Publikationsserver der Universitätsbibliothek Marburg

Titel:Synergistische Wirkung des Farnesyltransferaseinhibitors Lonafarnib und des Kinaseinhibitors Flavopiridol auf Proliferation und Zellzyklus von Ovarialkarzinomzellen in vitro
Autor:Heimbach, Sandy geb. Christiani
Weitere Beteiligte: Wagner, Uwe, Prof. Dr.
Veröffentlicht:2014
URI:https://archiv.ub.uni-marburg.de/diss/z2014/0799
URN: urn:nbn:de:hebis:04-z2014-07993
DOI: https://doi.org/10.17192/z2014.0799
DDC: Medizin
Titel (trans.):Synergistic effects of the Farnesyltransferaseinhibitor Lonafarnib and the Kinaseinhibitor Flavopiridol on proliferation and cellcycle of ovarian cancer cells in vitro
Publikationsdatum:2015-01-05
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Kinaseinhibitor, Eierstockkrebs, Kinaseinhibitor, Zellzyklus, Flavopiridol, Lonafarnib, Chemotherapie, Targeted Therapy, Farnesyltransferaseinhibitor, Farnesyltransferaseinhibitor, Flavopiridol, Lonafarnib, Targeted Therapy

Zusammenfassung:
Einer der am häufigsten zum Tode führenden malignen Tumore der Frau ist das Ovarialkarzinom. Bei der Ersttherapie ist immer noch die radikale chirurgische Resektion maßgeblich; gefolgt von einer Platin-haltigen Kombinationschemotherapie. Trotz guter initialer Therapieerfolge ist die Rezidivrate sehr hoch. Auch wegen einer Chemoresistenz besteht die Notwendigkeit neuer Therapieoptionen wie zum Beispiel zielgerichteter Therapeutika. Medikamente der targeted therapy wirken selektiv zumeist über entweder eine Hemmung von Rezeptoren und Liganden oder Molekülen in der Signaltransduktion. Lonafarnib hemmt die Farnesylierung von H-Ras und somit eine Verankerung in der Zellmembran. Daneben scheinen weitere Angriffspunkte andere farnesylierte Proteine wie kleine G-Proteine, RHEB oder zentromer-Binding-Proteine zu sein. Lonfarnib kann außerdem über eine CHOP-abhängige Hochregulierung die DR5-Expression und eine folgende Kaspase-8-Aktivierung Apoptose induzieren. Es wirkt als oral verfügbarer Farnesyltransferaseinhibitor antitumorös in Ras-abhängigen und Ras-unabhängigen Neoplasien. Bei soliden Tumoren mit einer hohen Ras-Mutations-Inzidenz zeigt sich Lonafarnib bislang wenig effizient; Ursache dafür könnte die alternativen Prenylierung sein sowie eben ndere Hauptangriffspunkte als Ras sein. In-vitro-Behandlung mit Lonafarnib führt zu einem dosisabhängigen G2-Arrest von Glioblastomzellen, Lungenkarzinom- und Fibrosarkomzellen. Flavopiridol blockiert die ATP-Bindungsstelle von zyklinabhängigen Kinasen und führt in vitro zu einem G1 – bzw. G2-Zellzyklusarrest; es kann auch eine von p53-unabhängige Apoptose induzieren. Flavopiridol hemmt in diversen Modellen die TNF-vermittelte NF-κB-Aktivierung sowie die AP-1-Aktivierung, supprimiert die Expression einer Vielzahl antiapoptotischer Proteine und die TNF-induzierte Akt-Aktivierung. Die von Lonafarnib und Flavopiridol beeinflussten Regulationsmechanismen sind relevant in Ovarialkarzinomzellen. In der vorliegenden Arbeit wird die Hypothese geprüft, ob Flavopiridol und Lonafarnib synergistisch die Proliferation von humanen Ovarialkarzinomzellen in vitro hemmen. Endpunkte sind Proliferation, Zellzyklusverteilung, Induktion von Apoptose und Nekrose. Die humanen Ovarialkarzinomzelllinien SKOV3- und BG1 wurden verwendet. Als Methoden wurden zunächst Proliferationsassays mit photometrischer Analyse durchgeführt, anschließend erfolgte ein Annexin-V-Nachweis zur Differenzierung von vitalen, nekrotischen und apoptotischen der mit den Substanzen behandelten Zellen. Die Zellzyklusanalyse wurde mittels durchflußzytometrischer Messung durchgeführt. Für das Western Blotting wurden die Antikörper HDJ-2, HIF1 sowie anti-ß-Aktin als housekeeping-Gene verwendet. Die Analyse der Ergebnisse der Proliferationsassays zeigte keinen Synergismus bei Kombination von Flavopiridol und Lonafarnib zur Behandlung von SKOV3-Zellen, jedoch bei BG-1 Zellen. Mithilfe der Annexin-V-Methode ließ sich dieses Ergebnis bestätigen. Bei SKOV-3-Zellen zeigten sich keine synergistischen Effekte; bei BG1- Zellen ergab sich nach kombinierter Medikamentengabe ein Anstieg der Nekroserate und eine Reduktion der vitalen Zellen. Mittels Flowzytometrie ließ sich bei beiden Zelllinien eine deutliche Veränderung des Zellzyklus durch Gabe der Substanzen verzeichnen; die Effekte scheinen jedoch vielmehr als Einzeleffekt von Flavopiridol zu werten zu sein. Bei BG1-Zellen fand sich ein gering gesteigerter Zellzyklusarrest in der subG1-Fraktion bei kombinierter Gabe von Flavopiridol und Lonafarnib in ausgewählten Konzentrationen. Die Western Blots zeigten eine Hochregulierung von HDJ2 bei Einzelgabe von Lonafarnib und in Kombination mit Flavopiridol. In dem gewählten Modell humaner Ovarialkarzinomzellen in vitro sind relevante Effekte von Flavopiridol und Lonafarnib nachweisbar, bei BG-1 Zellen konnten Hinweise auf einen Synergismus von Flavopiridol und Lonafarnib gefunden werden. Diese Untersuchung unterstützt Hinweise in der Literatur auf eine Aktivität dieser Substanzen, weist erstmalig auf einen Synergismus hin und unterstreicht zugleich die unterschiedliche Sensibilität von humanen Ovarialkarizinomzelllinien auf targeted therapeutics in vitro.

Bibliographie / References

  1. Marcus A.I., Zhou J., O'Brate A., Hamel E., Wong J., Nivens M., El-Naggar A., Yao T.P., Khuri F.R., Giannakakou P.: The synergistic combination of the farnesyl transferase inhibitor lonafarnib and paclitaxel enhances tubulin acetylation and requires a functional tubulin deacetylase; Cancer Res. 2005 May 1;65(9):3883-93
  2. Fehrmann R.S.N., Li X.-y., van der Zee A.G.J., de Jong S., te Meerman G.J., de Vries E.G.E., Crijns A.P.G.: Profiling Studies in Ovarian Cancer: A Review; Gynecologic Oncology, The Oncologist, Vol. 12, No. 8, August 2007 , 960-966
  3. Bible K.C., Lensing J.L., Nelson S.A., Lee Y.K., Reid J.M., Ames M.M., Isham C.R., Piens J., Rubin S.L., Rubin J., Kaufmann S.H., Atherton P.J., Sloan J.A., Daiss M.K., Adjei A.A., Erlichman C.: Phase 1 trial of flavopiridol combined with cisplatin or carboplatin in patients with advanced malignancies with the assessment of pharmacokinetic and pharmacodynamic end points; Clin Cancer Res. 2005 Aug 15;11(16):5935-41.
  4. Dy G.K., Bruzek L.M., Croghan G.A., Mandrekar S., Erlichman C., Peethambaram P., Pitot H.C., Hanson L.J., Reid J.M., Furth A., Cheng S., Martell R.E., Kaufmann S.H., Adjei A.A..: A phase I trial of the novel farnesyl protein transferase inhibitor, BMS-214662, in combination with paclitaxel and carboplatin in patients with advanced cancer; Clin Cancer Res. 2005 Mar 1;11(5):1877-83.
  5. Shapiro G.I., Supko J.G., Patterson A., Lynch C., Lucca J., Zacarola P.F., Muzikansky A., Wright JJ, Lynch TJ Jr, Rollins BJ: A Phase II Trial of the Cyclin-dependent Kinase Inhibitor Flavopiridol in Patients with Previously Untreated Stage IV Non-Small Cell Lung Cancer; Clinical Cancer Research June 2001 7; 1590
  6. Niessner H., Beck D., Sinnberg T., Lasithiotakis K., Maczey E., Gogel J., Venturelli S., Berger A., Mauthe M., Toulany M., Flaherty K., Schaller M., Schadendorf D., Proikas-Cezanne T., Schittek B., Garbe C., Kulms D., Meier F.: The Farnesyl Transferase Inhibitor Lonafarnib Inhibits mTOR Signaling and Enforces Sorafenib-Induced Apoptosis in Melanoma Cells; Journal of Investigative Dermatology (2011) 131, 468–479; doi:10.1038/jid.2010.297; published online 14 October 2010
  7. Perren T.J., Swart A.M., Pfisterer J., Ledermann J.A., Pujade-Lauraine E., Kristensen G., Carey M.S., Beale P., Cervantes A., Kurzeder C., du Bois A., Sehouli J., Kimmig R., Stähle A., Collinson F., Essapen S., Gourley C., Lortholary A., Selle F., Mirza M.R., Leminen A., Plante M., Stark D., Qian W., Parmar M.K.B., Oza A.M.: A Phase 3 Trial of Bevacizumab in Ovarian Cancer; N Engl J Med 2011; 365:2484- 2496 December 29, 2011 DOI: 10.1056/NEJMoa1103799
  8. Takada Y., Aggarwal B.B.: Flavopiridol Inhibits NF-κB Activation Induced by Various Carcinogens and Inflammatory Agents through Inhibition of IκBα Kinase and p65 Phosphorylation ABROGATION OF CYCLIN D1, CYCLOOXYGENASE-2, AND MATRIX METALLOPROTEASE-9; First Published on November 20, 2003, doi:10.1074/jbc.M304546200February 6, 2004 The Journal of Biological Chemistry, 279, 4750-4759
  9. Takada Y., Sethi G., Sung B., Aggarwal B.B.: Flavopiridol Suppresses Tumor Necrosis Factor-Induced Activation of Activator Protein-1, c-Jun N-Terminal Kinase, p38 Mitogen-Activated Protein Kinase (MAPK), p44/p42 MAPK, and Akt, Inhibits Expression of Antiapoptotic Gene Products, and Enhances Apoptosis through Cytochrome c Release and Caspase Activation in Human Myeloid Cells " , Published online before print February 20, 2008, doi:10.1124/mol.107.041350Molecular PharmacologyMay 2008 vol. 73 no. 51549-1557
  10. Luke J.J., D'Adamo D.R., Dickson M.A., Keohan M.L., Carvajal R.D., Maki R.G., de Stanchina E., Musi E., Singer S., Schwartz G.K.: The cyclin-dependent kinase inhibitor flavopiridol potentiates doxorubicin efficacy in advanced sarcomas: preclinical investigations and phase I clinical trial; Clinical Cancer Research, Published OnlineFirst February 28, 2012; doi: 10.1158/1078-0432.CCR-11-3203
  11. Salzberg M., Thürlimann B., Bonnefois H., Fink D., Rochlitz C., von Moos R., Senn H.: Current Concepts of Treatment Strategies in Advanced or Recurrent Ovarian Cancer; Oncology 2005; 68, Vol. 68,No. 4-6, 293-298, (DOI: 10.1159/000086967)
  12. Cimica V., Smith M.E., Zhang Z., Mathur D., Mani S., Kalpana G.V.: Potent inhibition of rhabdoid tumor cells by combination of flavopiridol and 4OH-tamoxifen; BMC Cancer. 2010; 10: 634, Published online 2010 November 19. doi: 10.1186/1471-2407-10-634
  13. Shetty V., Hafner J., Shah P., Nickens Z., Philip R.: Investigation of ovarian cancer associated sialylation changes in N-linked glycopeptides by quantitative proteomics; Clinical Proteomics 2012, 9:10 doi:10.1186/1559-0275-9-10
  14. Wang K., Hampson P., Hazeldine J., Krystof V., Strnad M., Pechan P., Janet M.: Cyclin-Dependent Kinase 9 Activity Regulates Neutrophil Spontaneous Apoptosis; PLoS One. 2012; 7(1): e30128, Published online 2012 January 19. doi: 10.1371/journal.pone.0030128
  15. Karp J.E., Garrett-Mayer E.L., Estey E.H., Rudek M.A., Smith B.D., Greer J.M., Drye D.M., Mackey K., Dorcy K.S., Gore S.D., Levis M.J., McDevitt M.A., Carraway H.E., Pratz K.W., Gladstone D.E., Showell M.M., Othus M,. Doyle L.A., Wright J.J., Pagel J.M.: Randomized phase II study of two schedules of flavopiridol given as timed sequential therapy with cytosine arabinoside and mitoxantrone for adults with newly diagnosed, poor-risk acute myelogenous leukemia; Published online before print June 24, 2012, doi:10.3324/haematol.2012.062539, haematol June 24, 2012haematol.2012.062539
  16. Li Y., Tanaka K., Li X., Okada T., Nakamura T., Takasaki M., Yamamoto S., Oda Y., Tsuneyoshi M., Iwamoto Y.: Cyclin-dependent kinase inhibitor, flavopiridol, induces apoptosis and inhibits tumor growth in drug-resistant osteosarcoma and Ewing's family tumor cells; Int J Cancer. 2007 Sep 15;121(6):1212-8.
  17. Mayer F., Mueller S., Malenke E., Kuczyk M., Hartmann J.T., Bokemeyer C.: Induction of apoptosis by flavopiridol unrelated to cell cycle arrest in germ cell tumour derived cell lines; Invest New Drugs. 2005
  18. Harousseau J.L..: Farnesyltransferase inihibitors in hematologic malignancies; Blood Rev. 2007
  19. Schlumbrecht M.P., Xie S.S., Shipley G.L., Urbauer D.L., Broaddus R.R.: Molecular Clustering Based on ERα and EIG121 Predicts Survival in High-Grade Serous Carcinoma of the Ovary/Peritoneum; Mod Pathol. 2011 March ; 24(3): pages 453–462 [111-113]
  20. Aklilu M., Kindler H.L., Donehower R.C., Mani S., Vokes E.E.: Phase II study of flavopiridol in patients with advanced colorectal cancer; Ann Oncol. 2003 Aug;14(8):1270-3
  21. Lee H.Y., Moon H., Chun K.H., Chang Y.S., Hassan K., Ji L., Lotan R., Khuri F.R., Hong W.K.: Effects of insulin-like growth factor binding protein-3 and farnesyltransferase inhibitor SCH66336 on Akt expression and apoptosis in non-small-cell lung cancer cells; J Natl Cancer Inst. 2004 Oct 20;96(20):1536-48.
  22. Rahal R., Amon A.: Mitotic CDKs control the metaphase-anaphase transition and trigger spindle elongation; Genes Dev. 2008 Jun 1;22(11):1534-48
  23. Ozols R.F.: Treatment goals on ovarian cancer; International Journal of Gynecological Cancer, Volume 15, Supplement 1, May 2005 , 3-11
  24. Du Bois A., Pfisterer J.: Future Options for first-line therapy options of advanced ovarian cancer; Int J Gynecol Cancer. 2005 May-Jun;15 Suppl 1:42-50.
  25. Schafer-Hales K., Iaconelli J., Snyder J.P., Prussia A., Nettles J.H., El-Naggar A., Khuri F.R., Giannakakou P., Marcus A.I.: Farnesyl transferase inhibitors impair chromosomal maintenance in cell lines and human tumors by compromising CENP-E and CENP-F function; Mol Cancer Ther. 2007
  26. Glass T.L., Liu T.J., Yung W.K.: Inhibition of cell growth in human glioblastoma cell lines by farnesyltransferase inhibitor SCH66336; Neuro Oncol. 2000 Jul;2(3):151-8.
  27. Pérez-Roger I., Ivorra C., Díez A., Cortés M.J., Poch E., Sanz-González S.M., Andrés V.: Inhibition of cellular proliferation by drug targeting of cyclin-dependent kinases; Curr Pharm Biotechnol. 2000
  28. Burger R.A., Brady M.F., Bookman M.A., Fleming G.F., Monk B.J., Huang H., Mannel R.S., Homesley H.D., Fowler J., Greer B.E., Boente M., Birrer M.J., Liang S.X.: Incorporation of Bevacizumab in the Primary Treatment of Ovarian Cancer; N Engl J Med 2011;365:2473-83.
  29. Berek J., Taylor P., McGuire W., Smith L.M., Schultes B., Nicodemus C.F.: Oregovomab Maintenance Monoimmunotherapy Does Not Improve Outcomes in Advanced Ovarian Cancer; Journal of Clinical Onocoloy 2009, January 20, vol. 27no. 3: 418-425
  30. Pfisterer J., Weber B., Reuss A., Kimmig R., du Bois A., Wagner U., Bourgeois H., Meier W., Costa S., Blohmer J.U., Lortholary A., Olbricht S., Stähle A., Jackisch C., Hardy-Bessard A.C., Möbus V., Quaas J., Richter B., Schröder W., Geay J.F., Lück H.J., Kuhn W., Meden H., Nitz U., Pujade-Lauraine E.; AGO- OVAR; GINECO: Randomized phase III trial of topotecan following carboplatin and paclitaxel in first- line treatment of advanced ovarian cancer: a gynecologic cancer intergroup trial of the AGO-OVAR and GINECO; J Natl Cancer Inst. 2006 Aug 2;98(15):1036-45
  31. Adjei A.A., Davis J.N., Erlichman C., Svingen P.A., Kaufmann S.H.: Comparison of potential markers of farnesyltransferase inhibition; Clin Cancer Res. 2000 Jun;6(6):2318-25.
  32. Kim J.C., Saha D., Cao Q., Choy H.: Enhancement of radiation effects by combined docetaxel and flavopiridol treatment in lung cancer cells; Radiotherapy and Oncology, Volume 71, Issue 2, 1 May 2004, Pages 213–221
  33. Nahta R., Trent S., Yang C., Schmidt E.V.: Epidermal growth factor receptor expression is a candidate target of the synergistic combination of trastuzumab and flavopiridol in breast cancer; Cancer Res. 2003
  34. Raju U., Nakata E., Mason K.A., Ang K.K., Milas L.: Flavopiridol, a cyclin-dependent kinase inhibitor, enhances radiosensitivity of ovarian carcinoma cells; Cancer Res. 2003 Jun 15;63(12):3263-7
  35. Shapiro G.I., Koestner D.A., Matranga C.B., Rollins B.J.: Flavopiridol Induces Cell Cycle Arrest and p53-independent Apoptosis in Non-Small Cell Lung Cancer Cell Lines, Clinical Cancer Research, October 1999 5; 2925
  36. Demidenko Z.N., Blagosklonny M.V.: Flavopiridol induces p53 via initial inhibition of Mdm2 and p21 and, independently of p53, sensitizes apoptosis-reluctant cells to tumor necrosis factor; Cancer Res. 2004 May 15;64(10):3653-60.
  37. Newcomb E.W.: Flavopiridol: pleiotropic biological effects enhance its anti-cancer activity; Anticancer Drugs. 2004 Jun;15(5):411-9
  38. Wagner U., du Bois A., Pfisterer J., Huober J., Loibl S., Lück H.-J., Sehouli J., Gropp M., Stähle A., Schmalfeldt B., Meier W., Jackisch C.: Gefitinib in combination with tamoxifen in patients with ovariancancer refractory or resistant to platinum–taxane based therapy—A phase II trial of the AGO OvarianCancer Study Group (AGO-OVAR 2.6); Gynecologic Oncology, Volume 105, Issue 1, April 2007: 132–137
  39. Grant S., Dent P.: Gene profiling and the cyclin-dependent kinase inhibitor flavopiridol: what's in a name?; Mol Cancer Ther. 2004 Jul;3(7):861-72.
  40. Ghosal A., Chowdhury S.K., Tong W., Hapangama N., Yuan Y., Su A.D., Zbaida S.: Identification of human liver cytochrome P450 enzymes responsible for the metabolism of lonafarnib (Sarasar); Drug Metab Dispos. 2006 Apr;34(4):628-35. Epub 2006 Jan 27
  41. Li Y., Bhuiyan M., Alhasan S., Senderowicz A.M., Sarkar F.H.: Induction of apoptosis and inhibition of c- erbB-2 in breast cancer cells by flavopiridol; Clin Cancer Res. 2000 Jan;6(1):223-9.
  42. Ohta T., Ohmichi M., Hayasaka T., Mabuchi S., Saitoh M., Kawagoe J., Takahashi K., Igarashi H., Du B, Doshida M., Mirei I.G., Motoyama T., Tasaka K., Kurachi H.: Inhibition of Phosphatidylinositol 3-Kinase Increases Efficacy of Cisplatin in in Vivo Ovarian Cancer Models " , Endocrinology April 1, 2006 vol. 147 no. 4 1761-1769
  43. Bardin A., Hoffmann P., Boulle N., Katsaros D., Vignon F., Pujol P., Lazennec G.: Involvement of estrogen receptor beta in ovarian carcinogenesis; Cancer Res. 2004 Aug 15;64(16):5861-9.
  44. Aktivierung in Pankreaskarzinomzelllinien unter Normoxie und Hypoxie: Kinase-Inhibitoren als Anti- HIF-1 Tumortherapie beim Pankreaskarzinom; Chirurgisches Forum 2006, Volume 35, Springer Berlin Heidelberg, 147-9
  45. Koza B.(Dipl.MTA): Apoptosedetektion mittels Annexin V – Markierung; mailto:100736.427@compuserve.comhttp://www.med4you.at/laborbefunde/techniken/durchflusszytometr ie/lbef_annexin.htm
  46. Ready N.E., Lipton A., Zhu Y., Statkevich P., Frank E., Curtis D., Bukowski R.M.: Phase I study of the farnesyltransferase inhibitor lonafarnib with weekly paclitaxel in patients with solid tumors; Clin Cancer Res. 2007 Jan 15;13(2 Pt 1):576-83
  47. Mabuchi S., Altomare D.A., Cheung M., Zhang L., Poulikakos P.I., Hensley H.H., Schilder R.J., Ozols R.F., Testa J.R.: RAD001 Inhibits Human Ovarian Cancer Cell Proliferation, Enhances Cisplatin-Induced Apoptosis, and Prolongs Survival in an Ovarian Cancer Model; Clinical Cancer Research 2007 July 15; 13 (14), 4261-4270 [6, 12]
  48. Omerovic J., Hammond D.E., Clague M.J., Prior I.A.: Ras isoform abundance and signalling in human cancer cell lines; Oncogene. 2008 Apr 24;27(19):2754-62. Epub 2007 Nov 12.
  49. Nahta R., Iglehart J.D., Kempkes B., Schmidt E.V.: Rate-limiting effects of Cyclin D1 in transformation by ErbB2 predicts synergy between herceptin and flavopiridol; Cancer Res. 2002 Apr 15;62(8):2267-71.
  50. Tallarida R.J., Stone D.J. Jr., McCary J.D., Raffa R.B.: Response surface analysis of synergism between morphine and clonidine; J Pharmacol Exp Ther. 1999 Apr;289(1):8-13
  51. Stakleff K.S., Sloan T., Blanco D., Marcanthony S., Booth T.D., Bishayee A.: Resveratrol Exerts Differential Effects in Vitro and in Vivo against Ovarian Cancer Cells; Asian Pac J Cancer Prev. 2012;13(4):1333-40
  52. Behbakht K., Qamar L., Aldridge C.S., Coletta R.D., Davidson S.A., Thorburn A., Ford H.L.: Six1 Overexpression in Ovarian Carcinoma Causes Resistance to TRAIL-Mediated Apoptosis and Is Associated with Poor Survival; Cancer Res. 2007 Apr 1;67(7):3036-42.
  53. Adjei A.A., Davis J.N., Bruzek L.M., Erlichman C., Kaufmann S.H.: Synergy of the protein farnesyltransferase inhibitor SCH66336 and cisplatin in human cancer cell lines; Clin Cancer Res. 2001 May;7(5):1438-45
  54. Green M.R.: Targeting Targeted Therapy; N Engl J Med. 2004 May 20;350(21):2191-3. Epub 2004 Apr 29.
  55. Ebenezer D., Sun S.Y., Waller E.K., Chen J., Khuri F.R., Lonial S.: The combination of the farnesyl transferase inhibitor lonafarnib and the proteasome inhibitor bortezomib induces synergistic apoptosis in human myeloma cells that is associated with down-regulation of p-AKT; Blood. 2005 Dec 15;106(13):4322-9. Epub 2005 Aug 23.
  56. Basso A.D., Mirza A., Liu G., Long B.J., Bishop W.R., Kirschmeier P.: The Farnesyl Transferase Inhibitor (FTI) SCH66336 (lonafarnib) inhibits Rheb Farnelysation and mTOR Signaling; J Biol Chem. 2005 Sep 2;280(35):31101-8. Epub 2005 Jul 8.
  57. Tallarida R.J.: The interaction index: a measure of drug synergism; Pain 98 (2002): 163-168
  58. Lü X., Burgan W.E., Cerra M.A., Chuang E.Y., Tsai M.H., Tofilon P.J., Camphausen K.: Transcriptional signature of flavopiridol-induced tumor cell death; Mol Cancer Ther. 2004 Jul;3(7):861-72.
  59. Shah M.A., Smyth E.C., Shibata S., Yong W., Tang L.H., Janjigian Y.Y., Kelsen D.P., Schwartz G.K.: A multicenter random assignment phase II study of irinotecan and flavopiridol versus irinotecan alone for patients with p53 wild-type gastric adenocarcinoma (NCI 8060); J Clin Oncol 30, 2012 (suppl; abstr e14586)
  60. Garg A.K., Buchholz T.A., Aggarwal B.B.: Chemosensitization and Radiosensitization of Tumors by Plant Polyphenols, ANTIOXIDANTS & REDOX SIGNALING Volume 7, Numbers 11 & 12, 2005
  61. Peterson Y.K., Kelly P., Weinbaum C.A., Casey P.J.: A novel protein geranylgeranyltransferase-I inhibitor with high potency, selectivity, and cellular activity; J Biol Chem. 2006 May 5;281(18):12445-50. Epub 2006 Mar 3
  62. O'Meara S.J., Kinsella B.T.: The effect of the farnesyl protein transferase inhibitor SCH66336 on isoprenylation and signalling by the prostacyclin receptor; Biochem J. 2005 Feb 15;386(Pt 1):177-89.
  63. Kryštof V., Baumli S., Fürst R.: Perspective of Cyclin-dependent kinase 9 (CDK9) as a Drug Target; Current Pharmaceutical Design, 2012 July; 18(20): 2883–2890.
  64. Tagliaferri P., Ventura M., Baudi F., Cucinotto I., Arbitrio M. Di Martino MT, Tassone P.: BRCA1/2 genetic background-based therapeutic tailoring of human ovarian cancer: hope or reality?; J Ovarian Res. 2009; 2: 14.
  65. Taylor S.A., Marrinan C.H., Liu G., Nale L., Bishop W.R., Kirschmeier P., Liu M., Long B.J.: Combining the farnesyltransferase inhibitor lonafarnib with paclitaxel results in enhanced growth inhibitory effects on human ovarian cancer models in vitro and in vivo; Gynecol Oncol. 2008 Apr;109(1):97-106. Epub 2008 Jan 31


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten