Publikationsserver der Universitätsbibliothek Marburg

Titel:Charakterisierung neuer Zielgene im Pankreaskarzinom
Autor:Krattenmacher, Anja
Weitere Beteiligte: Buchholz, Malte (PD Dr.)
Veröffentlicht:2015
URI:https://archiv.ub.uni-marburg.de/diss/z2015/0268
DOI: https://doi.org/10.17192/z2015.0268
URN: urn:nbn:de:hebis:04-z2015-02685
DDC: Naturwissenschaften
Titel (trans.):Characterization of novel targetgenes in pancreatic cancer
Publikationsdatum:2015-12-16
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Bauchspeicheldrüsenkrebs, pancreatic cancer, SMC2, SMC2, USP5, USP5

Zusammenfassung:
Das duktale Adenokarzinom des Pankreas ist eine der tödlichsten und am schwersten behandelbaren Krebserkrankungen in der westlichen Welt. Durch die begrenzten diagnostischen Möglichkeiten und die wenigen wirksamen Medikamente, ist die Behandlung nur in seltenen Fällen erfolgreich. Ein shRNA-Screen wurde durchgeführt, um neue Kandidatengene mit einer hohen biologischen Relevanz im duktalen Adenokarzinom des Pankreas zu identifizieren. Die ermittelten Gene wurden auf eine einfache Therapierbarkeit mit kleinen, inhibitorischen Molekülen selektioniert. Die bisher, in Bezug auf Tumorentwicklung und Tumorverlauf unbekannten Proteine USP5 und SMC2, konnten als neue Kandidatengene identifiziert und im Rahmen dieser Arbeit, genauer auf ihre Funktionen im Pankreaskarzinom untersucht werden. Für die Untersuchungen wurde die Expression der Gene in primären Geweben und verschiedenen Tumorzelllinien mittels qRT-PCR quantifiziert. Nach transientem Knockdown mit unabhängigen siRNAs, wurden funktionelle Untersuchungen auf die Zellviabilität, Migrationsverhalten der Zellen und Proliferation durchgeführt. Ebenso wurden zelluläre Vorgänge, wie der Zellzyklus genauer betrachtet. Um die involvierten Signalkaskaden individuell aufzuklären wurden verschiedene Westernblots durchgeführt. Lentiviral stabil transduzierte shRNA-Klone wurde generiert, um in vivo Daten im Xenograft Mausmodell zu erheben. Beide Gene zeigten eine signifikante Überexpression in humanen PDAC Geweben. Der Knockdown führte in beiden Fällen zu einer Reduktion der Viabilität und Proliferation sowie zur Induktion der Apoptose. In dieser Arbeit konnte gezeigt werden, dass SMC2 ein weiterer Modulator des WNT-Signalweges ist und durch WNT5A reguliert wird. USP5 hingegen, reguliert die Ubiquitinierung und führt zur Stabilisation von p27/CDKN1B in TP53 mutierten Pankreaskarzinomzellen. Auf der Basis bereits veröffentlichten Studien und den hier ermittelten Daten kann man schlussfolgern, dass die neuen Zielgene SMC2 und USP5 wichtige Rollen im Wachstum und Überleben von Pankreaskarzinomzellen spielen. Beide Gene bieten optimale Bedingungen für die Entwicklung neuer Therapieansätze durch kleine, inhibitorsche Moleküle im Kampf gegen den Tumor.

Bibliographie / References

  1. LAEMMLI, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-5.
  2. KIM, D. H., BEHLKE, M. A., ROSE, S. D., CHANG, M. S., CHOI, S. & ROSSI, J. J. 2005. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol, 23, 222-6.
  3. IOZZO, R. V., EICHSTETTER, I. & DANIELSON, K. G. 1995. Aberrant expression of the growth factor Wnt-5A in human malignancy. Cancer Res, 55, 3495-9.
  4. KAPURIA, V., PETERSON, L. F., FANG, D., BORNMANN, W. G., TALPAZ, M. & DONATO, N. J. 2010. Deubiquitinase inhibition by small-molecule WP1130 triggers aggresome formation and tumor cell apoptosis. Cancer Res, 70, 9265-76.
  5. LOGAN, C. Y. & NUSSE, R. 2004. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol, 20, 781-810.
  6. The PUMILIO-RNA interaction: a single RNA-binding domain monomer recognizes a bipartite target sequence. Biochemistry, 38, 596-604.
  7. KHVOROVA, A., REYNOLDS, A. & JAYASENA, S. D. 2003. Functional siRNAs and miRNAs exhibit strand bias. Cell, 115, 209-16.
  8. SCHUMACHER, G., KATAOKA, M., ROTH, J. A. & MUKHOPADHYAY, T. 1999. Potent antitumor activity of 2-methoxyestradiol in human pancreatic cancer cell lines. Clin Cancer Res, 5, 493-9.
  9. SAVILLE, M. K., SPARKS, A., XIRODIMAS, D. P., WARDROP, J., STEVENSON, L. F., BOURDON, J. C., WOODS, Y. L. & LANE, D. P. 2004. Regulation of p53 by the ubiquitin-conjugating enzymes UbcH5B/C in vivo. J Biol Chem, 279, 42169-81.
  10. WANG, Q., JIANG, H., PING, C., SHEN, R., LIU, T., LI, J., QIAN, Y., TANG, Y., CHENG, S., YAO, W. & WANG, L. 2014a. Exploring the Wnt Pathway- Associated LncRNAs and Genes Involved in Pancreatic Carcinogenesis Driven by Tp53 Mutation. Pharm Res.
  11. LAMMENS, A., SCHELE, A. & HOPFNER, K. P. 2004. Structural biochemistry of ATP-driven dimerization and DNA-stimulated activation of SMC ATPases. Curr Biol, 14, 1778-82.
  12. SCHLEIFFER, A., KAITNA, S., MAURER-STROH, S., GLOTZER, M., NASMYTH, K. & EISENHABER, F. 2003. Kleisins: a superfamily of bacterial and eukaryotic SMC protein partners. Mol Cell, 11, 571-5.
  13. REAL, F. X., CIBRIAN-UHALTE, E. & MARTINELLI, P. 2008. Pancreatic cancer development and progression: remodeling the model. Gastroenterology, 135, 724-8.
  14. TSANG, C. K. & ZHENG, X. F. 2009. Opposing role of condensin and radiation- sensitive gene RAD52 in ribosomal DNA stability regulation. J Biol Chem, 284, 21908-19.
  15. SEUFFERLEIN, T., BACHET, J. B., VAN CUTSEM, E., ROUGIER, P. & GROUP, E. G. W. 2012. Pancreatic adenocarcinoma: ESMO-ESDO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol, 23 Suppl 7, vii33-40.
  16. MALVEZZI, M., BERTUCCIO, P., LEVI, F., LA VECCHIA, C. & NEGRI, E. 2013. European cancer mortality predictions for the year 2013. Ann Oncol, 24, 792-800.
  17. YANAGISAWA, K., KOSAKA, A., IWAHANA, H., NAKANISHI, M. & TOMINAGA, S. 1999. Opposite regulation of the expression of cyclin- dependent kinase inhibitors during contact inhibition. J Biochem, 125, 36- 40.
  18. TUSCHL, T., ZAMORE, P. D., LEHMANN, R., BARTEL, D. P. & SHARP, P. A. 1999. Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev, 13, 3191-7.
  19. MONTAGNOLI, A., FIORE, F., EYTAN, E., CARRANO, A. C., DRAETTA, G. F., HERSHKO, A. & PAGANO, M. 1999. Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation. Genes Dev, 13, 1181-9.
  20. LOSADA, A. & HIRANO, T. 2005. Dynamic molecular linkers of the genome: the first decade of SMC proteins. Genes Dev, 19, 1269-87.
  21. NEESSE, A., MICHL, P., FRESE, K. K., FEIG, C., COOK, N., JACOBETZ, M. A., LOLKEMA, M. P., BUCHHOLZ, M., OLIVE, K. P., GRESS, T. M. & TUVESON, D. A. 2011. Stromal biology and therapy in pancreatic cancer. Gut, 60, 861-8.
  22. MICHL, P. & GRESS, T. M. 2013. Current concepts and novel targets in advanced pancreatic cancer. Gut, 62, 317-26.
  23. ZHENG, C., JIA, W., TANG, Y., ZHAO, H., JIANG, Y. & SUN, S. 2012. Mesothelin regulates growth and apoptosis in pancreatic cancer cells through p53-dependent and -independent signal pathway. J Exp Clin Cancer Res, 31, 84.
  24. LOHR, M., MAISONNEUVE, P. & LOWENFELS, A. B. 2000. K-Ras mutations and benign pancreatic disease. Int J Pancreatol, 27, 93-103.
  25. LEVY, L. & HILL, C. S. 2005. Smad4 dependency defines two classes of transforming growth factor {beta} (TGF-{beta}) target genes and distinguishes TGF-{beta}-induced epithelial-mesenchymal transition from its antiproliferative and migratory responses. Mol Cell Biol, 25, 8108-25.
  26. MEISTER, G., LANDTHALER, M., PATKANIOWSKA, A., DORSETT, Y., TENG, G. & TUSCHL, T. 2004. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell, 15, 185-97.
  27. LIANG, H., CHEN, Q., COLES, A. H., ANDERSON, S. J., PIHAN, G., BRADLEY, A., GERSTEIN, R., JURECIC, R. & JONES, S. N. 2003. Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue. Cancer Cell, 4, 349-60.
  28. SONG, J. J., SMITH, S. K., HANNON, G. J. & JOSHUA-TOR, L. 2004. Crystal structure of Argonaute and its implications for RISC slicer activity. Science, 305, 1434-7.
  29. LIU, J., CARMELL, M. A., RIVAS, F. V., MARSDEN, C. G., THOMSON, J. M., SONG, J. J., HAMMOND, S. M., JOSHUA-TOR, L. & HANNON, G. J. 2004. Argonaute2 is the catalytic engine of mammalian RNAi. Science, 305, 1437-41.
  30. SCHWARZ, D. S., HUTVAGNER, G., DU, T., XU, Z., ARONIN, N. & ZAMORE, P. D. 2003. Asymmetry in the assembly of the RNAi enzyme complex. Cell, 115, 199-208.
  31. IWAMURA, T., KATSUKI, T. & IDE, K. 1987. Establishment and characterization of a human pancreatic cancer cell line (SUIT-2) producing carcinoembryonic antigen and carbohydrate antigen 19-9. Jpn J Cancer Res, 78, 54-62.
  32. SCARLETT, C. J., SALISBURY, E. L., BIANKIN, A. V. & KENCH, J. 2011. Precursor lesions in pancreatic cancer: morphological and molecular pathology. Pathology, 43, 183-200.
  33. M. 1986. Characterization of a new primary human pancreatic tumor line. Cancer Invest, 4, 15-23.
  34. MILAS, L., HIRATA, H., HUNTER, N. & PETERS, L. J. 1988. Effect of radiation- induced injury of tumor bed stroma on metastatic spread of murine sarcomas and carcinomas. Cancer Res, 48, 2116-20.
  35. MOORE, P. S., SIPOS, B., ORLANDINI, S., SORIO, C., REAL, F. X., LEMOINE, N. R., GRESS, T., BASSI, C., KLOPPEL, G., KALTHOFF, H., UNGEFROREN, H., LOHR, M. & SCARPA, A. 2001. Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4. Virchows Arch, 439, 798-802.
  36. RANA, T. M. 2007. Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol, 8, 23-36.
  37. ROCHA LIMA, C. M., GREEN, M. R., ROTCHE, R., MILLER, W. H., JR., JEFFREY, G. M., CISAR, L. A., MORGANTI, A., ORLANDO, N., GRUIA, G. & MILLER, L. L. 2004. Irinotecan plus gemcitabine results in no survival advantage compared with gemcitabine monotherapy in patients with locally advanced or metastatic pancreatic cancer despite increased tumor response rate. J Clin Oncol, 22, 3776-83.
  38. MEISTER, G. & TUSCHL, T. 2004. Mechanisms of gene silencing by double- stranded RNA. Nature, 431, 343-9.
  39. VILA, M. R., LLORETA, J., SCHUSSLER, M. H., BERROZPE, G., WELT, S. & REAL, F. X. 1995. New pancreas cancers cell lines that represent distinct stages of ductal differentiation. Lab Invest, 72, 395-404.
  40. NIESS, H., CAMAJ, P., RENNER, A., ISCHENKO, I., ZHAO, Y., KREBS, S., MYSLIWIETZ, J., JACKEL, C., NELSON, P. J., BLUM, H., JAUCH, K. W., ELLWART, J. W. & BRUNS, C. J. 2014. Side population cells of infusion) compared with gemcitabine (30-minute infusion) in patients with pancreatic carcinoma E6201: a trial of the Eastern Cooperative Oncology Group. J Clin Oncol, 27, 3778-85.
  41. SLUPPHAUG, G., KAVLI, B. & KROKAN, H. E. 2003. The interacting pathways for prevention and repair of oxidative DNA damage. Mutat Res, 531, 231- 51.
  42. MELBY, T. E., CIAMPAGLIO, C. N., BRISCOE, G. & ERICKSON, H. P. 1998. The symmetrical structure of structural maintenance of chromosomes (SMC) and MukB proteins: long, antiparallel coiled coils, folded at a flexible hinge. J Cell Biol, 142, 1595-604.
  43. WILKINSON, K. D., VENTII, K. H., FRIEDRICH, K. L. & MULLALLY, J. E. 2005. The ubiquitin signal: assembly, recognition and termination. Symposium on ubiquitin and signaling. EMBO Rep, 6, 815-20.
  44. POTU, H., PETERSON, L. F., PAL, A., VERHAEGEN, M., CAO, J., TALPAZ, M. & DONATO, N. J. 2014. Usp5 links suppression of p53 and FAS levels in melanoma to the BRAF pathway. Oncotarget, 5, 5559-69.
  45. LEJEUNE, S., HUGUET, E. L., HAMBY, A., POULSOM, R. & HARRIS, A. L. 1995. Wnt5a cloning, expression, and up-regulation in human primary breast cancers. Clin Cancer Res, 1, 215-22.
  46. LI, D., XIE, K., WOLFF, R. & ABBRUZZESE, J. L. 2004. Pancreatic cancer. Lancet, 363, 1049-57.
  47. LIEBER, M., MAZZETTA, J., NELSON-REES, W., KAPLAN, M. & TODARO, G. 1975. Establishment of a continuous tumor-cell line (panc-1) from a human carcinoma of the exocrine pancreas. Int J Cancer, 15, 741-7.
  48. STRICK, T. R., KAWAGUCHI, T. & HIRANO, T. 2004. Real-time detection of single-molecule DNA compaction by condensin I. Curr Biol, 14, 874-80.
  49. SIOLAS, D., LERNER, C., BURCHARD, J., GE, W., LINSLEY, P. S., PADDISON, P. J., HANNON, G. J. & CLEARY, M. A. 2005. Synthetic shRNAs as potent RNAi triggers. Nat Biotechnol, 23, 227-31.
  50. VONLAUFEN, A., JOSHI, S., QU, C., PHILLIPS, P. A., XU, Z., PARKER, N. R., TOI, C. S., PIROLA, R. C., WILSON, J. S., GOLDSTEIN, D. & APTE, M. V. 2008. Pancreatic stellate cells: partners in crime with pancreatic cancer cells. Cancer Res, 68, 2085-93.
  51. WU, N. & YU, H. 2012. The Smc complexes in DNA damage response. Cell Biosci, 2, 5.
  52. RAASI, S., VARADAN, R., FUSHMAN, D. & PICKART, C. M. 2005. Diverse polyubiquitin interaction properties of ubiquitin-associated domains. Nat Struct Mol Biol, 12, 708-14.
  53. XU, Z., POTHULA, S. P., WILSON, J. S. & APTE, M. V. 2014. Pancreatic cancer and its stroma: a conspiracy theory. World J Gastroenterol, 20, 11216-29.
  54. REYES-TURCU, F. E., SHANKS, J. R., KOMANDER, D. & WILKINSON, K. D. 2008. Recognition of polyubiquitin isoforms by the multiple ubiquitin binding modules of isopeptidase T. J Biol Chem, 283, 19581-92.
  55. Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res, 68, 918-26.
  56. WOOD, J. L., LIANG, Y., LI, K. & CHEN, J. 2008. Microcephalin/MCPH1 associates with the Condensin II complex to function in homologous recombination repair. J Biol Chem, 283, 29586-92.
  57. SCHLABACH, M. R., LUO, J., SOLIMINI, N. L., HU, G., XU, Q., LI, M. Z., ZHAO, Z., SMOGORZEWSKA, A., SOWA, M. E., ANG, X. L., WESTBROOK, T. F., LIANG, A. C., CHANG, K., HACKETT, J. A., HARPER, J. W., HANNON, G. J. & ELLEDGE, S. J. 2008. Cancer proliferation gene discovery through functional genomics. Science, 319, 620-4.
  58. KONG, X., STEPHENS, J., BALL, A. R., JR., HEALE, J. T., NEWKIRK, D. A., BERNS, M. W. & YOKOMORI, K. 2011. Condensin I recruitment to base damage-enriched DNA lesions is modulated by PARP1. PLoS One, 6, e23548.
  59. WONG, G. T., GAVIN, B. J. & MCMAHON, A. P. 1994. Differential transformation of mammary epithelial cells by Wnt genes. Mol Cell Biol, 14, 6278-86.
  60. NAKAJIMA, S., LAN, L., WEI, L., HSIEH, C. L., RAPIC-OTRIN, V., YASUI, A. & LEVINE, A. S. 2014. Ubiquitin-specific protease 5 is required for the efficient repair of DNA double-strand breaks. PLoS One, 9, e84899.
  61. STOMMEL, J. M. & WAHL, G. M. 2004. Accelerated MDM2 auto-degradation induced by DNA-damage kinases is required for p53 activation. EMBO J, 23, 1547-56.
  62. WANG, S., KOLLIPARA, R. K., SRIVASTAVA, N., LI, R., RAVINDRANATHAN, P., HERNANDEZ, E., FREEMAN, E., HUMPHRIES, C. G., KAPUR, P., LOTAN, Y., FAZLI, L., GLEAVE, M. E., PLYMATE, S. R., RAJ, G. V., HSIEH, J. T. & KITTLER, R. 2014b. Ablation of the oncogenic transcription factor ERG by deubiquitinase inhibition in prostate cancer. Proc Natl Acad Sci U S A, 111, 4251-6.
  63. REAL, F. X. 2003. A "catastrophic hypothesis" for pancreas cancer progression. Gastroenterology, 124, 1958-64.
  64. Literaturverzeichnis 85 WEERARATNA, A. T., JIANG, Y., HOSTETTER, G., ROSENBLATT, K., DURAY, P., BITTNER, M. & TRENT, J. M. 2002. Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell, 1, 279-88.
  65. KIMURA, K., HIRANO, M., KOBAYASHI, R. & HIRANO, T. 1998. Phosphorylation and activation of 13S condensin by Cdc2 in vitro. Science, 282, 487-90.
  66. SAITOH, T. & KATOH, M. 2002. Expression and regulation of WNT5A and WNT5B in human cancer: up-regulation of WNT5A by TNFalpha in MKN45 cells and up-regulation of WNT5B by beta-estradiol in MCF-7 cells. Int J Mol Med, 10, 345-9.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten