Publikationsserver der Universitätsbibliothek Marburg

Titel:In vivo dynamics of DnaA and its regulators
Autor:Schenk, Katrin
Weitere Beteiligte: Graumann, Peter Ludwig (Prof. Dr.)
Veröffentlicht:2015
URI:https://archiv.ub.uni-marburg.de/diss/z2015/0220
DOI: https://doi.org/10.17192/z2015.0220
URN: urn:nbn:de:hebis:04-z2015-02202
DDC: Chemie
Titel (trans.):In vivo Dynamiken von DnaA und seinen Regulatoren
Publikationsdatum:2015-10-08
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument
2. Daten

Schlagwörter:
DnaA, Replication, Zellzyklus, Replikation, DnaA, Cell cycle

Summary:
Die Verdopplung des Chromosoms ist ein entscheidender Schritt des bakteriellen Zellzyklus. Um die Anzahl der Chromosomen pro Zelle konstant zu halten, muss dieser Prozess streng reguliert werden. Die Replikation wird am Replikationsursprung durch das hochkonservierte Initiationsprotein DnaA initiiert. Dazu bindet DnaA an spezifische DNA-Sequenzen in der Ursprungsregion und bildet einen helikalen Nukleo-Protein-Komplex, der die lokale Aufwindung des Doppelstrangs herbeiführt. Dies muss kontrolliert geschehen, um eine Initiation zu einem falschen Zeitpunkt zu vermeiden. Für Bacillus subtilis sind zwei Regulationsproteine bekannt, YabA und Soj (ParA). YabA erfüllt zwei Funktionen: Zum einen wirkt es als Anti-Kooperativitätsfaktor für DnaA und zum anderen rekrutiert es, vermittelt duch eine Interaktion mit DnaN, DnaA und die Replikationsmaschinerie. Das Protein Soj hingegen kann ATP-abhängig ein Dimer bilden und als solches fördernd auf die DnaA-Aktivität wirken, während es in seiner ADP- gebundenen Form als Monomer vorliegt und am Ursprung die Ausbildung der rechtsgängigen DnaA-Helix verhindert. Die vorliegende Arbeit zeigt, dass die Lokalisation von YabA im Bezug auf den Replikationsursprung und die Replikationsmaschinerie einem ähnlichen Muster folgt, wie es für DnaA bekannt ist. Dabei stellt sich heraus, dass YabA hauptsächlich am Replisom, aber auch am Ursprung lokalisieren kann. Unter Zuhifenahme von FRAP (fluorescence recovery after photobleaching) konnte ich in vivo zeigen, dass DnaA einen hohen Turnover am Ursprung und an der Replikationsmaschinerie hat, der im Bereich von nur wenigen Sekunden liegt. Des Weiteren verringert eine Deletion von yabA und soj-spo0J den Turnover von DnaA. YabA hingegen zeigt ein ähnliches Verhalten wie DnaA. In einem zweiten Ansatz wurde Einzel-Molekül-Mikroskopie an lebenden Zellen durchgeführt. Die Untersuchung von DnaA-Einzelmolekülen bestätigt, dass es sich bei DnaA um ein sehr dynamisches Protein handelt, das für nicht mehr als wenige Millisekunden an seinen Bindestellen verweilt. Da DnaA auch als Transkriptionsfaktor wirkt, beinhalten diese Bindestellen nicht nur den Ursprung und die Replikationsmaschinerie, sondern auch mehrere über das ganze Chromosom verteilte Promotoren. Des Weiteren führt eine Deletion von soj-spo0J zu verkürzten Verweildauern, was im Einklang mit den FRAP-Daten steht. Im Gegensatz dazu verweilt eine DnaA-Variante, die eine Aminosäuresubstitution trägt, welche die ATPase-Aktivität und die Initiationsrate beeinträchtigt, deutlich kürzer. Folglich führen selbst geringe Unterschiede in der Verweildauer zu untypischen Initiationsfrequenzen. YabA-Einzelmoleküle hingegen sind statischer, was darauf hindeutet, dass DnaA und YabA nicht gemeinsam, als Komplex, die DNA scannen. Erstaunlicherweise war für E. coli-DnaA eine Oszillation der DnaA-Moleküle zwischen den zwei Zellhälften zu beobachten. Die Diffusionskonstante und die Verweildauer ähnelten denen von B. subtilis-DnaA, was eine hohe Dynamik von DnaA Proteinen in zwei Bakterienspezies zeigt. viiDie Beobachtung, dass E. coli-DnaA oszilliert, lässt weiterhin einen Mechanismus vermuten, bei dem ein regulatorisches Protein DnaA verfolgt und es von seinen Bindestellen löst, was zu dem beobachteten Muster führen könnte. Hohe Änderungsraten können vorteilhaft sein um viele regulatorische Impulse in die Entscheidung über eine Initation zu integrieren. In B. subtilis könnten die zwei Regulatoren YabA und Soj teilweise durch eine Stimulation der zeitlichen Änderungsrate von DnaA am Ursprung und an der Replikationsmaschinerie agieren.

Bibliographie / References

  1. U. K. Laemmli, " Cleavage of structural proteins during the assembly of the head of bacteriophage T4 " , Nature, 227, pp. 680–685, Aug. 1970.
  2. J. Garner, P. Durrer, J. Kitchen, J. Brunner, and E. Crooke, " Membrane-mediated release of nucleotide from an initiator of chromosomal replication, Escherichia coli DnaA, occurs with insertion of a distinct region of the protein into the lipid bilayer " , J. Biol. Chem., 273, pp. 5167–5173, Feb. 1998.
  3. P. Thévenaz, U. E. Ruttimann, and M. Unser, " A pyramid approach to subpixel registration based on intensity " , IEEE Trans. Image Process., 7, pp. 27–41, Jan. 1998. Bibliography
  4. D. H. Williamson and D. J. Fennell, " Apparent dispersive replication of yeast mitochondrial DNA as revealed by density labelling experiments " , Mol. Gen. Genet., 131, pp. 193–207, Jan. 1974.
  5. M. Matsui, A. Oka, M. Takanami, S. Yasuda, and Y. Hirota, " Sites of dnaA protein-binding in the replication origin of the Escherichia coli K-12 chromosome " , J. Mol. Biol., 184, pp. 529–533, Aug. 1985.
  6. J. W. Zyskind and D. W. Smith, " The bacterial origin of replication, oriC " , Cell, 46, pp. 489–490, Aug. 1986.
  7. G. B. Ogden, M. J. Pratt, and M. Schaechter, " The replicative origin of the E. coli chromosome binds to cell membranes only when hemimethylated " , Cell, 54, pp. 127–135, July 1988.
  8. P. Youngman, J. B. Perkins, and R. Losick, " Construction of a cloning site near one end of Tn917 into which foreign DNA may be inserted without affecting transposition in Bacillus subtilis or expression of the transposon-borne erm gene " , Plasmid, 12, pp. 1–9, July 1984.
  9. C. D. Soufo, H. J. D. Soufo, M.-F. Noirot-Gros, A. Steindorf, P. Noirot, and P. L. Graumann, " Cell-cycle-dependent spatial sequestration of the DnaA replication initiator protein in Bacillus subtilis " , Dev. Cell, 15, pp. 935–941, Dec. 2008.
  10. A. C. Leonard and J. E. Grimwade, " Regulating DnaA complex assembly: it is time to fill the gaps " , Curr. Opin. Microbiol., 13, pp. 766–772, Dec. 2010.
  11. G. S. Gordon, D. Sitnikov, C. D. Webb, A. Teleman, A. Straight, R. Losick, A. W. Murray, and A. Wright, " Chromosome and low copy plasmid segregation in E. coli: visual evidence for distinct mechanisms " , Cell, 90, pp. 1113–1121, Sept. 1997.
  12. T. Katayama and K. Sekimizu, " Inactivation of Escherichia coli DnaA protein by DNA polymerase III and negative regulations for initiation of chromosomal replication " , Biochimie, 81, pp. 835–840, Aug. 1999.
  13. P. Hammar, M. Walldén, D. Fange, F. Persson, O. Baltekin, G. Ullman, P. Leroy, and J. Elf, " Direct measurement of transcription factor dissociation excludes a simple operator occupancy model for gene regulation " , Nat. Genet., 46, pp. 405–408, Apr. 2014.
  14. T. Katayama, S. Ozaki, K. Keyamura, and K. Fujimitsu, " Regulation of the replication cycle: conserved and diverse regulatory systems for DnaA and oriC " , Nat. Rev. Microbiol., 8, pp. 163– 170, Mar. 2010.
  15. R. A. Britton, B. S. Powell, S. Dasgupta, Q. Sun, W. Margolin, J. R. Lupski, and D. L. Court, " Cell cycle arrest in Era GTPase mutants: a potential growth rate-regulated checkpoint in Escherichia coli " , Mol. Microbiol., 27, pp. 739–750, Feb. 1998.
  16. A. Roth and W. Messer, " High-affinity binding sites for the initiator protein DnaA on the chromosome of Escherichia coli " , Mol. Microbiol., 28, pp. 395–401, Apr. 1998.
  17. V. T. Ryan, J. E. Grimwade, J. E. Camara, E. Crooke, and A. C. Leonard, " Escherichia coli prereplication complex assembly is regulated by dynamic interplay among Fis, IHF and DnaA " , Mol. Microbiol., 51, pp. 1347–1359, Mar. 2004.
  18. M. Su'etsugu, K. Nakamura, K. Keyamura, Y. Kudo, and T. Katayama, " Hda monomerization by ADP binding promotes replicase clamp-mediated DnaA-ATP hydrolysis " , J. Biol. Chem., 283, pp. 36118–36131, Dec. 2008.
  19. D. M. Woodcock, P. J. Crowther, J. Doherty, S. Jefferson, E. DeCruz, M. Noyer-Weidner, S. S. Smith, M. Z. Michael, and M. W. Graham, " Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants " , Nucleic Acids Res., 17, pp. 3469–3478, May 1989.
  20. N. Fujikawa, H. Kurumizaka, O. Nureki, T. Terada, M. Shirouzu, T. Katayama, and S. Yokoyama, " Structural basis of replication origin recognition by the DnaA protein " , Nu- cleic Acids Res., 31, pp. 2077–2086, Apr. 2003.
  21. F. Y. Marston, W. H. Grainger, W. K. Smits, N. H. Hopcroft, M. Green, A. M. Hounslow, A. D. Grossman, C. J. Craven, and P. Soultanas, " When simple sequence comparison fails: the cryptic case of the shared domains of the bacterial replication initiation proteins DnaB and DnaD " , Nucleic Acids Res., 38, pp. 6930–6942, Nov. 2010.
  22. H. Okumura, M. Yoshimura, M. Ueki, T. Oshima, N. Ogasawara, and S. Ishikawa, " Regula- tion of chromosomal replication initiation by oriC-proximal DnaA-box clusters in Bacillus subtilis " , Nucleic Acids Res., 40, pp. 220–234, Jan. 2012.
  23. T. Morimoto, P. C. Loh, T. Hirai, K. Asai, K. Kobayashi, S. Moriya, and N. Ogasawara, " Six GTP-binding proteins of the Era/Obg family are essential for cell growth in Bacillus subtilis " , Microbiology, 148, pp. 3539–3552, Nov. 2002.
  24. R. Kitagawa, T. Ozaki, S. Moriya, and T. Ogawa, " Negative control of replication initiation by a novel chromosomal locus exhibiting exceptional affinity for Escherichia coli DnaA protein " , Genes Dev., 12, pp. 3032–3043, Oct. 1998.
  25. D. B. Kearns and R. Losick, " Cell population heterogeneity during growth of Bacillus subtilis " , Genes Dev., 19, pp. 3083–3094, Dec. 2005.
  26. K. Fujimitsu, T. Senriuchi, and T. Katayama, " Specific genomic sequences of E. coli promote replicational initiation by directly reactivating ADP-DnaA " , Genes Dev., 23, pp. 1221–1233, May 2009.
  27. J.-W. Veening, H. Murray, and J. Errington, " A mechanism for cell cycle regulation of sporulation initiation in Bacillus subtilis " , Genes Dev., 23, pp. 1959–1970, Aug. 2009.
  28. S. Moriya, T. Atlung, F. G. Hansen, H. Yoshikawa, and N. Ogasawara, " Cloning of an autonomously replicating sequence (ars) from the Bacillus subtilis chromosome " , Mol. Microbiol., 6, pp. 309–315, Feb. 1992.
  29. C. Bruand, M. Velten, S. McGovern, S. Marsin, C. Sérèna, S. D. Ehrlich, and P. Polard, " Functional interplay between the Bacillus subtilis DnaD and DnaB proteins essential for initiation and re-initiation of DNA replication " , Mol. Microbiol., 55, pp. 1138–1150, Feb. 2005.
  30. P. S. Lee and A. D. Grossman, " The chromosome partitioning proteins Soj (ParA) and Spo0J (ParB) contribute to accurate chromosome partitioning, separation of replicated sister origins, and regulation of replication initiation in Bacillus subtilis " , Mol. Microbiol., 60, pp. 853–869, May 2006.
  31. A. M. Breier and A. D. Grossman, " Whole-genome analysis of the chromosome partitioning and sporulation protein Spo0J (ParB) reveals spreading and origin-distal sites on the Bacillus subtilis chromosome " , Mol. Microbiol., 64, pp. 703–718, May 2007.
  32. H. Merrikh and A. D. Grossman, " Control of the replication initiator DnaA by an anti- cooperativity factor " , Mol. Microbiol., pp. 1–13, Sept. 2011.
  33. E. Cho, N. Ogasawara, and S. Ishikawa, " The functional analysis of YabA, which interacts with DnaA and regulates initiation of chromosome replication in Bacillus subtils " , Genes Genet. Syst., 83, pp. 111–125, Apr. 2008.
  34. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, " Fiji: an open-source platform for biological-image analysis " , Nat. Methods, 9, pp. 676–682, July 2012.
  35. Wilkinson, " Structure and Interactions of the Bacillus subtilis Sporulation Inhibitor of DNA Replication, SirA, with Domain I of DnaA " , Mol. Microbiol., July 2014.
  36. M. Boonstra, I. G. de Jong, G. Scholefield, H. Murray, O. P. Kuipers, and J.-W. Veening, " Spo0A regulates chromosome copy number during sporulation by directly binding to the origin of replication in Bacillus subtilis " , Mol. Microbiol., 87, pp. 925–938, Feb. 2013.
  37. M. Hayashi, Y. Ogura, E. J. Harry, N. Ogasawara, and S. Moriya, " Bacillus subtilis YabA is involved in determining the timing and synchrony of replication initiation " , FEMS Microbiol. Lett., 247, pp. 73–79, July 2005.
  38. T. Fukuoka, S. Moriya, H. Yoshikawa, and N. Ogasawara, " Purification and characterization of an initiation protein for chromosomal replication, DnaA, in Bacillus subtilis " , J. Biochem., 107, pp. 732–739, May 1990.
  39. 16 Data obtained from FRAP measurements of YFP-DnaA in deletion backgrounds. 55
  40. Appendix Supplemental movies Supplemental movies of single molecule microscopy Exposure time 41 ms, 24 frames/s. Scale bar: 2 µm. Pixel size: 100 nm.
  41. Suppl. movie 3: E. coli cells expressing DnaA-YFP from its original site. Supplemental movies of DnaA-YFP oscillation in E. coli Exposure time 200 ms, 5 frames/s. Scale bar: 2 µm. Pixel size: 80 nm.
  42. M. D. Sutton, K. M. Carr, M. Vicente, and J. M. Kaguni, " Escherichia coli DnaA protein. The N-terminal domain and loading of DnaB helicase at the E. coli chromosomal origin " , J. Biol. Chem., 273, pp. 34255–34262, Dec. 1998.
  43. Localization of the CFP-labeled origin of replication in wild type and mutant strains 48
  44. E. Meijering, O. Dzyubachyk, and I. Smal, " Methods for cell and particle tracking " , Methods Enzymol., 504, pp. 183–200, Jan. 2012.
  45. Suppl. movie 1: B. subtilis cells expressing YFP-DnaA from an ectopic site.
  46. Suppl. movie 2: B. subtilis cells expressing YFP-YabA from an ectopic site in a yabA deletion strain.
  47. Suppl. movie 4: E. coli cells expressing DnaA-YFP from its original site.
  48. H. Murray and A. Koh, " Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis " , PLoS Genet., 10, p. e1004731, Oct. 2014.
  49. K. Skarstad and T. Katayama, " Regulating DNA replication in bacteria " , Cold Spring Harb. Perspect. Biol., 5, p. a012922, Apr. 2013.
  50. A. C. Leonard and J. E. Grimwade, " Regulation of DnaA assembly and activity: taking directions from the genome " , Annu. Rev. Microbiol., 65, pp. 19–35, Jan. 2011.
  51. K. Kurokawa, S. Nishida, A. Emoto, K. Sekimizu, and T. Katayama, " Replication cycle- coordinated change of the adenine nucleotide-bound forms of DnaA protein in Escherichia coli " , EMBO J., 18, pp. 6642–6652, Dec. 1999.
  52. W. F. Burkholder, I. Kurtser, and A. D. Grossman, " Replication initiation proteins regulate a developmental checkpoint in Bacillus subtilis " , Cell, 104, pp. 269–279, Jan. 2001.
  53. M. LU, " SeqA: A negative modulator of replication initiation in E. coli " , Cell, 77, pp. 413–426, May 1994.
  54. K. Mullis, F. Faloona, S. Scharf, R. Saiki, G. Horn, and H. Erlich, " Specific enzymatic amplifi- cation of DNA in vitro: the polymerase chain reaction " , Cold Spring Harb. Symp. Quant. Biol., 51 Pt 1, pp. 263–273, Jan. 1986.
  55. R. S. Fuller, B. E. Funnell, and A. Kornberg, " The dnaA protein complex with the E. coli chromosomal replication origin (oriC) and other DNA sites " , Cell, 38, pp. 889–900, Oct. 1984.
  56. P. E. March, C. G. Lerner, J. Ahnn, X. Cui, and M. Inouye, " The Escherichia coli Ras-like protein (Era) has GTPase activity and is essential for cell growth " , Oncogene, 2, pp. 539–544, June 1988.
  57. K. Kasho, K. Fujimitsu, T. Matoba, T. Oshima, and T. Katayama, " Timely binding of IHF and Fis to DARS2 regulates ATP-DnaA production and replication initiation " , Nucleic Acids Res., 42, pp. 13134–13149, Dec. 2014.
  58. S. Geers, " Control of initiation of replication and Identification of enzymes mediating DNA break repair in Bacillus subtilis " , PhD thesis, University of Freiburg, 2011.
  59. R. Kitagawa, H. Mitsuki, T. Okazaki, and T. Ogawa, " A novel DnaA protein-binding site at 94.7 min on the Escherichia coli chromosome " , Mol. Microbiol., 19, pp. 1137–1147, Mar. 1996.
  60. C. E. Caldon, P. Yoong, and P. E. March, " Evolution of a molecular switch: universal bacterial GTPases regulate ribosome function " , Mol. Microbiol., 41, pp. 289–297, July 2001.
  61. G. Scholefield, R. Whiting, J. Errington, and H. Murray, " Spo0J regulates the oligomeric state of Soj to trigger its switch from an activator to an inhibitor of DNA replication initiation " , Mol. Microbiol., 79, pp. 1089–1100, Feb. 2011.
  62. G. Scholefield and H. Murray, " YabA and DnaD inhibit helix assembly of the DNA replication initiation protein DnaA " , Mol. Microbiol., 90, pp. 147–159, Oct. 2013.
  63. Yoshikawa, E. Zumstein, H. Yoshikawa, and A. Danchin, " The complete genome sequence of the gram-positive bacterium Bacillus subtilis " , Nature, 390, pp. 249–256, Nov. 1997.
  64. J. M. Kaguni, " DnaA: controlling the initiation of bacterial DNA replication and more " , Annu. Rev. Microbiol., 60, pp. 351–375, Jan. 2006.
  65. M. Su'etsugu, T.-R. Shimuta, T. Ishida, H. Kawakami, and T. Katayama, " Protein associations in DnaA-ATP hydrolysis mediated by the Hda-replicase clamp complex " , J. Biol. Chem., 280, pp. 6528–6536, Feb. 2005.
  66. K. E. Duderstadt, K. Chuang, and J. M. Berger, " DNA stretching by bacterial initiators promotes replication origin opening " , Nature, Oct. 2011.
  67. M. Wolá nski, D. Jakimowicz, and J. Zakrzewska-Czerwí nska, " Fifty years after the replicon hypothesis: cell-specific master regulators as new players in chromosome replication control " , J. Bacteriol., 196, pp. 2901–2911, Aug. 2014.
  68. K. Skarstad, E. Boye, and H. B. Steen, " Timing of initiation of chromosome replication in individual Escherichia coli cells " , EMBO J., 5, pp. 1711–1717, July 1986.
  69. M.-F. Noirot-Gros, E. Dervyn, L. J. Wu, P. Mervelet, J. Errington, S. D. Ehrlich, and P. Noirot, " An expanded view of bacterial DNA replication " , Proc. Natl. Acad. Sci. U. S. A., 99, pp. 8342– 8347, June 2002.
  70. J. P. Erzberger, M. M. Pirruccello, and J. M. Berger, " The structure of bacterial DnaA: implica- tions for general mechanisms underlying DNA replication initiation " , EMBO J., 21, pp. 4763– 4773, Sept. 2002.
  71. H. J. Defeu Soufo and P. L. Graumann, " Dynamic movement of actin-like proteins within bacterial cells " , EMBO Rep., 5, pp. 789–794, Aug. 2004.
  72. M.-F. Noirot-Gros, M. Velten, M. Yoshimura, S. McGovern, T. Morimoto, S. D. Ehrlich, N. Ogasawara, P. Polard, and P. Noirot, " Functional dissection of YabA, a negative regulator of DNA replication initiation in Bacillus subtilis " , Proc. Natl. Acad. Sci. U. S. A., 103, pp. 2368– 2373, Feb. 2006.
  73. P. S. Lee, D. C.-H. Lin, S. Moriya, and A. D. Grossman, " Effects of the chromosome partition- ing protein Spo0J (ParB) on oriC positioning and replication initiation in Bacillus subtilis " , J. Bacteriol., 185, pp. 1326–1337, Feb. 2003.
  74. J. Kato and T. Katayama, " Hda, a novel DnaA-related protein, regulates the replication cycle in Escherichia coli " , EMBO J., 20, pp. 4253–4262, Aug. 2001.
  75. W. Zhang, S. Allen, C. J. Roberts, and P. Soultanas, " The Bacillus subtilis primosomal protein DnaD untwists supercoiled DNA " , J. Bacteriol., 188, pp. 5487–5493, Aug. 2006.
  76. V. Castilla-Llorente, D. Muñoz Espín, L. Villar, M. Salas, and W. J. J. Meijer, " Spo0A, the key transcriptional regulator for entrance into sporulation, is an inhibitor of DNA replication " , EMBO J., 25, pp. 3890–3899, Aug. 2006.
  77. M. C. Konopka, I. A. Shkel, S. Cayley, M. T. Record, and J. C. Weisshaar, " Crowding and confinement effects on protein diffusion in vivo " , J. Bacteriol., 188, pp. 6115–6123, Sept. 2006.
  78. T. A. Vida and S. D. Emr, " A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast " , J. Cell Biol., 128, pp. 779–792, Mar. 1995.
  79. L. Rahn-Lee, B. Gorbatyuk, O. Skovgaard, and R. Losick, " The conserved sporulation protein YneE inhibits DNA replication in Bacillus subtilis " , J. Bacteriol., 191, pp. 3736–3739, June 2009.
  80. S. Nozaki, H. Niki, and T. Ogawa, " Replication initiator DnaA of Escherichia coli changes its assembly form on the replication origin during the cell cycle " , J. Bacteriol., 191, pp. 4807–4814, Aug. 2009.
  81. C. Tu, X. Zhou, J. E. Tropea, B. P. Austin, D. S. Waugh, D. L. Court, and X. Ji, " Structure of ERA in complex with the 3' end of 16S rRNA: implications for ribosome biogenesis " , Proc. Natl.
  82. M. Makowska-Grzyska and J. M. Kaguni, " Primase directs the release of DnaC from DnaB " , Mol. Cell, 37, pp. 90–101, Jan. 2010.
  83. K. Boeneman, S. Fossum, Y. Yang, N. Fingland, K. Skarstad, and E. Crooke, " Escherichia coli DnaA forms helical structures along the longitudinal cell axis distinct from MreB filaments " , Mol. Microbiol., 72, pp. 645–657, May 2009.
  84. W. K. Smits, A. I. Goranov, and A. D. Grossman, " Ordered association of helicase loader proteins with the Bacillus subtilis origin of replication in vivo " , Mol. Microbiol., 75, pp. 452–461, Jan. 2010.
  85. L. Rahn-Lee, H. Merrikh, A. D. Grossman, and R. Losick, " The sporulation protein SirA inhibits the binding of DnaA to the origin of replication by contacting a patch of clustered amino acids " , J. Bacteriol., 193, pp. 1302–1307, Mar. 2011.
  86. J. M. Kaguni, " Replication initiation at the Escherichia coli chromosomal origin " , Curr. Opin. Chem. Biol., 15, pp. 606–613, Oct. 2011.
  87. E. Maloney, S. C. Madiraju, M. Rajagopalan, and M. Madiraju, " Localization of acidic phospho- lipid cardiolipin and DnaA in mycobacteria " , Tuberculosis (Edinb)., 91 Suppl 1, pp. S150–5, Dec. 2011.
  88. G. Scholefield, J. Errington, and H. Murray, " Soj/ParA stalls DNA replication by inhibiting helix formation of the initiator protein DnaA " , EMBO J., pp. 1–14, Jan. 2012.
  89. C. Y. Bonilla and A. D. Grossman, " The primosomal protein DnaD inhibits cooperative DNA binding by the replication initiator DnaA in Bacillus subtilis " , J. Bacteriol., 194, pp. 5110–5117, Sept. 2012.
  90. K. Kasho and T. Katayama, " DnaA binding locus datA promotes DnaA-ATP hydrolysis to enable cell cycle-coordinated replication initiation " , Proc. Natl. Acad. Sci. U. S. A., 110, pp. 936–941, Jan. 2013.
  91. L. A. K. Kleine Borgmann, H. Hummel, M. H. Ulbrich, and P. L. Graumann, " SMC con- densation centers in Bacillus subtilis are dynamic structures " , J. Bacteriol., 195, pp. 2136–2145, May 2013.
  92. K. Ireton and A. D. Grossman, " A developmental checkpoint couples the initiation of sporulation to DNA replication in Bacillus subtilis " , EMBO J., 13, pp. 1566–1573, Apr. 1994.
  93. S. Moriya, T. Fukuoka, N. Ogasawara, and H. Yoshikawa, " Regulation of initiation of the chromosomal replication by DnaA-boxes in the origin region of the Bacillus subtilis chromosome " , EMBO J., 7, pp. 2911–2917, Sept. 1988.
  94. T. A. Leonard, P. J. Butler, and J. Löwe, " Bacterial chromosome segregation: structure and DNA binding of the Soj dimer–a conserved biological switch " , EMBO J., 24, pp. 270–282, Jan. 2005. Bibliography
  95. T. I. Meier, R. B. Peery, S. R. Jaskunas, and G. Zhao, " 16S rRNA is bound to era of Streptococcus pneumoniae " , J. Bacteriol., 181, pp. 5242–5249, Sept. 1999.
  96. F. Sanger, S. Nicklen, and A. R. Coulson, " DNA sequencing with chain-terminating inhibitors " , Proc. Natl. Acad. Sci. U. S. A., 74, pp. 5463–5467, Dec. 1977.
  97. D. M. Raskin and P. A. de Boer, " Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli " , Proc. Natl. Acad. Sci. U.S.A., 96, pp. 4971–4976, Apr 1999.
  98. D. Bramhill and A. Kornberg, " Duplex opening by dnaA protein at novel sequences in initiation of replication at the origin of the E. coli chromosome " , Cell, 52, pp. 743–755, Mar. 1988.
  99. J. L. Campbell and N. Kleckner, " E. coli oriC and the dnaA gene promoter are sequestered from dam methyltransferase following the passage of the chromosomal replication fork " , Cell, 62, pp. 967–979, Sept. 1990.
  100. M. Steinmetz and R. Richter, " Plasmids designed to alter the antibiotic resistance expressed by insertion mutations in Bacillus subtilis, through in vivo recombination " , Gene, 142, pp. 79–83, May 1994.
  101. A. Sayed, S. i. Matsuyama, and M. Inouye, " Era, an essential Escherichia coli small G-protein, binds to the 30S ribosomal subunit " , Biochem. Biophys. Res. Commun., 264, pp. 51–54, Oct. 1999.
  102. M. Kumar, M. S. Mommer, and V. Sourjik, " Mobility of cytoplasmic, membrane, and DNA- binding proteins in Escherichia coli " , Biophys. J., 98, pp. 552–559, Feb. 2010.
  103. M. Krause, B. Rückert, R. Lurz, and W. Messer, " Complexes at the replication origin of Bacillus subtilis with homologous and heterologous DnaA protein " , J. Mol. Biol., 274, pp. 365–380, Dec. 1997.
  104. H. Murray and J. Errington, " Dynamic control of the DNA replication initiation protein DnaA by Soj/ParA " , Cell, 135, pp. 74–84, Oct. 2008.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten