Publikationsserver der Universitätsbibliothek Marburg

Titel:Decipering the subunit interaction in the crenarchaeal archaellum
Autor:Neiner, Tomasz Paweł
Weitere Beteiligte: Albers, Sonja-Verena (Prof. Dr.)
Veröffentlicht:2014
URI:https://archiv.ub.uni-marburg.de/diss/z2014/0481
DOI: https://doi.org/10.17192/z2014.0481
URN: urn:nbn:de:hebis:04-z2014-04819
DDC: Biowissenschaften, Biologie
Titel (trans.):Dechiffrierung von Wechselwirkungen der Untereinheiten des Archaellum von Crenarchaeota
Publikationsdatum:2015-07-15
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Archaellum, crenarchaeal archaellum, Crenarchaeota

Summary:
The archaeal motility structure, the archaellum is an intriguing hybrid of the function and architecture of two distinct motility organelles, the bacterial flagellum and the T4P, respectively. This rotating T4P is an astonishing example of evolutionary adaptation and represents indeed a unique, third way to move. This microbial structure was however for long time ignored and while many bacterial structures have been already well characterized, the knowledge about the archaellum remains still scare. The so far performed studies were restricted to motility in Euryarchaeota and included physiological and genetic analyses of few species. Here we present a detailed systematic and structural analysis of the crenarchaeal archaellum using the thermoacidophile Sulfolobus acidocaldarius as model organism. S. acidocaldarius has the most minimalistic known archaellum system, composed of only seven Fla proteins. In-frame deletion strain analysis revealed all seven fla genes to be essential for proper archaellum assembly. All these mutants were non-motile, conclusively linking the archaellum of Crenarchaeota with their swimming motility. Moreover, using immunoblot analysis we found the archaella biosynthesis to be induced under nutrient depleting conditions. We could also demonstrate that despite that all the seven fla genes are clustered in one genomic locus, they are expressed in two different transcriptional units. Thus the archaellin FlaB and the remaining structural components FlaXHGFHIJ encoding genes are expressed separately. The main focus of this work was however the structural aspect of the S. acidocaldarius archaellum. Thus we are presenting here a detailed biochemical and structural characterization of the two cytosolic components of the archaellum: the RecA family protein FlaH and the ATPase FlaI. By elucidating the interaction network of FlaH and FlaI within the archaellum, we could place them together with FlaX and FlaJ as structural components of the basal body The ATPase FlaI was successfully crystallized in hexameric form and we could solve this structure at 2.0 Å resolution. FlaI hexamer forms a crown-like structure with subunits at three different conformational states, assembled together in a rare cross-subunit interacting fashion. Further analysis revealed also that the enzymatic activity and system specificity of FlaI are structurally separated, since the ATPase is restricted to the C-terminal domain, while the functional part is represented by the N-terminal domain. We demonstrated moreover that FlaI has a dual role and is involved in generating the energy necessary for both, the archaellum assembly and its rotation. The functions of FlaI could be uncoupled by deleting the first 29 amino acids of the N-terminus, resulting in archaellated, but not motile phenotype. FlaH was characterized as an ATP-binding protein, since no ATPase activity could be detected. It has a well conserved Walker A, but an incomplete Walker B motif and as we could show with in vivo and in vitro analysis both motifs are important for ATP binding and also were essential for archaella assembly and motility. The structure of FlaH was solved at 2.3 Å resolution, revealing the presence of a bound ATP molecule, supporting the hypothesis that FlaH does not hydrolyze ATP. Structural similarities to the CII domain of KaiC and a proved auto-phosphorylation activity, suggest that FlaH plays a regulatory role and controls the archaellum assembly/function in a phosphorylation dependent manner. Taking together, all the presented here data provide insights into the role of the archaellum of S. acidocaldarius, its genomic organization and unique molecular architecture. Furthermore our structural analysis revealed differences between the motor proteins within the archaellum and the related bacterial systems, elucidating the phenomenon of the rotating type IV pilus. However, many questions regarding the archaellum remain still open and present a challenge for further motility studies in Archaea.

Bibliographie / References

  1. Silverman, M. & M. Simon, (1974) Flagellar rotation and the mechanism of bacterial motility. Nature 249: 73-74.
  2. Magariyama, Y., S. Sugiyama, K. Muramoto, Y. Maekawa, I. Kawagishi, Y. Imae & S. Kudo, (1994) Very fast flagellar rotation. Nature 371: 752.
  3. Weijers, J.W.H., S. Schouten, E.C. Hopmans, J.A.J. Geenevasen, O.R.P. David, J.M. Coleman, R.D. Pancost & J.S.S. Damste, (2006) Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits. Environ Microbiol 8: 648-657.
  4. van Wolferen, M., M. Ajon, A.J. Driessen & S.V. Albers, (2013) Molecular analysis of the UV- inducible pili operon from Sulfolobus acidocaldarius. MicrobiologyOpen 2: 928-937.
  5. Bren, A. & M. Eisenbach, (1998) The N terminus of the flagellar switch protein, FliM, is the binding domain for the chemotactic response regulator, CheY. Journal of molecular biology 278: 507-514.
  6. Kandler, O. & H. Konig, (1978) Chemical Composition of Peptidoglycan-Free Cell-Walls of Methanogenic Bacteria. Archives of microbiology 118: 141-152.
  7. Kandler, O. & H. Hippe, (1977) Lack of Peptidoglycan in Cell-Walls of Methanosarcina-Barkeri. Archives of microbiology 113: 57-60.
  8. Mullakhanbhai, M.F. & H. Larsen, (1975) Halobacterium volcanii spec. nov., a Dead Sea halobacterium with a moderate salt requirement. Archives of microbiology 104: 207-214.
  9. Thomas, N.A., C.T. Pawson & K.F. Jarrell, (2001b) Insertional inactivation of the flaH gene in the archaeon Methanococcus voltae results in non-flagellated cells. Mol Genet Genomics 265: 596-603.
  10. Macalady, J.L., M.M. Vestling, D. Baumler, N. Boekelheide, C.W. Kaspar & J.F. Banfield, (2004) Tetraether-linked membrane monolayers in Ferroplasma spp: a key to survival in acid. Extremophiles 8: 411-419.
  11. Sheng, D.H., S.S. Zhu, T. Wei, J.F. Ni & Y.L. Shen, (2008) The in vitro activity of a Rad55 homologue from Sulfolobus tokodaii, a candidate mediator in RadA-catalyzed homologous recombination. Extremophiles 12: 147-157.
  12. Berkner, S., A. Wlodkowski, S.V. Albers & G. Lipps, (2010) Inducible and constitutive promoters for genetic systems in Sulfolobus acidocaldarius. Extremophiles 14: 249-259.
  13. Henche, A.L., M. van Wolferen, A. Ghosh & S.V. Albers, (2014) Dissection of key determinants of cleavage activity in signal peptidase III (SPaseIII) PibD. Extremophiles 18: 905-913.
  14. Khan, S., M. Dapice & T.S. Reese, (1988) Effects of mot gene expression on the structure of the flagellar motor. J Mol Biol 202: 575-584.
  15. Duan, X. & Z.G. He, (2011) Characterization of the specific interaction between archaeal FHA domain-containing protein and the promoter of a flagellar-like gene-cluster and its regulation by phosphorylation. Biochem Bioph Res Co 407: 242-247.
  16. Kaiser, D., (2007) Bacterial swarming: a re-examination of cell-movement patterns. Curr Biol 17: R561-570.
  17. Trachtenberg, S., V.E. Galkin & E.H. Egelman, (2005) Refining the structure of the Halobacterium salinarum flagellar filament using the iterative helical real space reconstruction method: insights into polymorphism. Journal of molecular biology 346: 665-676.
  18. Reindl, S., A. Ghosh, G.J. Williams, K. Lassak, T. Neiner, A.L. Henche, S.V. Albers & J.A. Tainer, (2013) Insights into FlaI functions in archaeal motor assembly and motility from structures, conformations, and genetics. Molecular cell 49: 1069-1082.
  19. Lassak, K., A. Ghosh & S.V. Albers, (2012a) Diversity, assembly and regulation of archaeal type IV pili-like and non-type-IV pili-like surface structures. Research in microbiology 163: 630-644.
  20. Miyata, M., (2008) Centipede and inchworm models to explain Mycoplasma gliding. Trends in microbiology 16: 6-12.
  21. Jarrell, K.F. & S.V. Albers, (2012) The archaellum: an old motility structure with a new name. Trends in microbiology 20: 307-312.
  22. Olsen, G.J. & C.R. Woese, (1997) Archaeal genomics: An overview. Cell 89: 991-994.
  23. Dennis, P.P., (1997) Ancient ciphers: Translation in Archaea. Cell 89: 1007-1010.
  24. Stetter, K.O., H. Konig & E. Stackebrandt, (1983) Pyrodictium Gen-Nov, a New Genus of Submarine Disc-Shaped Sulfur Reducing Archaebacteria Growing Optimally at 105- Degrees-C. Systematic and applied microbiology 4: 535-551.
  25. Woese, C.R., R. Gupta, C.M. Hahn, W. Zillig & J. Tu, (1984) The phylogenetic relationships of three sulfur dependent archaebacteria. Systematic and applied microbiology 5: 97-105.
  26. Bell, S.D. & S.P. Jackson, (1998) Transcription and translation in Archaea: A mosaic of eukaryal and bacterial features. Trends in microbiology 6: 222-228.
  27. Qian, X.G., Y.J. He & Y. Luo, (2007) Binding of a second magnesium is required for ATPase activity of RadA from Methanococcus voltae. Biochemistry 46: 5855-5863.
  28. Kim, E.A., M. Price-Carter, W.C. Carlquist & D.F. Blair, (2008) Membrane segment organization in the stator complex of the flagellar motor: implications for proton flow and proton- induced conformational change. Biochemistry 47: 11332-11339.
  29. Margolis, R.L. & L. Wilson, (1981) Microtubule Treadmills -Possible Molecular Machinery. Nature 293: 705-711.
  30. Samatey, F.A., H. Matsunami, K. Imada, S. Nagashima, T.R. Shaikh, D.R. Thomas, J.Z. Chen, D.J. Derosier, A. Kitao & K. Namba, (2004) Structure of the bacterial flagellar hook and implication for the molecular universal joint mechanism. Nature 431: 1062-1068.
  31. Jarrell, K.F. & M.J. McBride, (2008a) The surprisingly diverse ways that prokaryotes move. Nature Reviews Microbiology 6: 466-476.
  32. Albers, S.V. & B.H. Meyer, (2011) The archaeal cell envelope. Nature Reviews Microbiology 9: 414-426.
  33. Chen, I. & D. Dubnau, (2004) DNA uptake during bacterial transformation. Nature reviews. Microbiology 2: 241-249.
  34. Ito, H., H. Kageyama, M. Mutsuda, M. Nakajima, T. Oyama & T. Kondo, (2007) Autonomous synchronization of the circadian KaiC phosphorylation rhythm. Nature structural & molecular biology 14: 1084-1088.
  35. Ghosh, A. & S.V. Albers, (2011a) Assembly and function of the archaeal flagellum. Biochemical Society transactions 39: 64-69.
  36. Thomas, N.A., S. Mueller, A. Klein & K.F. Jarrell, (2002) Mutants in flaI and flaJ of the archaeon Methanococcus voltae are deficient in flagellum assembly. Molecular microbiology 46: 879-887.
  37. Mukhopadhyay, B., E.F. Johnson & R.S. Wolfe, (2000) A novel p(H2) control on the expression of flagella in the hyperthermophilic strictly hydrogenotrophic methanarchaeaon Methanococcus jannaschii. Proceedings of the National Academy of Sciences of the United States of America 97: 11522-11527.
  38. Berkner, S., D. Grogan, S.V. Albers & G. Lipps, (2007) Small multicopy, non-integrative shuttle vectors based on the plasmid pRN1 for Sulfolobus acidocaldarius and Sulfolobus solfataricus, model organisms of the (cren-)archaea. Nucleic acids research 35: e88.
  39. Cole, C., J.D. Barber & G.J. Barton, (2008) The Jpred 3 secondary structure prediction server. Nucleic Acids Research 36: W197-W201.
  40. Holm, L. & P. Rosenstrom, (2010) Dali server: conservation mapping in 3D. Nucleic acids research 38: W545-549.
  41. Buchan, D.W.A., S.M. Ward, A.E. Lobley, T.C.O. Nugent, K. Bryson & D.T. Jones, (2010) Protein annotation and modelling servers at University College London. Nucleic Acids Research 38: W563-W568.
  42. Peabody, C.R., Y.J. Chung, M.R. Yen, D. Vidal-Ingigliardi, A.P. Pugsley & M.H. Saier, (2003a) Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiol-Sgm 149: 3051-3072.
  43. Logan, S.M., (2006) Flagellar glycosylation -a new component of the motility repertoire? Microbiol-Sgm 152: 1249-1262.
  44. Crowther, L.J., R.P. Anantha & M.S. Donnenberg, (2004) The inner membrane subassembly of the enteropathogenic Escherichia coli bundle-forming pilus machine. Molecular microbiology 52: 67-79.
  45. Chaban, B., S.Y. Ng, M. Kanbe, I. Saltzman, G. Nimmo, S. Aizawa & K.F. Jarrell, (2007) Systematic deletion analyses of the fla genes in the flagella operon identify several genes essential for proper assembly and function of flagella in the archaeon, Methanococcus maripaludis. Molecular microbiology 66: 596-609.
  46. Kojima, S., K. Imada, M. Sakuma, Y. Sudo, C. Kojima, T. Minamino, M. Homma & K. Namba, (2009) Stator assembly and activation mechanism of the flagellar motor by the periplasmic region of MotB. Molecular microbiology 73: 710-718.
  47. Meyer, B.H., B. Zolghadr, E. Peyfoon, M. Pabst, M. Panico, H.R. Morris, S.M. Haslam, P. Messner, C. Schaffer, A. Dell & S.V. Albers, (2011) Sulfoquinovose synthase -an important enzyme in the N-glycosylation pathway of Sulfolobus acidocaldarius. Molecular microbiology 82: 1150-1163.
  48. Lassak, K., T. Neiner, A. Ghosh, A. Klingl, R. Wirth & S.V. Albers, (2012b) Molecular analysis of the crenarchaeal flagellum. Molecular microbiology 83: 110-124.
  49. Henche, A.L., A. Koerdt, A. Ghosh & S.V. Albers, (2012b) Influence of cell surface structures on crenarchaeal biofilm formation using a thermostable green fluorescent protein. Environ Microbiol 14: 779-793.
  50. Merino, S., J.G. Shaw & J.M. Tomas, (2006) Bacterial lateral flagella: an inducible flagella system. FEMS microbiology letters 263: 127-135.
  51. Lassak, K., E. Peeters, S. Wrobel & S.V. Albers, (2013) The one-component system ArnR: a membrane-bound activator of the crenarchaeal archaellum. Molecular microbiology 88: 125-139.
  52. Nakajima, M., K. Imai, H. Ito, T. Nishiwaki, Y. Murayama, H. Iwasaki, T. Oyama & T. Kondo, (2005) Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308: 414-415.
  53. Kletzin, A., (2007) General Characteristics and Important Model Organisms. Archaea: Molecular and Cellular Biology: 14-+.
  54. Chaban, B., S.Y.M. Ng & K.F. Jarrell, (2006a) Archaeal habitats -from the extreme to the ordinary. Can J Microbiol 52: 73-116.
  55. Ng, S.Y.M., B. Chaban & K.F. Jarrell, (2006) Archaeal flagella, bacterial flagella and type IV pili: A comparison of genes and posttranslational modifications. J Mol Microb Biotech 11: 167-191.
  56. Trachtenberg, S. & S. Cohen-Krausz, (2006) The archaeabacterial flagellar filament: a bacterial propeller with a pilus-like structure. J Mol Microbiol Biotechnol 11: 208-220.
  57. Rieger, G., R. Rachel, R. Hermann & K.O. Stetter, (1995) Ultrastructure of the Hyperthermophilic Archaeon Pyrodictium-Abyssi. J Struct Biol 115: 78-87.
  58. Nickell, S., R. Hegerl, W. Baumeister & R. Rachel, (2003) Pyrodictium cannulae enter the periplasmic space but do not enter the cytoplasm, as revealed by cryo-electron tomography. J Struct Biol 141: 34-42.
  59. Huber, H., M.J. Hohn, R. Rachel, T. Fuchs, V.C. Wimmer & K.O. Stetter, (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417: 63-67.
  60. Moissl, C., R. Rachel, A. Briegel, H. Engelhardt & R. Huber, (2005) The unique structure of archaeal 'hami', highly complex cell appendages with nano-grappling hooks. Molecular microbiology 56: 361-370.
  61. Mattick, J.S., (2002) Type IV pili and twitching motility. Annual review of microbiology 56: 289- 314.
  62. Kates, M., (1992) Archaebacterial lipids: structure, biosynthesis and function. Biochemical Society symposium 58: 51-72.
  63. Brugger, K., E. Torarinsson, P. Redder, L. Chen & R.A. Garrett, (2004) Shuffling of Sulfolobus genomes by autonomous and non-autonomous mobile elements. Biochemical Society transactions 32: 179-183.
  64. Bardy, S.L. & K.F. Jarrell, (2002) FlaK of the archaeon Methanococcus maripaludis possesses preflagellin peptidase activity. FEMS microbiology letters 208: 53-59.
  65. Wagner, M., S. Berkner, M. Ajon, A.J. Driessen, G. Lipps & S.V. Albers, (2009) Expanding and understanding the genetic toolbox of the hyperthermophilic genus Sulfolobus. Biochemical Society transactions 37: 97-101.
  66. Ajon, M., S. Frols, M. van Wolferen, K. Stoecker, D. Teichmann, A.J. Driessen, D.W. Grogan, S.V. Albers & C. Schleper, (2011) UV-inducible DNA exchange in hyperthermophilic archaea mediated by type IV pili. Molecular microbiology 82: 807-817.
  67. Reimann, J., K. Lassak, S. Khadouma, T.J.G. Ettema, N. Yang, A.J.M. Driessen, A. Klingl & S.V. Albers, (2012) Regulation of archaella expression by the FHA and von Willebrand domain-containing proteins ArnA and ArnB in Sulfolobus acidocaldarius. Mol Microbiol 86: 24-36.
  68. Patenge, N., A. Berendes, H. Engelhardt, S.C. Schuster & D. Oesterhelt, (2001) The fla gene cluster is involved in the biogenesis of flagella in Halobacterium salinarum. Molecular microbiology 41: 653-663.
  69. Streif, S., W.F. Staudinger, W. Marwan & D. Oesterhelt, (2008) Flagellar Rotation in the Archaeon Halobacterium salinarum Depends on ATP. J Mol Biol 384: 1-8.
  70. Savvides, S.N., (2007) Secretion superfamily ATPases swing big. Structure 15: 255-257.
  71. Southam, G., M.L. Kalmokoff, K.F. Jarrell, S.F. Koval & T.J. Beveridge, (1990a) Isolation, Characterization, and Cellular Insertion of the Flagella from 2 Strains of the Archaebacterium Methanospirillum-Hungatei. Journal of bacteriology 172: 3221-3228.
  72. Banerjee, A., A. Ghosh, D.J. Mills, J. Kahnt, J. Vonck & S.V. Albers, (2012b) FlaX, a unique component of the crenarchaeal archaellum, forms oligomeric ring-shaped structures and interacts with the motor ATPase FlaI. J Biol Chem.
  73. Ken F. Jarrell, D.J.V.a.J.W., (2009) Archaeal Flagella and Pili. Caister Academic Press, UK.
  74. Allers, T. & M. Mevarech, (2005) Archaeal genetics -The third way. Nat Rev Genet 6: 58-73.
  75. Pohlschroder, M., A. Ghosh, M. Tripepi & S.V. Albers, (2011) Archaeal type IV pilus-like structures--evolutionarily conserved prokaryotic surface organelles. Current opinion in microbiology 14: 357-363.
  76. Hayashi, F., H. Suzuki, R. Iwase, T. Uzumaki, A. Miyake, J.R. Shen, K. Imada, Y. Furukawa, K. Yonekura, K. Namba & M. Ishiura, (2003) ATP-induced hexameric ring structure of the cyanobacterial circadian clock protein KaiC. Genes to cells : devoted to molecular & cellular mechanisms 8: 287-296.
  77. Berg, H.C. & R.A. Anderson, (1973) Bacteria swim by rotating their flagellar filaments. Nature 245: 380-382.
  78. Kandler, O. & H. Konig, (1998) Cell wall polymers in Archaea (Archaebacteria). Cell Mol Life Sci 54: 305-308.
  79. Pechman, K.J. & C.R. Woese, (1972) Characterization of the primary structural homology between the 16s ribosomal RNAs of Escherichia coli and Bacillus megaterium by oligomer cataloging. Journal of molecular evolution 1: 230-240.
  80. Hagman, K.E., S.F. Porcella, T.G. Popova & M.V. Norgard, (1997) Evidence for a methyl- accepting chemotaxis protein gene (mcp1) that encodes a putative sensory transducer in virulent Treponema pallidum. Infection and immunity 65: 1701-1709.
  81. Bulyha, I., E. Hot, S. Huntley & L. Sogaard-Andersen, (2011) GTPases in bacterial cell polarity and signalling. Current opinion in microbiology 14: 726-733.
  82. Macnab, R.M., (2003) How bacteria assemble flagella. Annual review of microbiology 57: 77- 100.
  83. Voisin, S., R.S. Houliston, J. Kelly, J.R. Brisson, D. Watson, S.L. Bardy, K.F. Jarrell & S.M. Logan, (2005) Identification and characterization of the unique N-linked glycan common to the flagellins and S-layer glycoprotein of Methanococcus voltae. Journal of Biological Chemistry 280: 16586-16593.
  84. Maniscalco, M., J. Nannen, V. Sodi, G. Silver, P.L. Lowrey & K.A. Bidle, (2014) Light- dependent expression of four cryptic archaeal circadian gene homologs. Frontiers in microbiology 5.
  85. Bell, S.D. & S.P. Jackson, (2001) Mechanism and regulation of transcription in archaea. Current opinion in microbiology 4: 208-213.
  86. Konarev, P.V., V.V. Volkov, A.V. Sokolova, M.H.J. Koch & D.I. Svergun, (2003) PRIMUS: a Windows PC-based system for small-angle scattering data analysis. Journal of applied crystallography 36: 1277-1282.
  87. Otwinowski, Z. & W. Minor, (1997) Processing of X-ray diffraction data collected in oscillation mode. Method Enzymol 276: 307-326.
  88. Bardy, S.L., S.Y.M. Ng & K.F. Jarrell, (2003) Prokaryotic motility structures. Microbiol-Sgm 149: 295-304.
  89. Sprott, G.D., M. Meloche & J.C. Richards, (1991) Proportions of Diether, Macrocyclic Diether, and Tetraether Lipids in Methanococcus-Jannaschii Grown at Different Temperatures. Journal of bacteriology 173: 3907-3910.
  90. Chubb, J.R., A. Wilkins, D.J. Wessels, D.R. Soll & R.H. Insall, (2002) Pseudopodium dynamics and rapid cell movement in Dictyostelium Ras pathway mutants. Cell motility and the cytoskeleton 53: 150-162.
  91. Fiala, G. & K.O. Stetter, (1986) Pyrococcus-Furiosus Sp-Nov Represents a Novel Genus of Marine Heterotrophic Archaebacteria Growing Optimally at 100-Degrees C. Archives of microbiology 145: 56-61.
  92. McCarter, L.L., (2006) Regulation of flagella. Current opinion in microbiology 9: 180-186.
  93. Aldridge, P. & K.T. Hughes, (2002) Regulation of flagellar assembly. Current opinion in microbiology 5: 160-165.
  94. Consortium, U., (2012) Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Research 40: D71-D75.
  95. Cohen, E.J. & K.T. Hughes, (2014) Rod-to-Hook Transition for Extracellular Flagellum Assembly Is Catalyzed by the L-Ring-Dependent Rod Scaffold Removal. Journal of bacteriology 196: 2387-2395.
  96. Siewering, K., S. Jain, C. Friedrich, M.T. Webber-Birungi, D.A. Semchonok, I. Binzen, A. Wagner, S. Huntley, J. Kahnt, A. Klingl, E.J. Boekema, L. Sogaard-Andersen & C. van der Does, (2014) Peptidoglycan-binding protein TsaP functions in surface assembly of type IV pili. Proceedings of the National Academy of Sciences of the United States of America 111: E953-961.
  97. Kazmierczak, B.I. & D.R. Hendrixson, (2013) Spatial and numerical regulation of flagellar biosynthesis in polarly flagellated bacteria. Molecular microbiology 88: 655-663.
  98. Brock, T.D., K.M. Brock, R.T. Belly & R.L. Weiss, (1972) Sulfolobus: a new genus of sulfur- oxidizing bacteria living at low pH and high temperature. Archiv fur Mikrobiologie 84: 54-68.
  99. Thomas, N.A., S.L. Bardy & K.F. Jarrell, (2001a) The archaeal flagellum: a different kind of prokaryotic motility structure. FEMS microbiology reviews 25: 147-174.
  100. Leipe, D.D., L. Aravind, N.V. Grishin & E.V. Koonin, (2000) The bacterial replicative helicase DnaB evolved from a RecA duplication. Genome research 10: 5-16.
  101. Cohen-Krausz, S. & S. Trachtenberg, (2002) The structure of the archeabacterial flagellar filament of the extreme halophile Halobacterium salinarum R1M1 and its relation to eubacterial flagellar filaments and type IV pili. Journal of molecular biology 321: 383- 395. Acknowledgements 135
  102. Varga, J.J., V. Nguyen, D.K. O'Brien, K. Rodgers, R.A. Walker & S.B. Melville, (2006) Type IV pili-dependent gliding motility in the Gram-positive pathogen Clostridium perfringens and other Clostridia. Molecular microbiology 62: 680-694.
  103. Melville, S. & L. Craig, (2013) Type IV pili in Gram-positive bacteria. Microbiology and molecular biology reviews : MMBR 77: 323-341.
  104. Giltner, C.L., Y. Nguyen & L.L. Burrows, (2012) Type IV pilin proteins: versatile molecular modules. Microbiology and molecular biology reviews : MMBR 76: 740-772.
  105. Craig, L., N. Volkmann, A.S. Arvai, M.E. Pique, M. Yeager, E.H. Egelman & J.A. Tainer, (2006) Type IV pilus structure by cryo-electron microscopy and crystallography: implications for pilus assembly and functions. Molecular cell 23: 651-662.
  106. Mcclure, M.A. & R.W.G. Wyckoff, (1982) Ultrastructural Characteristics of Sulfolobus- Acidocaldarius. J Gen Microbiol 128: 433-437.
  107. Arts, J., A. de Groot, G. Ball, E. Durand, M. El Khattabi, A. Filloux, J. Tommassen & M. Koster, (2007) Interaction domains in the Pseudomonas aeruginosa type II secretory apparatus component XcpS (GspF). Microbiol-Sgm 153: 1582-1592.
  108. Chaban, B., S. Voisin, J. Kelly, S.M. Logan & K.F. Jarrell, (2006b) Identification of genes involved in the biosynthesis and attachment of Methanococcus voltae N-linked glycans: insight into N-linked glycosylation pathways in Archaea. Molecular microbiology 61: 259-268.
  109. O'Toole, G.A. & R. Kolter, (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Molecular microbiology 30: 295-304.
  110. Jonuscheit, M., E. Martusewitsch, K.M. Stedman & C. Schleper, (2003) A reporter gene system for the hyperthermophilic archaeon Sulfolobus solfataricus based on a selectable and integrative shuttle vector. Mol Microbiol 48: 1241-1252.
  111. Bardy, S.L. & K.F. Jarrell, (2003) Cleavage of preflagellins by an aspartic acid signal peptidase is essential for flagellation in the archaeon Methanococcus voltae. Molecular microbiology 50: 1339-1347.
  112. Banerjee, A., T. Neiner, P. Tripp & S.V. Albers, (2013) Insights into subunit interactions in the Sulfolobus acidocaldarius archaellum cytoplasmic complex. The FEBS journal 280: 6141-6149.
  113. Spang, A., A. Poehlein, P. Offre, S. Zumbragel, S. Haider, N. Rychlik, B. Nowka, C. Schmeisser, E.V. Lebedeva, T. Rattei, C. Bohm, M. Schmid, A. Galushko, R. Hatzenpichler, T. Weinmaier, R. Daniel, C. Schleper, E. Spieck, W. Streit & M. Wagner, (2012) The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations. Environ Microbiol 14: 3122-3145.
  114. Shahapure, R., R.P. Driessen, M.F. Haurat, S.V. Albers & R.T. Dame, (2014a) The archaellum: a rotating type IV pilus. Molecular microbiology 91: 716-723.
  115. Frols, S., M. Ajon, M. Wagner, D. Teichmann, B. Zolghadr, M. Folea, E.J. Boekema, A.J. Driessen, C. Schleper & S.V. Albers, (2008) UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation. Molecular microbiology 70: 938-952.
  116. Kojima, S. & D.F. Blair, (2001) Conformational change in the stator of the bacterial flagellar motor. Biochemistry 40: 13041-13050.
  117. Haldenby, S., M.F. White & T. Allers, (2009) RecA family proteins in archaea: RadA and its cousins. Biochemical Society transactions 37: 102-107.
  118. McCoy, A.J., R.W. Grosse-Kunstleve, P.D. Adams, M.D. Winn, L.C. Storoni & R.J. Read, (2007) Phaser crystallographic software. Journal of applied crystallography 40: 658-674.
  119. Emsley, P. & K. Cowtan, (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D 60: 2126-2132.
  120. Desmond, E., C. Brochier-Armanet & S. Gribaldo, (2007) Phylogenomics of the archaeal flagellum: rare horizontal gene transfer in a unique motility structure. Bmc Evol Biol 7.
  121. Xia, Q., T.S. Wang, E.L. Hendrickson, T.J. Lie, M. Hackett & J.A. Leigh, (2009) Quantitative proteomics of nutrient limitation in the hydrogenotrophic methanogen Methanococcus maripaludis. Bmc Microbiol 9.
  122. Schlesner, M., A. Miller, S. Streif, W.F. Staudinger, J. Muller, B. Scheffer, F. Siedler & D. Oesterhelt, (2009) Identification of Archaea-specific chemotaxis proteins which interact with the flagellar apparatus. Bmc Microbiol 9.
  123. Adams, P.D., P.V. Afonine, G. Bunkoczi, V.B. Chen, I.W. Davis, N. Echols, J.J. Headd, L.W. Hung, G.J. Kapral, R.W. Grosse-Kunstleve, A.J. McCoy, N.W. Moriarty, R. Oeffner, R.J. Read, D.C. Richardson, J.S. Richardson, T.C. Terwilliger & P.H. Zwart, (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D 66: 213-221.
  124. Hayashi, F., N. Itoh, T. Uzumaki, R. Iwase, Y. Tsuchiya, H. Yamakawa, M. Morishita, K. Onai, S. Itoh & M. Ishiura, (2004) Roles of two ATPase-motif-containing domains in cyanobacterial circadian clock protein KaiC. The Journal of biological chemistry 279: 52331-52337.
  125. Banerjee, A., A. Ghosh, D.J. Mills, J. Kahnt, J. Vonck & S.V. Albers, (2012a) FlaX, a unique component of the crenarchaeal archaellum, forms oligomeric ring-shaped structures and interacts with the motor ATPase FlaI. The Journal of biological chemistry 287: 43322- 43330.
  126. Karuppiah, V., D. Hassan, M. Saleem & J.P. Derrick, (2010) Structure and oligomerization of the PilC type IV pilus biogenesis protein from Thermus thermophilus. Proteins 78: 2049- 2057.
  127. Collins, R.F., S.A. Frye, S. Balasingham, R.C. Ford, T. Tonjum & J.P. Derrick, (2005) Interaction with type IV pili induces structural changes in the bacterial outer membrane secretin PilQ. The Journal of biological chemistry 280: 18923-18930.
  128. Evans, L.D., S. Poulter, E.M. Terentjev, C. Hughes & G.M. Fraser, (2013) A chain mechanism for flagellum growth. Nature 504: 287-290.
  129. Hanson, P.I. & S.W. Whiteheart, (2005) AAA+ proteins: Have engine, will work. Nat Rev Mol Cell Bio 6: 519-529.
  130. Craig, L., M.E. Pique & J.A. Tainer, (2004) Type IV pilus structure and bacterial pathogenicity. Nature reviews. Microbiology 2: 363-378.
  131. Chevance, F.F. & K.T. Hughes, (2008) Coordinating assembly of a bacterial macromolecular machine. Nature reviews. Microbiology 6: 455-465.
  132. Evans, L.D., C. Hughes & G.M. Fraser, (2014) Building a flagellum outside the bacterial cell. Trends in microbiology.
  133. Chen, L.M., K. Brugger, M. Skovgaard, P. Redder, Q.X. She, E. Torarinsson, B. Greve, M. Awayez, A. Zibat, H.P. Klenk & R.A. Garrett, (2005) The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J Bacteriol 187: 4992-4999.
  134. Moissl, C., C. Rudolph & R. Huber, (2002) Natural communities of novel archaea and bacteria with a string-of-pearls-like morphology: molecular analysis of the bacterial partners. Applied and environmental microbiology 68: 933-937.
  135. Bardy, S.L., T. Mori, K. Komoriya, S.I. Aizawa & K.F. Jarrell, (2002) Identification and localization of flagellins FlaA and FlaB3 within flagella of Methanococcus voltae. Journal of bacteriology 184: 5223-5233.
  136. Szabo, Z., S.V. Albers & A.J.M. Driessen, (2006) Active-site residues in the type IV prepilin peptidase homologue PibD from the archaeon Sulfolobus solfataricus. J Bacteriol 188: 1437-1443.
  137. Grogan, D.W. & J.E. Hansen, (2003) Molecular characteristics of spontaneous deletions in the hyperthermophilic archaeon Sulfolobus acidocaldarius. J Bacteriol 185: 1266-1272.
  138. Pattanayek, R., D.R. Williams, S. Pattanayek, Y. Xu, T. Mori, C.H. Johnson, P.L. Stewart & M. Egli, (2006) Analysis of KaiA-KaiC protein interactions in the cyano-bacterial circadian clock using hybrid structural methods. The EMBO journal 25: 2017-2028.
  139. Dvornyk, V., O. Vinogradova & E. Nevo, (2003) Origin and evolution of circadian clock genes in prokaryotes. Proceedings of the National Academy of Sciences of the United States of America 100: 2495-2500.
  140. Albers, S.V., Z. Szabo & A.J. Driessen, (2003) Archaeal homolog of bacterial type IV prepilin signal peptidases with broad substrate specificity. J Bacteriol 185: 3918-3925.
  141. Graham, D.E., R. Overbeek, G.J. Olsen & C.R. Woese, (2000) An archaeal genomic signature. Proceedings of the National Academy of Sciences of the United States of America 97: 3304-3308.
  142. Blair, D.F., (2006) Fine structure of a fine machine. Journal of bacteriology 188: 7033-7035.
  143. Yamagata, A. & J.A. Tainer, (2007) Hexameric structures of the archaeal secretion ATPase GspE and implications for a universal secretion mechanism. The EMBO journal 26: 878-890.
  144. Szabo, Z., A.O. Stahl, S.V. Albers, J.C. Kissinger, A.J. Driessen & M. Pohlschroder, (2007a) Identification of diverse archaeal proteins with class III signal peptides cleaved by distinct archaeal prepilin peptidases. Journal of bacteriology 189: 772-778.
  145. Tripathi, S.A. & R.K. Taylor, (2007) Membrane association and multimerization of TcpT, the cognate ATPase ortholog of the Vibrio cholerae toxin-coregulated-pilus biogenesis apparatus. Journal of bacteriology 189: 4401-4409.
  146. Kupper, J., W. Marwan, D. Typke, H. Grunberg, U. Uwer, M. Gluch & D. Oesterhelt, (1994) The Flagellar Bundle of Halobacterium-Salinarium Is Inserted into a Distinct Polar-Cap Structure. Journal of bacteriology 176: 5184-5187.
  147. Faguy, D.M., S.F. Koval & K.F. Jarrell, (1994) Physical Characterization of the Flagella and Flagellins from Methanospirillum-Hungatei. Journal of bacteriology 176: 7491-7498.
  148. Nishiwaki, T., Y. Satomi, Y. Kitayama, K. Terauchi, R. Kiyohara, T. Takao & T. Kondo, (2007) A sequential program of dual phosphorylation of KaiC as a basis for circadian rhythm in cyanobacteria. The EMBO journal 26: 4029-4037.
  149. Terauchi, K., Y. Kitayama, T. Nishiwaki, K. Miwa, Y. Murayama, T. Oyama & T. Kondo, (2007) ATPase activity of KaiC determines the basic timing for circadian clock of cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America 104: 16377-16381.
  150. Grogan, D.W., (1989) Phenotypic characterization of the archaebacterial genus Sulfolobus: comparison of five wild-type strains. J Bacteriol 171: 6710-6719.
  151. Kalmokoff, M.L., K.F. Jarrell & S.F. Koval, (1988) Isolation of flagella from the archaebacterium Methanococcus voltae by phase separation with Triton X-114. Journal of bacteriology 170: 1752-1758.
  152. Yamaguchi, S., H. Fujita, A. Ishihara, S. Aizawa & R.M. Macnab, (1986) Subdivision of flagellar genes of Salmonella typhimurium into regions responsible for assembly, rotation, and switching. J Bacteriol 166: 187-193.
  153. Dean, G.E., R.M. Macnab, J. Stader, P. Matsumura & C. Burks, (1984) Gene sequence and predicted amino acid sequence of the motA protein, a membrane-associated protein required for flagellar rotation in Escherichia coli. J Bacteriol 159: 991-999.
  154. Hendrickson, E.L., Y. Liu, G. Rosas-Sandoval, I. Porat, D. Soll, W.B. Whitman & J.A. Leigh, (2008) Global responses of Methanococcus maripaludis to specific nutrient limitations and growth rate. Journal of bacteriology 190: 2198-2205.
  155. Jakovljevic, V., S. Leonardy, M. Hoppert & L. Sogaard-Andersen, (2008) PilB and PilT are ATPases acting antagonistically in type IV pilus function in Myxococcus xanthus. Journal of bacteriology 190: 2411-2421.
  156. Rust, M.J., J.S. Markson, W.S. Lane, D.S. Fisher & E.K. O'Shea, (2007) Ordered phosphorylation governs oscillation of a three-protein circadian clock. Science 318: 809-812.
  157. Stetter, (2008) A korarchaeal genome reveals insights into the evolution of the Archaea. Proceedings of the National Academy of Sciences of the United States of America 105: 8102-8107.
  158. Shivvers, D.W. & T.D. Brock, (1973) Oxidation of elemental sulfur by Sulfolobus acidocaldarius. J Bacteriol 114: 706-710.
  159. Ng, S.Y., B. Zolghadr, A.J. Driessen, S.V. Albers & K.F. Jarrell, (2008) Cell surface structures of archaea. Journal of bacteriology 190: 6039-6047.
  160. Rosbash, M., (2009) The implications of multiple circadian clock origins. PLoS biology 7: e62.
  161. Whitehead, K., M. Pan, K. Masumura, R. Bonneau & N.S. Baliga, (2009) Diurnally Entrained Anticipatory Behavior in Archaea. PloS one 4.
  162. Clausen, M., V. Jakovljevic, L. Sogaard-Andersen & B. Maier, (2009) High-force generation is a conserved property of type IV pilus systems. Journal of bacteriology 191: 4633-4638.
  163. Ito, H., M. Mutsuda, Y. Murayama, J. Tomita, N. Hosokawa, K. Terauchi, C. Sugita, M. Sugita, T. Kondo & H. Iwasaki, (2009) Cyanobacterial daily life with Kai-based circadian and diurnal genome-wide transcriptional control in Synechococcus elongatus. Proceedings of the National Academy of Sciences of the United States of America 106: 14168-14173.
  164. Abendroth, J., D.D. Mitchell, K.V. Korotkov, T.L. Johnson, A. Kreger, M. Sandkvist & W.G. Hol, (2009) The three-dimensional structure of the cytoplasmic domains of EpsF from the type 2 secretion system of Vibrio cholerae. J Struct Biol 166: 303-315.
  165. Pattanayek, R., T. Mori, Y. Xu, S. Pattanayek, C.H. Johnson & M. Egli, (2009) Structures of KaiC circadian clock mutant proteins: a new phosphorylation site at T426 and mechanisms of kinase, ATPase and phosphatase. PloS one 4: e7529.
  166. Xu, Y., T. Mori, X. Qin, H. Yan, M. Egli & C.H. Johnson, (2009) Intramolecular regulation of phosphorylation status of the circadian clock protein KaiC. PloS one 4: e7509.
  167. Ng, S.Y.M., D.J. VanDyke, B. Chaban, J. Wu, Y. Nosaka, S.I. Aizawa & K.F. Jarrell, (2009) Different Minimal Signal Peptide Lengths Recognized by the Archaeal Prepilin-Like Peptidases FlaK and PibD. Journal of bacteriology 191: 6732-6740.
  168. Wang, B., S.F. Yang, L. Zhang & Z.G. He, (2010) Archaeal Eukaryote-Like Serine/Threonine Protein Kinase Interacts with and Phosphorylates a Forkhead-Associated-Domain- Containing Protein. Journal of bacteriology 192: 1956-1964.
  169. Tripepi, M., S. Imam & M. Pohlschroder, (2010) Haloferax volcanii Flagella Are Required for Motility but Are Not Involved in PibD-Dependent Surface Adhesion. Journal of bacteriology 192: 3093-3102.
  170. Classen, S., I. Rodic, J. Holton, G.L. Hura, M. Hammel & J.A. Tainer, (2010) Software for the high-throughput collection of SAXS data using an enhanced Blu-Ice/DCS control system. Journal of synchrotron radiation 17: 774-781.
  171. Adams & J.A. Tainer, (2009) Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nat Methods 6: 606-U683.
  172. Kearns, D.B., (2010) A field guide to bacterial swarming motility. Nature reviews. Microbiology 8: 634-644.
  173. Pattanayek, R., D.R. Williams, G. Rossi, S. Weigand, T. Mori, C.H. Johnson, P.L. Stewart & M. Egli, (2011) Combined SAXS/EM based models of the S. elongatus post-translational circadian oscillator and its interactions with the output His-kinase SasA. PloS one 6: e23697.
  174. Ghosh, A., S. Hartung, C. van der Does, J.A. Tainer & S.V. Albers, (2011a) Archaeal flagellar ATPase motor shows ATP-dependent hexameric assembly and activity stimulation by specific lipid binding. The Biochemical journal 437: 43-52.
  175. Egli, M., T. Mori, R. Pattanayek, Y. Xu, X. Qin & C.H. Johnson, (2012) Dephosphorylation of the core clock protein KaiC in the cyanobacterial KaiABC circadian oscillator proceeds via an ATP synthase mechanism. Biochemistry 51: 1547-1558.
  176. Nan, B. & D.R. Zusman, (2011) Uncovering the mystery of gliding motility in the myxobacteria. Annual review of genetics 45: 21-39.
  177. Edgar, R.S., E.W. Green, Y. Zhao, G. van Ooijen, M. Olmedo, X. Qin, Y. Xu, M. Pan, U.K. Valekunja, K.A. Feeney, E.S. Maywood, M.H. Hastings, N.S. Baliga, M. Merrow, A.J. Millar, C.H. Johnson, C.P. Kyriacou, J.S. O'Neill & A.B. Reddy, (2012) Peroxiredoxins are conserved markers of circadian rhythms. Nature 485: 459-464.
  178. Arbing, M.A., S. Chan, A. Shin, T. Phan, C.J. Ahn, L. Rohlin & R.P. Gunsalus, (2012) Structure of the surface layer of the methanogenic archaean Methanosarcina acetivorans. Proceedings of the National Academy of Sciences of the United States of America 109: 11812-11817.
  179. Tripepi, M., J. You, S. Temel, O. Onder, D. Brisson & M. Pohlschroder, (2012) N-glycosylation of Haloferax volcanii flagellins requires known Agl proteins and is essential for biosynthesis of stable flagella. Journal of bacteriology 194: 4876-4887.
  180. Skerker, J.M. & H.C. Berg, (2001) Direct observation of extension and retraction of type IV pili. Proceedings of the National Academy of Sciences of the United States of America 98: 6901-6904.
  181. Guttenplan, S.B., S. Shaw & D.B. Kearns, (2013) The cell biology of peritrichous flagella in Bacillus subtilis. Molecular microbiology 87: 211-229.
  182. Grogan, D.W., G.T. Carver & J.W. Drake, (2001) Genetic fidelity under harsh conditions: analysis of spontaneous mutation in the thermoacidophilic archaeon Sulfolobus acidocaldarius. Proceedings of the National Academy of Sciences of the United States of America 98: 7928-7933.
  183. Pattanayek, R., K.K. Yadagiri, M.D. Ohi & M. Egli, (2013) Nature of KaiB-KaiC binding in the cyanobacterial circadian oscillator. Cell cycle 12: 810-817.
  184. Takhar, H.K., K. Kemp, M. Kim, P.L. Howell & L.L. Burrows, (2013) The platform protein is essential for type IV pilus biogenesis. The Journal of biological chemistry 288: 9721- 9728.
  185. Henche, A.L., A. Ghosh, X. Yu, T. Jeske, E. Egelman & S.V. Albers, (2012a) Structure and function of the adhesive type IV pilus of Sulfolobus acidocaldarius. Environ Microbiol 14: 3188-3202.
  186. Nivaskumar, M., G. Bouvier, M. Campos, N. Nadeau, X. Yu, E.H. Egelman, M. Nilges & O. Francetic, (2014) Distinct docking and stabilization steps of the Pseudopilus conformational transition path suggest rotational assembly of type IV pilus-like fibers. Structure 22: 685-696.
  187. Porter, J.R., (1976) Antony van Leeuwenhoek: tercentenary of his discovery of bacteria. Bacteriological reviews 40: 260-269.
  188. Fox, G.E., L.J. Magrum, W.E. Balch, R.S. Wolfe & C.R. Woese, (1977) Classification of methanogenic bacteria by 16S ribosomal RNA characterization. Proceedings of the National Academy of Sciences of the United States of America 74: 4537-4541.
  189. Vakonakis, I. & A.C. LiWang, (2004) Structure of the C-terminal domain of the clock protein KaiA in complex with a KaiC-derived peptide: implications for KaiC regulation. Proceedings of the National Academy of Sciences of the United States of America 101: 10925-10930.
  190. Xu, Y., T. Mori, R. Pattanayek, S. Pattanayek, M. Egli & C.H. Johnson, (2004) Identification of key phosphorylation sites in the circadian clock protein KaiC by crystallographic and mutagenetic analyses. Proceedings of the National Academy of Sciences of the United States of America 101: 13933-13938.
  191. Woese, C.R., O. Kandler & M.L. Wheelis, (1990) Towards a Natural System of Organisms - Proposal for the Domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences of the United States of America 87: 4576-4579.
  192. Toutain, C.M., M.E. Zegans & G.A. O'Toole, (2005) Evidence for two flagellar stators and their role in the motility of Pseudomonas aeruginosa. Journal of bacteriology 187: 771-777.
  193. Huet, J., R. Schnabel, A. Sentenac & W. Zillig, (1983) Archaebacteria and Eukaryotes Possess DNA-Dependent Rna-Polymerases of a Common Type. Embo Journal 2: 1291-1294.
  194. Yamauchi, K., K. Doi, Y. Yoshida & M. Kinoshita, (1993) Archaebacterial Lipids -Highly Proton-Impermeable Membranes from 1,2-Diphytanyl-Sn-Glycero-3-Phosphocholine. Biochim Biophys Acta 1146: 178-182.
  195. Cohen-Krausz, S. & S. Trachtenberg, (2008) The flagellar filament structure of the extreme acidothermophile Sulfolobus shibatae B12 suggests that archaeabacterial flagella have a unique and common symmetry and design. Journal of molecular biology 375: 1113-1124.
  196. Fuchs, T., H. Huber, S. Burggraf & K.O. Stetter, (1996) 16S rDNA-based phylogeny of the archaeal order Sulfolobales and reclassification of Desulfurolobus ambivalens as Acidianus ambivalens comb nov. Syst Appl Microbiol 19: 56-60.
  197. Kageyama, H., T. Nishiwaki, M. Nakajima, H. Iwasaki, T. Oyama & T. Kondo, (2006) Cyanobacterial circadian pacemaker: Kai protein complex dynamics in the KaiC phosphorylation cycle in vitro. Molecular cell 23: 161-171.
  198. Jarrell, K.F., G.M. Jones & D.B. Nair, (2010) Biosynthesis and role of N-linked glycosylation in cell surface structures of archaea with a focus on flagella and s layers. International journal of microbiology 2010: 470138.
  199. Albers, S.V. & A.J. Driessen, (2008) Conditions for gene disruption by homologous recombination of exogenous DNA into the Sulfolobus solfataricus genome. Archaea 2: 145-149.
  200. Wagner, M., M. van Wolferen, A. Wagner, K. Lassak, B.H. Meyer, J. Reimann & S.V. Albers, (2012) Versatile Genetic Tool Box for the Crenarchaeote Sulfolobus acidocaldarius. Frontiers in microbiology 3: 214.
  201. Brochier-Armanet, C., B. Boussau, S. Gribaldo & P. Forterre, (2008) Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nature Reviews Microbiology 6: 245-252.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten