Publikationsserver der Universitätsbibliothek Marburg

Titel:On the mechanism of electron bifurcation by electron transferring flavoprotein and butyryl-CoA dehydrogenase
Autor:Chowdhury, Nilanjan Pal
Weitere Beteiligte: Buckel, Wolfgang (Prof.)
Veröffentlicht:2014
URI:https://archiv.ub.uni-marburg.de/diss/z2015/0345
URN: urn:nbn:de:hebis:04-z2015-03459
DOI: https://doi.org/10.17192/z2015.0345
DDC: Biowissenschaften, Biologie
Titel (trans.):Der Mechanismus der Elektronen-Bifurkation durch das Elektronen-Transferring Flavoprotein und Butyryl-CoA Dehydrogenase
Publikationsdatum:2015-06-15
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Electron Bifurcation, Energy conservation, Proteine, Elektron, Bakterien

Summary:
Flavin-based electron bifurcation (FBEB), discovered in 2008, is a novel mode of energy coupling in anaerobic bacteria and archaea. The complex of electron-transferring flavoprotein and butyryl-CoA dehydrogenase (Etf/Bcd) mediates the reduction of crotonyl-CoA (E0′=10 mV) by NADH (E0′= 320 mV) only in presence of ferredoxin (E0′= 420 mV). During electron bifurcation, the two electrons from NADH find their destination in two different directions; one goes exergonicllay to crotonyl-CoA and the other moves endergonically to ferredoxin. Repetition of this process yields butyryl-CoA and a second reduced ferredoxin. The latter reduces either protons to give hydrogen via a soluble hydrogenase or NAD+ via the membrane-bound ferredoxin-NAD+ reductase (Rnf). The thereby formed electrochemical Na+-gradient is used for ATP synthesis. In this thesis, I have studied the dissociable Etf/Bcd complex from Acidaminococcus fermentans. The crystal structure of the heterodimeric Etf revealed the presence two FAD molecules, each bound to one subunit. NAD+ binds near the FAD of the smaller β-subunit (-FAD). Upon stepwise addition of NADH to Etf, first the FAD of the α-subunit (α-FAD) was reduced to FADH via the stable anionic semiquinone (α-FAD•). The second equivalent NADH reduced -FAD.In the presence of Bcd, reduction to α-FAD• required a whole equivalent of NADH. During the bifurcation process, stepwise addition of Etf to Bcd increased the rate of NADH oxidation until a molar ratio of Etf:Bcd (tetramer) = 2 was reached. The non-dissociable clostridial Bcd/Etf complexes have the same composition. The optimal ratio of ferredoxin: Etf: tetrameric Bcd in the presence of hydrogenase was 4:2:1, suggesting that under steady state conditions ferredoxin shuttles between the semireduced (Fd─) and completely reduced states (Fd2─). Our postulated mechanism of electron bifurcation starts with the reduction of -FAD by NADH to FADH. Then α-FAD, which is located on a flexible domain, approaches and takes one electron to yield the stabilized semiquinone α-FAD•. The remaining highly reactive electron on -FADH• is not stabilized and immediately reduces ferredoxin. The α-FAD• transfers its electron further to Bcd. After repetition of the bifurcation, a second reduced ferredoxin is formed and Bcd gets a second electron to reduce crotonyl-CoA. FurtherI illustrate that the brownish ferredoxin can be replaced by the bright yellow flavodoxin in the bifurcation process. The colorless hydroquinone of flavodoxin (E0′= 420 mV) can be reoxidized by NAD+ via Rnf to its blue semiquinone form (E0′= 60 mV) and thus shuttles between the semiquinone and hydroquinone forms. I also investigated the very similar bifurcating Etf/Bcd complex from Megasphaera elsdenii. In older studies, an apparent reduction of crotonyl-CoA by NADH was achieved without the need of ferredoxin. I found that under aerobic conditions oxygen fulfilled the need of ferredoxin and was reduced to hydrogen peroxide (H2O2). The up to 50% inhibition of the rate of NADH oxidation by superoxide dismutase suggested that the slow reduction of oxygen to superoxide (O2•) was followed by a fast reduction of O2• to H2O2. Interestingly, the same rates of NADH oxidation were observed by replacing crotonyl-CoA with butyryl-CoA. We propose an oxidation of butyryl-CoA by oxygen followed by the bifurcating reduction of crotonyl-CoA by NADH. Hence, under air and in the presence of catalytic amounts of crotonyl-CoA or butyryl-CoA, Etf/Bcd acts as NADH oxidase

Bibliographie / References

  1. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature. 227, 680-685.
  2. Kaneko, M. & Ishimoto, M. (1977) Effect of nitrate reduction on metabolic products and growth of Propionibacterium acidi-propionici, Zeitschrift fur allgemeine Mikrobiologie. 17, 211-20.
  3. Hasan, M. & Hall, J. B. (1977) Dissimilatory nitrate reduction in Clostridium tertium, Zeitschrift fur allgemeine Mikrobiologie. 17, 501-6.
  4. Wohlfarth, G. & Buckel, W. (1985) A sodium ion gradient as energy source for Peptostreptococcus asaccharolyticus, Arch Microbiol. 142, 128-135.
  5. Beattie, P., Tan, K., Bourne, R. M., Leach, D., Rich, P. R. & Ward, F. B. (1994) Cloning and sequencing of four structural genes for the Na(+)-translocating NADH-ubiquinone oxidoreductase of Vibrio alginolyticus, FEBS letters. 356, 333-8.
  6. Duee, E. D., Fanchon, E., Vicat, J., Sieker, L. C., Meyer, J. & Moulis, J. M. (1994) Refined crystal structure of the 2[4Fe-4S] ferredoxin from Clostridium acidurici at 1.84 A resolution, Journal of molecular biology. 243, 683-95.
  7. Pace, C. P. & Stankovich, M. T. (1987) Redox properties of electron-transferring flavoprotein from Megasphaera elsdenii, Biochim Biophys Acta. 911, 267-76.
  8. Baldwin, R. L. & Milligan, L. P. (1964) Electron Transport in Peptostreptococcus Elsdenii, Biochim Biophys Acta. 92, 421-432.
  9. Riebe, O., Fischer, R. J. & Bahl, H. (2007) Desulfoferrodoxin of Clostridium acetobutylicum functions as a superoxide reductase, FEBS letters. 581, 5605-10.
  10. Djordjevic, S., Pace, C. P., Stankovich, M. T. & Kim, J. J. (1995) Three-dimensional structure of butyryl-CoA dehydrogenase from Megasphaera elsdenii, Biochemistry. 34, 2163-71. References 71
  11. Olson, S. T. & Massey, V. (1979) Purification and properties of the flavoenzyme D-lactate dehydrogenase from Megasphaera elsdenii, Biochemistry. 18, 4714-24.
  12. Roberts, D. L., Salazar, D., Fulmer, J. P., Frerman, F. E. & Kim, J. J. (1999) Crystal structure of Paracoccus denitrificans electron transfer flavoprotein: structural and electrostatic analysis of a conserved flavin binding domain, Biochemistry. 38, 1977-89.
  13. Sato, K., Nishina, Y. & Shiga, K. (2003) Purification of electron-transferring flavoprotein from Megasphaera elsdenii and binding of additional FAD with an unusual absorption spectrum, J Biochem. 134, 719-729.
  14. Sato, K., Nishina, Y. & Shiga, K. (2013) Interaction between NADH and electron-transferring flavoprotein from Megasphaera elsdenii, J Biochem. 153, 565-72.
  15. Sato, K., Nishina, Y. & Shiga, K. (2013) Decomposition of the Fluorescence Spectra of Two FAD Molecules in Electron-Transferring Flavoprotein from Megasphaera elsdenii, J Biochem. References 72
  16. Hasan, S. M. & Hall, J. B. (1975) The physiological function of nitrate reduction in Clostridium perfringens, Journal of general microbiology. 87, 120-8.
  17. Marchandin, H., Teyssier, C., Campos, J., Jean-Pierre, H., Roger, F., Gay, B., Carlier, J. P. & Jumas- Bilak, E. (2010) Negativicoccus succinicivorans gen. nov., sp. nov., isolated from human clinical samples, emended description of the family Veillonellaceae and description of Negativicutes classis nov., Selenomonadales ord. nov. and Acidaminococcaceae fam. nov. in the bacterial phylum Firmicutes, Int J Syst Evol Microbiol. 60, 1271-1279.
  18. Garrity, G. (2001) Bergey's manual of systematic bacteriology, Berlin Heidelberg New York: Springer. 2nd edition.
  19. Herrmann, G., Jayamani, E., Mai, G. & Buckel, W. (2008) Energy conservation via electron- transferring flavoprotein in anaerobic bacteria, J Bacteriol. 190, 784-791.
  20. Buckel, W. (2001) Unusual enzymes involved in five pathways of glutamate fermentation, Applied microbiology and biotechnology. 57, 263-73.
  21. Ruzicka, F. J. & Beinert, H. (1977) A new iron-sulfur flavoprotein of the respiratory chain. A component of the fatty acid beta oxidation pathway, The Journal of biological chemistry. 252, 8440-5.
  22. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal Biochem. 72, 248-54.
  23. Biegel, E. & Müller, V. (2010) Bacterial Na + -translocating ferredoxin:NAD +
  24. O'Neill, H., Mayhew, S. G. & Butler, G. (1998) Cloning and analysis of the genes for a novel electron-transferring flavoprotein from Megasphaera elsdenii. Expression and characterization of the recombinant protein, The Journal of biological chemistry. 273, 21015-24.
  25. Prabhu, R., Altman, E. & Eiteman, M. A. (2012) Lactate and acrylate metabolism by Megasphaera elsdenii under batch and steady-state conditions, Applied and environmental microbiology. 78, 8564-70.
  26. Hashizume, K., Tsukahara, T., Yamada, K., Koyama, H. & Ushida, K. (2003) Megasphaera elsdenii JCM1772T normalizes hyperlactate production in the large intestine of fructooligosaccharide-fed rats by stimulating butyrate production, J Nutr. 133, 3187-90.
  27. Crane, F. L. & Beinert, H. (1956) On the mechanism of dehydrogenation of fatty acyl derivatives of coenzyme A. II. The electron-transferring flavoprotein, The Journal of biological chemistry. 218, 717-31.
  28. Ikeda, Y. & Tanaka, K. (1983) Purification and characterization of isovaleryl coenzyme A dehydrogenase from rat liver mitochondria, The Journal of biological chemistry. 258, 1077-85.
  29. Whitfield, C. D. & Mayhew, S. G. (1974) Purification and properties of electron-transferring flavoprotein from Peptostreptococcus elsdenii, J Biol Chem. 249, 2801-10.
  30. Buckel, W. & Semmler, R. (1983) Purification, characterisation and reconstitution of glutaconyl- CoA decarboxylase, a biotin-dependent sodium pump from anaerobic bacteria, European journal of biochemistry / FEBS. 136, 427-34.
  31. Hillmann, F., Riebe, O., Fischer, R. J., Mot, A., Caranto, J. D., Kurtz, D. M., Jr. & Bahl, H. (2009) Reductive dioxygen scavenging by flavo-diiron proteins of Clostridium acetobutylicum, FEBS letters. 583, 241-5.
  32. Hartel, U. & Buckel, W. (1996) Sodium ion-dependent hydrogen production in Acidaminococcus fermentans, Archives of microbiology. 166, 350-6.
  33. Boiangiu, C. D., Jayamani, E., Brügel, D., Herrmann, G., Kim, J., Forzi, L., Hedderich, R., Vgenopoulou, I., Pierik, A. J., Steuber, J. & Buckel, W. (2005) Sodium ion pumps and hydrogen production in glutamate fermenting anaerobic bacteria, J Mol Microbiol Biotechnol. 10, 105-119.
  34. Bertini, I., Donaire, A., Feinberg, B. A., Luchinat, C., Piccioli, M. & Yuan, H. (1995) Solution structure of the oxidized 2[4Fe-4S] ferredoxin from Clostridium pasteurianum, European journal of biochemistry / FEBS. 232, 192-205.
  35. Stickland, L. H. (1935) Studies in the metabolism of the strict anaerobes (Genus Clostridium): The reduction of proline by Cl. sporogenes, The Biochemical journal. 29, 288-90.
  36. Muir Wood, P. (1974) The redox potential of the system oxygen--superoxide, FEBS Lett. 44, 22-4.
  37. translocating ferredoxin oxidation, Biochim Biophys Acta. 1827, 94-113. References References 70
  38. Riebe, O., Fischer, R. J., Wampler, D. A., Kurtz, D. M., Jr. & Bahl, H. (2009) Pathway for H2O2 and O2 detoxification in Clostridium acetobutylicum, Microbiology. 155, 16-24.
  39. Ishimoto, M., Umeyama, M. & Chiba, S. (1974) Alteration of fermentation products from butyrate to acetate by nitrate reduction in Clostridium perfringens, Zeitschrift fur allgemeine Mikrobiologie. 14, 115- 21.
  40. Ghisla, S. & Mayhew, S. G. (1976) Identification and properties of 8-hydroxyflavin--adenine dinucleotide in electron-transferring flavoprotein from Peptostreptococcus elsdenii, European journal of biochemistry / FEBS. 63, 373-90.
  41. Hetzel, M., Brock, M., Selmer, T., Pierik, A. J., Golding, B. T. & Buckel, W. (2003) Acryloyl-CoA reductase from Clostridium propionicum. An enzyme complex of propionyl-CoA dehydrogenase and electron-transferring flavoprotein, Eur J Biochem. 270, 902-10.
  42. Barker, H. A. (1981) Amino acid degradation by anaerobic bacteria, Annual review of biochemistry. 50, 23-40.
  43. Ziegenhorn, J., Senn, M. & Bücher, T. (1976) Molar absorptivities of beta-NADH and beta-NADPH, Clin Chem. 22, 151-160.
  44. Chen, D. & Swenson, R. P. (1994) Cloning, sequence analysis, and expression of the genes encoding the two subunits of the methylotrophic bacterium W3A1 electron transfer flavoprotein, The Journal of biological chemistry. 269, 32120-30.
  45. Thauer, R. K., Kaster, A. K., Seedorf, H., Buckel, W. & Hedderich, R. (2008) Methanogenic archaea: ecologically relevant differences in energy conservation, Nat Rev Microbiol. 6, 579-91. oxidoreductase, Proc Natl Acad Sci U S A. 107, 18138-18142.
  46. Fillat, M. F., Borrias, W. E. & Weisbeek, P. J. (1991) Isolation and overexpression in Escherichia coli of the flavodoxin gene from Anabaena PCC 7119, The Biochemical journal. 280 ( Pt 1), 187-91.
  47. Husain, M. & Steenkamp, D. J. (1983) Electron transfer flavoprotein from pig liver mitochondria. A simple purification and re-evaluation of some of the molecular properties, Biochem J. 209, 541-5.
  48. Lehmann, Y., Meile, L. & Teuber, M. (1996) Rubrerythrin from Clostridium perfringens: cloning of the gene, purification of the protein, and characterization of its superoxide dismutase function, Journal of bacteriology. 178, 7152-8.
  49. Imkamp, F., Biegel, E., Jayamani, E., Buckel, W. & Müller, V. (2007) Dissection of the caffeate respiratory chain in the acetogen Acetobacterium woodii: identification of an Rnf-type NADH dehydrogenase as a potential coupling site, J Bacteriol. 189, 8145-8153.
  50. Li, F., Hinderberger, J., Seedorf, H., Zhang, J., Buckel, W. & Thauer, R. K. (2008) Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri, J Bacteriol. 190, 843-50.
  51. Brockman, H. L. & Wood, W. A. (1975) Electron-transferring flavoprotein of Peptostreptococcus elsdenii that functions in the reduction of acrylyl-coenzyme A, Journal of bacteriology. 124, 1447-53.
  52. Brockman, H. L. & Wood, W. A. (1975) D-Lactate dehydrogenase of Peptostreptococcus elsdenii, Journal of bacteriology. 124, 1454-61.
  53. Buckel, W. & Barker, H. A. (1974) Two pathways of glutamate fermentation by anaerobic bacteria, Journal of bacteriology. 117, 1248-60.
  54. Marx, H., Graf, A. B., Tatto, N. E., Thallinger, G. G., Mattanovich, D. & Sauer, M. (2011) Genome sequence of the ruminal bacterium Megasphaera elsdenii, Journal of bacteriology. 193, 5578-9.
  55. Bertsch, J., Parthasarathy, A., Buckel, W. & Müller, V. (2013) An electron-bifurcating caffeyl-CoA reductase, J Biol Chem. 288, 11304-11.
  56. Jackins, H. C. & Barker, H. A. (1951) Fermentative processes of the fusiform bacteria, Journal of bacteriology. 61, 101-14.
  57. Thauer, R. K., Jungermann, K. & Decker, K. (1977) Energy conservation in chemotrophic anaerobic bacteria, Bacteriological reviews. 41, 100-80.
  58. Roberts, D. L., Frerman, F. E. & Kim, J. J. (1996) Three-dimensional structure of human electron transfer flavoprotein to 2.1-A resolution, Proc Natl Acad Sci U S A. 93, 14355-60.
  59. Lehman, T. C., Hale, D. E., Bhala, A. & Thorpe, C. (1990) An acyl-coenzyme A dehydrogenase assay utilizing the ferricenium ion, Anal Biochem. 186, 280-284.
  60. Buckel, W. & Semmler, R. (1982) A biotin-dependent sodium pump: glutaconyl-CoA decarboxylase from Acidaminococcus fermentans, FEBS letters. 148, 35-8.
  61. Baldwin, R. L., Wood, W. A. & Emery, R. S. (1965) Lactate Metabolism by Peptostreptococcus Elsdenii: Evidence for Lactyl Coenzyme a Dehydrase, Biochimica et biophysica acta. 97, 202-13.
  62. Buckel, W. & Thauer, R. K. (2013) Energy conservation via electron bifurcating ferredoxin reduction and proton/Na + 21. Buckel, W. (1980) Analysis of the fermentation pathways of clostridia using double labelled glutamade, Archives of microbiology. 127, 167-9.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten