Publikationsserver der Universitätsbibliothek Marburg

Titel:Effects of landscape fragmentation on bird communities in a tropical hotspot
Autor:Astudillo Webster, Pedro Xavier
Weitere Beteiligte: Farwig, Nina (Prof. Dr.)
Veröffentlicht:2014
URI:https://archiv.ub.uni-marburg.de/diss/z2014/0470
DOI: https://doi.org/10.17192/z2014.0470
URN: urn:nbn:de:hebis:04-z2014-04709
DDC: Biowissenschaften, Biologie
Titel (trans.):Effekte von Landschaftsfragmentierung auf Vogelgemeinschaften in einem tropischen Hotspot
Publikationsdatum:2014-12-03
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
habitat guilds, Cajas Nationalpark, Páramo, Páramo, Polylepis, Anden, Cajas National Park, Vögel, Habitat, Konnektivitaet, connectivity, Andean bird communities, Bewegungsmuster, Fragmentierung, movement patterns, Polylepis, Ecuador, Habitatgilden

Summary:
Changes in land-use such as agricultural expansion and urbanization lead to landscape fragmentation among the Tropical Andes. This region also has exceptionally high levels of biodiversity and endemism; hence, it has become a priority for conservation efforts. Ecuador is part of Tropical Andes and in the Ecuadorian high-altitude Andes habitat loss is already widespread and persistent. A representative area for Andean avifauna is Cajas National Park. The park is located in the southern Andes of Ecuador and is the only protected area in the south-western Andes. The park is characterized by containing 90% páramo grassland ecosystem which surrounds > 1000 patches of Polylepis woodland. Despite its importance for bird conservation and its protected status, the Cajas National Park suffers from several stressors, which are modifying the natural habitat characteristics of both páramo grassland and Polylepis patches. We tested the effect of roads (as a major stressor), habitat structure and vegetation composition of both the páramo matrix and the Polylepis patches on the bird community. We found the habitat-specialized birds such as shrubby páramo birds had reduced abundance at the roadsides due to habitat modification led by the introduction of non-native plants. This same condition drives further change in community composition with generalist and a few páramo specialists being found within the area influenced by the road. Our findings also confirm the importance of natural heterogeneity of páramo grassland and the quality of small and medium-sized patches of Polylepis forest. For instance, there is a positive relationship of Polylepis specialist movement (between patch and matrix) with an increase in the proportion of woody plants. Furthermore, Polylepis patches located in higher altitude increased the centrality index of Polylepis specialists. The loss of specialized birds in disturbed areas and also the positive effect of Polylepis quality and páramo heterogeneity are crucial to a better understanding of the dynamics in the high-altitude Andes. Here, there is a vital importance to take on a landscape view, where not only large Polylepis patches are considered vital for avian conservation. Furthermore, human activities in the páramo landscape may reduce the natural habitat heterogeneity with a negative influence on biodiversity patterns. Several protected areas in Ecuador include large areas of páramo ecosystem and all of them are highly threatened; to promote effective nature conservation it is imperative to develop conservation plans that take habitat heterogeneity into account both in Ecuador and throughout the Andean region.

Bibliographie / References

  1. Sierra R, Campos F and Chamberlin J (1999) Áreas prioritarias para la conservación de la biodiversidad en el Ecuador Continental. (Quito, Ecuador): Ministerio del Ambiente, Proyecto INEFAN/ GEF-BIRF, EcoCiencia y Wildlife Conservation Society.
  2. Latta SC, Tinoco BA, Astudillo PX and Graham CH (2011) Patterns and magnitude of temporal change in avian communities in the Ecuadorian Andes. Condor. 113: 24– 40.
  3. Girvan M and Newman MEJ (2002) Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America. 99: 7821–7826.
  4. Stotz DF, Fitzpatrick W, Parker TA and Moskovits DK (1996) Neotropical birds: ecology and conservation. (Chicago, IL): University of Chicago Press.
  5. Sala OE, Chapin III FS, Armesto JJ, Berlow E, Bloomfield J, Rodolfo Dirzo R, Huber- Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M and Wall DH (2000) Global Biodiversity Scenarios for the Year 2100. Science. 287: 1770–1774.
  6. Fraterrigo MJ and Wiens JA (2005) Bird communities of Colorado Rocky Mountains along a gradient of exurban development. Landscape and Urban Planning. 71: 263- 275.
  7. Ralph CJ, Geupel R, Pyle P, Martin TE and DeSante DF (1993) Handbook of field methods for monitoring landbirds. (Bolinas, CA): Pacific Southwest Research Station, Forest Service, Department of Agriculture.
  8. Hannah L, Midgley G, Andelman S, Araújo M, Hughes G, Martinez-Meyer E, Pearson R and Williams P (2007) Protected area needs in a changing climate. Frontiers in Ecology and the Environment 5:131–138.
  9. Matson E and Bart D (2014) Plant-community responses to shrub cover in a páramo grassland released from grazing and burning. Austral Ecology. in press. DOI:10.1111/aec.12157
  10. Matson E and Bart D (2013) Interactions among fire legacies, grazing and topography predict shrub encroachment in post-agricultural páramo. Landscape Ecology. 29: 1829-1840.
  11. Watson SJ, Watson DM, Lucky GW and Spooner PG (2014) Effects of landscape composition and connectivity on the distribution of an endangered parrot in agricultural landscapes. Landscape Ecology. 29: 1249–1259.
  12. Moonen A-C and Bàrberi P (2008) Functional biodiversity: an agroecosystem approach. Agriculture, Ecosystems & Environment. 127: 7–21.
  13. Wege CD and Long A (1995) Key areas for threatened birds in tropics. (Cambridge, UK): BirdLife International.
  14. Mckinney ML and Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. TREE. 14: 450–453.
  15. Rodríguez-Pérez J, García D and Martínez D (2014). Spatial networks of fleshy-fruited trees drive the flow of avian seed dispersal through a landscape. Functional Ecology. 28: 990–998.
  16. Neuschulz E, Brown M and Farwig N. (2013) Frequent bird movements across a highly fragmented landscape: the role of species traits and forest matrix. Animal Conservation. 16: 170–179.
  17. Renison D, Cingolani AM, Suarez R, Menoyo E, Coutsiers C, Sobral A and Hensen I (2005) The Restoration of Degraded Mountain Woodlands: Effects of Seed Provenance and Microsite Characteristics on Polylepis australis Seedling Survival and Growth in Central Argentina. Restoration Ecology. 13: 129–137.
  18. Grass I, Berens DG and Farwig N (2014) Guild-specific shifts in visitation rates of frugivores with habitat loss and plant invasion. Oikos. 123: 575–582.
  19. Mulwa RK, Böhning-Gaese K and Schleuning M (2012) High Bird Species Diversity in Structurally Heterogeneous Farmland in Western Kenya. Biotropica. 44: 801–809.
  20. Jackson D (1993) Stopping Rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology. 74: 2204–2214.
  21. Reijnen R and Foppen R (1994) The effects of car traffic on breeding bird populations in woodland. I. Evidence of reduced habitat quality for Willow Warblers (Phylloscopus trochilus) breeding close to a highway. Journal of Applied Ecology. 31: 85-94.
  22. Reijnen RR, Foppen R and Veenbaas G (1997) Disturbance by traffic of breeding birds: evaluation of the effect and considerations in planning and managing road corridors. Biodiversity and Conservation. 6: 567-581.
  23. Verboom J, Foppen R, Chardon P, Opdam P and Luttikhuizen P (2001) Introducing the key patch approach for habitat networks with persistent populations: an example for marshland birds. Biological Conservation. 100: 89–101.
  24. Gardner TA, Barlow J, Chazdon R, Ewers RM, Harvey CA, Peres CA and Sodhi NS (2009) Prospects for tropical forest biodiversity in a human-modified world. Ecology Letters. 12: 561–582.
  25. Tinoco BA, Astudillo PX, Latta SC, Strubbe D and Graham CH (2013) Influence of patch factors and connectivity on the avifauna of fragmented Polylepis Forest in the Ecuadorian Andes. Biotropica. 45: 602–611.
  26. Koh LP and Ghazoul J (2010) A matrix-calibrated species-area model for predicting biodiversity losses due to land-use change. Conservation Biology 24:994–1001.
  27. Mena-Vásconez P and Hofstede R (2006) Los páramos ecuatorianos. In Botánica Económica de los Andes: 91-109. Morales M, Øllgaard B, Vist LP, Borchsenius F and Balslev H. (eds.). (La Paz, Bolivia): Universidad Mayor de San Andrés
  28. Johnson AR, Wiens JA, Milne BT and Crist TO (1992) Animal movements and population dynamics in heterogeneous landscapes. Landscape Ecology. 7: 63–75.
  29. Robinson WD and Sherry TW (2012) Mechanisms of avian population decline and species loss in tropical forest fragments. Journal Ornithology. 153: 141–152.
  30. Remsen Jr JV, Cadena CD, Jaramillo A, Nores M, Pacheco JF, Pérez-Emán Robbins MB, Stiles FG, Stotz DF and Zimmer KJ Version 31 October (2013) A classification of the bird species of South America. American Ornithologists' Union <www.museum.lsu.edu/~Remsen/SACCBaseline.html> (accessed 25 November 2013).
  31. Sarmiento FO and Frolich LM (2002) Andean Cloud Forest Tree Lines. Mountain Research and Development. 22:278–287.
  32. Myers N, Mittermeir RA, Mittermeir CG, da Fonseca GAB and Kent J (2000) Biodiversity hotspots for conservation priorities. Nature. 403: 853-858.
  33. Sarmiento FO (2000) Breaking Mountain Paradigms: Ecological Effects on Human Impacts in Man-aged Tropandean Landscapes. A Journal of the Human Environment. 29:423–431.
  34. Jørgensen PM and S León-Yánez (eds.) (1999) Catalogue of the vascular plants of Ecuador. Monogr. Syst. Bot. Missouri Bot. Gard. 75: i–viii, 1–1182.
  35. Minga D, Verdugo A, Ansaloni R and Izco J (2013) Diversidad fitocenótica en el Parque Nacional Cajas, Azuay, Ecuador. Unpublished report. (Cuenca, Ecuador): Herbario Azuay, Universidad del Azuay.
  36. Kociolek VA and Clevenger PA (2011) Effects of paved roads on birds: a literature review and recommendations for the Yellowstone to Yukon ecoregion. (Alberta, Canada): Yellowstone to Yukon Conservation Initiative, Canmore.
  37. Hofstede R, Coppus RP, Mena-Vásconez P, Segarra P, Wolf J and Sevink J (2002) El estado de conservación de los páramos de pajonal en el Ecuador. Ecotropicos. 15: 3- 18.
  38. Stattersfield AJ, Crosby MJ, Long AJ and Wege DC (1998) Endemic bird areas of the world: priorities for biodiversity conservation. (Cambridge, UK): BirdLife Conservation Series No. 7, BirdLife International.
  39. IERSE (2004) Estaciones meteorológicas de la cuenca del río Paute. (Cuenca, Ecuador): Unpublished report. Universidad. del Azuay.
  40. Nagendra H, Munroe DK and Southworth J (2004) From pattern to process: landscape fragmentation and the analysis of land use/land cover change. Agriculture, Ecosystems and Environment.101:111–115.
  41. Ulloa C, Álvarez S, Jørgensen PM and Minga D (2004) Guía de 100 plantas silvestres del páramo del Parque Nacional Cajas. (Cuenca, Ecuador): ETAPA.
  42. Tinoco BA and Astudillo PX (2007) Guía de campo de las aves del Parque Nacional Cajas. (Cuenca, Ecuador): ETAPA.
  43. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A and Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science (New York, N.Y.). 342: 850–3.
  44. Sekercioglu C (2006) Increasing awareness of avian ecological function. Trends in Ecology and Evolution. 21: 464–471.
  45. Samaniego GM, Nieto A, Astudillo PX, Graham CH, Latta SC and Tinoco BA (2013) Influencia de la ganadería en la comunidad de aves de páramo en el Parque Nacional Cajas. Universidad Verdad 60: 43-70.
  46. Granizo T, Pacheco C, Ribadeneira MB, Guerrero M and Suárez L (eds.) (2002) Libro rojo de las aves del Ecuador, tomo 2. (Quito, Ecuador): SIMBIOE, Conservación Internacional, Eco-Ciencia, Ministerio del Ambiente, UICN Serie Libros Rojos del Ecuador.
  47. Rodríguez S (2008) Plan de zonificación y manejo recreacional y turístico del Parque Nacional Cajas. (Cuenca, Ecuador): Empresa Municipal de Telecomunicaciones, Agua Potable, Alcantarillado y Saneamiento Ambiental de Cuenca.
  48. Sierra R (ed.) (1999) Propuesta preliminar de un sistema de clasificación de vegetación para el Ecuador continental. (Quito, Ecuador): Proyecto INEFAN/GEF-BIRF y EcoCiencia.
  49. Ramsar Convention (2013) The Annotated Ramsar List: Ecuador. www.ramsar.org (accessed 23 June 2013).
  50. Harden C and Borrero AL (2005) Report on the Geomorphology of Parque Nacional Cajas. Unpublished report. (Cuenca, Ecuador): Parque Nacional Cajas.
  51. Minga D and Verdugo A (2007). Riqueza florística y endemismo del Parque Nacional Cajas. Unpublished report. (Cuenca, Ecuador): Herbario Azuay, Universidad del Azuay. 107
  52. Ridgely R and Greenfield P (2001) The Birds of Ecuador: Field Guide. Ithaca (New York): Cornell University Press.
  53. Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwager M and Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal of Biogeography. 31: 79–92.
  54. Su JC, Debinski DM and Jakubauskas ME (2004) Beyond Species Richness: Community Similarity as a Measure of Cross-Taxon Congruence for Coarse-Filter Conservation. Conservation Biology. 18: 167–173
  55. Kattan GH, Franco P, Saavedra-Rodríguez CA, Valderrama C, Rojas V, Osorio D and Martínez J (2006) Spatial components of bird diversity in the Andes of Colombia: implications for designing a regional reserve system. Conservation Biology. 20: 1203–11.
  56. Neuschulz E, Botzat A and Farwig N (2011) Effects of forest modification on bird community composition and seed removal in a heterogeneous landscape in South Africa. Oikos. 120: 1371–1379.
  57. Krabbe N, Skov F, Fjeldså J and Petersen IK (1998) Avian diversity in the Ecuadorian Andes. An atlas of distribution of Andean forest birds and conservation priorities. DIVA Technical report. 4.(Rønde): Centre for Research on Cultural and Biological Diversity of Andean Rainforests.
  58. Vergara PM, Pérez-Hernández CG, Hahn IJ and Jiménez JE (2013) Matrix composition and corridor function for austral thrushes in a fragmented temperate forest. Landscape Ecology. 28: 121–133.
  59. Mateo RG, de la Estrella M, Felicísimo ÁM, Muñoz J and Guisan A (2013) A new spin on a compositionalist predictive modelling framework for conservation planning: A tropical case study in Ecuador. Biology Conservation. 160: 150–161.
  60. Herzog SK, Martínez R, Jørgensen PM and Tiessen H (2012) Cambio Climático y Biodiversidad en los Andes Tropicales. (Paris): Inter-American Institute for Global Research and Scientific Committee on Problems of the Environment.
  61. Sodhi, S. N., L. H. Liow FAB (2004) Avian extinctions from tropical and subtropical forest. Annual Review of Ecology, Evolution, and Systematics. 35: 323–345.
  62. Hooper DU, Adair EC, Cardinale BJ, Byrnes JEK, Hungate B a, Matulich KL, Gonzalez A, Duffy JE, Gamfeldt L and O'Connor MI (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature. 486:105–8.
  63. Gómez JM, Nunn CL and Verdú M (2013) Centrality in primate-parasite networks reveals the potential for the transmission of emerging infectious diseases to humans. Proceedings of the National Academy of Sciences of the United States of America. 110: 7738–41.
  64. References R Development Core Team. (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. <www.R-project.org>. (accessed 15 September 2014).
  65. Jordán F, Benedek Z and Podani J (2007) Quantifying positional importance in food webs: a comparison of centrality indices. Ecological Modelling. 205: 270–275.
  66. Robichaud I Villard M-A and Machtans CS (2002) Effects of forest regeneration on songbird movements in a managed forest landscape of Alberta . Landscape Ecology. 17: 247–262.
  67. Gareca EE, Hermy M, Fjeldsa J and Honnay O (2010) Polylepis woodland remnants as biodiversity islands in the Bolivian high Andes. Biodiversity and Conservation. 19: 3327–3346.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten