Publikationsserver der Universitätsbibliothek Marburg

Titel:Identification and characterization of a novel cell-envelope subcomplex crucial for A-motility in M. xanthus
Autor:Jakobczak, Beata
Weitere Beteiligte: Søgaard-Andersen, Lotte (Prof. Dr.)
Veröffentlicht:2014
URI:https://archiv.ub.uni-marburg.de/diss/z2015/0044
DOI: https://doi.org/10.17192/z2015.0044
URN: urn:nbn:de:hebis:04-z2015-00440
DDC: Biowissenschaften, Biologie
Titel (trans.):Identifizierung und Charakterisierung eines für die A-Motilität ausschlaggebenden neuen Zellmembran-Unterkomplexes von M. xanthus
Publikationsdatum:2015-07-15
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Myxococcus xanthus, A-Motilität, Myxococcus xanthus, A-motility

Summary:
Myxococcus xanthus is a rod-shaped, Gram-negative bacterium that has two different motility systems: the A- and the S-motility system. A-motility allows the movement of single cells, while S-motility is cell-cell contact-dependent and is similar to twitching motility in other bacteria. If genes of one of the motility systems are deleted, cells remain motile by the means of the remaining system. The exact mechanism of A-motility is not known, however it has been shown to be powered by the H+ gradient across the cytoplasmic membrane through the AglRQS motor complex. One of the current A-motility models suggests that proteins involved in this system localize to multiple protein complexes referred to as FAs (Focal Adhesions) that are distributed along the cell body and fixed to the substratum in moving cells while a second model suggest a helical motor model. The FAs were suggested to span all subcellular compartments close to the gliding surface. So far, only few proteins essential for A-motility were found to localize to FAs. Notably, proteins localizing to the outer membrane have so far not been identified as components of FAs. In this study, the function of four proteins that were previously identified as essential for A-motility, GltK, GltB, GltA and GltC was investigated. Bioinformatic predictions suggested that these four proteins localize to the periplasm and outer membrane making them interesting to study as potential candidates for anchoring FAs to the substratum. It was demonstrated that GltB, GltA and GltC are dependent on each other for stability. Furthermore, interaction studies and fractionation analysis strongly indicate that these three A-motility proteins form a complex in the periplasm and outer membrane. Colocalization studies with AglZ revealed that GltB and GltA localize to FAs. Moreover, our analyses on protein localization demonstrate that GltK, GltB, GltA and GltC are essential for the assembly of FAs. Vice versa, GltB and GltA incorporation in to FAs depends on other components of FAs including AglZ, AglQ and MglA. Thus, our experiments uncovered the first outer membrane subcomplex essential for the formation of FAs involved in A-motility in M. xanthus.

Bibliographie / References

  1. Krogh, A., B. Larsson, G. von Heijne & E.L. Sonnhammer, (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of molecular biology 305: 567- 580.
  2. Pathak, D.T., X. Wei, A. Bucuvalas, D.H. Haft, D.L. Gerloff & D. Wall, (2012) Cell contact-dependent outer membrane exchange in myxobacteria: genetic determinants and mechanism. Plos Genet 8: e1002626.
  3. Wolgemuth, C., E. Hoiczyk, D. Kaiser & G. Oster, (2002a) How myxobacteria glide. Curr Biol 12: 369-377.
  4. Li, Y., R. Lux, A.E. Pelling, J.K. Gimzewski & W. Shi, (2005b) Analysis of type IV pilus and its associated motility in Myxococcus xanthus using an antibody reactive with native pilin and pili. Microbiology 151: 353-360.
  5. Rice, P., I. Longden & A. Bleasby, (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends in genetics : TIG 16: 276-277.
  6. Hodgkin, J. & D. Kaiser, (1979) Genetics of gliding motility in Myxococcus xanthus (Myxobacterales) -genes-controlling movement of single cells. Mol Gen Genet 171: 167-176.
  7. Mignot, T., (2007) The elusive engine in Myxococcus xanthus gliding motility. Cell Mol Life Sci 64: 2733-2745.
  8. Hoiczyk, E., (2000) Gliding motility in cyanobacteria: observations and possible explanations. Arch Microbiol 174: 11-17.
  9. Nakane, D., K. Sato, H. Wada, M.J. McBride & K. Nakayama, (2013) Helical flow of surface protein required for bacterial locomotion. Biophys J 104: 639a-639a.
  10. Bulyha, I., S. Lindow, L. Lin, K. Bolte, K. Wuichet, J. Kahnt, C. van der Does, M. Thanbichler & L. Sogaard-Andersen, (2013) Two small GTPases act in concert with the bactofilin cytoskeleton to regulate dynamic bacterial cell polarity. Developmental cell 25: 119-131.
  11. Kahnt, J., K. Aguiluz, J. Koch, A. Treuner-Lange, A. Konovalova, S. Huntley, M. Hoppert, L. Sogaard-Andersen & R. Hedderich, (2010) Profiling the outer membrane proteome during growth and development of the social bacterium Myxococcus xanthus by selective biotinylation and analyses of outer membrane vesicles. J Proteome Res 9: 5197-5208.
  12. Jarrell, K.F. & M.J. McBride, (2008) The surprisingly diverse ways that prokaryotes move. Nat Rev Microbiol 6: 466-476.
  13. Bowden, M.G. & H.B. Kaplan, (1998) The Myxococcus xanthus lipopolysaccharide O-antigen is required for social motility and multicellular development. Mol Microbiol 30: 275-284.
  14. Youderian, P., N. Burke, D.J. White & P.L. Hartzell, (2003) Identification of genes required for adventurous gliding motility in Myxococcus xanthus with the transposable element mariner. Mol Microbiol 49: 555-570.
  15. McBride, M.J., R.A. Weinberg & D.R. Zusman, (1989) "Frizzy" aggregation genes of the gliding bacterium Myxococcus xanthus show sequence References 118 similarities to the chemotaxis genes of enteric bacteria. PNAS 86: 424- 428.
  16. Cole, C., J.D. Barber & G.J. Barton, (2008) The Jpred 3 secondary structure prediction server. Nucleic acids research 36: W197-201.
  17. Remmert, M., D. Linke, A.N. Lupas & J. Soding, (2009) HHomp-prediction and classification of outer membrane proteins. Nucleic acids research 37: W446-W451.
  18. Dworkin, M. & H. Voelz, (1962) The formation and germination of microcysts in Myxococcus xanthus. Journal of general microbiology 28: 81-85.
  19. Bustamante, V.H., I. Martinez-Flores, H.C. Vlamakis & D.R. Zusman, (2004) Analysis of the Frz signal transduction system of Myxococcus xanthus shows the importance of the conserved C-terminal region of the cytoplasmic chemoreceptor FrzCD in sensing signals. Mol Microbiol 53: 1501-1513.
  20. Astling, D.P., J.Y. Lee & D.R. Zusman, (2006) Differential effects of chemoreceptor methylation-domain mutations on swarming and development in the social bacterium Myxococcus xanthus. Mol Microbiol 59: 45-55.
  21. Yu, R. & D. Kaiser, (2007) Gliding motility and polarized slime secretion. Mol Microbiol 63: 454-467.
  22. Inclan, Y.F., S. Laurent & D.R. Zusman, (2008) The receiver domain of FrzE, a CheA-CheY fusion protein, regulates the CheA histidine kinase activity and downstream signalling to the A-and S-motility systems of Myxococcus xanthus. Mol Microbiol 68: 1328-1339.
  23. Nan, B., E.M. Mauriello, I.H. Sun, A. Wong & D.R. Zusman, (2010a) A multi- protein complex from Myxococcus xanthus required for bacterial gliding motility. Mol Microbiol 76: 1539-1554.
  24. Wei, X., D.T. Pathak & D. Wall, (2011) Heterologous protein transfer within structured myxobacteria biofilms. Mol Microbiol 81: 315-326.
  25. Overgaard, M., S. Wegener-Feldbrugge & L. Sogaard-Andersen, (2006) The orphan response regulator DigR is required for synthesis of extracellular matrix fibrils in Myxcoccus xanthus. J Bacteriol 188: 4384-4394.
  26. McBride, M.J., (2001) Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. Annu Rev Microbiol 55: 49-75.
  27. Baron, D.M., K.S. Ralston, Z.P. Kabututu & K.L. Hill, (2007) Functional genomics in Trypanosoma brucei identifies evolutionarily conserved components of motile flagella. Journal of cell science 120: 478-491.
  28. Wartel, M., A. Ducret, S. Thutupalli, F. Czerwinski, A.V. Le Gall, E.M. Mauriello, P. Bergam, Y.V. Brun, J. Shaevitz & T. Mignot, (2013) A versatile class of cell surface directional motors gives rise to gliding motility and sporulation in Myxococcus xanthus. PLoS biology 11: e1001728.
  29. Mattick, J.S., (2002a) Type IV pili and twitching motility. Ann. Rev. Microbiol. 56: 289-314.
  30. Scheurwater, E.M. & L.L. Burrows, (2011) Maintaining network security: how macromolecular structures cross the peptidoglycan layer. Fems Microbiol Lett 318: 1-9.
  31. Evans, A.G.L., H.M. Davey, A. Cookson, H. Currinn, G. Cooke-Fox, P.J. Stanczyk & D.E. Whitworth, (2012) Predatory activity of Myxococcus xanthus outer-membrane vesicles and properties of their hydrolase cargo. Microbiol-Sgm 158: 2742-2752.
  32. Behmlander, R.M. & M. Dworkin, (1991) Extracellular fibrils and contact- mediated cell interactions in Myxococcus xanthus. J Bacteriol 173: 7810- 7820.
  33. Shi, X.Q., S. Wegener-Feldbrugge, S. Huntley, N. Hamann, R. Hedderich & L. Sogaard-Andersen, (2008) Bioinformatics and experimental analysis of proteins of two-component systems in Myxococcus xanthus. J Bacteriol 190: 613-624.
  34. Wei, X., C.N. Vassallo, D.T. Pathak & D. Wall, (2014) Myxobacteria produce outer membrane enclosed tubes in unstructured environments. J Bacteriol.
  35. Xie, H., M.A. Pallero, K. Gupta, P. Chang, M.F. Ware, W. Witke, D.J. Kwiatkowski, D.A. Lauffenburger, J.E. Murphy-Ullrich & A. Wells, (1998) EGF receptor regulation of cell motility: EGF induces disassembly of focal adhesions independently of the motility-associated PLCgamma signaling pathway. Journal of cell science 111 ( Pt 5): 615-624.
  36. Bradford, M.M., (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 72: 248-254.
  37. McBride, M.J., (2000) Bacterial gliding motility: mechanisms and mysteries. Asm News 66: 203-210.
  38. Remis, J.P., D. Wei, A. Gorur, M. Zemla, J. Haraga, S. Allen, H.E. Witkowska, J.W. Costerton, J.E. Berleman & M. Auer, (2014) Bacterial social networks: structure and composition of Myxococcus xanthus outer membrane vesicle chains. Environmental microbiology 16: 598-610.
  39. Harshey, R.M., (1994) Bees arent the only ones -swarming in gram-negative bacteria. Mol Microbiol 13: 389-394.
  40. Laemmli, U.K., (1970) Cleavage of structural proteins during assembly of head of bacteriophage-T4. Nature 227: 680-&.
  41. O'Connor, K.A. & D.R. Zusman, (1991b) Development in Myxococcus xanthus involves differentiation into 2 cell-types, peripheral rods and spores. J Bacteriol 173: 3318-3333.
  42. Mignot, T., J.W. Shaevitz, P.L. Hartzell & D.R. Zusman, (2007) Evidence that focal adhesion complexes power bacterial gliding motility. Science 315: 853-856.
  43. Spormann, A.M., (1999) Gliding motility in bacteria: Insights from studies of Myxococcus xanthus. Microbiology and molecular biology reviews : MMBR 63: 621-+.
  44. Tudyka, T. & A. Skerra, (1997) Glutathione S-transferase can be used as a C- terminal, enzymatically active dimerization module for a recombinant References 121
  45. Sambrook, J., Fritsch, E.F., Maniatis, T., (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory Press. References 120
  46. Wachi, M., M. Doi, S. Tamaki, W. Park, S. Nakajima-Iijima & M. Matsuhashi, (1987) Mutant isolation and molecular cloning of mre genes, which determine cell shape, sensitivity to mecillinam, and amount of penicillin- binding proteins in Escherichia coli. J Bacteriol 169: 4935-4940.
  47. Cuthbertson, L., I.L. Mainprize, J.H. Naismith & C. Whitfield, (2009) Pivotal roles of the outer membrane polysaccharide export and polysaccharide copolymerase protein families in export of extracellular polysaccharides in gram-negative bacteria. Microbiology and molecular biology reviews : MMBR 73: 155-177.
  48. Nudleman, E., D. Wall & D. Kaiser, (2006) Polar assembly of the type IV pilus secretin in Myxococcus xanthus. Mol Microbiol 60: 16-29.
  49. J Bacteriol 187: 5578-5584. van den Ent, F., L.A. Amos & J. Lowe, (2001) Prokaryotic origin of the actin cytoskeleton. Nature 413: 39-44.
  50. protease inhibitor, and functionally secreted into the periplasm of Escherichia coli. Protein Sci 6: 2180-2187.
  51. Baker, M.D., P.M. Wolanin & J.B. Stock, (2006) Signal transduction in bacterial chemotaxis. Bioessays 28: 9-22.
  52. Reichenbach, H., (1999) The ecology of the myxobacteria. Environmental microbiology 1: 15-21.
  53. Ridley, A.J. & A. Hall, (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70: 389-399.
  54. Postle, K. & R.J. Kadner, (2003) Touch and go: tying TonB to transport. Mol Microbiol 49: 869-882.
  55. Razin, S., D. Yogev & Y. Naot, (1998) Molecular biology and pathogenicity of mycoplasmas. Microbiology and molecular biology reviews : MMBR 62: 1094-1156.
  56. van Geest, M. & J.S. Lolkema, (2000) Membrane topology and insertion of membrane proteins: Search for topogenic signals. Microbiology and molecular biology reviews : MMBR 64: 13-+.
  57. O'Toole, G.A. & R. Kolter, (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30: 295-304.
  58. Hager, A.J., D.L. Bolton, M.R. Pelletier, M.J. Brittnacher, L.A. Gallagher, R. Kaul, S.J. Skerrett, S.I. Miller & T. Guina, (2006) Type IV pili-mediated secretion modulates Francisella virulence. Mol Microbiol 62: 227-237.
  59. Inclan, Y.F., H.C. Vlamakis & D.R. Zusman, (2007) FrzZ, a dual CheY-like response regulator, functions as an output for the Frz chemosensory pathway of Myxococcus xanthus. Mol Microbiol 65: 90-102.
  60. Pelicic, V., (2008) Type IV pili: e pluribus unum? Mol Microbiol 68: 827-837.
  61. Nan, B.Y., E.M.F. Mauriello, I.H. Sun, A. Wong & D.R. Zusman, (2010b) A multi-protein complex from Myxococcus xanthus required for bacterial gliding motility. Mol Microbiol 76: 1539-1554.
  62. Muller, F.D., C.W. Schink, E. Hoiczyk, E. Cserti & P.I. Higgs, (2012) Spore formation in Myxococcus xanthus is tied to cytoskeleton functions and polysaccharide spore coat deposition. Mol Microbiol 83: 486-505.
  63. Petersen, T.N., S. Brunak, G. von Heijne & H. Nielsen, (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature methods 8: 785-786.
  64. Henrichsen, J., (1983) Twitching Motility. Annu Rev Microbiol 37: 81-93.
  65. Blatch, G.L. & M. Lassle, (1999) The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays 21: 932-939.
  66. Stock, A.M., V.L. Robinson & P.N. Goudreau, (2000) Two-component signal transduction. Annual review of biochemistry 69: 183-215.
  67. Miyata, M., (2010) Unique centipede mechanism of Mycoplasma gliding. Annu Rev Microbiol 64: 519-537.
  68. Dubnau, D., (1999) DNA uptake in bacteria. Annu Rev Microbiol 53: 217-244.
  69. Shimkets, L.J., (1999a) Intercellular signaling during fruiting-body development of Myxococcus xanthus. Annu. Rev. Microbiol. 53: 525-549.
  70. Esue, O., M. Cordero, D. Wirtz & Y. Tseng, (2005) The assembly of MreB, a prokaryotic homolog of actin. The Journal of biological chemistry 280: 2628-2635.
  71. Zaidel-Bar, R., C. Ballestrem, Z. Kam & B. Geiger, (2003) Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells. Journal of cell science 116: 4605-4613.
  72. Craig, L., M.E. Pique & J.A. Tainer, (2004) Type IV pilus structure and bacterial pathogenicity. Nat Rev Microbiol 2: 363-378.
  73. Mauriello, E.M.F., B.Y. Nan & D.R. Zusman, (2009) AglZ regulates adventurous (A-) motility in Myxococcus xanthus through its interaction with the cytoplasmic receptor, FrzCD. Mol Microbiol 72: 964-977.
  74. Licking, E., L. Gorski & D. Kaiser, (2000) A common step for changing cell shape in fruiting body and starvation-independent sporulation of Myxococcus xanthus. J Bacteriol 182: 3553-3558.
  75. Li, Y., V.H. Bustamante, R. Lux, D. Zusman & W. Shi, (2005a) Divergent regulatory pathways control A and S motility in Myxococcus xanthus through FrzE, a CheA-CheY fusion protein. J Bacteriol 187: 1716-1723.
  76. Wall, D., S.S. Wu & D. Kaiser, (1998) Contact stimulation of Tgl and type IV pili in Myxococcus xanthus. J Bacteriol 180: 759-761.
  77. Seto, S., A. Uenoyama & M. Miyata, (2005) Identification of a 521-kilodalton protein (Gli521) involved in force generation or force transmission for Mycoplasma mobile gliding. J Bacteriol 187: 3502-3510.
  78. Uenoyama, A. & M. Miyata, (2005) Identification of a 123-kilodalton protein (Gli123) involved in machinery for gliding motility of Mycoplasma mobile.
  79. Maier, B., L. Potter, M. So, H.S. Seifert & M.P. Sheetz, (2002) Single pilus motor forces exceed 100 pN. PNAS 99: 16012-16017.
  80. Katz, B.Z., E. Zamir, A. Bershadsky, Z. Kam, K.M. Yamada & B. Geiger, (2000) Physical state of the extracellular matrix regulates the structure and molecular composition of cell-matrix adhesions. Molecular biology of the cell 11: 1047-1060.
  81. Raymond, K.N., E.A. Dertz & S.S. Kim, (2003) Enterobactin: An archetype for microbial iron transport. PNAS 100: 3584-3588.
  82. Julien, B., A.D. Kaiser & A. Garza, (2000) Spatial control of cell differentiation in Myxococcus xanthus. PNAS 97: 9098-9103.
  83. Charest, P.G. & R.A. Firtel, (2007) Big roles for small GTPases in the control of directed cell movement. The Biochemical journal 401: 377-390.
  84. Francetic, O., N. Buddelmeijer, S. Lewenza, C.A. Kumamoto & A.P. Pugsley, (2007) Signal recognition particle-dependent inner membrane targeting of the PulG Pseudopilin component of a type II secretion system. J Bacteriol 189: 1783-1793.
  85. Leonardy, S., G. Freymark, S. Hebener, E. Ellehauge & L. Sogaard-Andersen, (2007) Coupling of protein localization and cell movements by a dynamically localized response regulator in Myxococcus xanthus. Embo J 26: 4433-4444.
  86. O'Connor, K.A. & D.R. Zusman, (1991a) Analysis of Myxococcus xanthus cell types by two-dimensional polyacrylamide gel electrophoresis. J Bacteriol 173: 3334-3341.
  87. Miyamoto, S., H. Teramoto, O.A. Coso, J.S. Gutkind, P.D. Burbelo, S.K. Akiyama & K.M. Yamada, (1995b) Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. The Journal of cell biology 131: 791-805.
  88. Hartzell, P. & D. Kaiser, (1991) Function of Mgla, a 22-Kilodalton protein essential for gliding in Myxococcus xanthus. J Bacteriol 173: 7615-7624.
  89. Nakane, D. & M. Miyata, (2007) Cytoskeletal "jellyfish" structure of Mycoplasma mobile. PNAS 104: 19518-19523.
  90. Zusman, D.R., (1982) "Frizzy" mutants: a new class of aggregation-defective developmental mutants of Myxococcus xanthus. J Bacteriol 150: 1430- 1437.
  91. Levine, (1988) Toxin, Toxin-Coregulated Pili, and the Toxr Regulon Are Essential for Vibrio-Cholerae Pathogenesis in Humans. J Exp Med 168: 1487-1492.
  92. Jakovljevic, V., S. Leonardy, M. Hoppert & L. Sogaard-Andersen, (2008) PilB and PilT are ATPases acting antagonistically in type IV pilus function in Myxococcus xanthus. J Bacteriol 190: 2411-2421.
  93. Rosenberg, E., K.H. Keller & M. Dworkin, (1977) Cell Density-Dependent Growth of Myxococcus xanthus on Casein. J Bacteriol 129: 770-777.
  94. Wireman, J.W. & M. Dworkin, (1977) Developmentally induced autolysis during fruiting body formation by Myxococcus xanthus. J Bacteriol 129: 798- 802.
  95. Sun, H., Z. Yang & W. Shi, (1999) Effect of cellular filamentation on adventurous and social gliding motility of Myxococcus xanthus. PNAS 96: 15178-15183.
  96. Clausen, M., V. Jakovljevic, L. Sogaard-Andersen & B. Maier, (2009) High-force generation is a conserved property of type IV pilus systems. J Bacteriol 191: 4633-4638.
  97. Berleman, J.E. & J.R. Kirby, (2009) Deciphering the hunting strategy of a bacterial wolfpack. Fems Microbiol Rev 33: 942-957.
  98. Bulyha, I., C. Schmidt, P. Lenz, V. Jakovljevic, A. Hone, B. Maier, M. Hoppert & L. Sogaard-Andersen, (2009) Regulation of the type IV pili molecular machine by dynamic localization of two motor proteins. Mol Microbiol 74: 691-706.
  99. Mauriello, E.M., F. Mouhamar, B. Nan, A. Ducret, D. Dai, D.R. Zusman & T. Mignot, (2010a) Bacterial motility complexes require the actin-like protein, MreB and the Ras homologue, MglA. Embo J 29: 315-326.
  100. Muller, F.D., A. Treuner-Lange, J. Heider, S.M. Huntley & P.I. Higgs, (2010) Global transcriptome analysis of spore formation in Myxococcus xanthus reveals a locus necessary for cell differentiation. BMC genomics 11: 264.
  101. Zhang, Y., M. Franco, A. Ducret & T. Mignot, (2010) A bacterial Ras-like small GTP-binding protein and its cognate GAP establish a dynamic spatial polarity axis to control directed motility. PLoS biology 8.
  102. Leonardy, S., M. Miertzschke, I. Bulyha, E. Sperling, A. Wittinghofer & L. Sogaard-Andersen, (2010) Regulation of dynamic polarity switching in bacteria by a Ras-like G-protein and its cognate GAP. Embo J 29: 2276- 2289.
  103. Nan, B.Y., J. Chen, J.C. Neu, R.M. Berry, G. Oster & D.R. Zusman, (2011) Myxobacteria gliding motility requires cytoskeleton rotation powered by proton motive force. PNAS 108: 2498-2503.
  104. Kearns, D.B., (2010) A field guide to bacterial swarming motility. Nat Rev Microbiol 8: 634-644.
  105. Sudo, S.Z. & M. Dworkin, (1969) Resistance of vegetative cells and microcysts of Myxococcus xanthus. J Bacteriol 98: 883-887.
  106. Berleman, J.E., J.J. Vicente, A.E. Davis, S.Y. Jiang, Y.E. Seo & D.R. Zusman, (2011) FrzS regulates social motility in Myxococcus xanthus by controlling exopolysaccharide production. PLoS One 6: e23920.
  107. Luciano, J., R. Agrebi, A.V. Le Gall, M. Wartel, F. Fiegna, A. Ducret, C. Brochier-Armanet & T. Mignot, (2011) Emergence and modular evolution of a novel motility machinery in bacteria. Plos Genet 7.
  108. van Teeffelen, S., S. Wang, L. Furchtgott, K.C. Huang, N.S. Wingreen, J.W. Shaevitz & Z. Gitai, (2011) The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. PNAS 108: 15822-15827.
  109. Kimura, Y., S. Yamashita, Y. Mori, Y. Kitajima & K. Takegawa, (2011) A Myxococcus xanthus bacterial tyrosine kinase, BtkA, is required for the formation of mature spores. J Bacteriol 193: 5853-5857.
  110. Miertzschke, M., C. Koerner, I.R. Vetter, D. Keilberg, E. Hot, S. Leonardy, L. Sogaard-Andersen & A. Wittinghofer, (2011) Structural analysis of the Ras-like G protein MglA and its cognate GAP MglB and implications for bacterial polarity. Embo J 30: 4185-4197.
  111. Patryn, J., K. Allen, K. Dziewanowska, R. Otto & P.L. Hartzell, (2010) Localization of MglA, an essential gliding motility protein in Myxococcus xanthus. Cytoskeleton 67: 322-337.
  112. Garner, E.C., R. Bernard, W. Wang, X. Zhuang, D.Z. Rudner & T. Mitchison, (2011) Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science 333: 222-225.
  113. Pathak, D.T. & D. Wall, (2012) Identification of the cglC, cglD, cglE, and cglF genes and their role in cell contact-dependent gliding motility in Myxococcus xanthus. J Bacteriol 194: 1940-1949.
  114. Shrivastava, A., R.G. Rhodes, S. Pochiraju, D. Nakane & M.J. McBride, (2012) Flavobacterium johnsoniae RemA is a mobile cell surface lectin involved in gliding. J Bacteriol 194: 3678-3688.
  115. Zhang, Y., M. Guzzo, A. Ducret, Y.Z. Li & T. Mignot, (2012) A dynamic response regulator protein modulates G-protein-dependent polarity in the bacterium Myxococcus xanthus. Plos Genet 8: e1002872.
  116. Keilberg, D., K. Wuichet, F. Drescher & L. Sogaard-Andersen, (2012) A response regulator interfaces between the Frz chemosensory system and the MglA/MglB GTPase/GAP module to regulate polarity in Myxococcus xanthus. Plos Genet 8: e1002951.
  117. Uenoyama, A., A. Kusumoto & M. Miyata, (2004) Identification of a 349- kilodalton protein (Gli349) responsible for cytadherence and glass binding during gliding of Mycoplasma mobile. J Bacteriol 186: 1537- 1545.
  118. Skerker, J.M. & H.C. Berg, (2001) Direct observation of extension and retraction of type IV pili. PNAS 98: 6901-6904.
  119. Nan, B.Y., J.N. Bandaria, A. Moghtaderi, I.H. Sun, A. Yildiz & D.R. Zusman, (2013) Flagella stator homologs function as motors for myxobacterial gliding motility by moving in helical trajectories. PNAS 110: E1508- E1513.
  120. Shrivastava, A., J.J. Johnston, J.M. van Baaren & M.J. McBride, (2013) Flavobacterium johnsoniae GldK, GldL, GldM, and SprA are required for secretion of the cell surface gliding motility adhesins SprB and RemA. J Bacteriol 195: 3201-3212.
  121. Ducret, A., B. Fleuchot, P. Bergam & T. Mignot, (2013) Direct live imaging of cell-cell protein transfer by transient outer membrane fusion in Myxococcus xanthus. Elife 2.
  122. Friedrich, C., I. Bulyha & L. Sogaard-Andersen, (2014) Outside-in assembly pathway of the type IV pilus system in Myxococcus xanthus. J Bacteriol 196: 378-390.
  123. Blackhart, B.D. & D.R. Zusman, (1985) Frizzy genes of Myxococcus xanthus are involved in control of frequency of reversal of gliding motility. PNAS 82: 8767-8770.
  124. Bean, G.J., S.T. Flickinger, W.M. Westler, M.E. McCully, D. Sept, D.B. Weibel & K.J. Amann, (2009) A22 disrupts the bacterial actin cytoskeleton by directly binding and inducing a low-affinity state in MreB. Biochemistry 48: 4852-4857.
  125. Siewering, K., S. Jain, C. Friedrich, M.T. Webber-Birungi, D.A. Semchonok, I. Binzen, A. Wagner, S. Huntley, J. Kahnt, A. Klingl, E.J. Boekema, L. Sogaard-Andersen & C. van der Does, (2014) Peptidoglycan-binding protein TsaP functions in surface assembly of type IV pili. PNAS 111: E953-961.
  126. Kaiser, D., (1979a) Social gliding is correlated with the presence of pili in Myxococcus xanthus. PNAS 76: 5952-5956.
  127. Shi, W. & D.R. Zusman, (1993) The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces. Proc. Natl. Acad. Sci. USA 90: 3378-3382.
  128. Nunn, D.N. & S. Lory, (1991) Product of the Pseudomonas aeruginosa gene pilD is a prepilin leader peptidase. PNAS 88: 3281-3285.
  129. Yang, R., S. Bartle, R. Otto, A. Stassinopoulos, M. Rogers, L. Plamann & P. Hartzell, (2004a) AglZ is a filament-forming coiled-coil protein required for adventurous gliding motility of Myxococcus xanthus. J Bacteriol 186: 6168-6178.
  130. Domian, I.J., K.C. Quon & L. Shapiro, (1997) Cell type-specific phosphorylation and proteolysis of a transcriptional regulator controls the G1-to-S transition in a bacterial cell cycle. Cell 90: 415-424.
  131. Craig, L. & J. Li, (2008) Type IV pili: paradoxes in form and function. Current opinion in structural biology 18: 267-277.
  132. Miyamoto, S., S.K. Akiyama & K.M. Yamada, (1995a) Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function. Science 267: 883-885.
  133. Sun, M., M. Wartel, E. Cascales, J.W. Shaevitz & T. Mignot, (2011a) Motor- driven intracellular transport powers bacterial gliding motility. Proc Natl Acad Sci U S A 108: 7559-7564.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten