Publikationsserver der Universitätsbibliothek Marburg

Titel:Neuroprotektive Wirkung von acyliertem und nicht-acyliertem Ghrelin in einem in vitro-Modell der Parkinson-Krankheit
Autor:Wagner, Johanna Claudia
Weitere Beteiligte: Ries, Vincent (PD Dr.)
Veröffentlicht:2015
URI:https://archiv.ub.uni-marburg.de/diss/z2015/0421
DOI: https://doi.org/10.17192/z2015.0421
URN: urn:nbn:de:hebis:04-z2015-04214
DDC: Medizin
Titel (trans.):Acylated and unacylated ghrelin confers neuroprotection to mesencephalic neurons
Publikationsdatum:2015-07-15
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Ghrelin, Ghrelin

Zusammenfassung:
Ghrelin ist ein Polypeptid, welches eine Reihe unterschiedlicher Funktionen erfüllt, wie z.B. die Regulation der Wachstumshormon-Freisetzung, die Regulation der Nahrungsaufnahme, eine prokinetische Wirkung auf den Gastrointestinaltrakt und die Beeinflussung der endokrinen Pankreasfunktion. Im Zusammenhang mit dem idiopathischen Parkinson-Syndrom (IPS) wurde festgestellt, dass Parkinson-Patienten dysregulierte postprandiale Ghrelinkonzentrationen im Blut haben. Zusätzlich konnten neuroprotektive Eigenschaften von acyliertem Ghrelin im Parkinson-Tiermodell nachgewiesen werden, die aber noch nicht detailliert erforscht sind. Ghrelin wird durch die Ghrelin-O-Acyltransferase (GOAT) von der nicht-acylierten in die acylierte Form umgewandelt. Diese Acylierung ist notwendig für die Bindung an den Ghrelinrezeptor GHS-R1a. Die Fragestellung der vorliegenden Arbeit war nun, inwiefern Ghrelin neuroprotektiv wirkt und ob dieser mögliche Effekt auf die acylierte Form beschränkt ist. Die Versuche wurden in Zellkulturen primärer, mesencephaler Neurone aus embryonalen Wistar-Ratten mit einem Gestationsalter von 15 Tagen durchgeführt. Wir führten unsere Experimente stets mit der acylierten und nicht-acylierten Ghrelinform durch. So konnten wir zeigen, dass beide Formen gegenüber einer Behandlung mit dem Neurotoxin MPP+, einem Hemmstoff des Komplexes I der mitochondrialen Atmungskette, neuroprotektiv auf dopaminerge Neurone wirken. Dabei lag das Wirkmaximum von acyliertem Ghrelin bei 0,1 nM und von der nicht-acylierten Form 10-fach höher, also bei 1 nM. Dieser Unterschied der Wirkmaxima wurde auch schon in Versuchen an Pankreaszellen festgestellt. Auch gegenüber dem Neurotoxin 3-Nitropropionsäure (3-NP), welches den Komplex II der Atmungskette hemmt, wirkten beide Ghrelinformen neuroprotektiv, wieder mit dem Wirkmaximum bei 0,1 bzw. 1 nM. Da die Neurotoxizität der 3-NP sich nicht auf dopaminerge Zellen beschränkt wie die des MPP+, untersuchten wir die Wirkung beider Ghrelinformen auf alle weiteren mesencephalen Neurone. Es zeigte sich, dass die Neuroprotektion unabhängig vom neuronalen Phänotyp war. In der Entstehung des IPS spielen eine Reihe von Pathomechanismen eine Rolle, so auch die elektrische Aktivität der dopaminergen Neurone. So führt z.B. ein massiver Kalzium- oder Kaliumeinstrom in die Zelle letztendlich zum Untergang dopaminerger Neurone. Die chronische Einnahme von Kalziumkanal-Blockern (L-Typ, Dihydropyridin-Typ) führt in einer Studie zu einer Reduktion des Erkrankungsrisikos. So stellte sich für uns die Frage, ob die neuroprotektive Eigenschaft von Ghrelin im Zusammenhang mit Ionenströmen stehen könnte. Die Hemmung des L-Typ-Kalziumkanals mit Nicardipin verhinderte die Wirkung von acyliertem und nicht-acyliertem Ghrelin in allen mesencephalen Neuronen. Aus früheren Studien ergab sich die Überlegung, dass die Wirkung von nicht-acyliertem Ghrelin auf einer Umwandlung in die acylierte Form beruht. Dazu haben wir die Wirkung beider Ghrelinformen im Zusammenhang mit dem GHS-R1a-Antagonisten [D-Lys3]-GHRP-6 untersucht. Eine Antagonisierung des Rezeptors führte zu einem Wirkverlust von acyliertem Ghrelin, nicht aber der nicht-acylierten Form. Somit liegt nahe, dass die Wirkung von nicht-acyliertem Ghrelin über einen anderen Mechanismus vermittelt wird. Dies wurde bestätigt durch Versuche mit dem GOAT-Hemmer GO-Tat-CoA, der die Wirkung von nicht-acyliertem Ghrelin nicht abschwächte. Daraus lässt sich schließen, dass die neuroprotektive Wirkung der nicht-acylierten Form nicht auf einer Umwandlung in die acylierte Form zurückzuführen war. Zusammengefasst konnten wir zeigen, dass nicht nur acyliertes, sondern auch nicht-acyliertes Ghrelin eine neuroprotektive Wirkung auf mesencephale Neurone hat. Diese Protektion ist abhängig von L-Typ-Kalziumkanälen, wird aber bei beiden Ghrelinformen über unterschiedliche Mechanismen vermittelt.

Bibliographie / References

  1. Neal D. et al. (2012): Caffeine intake, smoking, and risk of Parkinson disease in men and women. In: Am J Epidemiol 175 (11), S. 1200–1207.
  2. Nagaya, N.; Kojima, M.; Uematsu, M.; Yamagishi, M.; Hosoda, H.; Oya, H. et al. (2001a): Hemodynamic and hormonal effects of human ghrelin in healthy volunteers.
  3. Georg Thieme Verlag Stuttgart (Hg.) (2012): Leitlinien für Diagnostik und Therapie in der Neurologie. 5. überarbeitete Auflage. Stuttgart, New York, NY: Thieme.
  4. Kleinz, Matthias J.; Maguire, Janet J.; Skepper, Jeremy N.; Davenport, Anthony P. (2006): Functional and immunocytochemical evidence for a role of ghrelin and des- octanoyl ghrelin in the regulation of vascular tone in man. In: Cardiovasc Res 69 (1), S. 227–235.
  5. Tschop, M.; Weyer, C.; Tataranni, P. A.; Devanarayan, V.; Ravussin, E.; Heiman, M. L. (2001): Circulating ghrelin levels are decreased in human obesity. In: Diabetes 50 (4), S. 707–709.
  6. S. (2001): A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. In: Diabetes 50 (8), S. 1714–1719.
  7. Kohno, Daisuke; Gao, Hong-Zhi; Muroya, Shinji; Kikuyama, Sakae; Yada, Toshihiko (2003): Ghrelin directly interacts with neuropeptide-Y-containing neurons in the rat arcuate nucleus: Ca2+ signaling via protein kinase A and N-type channel-dependent mechanisms and cross-talk with leptin and orexin. In: Diabetes 52 (4), S. 948–956.
  8. Togliatto, G.; Trombetta, A.; Dentelli, P.; Baragli, A.; Rosso, A.; Granata, R. et al. (2010): Unacylated Ghrelin Rescues Endothelial Progenitor Cell Function in Individuals With Type 2 Diabetes. In: Diabetes 59 (4), S. 1016–1025.
  9. Schapira, Anthony H. V. (2008): Mitochondria in the aetiology and pathogenesis of Parkinson's disease. In: Lancet Neurol 7 (1), S. 97–109.
  10. Unger, Marcus M.; Moller, Jens C.; Mankel, Katharina; Eggert, Karla M.; Bohne, Katharina; Bodden, Maren et al. (2011): Postprandial ghrelin response is reduced in patients with Parkinson's disease and idiopathic REM sleep behaviour disorder: a peripheral biomarker for early Parkinson's disease? In: J Neurol 258 (6), S. 982–990.
  11. Hwang, Sunyoung et al. (2009): Neuroprotective effect of ghrelin in the 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease by blocking microglial activation. In: Neurotox Res 15 (4), S. 332–347.
  12. Perry, T. L.; Godin, D. V.; Hansen, S. (1982): Parkinson's disease: a disorder due to nigral glutathione deficiency? In: Neurosci Lett 33 (3), S. 305–310.
  13. Oertel, W. H.; Mugnaini, E. (1984): Immunocytochemical studies of GABAergic neurons in rat basal ganglia and their relations to other neuronal systems. In: Neurosci Lett 47 (3), S. 233–238.
  14. Gonon, F. G.; Buda, M. J. (1985): Regulation of dopamine release by impulse flow and by autoreceptors as studied by in vivo voltammetry in the rat striatum. In: Neuroscience 14 (3), S. 765–774.
  15. Publikationsliste und Publikation Poster und Abstract: 8. Deutscher Parkinson-Kongress, Würzburg, 13.-15.03.2013 Both acetylated and unacetylated ghrelin confer neuroprotection on mesencephalic neurons against various toxins J. Wagner, B. Arns, M. Unger, W.H. Oertel, V. Ries, D. Alvarez-Fischer Deutsche Gesellschaft für Neurologie, Neurowoche 2014, München, 15.-19.09.2014
  16. Liu, Li; Xu, Huamin; Jiang, Hong; Wang, Jun; Song, Ning; Xie, Junxia (2010): Ghrelin prevents 1-methyl-4-phenylpyridinium ion-induced cytotoxicity through antioxidation and NF-kappaB modulation in MES23.5 cells. In: Exp Neurol 222 (1), S. 25–29.
  17. Hirsch, Etienne C.; Hunot, Stephane; Hartmann, Andreas (2005): Neuroinflammatory processes in Parkinson's disease. In: Parkinsonism Relat Disord 11 Suppl 1, S. S9-S15.
  18. Hurley, Michael J.; Dexter, David T. (2012): Voltage-gated calcium channels and Parkinson's disease. In: Pharmacol Ther 133 (3), S. 324–333.
  19. Narayanan, V.; Scarlata, S. (2001): Membrane binding and self-association of alpha- synucleins. In: Biochemistry 40 (33), S. 9927–9934.
  20. Traebert, M.; Riediger, T.; Whitebread, S.; Scharrer, E.; Schmid, H. A. (2002): Ghrelin acts on leptin-responsive neurones in the rat arcuate nucleus. In: J Neuroendocrinol 14 (7), S. 580–586.
  21. Fernagut, Pierre-O; Diguet, Elsa; Jaber, Mohamed; Bioulac, Bernard; Tison, Francois (2002): Dopamine transporter knock-out mice are hypersensitive to 3-nitropropionic acid-induced striatal damage. In: Eur J Neurosci 15 (12), S. 2053–2056.
  22. Douhou, A.; Troadec, J. D.; Ruberg, M.; Raisman-Vozari, R.; Michel, P. P. (2001): Survival promotion of mesencephalic dopaminergic neurons by depolarizing concentrations of K+ requires concurrent inactivation of NMDA or AMPA/kainate receptors. In: J Neurochem 78 (1), S. 163–174.
  23. Koller, W. C.; Glatt, S.; Vetere-Overfield, B.; Hassanein, R. (1989): Falls and Parkinson's disease. In: Clin Neuropharmacol 12 (2), S. 98–105.
  24. Yamazaki, M.; Kobayashi, H.; Tanaka, T.; Kangawa, K.; Inoue, K.; Sakai, T. (2004): Ghrelin-induced growth hormone release from isolated rat anterior pituitary cells depends on intracellullar and extracellular Ca2+ sources. In: J Neuroendocrinol 16 (10), S. 825–831.
  25. Ji, Huifang; Hougaard, Charlotte; Herrik, Kjartan Frisch; Strøbaek, Dorte; Christophersen, Palle; Shepard, Paul D. (2009): Tuning the excitability of midbrain dopamine neurons by modulating the Ca 2+ sensitivity of SK channels. In: European Journal of Neuroscience 29 (9), S. 1883–1895.
  26. Toulorge, Damien; Guerreiro, Serge; Hirsch, Etienne C.; Michel, Patrick P. (2010): KATP channel blockade protects midbrain dopamine neurons by repressing a glia-to- neuron signaling cascade that ultimately disrupts mitochondrial calcium homeostasis.
  27. Stevanovic, Darko M.; Grefhorst, Aldo; Themmen, Axel P. N.; Popovic, Vera; Holstege, Joan; Haasdijk, Elize et al. (2014): Unacylated Ghrelin Suppresses Ghrelin- Induced Neuronal Activity in the Hypothalamus and Brainstem of Male Rats. In: PLoS ONE 9 (7), S. e102636.
  28. Liss, B.; Bruns, R.; Roeper, J. (1999): Alternative sulfonylurea receptor expression defines metabolic sensitivity of K-ATP channels in dopaminergic midbrain neurons. In: EMBO J 18 (4), S. 833–846.
  29. Ludolph, A. C.; He, F.; Spencer, P. S.; Hammerstad, J.; Sabri, M. (1991): 3- Nitropropionic acid-exogenous animal neurotoxin and possible human striatal toxin. In: Can J Neurol Sci 18 (4), S. 492–498.
  30. Ueberberg, B.; Unger, N.; Saeger, W.; Mann, K.; Petersenn, S. (2009): Expression of Ghrelin and its Receptor in Human Tissues. In: Horm Metab Res 41 (11), S. 814–821.
  31. Murata, Miho (2010): Zonisamide: a new drug for Parkinson's disease. In: Drugs Today (Barc) 46 (4), S. 251–258.
  32. Ghe, Corrado; Cassoni, Paola; Catapano, Filomena; Marrocco, Tiziana; Deghenghi, Romano; Ghigo, Ezio et al. (2002): The antiproliferative effect of synthetic peptidyl GH secretagogues in human CALU-1 lung carcinoma cells. In: Endocrinology 143 (2), S. 484–491.
  33. Mau, S. E.; Witt, M. R.; Bjerrum, O. J.; Saermark, T.; Vilhardt, H. (1995): Growth hormone releasing hexapeptide (GHRP-6) activates the inositol (1,4,5)- trisphosphate/diacylglycerol pathway in rat anterior pituitary cells. In: J Recept Signal Transduct Res 15 (1-4), S. 311–323.
  34. Sato, Takahiro; Nakamura, Yuki; Shiimura, Yuki; Ohgusu, Hideko; Kangawa, Kenji; Kojima, Masayasu (2012): Structure, regulation and function of ghrelin. In: J Biochem 151 (2), S. 119–128.
  35. Matsuda, Noriyuki; Sato, Shigeto; Shiba, Kahori; Okatsu, Kei; Saisho, Keiko; Gautier, Clement A. et al. (2010): PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. In: J Cell Biol 189 (2), S. 211–221.
  36. Nakamura, Yoichi (2002): Regulating factors for microglial activation. In: Biol Pharm Bull 25 (8), S. 945–953.
  37. Findley, L. J.; Gresty, M. A.; Halmagyi, G. M. (1981): Tremor, the cogwheel phenomenon and clonus in Parkinson's disease. In: J Neurol Neurosurg Psychiatry 44 (6), S. 534–546.
  38. Murakami, N.; Hayashida, T.; Kuroiwa, T.; Nakahara, K.; Ida, T.; Mondal, M. S. et al. (2002): Role for central ghrelin in food intake and secretion profile of stomach ghrelin in rats. In: J Endocrinol 174 (2), S. 283–288.
  39. Heath, R. B.; Jones, R.; Frayn, K. N.; Robertson, M. D. (2004): Vagal stimulation exaggerates the inhibitory ghrelin response to oral fat in humans. In: J Endocrinol 180 (2), S. 273–281.
  40. Kumar, Kishore R.; Djarmati-Westenberger, Ana; Grunewald, Anne (2011): Genetics of Parkinson's disease. In: Semin Neurol 31 (5), S. 433–440.
  41. Murer, M. G.; Raisman-Vozari, R.; Yan, Q.; Ruberg, M.; Agid, Y.; Michel, P. P. (1999): Survival factors promote BDNF protein expression in mesencephalic dopaminergic neurons. In: Neuroreport 10 (4), S. 801–805.
  42. Granata, R.; Settanni, F.; Trovato, L.; Destefanis, S.; Gallo, D.; Martinetti, M. et al. (2006): Unacylated as well as acylated ghrelin promotes cell survival and inhibit apoptosis in HIT-T15 pancreatic beta-cells. In: J Endocrinol Invest 29 (9), S. RC19-22.
  43. Houlden, Henry; Singleton, Andrew B. (2012): The genetics and neuropathology of Parkinson's disease. In: Acta Neuropathol 124 (3), S. 325–338.
  44. Riederer, P.; Sian-Hulsmann, J. (2012): The significance of neuronal lateralisation in Parkinson's disease. In: J Neural Transm 119 (8), S. 953–962.
  45. Acylated ghrelin protects hippocampal neurons in pilocarpine-induced seizures of immature rats by inhibiting cell apoptosis. In: Mol Biol Rep 40 (1), S. 51–58.
  46. Han, Xuefeng; Zhu, Yunlong; Zhao, Yufeng; Chen, Chen (2011): Ghrelin reduces voltage-gated calcium currents in GH(3) cells via cyclic GMP pathways. In: Endocrine 40 (2), S. 228–236.
  47. Dong, Juanjuan; Song, Ning; Xie, Junxia; Jiang, Hong (2009): Ghrelin antagonized 1- methyl-4-phenylpyridinium (MPP(+))-induced apoptosis in MES23.5 cells. In: J Mol Neurosci 37 (2), S. 182–189.
  48. Yano, Ryohei; Yokoyama, Hironori; Kuroiwa, Hayato; Kato, Hiroyuki; Araki, Tsutomu (2009): A novel anti-Parkinsonian agent, zonisamide, attenuates MPTP-induced neurotoxicity in mice. In: J Mol Neurosci 39 (1-2), S. 211–219.
  49. Nagatsu, T.; Mogi, M.; Ichinose, H.; Togari, A. (2000): Changes in cytokines and neurotrophins in Parkinson's disease. In: J Neural Transm Suppl (60), S. 277–290.
  50. Dexter, D. T.; Carayon, A.; Javoy-Agid, F.; Agid, Y.; Wells, F. R.; Daniel, S. E. et al. (1991): Alterations in the levels of iron, ferritin and other trace metals in Parkinson's disease and other neurodegenerative diseases affecting the basal ganglia. In: Brain 114 (Pt 4), S. 1953–1975.
  51. Goedert, Michel; Spillantini, Maria Grazia; Del Tredici, Kelly; Braak, Heiko (2012): 100 years of Lewy pathology. In: Nat Rev Neurol 9 (1), S. 13–24.
  52. Toshinai, Koji; Yamaguchi, Hideki; Sun, Yuxiang; Smith, Roy G.; Yamanaka, Akihiro; Sakurai, Takeshi et al. (2006): Des-acyl ghrelin induces food intake by a mechanism independent of the growth hormone secretagogue receptor. In: Endocrinology 147 (5), S. 2306–2314.
  53. Markey, S. P.; Johannessen, J. N.; Chiueh, C. C.; Burns, R. S.; Herkenham, M. A. (1984): Intraneuronal generation of a pyridinium metabolite may cause drug-induced parkinsonism. In: Nature 311 (5985), S. 464–467.
  54. Peterson, L. A.; Caldera, P. S.; Trevor, A.; Chiba, K.; Castagnoli, N., JR (1985): Studies on the 1-methyl-4-phenyl-2,3-dihydropyridinium species 2,3-MPDP+, the monoamine oxidase catalyzed oxidation product of the nigrostriatal toxin 1-methyl-4-phenyl-
  55. localization during oxidative stress in neurons. In: Hum Mol Genet 21 (22), S. 4888– 4903.
  56. Ritz, Beate; Ascherio, Alberto; Checkoway, Harvey; Marder, Karen S.; Nelson, Lorene M.; Rocca, Walter A. et al. (2007): Pooled analysis of tobacco use and risk of Parkinson disease. In: Arch Neurol 64 (7), S. 990–997.
  57. Acetylated and unacetylated ghrelin confer neuroprotection to mesencephalic neurons J. Wagner, F. Vulinovic, A. Grunewald, M. Unger, C. Moller, C. Klein, W. Oertel, P. Michel, D. Alvarez-Fischer, V. Ries 17th International Congress of Parkinson's Disease and Movement Disorders, Sydney, 16.-20.06.2013: Wagner, J., Arns, B., Grünewald, A., Unger, M.M., Oertel, W.H., Ries, V., Alvarez-Fischer, D.; Both acetylated and unacetylated ghrelin confer neuroprotection on mesencephalic neurons against various toxins [abstract]. Movement Disorders 2013;28 Suppl 1 :106.
  58. Hellenbrand, W.; Seidler, A.; Robra, B. P.; Vieregge, P.; Oertel, W. H.; Joerg, J. et al. (1997): Smoking and Parkinson's disease: a case-control study in Germany. In: Int J Epidemiol 26 (2), S. 328–339.
  59. tetrahydropyridine is near the Q-binding site of NADH dehydrogenase. In: Arch Biochem Biophys 259 (2), S. 645–649.
  60. Langston, J. William (2006): The Parkinson's complex: parkinsonism is just the tip of the iceberg. In: Ann Neurol 59 (4), S. 591–596.
  61. Murakami, Tetsuro; Shoji, Mikio; Imai, Yuzuru; Inoue, Haruhisa; Kawarabayashi, Takeshi; Matsubara, Etsuro et al. (2004): Pael-R is accumulated in Lewy bodies of Parkinson's disease. In: Ann Neurol 55 (3), S. 439–442.
  62. Ritz, Beate; Rhodes, Shannon L.; Qian, Lei; Schernhammer, Eva; Olsen, Jorgen H.; Friis, Soren (2010): L-type calcium channel blockers and Parkinson disease in Denmark. In: Ann Neurol 67 (5), S. 600–606.
  63. Forno, L. S.; Langston, J. W.; DeLanney, L. E.; Irwin, I.; Ricaurte, G. A. (1986): Locus ceruleus lesions and eosinophilic inclusions in MPTP-treated monkeys. In: Ann Neurol 20 (4), S. 449–455.
  64. Swerdlow, R. H.; Parks, J. K.; Miller, S. W.; Tuttle, J. B.; Trimmer, P. A.; Sheehan, J. P. et al. (1996): Origin and functional consequences of the complex I defect in Parkinson's disease. In: Ann Neurol 40 (4), S. 663–671.
  65. Garner, Amanda L.; Janda, Kim D. (2011): Shedding light on the ghrelin/GOAT metabolism saga. In: Chembiochem 12 (4), S. 523–525.
  66. Zigman, Jeffrey M.; Jones, Juli E.; Lee, Charlotte E.; Saper, Clifford B.; Elmquist, Joel K. (2006): Expression of ghrelin receptor mRNA in the rat and the mouse brain. In: J Comp Neurol 494 (3), S. 528–548.
  67. Miegueu, Pierre; St Pierre, David; Broglio, Fabio; Cianflone, Katherine (2011): Effect of desacyl ghrelin, obestatin and related peptides on triglyceride storage, metabolism and GHSR signaling in 3T3-L1 adipocytes. In: J Cell Biochem 112 (2), S. 704–714.
  68. Tilleux, Sebastien; Hermans, Emmanuel (2007): Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. In: J Neurosci Res 85 (10), S. 2059– 2070.
  69. Unger, Marcus M.; Hattemer, Katja; Moller, Jens C.; Schmittinger, Katrin; Mankel, Katharina; Eggert, Karla et al. (2010a): Real-time visualization of altered gastric motility by magnetic resonance imaging in patients with Parkinson's disease. In: Mov Disord 25 (5), S. 623–628.
  70. Liu, Yanping; Gutterman, David D. (2002): Oxidative stress and potassium channel function. In: Clin Exp Pharmacol Physiol 29 (4), S. 305–311.
  71. Michel, P. P.; Agid, Y. (1996): Chronic activation of the cyclic AMP signaling pathway promotes development and long-term survival of mesencephalic dopaminergic neurons.
  72. Michel, P. P.; Ruberg, M.; Agid, Y. (1997): Rescue of mesencephalic dopamine neurons by anticancer drug cytosine arabinoside. In: J Neurochem 69 (4), S. 1499– 1507.
  73. Ejskjaer, N.; Vestergaard, E. T.; Hellstrom, P. M.; Gormsen, L. C.; Madsbad, S.; Madsen, J. L. et al. (2009): Ghrelin receptor agonist (TZP-101) accelerates gastric emptying in adults with diabetes and symptomatic gastroparesis. In: Aliment Pharmacol Ther 29 (11), S. 1179–1187.
  74. Maker, H. S.; Weiss, C.; Silides, D. J.; Cohen, G. (1981): Coupling of dopamine oxidation (monoamine oxidase activity) to glutathione oxidation via the generation of hydrogen peroxide in rat brain homogenates. In: J Neurochem 36 (2), S. 589–593.
  75. Vyas, I.; Heikkila, R. E.; Nicklas, W. J. (1986): Studies on the neurotoxicity of 1- methyl-4-phenyl-1,2,3,6-tetrahydropyridine: inhibition of NAD-linked substrate oxidation by its metabolite, 1-methyl-4-phenylpyridinium. In: J Neurochem 46 (5), S. 1501–1507.
  76. Schapira, A. H.; Cooper, J. M.; Dexter, D.; Jenner, P.; Clark, J. B.; Marsden, C. D. (1989): Mitochondrial complex I deficiency in Parkinson's disease. In: Lancet 1 (8649), S. 1269.
  77. Conti, Bruno; Sugama, Shuei; Lucero, Jacinta; Winsky-Sommerer, Raphaelle; Wirz, Sebastian A.; Maher, Pamela et al. (2005): Uncoupling protein 2 protects dopaminergic neurons from acute 1,2,3,6-methyl-phenyl-tetrahydropyridine toxicity. In: J Neurochem 93 (2), S. 493–501.
  78. Michel, Patrick P.; Alvarez-Fischer, Daniel; Guerreiro, Serge; Hild, Audrey; Hartmann, Andreas; Hirsch, Etienne C. (2007): Role of activity-dependent mechanisms in the control of dopaminergic neuron survival. In: J Neurochem 101 (2), S. 289–297.
  79. Hettiarachchi, Nishani T.; Parker, Andrew; Dallas, Mark L.; Pennington, Kyla; Hung, Chao-Chun; Pearson, Hugh A. et al. (2009): alpha-Synuclein modulation of Ca2+ signaling in human neuroblastoma (SH-SY5Y) cells. In: J Neurochem 111 (5), S. 1192– 1201.
  80. Grace, A. A. (1988): In vivo and in vitro intracellular recordings from rat midbrain dopamine neurons. In: Ann N Y Acad Sci 537, S. 51–76.
  81. Kojima, Masayasu; Kangawa, Kenji (2010): Ghrelin: more than endogenous growth hormone secretagogue. In: Ann N Y Acad Sci 1200, S. 140–148.
  82. Sian-Hulsmann, Jeswinder; Mandel, Silvia; Youdim, Moussa B. H.; Riederer, Peter (2011): The relevance of iron in the pathogenesis of Parkinson's disease. In: J Neurochem 118 (6), S. 939–957.
  83. Wickman, K.; Clapham, D. E. (1995): Ion channel regulation by G proteins. In: Physiol Rev 75 (4), S. 865–885.
  84. Thompson, Nichola M.; Gill, Dave A. S.; Davies, Rhos; Loveridge, Nigel; Houston, Pamela A.; Robinson, Iain C. A. F.; Wells, Timothy (2004): Ghrelin and des-octanoyl ghrelin promote adipogenesis directly in vivo by a mechanism independent of the type 1a growth hormone secretagogue receptor. In: Endocrinology 145 (1), S. 234–242.
  85. Nagaya, N.; Miyatake, K.; Uematsu, M.; Oya, H.; Shimizu, W.; Hosoda, H. et al. (2001b): Hemodynamic, renal, and hormonal effects of ghrelin infusion in patients with chronic heart failure. In: J Clin Endocrinol Metab 86 (12), S. 5854–5859.
  86. Shiiya, Tomomi; Nakazato, Masamitsu; Mizuta, Masanari; Date, Yukari; Mondal, Muhtashan S.; Tanaka, Muneki et al. (2002): Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion. In: J Clin Endocrinol Metab 87 (1), S. 240–244.
  87. Shulman, Joshua M.; Jager, Philip L. de; Feany, Mel B. (2011): Parkinson's disease: genetics and pathogenesis. In: Annu Rev Pathol 6, S. 193–222.
  88. Delhanty, Patric J. D.; Neggers, Sebastian J.; van der Lely, Aart J. (2012): Mechanisms in endocrinology: Ghrelin: the differences between acyl-and des-acyl ghrelin. In: Eur J Endocrinol 167 (5), S. 601–608.
  89. Uversky, V. N.; Li, J.; Fink, A. L. (2001): Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson's disease and heavy metal exposure. In: J Biol Chem 276 (47), S. 44284–44296.
  90. Huang, Li-shar; Sun, Gang; Cobessi, David; Wang, Andy C.; Shen, John T.; Tung, Eric Y. et al. (2006): 3-nitropropionic acid is a suicide inhibitor of mitochondrial respiration that, upon oxidation by complex II, forms a covalent adduct with a catalytic base arginine in the active site of the enzyme. In: J Biol Chem 281 (9), S. 5965–5972.
  91. Salthun-Lassalle, Benedicte; Hirsch, Etienne C.; Wolfart, Jakob; Ruberg, Merle; Michel, Patrick P. (2004): Rescue of mesencephalic dopaminergic neurons in culture by low-level stimulation of voltage-gated sodium channels. In: J Neurosci 24 (26), S. 5922–5930.
  92. Fortin, Doris L.; Nemani, Venu M.; Voglmaier, Susan M.; Anthony, Malcolm D.; Ryan, Timothy A.; Edwards, Robert H. (2005): Neural activity controls the synaptic accumulation of alpha-synuclein. In: J Neurosci 25 (47), S. 10913–10921.
  93. Guzman, Jaime N.; Sanchez-Padilla, Javier; Chan, C. Savio; Surmeier, D. James (2009): Robust pacemaking in substantia nigra dopaminergic neurons. In: J Neurosci 29 (35), S. 11011–11019.
  94. Yoshikawa, T. (1993): Free radicals and their scavengers in Parkinson's disease. In: Eur Neurol 33 Suppl 1, S. 60–68.
  95. Sheline, Christian T.; Zhu, Julia; Zhang, Wendy; Shi, Chunxiao; Cai, Ai-Li (2013): Mitochondrial inhibitor models of Huntington's disease and Parkinson's disease induce zinc accumulation and are attenuated by inhibition of zinc neurotoxicity in vitro or in vivo. In: Neurodegener Dis 11 (1), S. 49–58.
  96. Kojima, M.; Hosoda, H.; Date, Y.; Nakazato, M.; Matsuo, H.; Kangawa, K. (1999): Ghrelin is a growth-hormone-releasing acylated peptide from stomach. In: Nature 402 (6762), S. 656–660.
  97. Yang, F.; Feng, L.; Zheng, F.; Johnson, S. W.; Du, J.; Shen, L. et al. (2001): GDNF acutely modulates excitability and A-type K(+) channels in midbrain dopaminergic neurons. In: Nat Neurosci 4 (11), S. 1071–1078.
  98. Liss, Birgit; Haeckel, Olga; Wildmann, Johannes; Miki, Takashi; Seino, Susumu; Roeper, Jochen (2005): K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons. In: Nat Neurosci 8 (12), S. 1742–1751.
  99. Patil, N.; Cox, D. R.; Bhat, D.; Faham, M.; Myers, R. M.; Peterson, A. S. (1995): A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. In: Nat Genet 11 (2), S. 126–129.
  100. Davey, G. P.; Tipton, K. F.; Murphy, M. P. (1992): Uptake and accumulation of 1- methyl-4-phenylpyridinium by rat liver mitochondria measured using an ion-selective electrode. In: Biochem J 288 (Pt 2), S. 439–443.
  101. Savitt, Joseph M.; Dawson, Valina L.; Dawson, Ted M. (2006): Diagnosis and treatment of Parkinson disease: molecules to medicine. In: J Clin Invest 116 (7), S. 1744–1754.
  102. Wang, Xinkun; Michaelis, Elias K. (2010): Selective neuronal vulnerability to oxidative stress in the brain. In: Front Aging Neurosci 2, S. 12.
  103. Gleichmann, Marc; Mattson, Mark P. (2011): Neuronal calcium homeostasis and dysregulation. In: Antioxid Redox Signal 14 (7), S. 1261–1273.
  104. Tai, Chun-Hwei; Yang, Ya-Chin; Pan, Ming-Kai; Huang, Chen-Syuan; Kuo, Chung- Chin (2011): Modulation of subthalamic T-type Ca(2+) channels remedies locomotor deficits in a rat model of Parkinson disease. In: J Clin Invest 121 (8), S. 3289–3305.
  105. Goldberg, Joshua A.; Guzman, Jaime N.; Estep, Chad M.; Ilijic, Ema; Kondapalli, Jyothisri; Sanchez-Padilla, Javier; Surmeier, D. James (2012): Calcium entry induces mitochondrial oxidant stress in vagal neurons at risk in Parkinson's disease. In: Nat Neurosci 15 (10), S. 1414–1421.
  106. Chiueh, C. C.; Miyake, H.; Peng, M. T. (1993): Role of dopamine autoxidation, hydroxyl radical generation, and calcium overload in underlying mechanisms involved in MPTP-induced parkinsonism. In: Adv Neurol 60, S. 251–258.
  107. Scott, R. M.; Brody, J. A.; Schwab, R. S.; Cooper, I. S. (1970): Progression of unilateral tremor and rigidity in Parkinson's disease. In: Neurology 20 (7), S. 710–714.
  108. Louis, E. D.; Klatka, L. A.; Liu, Y.; Fahn, S. (1997): Comparison of extrapyramidal features in 31 pathologically confirmed cases of diffuse Lewy body disease and 34 pathologically confirmed cases of Parkinson's disease. In: Neurology 48 (2), S. 376– 380.
  109. Hu, G.; Jousilahti, P.; Nissinen, A.; Antikainen, R.; Kivipelto, M.; Tuomilehto, J. (2006): Body mass index and the risk of Parkinson disease. In: Neurology 67 (11), S. 1955–1959.
  110. A. et al. (2007): Individual dopaminergic neurons show raised iron levels in Parkinson disease. In: Neurology 68 (21), S. 1820–1825.
  111. Marras, Connie; Lang, Anthony (2008): Invited article: changing concepts in Parkinson disease: moving beyond the decade of the brain. In: Neurology 70 (21), S. 1996–2003.
  112. Vernice; Carelli, Valerio et al. (2005): Complex I deficiency primes Bax-dependent neuronal apoptosis through mitochondrial oxidative damage. In: Proc Natl Acad Sci U S A 102 (52), S. 19126–19131.
  113. Hunot, S.; Brugg, B.; Ricard, D.; Michel, P. P.; Muriel, M. P.; Ruberg, M. et al. (1997): Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with parkinson disease. In: Proc Natl Acad Sci U S A 94 (14), S. 7531–7536.
  114. Ramsay, R. R.; Kowal, A. T.; Johnson, M. K.; Salach, J. I.; Singer, T. P. (1987): The inhibition site of MPP+, the neurotoxic bioactivation product of 1-methyl-4-phenyl-
  115. Yamada, T.; McGeer, P. L.; Baimbridge, K. G.; McGeer, E. G. (1990): Relative sparing in Parkinson's disease of substantia nigra dopamine neurons containing calbindin- D28K. In: Brain Res 526 (2), S. 303–307.
  116. Oestreicher, E.; Sengstock, G. J.; Riederer, P.; Olanow, C. W.; Dunn, A. J.; Arendash, G. W. (1994): Degeneration of nigrostriatal dopaminergic neurons increases iron within the substantia nigra: a histochemical and neurochemical study. In: Brain Res 660 (1), S. 8–18.
  117. Nicklas, W. J.; Vyas, I.; Heikkila, R. E. (1985): Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1- methyl-4-phenyl-1,2,5,6-tetrahydropyridine. In: Life Sci 36 (26), S. 2503–2508.
  118. Ramsay, R. R.; Dadgar, J.; Trevor, A.; Singer, T. P. (1986): Energy-driven uptake of N- methyl-4-phenylpyridine by brain mitochondria mediates the neurotoxicity of MPTP.
  119. Grace, A. A.; Bunney, B. S. (1983): Intracellular and extracellular electrophysiology of nigral dopaminergic neurons--2. Action potential generating mechanisms and morphological correlates. In: Neuroscience 10 (2), S. 317–331.
  120. Hosoda, H.; Kojima, M.; Matsuo, H.; Kangawa, K. (2000): Ghrelin and des-acyl ghrelin: two major forms of rat ghrelin peptide in gastrointestinal tissue. In: Biochem Biophys Res Commun 279 (3), S. 909–913.
  121. et al. (2001): Structure-activity relationship of ghrelin: pharmacological study of ghrelin peptides. In: Biochem Biophys Res Commun 287 (1), S. 142–146.
  122. Sun, Yu; Huang, Xiangui; Liu, Meiying; Cao, Junping; Chen, Jing; Wang, Hongjun et al. (2012): A new alternative NF-KappaB Pathway mediated the neuroprotection of GDNF on 6-OHDA-induced DA neurons neurotoxicity. In: Brain Res 1437, S. 38–49.
  123. Muccioli, Giampiero; Tschop, Matthias; Papotti, Mauro; Deghenghi, Romano; Heiman, Mark; Ghigo, Ezio (2002): Neuroendocrine and peripheral activities of ghrelin: implications in metabolism and obesity. In: Eur J Pharmacol 440 (2-3), S. 235–254.
  124. Moazed, Banafsheh; Quest, Dale; Gopalakrishnan, Venkat (2009): Des-acyl ghrelin fragments evoke endothelium-dependent vasodilatation of rat mesenteric vascular bed via activation of potassium channels. In: Eur J Pharmacol 604 (1-3), S. 79–86.
  125. Tansey, Malu G.; McCoy, Melissa K.; Frank-Cannon, Tamy C. (2007): Neuroinflammatory mechanisms in Parkinson's disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. In: Exp Neurol 208 (1), S. 1–25.
  126. Jiang, Hong; Li, Lin-Jing; Wang, Jun; Xie, Jun-Xia (2008): Ghrelin antagonizes MPTP- induced neurotoxicity to the dopaminergic neurons in mouse substantia nigra. In: Exp Neurol 212 (2), S. 532–537.
  127. Schapira, A. H. V. (2010): Complex I: inhibitors, inhibition and neurodegeneration. In: Exp Neurol 224 (2), S. 331–335.
  128. Damdindorj, Boldbaatar; Dezaki, Katsuya; Kurashina, Tomoyuki; Sone, Hideyuki; Rita, Rauza; Kakei, Masafumi; Yada, Toshihiko (2012): Exogenous and endogenous ghrelin counteracts GLP-1 action to stimulate cAMP signaling and insulin secretion in islet beta-cells. In: FEBS Lett 586 (16), S. 2555–2562.
  129. Date, Yukari; Murakami, Noboru; Toshinai, Koji; Matsukura, Shigeru; Niijima, Akira; Matsuo, Hisayuki et al. (2002): The role of the gastric afferent vagal nerve in ghrelin- induced feeding and growth hormone secretion in rats. In: Gastroenterology 123 (4), S. 1120–1128.
  130. Teubner, Brett J. W.; Garretson, John T.; Hwang, Yousang; Cole, Philip A.; Bartness, Timothy J. (2013): Inhibition of ghrelin O-acyltransferase attenuates food deprivation- induced increases in ingestive behavior. In: Horm Behav 63 (4), S. 667–673.
  131. Soriano-Guillen, Leandro; Barrios, Vicente; Campos-Barros, Angel; Argente, Jesus (2004): Ghrelin levels in obesity and anorexia nervosa: effect of weight reduction or recuperation. In: J Pediatr 144 (1), S. 36–42.
  132. Zeng, B-Y; Medhurst, A. D.; Jackson, M.; Rose, S.; Jenner, P. (2005): Proteasomal activity in brain differs between species and brain regions and changes with age. In: Mech Ageing Dev 126 (6-7), S. 760–766.
  133. Yang, Jing; Brown, Michael S.; Liang, Guosheng; Grishin, Nick V.; Goldstein, Joseph L. (2008): Identification of the acyltransferase that octanoylates ghrelin, an appetite- stimulating peptide hormone. In: Cell 132 (3), S. 387–396.
  134. Surmeier, D. James; Guzman, Jaime N.; Sanchez-Padilla, Javier (2010): Calcium, cellular aging, and selective neuronal vulnerability in Parkinson's disease. In: Cell Calcium 47 (2), S. 175–182.
  135. Nishino, H.; Kumazaki, M.; Fukuda, A.; Fujimoto, I.; Shimano, Y.; Hida, H. et al. (1997): Acute 3-nitropropionic acid intoxication induces striatal astrocytic cell death and dysfunction of the blood-brain barrier: involvement of dopamine toxicity. In: Neurosci Res 27 (4), S. 343–355.
  136. J. et al. (1997): Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. In: Brain Res Mol Brain Res 48 (1), S. 23–29.
  137. L.; Themmen, Axel P. N.; Hofland, Leo J. et al. (2006): Unacylated ghrelin is active on the INS-1E rat insulinoma cell line independently of the growth hormone secretagogue receptor type 1a and the corticotropin releasing factor 2 receptor. In: Mol Cell Endocrinol 251 (1-2), S. 103–111.
  138. Scerif, Miski; Goldstone, Anthony P.; Korbonits, Marta (2011): Ghrelin in obesity and endocrine diseases. In: Mol Cell Endocrinol 340 (1), S. 15–25.
  139. Katsuki, H.; Takenaka, C.; Kume, T.; Kaneko, S.; Akaike, A. (2001): Requirement of neural activity for the maintenance of dopaminergic neurons in rat midbrain slice cultures. In: Neurosci Lett 300 (3), S. 166–170.
  140. Yamazaki, Mami; Aizawa, Sayaka; Tanaka, Toru; Sakai, Takafumi; Sakata, Ichiro (2012): Ghrelin increases intracellular Ca(2)(+) concentration in the various hormone- producing cell types of the rat pituitary gland. In: Neurosci Lett 526 (1), S. 29–32.
  141. Lee, W. T.; Yin, H. S.; Shen, Y. Z. (2002): The mechanisms of neuronal death produced by mitochondrial toxin 3-nitropropionic acid: the roles of N-methyl-D-aspartate glutamate receptors and mitochondrial calcium overload. In: Neuroscience 112 (3), S. 707–716.
  142. Rhodes, K. E.; Raivich, G.; Fawcett, J. W. (2006): The injury response of oligodendrocyte precursor cells is induced by platelets, macrophages and inflammation- associated cytokines. In: Neuroscience 140 (1), S. 87–100.
  143. Muchowski, Paul J. (2002): Protein misfolding, amyloid formation, and neurodegeneration: a critical role for molecular chaperones? In: Neuron 35 (1), S. 9–12.
  144. Dauer, William; Przedborski, Serge (2003): Parkinson's disease: mechanisms and models. In: Neuron 39 (6), S. 889–909.
  145. Hardy, John; Lewis, Patrick; Revesz, Tamas; Lees, Andrew; Paisan-Ruiz, Coro (2009): The genetics of Parkinson's syndromes: a critical review. In: Current Opinion in Genetics & Development 19 (3), S. 254–265.
  146. Lozano, A. M.; Lang, A. E.; Hutchison, W. D.; Dostrovsky, J. O. (1998): New developments in understanding the etiology of Parkinson's disease and in its treatment. In: Curr Opin Neurobiol 8 (6), S. 783–790.
  147. Chu, Yaping; Kordower, Jeffrey H. (2007): Age-associated increases of alpha-synuclein in monkeys and humans are associated with nigrostriatal dopamine depletion: Is this the target for Parkinson's disease? In: Neurobiol Dis 25 (1), S. 134–149.
  148. Nath, S.; Goodwin, J.; Engelborghs, Y.; Pountney, D. L. (2011): Raised calcium promotes alpha-synuclein aggregate formation. In: Mol Cell Neurosci 46 (2), S. 516– 526.
  149. Leppik, Ilo E. (2004): Zonisamide: chemistry, mechanism of action, and pharmacokinetics. In: Seizure 13 Suppl 1, S. S5-9; discussion S10.
  150. Claudia; Charli, Jean-Louis (2002): An improved method for the expression of TRH in serum-supplemented primary cultures of fetal hypothalamic cells. In: Brain Res Brain Res Protoc 9 (2), S. 93–104.
  151. Tolosa, Eduardo; Wenning, Gregor; Poewe, Werner (2006): The diagnosis of Parkinson's disease. In: Lancet Neurol 5 (1), S. 75–86.
  152. Lau, Lonneke M. L. de; Breteler, Monique M. B. (2006): Epidemiology of Parkinson's disease. In: Lancet Neurol 5 (6), S. 525–535.
  153. Langston, J. W.; Ballard, P.; Tetrud, J. W.; Irwin, I. (1983): Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. In: Science 219 (4587), S. 979–980.
  154. Heikkila, R. E.; Hess, A.; Duvoisin, R. C. (1984): Dopaminergic neurotoxicity of 1- methyl-4-phenyl-1,2,5,6-tetrahydropyridine in mice. In: Science 224 (4656), S. 1451– 1453.
  155. Howard, A. D.; Feighner, S. D.; Cully, D. F.; Arena, J. P.; Liberator, P. A.; Rosenblum, C. I. et al. (1996): A receptor in pituitary and hypothalamus that functions in growth hormone release. In: Science 273 (5277), S. 974–977.
  156. Choi-Lundberg, D. L.; Lin, Q.; Chang, Y. N.; Chiang, Y. L.; Hay, C. M.; Mohajeri, H. et al. (1997): Dopaminergic neurons protected from degeneration by GDNF gene therapy. In: Science 275 (5301), S. 838–841.
  157. Giasson, B. I.; Duda, J. E.; Murray, I. V.; Chen, Q.; Souza, J. M.; Hurtig, H. I. et al. (2000): Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. In: Science 290 (5493), S. 985–989.
  158. Cuervo, Ana Maria; Bergamini, Ettore; Brunk, Ulf T.; Droge, Wulf; Ffrench, Martine; Terman, Alexei (2005): Autophagy and aging: the importance of maintaining "clean" cells. In: Autophagy 1 (3), S. 131–140.
  159. Mounsey, Ross B.; Teismann, Peter (2010): Mitochondrial dysfunction in Parkinson's disease: pathogenesis and neuroprotection. In: Parkinsons Dis 2011, S. 617472.
  160. Holst, Birgitte; Holliday, Nicholas D.; Bach, Anders; Elling, Christian E.; Cox, Helen M.; Schwartz, Thue W. (2004): Common structural basis for constitutive activity of the ghrelin receptor family. In: J Biol Chem 279 (51), S. 53806–53817.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten