaded by it’s inner type a. The default instance for showList gives the
comma separated list representation, where the Char instance for showList returns the
double quotes style.

For the Trans class, we avoid the overlap by defining functions
transformStream, retransformStream :: Stream a → Stream a

in class Transmissible for type a with default implementation id, which we had hidden
so far for the sake of simplicity:
class NFData a ⇒ Transmissible a where

createComm' :: PA (ChanName a, a)
transformStream :: Stream a → Stream a
retransformStream :: Stream a → Stream a

transformStream = id
retransformStream = id

We use these functions to define the Trans instance for Iter:
instance (Trans a) ⇒ Trans (Iter a) where

type ComType (Iter a) = Stream (ComType a)
transform = transformStream ◦ Stream ◦ fromIter ◦ fmap transform
retransform = fmap retransform ◦ Iter ◦ fromStream ◦ retransformStream

In the transform case, we use the transform function recursively on the elements of the
Iter stream. Then we transform Iter into a Stream. The nested streaming behaviour
should apply for those types Iter a, where ComType a ~ Stream a. This is realised
through applying overloaded function transformStream, which in the case of nested
streams flattens the inner stream. Accordingly in the retransform step, we first use
function retransformStream to reconstruct the originally nested Stream from the flattened
version. Then we convert the Stream to Iter and use retransform recursively on the

57 show[1..3] ⇒∗ [1,2,3], but show['a'..'c'] ⇒∗ "abc",
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elements.

In the default case, transformStream and retransformStream do not do anything (id).
We overload this behaviour only in the Transmissible instance of Stream:
instance NFData a ⇒ Transmissible (Stream a) where

-- createComm' as before
transformStream = liftStream $ concatMap f where
f (Stream xs) = map (λx→Stream[x]) xs ++ [Stream []])

retransformStream = Stream ◦ unfoldr break' ◦ fromStream
where break' [] = Nothing

break' xs = let (xs1,xs2) = (break (null ◦ fromStream)) xs
in Just (Stream $ concatMap fromStream xs1,tail xs2)

liftStream :: ([a]→[b]) → (Stream a → Stream b)

For the instance for Stream a, we get types:
transformStream, retransformStream :: Stream (Stream a) → Stream (Stream a).

So when using transformStream on a nested Stream58 the flattening takes place as follows:
We encode each element of an inner list as a singleton Stream in the resulting top-level
Stream and encode each end of an inner Stream as Stream [].

Example:
transformStream (Stream[Stream[1,2,3],Stream[4,5,6]])

⇒ ∗ Stream [Stream [1],Stream [2],Stream [3],Stream [],

Stream [4],Stream [5],Stream [6],Stream []]

◁

Function retransformStream does the inverse transformation. Fortunately there is no type
conflict, these transformations have the same type as id.

Here an example for the whole function transform, applied to a nested iteration of
streams, transform (Iter[Iter[Stream[1,2],Stream[3]],Iter[Stream[4,5]]]), where
in the following Stream was replaced by [] for simplicity.

Example:

transform $ Iter[Iter[Stream[1,2],Stream[3]],Iter[Stream[4,5]]]

⇒∗ transformStream ◦ Stream ◦ fromIter ◦

fmap transform $ Iter[Iter[[1,2],[3]],Iter[[4,5]]]

⇒∗ transformStream ◦ Stream ◦ fromIter $ Iter[[[1],[2],[],[3],[]][[4],[5],[]]]

⇒∗ transformStream [[[1],[2],[],[3],[]][[4],[5],[]]]

⇒∗ [[[1]],[[2]],[[]],[[3]],[[]],[],[[4]],[[5]],[[]],[]]

58 after the recursive transform step, which may have transformed inner types to Stream beforehand,
thus may have flattened nested inner streams already.
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◁

Of course, functions transformStream and retransformStream can be used equally in other
Trans instances where nested streaming is required.

Example: Automatic chunking

Typically we use chunking of input and output lists to control the granularity of input and
output streams. Usually we hide these details from the presented code because frequent
calls to chunk and unchunk divert the attention from the relevant details. In this example
we show how to move the applications of chunk and unchunk for a special chunk list type
to the chunk list instance of the new Trans class.
First, we define a chunked list type which carries a flat list cList and the desired chunk
size cSize:
data CList a = CL {cSize :: Int, cList :: [a]}

Then, we add common typeclasses to make the data type usable, here e.g. a Functor

instance:
instance Functor CList where

fmap f cl = cl{cList = map f (cList cl)}

With the subsequent modifications to the type class Trans, we can add an adequate
Trans instance for CLists which defines the chunk and unchunk behaviour. We do this by
defining transform and retransform functions, which are implicitly applied before and
after sending and an associated ComType. This determines the type of the transformation
result, which is actually the type of the data that will be transmitted:
instance NFData a ⇒ Trans (CList a) where

type ComType (CList a) = (Mono Int, Stream [a])

transform (CL cSize as) = (Mono cSize, chunk cSize as)
retransform (Mono cSize, ass) = CL cSize (unchunk ass)

Here type Mono a means that a value of type a will be send in a single chunk and type
Stream a determines a stream of type a. Function transform returns a tuple with the
chunk size and a stream of chunks (sub-lists), such that retransform has all the necessary
information to reassemble the original chunked list CList on the receiver side.

Here a simple example taken from a Mandelbrot program, where the rows of the grid are
distributed in chunks among the processes59:

59 Note: In this example we use an explicit type Stream for streams. Thus we need two versions for the
auxiliary functions: one working with streams and one working with lists. Auxiliary functions using
the list interface are imported here “qualified” as L
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skel :: [[Complex Double]] → [String]
skel = L.shuffle ◦ map unchunk

◦ parMap (chunk cs ◦ fmap wf ◦ unchunk)
◦ map (chunk cs) ◦ L.unshuffle np

Functions chunk and/or unchunk are applied at the caller after distributing the input into
sub-lists, before and after applying the function wf in the worker processes and again in
the caller before recombining the results.

Here the same program segment with the new type class:
skel :: [[Complex Double]] → [String]
skel = L.shuffle ◦ map cList

◦ parMap (fmap wf)
◦ map (CL cs) ◦ L.unshuffle np

We have to construct/destruct the chunked lists before and after calling the parMap skeleton.
This is similar to the calls to chunk and unchunk in the previous version. A simple call to
fmap wf suffices on the worker process.

Observing the following trace visualisation for a program run with grid resolution 1000 ×
1000 and chunk size 10 we conclude by the number of messages that the input and output
is actually chunked:

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

M4
M3
M2
M1

Sometimes we can not implement the skeleton merely by using overloaded functions with
the chunk list type. Then it is often the easiest way to unwrap and wrap the data type in
the same way we would have applied chunk and unchunk. This may put the usefulness of
the whole approach into question. There is another advantage when using the chunk list
data type: The type signatures are closer to the original problem, as the types are not
artificially nested. We added an example for this to the Appendix (Chapter A.4).
Moreover, when defining custom data types for other reasons than defining specialised
Trans classes, there is no drawback in including custom communication functionality in
the Trans instance. ◁
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6.2 Parallel Input

We usually use lists for parallel in- and output to our skeletons. For most parallel programs
a simple list interface is sufficient. Therefore we never took an effort to generalise this
approach. Our tool chain is limited to a list interface, as is the case with auxiliary functions
spawn, fetchAll, releaseAll and so on.

A key role comes to function spawn, which is used in all our skeletons. Generalising it
allows to use other data types with different intrinsic topological structure like trees or
matrices. Moreover we can use different data types with list like linear structure like
arrays, vectors or queues.

6.2.1 Generalising spawn

Eden’s process instantiation function
spawnF :: (Trans a, Trans b) ⇒ [a → b] → [a] → [b],

instantiates a list of processes, one for each function in the first argument list and the
corresponding input in the second argument list. The list based interface makes it necessary
to transform any other input data structures to lists before process spawning. We want to
overcome this limited interface and develop a more general version of spawn, which can
easily be used in skeletons for arbitrary data and in particular for distributed data.

First, we want to analyse the implementation of spawnF. A naive definition of spawnF

would be:
spawnF0 = zipWith ($#)

This definition does not spawn the processes eagerly because Haskell’s lazy evaluation
demands the whnf of a result before instantiating the next process with the next input. We
use instead function instantiateF :: (a → b) → a → PA b to define an eager version
of spawnF:
spawnF = runPA $ zipWithM instantiateF

The sequence of instantiateF calls does not block on intermediate results.

Function spawnFAt works similar, but takes process placement into account. It is thus
based on instantiateFAt :: Int → (a → b) → a → PA b.
spawnFAt :: (Trans a, Trans b) ⇒ Places → [a → b] → [a] → [b]
spawnFAt [] fs is = spawnFAt [0] ps is
spawnFAt pos fs is

= runPA $ sequence [instantiateFAt st p i |
(st,p,i) ← zip3 (cycle pos) ps is]

type Places = [Int]
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Here, the arguments for instantiateFAt are paired using zip3 inside the list abstraction.
The list of PA actions is then executed by sequence.

We observe that the spawnF versions depend fundamentally on different versions of the
function zip. Thus we could express a more general version of spawnF through a more
general version of zip.

In the Haskell wiki article “Foldable and Traversable” [Aut07], there is a chapter “general-
ising zipWith”, which describes exactly what we need for Traversable and Foldable zip

parameters:
zipWithTF :: (Traversable t,Foldable f) ⇒ (a → b → c) → t a → f b → t c
zipWithTFM :: (Traversable t,Foldable f,Monad m) ⇒

(a → b → m c) → t a → f b → m (t c)
zipTF :: (Traversable t, Foldable f) ⇒ t a → f b → t (a,b)

The zip versions take a Traversable and a Foldable input. The Traversable input is a
structural blueprint for the output. The Foldable input is grouped element wise with the
Traversable input by the order given by the toList function of the Foldable class. When
the two input containers are identical, and the input is structured the same way, then
the elements at the same position are associated by the zip..TF functions. This liberal
interface is convenient, since we can group every Traversable input structure e.g. with a
simple list, which is quite easy to define.

We define an unzipTF function using fmap fst and fmap snd:
unzipTF :: Functor f ⇒ f (a,b) → (f a, f b)
unzipTF xs = (fmap fst xs, fmap snd xs)

This solution is sub-optimal, as the structure will be traversed twice. However, we do not
know a better implementation.

We extended the definitions for zip..TFs with three and four parameters. With these tools
at hand we can define a version of spawn for arbitrary Traversable input and Foldable

function containers:
spawnF :: (Traversable t, Foldable f, Trans a, Trans b)
⇒ f (a → b) → t a → t b

spawnF fs xs = runPA (zipWithTFM (flip instantiateF) xs fs)

The functions of the Foldable function container are applied remotely to the inputs of
the Traversable input container in the order which toList on the function container and
traverse on the input container define. The input data defines exactly the structure of
the output data. E.g. instantiating a list of functions with a tree of inputs will generate a
tree of outputs.
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Example: Parallel vector input:

We already mentioned that the use of unboxed vectors allows for optimised communication
and improved sequential computation performance. For this reasons they are used more
and more commonly. Thus we should allow not only for vectors as processes’ input and
output, but as well in parallel interfaces. Of course we can not create unboxed vectors of
unboxed vectors. But we can support boxed vectors in the parallel interface.
We use the FFT example implemented with the n-dimensional distributed homomorphism
skeleton. Here, we used arrays and function ixmap internally to efficiently calculate the
chdim function for (flattened) n-dimensional input. We can as well use boxed vectors and
function backpermute60 for this task. We use the vectors as parallel interface as well for
the processes’ input and do the computations on vector level. Therefore we define the
necessary instances and a VMatrix type for a shorter notation61:
instance NFData a ⇒ Trans (B.Vector a) where

type ComType (B.Vector a) = Mono (B.Vector a)
transform = Mono
retransform = fromMono

type instance Iterated (B.Vector a) = Iter (B.Vector a)

type VMatrix a = B.Vector (B.Vector a)

The Trans instance defines to send vectors in a single chunk. The Iterated type family
instance allows for using the simple-iter scheme with vectors. The predefined Traversable

instance (not shown) allows for applying spawnF to a Vector. With this at hand we define
a vector based FFT implementation62:
fft3_NDIterV :: Int --base

→ Int --n-Dims
→ B.Vector (Complex Double)

fft3_NDIterV base d = out ◦ dhNDFlatIterV base d h
◦ inF $ B.generate n (+1) where ...

We generate the input vector with elements from 1 to n, apply the input transformation
function inF, then the distributed homomorphism skeleton dhNDFlatIterV for vectors and
finally the output transformation. The dhNDFlatIterV skeleton is implemented with the
iteration framework from a generalised version of Edens skeleton library which works with
arbitrary Spawnable input:

60 backpermute is similar to ixmap, but instead of an index function it takes a vector with the
permutation indexes

61 We use a qualified import of boxed vectors as B
62 The whole code including auxiliary functions can be found in the appendix (Chapter A.5).
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dhNDFlatIterV :: (Trans a, CSimpleIter (VMatrix (RD a)))
⇒ Int --base
→ Int --n = d+1 dims, including local dim
→ (B.Vector a → B.Vector a)
→ VMatrix (RD a)
→ VMatrix (RD a)

dhNDFlatIterV base d h
= chdimsV base d
◦ iter (simpleLoopControlFS d $ chdimVCF base d) (simpleParMapIter h')
where h' = releaseAll ◦ h ◦ fetchAll

Finally we adjust the chDim function for vectors. Here the internal version working on a
flat Vector63:
chdimVFlat :: Int --base length

→ Int --n-Dims
→ Int --ChDim1
→ Int --ChDim2
→ B.Vector a -- n-dim Grid (flatened) in
→ B.Vector a -- n-dim Grid (flatened) out

chdimVFlat base d cd1 cd2 v
| cd1 > 0 && cd1 ≤ d && cd2 > 0 && cd2 ≤ d

= if cd1 == cd2 then v
else B.unsafeBackpermute v (B.generate (B.length v) partnerF)

| otherwise = error "ChDim ≤ 0 | | > n-Dims" ...

If the switched dimensions are identical we do not modify the vector v. Otherwise we
permute v by the order given by function partnerF (see Appendix A.5).

Figure 6.5 depicts traces of program runs for input size 64 with input distribution 26

and 43. This is the same setup as for the traces in Figure 5.12. The traces show similar
runtime behaviour and runtimes compared with the previous version. When increasing
the problem size, the vector based version runs clearly slower then the previous version.
The problem is that the master is overloaded. We suspect that the backpermute function
runs notably slower than the ixmap function for the array type. However, our goal was
not to outperform the previous version, which was already optimised by the use of arrays.
We rather showed an interesting use case of how to use vectors consistently to substitute
lists in the parallel interface as well as in the processes input and output. ◁

Building Topologies

One might ask the question of the usefulness of this generalisation. The possibility of
spawning data containers like trees, matrices or rings e.g. does not include the topological
connections. Channels still have to be created by exchanging remote data or dynamic

63 See Appendix A.5 for the change-dim control function chdimVCF and the chdimsV function.
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Figure 6.5: Traces of FFT with N dimensional distributed homomorphism skeleton
–vector based iteration framework version– for input size 64

channel handles. But as the exchange of handles will follow the result structure of a
skeleton, the handles can be moved along the structure’s connections. This makes it easy
to create topology channel connections among the processes.

A naïve solution to our approach of implementing spawn with type class Traversable

would be to realise a different version for each single container type. But this would lead
to a lot of implementational overhead. The more general solution makes it also possible to
generalise skeletons based on spawn for arbitrary Traversable containers.

Example: A tree reduction topology skeleton with connections to each node’s father
process, built by exchanging remote data via the tree structure is listed in Figure 6.6a.

The treeBottomUp skeleton creates a process tree by spawning a Tree structure from
module Data.Tree. It returns the result tree and the result of the root node. Process
function f takes a process’ part of the input and the inputs from its child nodes and creates
one output to its parent and its part of the result tree. In function f', the child/parent
related components of function f are lifted to remote data. Function upRot defines the
exchange of remote data from child’s to parent. The first result component is the output
of the root process. The up rotated remote data is re-fed lazily to the processes.

This skeleton could e.g. be used to implement a distributed function to calculate the
sub-tree sums of a process tree (see Figure 6.6c) completely flexibly in the branching
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treeBottomUp :: forall a b c. (Trans a, Trans b, Trans c)
⇒ (a → [b] → (b,c)) → Tree a → (b, Tree c)

treeBottomUp f ts = (fetch resRoot, resTree) where
(toParents, resTree) = unzipTF ◦ spawnF (repeat f') $ inps
inps :: Tree (a, [RD b])
inps = zipTF ts (lazy ◦ toList $ fromChilds)
(resRoot, fromChilds) = upTree toParents
f' :: (a, [RD b]) → (RD b, c)
f' (x, fromChilds) = (release toParent, res) where
(toParent, res) = f x (fetchAll fromChilds)

upTree :: Tree a → (a, Tree [a])
upTree (Node x []) = (x, Node [] [])
upTree (Node x sTs) = (x, Node xs sTs') where

(xs, sTs') = unzip $ map upTree sTs

(a) The treeBottomUp skeleton

(b) treeBottomUp skeleton example
with 9 processes

subtreesums :: (Trans a, Num a) ⇒ Tree a → (a,Tree a)
subtreesums = treeBottomUp f where

f x xs = let x' = foldl' (+) x xs in (x',x')

(c) subtreesums example

Figure 6.6: Definition of the treeBottomUp skeleton

degree of each node, which is determined by the concrete input tree. The calculated tree
(second result component) contains in each node the local sub-tree sum. The first result
component contains the sum of all nodes in the tree, which is equal to the value at the
root process in the second result component. ◁
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Generalising fetchAll with a Traversable container is straight forward:
--import qualified Data.Traversable as T
fetchAll :: (Traversable t, Trans a)

⇒ t (RD a) -- ^ The Remote Data handles
→ t a -- ^ The original data

fetchAll rdas = runPA $ T.mapM fetchPA rdas

We only need to use function mapM from Data.Traversable instead of Control.Monad.

6.2.2 Explicit Process Placement

In Eden, we distinguish spawnF with automatic process placement and spawnFAt with
explicit placement. Likewise this distinction is made for almost all Eden skeletons.

Note: Function spawnFAt works on Places ∼ [Int]. As we want to generalise
the list interface, we will work with type Place = Int inside arbitrary data
containers.

We seek to change this with the help of the new type class Spawnable (see Figure 6.7).
A Spawnable container is already Traversable and offers further the function getPlaces,
which specifies where the processes spawned with the data should be instantiated. The
default implementation returns 0 for every element of the structure, which means automatic
placement. We can use the default implementation to get automatic placement for
predefined Traversable types like lists or trees.

To get explicit placement information for Spawnable data, we need special instances which
either generate the places from the structure or contain an additional field with the
placement information. The new type Targetted (see Figure 6.8) offers such an additional
field for arbitrary data containers of kind ∗ → ∗, where the placement information placesT

is stored in the same container type as the data field dataT.

A Targetted t container is Foldable, Functor and Traversable if the contained con-
tainer of type t is Foldable, Functor and Traversable. The instance declarations for
Targetted t are all based on the instance functions for t applied to the contained data of
type t. The Spawnable instance definition is also straight forward. Function getPlaces

class (Traversable t) ⇒ Spawnable t where
getPlaces :: t a → t Place
getPlaces = fmap (const 0)

instance Spawnable []
instance Spawnable Tree

Figure 6.7: Typeclass Spawnable
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data Targetted (t :: ∗ → ∗) (a :: ∗) = T {placesT :: t Place,
dataT :: t a}

-- qualified Functor as F
instance (F.Foldable t) ⇒ F.Foldable (Targetted t) where

foldr f a ta = F.foldr f a (dataT ta)

instance (Functor t) ⇒ Functor (Targetted t) where
fmap f ta = ta{dataT = fmap f (dataT ta)}

instance (Traversable t) ⇒ Traversable (Targetted t) where
traverse f ta = pure toData <∗> traverse f (dataT ta) where
toData a = ta{dataT = a}

instance Traversable t
⇒ Spawnable (Targetted t) where
getPlaces ta = ta{dataT = placesT ta}

Figure 6.8: Type Targetted and its instances

forwards the placesT field to the dataT field.

Function spawnF with explicit process placement

With type class Spawnable at hand, we can refine function spawnF to handle data with and
without explicit placement information (see Figure 6.9). It is a straight forward modification
of spawnF’s previous version, where the Traversable context for the data container is
exchanged by the Spawnable context. We use further function instantiateAt instead of
instantiate and places extracted from the input data using function getPlaces.

Aside from overloaded communication, we now have overloaded process placement. Using
the new version of spawnF, we will not need to distinguish skeletons with and without
explicit placement. The process placement is now driven by the input data, which of
course can be modified within a skeleton or restricted by a skeleton’s signature.

We profit from this also in the main task of skeleton compositionality, as the placement
information is forwarded between skeleton instances without the need to indicate the
places repeatedly.

spawnF :: (Spawnable t, Foldable f, Trans a, Trans b)
⇒ f (a → b) → t a → t b

spawnF fs xs = runPA (zipWith3TFM instantiateFAt' xs (getPlaces xs) fs) where
instantiateFAt' x pos f = instantiateFAt pos f x

Figure 6.9: Function spawnF for Spawnable data
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Example: We illustrate this with a simple composition of a parMap skeleton.
parMap :: (Spawnable t, Trans a, Trans b)

⇒ (a → b) -- ^worker function
→ t a -- ^tasks
→ t b -- ^results

parMap f tasks = spawnF (repeat f) tasks

compPMap :: (Spawnable t, Trans a, Trans b, Trans c)
⇒ (a → b) -- ^function1
→ (b → c) -- ^function2
→ t a -- ^tasks
→ t c -- ^results

compPMap f g inp = dataT ◦ parMap g ◦ parMap f $ T ([4..] `withStruct` inp) inp

Once the places (say starting from 4) are added to the Targetted structure, each skeleton
in the sequence will take the places from the result of the predecessor skeleton.

Note: Auxiliary function withStruct in the example is needed because the
container type of the input is unknown and we want to supply the places in
form of an arbitrary Foldable container like a simple list:
withStruct :: (Traversable co, Foldable co')

⇒ co' a -- functor with elements
→ co b -- blueprint for new container
→ co a -- container with elements of input list

withStruct = flip (zipWithTF (flip const))

Function flip const returns the second argument, zipWithTF (flip const)

returns the first input structure with the elements of the second input structure.
With the outermost flip, withStruct returns the elements of the first structure
inside the second structure.

We do not change the places in the parMap skeleton, such that the initially supplied places
are forwarded to the second skeleton instance, leading to a co-allocation of the processes
of both instances. This is especially important for the performance when using remote
data in f, g and inp. ◁

6.2.3 Distributed Data Types

In Chapter 5.1.6, type
data DList a = DList [RD a]

has been introduced. Internally, we always used a representation containing places:
data DList a = DList places [RD a]
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With this container for distributed lists, where all list elements are remote data handles,
we were able to define a special instance for type family Iterated to optimise the case of
iterations over distributed lists. We want to define a distributed data type not only for
lists, but for arbitrary distributed data. Our first approach is to make the list-container
type of DList a parameter to the distributed data type, similar to the definition of the
Targetted type:
data Distrib0 (c :: ∗ → ∗) (a :: ∗) = D0 {placesD0 :: c Place,

dataD0 :: c (RD a)}

Problems arise when we try to define instances for Foldable, Functor and Traversable.
We need these to provide function toList and the generalised zip’s from the beginning of
this Section. E.g. in the instance definition for Foldable (Distrib0 c), the type for foldr
is (a → b → b) → b → Distrib0 c a → b, where Distrib0 c a contains c (RD a) and
c is a Foldable container. foldr uses a parameter function f :: a → b → b but the
container contains values of type RD a, hence we would be forced to fetch all the elements
of the container before applying them to function f. This would also lead to a definition of
toList :: Distrib0 c a → [a], where all the remote data handles would be implicitly
fetched. Basically, we want toList to change only the container type, we do not want to
change the location of the data implicitly. We seek a definition of toList where remote
handles are not fetched.

This kind of problem occurs similarly at the instance definitions of Distrib0 c for Functor,
where we need to use liftRD for the map-function f – and Traversable, where we need to
lift the traverse function of type a → f b to type RD a → f (RD b). The lifting in the
traverse function would e.g. affect the spawn function: we would fetch the distributed
data before spawning the processes and release the data after receiving the processes
results. This is exactly what we want to avoid by using remote data in the first place.

Thus, we define a similar type Distrib':
--Distributed Data intermediate type
data Distrib' (c :: ∗ → ∗) (a :: ∗) = D {placesD :: c Place,

dataD :: c a}

without RD in the dataD field. This is isomorphic to the definition of Targetted and we
define the instances for Foldable, Functor and Traversable exactly the same way as the
Targetted instances. Now we can define the proper distributed data as a mere type
definition:
--Distributed Data
type Distrib (c :: ∗ → ∗) (a :: ∗) = Distrib' c (RD a)

With this definition, the Foldable, Functor and Traversable instances work on the
underlying Distrib' c container and do not touch the remote data handles. Everything
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works as desired.

One might ask why we did not base the Distrib type definition directly on Targetted.
This way, we would get overlapping instances for

type instance Iterated (Distrib c a) = Distrib c (Iter a)

and
type instance Iterated (Targetted c a) = Iter (Targetted c a),

because Distrib c a ∼ Targetted c (RD a) and Targetted c a overlap. With the data
definition for Distrib', these definitions are fine.

For convenience, we define some auxiliary functions to initialise distributed data

• with automatic placement:
newDistrib :: (Traversable co, Trans a)

⇒ co a → Distrib co a
newDistrib ds = D ([0] `withStruct` ds) (fmap release ds)

• or with explicit placement:
newDistribAt :: (Foldable f, Traversable co, Trans a)

⇒ f Place → co a → Distrib co a
newDistribAt ps ds = D (ps `withStruct` ds) (fmap release ds)

• where the container contains already remote data, with automatic placement:
newDistribRD :: (Traversable co, Trans a)

⇒ co (RD a) → Distrib co a
newDistribRD ds = D ([0] `withStruct` ds) ds

• or with explicit placement:
newDistribRDAt :: (Foldable f, Traversable co, Trans a)

⇒ f Place → co (RD a) → Distrib co a
newDistribRDAt ps ds = D (ps `withStruct` ds) ds

6.2.4 Location Aware Remote Data

Another useful information we missed so far is the location of remote data. With the
original definition, we do not know where the data behind a remote data handle is actually
located. We add this information to a new remote data definition:
data RD a = RD {place :: Place,

rd :: ChanName (ChanName a)}

The original remote data definition was a mere type definition, its representation is now
contained in the rd field of the new data definition for RD. It additionally contains the
place where it was created by function release or its PA-monadic version:
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release :: Trans a ⇒ a -- ^ The original data
→ RD a -- ^ The Remote Data handle

release = runPA ◦ releasePA

releasePA :: Trans a
⇒ a -- ^ The original data
→ PA (RD a) -- ^ The Remote Data handle

releasePA val = do
(cc , sendValC) ← createComm
sendValC ! val
self ← PA $ ParPrim.selfPe
return (RD self cc)

The definition does not change much. Like before, we create the nested channel handle
cc (the remote data handle) and the handle for the send function sendValC, which we
will receive after fetch is called with the remote data handle. The send operator (!) will
fork a process to send the remote value val subsequently with the send function sendValC.
The remote data result is then composed of the local machine id selfPe and the channel
handle cc.

The fetch implementation does not change technically as the place field is not needed
here. We can use the new field to extract the place information after remote data handles
have been received on another machine. This way, it is easy to explicitly co-locate the
processes of subsequent skeleton composition steps exploiting the place information of
the remote data handles.

Example: Here a small example, a revised version of the parMap composition from Chap-
ter 6.2.2.
compPMap' :: (Trans a, Trans b, Trans c)

⇒ (a → RD b) -- ^function1
→ (RD b → c) -- ^function2
→ Tree a -- ^tasks
→ Tree c -- ^results

compPMap' f g = dataD ◦ parMap g ◦ (λx → D (fmap place x) x) ◦ parMap f

The parameter functions f and g work on remote data and we use Trees, a data structure
without placement information. The process instantiation of parMap f for Trees works
with automatic placement, which is often just fine. Now we want to make sure that the
second parMap stage uses the same processes as the first stage for performance reasons.
We thus lift the result of the first skeleton to a Distrib Tree b. We use the location
information of the remote data inside Tree b to define the places for the Distrib Tree b.
◁

Similar to the example above, but for the common use case of Targetted or Distributed
in- and output, we define the new type class Placeable with function placesFromRD (see
Figure 6.10). Function placesFromRD takes a Placeable structure of type t (RD a) and
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class (Spawnable t) ⇒ Placeable t where
placesFromRD :: t (RD a) → t (RD a)

instance Traversable t
⇒ Placeable (Targetted t) where
placesFromRD t = t{placesT = fmap place (dataT t)}

instance Traversable t
⇒ Placeable (Distrib' t) where
placesFromRD d = d{placesD = fmap place (dataD d)}

Figure 6.10: Type class Placeable and its instances

returns a modified structure of the same type. The placement information should be
replaced by the places of the remote data inside the structure, like in the instance definitions
for Targetted and Distrib'.

Example: In our example compPMap'', we use Placeable containers t :
compPMap'' :: (Placeable t, Trans a, Trans b, Trans c)

⇒ (a → RD b) -- ^function1
→ (RD b → c) -- ^function2
→ t a -- ^tasks
→ t c -- ^results

compPMap'' f g = parMap g ◦ placesFromRD ◦ parMap f

As before, we want to apply the two parMap stages. Despite the Placeable context, we
can not know that the input data carries explicit placement information. The places field
might as well contain zeros. Thus, we can use function placesFromRD between the stages
to get the places from the remote data. ◁

6.2.5 Comparison: Old and New Skeleton Versions

How does the new generalised interface effect our skeleton library? In this section, we
present a sample of Eden skeletons before and after the generalisation and examine, if the
surplus flexibility has significant impact on the simplicity of code.
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Map Skeletons

The ranch differs only in the generalised type from its basic version:
ranch :: (Spawnable t, Trans b, Trans c) ⇒

(a → t b) -- ^input distribution function
→ (t c → d) -- ^result combination function
→ (b → c) -- ^worker function
→ a -- ^input
→ d -- ^output

ranch transform reduce f xs = reduce $ parMap f (transform xs)

The same holds true for the farm. Here, the implementation problem lies in the definition of
the parameter functions distrib and combine which have to transform the input container
to an agglomerated one and vice versa, providing the agglomerated values as a stream.
The following is a straight forward generalisation of the basic farms type and may be too
restrictive for some input containers. If the agglomeration does not fit the interface, then
the ranch with a more liberal interface can be used likewise:
farm :: (Spawnable t, Trans a, Trans b)

⇒ (t a → t (Stream a)) -- ^input distribution function
→ (t (Stream b) → t b) -- ^result combination function
→ (a → b) -- ^mapped function
→ t a -- ^input
→ t b -- ^output

farm distr combine f tasks = ranch distr combine (fmap f) tasks

Iteration Framework

The iteration framework can be generalised from DList a to distributed containers
Distrib co a for Traversable containers a and inner types a. We have to exchange
zip and unzip with zipTF and unzipTF and function lazy with lazy ◦ toList like in the
case of localControl:
localControl ::

forall a b c d co.
(Trans a, Trans b, Trans c, Trans d, Traversable co)
⇒ (a → Iter c → (Iter b, d)) -- ^process termination control
→ Distrib co b -- ^dummy type
→ Distrib co c -- ^dummy type
→ Distrib co a -- ^initial Input
→ Iterated (Distrib co c) -- ^output of loops
→ (Iterated (Distrib co b), Distrib co d) -- ^input for loops, final result

localControl controlF _ _ as css
= (bss, ds) where

(bss,ds) = unzipTF $ parMap f $ zipTF as $ lazy $ toList css
f :: (RD a, RD (Iter c)) → (RD (Iter b), RD d)
f (a, cs) = (release bs, release d) where

(bs,d) = controlF (fetch a) (fetch cs)
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Function parMapDistrib generalises parMapRD, with the same implementation:
parMapDistrib :: (Trans a, Trans b, Traversable co)

⇒ (a → b) → Distrib co a → Distrib co b
parMapDistrib f as = parMap (liftRD f) as

We use it to generalise parMapIter – which apart from its type – is again equal to the
original version:
parMapIter :: (Trans b, Trans c, Traversable co)

⇒ (b → c)
→ Iterated (Distrib co b)
→ Iterated (Distrib co c)

parMapIter f = parMapDistrib $ fmap f

More challenging is the definition of a generalised version allToAllDistrib for allToAllRD.
The problem is to span the allToAll connections based on an arbitrary container. We
chose to reduce the problem using a list interface for the remote data handles of the
inner allToAll connections. This works especially well because we can zip the initial
Traversable input with lazy list input of remote data handles.
allToAllDistrib :: forall b c i co.

(Trans b, Trans c, Trans i, Traversable co)
⇒ (Int→b→[i]) -- ^transform before transpose
→ (b→[i]→c) -- ^transform after transpose
→ Distrib co b -- ^remote input for each process
→ Distrib co c -- ^remote output for each process

allToAllDistrib t1 t2 xs = res where
n = length $ toList xs --same amount of procs as #xs
(res,iss) = n `pseq` unzipTF $ parMap f inp
inp = zipTF xs (lazy $ transposeRt $ toList iss)

f :: (RD b,[RD i]) → (RD c,[RD i])
f (x,theirIs) = (resF theirIs, myIsF x') where

x' = fetch x
myIsF = releaseAll ◦ (t1 n)
resF = release ◦ (t2 x') ◦ fetchAll

The iterable version of allToAll is identical to the original allToAllIter implementation,
apart from using different allToAllDistrib skeletons.
allToAllIter ::

forall b c i co. (Trans b, Trans c, Trans i, Traversable co)
⇒ (Int→b→[i]) -- ^transform before transpose
→ (b→[i]→c) -- ^transform after transpose
→ Iterated (Distrib co b) -- ^remote input for each process
→ Iterated (Distrib co c) -- ^remote output for each process

allToAllIter t1 t2 = allToAllDistrib t1Iter t2Iter where
t1Iter p = map Iter ◦ transposeRt ◦ map (t1 p) ◦ fromIter
t2Iter (Iter bs) = Iter ◦ zipWith t2 bs ◦ transpose ◦ map fromIter

In the following, we will study the benefits of the generalised spawn implementation on
the gentleman algorithm [Gen78].
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6.2.6 Case Study: Torus Skeleton and Gentleman Algorithm

The torus skeleton unfolds a grid topology with round about connections at the borders.
Each process receives its initial input of type c from the master and torus input from its
left and lower neighbour (types c and d). The input/output is a nested list of type c/d.
Working with the nested list means that we have to nest list functions appropriately. The
processes input t_inss e.g. is combined from the initial input and the remote data handles
of each processes neighbours’, which are supplied lazily. We use zipWith3 lazyzip3

on the input lists to generate an input triple for each process. Analogously, we use
unzip3 (map unzip3... to separate the output triples of the processes into lists. The lazy
input for the processes is composed of the rotated remote data handles of the output,
which generate the torus connections.

Finally, the ptorus process function lifts the latter input and output components of
function f to remote data. Spawning the nested list of process functions with function
map spawnF would not be eager enough, so we define spawnFss, a nested sequence64 of
instantiateF calls, to ensure eager instantiation.
torus :: (Trans a, Trans b, Trans c, Trans d) ⇒

(c → a → b → (d,a,b)) -- ^ node function
→ [[c]] → [[d]] -- ^ input-output mapping

torus f inss = outss
where
t_outss = spawnFss (repeat (repeat (ptorus f))) t_inss
(outss,outssA,outssB) = unzip3 (map unzip3 t_outss)
inssA = map rightRotate outssA
inssB = rightRotate outssB
t_inss = zipWith3 lazyzip3 inss (lazy inssA) (lazy inssB)
lazyzip3 as bs cs = zip3 as (lazy bs) (lazy cs)

-- | Spawn a matrix of processes
spawnFss :: (Trans a, Trans b) ⇒ [[a → b]] → [[a]] → [[b]]
spawnFss pss xss

= runPA $ zipWithM (zipWithM instantiateF) pss xss

ptorus :: (Trans a, Trans b, Trans c, Trans d)
⇒ (c → a → b → (d,a,b))
→ (c,RD a,RD b)
→ (d,RD a,RD b)

ptorus f (fromParent, inA, inB) =
let (toParent, outA, outB) = f fromParent inA' inB'

(inA',inB') = fetch2 inA inB
in (toParent, release outA, release outB)

The new version of the torus skeleton works with an explicit Matrix type and an appropriate
Traversable instance. We use Traversable versions for zip3, unzip3 and spawn directly
and thus have no need for sophisticated, type specific solutions:

64 zipWithM f xs ys = sequence (zipWith f xs ys)
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newtype Matrix a = Matrix {fromMatrix :: [[a]]}
deriving (Eq, Show)

-- with Foldable, Functor and Traversable instances
liftMatrix f = Matrix ◦ f ◦ fromMatrix

torus :: (Trans a, Trans b, Trans c, Trans d) ⇒
(c → a → b → (d,a,b)) -- ^ node function
→ Matrix c → Matrix d -- ^ input-output mapping

torus f inss = outss
where

t_outss = parMap (ptorus f) t_inss
(outss,outssA,outssB) = unzip3TF t_outss
inssA = liftMatrix (map rightRotate) outssA
inssB = liftMatrix rightRotate outssB
t_inss = zip3TF inss (lazy2L inssA) (lazy2L inssB)
lazy2L = lazy ◦ toList

Other differences are:

• In order to make inputs inssA and inssB lazy65, we need to use function toList in
combination with function lazy :: [a] → [a]. This pattern is typical for topology
skeletons. We zip a Traversable initial input with the lazy input. In more general
settings, the lazy input is of an arbitrary Foldable type. Even though, after using
toList, we can define the resulting list constructors lazily. The use of toList here is
perfectly fine, as all zip..TF versions only use the first input as template structure
for the output.

• The use of liftMatrix allows to apply ordinary list functions to the newtype Matrix.

We use the torus skeleton to implement a parallel matrix multiplication according to
Gentleman [Gen78]:
gentlemanMul :: forall a. (Num a,Trans a)

⇒ Matrix a → Matrix a → Matrix a
gentlemanMul (Matrix ass) (Matrix bss)

= torus f (zipTF (Matrix ass') (Matrix bss')) where
-- function on torus elements
f :: (a,a) → Stream a → Stream a → (a, Stream a, Stream a)
f (initR, initD) (Stream fromR) (Stream fromD)
= (res, Stream streamL, Stream streamU) where
res = foldl1' (+) $ zipWith (∗) streamL streamU
streamL = initR : take (n-1) fromR
streamU = initD : take (n-1) fromD
n = length bss

-- pre-rotation
ass' = zipWith leftRotIXs [0..] ass
bss' = transpose $ zipWith leftRotIXs [0..] (transpose bss)
leftRotIXs i xs = xs2 ++ xs1 where

(xs1,xs2) = splitAt i xs

65 to define all the (inner) list constructors beforehand
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The algorithms parameters are two matrices ass and bss which have to be pre-rotated in
a sequential preparation step. We rotate row i of matrix ass i elements to the left and
column j of matrix bss j elements up. We zip the matrices to a matrix of pairs (using
zipTF) and put each pair on a process of the torus. We use function f on the torus to
implement the processes functionality of the matrix multiplication. Function f receives a
Stream fromR from its right neighbour and a Stream fromD from the neighbour beneath. It
uses n − 1 elements from each stream. We calculate the sum of the products of our initial
elements initD and initR concatenated with the incoming streams (forming streamL and
streamU) to determine the result of the matrix multiplication at this processes’ position.
The function forwards streamL and streamU to the left and upper neighbour processes.

In this version, the streams to the neighbours are forwarded directly without waiting for
the intermediate results of the local sum. The advantage of calculating the local sums
before the streams are forwarded to the neighbouring processes is that the process need
only to keep two matrix elements in the local memory. If all streams are forwarded directly,
then every process has to keep a whole row and column of the matrix (worst case). We
added such a demand control to the algorithm. The code of this gentlemanMulDemand

version can be found in Chapter A.3.

The code of an implementation using the old torus skeleton is similar and differs only at
the upper part, because in the previous version we fell back to using a list representation
of the matrix in the lower part of the function body:
gentlemanMul :: forall a. (Num a,Trans a)

⇒ [[a]] → [[a]] → [[a]]
gentlemanMul ass bss = torus f (zipWith zip ass' bss') where

-- function on torus elements
f :: (a,a) → [a] → [a] → (a, [a], [a])
f (initR, initD) fromR fromD
= (res, streamL, streamU) where ...

On the one hand this implementation is more simple, as we can work directly on lists.
On the other hand it is less expressive as the types are less meaningful. E.g. the type
[[a]] may as well refer to a list of streams and the stream input of function f may also
refer to parallel input for a sub-skeleton. Further, zipping the matrices for the torus
input using function zipTF is also more convenient in the new version, in contrast to using
zipWith zip in the old version.

To optimise the performance of the implementation we have to agglomerate the input.
We use thus a block distribution of the input matrices. An elegant way to do this is to
use the fact that the gentlemanMul and gentlemanMulDemand implementation do work for
any instance of typeclass Num. Thus both implementations can be used with a matrix of
matrices of type a (Matrix (Matrix a)), if Matrix a is an instance of Num:
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mPlus :: Num a ⇒ Matrix a → Matrix a → Matrix a
mPlus ass bss = zipWithTF (+) ass bss

mMul :: Num a ⇒ Matrix a → Matrix a → Matrix a
mMul (Matrix ass) (Matrix bss) = Matrix css where

css = map (flip vecMatProd (transpose bss)) ass
vecMatProd vec mat = map (dotProd vec) mat

dotProd :: Num a ⇒ [a] → [a] → a
dotProd vec1 vec2 = foldl1' (+) $ zipWith (∗) vec1 vec2

instance Num a ⇒ Num (Matrix a) where
(+) = mPlus
(∗) = mMul
...

Thus we can define a wrapper function gentlemanFarm to slice the sub-matrices and call
gentlemanMulDemand:
gentlemanFarm :: forall a. (Num a,Trans a,NFData a)

⇒ Int → Matrix a → Matrix a → Matrix a
gentlemanFarm n m1 m2

= concatMatrix n n
◦ gentlemanMulDemand (splitMatrix n n m1) $ (splitMatrix n n m2)

splitMatrix :: Int → Int → Matrix a → Matrix (Matrix a)
concatMatrix :: Int → Int → Matrix (Matrix a) → Matrix a

This is as well possible with the old Eden implementation, but we would have to work with
a [[Matrix a]]66 type. We prefer the Matrix (Matrix a) version, which is more elegant
in our opinion. One advantage of the old version has been that we did not have to define
the newtype Matrix with all kinds of typeclass instances. In the end we would have to do
this work anyhow.

In Figure 6.11 we show trace visualisations of both gentlemanFarm versions. The process
instantiation differs in both versions. The version with the modified Eden modules (new
version) instantiates at least the first 4 processes instantly. The version with the classic
Eden modules (old version) instantiates the processes one after the other. The computation
phases are quite similar, even though there seems to be a different communication structure.
Both – the different instantiation behaviour as well as the different communication structure
– may imply that the processes are instantiated in a different order. We could not analyse
this in more detail.

66 As we can not define a Num instance for [[a]].
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Figure 6.11: gentlemanFarm with 400 inputs on 16 PEs

6.2.7 Case Study: Mandelbrot with different Eden Versions

We compared different versions of the Eden- modules and skeletons using a simple Man-
delbrot program67. We use a farm with round robin distribution of inputs to apply the
worker function wf on the available machines:

farm (unshuffle (np-1)) shuffle wf

We used basic Eden in the first program version, the modified implementation of the Eden
modules and the farm skeleton of this Chapter in version Eden mod and a similar version,
which was slightly changed by stopping the recursive calls to transform and untransform

at a certain level (version Eden mod no rec). We stop transforming recursively when
further transformations may no longer change the communication mode. Thus we do not

67 ... with a different implementation then in Chapter 4.4.1. Here we use inputs and outputs with streams
of lists instead of vectors (type [[a]] or Stream[a]) which do not scale well.



168 6 Types and Type Class Support for Efficient Composition

transform outputs of type list or Stream or Maybe, but we still transform outputs of tuple
type or the Iter type recursively.
We performed our measurement on the Beowulf cluster (see Chapter 2.2.1). Mean runtimes
of 5 program runs for each of the different versions and input size 1000 are listed in the
following table:

PEs Eden (1) Eden mod (2) Eden mod
no rec (3)

(1) vs (2) (1) vs (3) (2) vs (3)

2 10.82 13.03 10.59 16.95% -2.12% -18.70%
3 6.99 8.03 6.99 12.90% -0.10% -12.99%
4 6.99 7.93 7.07 11.84% 1.07% -10.88%
5 7.24 8.09 7.15 10.44% -1.29% -11.60%
6 7.27 8.08 7.28 9.97% 0.16% -9.82%
7 7.21 8.13 7.20 11.35% -0.17% -11.51%
8 7.17 8.16 7.16 12.15% -0.10% -12.24%
9 7.21 8.04 7.33 10.34% 1.72% -8.77%
∅ 11.99% -0.10% -12.07%

Versions Eden and Eden mod differ around 12%. This is because of the overhead for
recursively applying the transformations on the inner lists, as we can see easily when
comparing versions Eden and Eden mod no rec. Both perform close to identical (the
mean difference is -0.1%). Thus, for performance reasons we should stop transforming
recursively when the communication mode is not any more effected. This should at
least be implemented for standard container types like list, Maybe, Either, Tree, etc..
Our motivation for transforming recursively has been to enable for example automatic
compression or encryption of data which is nested in other container types. However,
recursive transformations may still be defined for special purpose container types, while
stopping them for standard container types.

6.3 Boxes

In Eden, data is evaluated to normal form before sending it and the sending mode is
determined from the type of the data. From the beginning, Eden programs used “lift
types” to disable streaming behaviour of list input. The lifted type has default Trans

instance, such that the carried list will be sent in a single chunk. As a generalisation of
this, we introduced boxes [DHLB16] in Eden.
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There are strict boxes:
newtype SBox a = SBox {fromSBox :: a}

instance NFData a ⇒ NFData (SBox a)
where rnf (SBox a) = rnf a

instance NFData a ⇒ Trans (SBox a) where
type ComType (SBox a) = Mono (SBox a)
transform = Mono
retransform = fromMono

This version contains an NFData instance inherited from the boxes inner type and an
instance for the new Trans class where transformation maps to Mono, with no recursion
on the inner type. Thus, in addition to the monolithic send mode of the original SBox
definition, our interpretation for the new Trans class prevents recursive transformations
on the inner type. This is characteristic to all box definitions for the new Trans class.

Where strict boxes are basically equivalent to previous lift types, we offer also lazy boxes:
newtype LBox a = LBox {fromLBox :: a}

instance NFData (LBox a)
where rnf = r0

instance Trans (LBox a) where
type ComType (LBox a) = Mono (LBox a)
transform = Mono
retransform = fromMono

which are similar to strict boxes, but define the normal form reduction of the NFData

instance as r0 (no reduction). This means, that all values inside of lazy boxes are not
further evaluated prior to sending them. With lazy boxes, we do not need special offline
versions of our skeletons. We can send unevaluated data via arbitrary connections, e.g.
we can also provide unevaluated output and send unevaluated data over remote data
connections. This is especially useful to avoid the evaluation cost for applying rnf to the
inner type, when data is known to be evaluated already.

Thus, boxes are container types which carry inner types in order to change their

• sending mode – boxes are sent as monolithic chunks,

• evaluation degree – boxes have associated strategies to evaluate their content,

• transformation behaviour – inner types of boxes are not transformed.

We define a type class for boxes to give a common API for treating boxes:
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class Box b where
toBox :: a → b a -- ^box from value.
fromBox :: b a → a -- ^value from box.
stratBox :: (NFData a)

⇒ b a → Strategy a -- ^return the strategy of a box.
boxMap :: (a → a) → b a → b a -- ^like fmap, but with a single map type.
copyBox :: b a → a → b a -- ^puts new content in a given box.
copyBox b a = boxMap (const a) b

Function toBox puts data in a new box and fromBox extracts the data from a box. stratBox

returns the strategy of a box. Function boxMap is like fmap of the Functor class, but with
a single map type, thus the associated strategy can be passed to the resulting box. Finally,
copyBox puts new content in a given box, preserving the associated strategy.

Instances for lazy and strict boxes are straight forward:
instance Box SBox where

toBox = SBox
fromBox = fromSBox
stratBox _ = rnf
boxMap = fmap

instance Box LBox where
toBox = LBox
fromBox = fromLBox
stratBox _ = r0
boxMap = fmap

Functions toBox/fromBox simply apply/remove the Box constructor, boxMap is fmap with
the restricted type and stratBox returns rnf or r0 respectively.

With dynamic boxes, we add a more sophisticated representative to the set of boxes68:
data DBox a = DBox {fromDBox :: a,

stratDBox :: Strategy a,
initStratDBox :: Strategy a}

| RnfPending {fromDBox :: a}
| RnfApplied {fromDBox :: a}

toDBox :: Strategy a → a → DBox a
toDBox s a = DBox a s s

evalDBox :: NFData a ⇒ DBox a → DBox a
evalDBox b@(RnfApplied _) = b
evalDBox (RnfPending a) = rnf a `seq` RnfApplied a
evalDBox (DBox a s1 s0) = s1 a `seq` DBox a r0 s0

instance NFData a ⇒ NFData (DBox a) where
rnf (DBox a s1 _) = s1 a
rnf (RnfApplied _) = ()
rnf (RnfPending a) = rnf a

68 This is joint work with my colleague Thomas Horstmeyer
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instance NFData a ⇒ Trans (DBox a) where
type ComType (DBox a) = Mono (DBox a)
transform = Mono
retransform (Mono (DBox a _ s0)) = DBox a r0 s0
retransform (Mono b) = RnfApplied (fromDBox b)

instance Box DBox where
toBox = RnfPending
fromBox = fromDBox
boxMap f (DBox a _ s) = toDBox s (f a)
boxMap f b = toBox (f $ fromBox b)
stratBox (DBox _ _ s) = s
stratBox _ = rnf

A dynamic Box (DBox) carries two Strategies. We store the associated strategy of the
box initStratDBox and also a current strategy for the box stratDBox. The purpose of
the current strategy is runtime optimisation, it is used for evaluation when rnf is called.
Initially, we require both strategies to be identical, as it is when we create a DBox from a
value and a strategy with function toDBox.

Function toDBox generates a box with the provided strategy. Constructors RnfPending

and RnfApplied allow to generate DBoxes with rnf strategy, even if the NFData context is
not available. Here:

RnfPending a ∼ DBox a rnf rnf

RnfApplied a ∼ DBox a r0 rnf

This allows e.g. to define an instance for DBox of class Box, where toBox and boxMap

do not contain the NFData context. This is essential because instances for Functor and
Applicative use toBox and boxMap, and both classes do not contain the NFData context.

Like every value, a DBox will be evaluated before it is sent. Subsequently – on the receiver
side – function retransform will set the current strategy stratDBox to r0 (no evaluation).
Thus, further uses of rnf will not lead to additional evaluation cost if the box is not
modified. Modifying the box using boxMap will reset the current strategy stratDBox to
the initial strategy.

Function rnf :: NFData a ⇒ a → () itself will not modify the current strategy stratDBox,
as it returns unit and not the box. Thus we provide function

evalDBox :: NFData a ⇒ DBox a → DBox a,
which returns the box, where the next strategy stratDBox is set to r0 after evaluating the
current strategy stratDBox.





CHAPTER 7

Related Work

Remote Data

Remote data resembles closely the remote references concept used to implement future
based RMI in the context of a Java based skeleton framework for the grid. Alt and
Gorlatch [Alt07, AG03, AG04] used future based RMI to implement single server skeleton
composition, but implemented multi server skeleton composition using distributed data
types. We get the main benefit of future based RMI69 for free, as the channel creation
used to implement remote data returns the channel handle immediately. Similar to the
optimisation step for localised RMI [Alt07] (see Chapter 1.2), runtime support has been
implemented for optimised communication on the same machine70. Communication is
avoided if the released data of the sending process is referenced by the fetched data on the
receiving process which both share the same heap (machine). This optimisation applies
to all Eden channels, independent of their construction (remote data channels, dynamic
channels or implicit channels). However, this is most relevant for skeleton composition
using remote data with co-location of processes.
Aldinucci, Gorlatch et al. use future based RMI to optimise communication and coordi-
nation in the Java based skeleton library Lithium [ADD04] for the grid. In Lithium, all
skeletons consume streams of inputs and produce streams of results, programs are compiled
to a data flow graph. The optimisations do not require changes to Lithium programs,
they affect rather how the data flow graph is executed by the scheduler. Optimisations
comprise of task lookahead to avoid idle times on the servers and Server-to-server lazy
bindings to avoid communication between the scheduler and the servers: The system trys
to determine computation chains where each task depends on the result of the previous one
and places those tasks on the same server. Thus, future based RMI is used to optimises

69 With future based RMI, the remote reference can be instantly returned to the caller.
70 This was implemented by Jost Berthold, thanks.
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composition implicitly, but is not used explicitly in skeleton programming.

Remote data is related to futures. Harper describes futures as follows:

“A future is a computation that is performed before its value is needed.
... a future represents a value that is to be determined later.
... a future is always evaluated, regardless of whether its value is required.”71

In contrast, remote data represents a value on a remote machine. The evaluation degree of
the value is unknown. The normal form evaluation of a value referenced by remote data is
demanded when fetch is called on the receiver side, which is when it is needed. When a
remote data handle is not used, the referenced value will not be evaluated72.

IVars (imutable variables) where introduced to model communication between threads
in the Par-Monad [MNPJ11] for deterministic multicore programming in Haskell. They
resemble closely I-structure components and especially ICells, which where introduced in
the context of PH [Nik01]. Like MVars (mutable variables) of Concurrent Haskell [PJGF96],
IVars can be used to put data to and get data from, which allows for communication
and synchronisation among different threads. Unlike MVars, it is only allowed once to put
a value into an IVar. From an abstract point of view, Eden’s dynamic channel concept
provides channels with a loose end at the sender side, the remote data concept provides
channels with a loose end at the receiver side and an IVar is a channel with loose ends at
sender and receiver side. Thus with IVars, a third party (for example the caller) can create
handles which are passed to a sender and a receiver to exchange data directly. IVars are
well suited for a monadic style of programming in the PAR-Monad, but do not match the
functional style of programming in Eden.

Skeleton Nesting and Skeleton Composition

The categories of skeleton nesting and skeleton composition are usually not distinguished
in literature, as skeleton composition is often achieved by nesting skeletons in a pipeline
skeleton or a composition skeleton.

P3L [BDO+95] (based on C + MPI), Kuchen and Cole’s skeleton library [KC02, Kuc02]
and its successor, the Münster skeleton library Muesli [Kuc07] (based on C++ and MPI)
use a two tier model, where the data parallel skeleton may be nested in task parallel
skeletons, but not the other way around. The task parallel layer is compounded of a

71 [Har15, page 355]
72 With our current implementation, a thread used to evaluate the remote handle will be waiting for

a receiver to call fetch and the referenced value will not be garbage collected until the program
terminates. Thus, once created remote data must be fetched to avoid space leaks and unnecessary
threads.
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persistent skeleton nesting interconnected by streams of tasks. These skeleton systems also
have in common, that at the root level programs are implemented by a pipeline skeleton,
where the initial stage produces the input stream and the final stage consumes the output
stream. For P3L, performant skeleton nesting is achieved by compiler optimisations, for
example by optimising the sequence of collective MPI-operations used to implement the
skeleton chain. The latter two skeletal systems use distributed data types for performant
skeleton composition and model data (re-)distribution explicitly.

Darlington et al. [DGTY95b, DGTY95a] also use distributed data types for parallel
composition in SCL, but borrow the (re-)distribution model from High Performance
Fortran’s [Lov93] data distribution directives. He “uses an imperative base as well but
describes the composition of (predefined) skeletons itself functionally[.] ...

Although programming with distributed data structures is comfortable and efficient, the
number of predefined data structures is limited and their use is thus not as flexible
as working with remote data. Remote data can be nested in arbitrary algebraic data
structures and manipulated by standard functions on those structures.”73

Also the Java based skeleton libraries Lithium (mentioned already above) and its successor
Muscle [GVL10] as well as Calcium [CL07] and its successor Scandium [GVL10] allow
arbitrary skeleton composition. The latter two are inspired by the prior two and Scandium
is a re-implementation of Calcium for multicore architectures. While Lithium uses data
flow graphs as execution model, Calcium’s execution model produces and processes a
taskpool-tree, where processing of a task may lead to subtasks which are added to the
taskpool-tree. A task is finished if it has no more subtasks and no pending skeleton code
to execute. For Calcium, no indications are made whether communication overhead is
optimised somehow, which is not relevant for Scandium because of the shared memory
environment.

Skeletons are rarely used in the context of other parallel Haskells. The Par-Monad
[MNPJ11] uses algorithmic skeletons as parallelism abstraction concept. Because of the
shared memory setting, data flow optimisations for skeleton composition are not relevant.
Cloud Haskell [EBPJ11] is another relevant parallel Haskell. It is aimed at a distributed
setting and uses monadic style of programming like the Par-Monad, but unlike the Par-
Monad it is nondeterministic. Cloud Haskell adepts the actor [HBS73] based parallel
programming model of Erlang [Arm07]. Basic communication in Cloud Haskell uses
untyped messages like in Erlang. The send function can address an arbitrary process, the
receive function expects messages from arbitrary senders. The messages can be matched
by type or a predicate. Cloud Haskell allows also to send messages via typed channels.
These work similar to dynamic channels in Eden, but communication channels in Cloud

73 [DHL10], page 87
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Haskell are not overloaded. They are thus more like primitive channels in Eden. A channel
is created at the receiver side and the typed receive port can be passed to the sender
via existing channels. Thus, it should be possible to implement a Cloud Haskell version
of remote data in the same way as we implemented remote data in Eden, allowing for
similar skeleton composition mechanisms. But Cloud Haskell “concentrates on portability
of network layers and basic control support, rather than providing high-level skeleton
libraries.”74 Even though, a blog series on communication patterns in Cloud Haskell
dedicates a part [dV12] to the implementation of the Google map-reduce skeleton in Cloud
Haskell. Thus, skeleton programming is basically possible.

Skeleton Iteration

For our approach of skeleton iteration the distinction of skeleton composition in transient
or persistent composition [BC05] is most relevant. In the iteration framework, we used
persistent skeletons interconnected by streams of data. Skeleton frameworks using the
two-tier model of P3L (P3L, Kuchen and Cole’s skeleton library and Muesli) all use
persistent compositions of task parallel skeleton interconnected by streams of data. Thus
they already have the optimisation we used for iteration incorporated by design. They
treat skeleton iteration by a simple control construct.

“The original skeleton work by Murray Cole [Col89] contains a chapter on an iterative
completion, parallelised on a grid of processes, but does not generalise iteration as we
do. Slightly more general is the iteration skeleton proposed in earlier Eden skeleton work
[PR01], realising an iteration of a stateful parallel map. This work lays the grounds for
our investigation, but does not generalise iteration bodies and types, nor does it consider
parallel control skeletons.

Many skeleton libraries, especially those based on imperative programming languages,
provide the constructs while for conditional iteration or for for fixed iteration and
support skeleton nesting, see e.g. the Scandium library [LP10], which uses Java as
computation language. However, no indications are made about whether iterated body
skeletons will be optimised with respect to process creation overhead. A slightly larger
corpus of related work can be found in the cloud computing community but usually
restricted to map-reduce [DG08, BDL09] computations, like e.g. [ZGGW12][ELZ+10].
HaLoop [BHBE12] is another Map-Reduce extension, which mainly capitalises on caching
mechanisms for unmodified data and reduction results across several iterations of one
map-reduce computation over the same dataset. A small API extension is provided to
specify how existing map-reduce (Hadoop) computations should be iterated.

74 citeJFP16DHLB
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None of these publications addresses parallel iteration as a general concept or distills
out algorithmic patterns as we do. This generalising conceptual angle is present in very
recent work in the data-flow framework Stratosphere [ETKM12]. The authors propose
the concept of "incremental" iteration and "microsteps" to exploit sparseness of data
dependencies and optimise read-only data accesses, but thereby break up the iterative
nature of the computation.”75

Cost Models

Cost models are an important part of skeleton systems (e.g. in P3L and Eden). They are
used to determine the cost of using the different skeleton implementations for a concrete
algorithm and input on a specific parallel machine. Cost models can be used to provide
mere information to the programmer, which can be included in the decision process
for a specific implementation or the compiler may choose the skeleton implementation
automatically, based on the cost model.

For the Eden system, cost models have been introduced by Rubio [Rub01] and Loogen
et al. [LOP+03] as mere information for the programmer. They describe the cost of a
critical path, a sequence of actions including sequential times before and after parallelism
is created and the maximum time of the single processes. Eden’s cost model takes
problem dependent parameters like input size or the CPU time to compute a function,
RTS dependent parameters like the time to create a process and architecture dependent
parameters like the latency of a message or the start-up cost and the per-word cost for
sending/receiving a message into account.
Hammond et al. [HBL03] present an approach of “automatic skeletons” in Eden, where a
pre-processing step using Template Haskell [SJ02] at compile time supplied with problem-
specific and environmental parameters, selects automatically a skeleton implementation
based on the Edens cost model and generates optimised code.
Thus, it would be possible to use cost models for skeleton composition in Eden. This
would be especially helpful for the following decisions:

• use remote data (if data is send via other processes and we have streams of data
or bigger data chunks) or local data (if we have small data chunks or data is send
directly to the final receiver)

• use a gather-distribute (if we have small data chunks) or an all-gather/all-to-All
pattern (if we have bigger data chunks or streams)

• use the iter framework (in flavours simpleIter or iterD) or the recursive composition
pattern using remote data.

75 [DHBL13], page 34
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On the other hand, we observed some strange program behaviour when comparing skeleton
composition and skeleton iteration with persistent process networks compared to transient
skeleton composition. Here the persistent process networks have less overhead for process
and channel creation and behave furthermore similar, as we could observe using runtime
trace visualisations. Nevertheless the transient approach to skeleton composition achieved
better performance in some cases. We could not figure out what causes this behaviour,
but we guess it may be caused by garbage collection or other effects of the GHC runtime
system76, thus these effects would probably neither be detected by a cost model approach.
We chose not to treat cost models in this thesis and rather to concentrate on the technical
aspects of skeleton composition and programming methodology. This area is left for future
work.

76 runtime trace analysis suggests that the surplus time is spent in sequential activity on the processes
and not in the communication phases.



CHAPTER 8

Conclusions and Future Work

Initially we state the guiding question of this thesis from the introduction:

What are alternative conceptual building blocks, which enable performant
skeleton compositionality, are easy to use and provide high flexibility in terms
of connectivity, extensibility and transformability?

Remote data is the key feature of the composition approach presented in this thesis. It
allows the connection of two processes directly using a data handle. The sender does not
need to know anything about the receiver to initiate the connection and return a data
handle. The receiver needs just the data handle and no further information about the
sender itself to establish a direct connection with the sender and receive the data. This
offers performant composition of two processes with communication overhead substantially
reduced.
It is the loose combination of remote data with arbitrary sequential data containers which
gives our approach its flexibility. A skeleton that returns a container of remote data –
typically created by its processes – offers a parallel interface. We can compose it with
another skeleton with compatible signature (connectivity), possibly permute the positions of
the remote data handles between the skeleton composition to define a redistribution of data
or transfer the data in a different container if the skeleton signatures are not compatible
(transformability). Skeletons can be composed directly using the prelude operator ( ◦ )

for function composition. Furthermore, programs do not need to be changed structurally
to optimise skeleton composition by using remote data (easy to use).
Apart from skeleton composition, remote data is well suited to define topology skeletons.
It “uses an existing communication topology to build direct connections between different
processes. [...] With remote data the explicit channel handling using new and parfill

can in most cases be abandoned. This improves the elegance and usability of Eden even
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more.”77 However, this raises the question if we should remove new and parfill from
the Eden API and replace it by remote data? There are cases where new and parfill

suit better than remote data. For example in the definition of the distributed workpool
skeleton. Here the workers send requests within the ring when they are running out
of work. Requests are replied by workers which have surplus tasks. The requests are
implemented as bare channel names created by new and are used by parfill to send
new tasks. Another example is a broadcast skeleton that can be defined conceptionally
by reversing the communication direction of the parRed skeleton (see Chapter 4.2.1.3),
thus we can implement it in principle by exchanging remote data with dynamic channels.
However, new and parfill fit badly in the functional style of programming with Eden. It
would be better to use createComm and the (!) operator (see Chapter 6.1.2) in the PA
monad for the few cases where they are really needed.

The iteration framework is another approach to skeleton composition for the special case
of skeleton iteration. It uses skeletons with static process networks where processes are
connected by streams of data (persistent skeleton composition) to reduce the overhead
of the naïve approach to skeleton iteration: recursive skeleton invocations using remote
data. The concept of the iteration framework is orthogonal to the latter approach of
transient skeleton composition. Apart from reducing the overhead of process and channel
creation, it allows us to use state for iteration control and iteration body which render
many data transfers unnecessary (performant) — particularly communications from the
processes of the iteration body skeleton to the iteration control and back again. Even
though remote data is no essential part of the framework itself, the combination of remote
data and the iteration framework allows the creation of persistent channels not only
between the processes of the iteration body and a single control process, but also between
arbitrary processes of a parallel iteration control and a body skeleton. Remote data can
be used to create transient connections between iteration control and body skeletons
using the simpleIter scheme. This allows to flexibly change communication partners in
the different iteration steps (transformability). Through the type family definition for
Iterated skeleton input, we can define the simpleIter scheme allowing transient channel
connections and the iterD scheme for persistent interprocess connections by a single
function iter (connectivity).
“We allow for arbitrary parallel body skeletons and supply some parameterised control
functions including step counting and termination conditions on local and global data
[easy to use]. We have shown how body skeletons can be transformed in such a way that
the body processes will be re-used for all iterations [extensibility], how to handle streams of
input and output data, and how to optimise communication between distributed processes
in a parallel execution.”78

77 [DHL10]
78 [DHBL13]
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The Eden extensions of Chapter 6 are designed to increase Edens support for skeleton
compositionality further on, but are also of general use. This is most true for the redesign
of Edens Trans class for transmissible data, which was split up into a new Trans class for
transformable data, transforming arbitrary input into instances of the new Transmissible

class. The Transmissible class defines instances for different sending modes: Mono for
single messages, tuples for concurrent messages and Stream for stream messages. This
instances must not be extended. Extensibility is rather achieved by defining simple trans-
formations in the Trans class. This redesign was necessary to enable recursive streaming
of the Iter type, but it has various other use cases, for example streaming instances for
various common data types like vectors or trees and automatic chunking, compression or
encryption of messages. Boxes allow to change the predefined communication behaviour,
evaluation degree prior to sending and transformation depth for a given type. They can
be used to optimise the communication behaviour of skeletons, skeleton compositions and
applications (performance).
Other improvements aim more directly at skeleton composition like the generalisation for
the function spawn which allows for polymorphic parallel interfaces of skeletons and thus
facilitates the use of varying parallel interfaces for skeleton composition (extensibility and
connectivity of parallel interfaces). Further the Spawnable class integrates placement infor-
mation in the data containers which makes co-placement of processes among succeeding
skeleton instances easier (performance). We implemented the extension of remote data
to location aware remote data with the same objective of co-placement. With the type
Distrib we introduce finally a type for distributed data in Eden – without jeopardising
the advantages of remote data stored in arbitrary data containers compared to regular
distributed data types: transformability and extensibility.

Comparing the results of the skeleton composition chapter, we get the following table:

Mandelbrot NAS EP FFT (2D-DH) PSRS
min -2.56 % -23.14 % -2.81 % -14.26 %
max 2.98 % 7.21 % 2.91 % 5.85 %
mean 0.14 % -2.25 % 0.17 % -2.55 %

abs mean 1.33 % 3.85 % 1.30 % 3.96 %

Apart of the minimal (min) and the maximal deviation (max) of runtimes between
monolithic and compositional versions, we present mean values of the percental deviation
(mean) and mean values for the absolute percental deviation (abs mean). If the abs
mean value differs substantially from the absolute value of the mean value, then there
are differences of runtimes in both directions which partially neutralise themselves on an
average. One version constantly outperforms the other if the absolute value of the mean
value and the abs mean value are identical.
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The abs mean values are always below 4%. The mean values are between -2.55 % and
0.17%, thus monolithic and compositional versions perform really close. Surprisingly we
get slightly better results for the compositional version, which may as well be caused by
the concrete selection of case studies. We compared program versions constructed by a
single skeleton composition step to monolithic ones or in the case of PSRS, we compared
two composition steps to a single composition step. Our results indicate that skeleton
composition using remote data performs competitive to monolithic skeletons for a single
composition step. In the iteration chapter we compare compositional versions with many
composition steps to persistent process systems constructed by the monolithic iterUntil

skeleton or the compositional iteration framework:

K-means:
iterUntil vs
i-framework

n-body: rec vs
simpleIter79

FFT(ND-DH) CG: iterUntil
vs Iter

CG: rec vs Iter

min -4.61% -80.87 % -49.23 % -14.00 % -6.19 %
max 2.98 % 17.20 % 29.44 % -1.31 % 13.56 %
mean -1.15 % -13.10 % -1.37 % -5.87 % -7.41 %

abs mean 2.64 % 22.39 % -13.02 % 5.87 % 8.3 %

For the K-means example we compared the iterUntil skeleton to the iter framework
and a compositional version without remote data. The compositional version with the
sub-optimal communication structure performed dramatically worse. We summarise here
only the other two versions which perform competitive. The mean value is only −1.15%
and the abs mean is only 2.64%.
For the n-body example the results depend a lot on the input size. The recursive version
performed better for bigger input sizes and the iteration framework for smaller sizes. Thus
in this overview we leave out the results for the small input size 1000 because we do not
want to overemphasise small input sizes. Yet these numbers show how much the results
differ. The abs mean value (22.39 %) is around 9% bigger than the absolute value of the
mean value (-13.1%). The mean result can be influenced a lot by the chosen input sizes.
If we would include bigger input sizes, then the sign of the mean value would switch from
− to +.
The FFT ND-distributed homomorphism example displays runtimes which also differ a lot.
However, we should not attach much weight to this case study as it was not agglomerated.
Runtimes are dominated by parallel overhead, there are no speedups but only slowdowns.
For the conjugate gradient example, the results are more homogeneous. The mean values
are close to the abs mean values. The iter framework version performs best, but the mean
differences with 5.87 % to the iterUntil skeleton version and with 7.41 % to the recursive
version are still small.

79 without input size 1000
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In our experiments the iteration framework performed competitive to the monolithic
iterUntil skeleton. We observed varying performance gaps between the iteration frame-
work and recursive skeleton compositions using remote data.

Another focus of this thesis has been on “programming methodology for skeleton-based
parallel Eden programs. We have contrasted two different approaches to implement
complex parallel algorithms: stable process systems (usually monolithic skeletons) and
skeleton composition. Up to now, Eden’s philosophy has always been to work with stable
process systems in order to save process creation and communication costs. On the
other hand, Eden skeletons can easily be composed to create complex process systems
using remote data and specific co-allocation of processes. Eden’s parallel RTS optimises
communication between co-allocated processes, replacing communication with copying
and thus saving the overhead induced by serialisation and de-serialisation of data to be
communicated.”80

The iteration framework integrates both, stable process systems and skeleton composition.
Even though the skeleton framework is designed to be flexible, extensible and easy to use,
it still restrains the liberty of the programmer compared to the simple recursive approach
using remote data. Regarding performance: On the one hand, the iteration framework
performed often better than the recursive versions. On the other hand, the recursive
version clearly outperformed the iteration framework version of our n-body implementation
for bigger input sizes. Thus, the programmer should choose carefully in each case between
the poles of flexibility and performance.

“In general, composing complex process topologies from elementary skeletons is easier than
the design and implementation of a sophisticated stable process skeleton for the same
purpose. The program code is much closer to the sequential program version and easier to
understand. This simplifies optimisations and is a good basis for further developments
and code maintenance. Due to Eden’s remote data concept, the explicit co-allocation of
processes, and in particular the optimised communication between co-allocated processes
within Eden’s parallel runtime system, the process creation and communication overhead
can be minimised, and thus, the performance of the compositional approach is competitive
with the more involved development of stable process systems.”81

Future Work

We left the adaptation of Eden’s cost model to our composition framework for future
work. A further possibility would be to add the use of fetch and release automatically
by a pre-processing step based on an adapted cost model. However, this might be quite

80 [DHLB16]
81 [DHLB16]
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complicated as we can use fetch and release on many places: for the whole in- and
output, for all elements of a list or stream, for tuple components or inside arbitrary nested
data structures.

An important limitation of our framework is that remote data has to be used exactly once,
a property which we inherited from dynamic channels. We could overcome this limitation
by implementing a distributed garbage collection. There are common mechanisms to do
this, e.g. distributed reference counting like in GUM [THM+96]. This includes a certain
runtime overhead and would be implemented in the runtime system, which is conflicting
with our goal to create a full library version of Eden.

Another important point regarding the further development of Eden’s implementation is
the integration of mechanisms supporting fault-tolerance. This is crucial for the productive
use of Eden programs.

In addition to Eden, our skeleton composition framework based on remote data could be
transferred to other languages, e.g. Cloud Haskell or Scala actors. Cloud Haskell introduces
typed, receiver initiated channels to the actor model, similar to dynamic channels in Eden.
Thus, it would be possible to implement remote data in Cloud Haskell in the same way we
implemented it in Eden. We could further extend Scala actors by typed channels like in
Cloud Haskell and transfer then remote data to Scala. The main difference between the
Eden implementation of remote data and the transferred implementations would be that
both Scala actors and Cloud Haskell do not use overloaded communication modes. Of
course we could additionally add this feature to both libraries.
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APPENDIX A

Extended Code Reference

A.1 The mwNestedAt Skeleton

mwNestedAt :: forall t r. (Trans t, Trans r) ⇒
Places → -- tickets
[Int] → [Int] → -- branching/prefetches per level
([t] → [r]) → -- worker function
[t] → [r] -- tasks, results

mwNestedAt tickets@(_:_) (n:ns) (pf:pfs) wf ts
= mwAt' childTickets n pf subMWs ts where
(childTickets, restTickets) = splitAt n tickets
subMWs = [mwNestedAt tickets' ns pfs wf | tickets' ← unshuffle n restTickets]

mwNestedAt _ _ _ wf ts = wf ts

mwAt' :: (Trans t, Trans r)
⇒ Places
→ Int → Int -- #workers, prefetch
→ [[t] → [r]] -- worker functions
→ [t] → [r] -- what to do

mwAt' places np prefetch wf tasks = ress
where
(reqs, ress) = unzip ◦ merge ◦ tagF $ outs
tagF = zipWith zip [[i,i..] | i ← [0..np-1]]
outs = spawnFAt places wf inputs
inputs = distribute np (initReqs ++ reqs) tasks
initReqs = concat $ replicate prefetch [0..np-1]
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A.2 The allReduceRD Skeleton Generalised for Arbitrary Input Sizes and
Non-Commutative Functions

allReduceGenRD :: forall a. Trans a
⇒ (a → a → a) -- ^reduce function
→ [RD a] → [RD a]

allReduceGenRD redF toReduce = reduced where
steps = (ceiling ◦ logBase 2 ◦ fromIntegral ◦ length) toReduce
(intermediates,reduced) = steps `pseq` unzip $ parMap (uncurry p) inp
inp = zip toReduce $ lazy $ buflyF $ transposeRt intermediates
buflyF = transposeRt ◦ shiftFlipF steps ◦ fillF steps

p :: RD a → [Maybe (Both (RD a))] → ([RD a], RD a)
p rdA rdAs = (rdAs'', res) where

res = release $ reduced !! steps
rdAs'' = (releaseAll ◦ take steps ◦ lazy) reduced
reduced = scanl redF' a toReduce
toReduce = fetchAll' rdAs'
rdAs' = zipWith (flip maybe Left) (map Right rdAs'') rdAs
a = fetch rdA

--List encoding:
-- Right: No Partner present, use value b without reduction
-- Left: RD value comes from partner, then inner encoding:
-- Right: Partner is positioned at the right hand side
-- Left: Partner is positioned at the left hand side
-- needed such that redF does not need to be commutativie
redF' :: a → Either (Both a) a → a
redF' _ (Right a) = a
redF' a (Left (Right a')) = redF a a'
redF' a (Left (Left a')) = redF a' a

type Both a = Either a a

--custom fetchAll inside nested Eithers
fetchAll' :: Trans a ⇒ [Either (Both (RD a)) (RD a)] → [Either (Both a) a]
fetchAll' = runPA ◦ mapM fetchPA' where

fetchPA' (Left (Left rda)) = do a ← fetchPA rda
return $ Left $ Left a

fetchPA' (Left (Right rda)) = do a ← fetchPA rda
return $ Left $ Right a

fetchPA' (Right rda) = do a ← fetchPA rda
return $ Right a

--Fill rows to the power of ldn with Nothing, map Just to the rest
fillF :: Int → [[a]] → [[Maybe a]]
fillF ldn ass = map fillRow ass where

n = 2 ^ ldn
fillRow as = take n $ (map Just as) ++ (repeat Nothing)

shiftFlipF :: Int → [[Maybe a]] → [[Maybe (Both a)]]
shiftFlipF ldn rdBss = zipWith shiftFlipRow [1..ldn] rdBss where

shiftFlipRow ldi rdBs = (shuffle ◦ flipAtHalfF ◦ unshuffle i) rdBs where
i = 2 ^ ldi
flipAtHalfF xs = let (xs1, xs2) = splitAt (i`div`2) xs

in map (map (fmap Right)) xs2 ++ map (map (fmap Left)) xs1
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A.3 The gentlemanMulDemand Skeleton

gentlemanMulDemand :: forall a. (Num a,Trans a,NFData a)
⇒ Matrix a → Matrix a → Matrix a

gentlemanMulDemand (Matrix ass) (Matrix bss)
= torus f (zipTF (Matrix ass') (Matrix bss')) where
-- function on torus elements
f :: (a,a) → Stream a → Stream a → (a, Stream a, Stream a)
f (initR, initD) (Stream fromR) (Stream fromD)
= (res, Stream streamL, Stream streamU) where
-- stream demand code
(res, streamL, streamU) = streamDemand streamL' streamU'
streamL' = initR : take (n-1) fromR
streamU' = initD : take (n-1) fromD

streamDemand [] [] = error "empty streams should never happen"
streamDemand (st1:sts1) (st2:sts2)

= let prod = st1 ∗ st2
(res,sts1',sts2') = streamDemand' prod sts1 sts2

in rnf prod `pseq` (res,st1:sts1',st2:sts2')
streamDemand' sum [] [] = (sum,[],[])
streamDemand' sum' (st1:sts1) (st2:sts2)

= let prodSum = st1 ∗ st2 + sum'
(res,sts1',sts2') = streamDemand' prodSum sts1 sts2

in rnf prodSum `pseq` (res,st1:sts1',st2:sts2')
n = length bss

-- pre-rotation
ass' = zipWith leftRotIXs [0..] ass
bss' = transpose $ zipWith leftRotIXs [0..] (transpose bss)
leftRotIXs i xs = xs2 ++ xs1 where
(xs1,xs2) = splitAt i xs
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A.4 Automatic vs. Explicit Chunking: Two N-Body Versions

NBody with simpleAllGatherIter and explicit chunking
doStepsSimpleAllGatherIter :: Int → Int → [Body] → [Body]
doStepsSimpleAllGatherIter cSize n bs = bs' where

dlBs = releaseAll $ map (chunk cSize) $ unshuffle noPe bs
dlBs' = iter (simpleLoopControl n) (simpleAllGatherIter t1 t2) dlBs
bs' = shuffle $ map unchunk $ fetchAll dlBs'

t1 :: Stream [Body] → Stream [MassPoint]
t1 = chunk cSize ◦ map getMassPoint ◦ unchunk
t2 :: Stream [Body] → [Stream [MassPoint]] → Stream [Body]
t2 bs = chunk cSize ◦ updateAll (unchunk bs) ◦ map unchunk

NBody with simpleAllGatherIter and automatic chunking
doStepsSimpleAllGatherIterC :: Int → Int → [Body] → [Body]
doStepsSimpleAllGatherIterC cSize n bs = bs' where

dlBs = releaseAll ◦ map (CL cSize) $ unshuffle noPe bs
dlBs' = iter (simpleLoopControl n) (simpleAllGatherIter t1 t2) dlBs
bs' = shuffle ◦ map cList $ fetchAll dlBs'

t1 :: CList Body → CList MassPoint
t1 = fmap getMassPoint
t2 :: CList Body → [CList MassPoint] → CList Body
t2 (CL c bs) = CL c ◦ updateAll bs ◦ map cList



A.5 FFT with Distributed Homomorphism and Vectors 191

A.5 FFT with Distributed Homomorphism and Vectors

The vector based fft implementation including local definitions:
fft3_NDIterV :: Int --base

→ Int --n-Dims
→ B.Vector (Complex Double)

fft3_NDIterV base d = out ◦ dhNDFlatIterV base d h
◦ inF $ B.generate n (+1) where ...

-- end fft3_NDIterV
h = B.fromList ◦ fft3 base ◦ B.toList
n = base^d

inF :: B.Vector Int → VMatrix (RD (Complex Double, Int, Int))
inF xs = chunkV base ◦ releaseAll $

B.zipWith3 (,,) (bitReverse xs)
(B.generate n id)
(B.generate n $ const 1)

bitReverse xs = invV n $ B.map fromIntegral xs

out :: VMatrix (RD (Complex Double, Int, Int)) → B.Vector (Complex Double)
out = B.map fst3 ◦ fetchAll ◦ B.concatMap id
fst3 (a,_,_) = a

The invV implementation to permute a Vector in bit-reverse order using backpermute

(relying on the omitted function binReverse):
invV :: Int → B.Vector a → B.Vector a -- permutes Vector in bit-reverse order
invV n xs = B.unsafeBackpermute xs (B.generate n $ flip binReverse n')

where n' = realBinSize n

The vector based change-dim function including local definitions:
chdimVFlat :: Int --base length

→ Int --n-Dims
→ Int --ChDim1
→ Int --ChDim2
→ B.Vector a -- n-dim Grid (flatened) in
→ B.Vector a -- n-dim Grid (flatened) out

chdimVFlat base d cd1 cd2 v
| cd1 > 0 && cd1 ≤ d && cd2 > 0 && cd2 ≤ d

= if cd1 == cd2 then v
else B.unsafeBackpermute v (B.generate (B.length v) partnerF)

| otherwise = error "ChDim ≤ 0 | | > n-Dims" ...
-- end chdimVFlat

where pot1 = base^ (d-cd1)
pot2 = base^ (d-cd2)
partnerF ix | val1 == val2 = ix

| otherwise = ix - bigVal1 - bigVal2 + bigVal1' + bigVal2'
where
val1 = ix `div` pot1 `mod` base
bigVal1 = val1 ∗ pot1
bigVal1' = val1 ∗ pot2
val2 = ix `div` pot2 `mod` base
bigVal2 = val2 ∗ pot2
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bigVal2' = val2 ∗ pot1

The change-dim control function chdimVCF:
chdimVCF :: Int -- n-Dims

→ Int -- base length
→ Int -- act-dim
→ VMatrix a -- n-dim Grid (flatened) in
→ VMatrix a -- n-dim Grid (flatened) out

chdimVCF base d i = chunkV base
◦ chdimVFlat base d (d-i) d
◦ B.concatMap id

The chdimsV function to calculate d◦
i=1

chdim(i,i+1):

chdimsV :: Int --base length
→ Int --n-Dims
→ VMatrix a -- n-dim Grid (flatened) in
→ VMatrix a -- n-dim Grid (flatened) out

chdimsV base d = chunkV base
◦ chdimsV' 1
◦ B.concatMap id where

chdimsV' i v | i == d = v
| otherwise = chdimsV' (i+1) $ chdimVFlat base d (d-i) (d-i+1) v
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