Publikationsserver der Universitätsbibliothek Marburg

Titel:Polyelectrolyte Multilayer Capsules for Medical Applications
Autor:Nazarenus, Moritz
Weitere Beteiligte: Parak, Wolfgang J. (Prof. Dr.)
Veröffentlicht:2014
URI:https://archiv.ub.uni-marburg.de/diss/z2015/0049
URN: urn:nbn:de:hebis:04-z2015-00495
DOI: https://doi.org/10.17192/z2015.0049
DDC: Physik
Titel (trans.):Polyelektrolytmultischichtkapseln für medizinische Anwendungen
Publikationsdatum:2015-01-21
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Lysosom, Fluoreszenz, Nanomedizin, Gene Therapy, Polymerkapseln, Zellkultur, Sensing, Lysosomale Speicherkrankheiten, Individualisierte Medizin, Theranostik, Lysosomal Storage Disease, Drug Delivery, Gentherapie, Polymer Capsules, pH

Summary:
This thesis deals with the application of polymer capsules for diagnostic and therapeutic purposes in mammalian cells. The capsules comprise a multilayer shell of oppositely charged polyelectrolytes surrounding a cavity and have a size of two to five microns. Concerning diagnostics, capsules were produced to monitor the dynamics of the lysosomal pH in cancer cells. The cavities of the capsules were filled with a fluorescent, pH-sensitive dye for optical readout of the signal. The cells were monitored under physiological conditions upon induced pH imbalances. The results showed that the capsules were appropriate for intracellular long-term measurements and could monitor changes of the pH. For therapy, biodegradable capsules filled with biologically active molecules were synthesized. Two strategies were employed. In one approach, the cavity was filled with polyplexes of DNA or RNA and polyethylenimine, which are used regularly for the delivery of foreign genetic material into host cells. This approach is an example for gene therapy. The results showed that delivery by the capsules was very efficient and the encapsulated polyplexes were less toxic for the cells than their free counterparts. The other strategy was to directly deliver functional enzymes into cells. For this approach, cell models representing lysosomal storage diseases were employed. One of these diseases is Fabry. Patients with Fabry disease are deficient of the enzyme α galactosidase A. The enzyme was encapsulated in biodegradable capsules and given to the cells. This therapy form is called enzyme replacement therapy. The intracellular enzyme activity was determined by quantification of the intracellular level of a fluorescently labeled substrate of α galactosidase A. As the products of the reaction were non-fluorescent, the intracellular fluorescence could be used to quantify the intracellular activity of the encapsulated enzyme. Finally, therapy and diagnostics were combined in a model of Krabbe disease, another lysosomal storage disorder. In Krabbe patients, sphingolipids and cerebrosides accumulate in the oligodendritic glia cells of the patients, as due to a gene defect the enzyme galactocerebrosidase usually converting these agents is not expressed. In the model, the cause of the disease was simulated by incubation of oligodendritic cells with psychosine, which belongs to the group of sphingolipids. Galactocerebrosidase was encapsulated in biodegradable capsules and delivered to the cells. The functionality was tested by a viability assay. Two types of cells were used, wild-type cells expressing galactocerebrosidase and knockout cells, which did not express the enzyme. The viability of the cells in the presence of psychosine was determined with and without addition of galactocerebrosidase-filled capsules. The results showed that the effect of the capsules on the viability of the two different cell types was contrary. Whereas knockout cells gained higher viability when capsules were administered, wild-type cells suffered a loss in viability. The diagnostic part was characterized by monitoring the lysosomal pH upon incubation with psychosine. The dynamics of the lysosomal pH of the two types of cells turned out to be different. Each of the cell types could therefore be identified with a specific pH profile and the decision to treat cells with the enzyme-filled capsules can be based on the measured pH profile. This is considered an in vitro-example of theranostics, the combination of therapy and diagnostics.

Bibliographie / References

  1. A.L. Becker, N.I. Orlotti, M. Folini, F. Cavalieri, A.N. Zelikin, A.P.R. Johnston, N. Zaffaroni, F. Caruso, Redox-active polymer microcapsules for the delivery of a survivin-specific siRNA in prostate cancer cells, ACS Nano 5 (2011) 1335–1344.
  2. H. Lomas, A.P.R. Johnston, G.K. Such, Z.Y. Zhu, K. Liang, M.P. van Koeverden, S. Alongkornchotikul, F. Caruso, Polymersome-loaded capsules for controlled release of DNA, Small 7 (2011) 2109–2119.
  3. A.P.R. Johnston, G.K. Such, S.L. Ng, F. Caruso, Challenges facing colloidal delivery systems: from synthesis to the clinic, Curr. Opin. Colloid Interface Sci. 16 (2011) 171–181.
  4. Zhang, F. et al. (2010) Ion and pH sensing with colloidal nanoparti- cles: influence of surface charge on sensing and colloidal properties. ChemPhysChem, 11, 730–735.
  5. Peteiro-Cartelle, J. et al. (2009) One example on how colloidal nano-and microparticles could contribute to medicine. Nanomedicine, 4, 967–979.
  6. X.P. Liu, G.S. Wang, Z.C. You, P. Qian, H.P. Chen, Y. Dou, Z.H. Wei, Y. Chen, C.D. Mao, J.X. Zhang, Inhibition of hypoxia-induced proliferation of pulmonary arterial smooth muscle cells by a mTOR siRNA-loaded cyclodextrin nanovector, Biomaterials 35 (2014) 4401–4416.
  7. P. Pereira, A.F. Jorge, R. Martins, A. Pais, F. Sousa, A. Figueiras, Characterization of polyplexes involving small RNA, J. Colloid Interface Sci. 387 (2012) 84–94.
  8. A. Beyerle, A. Braun, O. Merkel, F. Koch, T. Kissel, T. Stoeger, Comparative in vivo study of poly(ethylene imine)/siRNA complexes for pulmonary delivery in mice, J. Control. Release 151 (2011) 51–56.
  9. Rivera Gil, P., Hühn, D., del Mercato, L.L., Sasse, D., and Parak, W.J. (2010) Nanopharmacy: inorganic nanoscale devices as vectors and active com- pounds. Pharmacol. Res., 62, 115–125.
  10. F. Ungaro, G. De Rosa, A. Miro, F. Quaglia, Spectrophotometric determination of polyethylenimine in the presence of an oligonucleotide for the characterization of controlled release formulations, J. Pharm. Biomed. Anal. 31 (1967) 143–149.
  11. L. Kastl, D. Sasse, V. Wulf, R. Hartmann, J. Mircheski, C. Ranke, S. Carregal-Romero, J.A. Martínez-López, R. Fernández-Chacón, W.J. Parak, H.-P. Elsaesser, P. Rivera Gil, Multiple internalization pathways of polyelectrolyte multilayer capsules into mammalian cells, ACS Nano 7 (2013) 6605–6618.
  12. L.L. del Mercato, P. Rivera Gil, A.Z. Abbasi, M. Ochs, C. Ganas, I. Zins, C. Sönnichsen, W.J. Parak, LbL multilayer capsules: recent progress and future outlook for their use in life sciences, Nanoscale 2 (2010) 458–467.
  13. J. Ruesing, O. Rotan, Gross-Heitfeld, C. Mayer, M. Epple, Nanocapsules of a cationic polyelectrolyte and nucleic acid for efficient cellular uptake and gene transfer, J. Mater. Chem. B 2 (2014) 4625–4630.
  14. M. Breunig, U. Lungwitz, J. Klar, A. Kurtz, T. Blunk, A. Goepferich, Polyplexes of polyethylenimine and per-N-methylated polyethylenimine-cytotoxicity and transfection efficiency, J. Nanosci. Nanotechnol. 4 (2004) 512–520.
  15. R. Palankar, A.G. Skirtach, O. Kreft, M. Bedard, M. Garstka, K. Gould, H. Mohwald, G.B. Sukhorukov, M. Winterhalter, S. Springer, Controlled intracellular release of peptides from microcapsules enhances antigen presentation on MHC class I molecules, Small 5 (2009) 2168–2176.
  16. C. Kirchner, A.M. Javier, A.S. Susha, A.L. Rogach, O. Kreft, G.B. Sukhorukov, W.J. Parak, Cytotoxicity of nanoparticle-loaded polymer capsules, Talanta 67 (2005) 486–491.
  17. M.L. De Temmerman, J. Demeester, S. De Smedt, I. Rejman, Tailoring layer-by-layer capsules for biomedical applications, Nanomedicine (UK) 7 (2012) 771–788.
  18. De Koker, B.G. De Geest, S.K. Singh, R. De Rycke, T. Naessens, Y. Van Kooyk, J. Demeester, S.C. De Smedt, J. Grooten, Polyelectrolyte microcapsules as antigen delivery vehicles to dendritic cells: uptake, processing, and cross-presentation of encapsulated antigens, Angew. Chem. Int. Ed. 48 (2009) 8485–8489.
  19. P. Rivera_Gil, S.D. Koker, B.G. De Geest, W.J. Parak, Intracellular processing of pro- teins mediated by biodegradable polyelectrolyte capsules, Nano Lett. 9 (2009) 4398–4402.
  20. Hyeon, T. (2003) Chemical synthe- sis of magnetic nanoparticles. Chem. Commun., 8, 927–934.
  21. N. Nafee, S. Taetz, M. Schneider, U.F. Schaefer, C.M. Lehr, Chitosan-coated PLGA nanoparticles for DNA/RNA delivery: effect of the formulation parameters on complexation and transfection of antisense oligonucleotides, Nanomedicine 3 (2007) 173–183.
  22. F. Lang, J. Am. College Nutrition 2007, 26, 613S; H. Matsui, B. R. Grubb, R. Tarran, S. H. Randell, J. T. Gatzy, C. W. Davis, R. C. Boucher, Cell 1998, 95, 1005; M. Mall, A. Hipper, R. Greger, K. Kunzelmann, FEBS Lett. 1996, 381, 47; M. J. Stutts, C. M. Canessa, J. C. Olsen, M. Hamrick, J. A. Cohn, B. C. Rossier, R. C. Boucher, Science 1995, 269, 847; G. K. Darbha, A. Ray, P. C. Ray, ACS Nano 2007, 1, 208.
  23. G. Decher, Science 1997, 277, 1232; G. B. Sukhorukov, E. Donath, H. Lichtenfeld, E. Knippel, M. Knippel, A. Budde, H. Mohwald, Colloids Surf. A 1998, 137, 253; G. B. Sukhorukov, E. Donath, S. Davis, H. Lichtenfeld, F. Caruso, V. I. Popov, H. Möhwald, Polym. Adv. Technol. 1998, 9, 759; E. Donath, G. B. Sukhorukov, F. Caruso, S. A. Davis, H. Möhwald, Angew. Chem. Int. Ed. 1998, 37, 2202.
  24. A. Kolbe, L.L. del Mercato, A.Z. Abassi, P. Rivera Gil, S.J. Gorzini, W.H.C. Huibers, B. Poolman, W.J. Parak, A. Herrmann, De novo design of supercharged, unfolded protein polymers, and their assembly into supramolecular aggregates, Macromol. Rapid Commun. 32 (2011) 186–190.
  25. M. Ochs, S. Carregal-Romero, J. Rejman, K. Braeckmans, S.C. De Smedt, W.J. Parak, Light-addressable capsules as caged compound matrix for controlled in vitro release, Angew. Chem. Int. Ed. 52 (2013) 695–699.
  26. Tasciotti, E. et al. (2008) Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat. Nanotechnol., 3, 151–157.
  27. P. Rivera Gil, M. Nazarenus, S. Ashraf, W.J. Parak, pH sensitive capsules as intracellular optical reporters for monitoring lysosomal pH changes upon stimulation, Small 8 (2012) 943–948.
  28. G. Creusat, A.S. Rinaldi, E. Weiss, R. Elbaghdadi, J.S. Remy, R. Mulherkar, G. Zuber, Proton sponge trick for pH-sensitive disassembly of polyethylenimine-based siRNA delivery systems, Bioconjug. Chem. 21 (2010) 994–1002.
  29. L.L. del Mercato, A.Z. Abbasi, W.J. Parak, Synthesis and characterization of ratiometric ion-sensitive polyelectrolyte capsules, Small 7 (2011) 351–363.
  30. Cho, K., Wang, X., Nie, S., Chen, Z.G., and Shin, D.M. (2008) Therapeutic nanoparticles for drug delivery in can- cer. Clin. Cancer Res., 14, 1310–1316.
  31. P. del Pino, A. Munoz-Javier, D. Vlaskou, P. Rivera Gil, C. Plank, W.J. Parak, Gene silencing mediated by magnetic lipospheres tagged with small interfering RNA, Nano Lett. 10 (2010) 3914–3921.
  32. D. Vlaskou, O. Mykhaylyk, F. Krotz, N. Hellwig, R. Renner, U. Schillinger, B. Gleich, A. Heidsieck, G. Schmitz, K. Hensel, C. Plank, Magnetic and acoustically active lipospheres for magnetically targeted nucleic acid delivery, Adv. Funct. Mater. 20 (2010) 3881–3894.
  33. A. Akinc, M. Thomas, A.M. Klibanov, R. Langer, Exploring polyethylenimine- mediated DNA transfection and the proton sponge hypothesis, J. Gene Med. 7 (2005) 657–663.
  34. T.D. Perrine, W.R. Landis, Analysis of polyethylenimine by spectrophotometry of its copper chelate, J. Polym. Sci. A1 5 (1967) 1993–2003.
  35. A.J. Lawaetz, C.A. Stedmon, Fluorescence intensity calibration using the Raman scatter peak of water, Appl. Spectrosc. 63 (2009) 936–940.
  36. M. Merkel, A. Beyerle, D. Librizzi, A. Pfestroff, T.M. Behr, B. Sproat, P.J. Barth, T. Kissel, Nonviral siRNA delivery to the lung: investigation of PEG–PEI polyplexes and their in vivo performance, Mol. Pharm. 6 (2009) 1246–1260.
  37. J. Conde, A. Ambrosone, V. Sanz, Y. Hernandez, V. Marchesano, F.R. Tian, H. Child, C.C. Berry, M.R. Ibarra, P.V. Baptista, C. Tortiglione, J.M. de la Fuente, Design of multifunc- tional gold nanoparticles for in vitro and in vivo gene silencing, ACS Nano 6 (2012) 8316–8324.
  38. Nie, S.M., Xing, Y., Kim, G.J., and Simons, J.W. (2007) Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng., 9, 257–288.
  39. D. Liu, T. Ren, X. Gao, Cationic transfection lipids, Curr. Med. Chem. 10 (2003) 1307–1315.
  40. A.C. Hunter, S.M. Moghimi, Cationic carriers of genetic material and cell death: a mitochondrial tale, BBA Bioenerg. 1797 (2010) 1203–1209.
  41. A.N. Zelikin, A.L. Becker, A.P.R. Johnston, K.L. Wark, F. Turatti, F. Caruso, A general approach for DNA encapsulation in degradable polymer microcapsules, ACS Nano 1 (2007) 63–69.
  42. LaVan, D.A., McGuire, T., and Langer, R. (2003) Small-scale sys- tems for in vivo drug delivery. Nat. Biotechnol., 21, 1184–1191.
  43. S. Carregal-Romero, M. Ochs, P. Rivera Gil, C. Ganas, A.M. Pavlov, G.B. Sukhorukov, W.J. Parak, NIR-light triggered delivery of macromolecules into the cytosol, J. Control. Release 159 (2012) 120–127.
  44. A. Zintchenko, A. Philipp, A. Dehshahri, E. Wagner, Simple modifications of branched PEI lead to highly efficient siRNA carriers with low toxicity, Bioconjug. Chem. 19 (2008) 1448–1455.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten