Publikationsserver der Universitätsbibliothek Marburg

Titel:Immunerkennung endogener RNA-Liganden
Autor:Jung, Stephanie
Weitere Beteiligte: Bauer, Stefan (Prof. Dr.)
Veröffentlicht:2014
URI:https://archiv.ub.uni-marburg.de/diss/z2014/0647
URN: urn:nbn:de:hebis:04-z2014-06474
DOI: https://doi.org/10.17192/z2014.0647
DDC:610 Medizin
Titel (trans.):Immunorecognition of endogenous RNA ligands
Publikationsdatum:2014-10-14
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
modification, 45S rRNA, RIG I, TLR8, RIG I, TLR8, RNase A, RNase L, RNase A, 45S rRNA, Modifikationen, ITS2, ITS2, RNase L

Zusammenfassung:
Das angeborene Immunsystem verfügt über eine Vielzahl keimbahnkodierter Rezeptoren, die pathogenspezifische Muster erkennen und so eine Immunantwort auslösen können. Verantwortlich für die Detektion doppelsträngiger RNA im Zytoplasma ist die Familie der RIG I ähnlichen Rezeptoren, zu der u.a. RIG I und MDA5 gehören; im Endosomen wird doppel- und einzelsträngige RNA durch die Toll-ähnlichen Rezeptoren („Toll like receptors“, TLRs) 3, 7 und 8 erkannt. Diese Rezeptoren können unter physiologischen Bedingungen anhand von Struktur und Modifikationen zwischen zelleigener und zellfremder RNA unterscheiden, unter pathologischen Bedingungen kann es aber auch zu einer Erkennung körpereigener RNA kommen. Der Hauptteil dieser Arbeit beschäftigt sich mit der Erkennung zelleigener RNA im Zytoplasma. Während einer Virusinfektion kann doppelsträngige virale RNA nicht nur direkt durch die RIG I ähnlichen Rezeptoren erkannt werden, sondern auch indirekt über 2‘5‘ Oligoadenylat-aktivierte RNase L aktivieren. Dies führt zum Schneiden zelleigener RNA, wobei die gebildeten Fragmente wiederum von keimbahn-kodierten Rezeptoren erkannt werden. Diese Verstärkung des Gefahrensignals nimmt eine grundlegende Rolle in der Virusabwehr ein. Im Rahmen dieser Arbeit konnte gezeigt werden, dass die Erkennung zelleigener RNase-generierter RNA-Fragmente ausschließlich über RIG I verläuft. Die Existenz spezifischer endogener RIG I Liganden wurde belegt und die Sequenzen der betreffenden Fragmente wurden mittels Next Generation Sequencing ermittelt. Hierbei handelt es sich um Strukturen aus der 28S rRNA und der ITS2, einem Prozessierungsprodukt der 45S rRNA. Der spezifische RIG I aktivierende Effekt dieser Sequenzen konnte in verschiedenen Stimulationsexperimenten nachgewiesen werden. Interessanterweise tragen die endogenen stimulatorischen RNA-Spezies im Gegensatz zum Prototyp eines RIG I Liganden kein 5' Triphosphat, sondern ein 3' Monophosphat, auch weisen sie keine typische Basenzusammensetzung mit hohem Uridingehalt auf. Stattdessen werden die außergewöhnlich GC-reichen Sequenzen vermutlich aufgrund ihrer Doppelsträngigkeit und einer Ringstruktur nahe der Schnittstelle von RIG I erkannt. Die besondere Bedeutung dieser Sequenzen wird durch die evolutionäre Konservierung dieser Strukturen belegt, auch könnten sie nicht nur eine Funktion in der Virusabwehr, sondern auch als Tumorsupressor haben. Die intrazelluläre Generierung immunstimulatorischer RNA-Spezies erfolgt nicht nur über die virusinduzierte RNase L, sondern auch über eine artifiziell in die Zelle transfizierte RNase A. Dies eröffnet die Möglichkeit zur Etablierung von RNase A als neue Adjuvansspezies. Im zweiten Teil dieser Arbeit wurde untersucht, welchen Einfluss verschiedene Modifikationen des 18S rRNA Abkömmlings RNA63 auf dessen Erkennung durch die endosomalen TLRs 7 und 8 haben. Eine nichtmodifizierte RNA63 und solche mit einer 2'-O-Deoxy- oder Fluorgruppe werden sowohl durch TLR7 als auch durch TLR8 erkannt. Durch eine 2'-O-Methylierung allerdings lässt sich die Erkennung der RNA63 durch TLR7 hemmen, nicht aber die Erkennung durch TLR8. Somit handelt es sich bei 2'-methylierter RNA63 um einen spezifischen TLR8-aktivierenden Liganden.

Bibliographie / References

  1. Marques JT, et al. (2006) A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells. Nat Biotechnol 24(5):559- 565.
  2. Mix E, Goertsches R, & Zett UK (2006) Immunoglobulins--basic considerations. Journal of neurology 253 Suppl 5:V9-17.
  3. Sorrentino S (1998) Human extracellular ribonucleases: multiplicity, molecular diversity and catalytic properties of the major RNase types. Cell Mol Life Sci 54(8):785-794.
  4. Zhu S, Pan W, & Qian Y (2013) MicroRNA in immunity and autoimmunity. Journal of molecular medicine 91(9):1039-1050.
  5. Zemirli N & Arnoult D (2012) Mitochondrial anti-viral immunity. Int J Biochem Cell Biol 44(9):1473-1476.
  6. Ma D, Wei Y, & Liu F (2013) Regulatory mechanisms of thymus and T cell development. Dev Comp Immunol 39(1-2):91-102.
  7. Tschochner H & Hurt E (2003) Pre-ribosomes on the road from the nucleolus to the cytoplasm. Trends Cell Biol 13(5):255-263.
  8. Morrissey JP & Tollervey D (1995) Birth of the snoRNPs: the evolution of RNase MRP and the eukaryotic pre-rRNA-processing system. Trends Biochem Sci 20(2):78-82.
  9. Winter J, Jung S, Keller S, Gregory RI, & Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11(3):228-234.
  10. Reed SG, Orr MT, & Fox CB (2013) Key roles of adjuvants in modern vaccines. Nat Med 19(12):1597-1608.
  11. Siddiqui MA & Malathi K (2012) RNase L induces autophagy via c-Jun N- terminal kinase and double-stranded RNA-dependent protein kinase signaling pathways. J Biol Chem 287(52):43651-43664.
  12. Mukherjee A, et al. (2009) Retinoic acid-induced gene-1 (RIG-I) associates with the actin cytoskeleton via caspase activation and recruitment domain- dependent interactions. J Biol Chem 284(10):6486-6494.
  13. Kim HS, Byun SH, & Lee BM (2005) Effects of chemical carcinogens and physicochemical factors on the UV spectrophotometric determination of DNA. J Toxicol Environ Health A 68(23-24):2081-2095.
  14. Marie I, Svab J, & Hovanessian AG (1990) The binding of the 69-and 100-kD forms of 2',5'-oligoadenylate synthetase to different polynucleotides. J Interferon Res 10(6):571-578.
  15. Tluk S, et al. (2009) Sequences derived from self-RNA containing certain natural modifications act as suppressors of RNA-mediated inflammatory immune responses. Int Immunol 21(5):607-619.
  16. Wreschner DH, James TC, Silverman RH, & Kerr IM (1981) Ribosomal RNA cleavage, nuclease activation and 2-5A(ppp(A2'p)nA) in interferon-treated cells. Nucleic Acids Res 9(7):1571-1581.
  17. Rehwinkel J & Reis e Sousa C (2010) RIGorous detection: exposing virus through RNA sensing. Science 327(5963):284-286.
  18. Kolakofsky D, Kowalinski E, & Cusack S (2012) A structure-based model of RIG-I activation. RNA 18(12):2118-2127.
  19. Regan T, et al. (2013) Identification of TLR10 as a key mediator of the inflammatory response to Listeria monocytogenes in intestinal epithelial cells and macrophages. J Immunol 191(12):6084-6092.
  20. Venkataraman T, et al. (2007) Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses. J Immunol 178(10):6444-6455.
  21. Schoggins JW, et al. (2011) A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472(7344):481-485.
  22. Mullineux ST & Lafontaine DL (2012) Mapping the cleavage sites on mammalian pre-rRNAs: where do we stand? Biochimie 94(7):1521-1532.
  23. Koch U & Radtke F (2011) Mechanisms of T cell development and transformation. Annual review of cell and developmental biology 27:539-562.
  24. Lazdins IB, Delannoy M, & Sollner-Webb B (1997) Analysis of nucleolar transcription and processing domains and pre-rRNA movements by in situ hybridization. Chromosoma 105(7-8):481-495.
  25. Schultz J, Maisel S, Gerlach D, Muller T, & Wolf M (2005) A common core of secondary structure of the internal transcribed spacer 2 (ITS2) throughout the Eukaryota. RNA 11(4):361-364.
  26. Medzhitov R, Preston-Hurlburt P, & Janeway CA, Jr. (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388(6640):394-397.
  27. Schlee M, et al. (2009) Approaching the RNA ligand for RIG-I? Immunol Rev 227(1):66-74.
  28. Kato T, et al. (2006) Cell culture and infection system for hepatitis C virus. Nat Protoc 1(5):2334-2339.
  29. Yoneyama M, Onomoto K, & Fujita T (2008) Cytoplasmic recognition of RNA. Adv Drug Deliv Rev 60(7):841-846.
  30. Kato H, et al. (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441(7089):101-105.
  31. Li K, Chen Z, Kato N, Gale M, Jr., & Lemon SM (2005) Distinct poly(I-C) and virus-activated signaling pathways leading to interferon-beta production in hepatocytes. J Biol Chem 280(17):16739-16747.
  32. Samanta M, Iwakiri D, Kanda T, Imaizumi T, & Takada K (2006) EB virus- encoded RNAs are recognized by RIG-I and activate signaling to induce type I IFN. The EMBO journal 25(18):4207-4214.
  33. Maden BE & Hughes JM (1997) Eukaryotic ribosomal RNA: the recent excitement in the nucleotide modification problem. Chromosoma 105(7-8):391- 400.
  34. Zhou A, Hassel BA, & Silverman RH (1993) Expression cloning of 2-5A- dependent RNAase: a uniquely regulated mediator of interferon action. Cell 72(5):753-765.
  35. Li X, Leung S, Qureshi S, Darnell JE, Jr., & Stark GR (1996) Formation of STAT1-STAT2 heterodimers and their role in the activation of IRF-1 gene transcription by interferon-alpha. J Biol Chem 271(10):5790-5794.
  36. Osterloh A & Breloer M (2008) Heat shock proteins: linking danger and pathogen recognition. Med Microbiol Immunol 197(1):1-8.
  37. Maitra RK, et al. (1994) HIV-1 TAR RNA has an intrinsic ability to activate interferon-inducible enzymes. Virology 204(2):823-827.
  38. Wu H, Xu H, Miraglia LJ, & Crooke ST (2000) Human RNase III is a 160-kDa protein involved in preribosomal RNA processing. The Journal of biological chemistry 275(47):36957-36965.
  39. Seth RB, Sun L, Ea C-K, & Chen ZJ (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122(5):669-682.
  40. Kubota K, et al. (2004) Identification of 2'-phosphodiesterase, which plays a role in the 2-5A system regulated by interferon. J Biol Chem 279(36):37832-37841.
  41. Weber M, et al. (2013) Incoming RNA virus nucleocapsids containing a 5'- triphosphorylated genome activate RIG-I and antiviral signaling. Cell Host Microbe 13(3):336-346.
  42. Kenneth Morphy PT, Mark Walport (2008) Janeway's immuno biology (Garland Science) seventh edition Ed p 887.
  43. Kato H, et al. (2008) Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation- associated gene 5. J Exp Med 205(7):1601-1610.
  44. Satoh T, et al. (2010) LGP2 is a positive regulator of RIG-I-and MDA5- mediated antiviral responses. Proc Natl Acad Sci U S A 107(4):1512-1517.
  45. Li Y & Shi X (2013) MicroRNAs in the regulation of TLR and RIG-I pathways. Cell Mol Immunol 10(1):65-71.
  46. Roos A, et al. (2004) Mini-review: A pivotal role for innate immunity in the clearance of apoptotic cells. Eur J Immunol 34(4):921-929.
  47. Rebouillat D, Marie I, & Hovanessian AG (1998) Molecular cloning and characterization of two related and interferon-induced 56-kDa and 30-kDa proteins highly similar to 2'-5' oligoadenylate synthetase. European journal of biochemistry / FEBS 257(2):319-330.
  48. Volkin E & Cohn WE (1953) On the structure of ribonucleic acids. II. The products of ribonuclease action. J Biol Chem 205(2):767-782.
  49. Thompson MR, Kaminski JJ, Kurt-Jones EA, & Fitzgerald KA (2011) Pattern recognition receptors and the innate immune response to viral infection. Viruses 3(6):920-940.
  50. Abbildung 36: PBMC-Stimulation mit RNA aus RNase A-transfizierten HEK-Zellen. . 118
  51. Abbildung 21: Produkte eines RNase A-Verdaus stimulieren über RLRs, nicht über
  52. Abbildung 17: Quantifizierung von 44mer und Gegenstrang mittels stem-loop qRT-
  53. Oshiumi H, Matsumoto M, Hatakeyama S, & Seya T (2009) Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection. J Biol Chem 284(2):807-817.
  54. Malathi K, et al. (2010) RNase L releases a small RNA from HCV RNA that refolds into a potent PAMP. RNA 16(11):2108-2119.
  55. Tabelle 9: Stimulationsbedingungen verschiedener Zelllinien in einer Dotap-
  56. Shishova KV, Zharskaya CO, & Zatsepina CO (2011) The Fate of the Nucleolus during Mitosis: Comparative Analysis of Localization of Some Forms of Pre- rRNA by Fluorescent in Situ Hybridization in NIH/3T3 Mouse Fibroblasts. Acta naturae 3(4):100-106.
  57. Rebouillat D & Hovanessian AG (1999) The human 2',5'-oligoadenylate synthetase family: interferon-induced proteins with unique enzymatic properties. J Interferon Cytokine Res 19(4):295-308.
  58. Krocova Z, Macela A, Kroca M, & Hernychova L (2000) The immunomodulatory effect(s) of lead and cadmium on the cells of immune system in vitro. Toxicology in vitro : an international journal published in association with BIBRA 14(1):33-40.
  59. Maden BE (1990) The numerous modified nucleotides in eukaryotic ribosomal RNA. Prog Nucleic Acid Res Mol Biol 39:241-303.
  60. Oshiumi H, et al. (2010) The ubiquitin ligase Riplet is essential for RIG-I- dependent innate immune responses to RNA virus infection. Cell host & microbe 8(6):496-509.
  61. Lee SM, et al. (2014) Toll-like receptor 10 is involved in induction of innate immune responses to influenza virus infection. Proc Natl Acad Sci U S A 111(10):3793-3798.
  62. Sollner-Webb B & Tower J (1986) Transcription of cloned eukaryotic ribosomal RNA genes. Annu Rev Biochem 55:801-830.
  63. Poeck H, et al. (2010) Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. Nat Immunol 11(1):63-69.
  64. Oldenburg M, et al. (2012) TLR13 recognizes bacterial 23S rRNA devoid of erythromycin resistance-forming modification. Science 337(6098):1111-1115.
  65. Yu P, et al. (2012) Nucleic acid-sensing Toll-like receptors are essential for the control of endogenous retrovirus viremia and ERV-induced tumors. Immunity 37(5):867-879.
  66. Schlee M, et al. (2009) Recognition of 5' triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 31(1):25-34.
  67. Li K, et al. (2012) Activation of chemokine and inflammatory cytokine response in hepatitis C virus-infected hepatocytes depends on Toll-like receptor 3 sensing of hepatitis C virus double-stranded RNA intermediates. Hepatology 55(3):666-675.
  68. Liang SL, Quirk D, & Zhou A (2006) RNase L: its biological roles and regulation. IUBMB life 58(9):508-514.
  69. Raines RT (1998) Ribonuclease A. Chem Rev 98(3):1045-1066.
  70. Zou J, Chang M, Nie P, & Secombes CJ (2009) Origin and evolution of the RIG- I like RNA helicase gene family. BMC Evol Biol 9:85.
  71. von Landenberg P & Bauer S (2007) Nucleic acid recognizing Toll-like receptors and autoimmunity. Curr Opin Immunol 19(6):606-610.
  72. Probst J, et al. (2006) Characterization of the ribonuclease activity on the skin surface. Genet Vaccines Ther 4:4.
  73. Paz S, et al. (2006) Induction of IRF-3 and IRF-7 phosphorylation following activation of the RIG-I pathway. Cellular and molecular biology 52(1):17-28.
  74. Wreschner DH, McCauley JW, Skehel JJ, & Kerr IM (1981) Interferon action-- sequence specificity of the ppp(A2'p)nA-dependent ribonuclease. Nature 289(5796):414-417.
  75. Yoneyama M, et al. (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nature immunology 5(7):730-737.
  76. Koff WC, et al. (2013) Accelerating next-generation vaccine development for global disease prevention. Science 340(6136):1232910.
  77. Martinand C, et al. (1999) RNase L inhibitor is induced during human immunodeficiency virus type 1 infection and down regulates the 2-5A/RNase L pathway in human T cells. Journal of virology 73(1):290-296.
  78. Zhou A, et al. (1997) Interferon action and apoptosis are defective in mice devoid of 2',5'-oligoadenylate-dependent RNase L. EMBO J 16(21):6355-6363.
  79. Marie I, Durbin JE, & Levy DE (1998) Differential viral induction of distinct interferon-alpha genes by positive feedback through interferon regulatory factor-
  80. Min JY & Krug RM (2006) The primary function of RNA binding by the influenza A virus NS1 protein in infected cells: Inhibiting the 2'-5' oligo (A) synthetase/RNase L pathway. Proc Natl Acad Sci U S A 103(18):7100-7105.
  81. Komuro A & Horvath CM (2006) RNA-and virus-independent inhibition of antiviral signaling by RNA helicase LGP2. J Virol 80(24):12332-12342.
  82. Mibayashi M, et al. (2007) Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus. Journal of virology 81(2):514-524.
  83. Rock FL, Hardiman G, Timans JC, Kastelein RA, & Bazan JF (1998) A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci U S A 95(2):588-593.
  84. Sanchez R & Mohr I (2007) Inhibition of cellular 2'-5' oligoadenylate synthetase by the herpes simplex virus type 1 Us11 protein. J Virol 81(7):3455-3464.
  85. Peters K, Chattopadhyay S, & Sen GC (2008) IRF-3 activation by Sendai virus infection is required for cellular apoptosis and avoidance of persistence. Journal of virology 82(7):3500-3508.
  86. Li X, Leung S, Kerr IM, & Stark GR (1997) Functional subdomains of STAT2 required for preassociation with the alpha interferon receptor and for signaling. Mol Cell Biol 17(4):2048-2056.
  87. Silverman RH, Skehel JJ, James TC, Wreschner DH, & Kerr IM (1983) rRNA cleavage as an index of ppp(A2'p)nA activity in interferon-treated encephalomyocarditis virus-infected cells. Journal of virology 46(3):1051-1055.
  88. Uzri D & Gehrke L (2009) Nucleotide sequences and modifications that determine RIG-I/RNA binding and signaling activities. J Virol 83(9):4174-4184.
  89. Rosenberg HF (2008) RNase A ribonucleases and host defense: an evolving story. J Leukoc Biol 83(5):1079-1087.
  90. Schmidt A, et al. (2009) 5'-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I. Proc Natl Acad Sci U S A 106(29):12067- 12072.
  91. Pichlmair A, et al. (2009) Activation of MDA5 requires higher-order RNA structures generated during virus infection. J Virol 83(20):10761-10769.
  92. Rutkoski TJ & Raines RT (2008) Evasion of ribonuclease inhibitor as a determinant of ribonuclease cytotoxicity. Current pharmaceutical biotechnology 9(3):185-189.
  93. Saito T, Owen DM, Jiang F, Marcotrigiano J, & Gale M, Jr. (2008) Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature 454(7203):523-527.
  94. Luhtala N & Parker R (2010) T2 Family ribonucleases: ancient enzymes with diverse roles. Trends Biochem Sci 35(5):253-259.
  95. Schlee M & Hartmann G (The chase for the RIG-I ligand--recent advances. Mol Ther 18(7):1254-1262.
  96. Trinchieri G (2010) Type I interferon: friend or foe? J Exp Med 207(10):2053- 2063.
  97. Ranji A & Boris-Lawrie K (2010) RNA helicases: emerging roles in viral replication and the host innate response. RNA biology 7(6):775-787.
  98. Pollpeter D, Komuro A, Barber GN, & Horvath CM (2011) Impaired Cellular Responses to Cytosolic DNA or Infection with Listeria monocytogenes and Vaccinia Virus in the Absence of the Murine LGP2 Protein. PLoS One 6(4):e18842.
  99. Ramos HJ & Gale M, Jr. (2011) RIG-I like receptors and their signaling crosstalk in the regulation of antiviral immunity. Curr Opin Virol 1(3):167-176.
  100. Loo YM & Gale M, Jr. (2011) Immune signaling by RIG-I-like receptors. Immunity 34(5):680-692.
  101. Zust R, et al. (Ribose 2'-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol 12(2):137-143.
  102. Peisley A, et al. (2011) Cooperative assembly and dynamic disassembly of MDA5 filaments for viral dsRNA recognition. Proc Natl Acad Sci U S A 108(52):21010-21015.
  103. Schoggins JW & Rice CM (2011) Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol 1(6):519-525.
  104. Zhao L, et al. (2012) Antagonism of the interferon-induced OAS-RNase L pathway by murine coronavirus ns2 protein is required for virus replication and liver pathology. Cell Host Microbe 11(6):607-616.
  105. Schnell G, Loo YM, Marcotrigiano J, & Gale M, Jr. (Uridine Composition of the Poly-U/UC Tract of HCV RNA Defines Non-Self Recognition by RIG-I. PLoS Pathog 8(8):e1002839.
  106. Peisley A, et al. (2012) Kinetic mechanism for viral dsRNA length discrimination by MDA5 filaments. Proc Natl Acad Sci U S A 109(49):E3340-3349.
  107. Malathi K, Dong B, Gale M, Jr., & Silverman RH (2007) Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature 448(7155):816-819.
  108. Tang F, Du Q, & Liu YJ (2010) Plasmacytoid dendritic cells in antiviral immunity and autoimmunity. Science China. Life sciences 53(2):172-182.
  109. Laity JH, Shimotakahara S, & Scheraga HA (1993) Expression of wild-type and mutant bovine pancreatic ribonuclease A in Escherichia coli. Proc Natl Acad Sci U S A 90(2):615-619.
  110. Tanaka N, et al. (2004) Structural basis for recognition of 2',5'-linked oligoadenylates by human ribonuclease L. EMBO J 23(20):3929-3938.
  111. Sumpter R, Jr., et al. (2005) Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I. J Virol 79(5):2689-2699.
  112. Luthra P, Sun D, Silverman RH, & He B (2011) Activation of IFN-β expression by a viral mRNA through RNase L and MDA5. Proc Natl Acad Sci U S A 108(5):2118-2123.
  113. Yu YT, Shu MD, & Steitz JA (1997) A new method for detecting sites of 2'-O- methylation in RNA molecules. RNA 3(3):324-331.
  114. Trautwein K, Holliger P, Stackhouse J, & Benner SA (1991) Site-directed mutagenesis of bovine pancreatic ribonuclease: lysine-41 and aspartate-121. FEBS Lett 281(1-2):275-277.
  115. Sato M, et al. (1998) Positive feedback regulation of type I IFN genes by the IFN-inducible transcription factor IRF-7. FEBS Lett 441(1):106-110.
  116. Li W (2011) On parameters of the human genome. Journal of theoretical biology 288:92-104.
  117. Wu B, et al. (2013) Structural Basis for dsRNA Recognition, Filament Formation, and Antiviral Signal Activation by MDA5. Cell 152(1-2):276-289.
  118. Pabst R (2007) Plasticity and heterogeneity of lymphoid organs. What are the criteria to call a lymphoid organ primary, secondary or tertiary? Immunol Lett 112(1):1-8.
  119. Takahasi K, et al. (2008) Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses. Mol Cell 29(4):428-440.
  120. Uehata T & Akira S (2013) mRNA degradation by the endoribonuclease Regnase-1/ZC3H12a/MCPIP-1. Biochim Biophys Acta 1829(6-7):708-713.
  121. Kumar H, Kawai T, & Akira S (2011) Pathogen recognition by the innate immune system. Int Rev Immunol 30(1):16-34.
  122. Nokes BT, et al. (2013) In Vitro Assessment of the Inflammatory Breast Cancer Cell Line SUM 149: Discovery of 2 Single Nucleotide Polymorphisms in the RNase L Gene. J Cancer 4(2):104-116.
  123. Plumet S, et al. (2007) Cytosolic 5'-triphosphate ended viral leader transcript of measles virus as activator of the RIG I-mediated interferon response. PLoS One 2(3):e279.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten