Publikationsserver der Universitätsbibliothek Marburg

Titel:Die molekulare Pharmakologie der Kv1-Ionenkanalfamilie - systematische Analyse und Charakterisierung der Modulation durch Psora-4 und Arachidonsäure
Autor:Marzian, Stefanie
Weitere Beteiligte: Decher, Niels (Prof. Dr.)
Veröffentlicht:2015
URI:https://archiv.ub.uni-marburg.de/diss/z2015/0256
URN: urn:nbn:de:hebis:04-z2015-02562
DOI: https://doi.org/10.17192/z2015.0256
DDC:610 Medizin
Titel (trans.):Molecular pharmacology of Kv1 channels - systematic analysis and characterisation of modulation by Psora-4 and arachidonic acid
Publikationsdatum:2015-11-30
Lizenz:https://creativecommons.org/licenses/by-nc-sa/4.0

Dokument

Schlagwörter:
Arachidonsäure, Kv1.5, arachidonic acid, Psora-4, Psora-4, Ionenkanal, Kaliumkanal, Elektrophysiologie, Kv1.5

Zusammenfassung:
Die klassische Medikamenten-Bindungsstelle für kleine, hydrophobe Inhibitoren in spannungsgesteuerten Ionenkanälen befindet sich in der hochkonservierten zentralen Kavität. Überraschenderweise unterscheidet der Inhibitor Psora-4 zwischen verschiedenen Subtypen der spannungsgesteuerten Kalium-Kanäle (Kv-Kanäle) und blockiert selektiv Kv1-Ionenkanäle. In der hier vorliegenden Arbeit wurde mittels zielgerichteter Mutagenese, Alanin-Scans, Dockings, molekulardynamischen Simulationen sowie „inside-out macropatch“-Experimenten gezeigt, dass Psora-4 in der hochkonservierten Bindungsstelle in der zentralen Kavität bindet. Zusätzlich bindet Psora-4 in vier weniger konservierten hydrophoben Seitentaschen, die sich auf der „Rückseite“ der porenformenden S5- und S6-Segmente einer Untereinheit und dem Spannungssensor S4 und dem S4-S5-Linker der benachbarten Untereinheit befinden. Das gleichzeitige Binden an beiden Bindungsstellen führt zur Bildung eines stabilen, nicht-leitenden Inhibitor-Ionenkanal-Komplexes. Diese Studie zeigt einen neuen Blockmechanismus, der die hohe Affinität, die Kooperativität, das benötigte Öffnen und Schließen des Ionenkanals (“use dependence“) und die Selektivität für Kv1-Ionenkanäle erklärt. Die neu identifizierte, weniger konservierte Bindungsstelle in den hydrophoben Seitentaschen stellt die molekulare Basis für die Entwicklung spezifischer Kv-Kanal-Blocker dar. Die Inaktivierungsrate der Kv-Kanäle ist ein entscheidender Faktor zur Frequenzmodulation in Neuronen. Mehrfach ungesättige Fettsäuren (Polyunsaturated fatty acids: PUFAs) modulieren die Kinetik von Kv-Kanälen und beeinflussen so die neuronale und kardiale Erregungsweiterleitung. Diese Studie zeigt, dass PUFAs an der Bindungsstelle in der zentralen Kavität binden und so die Passage von Ionen verhindern. Außerdem ergibt ein systematischer Alanin-Scan, der 132 Aminosäuren im S3-S4-Linker, S4-Segment, S4-S5-Linker, S5-Segment, den Porenschleifen und dem S6-Segment umfasst, ein deutlich erweitertes Bild der Interaktion zwischen PUFAs und Kv-Kanälen. Diese Studie zeigt, dass zusätzlich zur Blockade der zentralen Pore auch die Porenschleifen, die hydrophoben Seitentaschen, die lateralen Fenster und der Spannungssensor an der Modulation der Kinetik der PUFA-Inhibition beteiligt sind.

Bibliographie / References

  1. Stefani E, Bezanilla F (1998) Cut-open oocyte voltage-clamp technique. Methods Enzymol 293: 300-318
  2. Nau C, Wang GK (2004) Interactions of local anesthetics with voltage-gated Na+ channels. J Membr Biol 201: 1-8
  3. Kirsch GE, Shieh CC, Drewe JA, Vener DF, Brown AM (1993) Segmental exchanges define 4-aminopyridine binding and the inner mouth of K+ pores. Neuron 11: 503-512
  4. Ruta V, Chen J, MacKinnon R (2005) Calibrated measurement of gating-charge arginine displacement in the KvAP voltage-dependent K+ channel. Cell 123: 463-475
  5. Xu XP, Erichsen D, Börjesson SI, Dahlin M, Amark P, Elinder F (2008) Polyunsaturated fatty acids and cerebrospinal fluid from children on the ketogenic diet open a voltage- gated K channel: a putative mechanism of antiseizure action. Epilepsy Res 80: 57-66
  6. Soler-Llavina GJ, Chang TH, Swartz KJ (2006) Functional interactions at the interface between voltage-sensing and pore domains in the Shaker K(v) channel. Neuron 52: 623-634
  7. Xiao Y, Li X (1999) Polyunsaturated fatty acids modify mouse hippocampal neuronal excitability during excitotoxic or convulsant stimulation. Brain Res 846: 112-121
  8. Striessnig J, Grabner M, Mitterdorfer J, Hering S, Sinnegger MJ, Glossmann H (1998) Structural basis of drug binding to L Ca2+ channels. Trends Pharmacol Sci 19: 108-115
  9. Swartz KJ, MacKinnon R (1997a) Hanatoxin modifies the gating of a voltage-dependent K+ channel through multiple binding sites. Neuron 18: 665-673
  10. Swartz KJ, MacKinnon R (1997b) Mapping the receptor site for hanatoxin, a gating modifier of voltage-dependent K+ channels. Neuron 18: 675-682
  11. Phillips LR, Milescu M, Li-Smerin Y, Mindell JA, Kim JI, Swartz KJ (2005) Voltage-sensor activation with a tarantula toxin as cargo. Nature 436: 857-860
  12. Schmidt D, Jiang QX, MacKinnon R (2006) Phospholipids and the origin of cationic gating charges in voltage sensors. Nature 444: 775-779
  13. Nau C, Wang SY, Strichartz GR, Wang GK (2000) Block of human heart hH1 sodium channels by the enantiomers of bupivacaine. Anesthesiology 93: 1022-1033
  14. Kotelko DM, Shnider SM, Dailey PA, Brizgys RV, Levinson G, Shapiro WA, Koike M, Rosen MA (1984) Bupivacaine-induced cardiac arrhythmias in sheep. Anesthesiology 60: 10-18
  15. Marquez MF, Salica G, Hermosillo AG, Pastelin G, Gomez-Flores J, Nava S, Cardenas M (2007) Ionic basis of pharmacological therapy in Brugada syndrome. J Cardiovasc Electrophysiol 18: 234-240
  16. Hansen RS, Diness TG, Christ T, Wettwer E, Ravens U, Olesen SP, Grunnet M (2006) Biophysical characterization of the new human ether-a-go-go-related gene channel opener NS3623 [N-(4-bromo-2-(1H-tetrazol-5-yl)-phenyl)-N'-(3'- trifluoromethylphenyl)urea]. Mol Pharmacol 70: 1319-1329
  17. Eldstrom J, Wang Z, Xu H, Pourrier M, Ezrin A, Gibson K, Fedida D (2007) The molecular basis of high-affinity binding of the antiarrhythmic compound vernakalant (RSD1235) to Kv1.5 channels. Mol Pharmacol 72: 1522-1534
  18. Zimin PI, Garic B, Bodendiek SB, Mahieux C, Wulff H, Zhorov BS (2010) Potassium channel block by a tripartite complex of two cationophilic ligands and a potassium ion.
  19. Gonzalez T, Navarro-Polanco R, Arias C, Caballero R, Moreno I, Delpon E, Tamargo J, Tamkun MM, Valenzuela C (2002b) Assembly with the Kvbeta1.3 subunit modulates drug block of hKv1.5 channels. Mol Pharmacol 62: 1456-1463
  20. Oliver D, Lien CC, Soom M, Baukrowitz T, Jonas P, Fakler B (2004) Functional conversion between A-type and delayed rectifier K+ channels by membrane lipids. Science 304: 265-270
  21. Marom S, Goldstein SA, Kupper J, Levitan IB (1993) Mechanism and modulation of inactivation of the Kv3 potassium channel. Receptors Channels 1: 81-88
  22. Franqueza L, Longobardo M, Vicente J, Delpon E, Tamkun MM, Tamargo J, Snyders DJ, Valenzuela C (1997) Molecular determinants of stereoselective bupivacaine block of hKv1.5 channels. Circ Res 81: 1053-1064
  23. Snyders DJ, Yeola SW (1995) Determinants of antiarrhythmic drug action. Electrostatic and hydrophobic components of block of the human cardiac hKv1.5 channel. Circ Res 77: 575-583
  24. Scott DB, Lee A, Fagan D, Bowler GM, Bloomfield P, Lundh R (1989) Acute toxicity of ropivacaine compared with that of bupivacaine. Anesth Analg 69: 563-569
  25. Marzian S, Stansfeld PJ, Abbruzzese J, Sansom MS, Sanguinetti MC, Decher N (2012) A Novel Binding site and Blocking Mechanism Determines the Molecular Basis for Ion Channel Drug Specificity. 91 st annual meeting der Deutschen Physiologischen Gesellschaft Weitere eigene Publikation:
  26. Schmitz A, Sankaranarayanan A, Azam P, Schmidt-Lassen K, Homerick D, Hänsel W, Wulff H (2005) Design of PAP-1, a selective small molecule Kv1.3 blocker, for the suppression of effector memory T cells in autoimmune diseases. Mol Pharmacol 68: 1254-1270
  27. Eigene Publikationen Die in dieser Dissertation beschriebenen Ergebnisse sind Bestandteil der folgenden Publikationen:
  28. Rettig J, Heinemann SH, Wunder F, Lorra C, Parcej DN, Dolly JO, Pongs O (1994) Inactivation properties of voltage-gated K+ channels altered by presence of beta- subunit. Nature 369: 289-294
  29. Valiyaveetil FI, Zhou Y, MacKinnon R (2002) Lipids in the structure, folding, and function of the KcsA K+ channel. Biochemistry 41: 10771-10777
  30. MacKinnon R, Yellen G (1990) Mutations affecting TEA blockade and ion permeation in voltage-activated K+ channels. Science 250: 276-279
  31. Yu W, Xu J, Li M (1996) NAB domain is essential for the subunit assembly of both alpha-alpha and alpha-beta complexes of shaker-like potassium channels. Neuron 16: 441-453
  32. Popot JL, Changeux JP (1984) Nicotinic receptor of acetylcholine: structure of an oligomeric integral membrane protein. Physiol Rev 64: 1162-1239
  33. Zhou J, Augelli-Szafran CE, Bradley JA, Chen X, Koci BJ, Volberg WA, Sun Z, Cordes JS (2005) Novel potent human ether-a-go-go-related gene (hERG) potassium channel enhancers and their in vitro antiarrhythmic activity. Mol Pharmacol 68: 876-884
  34. Farooqui AA, Horrocks LA (2006) Phospholipase A2-generated lipid mediators in the brain: the good, the bad, and the ugly. Neuroscientist 12: 245-260
  35. Noda M, Shimizu S, Tanabe T, Takai T, Kayano T, Ikeda T, Takahashi H, Nakayama H, Kanaoka Y, Minamino N, et al. (1984) Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312: 121-127
  36. Schwid SR, Petrie MD, McDermott MP, Tierney DS, Mason DH, Goodman AD (1997) Quantitative assessment of sustained-release 4-aminopyridine for symptomatic treatment of multiple sclerosis. Neurology 48: 817-821
  37. Potter PJ, Hayes KC, Segal JL, Hsieh JT, Brunnemann SR, Delaney GA, Tierney DS, Mason D (1998) Randomized double-blind crossover trial of fampridine-SR (sustained release 4-aminopyridine) in patients with incomplete spinal cord injury. J Neurotrauma 15: 837-849
  38. Zagotta WN, Hoshi T, Aldrich RW (1990) Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science 250: 568-571
  39. Wang Z, Fermini B, Nattel S (1993) Sustained depolarization-induced outward current in human atrial myocytes. Evidence for a novel delayed rectifier K+ current similar to Kv1.5 cloned channel currents. Circ Res 73: 1061-1076
  40. Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) The crystal structure of a voltage- gated sodium channel. Nature 475: 353-358
  41. Seoh SA, Sigg D, Papazian DM, Bezanilla F (1996) Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron 16:1159-67
  42. Salata JJ, Jurkiewicz NK, Wang J, Evans BE, Orme HT, Sanguinetti MC (1998) A novel benzodiazepine that activates cardiac slow delayed rectifier K+ currents. Mol Pharmacol 54: 220-230
  43. Hockerman GH, Dilmac N, Scheuer T, Catterall WA (2000) Molecular determinants of diltiazem block in domains IIIS6 and IVS6 of L-type Ca(2+) channels. Mol Pharmacol 58: 1264-1270
  44. Kang J, Chen XL, Wang H, Ji J, Cheng H, Incardona J, Reynolds W, Viviani F, Tabart M, Rampe D (2005) Discovery of a small molecule activator of the human ether-a-go-go- related gene (HERG) cardiac K+ channel. Mol Pharmacol 67: 827-836
  45. Moreno-Galindo EG, Barrio-Echavarría GF, Vásquez JC, Decher N, Sachse FB, Tristani- Firouzi M, Sánchez-Chapula JA, Navarro-Polanco RA (2010) Molecular basis for a high- potency open-channel block of Kv1.5 channel by the endocannabinoid anandamide.
  46. Hanner M, Green B, Gao YD, Schmalhofer WA, Matyskiela M, Durand DJ, Felix JP, Linde AR, Bordallo C, Kaczorowski GJ, Kohler M, Garcia ML (2001) Binding of correolide to the K(v)1.3 potassium channel: characterization of the binding domain by site-directed mutagenesis. Biochemistry 40: 11687-11697
  47. Wei A, Covarrubias M, Butler A, Baker K, Pak M, Salkoff L (1990) K+ current diversity is produced by an extended gene family conserved in Drosophila and mouse. Science 248: 599-603
  48. Hoshi T, Zagotta WN, Aldrich RW (1990) Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250: 533-538
  49. Mitterdorfer J, Wang Z, Sinnegger MJ, Hering S, Striessnig J, Grabner M, Glossmann H (1996) Two amino acid residues in the IIIS5 segment of L-type calcium channels differentially contribute to 1,4-dihydropyridine sensitivity. J Biol Chem 271: 30330- 30335
  50. Isacoff EY, Jan YN, Jan LY (1990) Evidence for the formation of heteromultimeric potassium channels in Xenopus oocytes. Nature 345: 530-534
  51. Yool AJ, Schwarz TL (1991) Alteration of ionic selectivity of a K+ channel by mutation of the H5 region. Nature 349: 700-704
  52. Tombola F, Pathak MM, Gorostiza P, Isacoff EY (2007) The twisted ion-permeation pathway of a resting voltage-sensing domain. Nature 445: 546-549
  53. Heinemann SH, Rettig J, Graack HR, Pongs O (1996) Functional characterization of Kv channel beta-subunits from rat brain. J Physiol 493 ( Pt 3): 625-633
  54. Huber I, Wappl E, Herzog A, Mitterdorfer J, Glossmann H, Langer T, Striessnig J (2000) Conserved Ca2+-antagonist-binding properties and putative folding structure of a recombinant high-affinity dihydropyridine-binding domain. Biochem J 347 Pt 3: 829- 836
  55. Valenzuela C, Delpon E, Tamkun MM, Tamargo J, Snyders DJ (1995) Stereoselective block of a human cardiac potassium channel (Kv1.5) by bupivacaine enantiomers. Biophys J 69: 418-427
  56. Yellen G, Sodickson D, Chen TY, Jurman ME (1994) An engineered cysteine in the external mouth of a K+ channel allows inactivation to be modulated by metal binding. Biophys J 66: 1068-1075
  57. Posson DJ, Ge P, Miller C, Bezanilla F, Selvin PR (2005) Small vertical movement of a K+ channel voltage sensor measured with luminescence energy transfer. Nature 436: 848- 851
  58. Pathak M, Kurtz L, Tombola F, Isacoff E (2005) The cooperative voltage sensor motion that gates a potassium channel. J Gen Physiol 125: 57-69
  59. Wulff H, Calabresi PA, Allie R, Yun S, Pennington M, Beeton C, Chandy KG (2003) The voltage-gated Kv1.3 K(+) channel in effector memory T cells as new target for MS. J Clin Invest 111: 1703-1713
  60. Gonzalez T, Arias C, Caballero R, Moreno I, Delpon E, Tamargo J, Valenzuela C (2002a) Effects of levobupivacaine, ropivacaine and bupivacaine on HERG channels: stereoselective bupivacaine block. Br J Pharmacol 137: 1269-1279
  61. Mitcheson JS, Chen J, Lin M, Culberson C, Sanguinetti MC (2000) A structural basis for drug-induced long QT syndrome. Proc Natl Acad Sci U S A 97: 12329-12333
  62. Robertson JD (1963) The occurrence of a subunit pattern in the unit membranes of club endings in mauthner cell synapses in goldfish brains. J Cell Biol 19: 201-221
  63. Revel JP, Karnovsky MJ (1967) Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J Cell Biol 33: C7-C12
  64. Snyders DJ, Tamkun MM, Bennett PB (1993) A rapidly activating and slowly inactivating potassium channel cloned from human heart. Functional analysis after stable mammalian cell culture expression. J Gen Physiol 101: 513-543
  65. Smith-Maxwell CJ, Ledwell JL, Aldrich RW (1998) Uncharged S4 residues and cooperativity in voltage-dependent potassium channel activation. J Gen Physiol 111: 421-439
  66. Shimada T, Somlyo AP (1992) Modulation of voltage-dependent Ca channel current by arachidonic acid and other long-chain fatty acids in rabbit intestinal smooth muscle. J Gen Physiol 100: 27-44
  67. Tseng-Crank J, Yao JA, Berman MF, Tseng GN (1993) Functional role of the NH2- terminal cytoplasmic domain of a mammalian A-type K channel. J Gen Physiol 102: 1057-1083
  68. Marius P, Zagnoni M, Sandison ME, East JM, Morgan H, Lee AG (2008) Binding of anionic lipids to at least three nonannular sites on the potassium channel KcsA is required for channel opening. Biophys J 94: 1689-1698
  69. Meves H (2008) Arachidonic acid and ion channels: an update. Br J Pharmacol 155: 4- 16
  70. Swartz KJ (2008) Sensing voltage across lipid membranes. Nature 456: 891-897
  71. Muller R, Klebe G, Budde T, Baukrowitz T, Daut J (2010) RNA editing modulates the binding of drugs and highly unsaturated fatty acids to the open pore of Kv potassium channels. EMBO J 29: 2101-2113
  72. Lauritzen I, Blondeau N, Heurteaux C, Widmann C, Romey G, Lazdunski M (2000) Polyunsaturated fatty acids are potent neuroprotectors. EMBO J 19: 1784-1793
  73. Fedida D, Hesketh JC (2001) Gating of voltage-dependent potassium channels. Prog Biophys Mol Biol. 75:165-99
  74. Kang JX, Leaf A (1996) Evidence that free polyunsaturated fatty acids modify Na+ channels by directly binding to the channel proteins. Proc Natl Acad Sci U S A 93: 3542- 3546
  75. Xiao YF, Kang JX, Morgan JP, Leaf A (1995) Blocking effects of polyunsaturated fatty acids on Na+ channels of neonatal rat ventricular myocytes. Proc Natl Acad Sci U S A 92: 11000-11004
  76. England SK, Uebele VN, Shear H, Kodali J, Bennett PB, Tamkun MM (1995) Characterization of a voltage-gated K+ channel beta subunit expressed in human heart.
  77. Honore E, Barhanin J, Attali B, Lesage F, Lazdunski M (1994) External blockade of the major cardiac delayed-rectifier K+ channel (Kv1.5) by polyunsaturated fatty acids. Proc Natl Acad Sci U S A 91: 1937-1941
  78. Marzian S, Stansfeld PJ, Rapedius M, Rinné S, Nematian-Ardestani E, Abbruzzese JL, Steinmeyer K, Sansom MS, Sanguinetti MC, Baukrowitz T, Decher N (2013) Side pockets provide the basis for a new mechanism of Kv channel-specific inhibition. Nat Chem Biol 9: 507-513
  79. Sanchez-Chapula J (1988) Effects of bupivacaine on membrane currents of guinea-pig ventricular myocytes. Eur J Pharmacol 156: 303-308
  80. Kamb A, Iverson LE, Tanouye MA (1987) Molecular characterization of Shaker, a Drosophila gene that encodes a potassium channel. Cell 50: 405-413
  81. Grabner M, Wang Z, Hering S, Striessnig J, Glossmann H (1996) Transfer of 1,4- dihydropyridine sensitivity from L-type to class A (BI) calcium channels. Neuron 16: 207-218
  82. Sewing S, Roeper J, Pongs O (1996) Kv beta 1 subunit binding specific for shaker- related potassium channel alpha subunits. Neuron 16: 455-463
  83. Gandhi CS, Clark E, Loots E, Pralle A, Isacoff EY (2003) The orientation and molecular movement of a k(+) channel voltage-sensing domain. Neuron 40: 515-525
  84. Tombola F, Pathak MM, Isacoff EY (2005) How far will you go to sense voltage? Neuron 48: 719-725
  85. Yellen G, Jurman ME, Abramson T, MacKinnon R (1991) Mutations affecting internal TEA blockade identify the probable pore-forming region of a K+ channel. Science 251: 939-942
  86. Hartmann HA, Kirsch GE, Drewe JA, Taglialatela M, Joho RH, Brown AM (1991) Exchange of conduction pathways between two related K+ channels. Science 251: 942- 944
  87. Heginbotham L, Abramson T, MacKinnon R (1992) A functional connection between the pores of distantly related ion channels as revealed by mutant K+ channels. Science 258: 1152-1155
  88. Strutz-Seebohm N, Gutcher I, Decher N, Steinmeyer K, Lang F, Seebohm G (2007) Comparison of potent Kv1.5 potassium channel inhibitors reveals the molecular basis for blocking kinetics and binding mode. Cell Physiol Biochem 20: 791-800


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten