Publikationsserver der Universitätsbibliothek Marburg

Titel:Randspaltbreiten im Dentin - eine neue Methode zur Evaluation der benötigten Leistungsfähigkeit moderner Adhäsive
Autor:Harjes, Martje Georgia
Weitere Beteiligte: Frankenberger, Roland (Prof. Dr.)
Veröffentlicht:2015
URI:https://archiv.ub.uni-marburg.de/diss/z2015/0429
URN: urn:nbn:de:hebis:04-z2015-04299
DOI: https://doi.org/10.17192/z2015.0429
DDC:610 Medizin
Titel (trans.):Marginal gap formation in dentine - a new method of evaluation of the necessary performance of modern adhesives
Publikationsdatum:2015-07-28
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
bulk fill Komposite, Randspaltbreiten, bulk fill composites, Polymerisationsstress, Adhäsive, SDR, adhesives, SDR, Dentin, polymerization stress, marginal gap formation

Zusammenfassung:
Ziel dieser Studie war es, die benötigte Leistungsfähigkeit moderner Adhäsive zu bestimmen. Hierzu wurden In-Vitro-Randspaltuntersuchungen von direkten Kompositfüllungen mit zwei unterschiedlichen Kompositarten durchgeführt (ein Nanohybridkomposit und ein SDR-Komposit). Um von den entstehenden Randspalten Rückschlüsse auf die notwendige adhäsive Performance zu ziehen, welche diese Randspalten verhindern könnte, kam die in dieser Studie vorgestellte modifizierten Kavitätenkonditionierung zum Einsatz. Für diese Studie wurden 32 menschliche dritte Molaren verwendet, an denen je mesial und distal standardisierte approximale Klasse-II-Slotpräparationen mit runden bzw. eckigen Kastenböden angelegt wurden. Es erfolgte eine randomisierte Einteilung der 64 Kavitäten in acht Gruppen zu jeweils acht Proben (n = 8). Die modifizierte Konditionierung sah vor, auf den amphiphilen Primer zu verzichten und die Konditionierung auf die Vorbehandlung der Kavitäten mit Phosphorsäuregel und dem lichthärtenden, dünnfließenden Kunststoff Heliobond zu beschränken. Je nach Versuchsgruppe wurden die zwei verschiedenen Komposite (Venus Diamond und SDR) in unterschiedlichen Schichtstärken appliziert und gehärtet. Nach Ausarbeitung und Politur der Füllungen wurden die Originalproben im Rasterelektronenmikroskop in Bezug auf die Randqualität untersucht und vermessen. Die gewonnenen Daten wurden mit dem Programm R statistisch ausgewertet. Erwartungsgemäß wiesen alle Restaurationen aufgrund der modifizierten Konditionierung Randspalten auf. Die Inkrementstärke hatte bei beiden Kompositarten einen signifikanten Einfluss auf die Randqualität (p ≤ 0,05), wobei jeweils signifikant bessere Ergebnisse erzielt wurden, je kleiner die applizierten Schichtstärken waren. Die präparierte Kastenform (rund bzw. eckig) hatte keinen signifikanten Einfluss auf die Qualität der dentinbegrenzten Füllungsränder (p > 0,05). Es konnte ein signifikanter Unterschied zwischen den beiden untersuchten Kompositen Venus Diamond und SDR festgestellt werden. Während Venus Diamond in kleinen Inkrementen verarbeitet besonders gut abschneiden konnte, wurden für SDR in sog. Bulk-fill-Schichtstärken von 5 mm die signifikant besseren Resultate erzielt (p ≤ 0,05). Die Ergebnisse dieser Studie konnten zeigen, dass das Bulk-fill-Komposit SDR ohne negativen Einfluss auf die Randqualität von Füllungen verwendet werden kann. Die entstandenen Spalten am Füllungsrand sind das Resultat der nicht-kompensierten Polymerisationsschrumpfung und des Polymerisationsstresses der verwendeten Komposite. Um diese unerwünschte Spaltbildung zu verhindern, ist die Anwendung effektiver Dentinadhäsive essentiell. Die jeweils benötigte Leistungsfähigkeit der Adhäsive ist dabei abhängig von dem verwendeten Komposit sowie von der verarbeiteten Schichtstärke. Um eine sichere Adhäsion einer Restauration an der Zahnhartsubstanz Dentin zu gewährleisten, sollte ein Adhäsiv gefunden werden, welches in klinisch relevanten (Bulk-fill-) Schichtstärken eine ausreichend hohe kompensatorisch wirkende, klebende Kraft mit sich bringt, ohne bei der Verarbeitung geringerer Schichtstärken eines Komposits negativ Einfluss auf das System Zahn – Restauration zu nehmen.

Bibliographie / References

  1. Hickel R, Kaaden C, Paschos E, Buerkle V, Garcia-Godoy F, Manhart J. Longevity of occlusally-stressed restorations in posterior primary teeth. Am J Dent 2005;18:198–211.
  2. Buonocore MG. A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. J Dent Res 1955;34:849–853.
  3. Tay FR, Pashley DH. Resin bonding to cervical sclerotic dentin: a review. J Dent 2004;32:173–196.
  4. Kohn WG, Harte JA, Malvitz DM, Collins AS, Cleveland JL, Eklund KJ. Guidelines for infection control in dental health care settings--2003. J Am Dent Assoc 2004;135:33–47.
  5. Oysaed H, Ruyter I. Water Sorption and Filler Characteristics of Composites for Use in Posterior Teeth. J Dent Res 1986;65:1315–1318.
  6. Ferracane JL. Current trends in dental composites. Crit Rev Oral Biol Med 1995;6:302–318.
  7. Sideridou ID, Achilias DS, Karabela MM. Sorption kinetics of ethanol/water solution by dimethacrylate-based dental resins and resin composites. J Biomed Mater Res 2007;81:207–218.
  8. Ilie N, Hickel R. Investigations on mechanical behaviour of dental composites. Clin Oral Investig 2009;13:427–438.
  9. Goodis HE, Marshall GWJ, White JM, Gee L, Hornberger B, Marshall SJ. Storage effects on dentin permeability and shear bond strengths. Dent Mater 1993;9:79– 84.
  10. Karabela M, Sideridou ID. Effect of the structure of silane coupling agent on sorption characteristics of solvents by dental resin-nanocomposites 2008;24:1631– 1639.
  11. Perdigao J. Dentin bonding-variables related to the clinical situation and the substrate treatment. Dent Mater 2010;26:e24–37.
  12. Marchesi G, Breschi L, Antoniolli F, Di Lenarda R, Ferracane J, Cadenaro M. Contraction stress of low-shrinkage composite materials assessed with different testing systems. Dent Mater 2010;26:947–953.
  13. Salerno M, Derchi G, Thorat S, Ceseracciu L, Ruffilli R, Barone AC. Surface morphology and mechanical properties of new-generation flowable resin composites for dental restoration. Dent Mater 2011;27:1221–1228.
  14. Tay FR, Frankenberger R, Krejci I, Bouillaguet S, Pashley DH, Carvalho RM, et al. Single-bottle adhesives behave as permeable membranes after polymerization. I. In vivo evidence. J Dent 2004;32:611–621.
  15. Moharamzadeh K, Brook IM, Scutt AM, Thornhill MH, van Noort R. Mucotoxicity of dental composite resins on a tissue-engineered human oral mucosal model. J Dent 2008;36:331–336.
  16. Roggendorf MJ, Kramer N, Appelt A, Naumann M, Frankenberger R. Marginal quality of flowable 4-mm base vs. conventionally layered resin composite. J Dent 2011;39:643–647.
  17. Giovannetti A, Goracci C, Vichi A, Chieffi N, Polimeni A, Ferrari M. Post retentive ability of a new resin composite with low stress behaviour. J Dent 2012;40:322–328.
  18. Koottathape N, Takahashi H, Iwasaki N, Kanehira M, Finger WJ. Quantitative wear and wear damage analysis of composite resins in vitro. J Mech Behav Biomed Mater 2014;29:508–516.
  19. Versluis A, Douglas WH, Sakaguchi RL. Thermal expansion coefficient of dental composites measured with strain gauges. Dent Mater 1996;12:290–294.
  20. Roulet JF. Benefits and disadvantages of tooth-coloured alternatives to amalgam. J Dent 1997;25:459–473.
  21. Geurtsen W. Substances released from dental resin composites and glass ionomer cements. Eur J Oral Sci 1998;106:687–695.
  22. Manhart J. Neues Konzept zum Ersatz von Dentin in der kompositbasierten Seitenzahnversorgung. ZWR 2010;119:118–125.
  23. Vidnes-Kopperud S, Tveit AB, Gaarden T, Sandvik L, Espelid I. Factors influencing dentists' choice of amalgam and tooth-colored restorative materials for Class II preparations in younger patients. Acta Odontol Scand 2009;67:74–79.
  24. Xu HC, Liu WY, Wang T. Measurement of thermal expansion coefficient of human teeth. Aust Dent J 1989;34:530–535.
  25. Olstad ML, Holland RI, Wandel N, Pettersen AH. Correlation between amalgam restorations and mercury concentrations in urine. J Dent Res 1987;66:1179–1182.
  26. Yassen GH, Platt JA, Hara AT. Bovine teeth as substitute for human teeth in dental research: a review of literature. J Oral Sci 2011;53:273–282.
  27. Söderholm KJ, Zigan M, Ragan M, Fischlschweiger W, Bergman M. Hydrolytic degradation of dental composites. J Dent Res 1984;63:1248–1254.
  28. Chasqueira AF, Arantes-Oliveira S, Portugal J. Effect of changes to the manufacturer application techniques on the shear bond strength of simplified dental adhesives. J Appl Biomater Funct Mater 2013:0.
  29. Frankenberger R, Garcia-Godoy F, Murray PE, Feilzer AJ, Krämer N. Risk aspects of dental restoratives: From amalgam to tooth-colored materials. World Journal of Stomatologie 2013.
  30. Czasch P, Ilie N. Dissertation – In-vitro-Untersuchung neuartiger fließfähiger Komposite (selbstadhäsiv,"bulk-fill" und niedrigschrumpfend); 2012.
  31. Sjogren P, Halling A. Survival time of Class II molar restorations in relation to patient and dental health insurance costs for treatment. Swed Dent J 2002;26:59– 66.
  32. Nakabayashi N. Adhesive bonding with 4-META. Oper Dent 1992;Suppl 5:125– 130.
  33. Frankenberger R, Kramer N, Lohbauer U, Nikolaenko SA, Reich SM. Marginal integrity: is the clinical performance of bonded restorations predictable in vitro? J Adhes Dent 2007;9 Suppl 1:107–116.
  34. Pfeifer CS, Ferracane JL, Sakaguchi RL, Braga RR. Photoinitiator content in restorative composites: influence on degree of conversion, reaction kinetics, volumetric shrinkage and polymerization stress. Am J Dent 2009;22:206–210.
  35. Krejci I, Lutz F, Sener B, Jenss J. The x-ray opacity of tooth-coloring inlay materials and composite cements. Schweiz Monatsschr Zahnmed 1991;101:299– 304.
  36. Mahmoud SH, Al-Wakeel EES. Marginal adaptation of ormocer-, silorane-, and methacrylate-based composite restorative systems bonded to dentin cavities after water storage. Quintessence Int 2011;42:e131–139.
  37. Zaruba M, Wegehaupt FJ, Attin T. Comparison between different flow application techniques: SDR vs flowable composite. J Adhes Dent 2013;15:115–121.
  38. Suyama Y, Luhrs A, Munck J de, Mine A, Poitevin A, Yamada T, et al. Potential smear layer interference with bonding of self-etching adhesives to dentin. J Adhes Dent 2013;15:317–324.
  39. Yavuz I, Tumen EC, Kaya CA, Dogan MS, Gunay A, Unal M, et al. The reliability of microleakage studies using dog and bovine primary teeth instead of human primary teeth. Eur J Paediatr Dent 2013;14:42–46.
  40. Pashley DH. Dentin: a dynamic substrate--a review. Scanning Microsc 1989;3:161–174; discussion 174–176.
  41. Bowen RL. Bonding of restorative materials to dentine: the present status in the United States. Int Dent J 1985;35:155–159.
  42. Iwaku M, Nakamichi I, Nakamura K, Horie K, Suizu S, Fusayama T. Tags penetrating dentin of a new adhesive resin. Bull Tokyo Med Dent Univ 1981;28:45–51.
  43. Burke FJ, McCaughey AD. The four generations of dentin bonding. Am J Dent 1995;8:88–92.
  44. Polydorou O, Konig A, Hellwig E, Kummerer K. Long-term release of monomers from modern dental-composite materials. Eur J Oral Sci 2009;117:68–75.
  45. Opdam NJM, Bronkhorst EM, Roeters JM, Loomans BAC. A retrospective clinical study on longevity of posterior composite and amalgam restorations. Dent Mater 2007;23:2–8.
  46. Opdam NJM, Bronkhorst EM, Loomans BAC, Huysmans MCDNJM. 12-year survival of composite vs. amalgam restorations. J Dent Res 2010;89:1063–1067.
  47. Molin M, Bergman B, Marklund SL, Schutz A, Skerfving S. The influence of dental amalgam placement on mercury, selenium, and glutathione peroxidase in man. Acta Odontol Scand 1990;48:287–295.
  48. Bowen RL, Antonucci J. Dimethacrylate Monomers of Aromatic Diethers. J Dent Res 1975;54:599–604.
  49. Bowen RL. Compatibility of Various Materials with Oral Tissues. I: The Components in Composite Restorations. J Dent Res 1979;58:1493–1503.
  50. Lutz F, Phillips RW, Roulet JF, Setcos JC. In vivo and in vitro wear of potential posterior composites. J Dent Res 1984;63:914–920.
  51. Feilzer AJ, De Gee AJ, Davidson CL. Setting stress in composite resin in relation to configuration of the restoration. J Dent Res 1987;66:1636–1639.
  52. van Meerbeek B, Inokoshi S, Braem M, Lambrechts P, Vanherle G. Morphological aspects of the resin-dentin interdiffusion zone with different dentin adhesive systems. J Dent Res 1992;71:1530–1540.
  53. Munck J de, van Landuyt K, Peumans M, Poitevin A, Lambrechts P, Braem M, et al. A critical review of the durability of adhesion to tooth tissue: methods and results. J Dent Res 2005;84:118–132.
  54. Kramer N, Lohbauer U, Frankenberger R. Restorative materials in the primary dentition of poli-caries patients. Eur Arch Paediatr Dent 2007;8:29–35.
  55. Ernst C, Canbek K, Euler T, Willershausen B. In vivo validation of the historical in vitro thermocycling temperature range for dental materials testing. Clin Oral Investig 2004;8:130–138.
  56. Kournetas N, Chakmakchi M, Kakaboura A, Rahiotis C, Geis-Gerstorfer J. Marginal and internal adaptation of Class II ormocer and hybrid resin composite restorations before and after load cycling. Clin Oral Investig 2004;8:123–129.
  57. [25] dgzmk. Leitlinie Fissurenversiegelung.
  58. Bayne SC, Thompson JY, Swift EJJ, Stamatiades P, Wilkerson M. A characterization of first-generation flowable composites. J Am Dent Assoc 1998;129:567–577.
  59. Frankenberger R. Adhäsiv-Fibel: Adhäsive Zahnmedizin -Wege zum klinischen Erfolg, ed. 2. Spitta-Abrechung. Balingen: Spitta-Verl.; 2010.
  60. American Dental Association. Revised guidelines for submission of composite resin materials for occlusal Class I and Class II restorations. Council on Dental Materials, Instruments and Equipment 1984.
  61. Manhart J. Charakterisierung direkter zahnärztlicher Füllungsmaterialien für den Seitenzahnbereich. Alternativen zum Amalgam? Quintessenz 57(5), (2006):465– 481.
  62. Burgess J, Cakir D. Comparative properties of low-shrinkage composite resins. Compend Contin Educ Dent 2010;31 Spec No 2:10–15.
  63. Stein PS, Sullivan J, Haubenreich JE, Osborne PB. Composite resin in medicine and dentistry. J Long Term Eff Med Implants 2005;15:641–654.
  64. Ruyter IE. Composites–characterization of composite filling materials: reactor response. Adv Dent Res 1988;2:122–129; discussion 129–133.
  65. Roulet J. Degradation of dental polymers. Basel, New York: Karger; 1987.
  66. Perdigao J, Lopes M. Dentin bonding–state of the art 1999. Compend Contin Educ Dent 1999;20:1151–1158, 1160–1162; quiz 1164.
  67. Soderholm KJ. Does resin based dentine bonding work? Int Dent J 1995;45:371– 381.
  68. Ito S, Tay FR, Hashimoto M, Yoshiyama M, Saito T, Brackett WW, et al. Effects of multiple coatings of two all-in-one adhesives on dentin bonding. J Adhes Dent 2005;7:133–141.
  69. Ernst C, Willershausen B. Eine aktuelle Standortbestimmung zahnärztlicher Füllungskomposite. Zahnärztliche Mitteilungen 2003;7:30–40.
  70. Retief DH, Mandras RS, Russell CM, Denys FR. Extracted human versus bovine teeth in laboratory studies. Am J Dent 1990;3:253–258.
  71. Attar N, Tam LE, McComb D. Flow, strength, stiffness and radiopacity of flowable resin composites. J Can Dent Assoc 2003;69:516–521.
  72. Hanemann T, Boehm J, Henzi P, Honnef K, Litfin K, Ritzhaupt-Kleissl E, et al. From micro to nano: properties and potential applications of micro-and nano- filled polymer ceramic composites in microsystem technology. IEE Proc Nanobiotechnol 2004;151:167–172.
  73. Gemeinsame Stellungnahme der Deutschen Gesellschaft für Zahnerhaltung und der Deutschen Gesellschaft für Zahn-, Mund-und Kieferheilkunde. 2005.
  74. Kunzelmann KH, Hickel R. Klinische Aspekte der Adhäsivtechnik mit plastischen Werkstoffen. In: Die Adhäsivtechnologie. Ein Leitfaden für Theorie und Praxis.
  75. Staehle HJ. Kinder-und Jugendzahnheilkunde: Kompendium für Studierende und Zahnärzte. Köln: Deutscher Ärzte-Verlag; 1996.
  76. Davidson C, Feilzer A. Polymerization shrinkage and polymerization shrinkage stress in polymer-based restoratives. J Dent 1997;25:435–440.
  77. Kanca J3, Suh BI. Pulse activation: reducing resin-based composite contraction stresses at the enamel cavosurface margins. Am J Dent 1999;12:107–112.
  78. Dentsply DeTrey, van Dijken J, Pallesen U. Restaurationen mit SDR so gut wie die der Kontrollgruppe -12 month [Internet].
  79. Dentsply DeTrey, Burgess J, Munoz C. SDR: kompromisslose Zuverlässigkeit auch nach drei Jahren klinisch bestätigt [Internet]. http://www.dentsply.co.uk/uploads/files/sdr_36-month-clinical-trial-results- oct12.pdf.
  80. Weinmann W, Thalacker C, Guggenberger R. Siloranes in dental composites. Dent Mater 2005;21:68–74.
  81. Pashley DH. Smear layer: overview of structure and function. Proc Finn Dent Soc 1992;88 Suppl 1:215–224.
  82. Literaturverzeichnis [129] Statement on posterior resin-based composites. ADA Council on Scientific Affairs; ADA Council on Dental Benefit Programs. J Am Dent Assoc 1998;129:1627–1628.
  83. Malhotra N, Kundabala M, Shashirashmi A. Strategies to overcome polymerization shrinkage–materials and techniques. A review. Dent Update 2010;37:115–118, 120–122, 124–125.
  84. Bogacki RE, Hunt RJ, del Aguila M, Smith WR. Survival analysis of posterior restorations using an insurance claims database. Oper Dent 2002;27:488–492.
  85. Frankenberger R, Kramer N, Petschelt A. Technique sensitivity of dentin bonding: effect of application mistakes on bond strength and marginal adaptation. Oper Dent 2000;25:324–330.
  86. Davidson CL, De Gee AJ, Feilzer A. The competition between the composite- dentin bond strength and the polymerization contraction stress. J Dent Res 1984;63:1396–1399.
  87. Kinney JH, Marshall SJ, Marshall GW. The mechanical properties of human dentin: a critical review and re-evaluation of the dental literature. Crit Rev Oral Biol Med 2003;14:13–29.
  88. Frankenberger R, Strobel WO, Taschner M, Krämer N, Petschelt A. Total Etch vs. Self-Etch -Evaluation klassischer Parameter unterschiedlicher Adhäsivsysteme. ZWR 2004;113:188–196.
  89. Ferracane JL, Greener EH. The effect of resin formulation on the degree of conversion and mechanical properties of dental restorative resins. J Biomed Mater Res 1986;20:121–131.
  90. Frankenberger R, Strobel WO, Kramer N, Lohbauer U, Winterscheidt J, Winterscheidt B, et al. Evaluation of the fatigue behavior of the resin-dentin bond with the use of different methods. J Biomed Mater Res B Appl Biomater 2003;67:712–721.
  91. Sideridou ID, Achilias DS. Elution study of unreacted Bis-GMA, TEGDMA, UDMA, and Bis-EMA from light-cured dental resins and resin composites using HPLC. J Biomed Mater Res 2005;74:617–626.
  92. Wallenhammar LM, Ortengren U, Andreasson H, Barregard L, Bjorkner B, Karlsson S, et al. Contact allergy and hand eczema in Swedish dentists. Contact Dermatitis 2000;43:192–199.
  93. Eti S, Weisman R, Hoffman R, Reidenberg MM. Slight renal effect of mercury from amalgam fillings. Pharmacol Toxicol 1995;76:47–49.
  94. Rykke M. Dental materials for posterior restorations. Endod Dent Traumatol 1992;8:139–148.
  95. Nakabayashi N, Nakamura M, Yasuda N. Hybrid layer as a dentin-bonding mechanism. J Esthet Dent 1991;3:133–138.
  96. Senawongse P, Pongprueksa P. Surface roughness of nanofill and nanohybrid resin composites after polishing and brushing. J Esthet Restor Dent 2007;19:265-273; discussion 274-275.
  97. Ilie N, Hickel R. Resin composite restorative materials. Aust Dent J 2011;56:59– 66.
  98. Cardoso MV, de Almeida Neves A, Mine A, Coutinho E, van Landuyt K, Munck J de, et al. Current aspects on bonding effectiveness and stability in adhesive dentistry. Aust Dent J 2011;56 Suppl 1:31–44.
  99. Seemann R, Pfefferkorn F, Hickel R. Behaviour of general dental practitioners in Germany regarding posterior restorations with flowable composites. Int Dent J 2011;61:252–256.
  100. Kwon T, Bagheri R, Kim YK, Kim K, Burrow MF. Cure mechanisms in materials for use in esthetic dentistry. J Investig Clin Dent 2012;3:3–16.
  101. Goncalves F, Kawano Y, Pfeifer C, Stansbury JW, Braga RR. Influence of BisGMA, TEGDMA, and BisEMA contents on viscosity, conversion, and flexural strength of experimental resins and composites. Eur J Oral Sci 2009;117:442–446.
  102. Schmidseder J. Ästhetische Zahnmedizin, ed. 2. Farbatlanten der Zahnmedizin. Stuttgart, New York, NY: Thieme; 2009, c 2009.
  103. Ferracane JL. Elution of leachable components from composites. J Oral Rehabil 1994;21:441–452.
  104. Bowen RL, Rapson J, Dickson G. Hardening Shrinkage and Hygroscopic Expansion of Composite Resins. J Dent Res 1982;61:654–658.
  105. Leinfelder KF, Bayne SC, Swift EJJr. Packable composites: overview and technical considerations. J Esthet Dent 1999;11:234–249.
  106. Garapati SN, Priyadarshini RP, Shetty D, Srikanth KV. An in vitro evaluation of diametral tensile strength and flexural strength of nanocomposite vs hybrid and minifill composites cured with different light sources (QTH vs LED). J Contemp Dent Pract 2013;14:84–89.
  107. Hagger O, Castan P. Bulk polymerization of vinyl compounds using a sulfinic acid catalyst; 1951.
  108. Bowen RL. Dental filling material comprising vinyl silane treated fused silica and a binder consisting of the reaction product of Bis phenol and glycidyl acrylate. 1962; Patent No: 3,066,112; 1962.
  109. Manhart J, Chen H, Hamm G, Hickel R. Buonocore Memorial Lecture. Review of the clinical survival of direct and indirect restorations in posterior teeth of the permanent dentition. Oper Dent 2004;29:481–508.
  110. Alshali RZ, Silikas N, Satterthwaite JD. Degree of conversion of bulk-fill compared to conventional resin-composites at two time intervals. Dent Mater 2013;29:e213–217.
  111. Ferracane JL. Resin-based composite performance: are there some things we can't predict? Dent Mater 2013;29:51–58.
  112. Mondelli RFL, Wang L, Garcia FCP, Prakki A, Mondelli J, Franco EB, et al. Evaluation of weight loss and surface roughness of compomers after simulated toothbrushing abrasion test. J Appl Oral Sci 2005;13:131–135.
  113. Lutz F, Phillips RW. A classification and evaluation of composite resin systems. J Prosthet Dent 1983;50:480–488.
  114. Espelid I, Tveit A, Erickson R, Keck S, Glasspoole E. Radiopacity of restorations and detection of secondary caries. Dental Materials 1991;7:114–117.
  115. Willems G, Lambrechts P, Braem M, Celis JP, Vanherle G. A classification of dental composites according to their morphological and mechanical characteristics. Dent Mater 1992;8:310–319.
  116. Dietschi D, Campanile G, Holz J, Meyer JM. Comparison of the color stability of ten new-generation composites: an in vitro study. Dent Mater 1994;10:353–362.
  117. Roulet J. The problems associated with substituting composite resins for amalgam: a status report on posterior composites. J Dent 1988;16:101–113.
  118. Willems G, Noack M, Inokoshi S, Lambrechts P, van Meerbeek B, Braem M, et al. Radiopacity of composites compared with human enamel and dentine. J Dent 1991;19:362–365.
  119. [136] van Meerbeek B, Braem M, Lambrechts P, Vanherle G. Morphological characterization of the interface between resin and sclerotic dentine. J Dent 1994;22:141–146.
  120. Cobb DS, MacGregor KM, Vargas MA, Denehy GE. The physical properties of packable and conventional posterior resin-based composites: a comparison. J Am Dent Assoc 2000;131:1610–1615.
  121. Kugel G, Ferrari M. The science of bonding: from first to sixth generation. J Am Dent Assoc 2000;131 Suppl:20S–25S.
  122. Habelitz S, Marshall SJ, Marshall GWJ, Balooch M. Mechanical properties of human dental enamel on the nanometre scale. Arch Oral Biol 2001;46:173–183.
  123. Puckett AD, Fitchie JG, Kirk PC, Gamblin J. Direct composite restorative materials. Dent Clin North Am 2007;51:659–675, vii.
  124. Lim B, Ferracane J, Sakaguchi R, Condon J. Reduction of polymerization contraction stress for dental composites by two-step light-activation. Dental Materials 2002;18:436–444.
  125. Ikejima I, Nomoto R, McCabe JF. Shear punch strength and flexural strength of model composites with varying filler volume fraction, particle size and silanation. Dent Mater 2003;19:206–211.
  126. Ilie N, Felten K, Trixner K, Hickel R, Kunzelmann KH. Shrinkage behavior of a resin-based composite irradiated with modern curing units. Dent Mater 2005;21:483–489.
  127. Park J, Chang J, Ferracane J, Lee IB. How should composite be layered to reduce shrinkage stress: incremental or bulk filling? Dent Mater 2008;24:1501–1505.
  128. Ilie N, Hickel R. Macro-, micro-and nano-mechanical investigations on silorane and methacrylate-based composites. Dent Mater 2009;25:810–819.
  129. Ferracane JL. Resin composite–state of the art. Dent Mater 2011;27:29–38.
  130. Ilie N, Hickel R. Investigations on a methacrylate-based flowable composite based on the SDR technology. Dent Mater 2011;27:348–355.
  131. Van Landuyt KL, Nawrot T, Geebelen B, Munck J de, Snauwaert J, Yoshihara K, et al. How much do resin-based dental materials release? A meta-analytical approach. Dent Mater 2011;27:723–747.
  132. Hellwig E. Einführung in die Zahnerhaltung, ed. 4. München: Elsevier, Urban und Fischer; 2007.
  133. Gusmão GMDAS, De Queiroz TVV, Pompeu GF, Filho PFM, da Silva CHV. The influence of storage time and pH variation on water sorption by different composite resins. Indian J Dent Res 2013;24:60–65.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten