Publikationsserver der Universitätsbibliothek Marburg

Titel:Zur Pathogenese polymikrobieller Infektionen am Beispiel der Parodontitis
Autor:Plag, Donatha
Weitere Beteiligte: Mutters, Reiniers (Prof. Dr.)
Veröffentlicht:2014
URI:https://archiv.ub.uni-marburg.de/diss/z2014/0574
DOI: https://doi.org/10.17192/z2014.0574
URN: urn:nbn:de:hebis:04-z2014-05749
DDC:610 Medizin
Titel (trans.):Periodontitis - a polymicrobial infection and its pathogenesis
Publikationsdatum:2014-09-08
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
polymicrobial infection, fibroblasts, Parodontitis, Immunologie, PAMPs, polymikrobielle Infektion, proinflammatory cytokines, Infektion, proinflammatorische Zytokine, TLR-9, Toll-like-Rezeptoren, Fibroblasten, TLR-9, PAMPs

Zusammenfassung:
Mit Hilfe sogenannter pattern recognition receptors kann das angeborene Immunsystem bakterielle Molekülmuster (pathogen associated molecular patterns) gramnegativer und grampositiver Bakterien erkennen und bestimmte Abwehrmechanismen einleiten. Von entscheidender Bedeutung sind dabei Toll-like Rezeptoren, die von verschiedensten Zelltypen, darunter auch Epithelzellen und Fibroblasten, exprimiert werden. Im Rahmen parodontaler Erkrankungen wird TLR9 eine wichtige Rolle bei der Erkennung doppelsträngiger bakterieller DNA periodontopathogener Keime zugesprochen, die als PAMP zu einer Produktion proinflammatorischer Zytokine und, bei verspäteter oder ausbleibender Therapie, zu einer chronisch progredienten Inflammation und Destruktion des Zahnhalteapparats führen kann. Um die immunologischen Effekte im Rahmen der Parodontitis zu untersuchen, wurde in der vorliegenden Arbeit eine in vitro-Kultur primärer humaner Gingiva-Fibroblasten (HGFs) mit unterschiedlichen TLR9-Liganden stimuliert, um eine Sekretion proinflammatorischer Zytokine auszulösen und mittels ELISA zu quantifizieren. Als Referenzsystem dienten hierbei neben TLR9-transfizierten HEK-293 Zellen auch humane PBMCs. Das Hauptziel dieser Arbeit sollte die Inhibition einer durch bDNA induzierten TLR9-Aktivierung in HGFs in vitro durch den Einsatz spezifischer suppressiver Oligodeoxynukleotide sein. Zusammenfassend zeigen die Ergebnisse, dass die verschiedenen verwendeten Zellsysteme unterschiedliche Stimulationsverhalten aufwiesen, die allesamt durch das inhibitorische Oligodeoxynukleotid G-ODN signifikant inhibiert werden konnten. Die Ergebnisse wurden in Zusammenhang mit mukosaler Immunität gestellt und der therapeutische Einsatz von G-ODN in bDNA-induzierter Parodontitis diskutiert.

Bibliographie / References

  1. Kang JG, Kim SH, Ahn TY (2006). Bacterial diversity in the human saliva from different ages. J Microbiol 44(5): 572-576.
  2. Yang HW, Asikainen S, Dogan B, Suda R, Lai CH (2004). Relationship of Actinobacillus actinomycetemcomitans serotype b to aggressive periodontitis: frequency in pure cultured isolates. J Periodontol 75(4): 592-599.
  3. Wang L, Jiang W, Ding G, Cao H, Lu Y, Luo P, Zhou H, Zheng J (2007). The newly identified CpG-N ODN208 protects mice from challenge with CpG-S ODN by decreasing TNF-alpha release. Int Immunopharmacol 7(5): 646-655.
  4. Gilliet M, Cao W, Liu YJ (2008). Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol 8(8): 594-606.
  5. Watters TM, Kenny EF, O'Neill LA (2007). Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol 85(6): 411-419.
  6. Nonnenmacher C, Mutters R, de Jacoby LF (2001). Microbiological characteristics of subgingival microbiota in adult periodontitis, localized juvenile periodontitis and rapidly progressive periodontitis subjects. Clin Microbiol Infect 7(4): 213-217.
  7. Takeuchi O, Kawai T, Mühlradt PF, Morr M, Radolf JD, Zychlynski A, Takeda K, Akira S (2001). Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 13(7): 933-940.
  8. Takeda K and Akira S (2005). Toll-like receptors in innate immunity. Int Immunol 17(1): 1-14.
  9. Lindhe J: Clinical Periodontology and Implant Dentistry. 5. Auflage. Blackwell Munksgaard, 2008.
  10. Nasidze I, Li J, Quingue D, Tang K, Stoneking M (2009). Global diversity in the human salivary microbiome. Genome Res 19(4): 636-643.
  11. Lenert P (2005). Inhibitory oligodeoxynucleotides -therapeutic promise for systemic autoimmune diseases? Clin Exp Immunol 140(1): 1-10.
  12. Mahanonda R and Pichyangkul S (2007). Toll-like receptors and their role in periodontal health and disease. Periodontology 2000 43(1): 41-55.
  13. Fine DH, Kaplan JB, Kachlany SC, Schreiner HC (2006). How we got attached to Actinobacillus actinomycetemcomitans: A model for infectious diseases. Periodontol 2000 42: 114-157.
  14. Skaug B, Jiang X, Zhen ZJ (2009). The role of ubiquitin in NF-kappaB regulatory pathways. Annu Rev Biochem 78: 769-796.
  15. Lu Q, Darveau RP, Samaranayake LP, Wang CY, Jin L (2009). Differential modulation of human {beta}-defensins expression in human gingival epithelia by Porphyromonas gingivalis lipopolysaccharide with tetra-and penta- acylated lipid A structures. Innate Immun 15(6): 325-335.
  16. Hartmann G and Krieg AM (2000). Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J Immunol 164(2): 944-953.
  17. Hajjar AM, O'Mahony DS, Ozinsky A, Underhill DM, Aderem A, Klebanoff SJ, Wilson CB (2001). Cutting edge: functional interactions between toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin. J Immunol 166(1): 15-19.
  18. Takeuchi O, Sato S, Horiushi T, Hoshino K, Takeda K, Dong Z, Modlin RL, Akira S (2002). Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol 169(1): 10-14.
  19. Takeshita F, Suzuki K, Sasaki S, Ishii N, Klinman DM, Ishii KJ (2004). Transcriptional regulation of the human TLR9 gene. J Immunol 173(4): 2552- 2561.
  20. Mahanonda R, Sa-Ard-Iam N, Montreekachon P, Pimkhaokham A, Yongvanichit K, Fukuda MM, Pichyangkul S (2007). IL-8 and IDO expression by human gingival fibroblasts via TLRs. The Journal of Immunology 178(2): 1151-1157.
  21. Trieu A, Roberts TL, Dunn JA, Sweet MJ, Stacey KJ (2006). DNA motifs suppressing TLR9 responses. Crit Rev Immunol 26(6): 527-544.
  22. Takeuchi O and Akira S (2010). Pattern recognition receptors and inflammation. Cell 140(6): 805-820.
  23. Kaufmann SH (2007). The contribution of immunology to the rational design of novel antibacterial vaccines. Nat Rev Microbiol 5(7): 491-504.
  24. Scheres N, Laine ML, Sipos PM, Bosch-Tijhof CJ, Crielaard W, de Vries TJ, Everts V (2011). Periodontal ligament and gingival fibroblasts from periodontitis patients are more active in interaction with Porphyromonas gingivalis. J Periodontal Res 46(4): 407-416.
  25. Van de Veerdonk FL, Netea MG, Jansen TJ, Jacobs L, Verschueren I, Van der Meer JW, Kullberg BJ (2008) Redundant role of TLR9 for anti-Candida host defense. Immunobiology 213(8): 613-620.
  26. Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, and Tannerella forsythensis are components of a polymicrobial intracellular flora within human buccal cells. J Dent Res 84(1): 59-63.
  27. Uehara A and Takada H (2007). Functional TLRs and NODs in human gingival fibroblasts. J Dent Res 86(3): 249-254.
  28. Marmur J (1961). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. Journal of Molecular Biology 3(2): 208-218.
  29. Regev-Yochay G, Dagan R, Raz M, Carmeli Y, Shainberg B, Rahav G, Derazne E, Rubinstein E (2004). Association between carriage of Streptococcus pneumoniae and Staphylococcus aureus in Children. JAMA 292(6): 716-720.
  30. Lipford GB, Heeg K, Wagner H (1998). Bacterial DNA as immune cell activator. Trends Microbiol 6(12): 496-500.
  31. Rothman KJ and Greenland S (2005). Causation and causal inference in epidemiology. Am J Public Health 95 Suppl 1: S144-150.
  32. Müller HP: Checklisten der Zahnmedizin: Parodontologie. 2., aktual. und erw. Auflage. Thieme-Verlag, Stuttgart 2006.
  33. Häcker H, Mischak H, Miethke T, Liptay S, Schmid R, Sparwasser T, Heeg K, Lipford GB, Wagner H (1998). CpG-DNA-specific activation of antigen- presenting cells requires stress kinase activity and is preceded by non- specific endocytosis and endosomal maturation. EMBO J 17(21): 6230-6240.
  34. Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, Klinman DM (1995). CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374(6522): 546-549.
  35. Hartmann G, Weeratna RD, Ballas ZK, Payette P, Blackwell S, Suparto I, Rasmussen WL, Waldschmidt M, Sajuthi D, Purcell RH, Davis HL, Krieg AM (2000). Delineation of a CpG phosphorothioate oligodeoxynucleotide for 123
  36. Gürsel M, Verthelyi D, Gürsel I, Ishii KJ, Klinman DM (2002). Differential and competitive activation of human immune cells by distinct classes of CpG oligodeoxynucleotide. J Leukoc Biol 71(5): 813-820.
  37. Yamamoto M, Sato S, Hemmi H, Sanjo H, Uematsu S, Kaisho T, Hoshino K, Takeuchi O, Kobayashi M, Fujita T, Takeda K, Akira S (2002). Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420(6913): 324-329.
  38. Tsuchiya S, Yamabe M, Yamaguchi Y, Kobayashi Y, Konno T, Tada K (1980). Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int J Cancer 26(2): 171-176.
  39. Lindemeier D (2008): Etablierung und Evaluierung von molekularbiologischen Testsystemen zur in-vitro und in-vivo Charakterisierung von neuartigen Implantatmaterialien.
  40. Schütt C und Bröker B: Grundwissen Immunologie. 2. Auflage. Spektrum Akademischer Verlag, Heidelberg 2009.
  41. Vabulas RM, Ahmad-Nejad P, ghose S, Kirschning CJ, Issels RD, Wagner H (2002). HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 277(17): 15107-15112.
  42. Means TK, Wang S, Lien E, Yoshimura A, Golenbock DT, Fenton MJ (1999). Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J Immunol 163(7): 3920-3927.
  43. Krug A, Rothenfusser S, Hornung V, Jahrsdörfer B, Blackwell S, Ballas ZK, Endres S, Krieg AM, Hartmann G (2001). Identification of CpG oligonucleotide sequences with high induction of IFN-alpha/beta in plasmacytoid dendritic cells. Eur J Immunol 31(7): 2154-2163.
  44. Ishii KJ, Gursel I, Gursel M, Klinman DM (2004). Immunotherapeutic utility of stimulatory and suppressive oligodeoxynucleotides. Curr Opin Mol Ther 6(2): 166-174.
  45. Medzhitov R and Janeway CA, Jr. (1997). Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 9(1): 4-9.
  46. Kawai T, Sato S, Ishii KJ, Coban C, Hemmi H, Yamamoto M, Terai K, Matsuda M, Inoue J, Uematsu S, Takeuchi O, Akira S (2004). Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat Immunol 5(10): 1061-1068.
  47. Taubman MA and Kawai T (2001). Involvement of T-lymphocytes in periodontal disease and in direct and indirect induction of bone resorption. Crit Rev Oral Biol Med 12(2): 125-135.
  48. Kobayashi K, Hernandez LD, Galán JE, Janeway CA Jr, Medzhitoc R, Flavell RA (2002). IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110(2): 191-202.
  49. Brogden K und Guthmiller, J: Polymicrobial diseases. ASM Press, Washington (DC) 2002.
  50. Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. Nat Immunol 2(4): 346-352.
  51. Latz E, Verma A, Visintin A, Gong M, Sirois CM, Klein DC, Monks BG, McKnight CJ, Lamphier MS, Duprex WP, Espevik T, Golenbock DT (2007). Ligand-induced conformational changes allosterically activate Toll- like receptor 9. Nat Immunol 8(7): 772-779.
  52. Fitzgerald KA, Rowe DC, Barnes BJ, Caffrey DR, Visintin A, Latz E, Monks B, Pitha PM, Golenbock DT (2003). LPS-TLR4 signaling to IRF-3/7 and NF- kappaB involves the toll adapters TRAM and TRIF. J Exp Med 198(7): 1043- 1055.
  53. Lee J, Mo JH, Katakura K, Alkalay I, Rucker AN, Liu YT, Lee HK, Shen C, Cajocaru G, Shenouda S, Kagnoff M, Eckmann L, Ben-Neriah Y, Raz E (2006). Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat Cell Biol 8(12): 1327-1336.
  54. Mah TF and O'Toole GA (2001). Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9(1): 34-39.
  55. Dörries R, Hof H: Medizinische Mikrobiologie. 3., komplett überarb. und erw. Auflage. Thieme-Verlag, Stuttgart 2005.
  56. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr (1998). Microbial complexes in subgingival plaque. J Clin Periodontol 25(2): 134-144.
  57. Haffajee AD and Socransky SS (1994). Microbial etiological agents of destructive periodontal diseases. Periodontol 2000 5: 78-111.
  58. Liu SF and Malik AB (2006). NF-kappa B activation as a pathological mechanism of septic shock and inflammation. Am J Physiol Lung Cell Mol Physiol 290(4): L622-L645.
  59. Kurt-Jones EA, Popova L, Kwinn L, Haynes LM, Jones LP, Tripp RA, Walsh EE, Freeman MW, Golenbock DT, Anderson LJ, Finberg RW (2000). Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 1(5): 398-401.
  60. Peptidoglycan-and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem 274(25): 17406-17409.
  61. Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K, Akira S (2003). Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301(5633): 640-643.
  62. Wenner CA, Guler ML, Macatonia SE, O'Garra A, Murphy KM (1996). Roles of IFN-gamma and IFN-alpha in IL-12-induced T helper cell-1 development. J Immunol 156(4): 1442-1447.
  63. Krieg AM, Wu T, Weeratna R, Efler SM, Love-Homan L, Yang L, Yi AK, Short D, Davis HL (1998). Sequence motifs in adenoviral DNA block immune 7 Literaturverzeichnis 124 activation by stimulatory CpG motifs. Proc Natl Acad Sci U S A 95(21): 12631-12636.
  64. Wald D, Qin J, Zhao Z, Qian Y, Naramura M, Tian L, Towne J, Sims JE, Stark GR, Li X (2003). SIGIRR, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling. Nat Immunol 4(9): 920-927.
  65. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996). The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86(6): 973-983.
  66. Kimbrell DA and Beutler B (2001). The evolution and genetics of innate immunity. Nat Rev Genet 2(4): 256-267.
  67. Wagner H (2004). The immunobiology of the TLR9 subfamily. Trends Immunol 25(7): 381-386.
  68. Toshchakov V, Jones BW, Perera PY, Thomas K, Cody MJ, Zhang S, Williams BR, Major J, Hamilton TA, Fenton MJ, Vogel SN (2002). TLR4, but not TLR2, mediates IFN-beta-induced STAT1alpha/beta-dependent gene expression in macrophages. Nat Immunol 3(4): 392-398.
  69. Kawai T and Akira S (2007). TLR signaling. Semin Immunol 19(1): 24-32.
  70. Rutz M, Metzger J, Gellert T, Luppa P, Lipford GB, Wagner H, Bauer S (2004). Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence-and pH- dependent manner. Eur J Immunol 34(9): 2541-2550.
  71. Müller TC (2008): Biochemische Analyse von Toll-like Rezeptor 9.
  72. Vollmer J, Weeratna R, Payette P, Jurk M, Schetter C, Laucht M, Wader T, Tluk S, Liu M, Davis HL, Krieg AM (2004). Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities. Eur J Immunol 34(1): 251-262.
  73. Kajita K, Honda T, Amanuma R, Domon H, Okui T, Ito H, Yoshie H, Tabeta K, Nakajima T, Yamazaki K (2007). Quantitative messenger RNA expression of Toll-like receptors and interferon-alpha1 in gingivitis and periodontitis. Oral Microbiol Immunol 22(6): 398-402.
  74. Schacher B, Baron F, Rossberg M, Wohlfeil M, Arndt R, Eickholz P (2007). Aggregatibacter actinomycetemcomitans as indicator for aggressive periodontitis by two analysing strategies. J Clin Periodontol 34(7): 566-573.
  75. Klinman DM, Zeuner R, Yamada H, Gursel M, Currie D, Gursel I (2003). Regulation of CpG-induced immune activation by suppressive oligodeoxynucleotides. Ann N Y Acad Sci 1002: 112-123.
  76. Gallauner S (2009): THP-1 Zellen als Modell für Phagozytose.
  77. Fitzgerald KA, Palsson-McDermott EM, Bowie AG, Jefferies CA, Mansell AS, Brady G, Brint E, Dunne A, Gray P, Harte MT, McMurray D, Smith DE, Sims JE, Bird TA, O'Neill LA (2001). Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413(6851): 78-83.
  78. Lawn SD (2004). AIDS in Africa: the impact of coinfections on the pathogenesis of HIV-1 infection. J Infect 48(1): 1-12.
  79. Latz E, Schoenemeyer A, Visintin A, Fitzgerald KA, Monks BG, Knetter CF, Lien E, Nilsen NJ, Espevik T, Golenbock DT (2004). TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol 5(2): 190-198.
  80. Shahriar M, Haque MR, Kabir S, Dewan I, Bhuyian MA (2011). Effect of Proteinase-K on Genomic DNA Extraction from Gram-positive Strains. Stamford Journal of Pharmaceutical Sciences 4(1): 53-57.
  81. Meng W, Yamazaki T, Nishida Y, Hanagata N (2011). Nuclease-resistant immunostimulatory phosphodiester CpG oligodeoxynucleotides as human Toll-like receptor 9 agonists. BMC Biotechnol 11: 88.
  82. Wyllie DH, Kiss-Toth E, Visintin A, Smith SC, Boussouf S, Segal DM, Duff GW, Dower SG (2000). Evidence for an accessory protein function for Toll- like receptor 1 in anti-bacterial responses. J Immunol 165(12): 7125-7132.
  83. Smiley ST, King JA, Hancock WW (2001). Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. J Immunol 167(5): 2887- 2894.
  84. Kerkmann M, Rothenfusser S, Hornung V, Tawarowski A, Wagner M, Sarris S, Giese T, Endres S, Hartmann G (2003). Activation with CpG-A and CpG- B oligonucleotides reveals two distinct regulatory pathways of type I IFN synthesis in human plasmacytoid dendritic cells. J Immunol 170(9): 4465- 4474.
  85. Yasuda K, Yu P, Kirschning CJ, Schlatter B, Schmitz F, Heit A, Bauer S, Hochrein H, Wagner H (2005). Endosomal translocation of vertebrate DNA activates dendritic cells via TLR9-dependent and -independent pathways. J Immunol 174(10): 6129-6136. 131
  86. Trinchieri G and Sher A (2007). Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol 7(3): 179-190.
  87. Sahingur SE, Xia XJ, Alamgir S, Honma K, Sharma A, Schenkein HA (2010). DNA from Porphyromonas gingivalis and Tannerella forsythia induce cytokine production in human monocytic cell lines. Mol Oral Microbiol 25(2): 123-135.
  88. Kaplan JB, Schreiner HC, Furgang D, Fine DH (2002). Population structure and genetic diversity of Actinobacillus actinomycetemcomitans strains isolated from localized juvenile periodontitis patients. J Clin Microbiol 40(4): 1181- 1187.
  89. Nonnenmacher C, Dalpke A, Zimmermann S, Flores-De-Jacoby L, Mutters R, Heeg K (2003). DNA from periodontopathogenic bacteria is immunostimulatory for mouse and human immune cells. Infect Immun 71(2): 850-856.
  90. Fredricks DN and Relman DA (1996). Sequence-based identification of microbial pathogens: a reconsideration of Koch's postulates. Clinical Microbiological Reviews 9(1): 18 -33.
  91. Ewaschuk JB, Backer JL, Churchill TA, Obermeier F, Krause DO, Madsen KL (2007). Surface expression of Toll-like receptor 9 is upregulated on intestinal epithelial cells in response to pathogenic bacterial DNA. Infect Immun 75(5): 2572-2579.
  92. Van Dyke TE (2008). The management of inflammation in periodontal disease. J Periodontol 79(8 Suppl): 1601-1608.
  93. Li X, Kolltveit KM, Tronstad L, Olsen I (2000). Systemic diseases caused by oral infection. Clin Microbiol Rev 13(4): 547-558.
  94. Takeshita A, Imai K, Hanazawa S (1999). CpG motifs in Porphyromonas gingivalis DNA stimulate interleukin-6 expression in human gingival fibroblasts. Infect Immun 67(9): 4340-4345.
  95. Leppert U, Henke W, Huang X, Müller JM, Dubiel W (2011). Post-transcriptional fine-tuning of COP9 signalosome subunit biosynthesis is regulated by the c- Myc/Lin28B/let-7 pathway. J Mol Biol 409(5): 710-721.
  96. Schnare M, Holt AC, Takeda K, Akira S, Medzhitov R (2000). Recognition of CpG DNA is mediated by signaling pathways dependent on the adaptor protein MyD88. Curr Biol 10(18): 1139-1142.
  97. Viglianti GA, Lau CM, Hanley TM, Miko BA, Shlomchik MJ, Marshak- Rothstein A (2003). Activation of autoreactive B cells by CpG dsDNA. Immunity 19(6): 837-847.
  98. Sun R, Sun L, Bao M, Zhang Y, Wang L, Wu X, Hu D, Liu Y, Yu Y, Wang L (2010). A human microsatellite DNA-mimicking oligodeoxynucleotide with CCT repeats negatively regulates TLR7/9-mediated innate immune responses via selected TLR pathways. Clin Immunol 134(3): 262-276.
  99. Taams LS and Akbar AN (2005). Peripheral generation and function of CD4+CD25+ regulatory T cells. Curr Top Microbiol Immunol 293: 115-131.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten