Publikationsserver der Universitätsbibliothek Marburg

Titel:Das Ubiquitin-Proteasom-System und die Ubiquitin-E3-Ligase Nedd4 sind involviert in den Abbau der RNA-Polymerase II durch den Virulenzfaktor NSs des La Crosse-Virus
Autor:Spiegelberg, Larissa
Weitere Beteiligte: Weber, Friedemann (Prof. Dr.)
Veröffentlicht:2014
URI:https://archiv.ub.uni-marburg.de/diss/z2014/0795
URN: urn:nbn:de:hebis:04-z2014-07955
DOI: https://doi.org/10.17192/z2014.0795
DDC: Naturwissenschaften
Titel (trans.):The ubiquitin-proteasome system and the ubiquitin E3 ligase Nedd4 are involved in the degradation of RNA polymerase II by the virulence factor NSs of La Crosse virus
Publikationsdatum:2016-01-25
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Immunsystem, La Crosse virus, Nedd4, Nedd4, RNA-Polymerase II, La Crosse-Virus, RNA polymerase II, Proteasom, Ubiquitin

Zusammenfassung:
Das La Crosse-Virus (LACV) gehört zu der Familie der Bunyaviridae, eine der größten Virusfamilien, und wird unter anderem zusammen mit dem Prototyp Bunyamwera-Virus (BUNV) und dem Schmallenberg-Virus (SBV) in das Genus der Orthobunyaviren eingeteilt. Das Virus wird durch verschiedene Moskitospezies übertragen und stellt, aufgrund der Verteilung der Moskitos, im mittleren Westen und im Osten der USA ein Gesundheitsproblem dar. LACV kann eine schwere Enzephalitis und Meningitis auslösen, vor allem in Kindern und Jugendlichen unter 15 Jahren. Diese führen mitunter zu weitreichenden Folgen wie Lernschwierigkeiten, kognitive Defizite, Hyperaktivität, Krämpfe und Epilepsie. LACV gehört zu den Negativstrang-RNA-Viren mit einem tri-segmentiertem Genom und verfügt über einen Virulenzfaktor, das NSs (non-structural protein encoded on the S segment)-Protein, das die antivirale Interferon (IFN)-Induktion des infizierten Wirts inhibiert. Dies geschieht durch den gezielten proteasomalen Abbau der Rpb1-Untereinheit der RNA-Polymerase II (RNAPII). Ein solcher Abbau zeigt Ähnlichkeiten zu der DNA-Schadensantwort (DNA damage response, DDR), in der Rpb1 durch verschiedene Ubiquitin-E3-Ligasen ubiquitinyliert und somit dem Proteasom zugeführt wird. Hierbei spielt Nedd4 (neural precursor cell expressed developmentally down-regulated protein 4) eine tragende Rolle. In dieser Arbeit wurde gezeigt, dass das LACV-NSs-Protein eine generelle Ubiquitinylierung induziert, die Lysin48 (K48) verlinkt ist. Des Weiteren konnte gezeigt werden, dass im Speziellen die Rpb1-Untereinheit der RNAPII ubiquitinyliert wird. Zusätzlich wurde aufgezeigt, dass die Ubiquitin-E3-Ligase Nedd4 in den Abbau von Rpb1 involviert ist, da ein durch siRNA induzierter Nedd4-Knockdown den Abbau von Rpb1 und somit auch die Inhibition der IFN-Induktion teilweise aufhebt. Darüber hinaus konnte gezeigt werden, dass die subzelluläre Lokalisation von Nedd4 durch das LACV-NSs-Protein verändert wird, da Nedd4 in LACV-NSs-exprimierenden Zellen in perinukleären Strukturen akkumuliert, während es normalerweise homogen in der Zelle verteilt ist. Weiterhin wurde in dieser Arbeit die generelle Wirtszellantwort von LACV-infizierten Zellen mittels eines cDNA-Microarrays untersucht. Überraschenderweise stellte sich heraus, dass das LACV-NSs-Protein spezifisch Gene des angeborenen Immunsystems inhibiert, obwohl es bis dato nur als globaler Suppressor der RNAPII bekannt war.

Bibliographie / References

  1. Thomas, M.C., & Chiang, C.M. 2006. The general transcription machinery and general cofactors.
  2. Young, R.A. 1991. RNA polymerase II. Annu Rev Biochem, 60, 689-715.
  3. Mammalian Elongin A complex mediates DNA-damage-induced ubiquitylation and degradation of Rpb1. Embo j, 27(24), 3256-3266.
  4. Weber, M., & Weber, F. 2014a. RIG-I-like receptors and negative-strand RNA viruses: RLRly bird catches some worms. Cytokine Growth Factor Rev.
  5. Svejstrup, J.Q. 2007. Contending with transcriptional arrest during RNAPII transcript elongation. Trends Biochem Sci, 32(4), 165-171.
  6. Wang, F., Barrett, J.W., Shao, Q., Gao, X., Dekaban, G.A., & McFadden, G. 2009. Myxoma virus selectively disrupts type I interferon signaling in primary human fibroblasts by blocking the activation of the Janus kinase Tyk2. Virology, 387(1), 136-146.
  7. Timmins, J., Schoehn, G., Ricard-Blum, S., Scianimanico, S., Vernet, T., Ruigrok, R.W., & Weissenhorn, W. 2003. Ebola virus matrix protein VP40 interaction with human cellular factors Tsg101 and Nedd4. J Mol Biol, 326(2), 493-502.
  8. Tofaris, G.K., Kim, H.T., Hourez, R., Jung, J.W., Kim, K.P., & Goldberg, A.L. 2011. Ubiquitin ligase Nedd4 promotes alpha-synuclein degradation by the endosomal-lysosomal pathway. Proc Natl Acad Sci U S A, 108(41), 17004-17009.
  9. Wahid, A.M., Coventry, V.K., & Conn, G.L. 2009. The PKR-binding domain of adenovirus VA RNAI exists as a mixture of two functionally non-equivalent structures. Nucleic Acids Res, 37(17), 5830-5837.
  10. Turnell, A.S., & Grand, R.J. 2012. DNA viruses and the cellular DNA-damage response. J Gen Virol, 93(Pt 10), 2076-2097.
  11. Randall, R.E., & Goodbourn, S. 2008. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol, 89(Pt 1), 1-47.
  12. Querido, E., Blanchette, P., Yan, Q., Kamura, T., Morrison, M., Boivin, D., Kaelin, W.G., Conaway, R.C., Conaway, J.W., & Branton, P.E. 2001. Degradation of p53 by adenovirus E4orf6 and E1B55K proteins occurs via a novel mechanism involving a Cullin-containing complex. Genes Dev, 15(23), 3104-3117.
  13. Reguera, J., Weber, F., & Cusack, S. 2010. Bunyaviridae RNA polymerases (L-protein) have an N- terminal, influenza-like endonuclease domain, essential for viral cap-dependent transcription. PLoS Pathog, 6(9), e1001101.
  14. Weber, F., Dunn, E.F., Bridgen, A., & Elliott, R.M. 2001. The Bunyamwera virus nonstructural protein NSs inhibits viral RNA synthesis in a minireplicon system. Virology, 281(1), 67-74.
  15. Rotin, D., & Kumar, S. 2009. Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol, 10(6), 398-409.
  16. Shcherbik, N., Kumar, S., & Haines, D.S. 2002. Substrate proteolysis is inhibited by dominant- negative Nedd4 and Rsp5 mutants harboring alterations in WW domain 1. J Cell Sci, 115(Pt 5), 1041-1048.
  17. Taylor, K.G., Woods, T.A., Winkler, C.W., Carmody, A.B., & Peterson, K.E. 2014. Age-dependent myeloid dendritic cell responses mediate resistance to la crosse virus-induced neurological disease. J Virol, 88(19), 11070-11079.
  18. Okt. 2013 Proteasomal degradation of RNA polymerase II by the NSs protein of La Crosse virus and microarray analysis of the general host response in La Crosse virus infected cells Spiegelberg L., Weber F. (Vortrag, SFB593 Retreat Kleinwalsertal)
  19. Plotch, S.J., Bouloy, M., Ulmanen, I., & Krug, R.M. 1981. A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell, 23(3), 847-858.
  20. Saunders, A., Core, L.J., & Lis, J.T. 2006. Breaking barriers to transcription elongation. Nat Rev Mol Cell Biol, 7(8), 557-567.
  21. Somesh, B.P., Sigurdsson, S., Saeki, H., Erdjument-Bromage, H., Tempst, P., & Svejstrup, J.Q. 2007. Communication between distant sites in RNA polymerase II through ubiquitylation factors and the polymerase CTD. Cell, 129(1), 57-68.
  22. Thompson, W.H., Kalfayan, B., & Anslow, R.O. 1965. Isolation of California Encephalitis Group Virus from a fatal human illness. Am J Epidemiol, 81, 245-253.
  23. Roberts, K.L., & Baines, J.D. 2010. Myosin Va enhances secretion of herpes simplex virus 1
  24. Sun, Y., Chiu, T.T., Foley, K.P., Bilan, P.J., & Klip, A. 2014. Myosin Va mediates Rab8A-regulated GLUT4 vesicle exocytosis in insulin-stimulated muscle cells. Mol Biol Cell, 25(7), 1159-1170.
  25. Ulane, C.M., & Horvath, C.M. 2002. Paramyxoviruses SV5 and HPIV2 assemble STAT protein ubiquitin ligase complexes from cellular components. Virology, 304(2), 160-166.
  26. Yoneyama, M., & Fujita, T. 2010. Recognition of viral nucleic acids in innate immunity. Rev Med Virol, 20(1), 4-22.
  27. Shi, X., Kohl, A., Leonard, V.H., Li, P., McLees, A., & Elliott, R.M. 2006. Requirement of the N- terminal region of orthobunyavirus nonstructural protein NSm for virus assembly and morphogenesis. J Virol, 80(16), 8089-8099.
  28. tegument protein UL56 relocalizes ubiquitin ligase Nedd4 and has a role in transport and/or release of virions. Virol J, 6, 168.
  29. The E3 ubiquitin ligase Nedd4 is involved in the proteasomal degradation of RNA polymerase II by the virulence factor NSs of La Crosse virus Spiegelberg L., Weber F. (Poster, GfV-Tagung Kiel)
  30. The NSs protein of La Crosse virus: inhibiting the interferon response Spiegelberg L., Weber F. (Poster, SFB593-Symposium Marburg)
  31. Ubiquitin-mediated degradation of RNA polymerase II by the virulence factor NSs of La Crosse virus Spiegelberg L., Weber F. (Vortrag, GfV-Tagung Deidesheim)
  32. Thompson, W.H., & Beaty, B.J. 1977. Venereal transmission of La Crosse (California encephalitis) arbovirus in Aedes triseriatus mosquitoes. Science, 196(4289), 530-531.
  33. virions and cell surface expression of viral glycoproteins. J Virol, 84(19), 9889-9896.
  34. Watanabe, M.A., de Souza, L.R., Murad, J.M., & De Lucca, F.L. 2005. Activation of the RNA- dependent protein kinase (PKR) of lymphocytes by regulatory RNAs: implications for immunomodulation in HIV infection. Curr HIV Res, 3(4), 329-337.
  35. Soares, H. 2014. HIV-1 Intersection with CD4 T Cell Vesicle Exocytosis: Intercellular Communication Goes Viral. Front Immunol, 5, 454.
  36. Wada, T., Takagi, T., Yamaguchi, Y., Watanabe, D., & Handa, H. 1998. Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro.
  37. Thrower, J.S., Hoffman, L., Rechsteiner, M., & Pickart, C.M. 2000. Recognition of the polyubiquitin proteolytic signal. Embo j, 19(1), 94-102.
  38. Salanueva, I.J., Novoa, R.R., Cabezas, P., Lopez-Iglesias, C., Carrascosa, J.L., Elliott, R.M., & Risco, C. 2003. Polymorphism and structural maturation of bunyamwera virus in Golgi and post-Golgi compartments. J Virol, 77(2), 1368-1381.
  39. Weber, F., Wagner, V., Rasmussen, S.B., Hartmann, R., & Paludan, S.R. 2006. Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J Virol, 80(10), 5059-5064.
  40. Bunyamwera bunyavirus nonstructural protein NSs counteracts the induction of alpha/beta interferon. J Virol, 76(16), 7949-7955.
  41. Reyes-Reyes, M., & Hampsey, M. 2007. Role for the Ssu72 C-terminal domain phosphatase in RNA polymerase II transcription elongation. Mol Cell Biol, 27(3), 926-936.
  42. Shi, X., Kohl, A., Li, P., & Elliott, R.M. 2007. Role of the cytoplasmic tail domains of Bunyamwera orthobunyavirus glycoproteins Gn and Gc in virus assembly and morphogenesis. J Virol, 81(18), 10151-10160.
  43. Yasuda, J., Nakao, M., Kawaoka, Y., & Shida, H. 2003. Nedd4 regulates egress of Ebola virus-like particles from host cells. J Virol, 77(18), 9987-9992.
  44. Ushijima, Y., Koshizuka, T., Goshima, F., Kimura, H., & Nishiyama, Y. 2008. Herpes simplex virus type 2 UL56 interacts with the ubiquitin ligase Nedd4 and increases its ubiquitination. J Virol, 82(11), 5220-5233.
  45. Vialat, P., & Bouloy, M. 1992. Germiston virus transcriptase requires active 40S ribosomal subunits and utilizes capped cellular RNAs. J Virol, 66(2), 685-693.
  46. Saeki, Y., Kudo, T., Sone, T., Kikuchi, Y., Yokosawa, H., Toh-e, A., & Tanaka, K. 2009. Lysine 63- linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome. Embo j, 28(4), 359-371.
  47. Strack, B., Calistri, A., Accola, M.A., Palu, G., & Gottlinger, H.G. 2000. A role for ubiquitin ligase recruitment in retrovirus release. Proc Natl Acad Sci U S A, 97(24), 13063-13068.
  48. Yang, B., & Kumar, S. 2010. Nedd4 and Nedd4-2: closely related ubiquitin-protein ligases with distinct physiological functions. Cell Death Differ, 17(1), 68-77.
  49. Wang, J., Peng, Q., Lin, Q., Childress, C., Carey, D., & Yang, W. 2010. Calcium activates Nedd4 E3 ubiquitin ligases by releasing the C2 domain-mediated auto-inhibition. J Biol Chem, 285(16), 12279-12288.
  50. Reese, S.M., Beaty, M.K., Gabitzsch, E.S., Blair, C.D., & Beaty, B.J. 2009. Aedes triseriatus females transovarially infected with La Crosse virus mate more efficiently than uninfected mosquitoes. J Med Entomol, 46(5), 1152-1158.
  51. Sette, P., Jadwin, J.A., Dussupt, V., Bello, N.F., & Bouamr, F. 2010. The ESCRT-associated protein Alix recruits the ubiquitin ligase Nedd4-1 to facilitate HIV-1 release through the LYPXnL L domain motif. J Virol, 84(16), 8181-8192.
  52. Shi, X., van Mierlo, J.T., French, A., & Elliott, R.M. 2010. Visualizing the replication cycle of bunyamwera orthobunyavirus expressing fluorescent protein-tagged Gc glycoprotein. J Virol, 84(17), 8460-8469.
  53. Verbruggen, P., Ruf, M., Blakqori, G., Overby, A.K., Heidemann, M., Eick, D., & Weber, F. 2011. Interferon antagonist NSs of La Crosse virus triggers a DNA damage response-like degradation of transcribing RNA polymerase II. J Biol Chem, 286(5), 3681-3692.
  54. Vomaske, J., Nelson, J.A., & Streblow, D.N. 2009. Human Cytomegalovirus US28: a functionally selective chemokine binding receptor. Infect Disord Drug Targets, 9(5), 548-556.
  55. Sun, J., Keim, C.D., Wang, J., Kazadi, D., Oliver, P.M., Rabadan, R., & Basu, U. 2013. E3-ubiquitin ligase Nedd4 determines the fate of AID-associated RNA polymerase II in B cells. Genes Dev, 27(16), 1821-1833.
  56. Poss, Z.C., Ebmeier, C.C., & Taatjes, D.J. 2013. The Mediator complex and transcription regulation. Crit Rev Biochem Mol Biol, 48(6), 575-608.
  57. Yuan, H., Yoza, B.K., & Lyles, D.S. 1998. Inhibition of host RNA polymerase II-dependent transcription by vesicular stomatitis virus results from inactivation of TFIID. Virology, 251(2), 383-392.
  58. Terrell, J., Shih, S., Dunn, R., & Hicke, L. 1998. A function for monoubiquitination in the internalization of a G protein-coupled receptor. Mol Cell, 1(2), 193-202.
  59. Xu, M., Skaug, B., Zeng, W., & Chen, Z.J. 2009. A ubiquitin replacement strategy in human cells reveals distinct mechanisms of IKK activation by TNFalpha and IL-1beta. Mol Cell, 36(2), 302-314.
  60. Weber, M., & Weber, F. 2014b. Segmented negative-strand RNA viruses and RIG-I: divide (your genome) and rule. Curr Opin Microbiol, 20, 96-102.
  61. Weber, M., Gawanbacht, A., Habjan, M., Rang, A., Borner, C., Schmidt, A.M., Veitinger, S., Jacob, R., Devignot, S., Kochs, G., Garcia-Sastre, A., & Weber, F. 2013. Incoming RNA virus nucleocapsids containing a 5'-triphosphorylated genome activate RIG-I and antiviral signaling. Cell Host Microbe, 13(3), 336-346.
  62. Yu, X., Yu, Y., Liu, B., Luo, K., Kong, W., Mao, P., & Yu, X.F. 2003. Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science, 302(5647), 1056- 1060.
  63. Vitale, N., Beaumelle, B., Bader, M.F., & Tryoen-Toth, P. 2013. HIV-1 Tat protein perturbs diacylglycerol production at the plasma membrane of neurosecretory cells during exocytosis.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten