Publikationsserver der Universitätsbibliothek Marburg

Titel:Genome Evolution of Endomicrobia: From Free-Living Bacteria to Intracellular Symbionts of Termite Gut Flagellates
Autor:Zheng, Hao
Weitere Beteiligte: Brune, Andreas (Prof. Dr.)
Veröffentlicht:2015
URI:https://archiv.ub.uni-marburg.de/diss/z2015/0409
URN: urn:nbn:de:hebis:04-z2015-04091
DOI: https://doi.org/10.17192/z2015.0409
DDC: Biowissenschaften, Biologie
Titel (trans.):Genom Evolution der Endomicrobien: Von frei lebenden Bakterien zu intrazellulären Symbionten von Flagellaten in Termitendärmen
Publikationsdatum:2015-12-16
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
endosymbiont, genome evolution, termite, termite, genome evolution, endosymbiont

Summary:
Many eukaryotes harbor intracellular bacterial symbionts that are believed to confer beneficial traits to their hosts. Several bacterial lineages in the class of Endomicrobia are frequently encountered as intracellular symbionts of termite gut flagellates. They represent a deep-branching lineage in the phylum of Elusimicrobia that comprise both endosymbiotic and putatively free-living lineages. Since the acquisition of the endosymbionts probably occurred around 40–70 million years ago, the genomes of the endosymbionts are still in an early stage of genome reduction. Therefore, genomic information on free-living members of this class would provide a perfect model to investigate the mechanisms of genome evolution that have contributed to the evolution of such a young endosymbiosis. In my dissertation, I first describe the endosymbiotic population of Endomicrobia in single flagellate hosts with highly resolved analyses. These endosymbionts are strictly vertically transmitted by their respective hosts indicating a frequent population bottleneck during transmission for Endomicrobia. Moreover, I report the isolatation of Endomicrobium proavitum, the first cultured representative of the class Endomicrobia and a close relative of “Candidatus Endomicrobium trichonymphae”, the intracellular symbionts that colonize the flagellates of the same termite species. This free-living, obligately anaerobic ultramicrobacterium has an unusual cell cycle and fixes nitrogen employing a set of nif genes (Group IV) that so far had been considered not to encode a functional nitrogenase. Its circular genome (1.59 Mbp) is substantially larger than that of “Ca. E. trichonymphae” strain Rs-D17, and many of the pathways that are disrupted by pseudogenes in the endosymbiont are intact in E. proavitum. However, during the process of symbiosis, the endosymbionts also appear to have acquired novel pathways to alter their fermentation strategy, which have apparently helped the establishment of the associations. The comparative analyses not only revealed that the genome of strain Rs-D17 shows a typical purifying selection throughout the genome independent on the gene functions but also provided evidence for massive genome rearrangements in the endosymbionts. Surprisingly, the rearrangement sites are typically flanked by restriction-modification genes that are abnormally dense in the genome of strain Rs-D17 but entirely absent from its free-living relative. This is the first case where RM systems acting as mobile genetic elements are responsible for shaping a bacterial genome in the early stages of endosymbiosis.

Bibliographie / References

  1. Zheng H, Dietrich C, Radek R, Brune A. 2015. Endomicrobium proavitum, the first isolate of Endomicrobia class. nov. (phylum Elusimicrobia) – an ultramicrobacterium with an unusual cell cycle that fixes nitrogen with a Group IV nitrogenase. Environ Microbiol. doi:10.1111/1462-2920.12960.
  2. Brune A, Dietrich C. 2015. The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annu Rev Microbiol. doi: 10.1146/annurev-micro-092412-155715.
  3. Brune A. 2014. The family Elusimicrobiaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E ,Thompson F, editors. The Prokaryotes. Berlin: Springer, pp. 637–640. Chapter 6
  4. Yan ST, Zheng H, Li A, Zhang X, Xing XH, Chu LB, Ding GJ, Sun XL, Jurcik B. 2009. Systematic analysis of biochemical performance and the microbial community of an activated sludge process using ozone-treated sludge for sludge reduction. Bioresource Technol. 100: 5002–5009.
  5. Feng Q, Wang YX, Wang TM, Zheng H, Chu LB, Zhang C, Chen HZ, Kong XQ, Xing XH. 2012. Effects of packing rates of cubic-shaped polyurethane foam carriers on the microbial community and the removal of organics and nitrogen in moving bed biofilm reactors. Bioresource Technol. 117: 201–207.
  6. Liu Z, Lv FX, Zheng H, Zhang C, Wei F, Xing XH. 2012. Enhanced hydrogen production in a UASB reactor by retaining microbial consortium onto carbon nanotubes (CNTs). Int J Hydrogen Energ. 37: 10619–10626.
  7. Mira A, Ochman H, Moran NA. 2001. Deletional bias and the evolution of bacterial genomes. Trends Genet. 17:589–596.
  8. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods. 10:563–569.
  9. McCutcheon JP, Moran NA. 2012. Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol. 10:13–26.
  10. Bennett GM, Moran NA. 2015. Heritable symbiosis: The advantages and perils of an evolutionary rabbit hole. Proc Natl Acad Sci U S A. 112:10169–10176.
  11. Ohkuma M, Noda S, Hattori S, Iida T, Yuki M, Starns D, Inoue J, Darby AC, Hongoh Y. 2015. Acetogenesis from H 2 plus CO 2 and nitrogen fixation by an endosymbiotic spirochete of a termite-gut cellulolytic protist. Proc Natl Acad Sci U S A. 112:10224–10230.
  12. Burke GR, Moran NA. 2011. Massive genomic decay in Serratia symbiotica, a recently evolved symbiont of aphids. Genome Biol Evol. 3:195–208.
  13. Raymond J, Siefert JL, Staples CR, Blankenship RE. 2004. The natural history of nitrogen fixation. Mol Biol Evol. 21:541–554.
  14. Asakura Y, Kojima H, Kobayashi I. 2011. Evolutionary genome engineering using a restriction-modification system. Nucleic Acids Res. 39:9034–9046.
  15. Ikeda-Ohtsubo W, Brune A. 2009. Cospeciation of termite gut flagellates and their bacterial endosymbionts: Trichonympha species and 'Candidatus Endomicrobium trichonymphae'. Mol Ecol. 18:332–342. General Discussion 157
  16. Ikeda-Ohtsubo W, Faivre N, Brune A. 2010. Putatively free-living 'Endomicrobia' – ancestors of the intracellular symbionts of termite gut flagellates? Environ Microbiol Rep. 2:554–559.
  17. Moran NA, McCutcheon JP, Nakabachi A. 2008. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet. 42:165–190.
  18. Katz SM, Hashemi S, Brown KR, Habib WA, Hammel JM. 1984. Pleomorphism of Legionella pneumophila. Ultrastruct Pathol. 6:117–129.
  19. Hosokawa T, Kikuchi Y, Nikoh N, Shimada M, Fukatsu T. 2006. Strict host- symbiont cospeciation and reductive genome evolution in insect gut bacteria.
  20. Clayton AL, Oakeson KF, Gutin M, Pontes A, Dunn DM, von Niederhausern AC, Weiss RB, Fisher M, Dale C. 2012. A novel human-infection-derived bacterium provides insights into the evolutionary origins of mutualistic insect- bacterial symbioses. PLoS Genet. 8:e1002990.
  21. Dual Degree: Master of Engineering Tsinghua University, Beijing Aug. 2005 – Aug. 2009 Bachelor of Engineering Publications Zheng H, Dietrich C, Hongoh Y, Brune A. 2015. Restriction-modification systems as mobile genetic elements in the evolution of an intracellular symbiont. Mol Biol Evol. Doi:10.1093/molbev/msv264.
  22. Place of birth Changchun, Jilin, China Marital status Married Nationality Chinese Education Max Planck Institute for Terrestrial Microbiology Oct. 2012 – present Doctoral studies Tokyo Institute of Technology and Tsinghua University Aug. 2009 – Aug. 2012
  23. Curriculum Vitae Name Hao Zheng Date of birth 15 th Feb. 1985
  24. Brune A. 2012. Endomicrobia: intracellular symbionts of termite gut flagellates. J Endocytobiosis Cell Res. 23:11–15.
  25. Hongoh Y, Sharma VK, Prakash T, Noda S, Toh H, Taylor TD, Kudo T, Sakaki Y, Toyoda A, Hattori M, et al. 2008b. Genome of an endosymbiont coupling N 2 fixation to cellulolysis within protist cells in termite gut. Science. 322:1108– 1109.
  26. Manzano-Marín A, Latorre A. 2014. Settling down: the genome of Serratia symbiotica from the aphid Cinara tujafilina zooms in on the process of accommodation to a cooperative intracellular life. Genome Biol Evol. 6:1683– 1698.
  27. Ohkuma M, Sato T, Noda S, Ui S, Kudo T, Hongoh Y. 2007. The candidate phylum 'Termite Group 1' of bacteria: phylogenetic diversity, distribution, and endosymbiont members of various gut flagellated protists. FEMS Microbiol Ecol. 60:467–476.
  28. Zheng H, Bodington D, Zhang C, Tanji Y, Miyanaga K, Hongoh Y, Xing XH. 2013. Comprehensive phylogenetic diversity of [FeFe]-hydrogenase genes in termite gut microbiota. Microbes Environ. 28: 491– 494.
  29. Dufresne A, Salanoubat M, Partensky F, Artiguenave F, Axmann IM, Barbe V, Duprat S, Galperin MY, Koonin EV, Le Gall F, et al. 2003. Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proc Natl Acad Sci U S A. 100:10020– 10025.
  30. Hongoh Y, Sharma VK, Prakash T, Noda S, Taylor TD, Kudo T, Sakaki Y, Toyoda A, Hattori M, Ohkuma M. 2008a. Complete genome of the uncultured Termite Group 1 bacteria in a single host protist cell. Proc Natl Acad Sci U S A. 105:5555–5560.
  31. Koga R, Meng XY, Tsuchida T, Fukatsu T. 2012. Cellular mechanism for selective vertical transmission of an obligate insect symbiont at the bacteriocyte-embryo interface. Proc Natl Acad Sci U S A. 109:E1230–E1237.
  32. Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, et al. 2011. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. 9:467-477.
  33. Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science. 339:819–823.
  34. Oakeson KF, Gil R, Clayton AL, Dunn DM, von Niederhausern AC, Hamil C, Aoyagi A, Duval B, Baca A, Silva FJ, et al. 2014. Genome degeneration and adaptation in a nascent stage of symbiosis. Genome BiolEvol. 6:76–93.
  35. Koga R, Moran NA. 2014. Swapping symbionts in spittlebugs: evolutionary replacement of a reduced genome symbiont. ISME J. 8:1237–1246.
  36. Zheng H, Dietrich C, Thompson CL, Brune A. 2015. Population structure of Endomicrobia in single host cells of termite gut flagellates (Trichonympha spp.). Microbes Environ. 30:92–98.
  37. Zheng H, Brune A. 2015. Complete genome sequence of Endomicrobium proavitum, a free-living relative of the intracellular symbionts of termite gut flagellates (phylum Elusimicrobia).
  38. Zheng H, Zhang C, Lu Y, Jiang PX, Xing XH. 2012. Alteration of anaerobic metabolism in Escherichia coli for enhanced hydrogen production by heterologous expression of hydrogenase genes originating from the Synechocystis sp.. Biochem Eng J. 60: 81–86.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten