Publikationsserver der Universitätsbibliothek Marburg

Titel:Exciton Dynamics in Perfluoropentacene Single Crystals
Autor:Kolata, Kolja
Weitere Beteiligte: Chatterjee, Sangam (PD, Ph.D.)
Veröffentlicht:2014
URI:https://archiv.ub.uni-marburg.de/diss/z2015/0082
DOI: https://doi.org/10.17192/z2015.0082
URN: urn:nbn:de:hebis:04-z2015-00826
DDC: Physik
Titel (trans.):Exziton-Dynamik in Perfluoropentacen Einkristallen
Publikationsdatum:2015-03-09
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Halbleiter, Spektroskopie, Photoeffekt, Ultrakurzzeit-Dynamik, Anrege-Abfrage-Spektroskopie, Exzitonen, Acene, Triplet-Zustände, excitons, singlet-fission, Ladungsträger, Dynamik, Singlet-Aufspaltung, pump-probe

Summary:
The realization of the first bipolar junction transistor in the year 1948 by Bardeen, Brattain and Shockley [1] sparked off the semiconductor industry, which gradually revolutionized the way we live. Nowadays, semiconductors are the fundamental building blocks of every high-tech electronic device, most notably the computer which has become an inescapable part of our daily lives. Besides voltage and current control capabilities, semiconductors exhibit intriguing opto-electronic properties; the best known and commercially most successful applications are light emitting diodes (LEDs), laser diodes, charged coupled devices (CCD) and solar cells.[2, 3, 4] Due to the broad variety of material systems, they cover virtually the complete optical spectrum while simultaneously being cost-efficient and easy to miniaturize. Until the late 90ies, commercially available devices were exclusively based on inorganic semiconductors, primarily on Silicon. However, over the last decade, the class of organic semiconductors has gained an increasing amount of interest, e.g., now one of the most popular smartphone’s display1 is based on OLED2-technology. Flexibility upon stress and deeper color contrasts are typically named as their main advantages over conventional liquid crystal displays (LCD). While organic semiconductor devices are already well established as light emitters, they are still in research state as light harvesters. In general, organic solar cells offer high photon cross sections in combination with similar flexibility as OLED displays. Additionally, they exhibit the potential for low-cost mass-production, including innovative and versatile procedures such as ink-jet printing.[6, 7] However, two major challenges still exist which need to be addressed before organic solar cells become compatible: the long-term stability and the quantum efficiency.[8] The fast degradation of organic solar cells is caused by oxidation, reduction and thermal instabilities. Research in this field focuses on the synthesis of new organic molecules, thus, it can be assigned to the organic chemistry sector. Quantum efficiencies are determined by the microscopic photon to carrier conversion, i.e., the photovoltaic effect, therefore, it is predominantly a research topic of solid state physics. This thesis focuses mainly on aspects of the quantum efficiency in the polyacene Perfluoropentacene (PFP) and its underlying decay processes, namely the electronic relaxation dynamics after optical excitation. In particular, the process of singlet exciton fission is analyzed which promises to double the quantum efficiencies, as it converts one singlet exciton into two triplet excitons.[9] Excitons are correlated electron and hole pairs: neutral excitations of the crystal after absorption of a photon. Singlet exciton fission was first proposed in 1968 in order to explain the drastic photoluminescence quench of Tetracene crystals compared to Anthracene crystals.[10] It has gained renewed attention lately, due to its potential application in the growing field of organic solar cells. However, the microscopic understanding is still in its infancy which hampers essential progress in this field; for instance, the influence of the geometrical order of the molecules within the crystal on singlet exciton fission has only been analyzed theoretically. The reason is the lack of single crystal samples allowing for the correlation of molecular packing and electronic dynamics.[9] This issue is resolved in Chapter 5 for the model system of PFP single crystals, where for the first time the singlet exciton fission dynamics are observed along the three crystal axes by polarization-resolved pump-probe spectroscopy. Moreover, the efficient coupling direction is identified as well as the preceding electronic species of the two triplet excitons. Although spectroscopic analysis on polyacenes date back to the 40ies [11], lack of computational power and interest lead to the sad state that even interpretations of the linear absorption are still debated today. However, basic knowledge of the linear absorption is essential in order to interpret the non-linear dynamics. Therefore, Chapter 4 serves as a precursor, where the linear absorption of the PFP samples is interpreted using phenomenological models. Here, first indications are given for a dominant coupling direction within the PFP crystal which are then confirmed in Chapter 5. Furthermore, the amount of exciton splitting in PFP is determined, also known as the Davydov-splitting.[12] It is induced by dipole coupling between the two basis molecules of the crystal lattice during excitation. In Chapter 6 the focus is shifted to inorganic semiconductors. The chapter introduces a fast and convenient method to determine dephasing times of induced coherent exciton polarizations with more precision than a common lineshape analysis of the absorption spectrum. In pump-probe spectroscopy, the transients of the coherent oscillations are exploited to serve as phase indicators for the several excitonic transitions. These transients are observed during the coherent regime before pump and probe pulses perfectly overlap in time.[13] As a proof of principle, the methodology is applied to a set of Germanium quantum well samples and evaluated in respect to their optical quality. In addition, the main dephasing mechanism in Germanium quantum wells is identified. These three chapters capture the results of the thesis and are preceded by introductory chapters covering basic light-matter interactions and experimental details; they are succeeded by a conclusion chapter summarizing the essential findings.

Bibliographie / References

  1. A. Hinderhofer, U. Heinemeyer, A. Gerlach, S. Kowarik, R. M. J. Jacobs, Y. Sa- kamoto, T. Suzuki, and F. Schreiber. Optical properties of pentacene and per- fluoropentacene thin films. The Journal of chemical physics, 127(19):194705, November 2007.
  2. U. Brosa. Diffraction of Electromagnetic Waves. arXiv:0911.3663v2, November 2009.
  3. F. Anger, J. O. Osso, U. Heinemeyer, K. Broch, R. Scholz, A. Gerlach, and F. Schreiber. Photoluminescence spectroscopy of pure pentacene, perfluoropen- tacene, and mixed thin films. The Journal of chemical physics, 136(5):054701, February 2012.
  4. I. B. Berlman. Handbook of fluorescence spectra of aromatic molecules. Academic Press, 1965.
  5. C. Klingshirn. Semiconductor Optics. Springer Berlin Heidelberg, 3 edition, 2007.
  6. A. T. Amos and B. L. Burrows. Advances in Quantum Chemistry. Elsevier Science, 7 edition, 1973.
  7. J. B. Birks, T. A. King, and I. H. Munro. The Photoluminescence Decay of Organic Crystals. Proceedings of the Physical Society, 80(2):355–361, August 1962.
  8. U. Fano. Effects of Configuration Interaction on Intensities and Phase Shifts. Physical Review, 124(6):1866–1878, December 1961.
  9. Q. Vu, H. Haug, W. Hügel, S. Chatterjee, and M. Wegener. Signature of Electron- Plasmon Quantum Kinetics in GaAs. Physical Review Letters, 85(16):3508–3511, October 2000.
  10. S. Tsujino, H. Sigg, G. Mussler, D. Chrastina, and H. von Känel. Photocurrent and transmission spectroscopy of direct-gap interband transitions in Ge/SiGe quantum wells. Applied Physics Letters, 89(26):262119, 2006.
  11. A. Giorgioni, E. Gatti, E. Grilli, A. Chernikov, S. Chatterjee, D. Chrasti- na, G. Isella, and M. Guzzi. Photoluminescence decay of direct and indirect transitions in Ge/SiGe multiple quantum wells. Journal of Applied Physics, 111(1):013501, 2012.
  12. J. Liu, X. Sun, R. E. Camacho-Aguilera, L. C. Kimerling, and J. Michel. Ge-on-Si laser operating at room temperature. Optics letters, 35(5):679–81, March 2010.
  13. A. Beer. Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten. Annalen der Physik und Chemie, 86:78–88, 1852.
  14. R. A. Keller. Excited triplet singlet intersystem crossing. Chemical Physics Letters, 3(1):27–29, January 1969.
  15. R. P. Groff, R. E. Merrifield, and P. Avakian. Singlet and triplet channels for triplet-exciton fusion in anthracene crystals. Chemical Physics Letters, 5(3):168– 170, March 1970.
  16. C. Jundt, G. Klein, B. Sipp, J. Le Moigne, M. Joucla, and A. A. Villaeys. Exciton dynamics in pentacene thin films studied by pump-probe spectroscopy. Chemical Physics Letters, 241(1-2):84–88, July 1995. [89] W.-L. Chan, M. Ligges, A. Jailaubekov, L. Kaake, L. Miaja-Avila, and X.-Y.
  17. E. v. Freydorf, J. Kinder, and M. E. Michel-Beyerle. On low temperature fluore- scence of perylene crystals. Chemical Physics, 27(2):199–209, January 1978.
  18. L. Sebastian, G. Weiser, and H. Bässler. Charge transfer transitions in solid tetracene and pentacene studied by electroabsorption. Chemical Physics, 61(1- 2):125–135, October 1981.
  19. B. Walker, H. Port, and H. C. Wolf. The two-step excimer formation in perylene crystals. Chemical Physics, 92(2-3):177–185, January 1985.
  20. J. Bardeen and W. Brattain. The Transistor, A Semi-Conductor Triode. Physical Review, 74(2):230–231, July 1948.
  21. R. Hall, G. Fenner, J. Kingsley, T. Soltys, and R. Carlson. Coherent Light Emis- sion From GaAs Junctions. Physical Review Letters, 9(9):366–368, November 1962.
  22. F. C. Spano. The spectral signatures of Frenkel polarons in H-and J-aggregates. Accounts of chemical research, 43(3):429–39, March 2010.
  23. N. S. Bayliss and E. G. McRae. Solvent Effects in Organic Spectra: Dipole Forces and the Franck-Condon Principle. The Journal of Physical Chemistry, 58(11):1002–1006, November 1954.
  24. Y. Sakamoto, T. Suzuki, M. Kobayashi, Y. Gao, Y. Fukai, Y. Inoue, F. Sato, and S. Tokito. Perfluoropentacene: high-performance p-n junctions and com- plementary circuits with pentacene. Journal of the American Chemical Society, 126(26):8138–8140, July 2004.
  25. A. Rao, M. W. B. Wilson, J. M. Hodgkiss, S. Albert-Seifried, H. Bässler, and R. H. Friend. Exciton fission and charge generation via triplet excitons in pentace- ne/C60 bilayers. Journal of the American Chemical Society, 132(36):12698–703, September 2010.
  26. M. C. R. Delgado, K. R. Pigg, D. A. da Silva Filho, N. E. Gruhn, Y. Sakamoto, T. Suzuki, R. M. Osuna, J. Casado, V. Hernández, J. T. L. Navarrete, N. G. Martinelli, J. Cornil, R. S. Sánchez-Carrera, V. Coropceanu, and J.-L. Brédas. Impact of perfluorination on the charge-transport parameters of oligoacene cry- stals. Journal of the American Chemical Society, 131(4):1502–12, February 2009.
  27. M. Pabst, B. Lunkenheimer, and A. Köhn. The Triplet Excimer of Naphthalene: A Model System for Triplet-Triplet Interactions and Its Spectral Properties. The Journal of Physical Chemistry C, 115(16):8335–8344, April 2011.
  28. T. Breuer, M. A. Celik, P. Jakob, R. Tonner, and G. Witte. Vibrational Davydov Splittings and Collective Mode Polarizations in Oriented Organic Semiconductor Crystals. The Journal of Physical Chemistry C, 116(27):14491–14503, July 2012.
  29. S. Sharifzadeh, P. Darancet, L. Kronik, and J. B. Neaton. Low-Energy Charge- Transfer Excitons in Organic Solids from First-Principles: The Case of Pentacene. The Journal of Physical Chemistry Letters, 4(13):2197–2201, July 2013.
  30. J. Mooney and P. Kambhampati. Get the Basics Right: Jacobian Conversion of Wavelength and Energy Scales for Quantitative Analysis of Emission Spectra. The Journal of Physical Chemistry Letters, 4(19):3316–3318, October 2013.
  31. B. Stevens. Evidence for the Photo-Association of Aromatic Hydrocarbons in Fluid Media. Nature, 192(4804):725–727, November 1961.
  32. D. Polli, P.Altò e, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. To- masello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo. Conical intersection dynamics of the primary photoisomerization event in vision. Nature, 467(7314):440–3, September 2010.
  33. B. J. Walker, A. J. Musser, D. Beljonne, and R. H. Friend. Singlet exciton fission in solution. Nature chemistry, 5(12):1019–1024, December 2013.
  34. Paul M Zimmerman, Zhiyong Zhang, and Charles B Musgrave. Singlet fission in pentacene through multi-exciton quantum states. Nature chemistry, 2(8):648–52, August 2010.
  35. L. D. A. Siebbeles. Organic solar cells: Two electrons from one photon. Nature chemistry, 2(8):608–9, August 2010.
  36. A. A. Kazzaz and A. B. Zahlan. Temperature Dependence of Crystalline Tetra- cene Fluorescence. The Journal of Chemical Physics, 48(3):1242, 1968.
  37. E. D. Becker and G. C. Pimentel. Spectroscopic Studies of Reactive Molecules by the Matrix Isolation Method. The Journal of Chemical Physics, 25(2):224, 1956.
  38. N. S. Köster, K. Kolata, R. Woscholski, C. Lange, G. Isella, D. Chrastina, H. von Känel, and S. Chatterjee. Giant dynamical Stark shift in germanium quantum wells. Applied Physics Letters, 98(16):161103, 2011.
  39. P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. Le Roux, S. Edmond, J.-R. Coudevylle, and L. Vivien. Room temperature direct gap elec- troluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide. App- lied Physics Letters, 99(14):141106, 2011.
  40. A. S. Davydov. The Theory of Molecular Excitons. Soviet Physics Uspekhi, 7(2):145–178, February 1964.
  41. S. W. Koch, N. Peyghambarian, and M. Lindberg. Transient and steady-state op- tical nonlinearities in semiconductors. Journal of Physics C: Solid State Physics, 21(30):5229–5249, October 1988.
  42. E. J. Bowen, E. Mikiewicz, and F. W. Smith. Resonance Transfer of Electro- nic Energy in Organic Crystals. Proceedings of the Physical Society. Section A, 62(1):26–31, January 1949.
  43. L. Hedin. New Method for Calculating the One-Particle Green's Function with Application to the Electron-Gas Problem. Physical Review, 139(3A):A796–A823, August 1965.
  44. S. Rudin, T. Reinecke, and B. Segall. Temperature-dependent exciton linewidths in semiconductors. Physical Review B, 42(17):11218–11231, December 1990.
  45. R. Binder, S. Koch, M. Lindberg, W. Schäfer, and F. Jahnke. Transient many- body effects in the semiconductor optical Stark effect: A numerical study. Physical Review B, 43(8):6520–6529, March 1991.
  46. T. Rappen, U.-G. Peter, M. Wegener, and W. Schäfer. Polarization depen- dence of dephasing processes: A probe for many-body effects. Physical Review B, 49(15):10774–10777, April 1994.
  47. M. Rohlfing and S. G. Louie. Electron-hole excitations and optical spectra from first principles. Physical Review B, 62(8):4927–4944, August 2000.
  48. G. Sun, L. Friedman, and R. Soref. Light-hole to heavy-hole acoustic phonon scattering rate. Physical Review B, 62(12):8114–8119, September 2000.
  49. K. Hummer and C. Ambrosch-Draxl. Electronic properties of oligoacenes from first principles. Physical Review B, 72(20):205205, November 2005.
  50. C. Lange, N. S. Köster, S. Chatterjee, H. Sigg, D. Chrastina, G. Isella, H. von Känel, M. Schäfer, M. Kira, and S. W. Koch. Ultrafast nonlinear optical response of photoexcited Ge/SiGe quantum wells: Evidence for a femtosecond transient population inversion. Physical Review B, 79(20):1–4, May 2009.
  51. Henning Marciniak, Igor Pugliesi, Bert Nickel, and Stefan Lochbrunner. Ultrafast singlet and triplet dynamics in microcrystalline pentacene films. Physical Review B, 79(23):1–8, June 2009.
  52. T. Breuer and G. Witte. Epitaxial growth of perfluoropentacene films with pre- defined molecular orientation: A route for single-crystal optical studies. Physical Review B, 83(15):155428, April 2011.
  53. E. Gatti, E. Grilli, M. Guzzi, D. Chrastina, G. Isella, a. Chernikov, V. Bornwasser, N. Köster, R. Woscholski, and S. Chatterjee. Photoluminescence and ultrafast intersubband relaxation in Ge/SiGe multiple quantum wells. Physical Review B, 84(24):1–5, December 2011.
  54. C. Lange, G. Isella, D. Chrastina, F. Pezzoli, N. Köster, R. Woscholski, and S. Chatterjee. Spin band-gap renormalization and hole spin dynamics in Ge/SiGe quantum wells. Physical Review B, 85(24):1–5, June 2012.
  55. A. Chernikov, S. Schäfer, M. Koch, S. Chatterjee, B. Laumer, and M. Eickhoff. Probing carrier populations in ZnO quantum wells by screening of the internal electric fields. Physical Review B, 87(3):035309, January 2013.
  56. L. Schultheis, J. Kuhl, A. Honold, and C. Tu. Ultrafast Phase Relaxation of Excitons via Exciton-Exciton and Exciton-Electron Collisions. Physical Review Letters, 57(13):1635–1638, September 1986.
  57. H. Wang, K. Ferrio, D. Steel, Y. Hu, R. Binder, and S. W. Koch. Transient nonlinear optical response from excitation induced dephasing in GaAs. Physical Review Letters, 71(8):1261–1264, August 1993.
  58. C. Sieh, T. Meier, F. Jahnke, A. Knorr, S. W. Koch, P. Brick, M. Hübner, C. Ell, J. Prineas, G. Khitrova, and H. Gibbs. Coulomb Memory Signatures in the Excitonic Optical Stark Effect. Physical Review Letters, 82(15):3112–3115, April 1999.
  59. Zhu. Observing the multiexciton state in singlet fission and ensuing ultrafast multielectron transfer. Science (New York, N.Y.), 334(6062):1541–5, December 2011.
  60. W. Shockley and H. J. Queisser. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. Journal of Applied Physics, 32(3):510, 1961.
  61. Joffre, D Hulin, a Migus, a Antonetti, C BenoitBenoità la Guillaume, N Peyghamba- rian, M Lindberg, and S W Koch. Coherent effects in pump-probe spectroscopy of excitons. Optics letters, 13(4):276–8, April 1988.
  62. Th. Förster and K. Kasper. Ein Konzentrationsumschlag der Fluoreszenz. Zeit- schrift für Physikalische Chemie, 1(5 6):275–277, June 1954.
  63. Pierluigi Cudazzo, Matteo Gatti, and Angel Rubio. Excitons in molecular crystals from first-principles many-body perturbation theory: Picene versus pentacene. Physical Review B, 86(19):195307, November 2012.
  64. K. Kolata, N. S. Köster, A. Chernikov, M. J. Drexler, E. Gatti, S. Cecci, D. Chras- tina, G. Isella, M. Guzzi, and S. Chatterjee. Dephasing in Ge/SiGe quantum wells measured by means of coherent oscillations. Physical Review B, 86(20):201303, November 2012.
  65. Silbey, and F. C. Spano. The nature of singlet excitons in oligoacene molecular crystals. The Journal of chemical physics, 134(20):204703, May 2011.
  66. P. Y. Yu and M. Cardona. Fundamentals of Semiconductors. Springer Heidelberg, 2. edition, 1999.
  67. I. V. Hertel and C.-P. Schulz. Atome, Moleküle und optische Physik. Springer Heidelberg, 1. edition, 2010.
  68. G. T. Wright. Absolute Quantum Efficiency of Photofluorescence of Anthracene Crystals. Proceedings of the Physical Society. Section B, 68(4):241–248, April 1955.
  69. M. Lindberg and S. W. Koch. Effective Bloch equations for semiconductors. Physical Review B, 38(5):3342–3350, August 1988.
  70. U. Bockelmann and G. Bastard. Interband absorption in quantum wires. I. Zero- magnetic-field case. Physical Review B, 45(4):1688–1699, January 1992.
  71. T. Rappen, U. Peter, M. Wegener, and W. Schäfer. Coherent dynamics of con- tinuum and exciton states studied by spectrally resolved fs four-wave mixing. Physical Review B, 48(7):4879–4882, August 1993.
  72. Murilo Tiago, John Northrup, and Steven Louie. Ab initio calculation of the electronic and optical properties of solid pentacene. Physical Review B, 67(11):115212, March 2003.
  73. Sahar Sharifzadeh, Ariel Biller, Leeor Kronik, and Jeffrey B. Neaton. Quasi- particle and optical spectroscopy of the organic semiconductors pentacene and PTCDA from first principles. Physical Review B, 85(12):125307, March 2012.
  74. R. C. Johnson, R. E. Merrifield, P. Avakian, and R. B. Flippen. Effects of Magne- tic Fields on the Mutual Annihilation of Triplet Excitons in Molecular Crystals. Physical Review Letters, 19(6):285–287, August 1967.
  75. N. Geacintov, M. Pope, and F. Vogel. Effect of Magnetic Field on the Fluorescence of Tetracene Crystals: Exciton Fission. Physical Review Letters, 22(12):593–596, March 1969.
  76. E. Göbel, K. Leo, T. Damen, J. Shah, S. Schmitt-Rink, W. Schäfer, J. Müller, and K. Köhler. Quantum beats of excitons in quantum wells. Physical Review Letters, 64(15):1801–1804, April 1990.
  77. K. Hannewald, V. Stojanovi´Stojanovi´c, J. Schellekens, P. Bobbert, G. Kresse, and J. Haf- ner. Theory of polaron bandwidth narrowing in organic molecular crystals. Phy- sical Review B, 69(7):075211, February 2004.
  78. C. D. Spataru, S. Ismail-Beigi, R. B. Capaz, and S. G. Louie. Quasiparticle and Excitonic Effects in the Optical Response of Nanotubes and Nanoribbons. In Topics in Applied Physics: Carbon Nanotubes, volume 227, pages 195–227.
  79. N. Kraus. Absorptionsmessungen organischer Moleküle in der Gasphase. Ex- amensarbeit, Philipps-Universität Marburg, 2014.
  80. W. S. Boyle and G. E. Smith. Charge Coupled Semiconductor Devices. Bell System Technical Journal, 49(4):587–593, April 1970.
  81. C. Lange, N. S. Köster, S. Chatterjee, H. Sigg, D. Chrastina, G. Isella, H. von Känel, B. Kunert, and W. Stolz. Comparison of ultrafast carrier thermalization in GaInAs and Ge quantum wells. Physical Review B, 81(4):1–6, January 2010.
  82. W. Barford. Electronic and Optical Properties of Conjugated Polymers (Interna- tional Series of Monographs on Physics). Oxford University Press, USA, 2005.
  83. T. H. Dunning and P. J. Hay. Electronic states of KrF. Applied Physics Letters, 28(11):649, 1976.
  84. Ch. K. Rhodes, editor. Excimer Lasers (Topics in Applied Physics). Springer, 1979.
  85. A. Rinn. Excitonic and excimeric features in monomeric and dimeric perylene crystals. Master thesis, Philipps-Universität Marburg, 2013.
  86. M. C. Payne, T. A. Arias, and J. D. Joannopoulos. Iterative minimization tech- niques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Reviews of Modern Physics, 64(4):1045–1097, October 1992.
  87. T. S. Kuhlman, J. Kongsted, K. V. Mikkelsen, K. B. Mø ller, and T. I. Sø lling. Interpretation of the ultrafast photoinduced processes in pentacene thin films. Journal of the American Chemical Society, 132(10):3431–3439, March 2010.
  88. J. K. Trautman, J. J. Macklin, L. E. Brus, and E. Betzig. Near-field spectroscopy of single molecules at room temperature. Nature, 369(6475):40–42, May 1994.
  89. M. Schwoerer and H. C. Wolf. Organic Molecular Solids. Wiley-VCH Verlag GmbH, 2007.
  90. J. H. Lambert. Photometria sive de mensura et gradibus luminis, colorum et umbrae. Eberhardt Klett, Augsburg, Germany, 1760.
  91. B. Li, L. Wang, B. Kang, P. Wang, and Y. Qiu. Review of recent progress in solid-state dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 90(5):549–573, March 2006.
  92. W. Kohn and L. J. Sham. Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 140(4A):A1133–A1138, November 1965.
  93. M. Kira and S.W. Koch. Semiconductor Quantum Optics. Cambridge University Press, 1 edition, 2012.
  94. M. B. Smith and J. Michl. Singlet Fission. Chemical Reviews, 110(11):6891–936, November 2010.
  95. M. Rei Vilar, M. Heyman, and M Schott. Spectroscopy of low-energy electrons backscattered from an organic solid surface: pentacene. Chemical Physics Letters, 94(5):522–526, February 1983. [50] R. E. Smalley, L. Wharton, and D. H. Levy. Molecular optical spectroscopy with supersonic beams and jets. Accounts of Chemical Research, 10(4):139–145, April 1977.
  96. Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris. Strong quantum-confined Stark effect in germanium quantum- well structures on silicon. Nature, 437(7063):1334–6, October 2005.
  97. M. B. Panish and H. C. Casey Jr. Temperature Dependence of the Energy Gap in GaAs and GaP. Journal of Applied Physics, 40(1):163, 1969.
  98. R. Kepler, J. Caris, P. Avakian, and E. Abramson. Triplet excitons and Delayed Fluorescence in Anthracene Crystals. Physical Review Letters, 10(9):400–402, May 1963.
  99. J. Shah. Ultrafast Spectroscopy of Semiconductors and Semiconductor Nano- structures. Springer Berlin Heidelberg, 1996.
  100. Holger Pröhl. Optische Eigenschaften ultradünner PTCDA & TiOPc Einzel-und Heteroschichten. Dissertation, TU Dresden, 2006.
  101. J. Burgos, M. Pope, Ch. E. Swenberg, and R. R. Alfano. Heterofission in pentacene-doped tetracene single crystals. Physica Status Solidi (b), 83(1):249– 256, September 1977.
  102. F. C. Krebs, S. A. Gevorgyan, and J. Alstrup. A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies. Journal of Materials Chemistry, 19(30):5442, 2009.
  103. A. Furube, M. Murai, Y. Tamaki, S. Watanabe, and R. Katoh. Effect of aggre- gation on the excited-state electronic structure of perylene studied by transient absorption spectroscopy. The journal of physical chemistry. A, 110(20):6465–71, May 2006.
  104. Shirai, S. Iwata, T. Tani, and S. Inagaki. Ab initio studies of aromatic excimers using multiconfiguration quasi-degenerate perturbation theory. The journal of physical chemistry. A, 115(26):7687–99, July 2011.
  105. S. Kera, S. Hosoumi, K. Sato, H. Fukagawa, S.-i. Nagamatsu, Y. Sakamoto, T. Suzuki, H. Huang, W. Chen, A. T. S. Wee, V. Coropceanu, and N. Ueno. Ex- perimental Reorganization Energies of Pentacene and Perfluoropentacene: Effects of Perfluorination. The Journal of Physical Chemistry C, 117(43):22428–22437, October 2013.
  106. D. E. Carlson and C. R. Wronski. Amorphous silicon solar cell. Applied Physics Letters, 28(11):671, 1976.
  107. J. Helzel, S. Jankowski, M. El Helou, G. Witte, and W. Heimbrodt. Temperature dependent optical properties of pentacene films on zinc oxide. Applied Physics Letters, 99(21):211102, 2011.
  108. R. E. Merrifield. Theory of Magnetic Field Effects on the Mutual Annihilation of Triplet Excitons. The Journal of Chemical Physics, 48(9):4318, 1968.
  109. J. S. Cohen. Ground and excited states of Ne2 and Ne2+. I. Potential curves with and without spin-orbit coupling. The Journal of Chemical Physics, 61(8):3230, 1974.
  110. C. E. Swenberg and W. T. Stacy. Bimolecular radiationless transitions in cry- stalline tetracene. Chemical Physics Letters, 2(5):327–328, September 1968.
  111. P. W. Atkins. Physikalische Chemie. Oxford University Press, 3 edition, 1987.
  112. M. B. Smith and J. Michl. Recent advances in singlet fission. Annual review of physical chemistry, 64:361–386, January 2013.
  113. B. Stevens and E. Hutton. Radiative Life-time of the Pyrene Dimer and the Possi- ble Role of Excited Dimers in Energy Transfer Processes. Nature, 186(4730):1045– 1046, June 1960.
  114. I. Salzmann, A. Moser, M. Oehzelt, T. Breuer, X. Feng, Z.-Y. Juang, D. Na- bok, R. G. Della Valle, S. Duhm, G. Heimel, A. Brillante, E. Venuti, I. Bilotti, C. Christodoulou, J. Frisch, P. Puschnig, C. Draxl, G. Witte, K. Müllen, and N. Koch. Epitaxial growth of π-stacked perfluoropentacene on graphene-coated quartz. ACS nano, 6(12):10874–83, December 2012.
  115. R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel. An electrically pumped germanium laser. Optics Express, 20(10):11316–11320, 2012.
  116. K. O. Lee and T. T. Gan. Influence of substrate temperature on the optical properties of evaporated films of pentacene. Chemical Physics Letters, 51(1):120– 124, October 1977.
  117. H. Auweter, D. Ramer, B. Kunze, and H. C. Wolf. The dynamics of excimer formation in perylene crystals. Chemical Physics Letters, 85(3):325–329, January 1982.
  118. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo. High-Resolution Inkjet Printing of All-Polymer Transistor Cir- cuits. Science, 290(5499):2123–2126, December 2000.
  119. X. Zhang, Q.-S. Li, Y. Xie, and H. F. Schaefer. The lowest triplet electronic states of polyacenes and perfluoropolyacenes. Molecular Physics, 105(19-22):2743–2752, October 2007.
  120. H. Haug and S. W. Koch. Quantum Theory of the Optical and Electronic Pro- perties of Semiconductors. World Scientific, 4 edition, 2009.
  121. N. Peyghambarian, S.W. Koch, and A. Mysyrowicz. Introduction to Semicon- ductor Optics. Prentice Hall, New Jersey, 1 edition, 1993.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten