Publikationsserver der Universitätsbibliothek Marburg

Titel:Synthese, Charakterisierung und Anwendung neuer Inhibitoren der Proproteinkonvertase Furin
Autor:Hardes, Kornelia
Weitere Beteiligte: Steinmetzer, Torsten (Prof. Dr.)
Veröffentlicht:2014
URI:https://archiv.ub.uni-marburg.de/diss/z2015/0046
DOI: https://doi.org/10.17192/z2015.0046
URN: urn:nbn:de:hebis:04-z2015-00462
DDC:610 Medizin
Titel (trans.):Synthesis, characterization and application of novel furin inhibitors
Publikationsdatum:2015-01-14
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Proproteinkonvertase, serin protease, Serinprotease, inhibitor, furin, proprotein convertase, Furin, Inhibitor

Zusammenfassung:
Die Typ-I Transmembranprotease Furin gehört zur Familie der Proproteinconvertasen und ist ubiquitär im menschlichen Körper verbreitet. Furin aktiviert verschiedenste Proproteine, die sowohl in normalen physiologischen aber auch in zahlreichen pathophysiologischen Prozessen involviert sind. Beispielsweise aktiviert Furin Wachstumsfaktoren, deren Rezeptoren aber auch Matrixmetalloproteasen, die beim Tumorwachstum und der Metastasierung beteiligt sind. Zusätzlich prozessiert Furin verschiedene virale Glykoproteine und bakterielle Toxine. Diese Spaltung ist essentiell für die Vermehrung zahlreicher Viren oder der toxischen Wirkung humanpathogener Bakterien. Daher ist Furin ein potentielles Target der Wirkstoffentwicklung.

Bibliographie / References

  1. An amphotericin B-fluorescein conjugate as a powerful probe for biochemical studies of the membrane. Angew Chem Int Ed Engl 2004, 43, 5181–5185.
  2. Taylor, N. A. Curbing activation: proprotein convertases in homeostasis and pathology.
  3. Cameron, A.; Appel, J.; Houghten, R. A.; Lindberg, I. Polyarginines are potent furin inhibitors. J Biol Chem 2000, 275, 36741–36749.
  4. Rawlings, N. D.; Waller, M.; Barrett, A. J.; Bateman, A. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Research 2013, 42, D503– D509.
  5. Rockwell, N.; Krysan, D.; Komiyama, T.; Fuller, R. Precursor processing by kex2/furin proteases. Chem Rev 2002, 102, 4525–4548.
  6. Powers, J. C.; Asgian, J. L.; Ekici, O. D.; James, K. E. Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem Rev 2002, 102, 4639–4750.
  7. Bontemps, Y.; Scamuffa, N.; Calvo, F.; Khatib, A.-M. Potential opportunity in the development of new therapeutic agents based on endogenous and exogenous inhibitors of the proprotein convertases. Med Res Rev 2007, 27, 631–648.
  8. Lamango, N. S.; Zhu, X.; Lindberg, I. Purification and enzymatic characterization of recombinant prohormone convertase 2: stabilization of activity by 21 kDa 7B2. Arch Biochem Biophys 1996, 330, 238–250.
  9. Angliker, H.; Neumann, U.; Molloy, S. S.; Thomas, G. Internally quenched fluorogenic substrate for furin. Anal Biochem 1995, 224, 409–412.
  10. Jia, H.; Lohr, M.; Jezequel, S.; Davis, D.; Shaikh, S.; Selwood, D.; Zachary, I. Cysteine- rich and basic domain HIV-1 Tat peptides inhibit angiogenesis and induce endothelial cell apoptosis. Biochem Biophys Res Commun 2001, 283, 469–479.
  11. Trujillo, C.; Ratts, R.; Tamayo, A.; Harrison, R.; Murphy, J. R. Trojan horse or proton force: finding the right partner(s) for toxin translocation. Neurotox Res 2006, 9, 63–71.
  12. Stein, R. L. Catalysis by human leukocyte elastase: III. Steady-state kinetics for the hydrolysis of p-nitrophenyl esters. Arch Biochem Biophys 1985, 236, 677–680.
  13. Kucukkilinc, T.; Ozer, I. Multi-site inhibition of human plasma cholinesterase by cationic phenoxazine and phenothiazine dyes. Arch Biochem Biophys 2007, 461, 294–298.
  14. Kadono, S.; Sakamoto, A.; Kikuchi, Y.; Oh-eda, M.; Yabuta, N.; Yoshihashi, K.; Kitazawa, T.; Suzuki, T.; Koga, T.; Hattori, K.; Shiraishi, T.; Haramura, M.; Kodama, H.; Ono, Y.; Esaki, T.; Sato, H.; Watanabe, Y.; Itoh, S.; Ohta, M.; Kozono, T. Structure-based design of P3 moieties in the peptide mimetic factor VIIa inhibitor. Biochem Biophys Res Commun 2005, 327, 589–596.
  15. Kurmanova, A.; Llorente, A.; Polesskaya, A.; Garred, O.; Olsnes, S.; Kozlov, J.; Sandvig, K. Structural requirements for furin-induced cleavage and activation of Shiga toxin. Biochem Biophys Res Commun 2007, 357, 144–149.
  16. López-Vallejo, F.; Martínez-Mayorga, K. Furin inhibitors: Importance of the positive formal charge and beyond. Bioorganic & Medicinal Chemistry 2012, 20, 4462–4471.
  17. Becker, G.; Hardes, K.; Steinmetzer, T. New substrate analogue furin inhibitors derived from 4-amidinobenzylamide. Bioorg Med Chem Lett 2011, 21, 4695–4697.
  18. Russell, C. J.; Webster, R. G. The genesis of a pandemic influenza virus. Cell 2005, 123, 368–371.
  19. Basak, A.; Lotfipour, F. Modulating furin activity with designed mini-PDX peptides: synthesis and in vitro kinetic evaluation. FEBS Lett 2005, 579, 4813–4821.
  20. Beineke, A.; Puff, C.; Seehusen, F.; Baumgärtner, W. Pathogenesis and immunopathology of systemic and nervous canine distemper. Veterinary Immunology and Immunopathology 2009, 127, 1–18.
  21. Liu, Z.-x.; Fei, H.; Chi, C.-w. Two engineered eglin c mutants potently and selectively inhibiting kexin or furin. FEBS Lett 2004, 556, 116–120.
  22. Collier, R. J. Understanding the mode of action of diphtheria toxin: a perspective on progress during the 20th century. Toxicon 2001, 39, 1793–1803.
  23. Hatta, M.; Kawaoka, Y. The continued pandemic threat posed by avian influenza viruses in Hong Kong. Trends Microbiol 2002, 10, 340–344.
  24. Garten, W.; Klenk, H. D. Understanding influenza virus pathogenicity. Trends Microbiol 1999, 7, 99–100.
  25. Gagnon, H.; Beauchemin, S.; Kwiatkowska, A.; Couture, F.; D'Anjou, F.; Levesque, C.; Dufour, F.; Desbiens, A. R.; Vaillancourt, R.; Bernard, S.; Desjardins, R.; Malouin, F.; Dory, Y. L.; Day, R. Optimization of Furin Inhibitors To Protect against the Activation of Influenza Hemagglutinin H5 and Shiga Toxin. J. Med. Chem. 2014, 57, 29–41.
  26. Müller, E. J.; Caldelari, R.; Posthaus, H. Role of subtilisin-like convertases in cadherin processing or the conundrum to stall cadherin function by convertase inhibitors in cancer therapy. J Mol Histol 2004, 35, 263–275.
  27. Barr, V. A.; Phillips, S. A.; Taylor, S. I.; Haft, C. R. Overexpression of a novel sorting nexin, SNX15, affects endosome morphology and protein trafficking. Traffic 2000, 1, 904– 916.
  28. Holm, T.; Johansson, H.; Lundberg, P.; Pooga, M.; Lindgren, M.; Langel, U. Studying the uptake of cell-penetrating peptides. Nat Protoc 2006, 1, 1001–1005.
  29. Seidah, N. G.; Prat, A. The biology and therapeutic targeting of the proprotein convertases. Nat Rev Drug Discov 2012, 11, 367–383.
  30. Barrett, A. J.; Starkey, P. M. The interaction of alpha 2-macroglobulin with proteinases. Characteristics and specificity of the reaction, and a hypothesis concerning its molecular mechanism. Biochem J 1973, 133, 709–724.
  31. Willnow, T. E.; Moehring, J. M.; Inocencio, N. M.; Moehring, T. J.; Herz, J. The low- density-lipoprotein receptor-related protein (LRP) is processed by furin in vivo and in vitro.
  32. Podsiadlo, P.; Komiyama, T.; Fuller, R.; Blum, O. Furin inhibition by compounds of copper and zinc. J Biol Chem 2004, 279, 36219–36227.
  33. Hadfield, T. L.; McEvoy, P.; Polotsky, Y.; Tzinserling, V. A.; Yakovlev, A. A. The Pathology of Diphtheria. J Infect Dis 2000, 181, S116.
  34. Artenstein, A. W.; Opal, S. M. Novel approaches to the treatment of systemic anthrax. Clin Infect Dis 2012, 54, 1148–1161.
  35. Igarashi, Y.; Eroshkin, A.; Gramatikova, S.; Gramatikoff, K.; Zhang, Y.; Smith, J. W.; Osterman, A. L.; Godzik, A. CutDB: a proteolytic event database. Nucleic Acids Res 2007, 35, D546-9.
  36. Duckert, P.; Brunak, S.; Blom, N. Prediction of proprotein convertase cleavage sites. Protein Engineering Design and Selection 2004, 17, 107–112.
  37. Zambon, M. C. Epidemiology and pathogenesis of influenza. Journal of Antimicrobial Chemotherapy 1999, 44, 3–9.
  38. Young, J. A. T.; Collier, R. J. Anthrax toxin: receptor binding, internalization, pore formation, and translocation. Annu Rev Biochem 2007, 76, 243–265.
  39. Garten, W.; Klenk, H.-D. Cleavage Activation of the Influenza Virus Hemagglutinin and Its Role in Pathogenesis. In Avian Influenza. Klenk, H.-D.; Matrosovich, M.; Stech, J., Eds.; Karger: Basel; pp. 156–167.
  40. Rohowsky-Kochan, C.; Dowling, P. C.; Cook, S. D. Canine distemper virus-specific antibodies in multiple sclerosis. Neurology 1995, 45, 1554–1560.
  41. Cross, K. J.; Langley, W. A.; Russell, R. J.; Skehel, J. J.; Steinhauer, D. A. Composition and functions of the influenza fusion peptide. Protein Pept Lett 2009, 16, 766–778.
  42. Gong, J.; Fang, H.; Li, M.; Liu, Y.; Yang, K.; Liu, Y.; Xu, W. Potential targets and their relevant inhibitors in anti-influenza fields. Curr Med Chem 2009, 16, 3716–3739.
  43. Blockade of furin activity and furin-induced tumor cells malignant phenotypes by the chemically synthesized human furin prodomain. Curr Med Chem 2010, 17, 2214–2221.
  44. Tian, S.; Huang, Q.; Fang, Y.; Wu, J. FurinDB: A database of 20-residue furin cleavage site motifs, substrates and their associated drugs. Int J Mol Sci 2011, 12, 1060–1065.
  45. Gabriel, G.; Klingel, K.; Otte, A.; Thiele, S.; Hudjetz, B.; Arman-Kalcek, G.; Sauter, M.; Shmidt, T.; Rother, F.; Baumgarte, S.; Keiner, B.; Hartmann, E.; Bader, M.; Brownlee, G. G.; Fodor, E.; Klenk, H.-D. Differential use of importin-alpha isoforms governs cell tropism and host adaptation of influenza virus. Nat Commun 2011, 2, 156–162.
  46. Karle, I. L.; Balaram, P. Structural characteristics of alpha-helical peptide molecules containing Aib residues. Biochemistry 1990, 29, 6747–6756.
  47. Joliot, A. H.; Triller, A.; Volovitch, M.; Pernelle, C.; Prochiantz, A. alpha-2,8- Polysialic acid is the neuronal surface receptor of antennapedia homeobox peptide. New Biol 1991, 3, 1121–1134.
  48. Henrich, S.; Lindberg, I.; Bode, W.; Than, M. Proprotein convertase models based on the crystal structures of furin and kexin: explanation of their specificity. J Mol Biol 2005, 345, 211–227.
  49. Kacprzak, M.; Peinado, J.; Than, M.; Appel, J.; Henrich, S.; Lipkind, G.; Houghten, R.; Bode, W.; Lindberg, I. Inhibition of furin by polyarginine-containing peptides: nanomolar inhibition by nona-D-arginine. J Biol Chem 2004, 279, 36788–36794.
  50. Katritzky, A. R.; Rogovoy, B. V. Recent developments in guanylating agents. ARKIVOC, 2005, 49–87.
  51. Joullié, M. M.; Lassen, K. M. Evolution of amide bond formation. ARKIVOC 2010, 189–250.
  52. Stawowy, P.; Fleck, E. Proprotein convertases furin and PC5: targeting atherosclerosis and restenosis at multiple levels. J Mol Med (Berl) 2005, 83, 865–875.
  53. S )-[[[(1,1-dimethylethyl)amino]carbonyl]amino]-3,3-dimethyl-1-oxobutyl]-6,6- dimethyl-3-azabicyclo[3.1.0]hexan-2(S )-carboxamide (Sch 503034) II. Key Steps in Structure-Based Optimization. J. Med. Chem. 2007, 50, 2310–2318.
  54. Bennett, B. D.; Denis, P.; Haniu, M.; Teplow, D. B.; Kahn, S.; Louis, J. C.; Citron, M.; Vassar, R. A furin-like convertase mediates propeptide cleavage of BACE, the Alzheimer's beta -secretase. J Biol Chem 2000, 275, 37712–37717.
  55. Bisel, P.; Al-Momani, L.; Müller, M. The tert-butyl group in chemistry and biology.
  56. Thacker, C.; Rose, A. M. A look at the Caenorhabditis elegans Kex2/Subtilisin-like proprotein convertase family. Bioessays 2000, 22, 545–553.
  57. Agrawal, A.; Pulendran, B. Anthrax lethal toxin: a weapon of multisystem destruction. Cell Mol Life Sci 2004, 61, 2859–2865.
  58. Liu, S.; Schubert, R. L.; Bugge, T. H.; Leppla, S. H. Anthrax toxin: structures, functions and tumour targeting. Expert Opin Biol Ther 2003, 3, 843–853.
  59. Futaki, S. Arginine-rich Peptides. An abundant source of membrane-permeable petpides having potential as carriers for intracellular protein delivery. J Biol Chem 2000, 276, 5836– 5840.
  60. Coppola, J. M.; Bhojani, M. S.; Ross, B. D.; Rehemtulla, A. A small-molecule furin inhibitor inhibits cancer cell motility and invasiveness. Neoplasia 2008, 10, 363–370.
  61. Hallbrink, M.; Floren, A.; Elmquist, A.; Pooga, M.; Bartfai, T.; Langel, U. Cargo delivery kinetics of cell-penetrating peptides. Biochim Biophys Acta 2001, 1515, 101–109.
  62. Messling, V. von; Milosevic, D.; Devaux, P.; Cattaneo, R. Canine distemper virus and measles virus fusion glycoprotein trimers: partial membrane-proximal ectodomain cleavage enhances function. J Virol 2004, 78, 7894–7903.
  63. Milletti, F. Cell-penetrating peptides: classes, origin, and current landscape. Drug Discovery Today 2012, 17, 850–860.
  64. Zorko, M.; Langel, U. Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev 2005, 57, 529–545.
  65. López-Otín, C.; Matrisian, L. M. Emerging roles of proteases in tumour suppression. Nat Rev Cancer 2007, 7, 800–808.
  66. Komiyama, T.; Fuller, R. S. Engineered eglin c variants inhibit yeast and human proprotein processing proteases, Kex2 and furin. Biochemistry 2000, 39, 15156–15165.
  67. Copeland, R. A. Evaluation of enzyme inhibitors in drug discovery; Wiley: Hoboken, N.J, 2013.
  68. D'Anjou, F.; Routhier, S.; Perreault, J.-P.; Latil, A.; Bonnel, D.; Fournier, I.; Salzet, M.; Day, R. Molecular Validation of PACE4 as a Target in Prostate Cancer. Transl Oncol 2011, 4, 157–172.
  69. Thomas, G. Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat Rev Mol Cell Biol 2002, 3, 753–766.
  70. Mahmoudian, J.; Hadavi, R.; Jeddi-Tehrani, M.; Mahmoudi, A. R.; Bayat, A. A.; Shaban, E.; Vafakhah, M.; Darzi, M.; Tarahomi, M.; Ghods, R. Comparison of the Photobleaching and Photostability Traits of Alexa Fluor 568-and Fluorescein Isothiocyanate- conjugated Antibody. Cell J 2011, 13, 169–172.
  71. Kowalska, D.; Liu, J.; Appel, J.; Ozawa, A.; Nefzi, A.; Mackin, R.; Houghten, R.; Lindberg, I. Synthetic small-molecule prohormone convertase 2 inhibitors. Mol Pharmacol 2009, 75, 617–625.
  72. Apletalina, E.; Appel, J.; Lamango, N. S.; Houghten, R. A.; Lindberg, I. Identification of inhibitors of prohormone convertases 1 and 2 using a peptide combinatorial library. J Biol Chem 1998, 273, 26589–26595.
  73. Hallenberger, S.; Bosch, V.; Angliker, H.; Shaw, E.; Klenk, H. D.; Garten, W. Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein gp160. Nature 1992, 360, 358–361.
  74. Anderson, E. D.; Thomas, L.; Hayflick, J. S.; Thomas, G. Inhibition of HIV-1 gp160- dependent membrane fusion by a furin-directed alpha 1-antitrypsin variant. J Biol Chem 1993, 268, 24887–24891.
  75. Basak, A.; Cooper, S.; Roberge, A. G.; Banik, U. K.; Chretien, M.; Seidah, N. G. Inhibition of proprotein convertases-1, -7 and furin by diterpines of Andrographis paniculata and their succinoyl esters. Biochem J 1999, 338 (Pt 1), 107–113.
  76. Garten, W.; Stieneke, A.; Shaw, E.; Wikstrom, P.; Klenk, H. D. Inhibition of proteolytic activation of influenza virus hemagglutinin by specific peptidyl chloroalkyl ketones. Virology 1989, 172, 25–31.
  77. Dahlen, J. R.; Jean, F.; Thomas, G.; Foster, D. C.; Kisiel, W. Inhibition of soluble recombinant furin by human proteinase inhibitor 8. J Biol Chem 1998, 273, 1851–1854.
  78. Basak, A. Inhibitors of proprotein convertases. J Mol Med (Berl) 2005, 83, 844–855.
  79. Zhu, B.-Y.; Jia, Z. J.; Zhang, P.; Su, T.; Huang, W.; Goldman, E.; Tumas, D.; Kadambi, V.; Eddy, P.; Sinha, U.; Scarborough, R. M.; Song, Y. Inhibitory effect of carboxylic acid group on hERG binding. Bioorg Med Chem Lett 2006, 16, 5507–5512.
  80. Fuller, R. S.; Brake, A. J.; Thorner, J. Intracellular targeting and structural conservation of a prohormone-processing endoprotease. Science 1989, 246, 482–486.
  81. Sawant, R.; Torchilin, V. Intracellular transduction using cell-penetrating peptides. Mol. BioSyst. 2010, 6, 628.
  82. Sielaff, F.; Than, M.; Bevec, D.; Lindberg, I.; Steinmetzer, T. New furin inhibitors based on weakly basic amidinohydrazones. Bioorg Med Chem Lett 2011, 21, 836–840.
  83. Klebe, G.; Schlitzer, M. M2 inhibitors and neuraminidase inhibitors. Pharm Unserer Zeit 2011, 40, 144–150.
  84. Prochiantz, A. Messenger proteins: homeoproteins, TAT and others. Curr Opin Cell Biol 2000, 12, 400–406.
  85. Green, M.; Ishino, M.; Loewenstein, P. M. Mutational analysis of HIV-1 Tat minimal domain peptides: Identification of trans-dominant mutants that suppress HIV-LTR-driven gene expression. Cell 1989, 58, 215–223.
  86. New aza-dipeptide analogues as potent and orally absorbed HIV-1 protease inhibitors: candidates for clinical development. J Med Chem 1998, 41, 3387–3401.
  87. Schweinitz, A.; Stürzebecher, A.; Stürzebecher, U.; Schuster, O.; Stürzebecher, J.; Steinmetzer, T. New substrate analogue inhibitors of factor Xa containing 4- amidinobenzylamide as P1 residue: part 1. Med Chem 2006, 2, 349–361.
  88. Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. J Org Chem 1997, 62, 7512–7515.
  89. Schechter, I.; Berger, A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun 1967, 27, 157–162.
  90. Hatsuzawa, K.; Nagahama, M.; Takahashi, S.; Takada, K.; Murakami, K.; Nakayama, K. Purification and characterization of furin, a Kex2-like processing endoprotease, produced in Chinese hamster ovary cells. J Biol Chem 1992, 267, 16094–16099.
  91. Ponti, F. de; Poluzzi, E.; Montanaro, N. QT-interval prolongation by non-cardiac drugs: lessons to be learned from recent experience. Eur J Clin Pharmacol 2000, 56, 1–18.
  92. Krysan, D. J.; Rockwell, N. C.; Fuller, R. S. Quantitative characterization of furin specificity. Energetics of substrate discrimination using an internally consistent set of hexapeptidyl methylcoumarinamides. J Biol Chem 1999, 274, 23229–23234.
  93. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983, 65, 55–63.
  94. M.; Pruitt, J. R.; Weber, P. C.; Wexler, R. R. Rational design of boropeptide thrombin inhibitors: beta, beta-dialkyl-phenethylglycine P2 analogs of DuP 714 with greater selectivity over complement factor I and an improved safety profile. Bioorg Med Chem Lett 1998, 8, 301–306.
  95. Becker, G. L.; Lu, Y.; Hardes, K.; Strehlow, B.; Levesque, C.; Lindberg, I.; Sandvig, K.; Bakowsky, U.; Day, R.; Garten, W.; Steinmetzer, T. Highly potent inhibitors of proprotein convertase furin as potential drugs for treatment of infectious diseases. J Biol Chem 2012, 287, 21992–22003.
  96. Becker, G.; Sielaff, F.; Than, M.; Lindberg, I.; Routhier, S.; Day, R.; Lu, Y.; Garten, W.; Steinmetzer, T. Potent inhibitors of furin and furin-like proprotein convertases containing decarboxylated P1 arginine mimetics. J Med Chem 2010, 53, 1067–1075.
  97. Steinmetzer, T. Strategies for development of new influenza medication. Pharm Unserer Zeit 2011, 40, 160–168.
  98. Jacobson, I. C.; Reddy, P. G.; Wasserman, Z. R.; Hardman, K. D.; Covington, M. B.; Arner, E. C.; Copeland, R. A.; Decicco, C. P.; Magolda, R. L. Structure-based design and synthesis of a series of hydroxamic acids with a quaternary-hydroxy group in P1 as inhibitors of matrix metalloproteinases. Bioorg Med Chem Lett 1998, 8, 837–842.
  99. Angliker, H. Synthesis of tight binding inhibitors and their action on the proprotein- processing enzyme furin. J Med Chem 1995, 38, 4014–4018.
  100. Rawat, A.; Vaidya, B.; Khatri, K.; Goyal, A. K.; Gupta, P. N.; Mahor, S.; Paliwal, R.; Rai, S.; Vyas, S. P. Targeted intracellular delivery of therapeutics: an overview. Pharmazie 2007, 62, 643–658.
  101. Turk, B. Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 2006, 5, 785–799.
  102. Carrigan, C. N.; Imperiali, B. The engineering of membrane-permeable peptides. Anal Biochem 2005, 341, 290–298.
  103. Bodanszky, M.; Bodanszky, A. The practice of peptide synthesis; Springer-Verlag: Berlin, New York, 1994.
  104. Elices, M. J.; Osborn, L.; Takada, Y.; Crouse, C.; Luhowskyj, S.; Hemler, M. E.; Lobb, R. R. VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell 1990, 60, 577–584.
  105. Mahy, B. W. J.; Kangro, H. O. Virology methods manual; Academic Press: London, San Diego, 1996.
  106. Stürzebecher, A.; Donnecke, D.; Schweinitz, A.; Schuster, O.; Steinmetzer, P.; Stürzebecher, U.; Kotthaus, J.; Clement, B.; Stürzebecher, J.; Steinmetzer, T. Highly potent and selective substrate analogue factor Xa inhibitors containing D-homophenylalanine analogues as P3 residue: part 2. ChemMedChem 2007, 2, 1043–1053.
  107. Bassi, D. E.; Fu, J.; Lopez de Cicco, R.; Klein-Szanto, A. J. P. Proprotein convertases: "master switches" in the regulation of tumor growth and progression. Mol Carcinog 2005, 44, 151–161.
  108. Zambon, M. C. The pathogenesis of influenza in humans. Rev Med Virol 2001, 11, 227– 241.
  109. Hock, F. J.; Wirth, K.; Albus, U.; Linz, W.; Gerhards, H. J.; Wiemer, G.; Henke, S.; Breipohl, G.; König, W.; Knolle, J. Hoe 140 a new potent and long acting bradykinin- antagonist: in vitro studies. Br J Pharmacol 1991, 102, 769–773.
  110. Henrich, S.; Cameron, A.; Bourenkov, G. P.; Kiefersauer, R.; Huber, R.; Lindberg, I.; Bode, W.; Than, M. E. The crystal structure of the proprotein processing proteinase furin explains its stringent specificity. Nat Struct Biol 2003, 10, 520–526.
  111. Stone, S. R.; Hofsteenge, J. Kinetics of the inhibition of thrombin by hirudin. Biochemistry 1986, 25, 4622–4628.
  112. Bernatowicz, M. S.; Wu, Y.; Matsueda, G. R. 1H-Pyrazole-1-carboxamidine hydrochloride an attractive reagent for guanylation of amines and its application to peptide synthesis. J. Org. Chem. 1992, 57, 2497–2502.
  113. Manku, S.; Laplante, C.; Kopac, D.; Chan, T.; Hall, D. G. A mild and general solid- phase method for the synthesis of chiral polyamines. Solution studies on the cleavage of borane-amine intermediates from the reduction of secondary amides. J Org Chem 2001, 66, 874–885.
  114. Pasquato, A.; Ramos da Palma, J.; Galan, C.; Seidah, N. G.; Kunz, S. Viral envelope glycoprotein processing by proprotein convertases. Antiviral Res 2013, 99, 49–60.
  115. Evidence for involvement of furin in cleavage and activation of diphtheria toxin. J Biol Chem 1993, 268, 26461–26465.
  116. Matrosovich, M.; Stech, J.; Klenk, H. D. Influenza receptors, polymerase and host range. Rev Sci Tech 2009, 28, 203–217.
  117. Drake, B.; Patek, M.; Lebl, M. A Convenient Preparation of Monosubstituted N , N ′- di(Boc)-Protected Guanidines. Synthesis 1994, 1994, 579–582.
  118. Skehel, J. J.; Wiley, D. C. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 2000, 69, 531–569.
  119. Leduc, R.; Molloy, S. S.; Thorne, B. A.; Thomas, G. Activation of human furin precursor processing endoprotease occurs by an intramolecular autoproteolytic cleavage. J Biol Chem 1992, 267, 14304–14308.
  120. Lu, W.; Zhang, W.; Molloy, S. S.; Thomas, G.; Ryan, K.; Chiang, Y.; Anderson, S.; Laskowski, M., JR. Arg15-Lys17-Arg18 turkey ovomucoid third domain inhibits human furin. J Biol Chem 1993, 268, 14583–14585.
  121. Derossi, D.; Joliot, A. H.; Chassaing, G.; Prochiantz, A. The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 1994, 269, 10444–10450.
  122. Bravo, D. A.; Gleason, J. B.; Sanchez, R. I.; Roth, R. A.; Fuller, R. S. Accurate and efficient cleavage of the human insulin proreceptor by the human proprotein-processing protease furin. Characterization and kinetic parameters using the purified, secreted soluble protease expressed by a recombinant baculovirus. J Biol Chem 1994, 269, 25830–25837.
  123. Localization of furin to the trans-Golgi network and recycling from the cell surface involves Ser and Tyr residues within the cytoplasmic domain. J Biol Chem 1995, 270, 28397–28401.
  124. Zhong, M.; Munzer, J. S.; Basak, A.; Benjannet, S.; Mowla, S. J.; Decroly, E.; Chretien, M.; Seidah, N. G. The prosegments of furin and PC7 as potent inhibitors of proprotein convertases. In vitro and ex vivo assessment of their efficacy and selectivity. J Biol Chem 1999, 274, 33913–33920.
  125. Schweinitz, A.; Steinmetzer, T.; Banke, I. J.; Arlt, M. J. E.; Stürzebecher, A.; Schuster, O.; Geissler, A.; Giersiefen, H.; Zeslawska, E.; Jacob, U.; Kruger, A.; Sturzebecher, J. Design of Novel and Selective Inhibitors of Urokinase-type Plasminogen Activator with Improved Pharmacokinetic Properties for Use as Antimetastatic Agents. Journal of Biological Chemistry 2004, 279, 33613–33622.
  126. Citron, M. Alzheimer's disease: strategies for disease modification. Nat Rev Drug Discov 2010, 9, 387–398.
  127. Puente, X. S.; Sanchez, L. M.; Overall, C. M.; Lopéz-Otín, C. Human and mouse proteases: a comparative genomic approach. Nat Rev Genet 2003, 4, 544–558.
  128. Roebroek, A. J.; Schalken, J. A.; Leunissen, J. A.; Onnekink, C.; Bloemers, H. P.; van de Ven, W. J. Evolutionary conserved close linkage of the c-fes/fps proto-oncogene and genetic sequences encoding a receptor-like protein. EMBO J 1986, 5, 2197–2202.
  129. Anderson, E. D.; VanSlyke, J. K.; Thulin, C. D.; Jean, F.; Thomas, G. Activation of the furin endoprotease is a multiple-step process: requirements for acidification and internal propeptide cleavage. EMBO J 1997, 16, 1508–1518.
  130. Cui, Y. BMP-4 is proteolytically activated by furin and/or PC6 during vertebrate embryonic development. The EMBO Journal 1998, 17, 4735–4743.
  131. A.; Lim, Y.-P. Inter-alpha-inhibitor proteins are endogenous furin inhibitors and provide protection against experimental anthrax intoxication. Infect Immun 2005, 73, 5101–5105.
  132. Seidah, N. G.; Benjannet, S.; Pareek, S.; Savaria, D.; Hamelin, J.; Goulet, B.; Laliberte, J.; Lazure, C.; Chretien, M.; Murphy, R. A. Cellular processing of the nerve growth factor precursor by the mammalian pro-protein convertases. Biochem J 1996, 314 (Pt 3), 951–960.
  133. van Rompaey, L.; Ayoubi, T.; van de Ven, W.; Marynen, P. Inhibition of intracellular proteolytic processing of soluble proproteins by an engineered alpha 2-macroglobulin containing a furin recognition sequence in the bait region. Biochem J 1997, 326 (Pt 2), 507– 514.
  134. Nakayama, K. Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. Biochem J 1997, 327 (Pt 3), 625–635.
  135. Basak, A.; Lazure, C. Synthetic peptides derived from the prosegments of proprotein convertase 1/3 and furin are potent inhibitors of both enzymes. Biochem J 2003, 373, 231– 239.
  136. Bergeron, E.; Basak, A.; Decroly, E.; Seidah, N. Processing of alpha4 integrin by the proprotein convertases: histidine at position P6 regulates cleavage. Biochem J 2003, 373, 475–484.
  137. Dixon, M. The determination of enzyme inhibitor constants. Biochem J 1953, 55, 170– 171.
  138. Greene, C. E. Infectious diseases of the dog and cat; Elsevier/Saunders: St. Louis, Mo, 2012.
  139. Messling, V. von; Cattaneo, R. Amino-terminal precursor sequence modulates canine distemper virus fusion protein function. J Virol 2002, 76, 4172–4180.
  140. Böttcher, E.; Matrosovich, T.; Beyerle, M.; Klenk, H.-D.; Garten, W.; Matrosovich, M. Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. J Virol 2006, 80, 9896–9898.
  141. Watanabe, M.; Hirano, A.; Stenglein, S.; Nelson, J.; Thomas, G.; Wong, T. C. Engineered serine protease inhibitor prevents furin-catalyzed activation of the fusion glycoprotein and production of infectious measles virus. J Virol 1995, 69, 3206–3210.
  142. Pappenheimer, A. M., JR. Diphtheria toxin. Annu Rev Biochem 1977, 46, 69–94.
  143. Scamuffa, N.; Siegfried, G.; Bontemps, Y.; Ma, L.; Basak, A.; Cherel, G.; Calvo, F.; Seidah, N.; Khatib, A.-M. Selective inhibition of proprotein convertases represses the metastatic potential of human colorectal tumor cells. J Clin Invest 2008, 118, 352–363.
  144. Vey, M.; Schäfer, W.; Berghöfer, S.; Klenk, H. D.; Garten, W. Maturation of the trans- Golgi network protease furin: compartmentalization of propeptide removal, substrate cleavage, and COOH-terminal truncation. J Cell Biol 1994, 127, 1829–1842.
  145. Komiyama, T.; Coppola, J.; Larsen, M.; van, D.; Ross, B.; Day, R.; Rehemtulla, A.; Fuller, R. Inhibition of furin/proprotein convertase-catalyzed surface and intracellular processing by small molecules. J Biol Chem 2009, 284, 15729–15738.
  146. Hanson, S. R.; Harker, L. A. Interruption of acute platelet-dependent thrombosis by the synthetic antithrombin D-phenylalanyl-L-prolyl-L-arginyl chloromethyl ketone. Proc Natl Acad Sci U S A 1988, 85, 3184–3188.
  147. Fuchs, S. M.; Raines, R. T. Internalization of cationic peptides: the road less (or more?) traveled. Cell Mol Life Sci 2006, 63, 1819–1822.
  148. Böttcher-Friebertshäuser, E.; Freuer, C.; Sielaff, F.; Schmidt, S.; Eickmann, M.; Uhlendorff, J.; Steinmetzer, T.; Klenk, H. D.; Garten, W. Cleavage of Influenza Virus Hemagglutinin by Airway Proteases TMPRSS2 and HAT Differs in Subcellular Localization and Susceptibility to Protease Inhibitors. Journal of Virology 2010, 84, 5605–5614.
  149. Harrison, M. S.; Sakaguchi, T.; Schmitt, A. P. Paramyxovirus assembly and budding: Building particles that transmit infections. The International Journal of Biochemistry & Cell Biology 2010, 42, 1416–1429.
  150. Gamblin, S. J.; Skehel, J. J. Influenza Hemagglutinin and Neuraminidase Membrane Glycoproteins. Journal of Biological Chemistry 2010, 285, 28403–28409.
  151. Marjuki, H.; Gornitzky, A.; Marathe, B. M.; Ilyushina, N. A.; Aldridge, J. R.; Desai, G.; Webby, R. J.; Webster, R. G. Influenza A virus-induced early activation of ERK and PI3K mediates V-ATPase-dependent intracellular pH change required for fusion. Cellular Microbiology 2011, 13, 587–601.
  152. Molloy, S. S.; Thomas, L.; VanSlyke, J. K.; Stenberg, P. E.; Thomas, G. Intracellular trafficking and activation of the furin proprotein convertase: localization to the TGN and recycling from the cell surface. EMBO J 1994, 13, 18–33.
  153. Schäfer, W.; Stroh, A.; Berghöfer, S.; Seiler, J.; Vey, M.; Kruse, M. L.; Kern, H. F.; Klenk, H. D.; Garten, W. Two independent targeting signals in the cytoplasmic domain determine trans-Golgi network localization and endosomal trafficking of the proprotein convertase furin. EMBO J 1995, 14, 2424–2435.
  154. Liu, S.; Moayeri, M.; Leppla, S. H. Anthrax lethal and edema toxins in anthrax pathogenesis. Trends in Microbiology 2014, 22, 317–325.
  155. Collier, R. J. Diphtheria toxin: mode of action and structure. Bacteriol Rev 1975, 39, 54– 85.
  156. Webster, R. G.; Govorkova, E. A. Continuing challenges in influenza. Ann N Y Acad Sci 2014, 1323, 115-139.
  157. Stieneke-Gröber, A.; Vey, M.; Angliker, H.; Shaw, E.; Thomas, G.; Roberts, C.; Klenk, H. D.; Garten, W. Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMBO J 1992, 11, 2407–2414.
  158. Bassi, D. E.; Lopez De Cicco, R.; Mahloogi, H.; Zucker, S.; Thomas, G.; Klein-Szanto, A. J. Furin inhibition results in absent or decreased invasiveness and tumorigenicity of human cancer cells. Proc Natl Acad Sci U S A 2001, 98, 10326–10331.
  159. Jean, F.; Stella, K.; Thomas, L.; Liu, G.; Xiang, Y.; Reason, A. J.; Thomas, G. alpha1- Antitrypsin Portland, a bioengineered serpin highly selective for furin: application as an antipathogenic agent. Proc Natl Acad Sci U S A 1998, 95, 7293–7298.
  160. Morrison, J. F. Kinetics of the reversible inhibition of enzyme-catalysed reactions by tight-binding inhibitors. Biochim Biophys Acta 1969, 185, 269–286.
  161. Garten, W.; Hallenberger, S.; Ortmann, D.; Schäfer, W.; Vey, M.; Angliker, H.; Shaw, E.; Klenk, H. D. Processing of viral glycoproteins by the subtilisin-like endoprotease furin and its inhibition by specific peptidylchloroalkylketones. Biochimie 1994, 76, 217–225.
  162. D-Phe-Pro-p-Amidinobenzylamine: A potent and highly selective thrombin inhibitor.
  163. Klenk, H. D.; Garten, W. Host cell proteases controlling virus pathogenicity. Trends Microbiol 1994, 2, 39–43.
  164. Lei, X.; Basu, D.; Li, Z.; Zhang, M.; Rudic, R. D.; Jiang, X.-C.; Jin, W. Hepatic overexpression of the prodomain of furin lessens progression of atherosclerosis and reduces vascular remodeling in response to injury. Atherosclerosis 2014, 236, 121–130.
  165. Barlos, K.; Gatos, D.; Kallitsis, J.; Papaphotiu, G.; Sotiriu, P.; Wenqing, Y.; Schäfer, W. Darstellung geschützter Peptid-Fragmente unter Einsatz substituierter Triphenylmethyl- Harze. Tetrahedron Letters 1989, 30, 3943–3946.
  166. Ludwig, S.; Stitz, L.; Planz, O.; Van, H.; Fitch, W. M.; Scholtissek, C. European swine virus as a possible source for the next influenza pandemic? Virology 1995, 212, 555–561.
  167. Venkatraman, S. Discovery of boceprevir, a direct-acting NS3/4A protease inhibitor for treatment of chronic hepatitis C infections. Trends in Pharmacological Sciences 2012, 33, 289–294.
  168. Molloy, S. S.; Anderson, E. D.; Jean, F.; Thomas, G. Bi-cycling the furin pathway: from TGN localization to pathogen activation and embryogenesis. Trends Cell Biol 1999, 9, 28–35.
  169. Gupta, M. K.; Mishra, P.; Prathipati, P.; Saxena, A. K. 2D-QSAR in hydroxamic acid derivatives as peptide deformylase inhibitors and antibacterial agents. Bioorg Med Chem 2002, 10, 3713–3716.
  170. Mae, M.; Langel, U. Cell-penetrating peptides as vectors for peptide, protein and oligonucleotide delivery. Curr Opin Pharmacol 2006, 6, 509–514.
  171. Matrosovich, M.; Matrosovich, T.; Garten, W.; Klenk, H.-D. New low-viscosity overlay medium for viral plaque assays. Virol J 2006, 3, 63.
  172. van de Ven, W. J.; Voorberg, J.; Fontijn, R.; Pannekoek, H.; van den Ouweland, A. M.; van Duijnhoven, H. L.; Roebroek, A. J.; Siezen, R. J. Furin is a subtilisin-like proprotein processing enzyme in higher eukaryotes. Mol Biol Rep 1990, 14, 265–275.
  173. Creemers, J. W. M.; Khatib, A.-M. Knock-out mouse models of proprotein convertases: unique functions or redundancy? Front Biosci 2008, 13, 4960–4971.
  174. M. Generation and characterization of non-competitive furin-inhibiting nanobodies.
  175. Roebroek, A. J. M.; Taylor, N. A.; Louagie, E.; Pauli, I.; Smeijers, L.; Snellinx, A.; Lauwers, A.; van de Ven, W. J. M.; Hartmann, D.; Creemers, J. W. M. Limited redundancy of the proprotein convertase furin in mouse liver. J Biol Chem 2004, 279, 53442–53450.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten