Publikationsserver der Universitätsbibliothek Marburg

Titel:Die Rolle des aviären PB1 Gens bei der Entstehung pandemischer Influenza-A-Viren
Autor:Wendel, Isabel
Weitere Beteiligte: Bremer, Erhard (Prof. Dr.)
Veröffentlicht:2014
URI:https://archiv.ub.uni-marburg.de/diss/z2014/0465
URN: urn:nbn:de:hebis:04-z2014-04656
DOI: https://doi.org/10.17192/z2014.0465
DDC: Biowissenschaften, Biologie
Titel (trans.):The Role of the avian PB1 gene in the emergence of pandemic Influenza viruses
Publikationsdatum:2015-05-28
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
viral transmission, virale Transmission, replication efficiency, Pandemie, Grippe, PB1 gene, PB1 Gen, Replikationseffizienz

Zusammenfassung:
Die pandemischen Influenza-Viren von 1957 und 1968 sind durch Reassortierung entstanden und tragen neben einem Hämagglutinin ebenfalls ein PB1-Gensegment aviären Ursprungs. Für das Hämagglutinin ist seit langem bekannt, dass Änderungen in dessen Epitopen entstehenden pandemischen Influenza-Viren ermöglichen der humanen Immunantwort zu entgehen. Im Gegensatz dazu ist die biologische Signifikanz des aviären PB1 bei der Entstehung pandemischer Influenza-Viren bislang noch ungeklärt. Ziel dieser Arbeit war es, diese seit langem bestehende Fragestellung zu untersuchen und aufzuklären, ob das aviäre PB1-Gen pandemischen Influenza-Viren einen replikativen Vorteil in humanen Zellen unterbreitet. Im ersten Teil dieser Arbeit wurde die Reassortierung, welche zur Entstehung des pandemischen Virus von 1968 führte, mit Hilfe der Gensegmente aviärer und humaner Vorläuferviren modelliert. Ausgehend von dem humanen H2N2 Vorläufervirus A/California/1/66 (Cal66) wurden zwei rekombinante Cal66-Viruspaare generiert, deren Viren sich lediglich im Ursprung des PB1-Gensegments unterscheiden (PB1Cal oder PB1HK) und die entweder das humane HA des Cal66-Virus oder das aviäre HA des pandemischen A/Hong Kong/1/68 (HK68) Virus enthalten. Um zu untersuchen, ob das aviäre PB1 die virale Replikations- und Transmissionseffizienz des pandemischen HK68-Virus steigerte, wurden kompetitive Infektionen in humanen Bronchial-Epithelzellen (Calu-3), sowie kompetitive Kontaktübertragungsstudien in Meerschweinchen durchgeführt. Für die kompetitiven Infektionen wurden zum einen 1:1 Mischungen von Viren mit aviärem (PB1HK) und humanem PB1 (PB1Cal) über drei Passagen in Calu-3-Zellen passagiert und die Zusammensetzung der nach Passage 3 erhaltenen Virusmischungen mittels Sanger-Sequenzierung bestimmt. Zum anderen wurden Viren, welche sich im PB1-Gensegment unterscheiden, mittels reverser Genetik kompetitiv generiert. Hierfür wurden Zellen mit einem kompletten Set reverser Genetik-Plasmide, sowie einer 1:1 Mischung der Plasmide PB1Cal und PB1HK transfiziert und die Zusammensetzung der erhaltenen Virusmischung mittels Sequenzierung bestimmt. Um die Kontaktübertragungseffizienz von Viren mit aviärem PB1 zu untersuchen, wurde eine Gruppe von vier Meerschweinchen mit einer 1:1 Mischung der Viren rCal-HAHK und rCal- (HA+PB1)HK infiziert. Einen Tag nach Inokulation wurden die inokulierten Tiere mit vier naiven Kontakttieren in Kontakt gebracht und an verschiedenen Tagen nach Inokulation wurden Nasenspülungen durchgeführt, die gesammelt und mittels Sequenzierung charakterisiert wurden. Im Rahmen der kompetitiven Replikationsstudien zeigte sich, dass Viren mit aviärem PB1, unabhängig vom Ursprung des HA-Gensegments, effizienter replizieren. Zudem wiesen humane Polymerasekomplexe mit aviärem PB1 eine erhöhte Polymerase-Aktivität auf, welche die beobachtete erhöhte virale Replikationseffizienz bedingen könnte. Im zweiten Teil dieser Arbeit wurde der Einfluss des aviären PB1 auf die virale Polymerase- Genauigkeit untersucht. Für das human-adaptierte aviäre PB1 des pandemischen HK68 Virus wurde beobachtet, dass dieses sich in drei human-adaptiven Mutationen von der aviären Konsensus-Sequenz unterscheidet. Um zu untersuchen, ob diese adaptiven Mutationen die Polymerase-Genauigkeit des entstehenden pandemischen Virus beeinflusst haben, wurden rekombinante HK68-Viren hergestellt, welche ein PB1 enthielten, das entweder an allen drei oder an einzelnen Aminosäure-Positionen die aviäre Konsensus-Sequenz aufwies. Für die Dreifach-Mutante mit aviär-ähnlichem PB1 war zu beobachten, dass diese gegenüber dem pandemischen HK68-Virus eine geringfügig erhöhte Mutations-Frequenz aufwies, während die Einzelmutanten rHK-PB1HK-V212L und rHK-PB1HK-K327R eine deutlich erhöhte Mutations- Frequenz zeigten. Diese Daten lassen vermuten, dass zunächst eine bzw. mehrere adaptive Mutationen die Polymerase-Genauigkeit der initialen Reassortante herabsetzten, während nach Adaptation der Reassortante an den Menschen durch Erwerb einer bzw. weiterer Mutationen die Polymerase-Genauigkeit wiederhergestellt wurde. Dieses Szenario würde mit der weithin akzeptierten Hypothese übereinstimmen, nach der zeitweilig reduzierte Polymerase-Genauigkeiten zu einer breiten Quasispezies-Diversität führen und somit zoonotischen Viren eine effiziente Adaptation an die neue Wirtsspezies ermöglichen. Zusammenfassend konnte im Rahmen dieser Arbeit gezeigt werden, dass das aviäre PB1-Gen des pandemischen HK68-Virus sowohl die virale Replikationseffizienz, als auch die virale Übertragungseffizienz, vermutlich in Folge einer erhöhten Polymerase-Aktivität steigerte. Zudem könnte eine zeitweilig reduzierte Polymerase-Genauigkeit die Adaptation der initialen Reassortante an den Menschen erleichtert und damit zur Entstehung der Pandemie von 1968 beigetragen haben.

Bibliographie / References

  1. Olsen, B., Munster, V. J., Wallensten, A., Waldenström, J., Osterhaus, A. D. M. E. & Fouchier, R. A. M. (2006). Global patterns of influenza a virus in wild birds. Science, 312(5772), pp.384–388.
  2. McAuley, J. L., Chipuk, J. E., Boyd, K. L., Van De Velde, N., Green, D. R. & McCullers, J. A. (2010b). PB1-F2 proteins from H5N1 and 20 century pandemic influenza viruses cause immunopathology. PLoS Pathogens, 6(7), p.e1001014.
  3. Modrow, S., D. Falke und U. Truyen, Eds. (2003). Molekulare Virologie, Spektrum Akademischer Verlag.
  4. Scholtissek, C., Ludwig, S. & Fitch, W. M. (1993). Analysis of influenza A virus nucleoproteins for the assessment of molecular genetic mechanisms leading to new phylogenetic virus lineages. Archives of Virology, 131, pp.237–250.
  5. Scholtissek, C., Rohde, W., Von Hoyningen, V. & Rott, R. (1978). On the Origin of the Human Influenza Virus Subtypes H2N2 and H3N2. Virology, 87, pp.13–20.
  6. Mehle, A. & Doudna, J. A. (2008). An inhibitory activity in human cells restricts the function of an avian-like influenza virus polymerase. Cell Host & Microbe, 4(2), pp.111–122.
  7. Yamada, H., Chounan, R., Higashi, Y., Kurihara, N. & Kido, H. (2004). Mitochondrial targeting sequence of the influenza A virus PB1-F2 protein and its function in mitochondria. FEBS Letters, 578(3), pp.331–336.
  8. Downie, J. C. (2004). Reassortment of influenza A virus genes linked to PB1 polymerase gene. International Congress Series, 1263, pp.714–718.
  9. Ruigrok, R. W. H., Crépin, T., Hart, D. J. & Cusack, S. (2010). Towards an atomic resolution understanding of the influenza virus replication machinery. Current Opinion in Structural Biology, 20(1), pp.104–113.
  10. Hutchinson, E. C. & Fodor, E. (2012). Nuclear import of the influenza A virus transcriptional machinery. Vaccine, 30(51), pp.7353–7358.
  11. Wang, L. & Lee, C.-W. (2009). Sequencing and mutational analysis of the non-coding regions of influenza A virus. Veterinary Microbiology, 135(3-4), pp.239–247.
  12. Chakrabarti, A. K. & Pasricha, G. (2013). An insight into the PB1-F2 protein and its multifunctional role in enhancing the pathogenicity of the influenza A viruses. Virology, 440(2), pp.97–104.
  13. Wanitchang, A., Kramyu, J. & Jongkaewwattana, A. (2010). Enhancement of reverse genetics- derived swine-origin H1N1 influenza virus seed vaccine growth by inclusion of indigenous polymerase PB1 protein. Virus Research, 147(1), pp.145–148.
  14. Herrler, G. & Klenk, H.D. (1991). Structure and function of the HEF glycoprotein of influenza C virus. Adv Virus Res, 40, pp.213–234.
  15. Yuan, P., Bartlam, M., Lou, Z., Chen, S., Zhou, J., He, X., Lv, Z., Ge, R., Li, X., Deng, T., Fodor, E., Rao, Z. & Liu, Y. (2009). Crystal structure of an avian influenza polymerase PA(N) reveals an endonuclease active site. Nature, 458(7240), pp.909–913.
  16. Zhu, X., Yu, W., McBride, R., Li, Y., Chen, L.-M., Donis, R. O., Tong, S., Paulson, J. C. & Wilson, L. A. (2013). Hemagglutinin homologue from H17N10 bat influenza virus exhibits divergent receptor- binding and pH-dependent fusion activities. Proceedings of the National Academy of Sciences of the United States of America, 110(4), pp.1458–1463.
  17. Fechter, P., Mingay, L., Sharps, J., Chambers, A., Fodor, E. & Brownlee, G. G. (2003). Two aromatic residues in the PB2 subunit of influenza A RNA polymerase are crucial for cap binding. The Journal of Biological Chemistry, 278(22), pp.20381–20388.
  18. Morens, D. M., Taubenberger, J. K., Folkers, G. K. & Fauci, A. S. (2010). Pandemic influenza's 500th anniversary. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 51(12), pp.1442–1444.
  19. Robertson, J. S. (1979). 5' and 3' terminal nucleotide sequences of the RNA genome segments of influenza virus. Nucleic Acids Research, 6(12), pp.3745–3758.
  20. Torreira, E., Schoehn, G., Fernández, Y., Jorba, N., Ruigrok, R. W. H., Cusack, S., Ortin, J. & Llorca, O. (2007). Three-dimensional model for the isolated recombinant influenza virus polymerase heterotrimer. Nucleic Acids Research, 35(11), pp.3774–3783.
  21. Wise, H. M., Barbezange, C., Jagger, B. W., Dalton, R. M., Gog, J. R., Curran, M. D., Taubenberger, J. K., Anderson, E. C. & Digard, P. (2011). Overlapping signals for translational regulation and packaging of influenza A virus segment 2. Nucleic Acids Research, 39(17), pp.7775–7790.
  22. Müller, R., Poch, O., Delarue, M., Bishop, D. H. & Bouloy, M. (1994). Rift Valley fever virus L segment: correction of the sequence and possible functional role of newly identified regions conserved in RNA-dependent polymerases. The Journal of General Virology, 75, pp.1345–1352.
  23. Hutchinson, E. C., von Kirchbach, J. C., Gog, J. R. & Digard, P. (2010). Genome packaging in influenza A virus. The Journal of General Virology, 91(Pt 2), pp.313–328.
  24. Jung, T. E. & Brownlee, G. G. (2006). A new promoter-binding site in the PB1 subunit of the influenza A virus polymerase. The Journal of General Virology, 87(Pt 3), pp679–688.
  25. Herfst, S., Schrauwen, E. J. a., Linster, M., Chutinimitkul, S., de Wit, E., Munster, V. J., Sorrell, E. M., Bestebroer, T. M., Burke, D. F., Smith, D. J., Rimmelzwaan, G. F., Osterhaus, A. D. M. E. & Fouchier, R. A. M. (2012). Airborne Transmission of Influenza A/H5N1 Virus Between Ferrets. Science, 336(6088), pp.1534–1541.
  26. Wendel I., Rubbenstroth D., Uhlendorff, J., Kochs G., Wilhelm, J., Stäheli P., Klenk H.-D., Matrosovich M. (2014). " The avian-origin PB1 gene segment facilitated replication and transmissibility of the H3N2/1968 pandemic influenza virus. " Nature Communications (in Vorbereitung)
  27. Naffakh, N., Tomoiu, A., Rameix-Welti, M.-A. & van der Werf, S. (2008). Host restriction of avian influenza viruses at the level of the ribonucleoproteins. Annual Review of Microbiology, 62, pp.403–424.
  28. Hudjetz, B. & Gabriel, G. (2012). Human-like PB2 627K influenza virus polymerase activity is regulated by importin-α1 and -α7. PLoS Pathogens, 8(1).
  29. Hutchinson, E. C. & Fodor, E. (2013). Transport of the influenza virus genome from nucleus to nucleus. Viruses, 5(10), pp.2424–2446.
  30. Steel, J., Lowen, A. C., Mubareka, S. & Palese, P. (2009). Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N. PLoS Pathogens, 5(1), p.e1000252.
  31. Wise, H. M., Hutchinson, E. C., Jagger, B. W., Stuart, A. D., Kang, Z. H., Robb, N., Schwartzman, L. M., Kash, J. C., Fodor, E., Firth, A. E., Gog, J. R., Taubenberger, J. K. & Digard, P. (2012). Identification of a novel splice variant form of the influenza A virus M2 ion channel with an antigenically distinct ectodomain. PLoS Pathogens, 8(11), p.e1002998.
  32. Hoffmann, E., Stech, J., Guan, Y., Webster, R. G. & Perez, D. R. (2001). Universal primer set for the full-length amplification of all influenza A viruses. Archives of Virology, 146(12), pp.2275–2289.
  33. McAuley, J. L., Zhang, K. & McCullers, J. A. (2010a). The effects of influenza A virus PB1-F2 protein on polymerase activity are strain specific and do not impact pathogenesis. Journal of Virology, 84(1), pp.558–564.
  34. Zhou, B., Li, Y., Halpin, R., Hine, E., Spiro, D. J. & Wentworth, D. E. (2011). PB2 residue 158 is a pathogenic determinant of pandemic H1N1 and H5 influenza a viruses in mice. Journal of Virology, 85(1), pp.357–365.
  35. Zheng, B., Chan, K.-H., Zhang, A. J. X., Zhou, J., Chan, C. C. S., Poon, V. K. M., Zhang, K., Leung, V. H. C., Jin D. Y., Woo, P. C. Y., Chan, J. F. W., To, K. K. W., Chen, H. & Yuen, K.-Y. (2010). D225G mutation in hemagglutinin of pandemic influenza H1N1 (2009) virus enhances virulence in mice. Experimental Biology and Medicine, 235(8), pp.981–988.
  36. Abb. IV.10: Kompetitive Kontaktübertragungs-Studien in Meerschweinchen mit dem Viruspaar HA+PB1………………………………………………………………………………………………. 109
  37. Abb. IV.11: Sequenzvergleich der 3'NCR-und 5'NCR-Sequenzen der Wildtypisolate A/California/1/66 (H2N2) und A/Hong Kong/1/68 (H3N2) mit den in dieser Arbeit rekombinant hergestellten Viren……………………………………………………………… 112
  38. Abb. IV.12: Kompetitive Rescue-Experimente in Calu-3-Zellen zur Evaluierung des Einflusses der Mutation G4 auf die virale Replikationseffizienz…………………………………………… 115
  39. Abb. IV.13: Reassortierungs-Szenarien die zur Entstehung des pandemischen HK68-Virus geführt haben könnten……………………………………………………………………………………….. 118
  40. Abb. III.1: Prinzip des Luziferase-Minigenom Assays…………………………………………………………….. 64
  41. Abb. IV.1: Schematische Darstellung der Entstehung der Pandemie von 1968…………………….. 90
  42. Abb. IV.2: Phylogenetischer Stammbaum der konkatenierten Gensegmente PB2-PA-NP-NA-M-NS humaner H2N2 Viren, isoliert in den Jahren 1965 bis 1968 und den pandemischen HK68-Viren…………………………………………………………………….. 92
  43. Abb. III.2: Schematische Darstellung der Sequenzierung der 3'NCRs und 5'NCRs mittels 3'-RACE und 5'RACE……………………………………………………………………………………………… 69
  44. Abb. III.3: Schematische Darstellung des " 8-Plasmid Systems " zur Generierung rekombinanter Influenza-A-Viren nach Hoffmann et al., 2000……………………………… 72
  45. Abb. I.3: Zeitliches Auftreten und Entstehen der Influenza-Pandemien des 20./21. Jahrhunderts……………………………………………………………………………………………. 24
  46. Abb. IV.8: Kompetitive Rescue-Experimente mit den Viruspaaren PB1 und HA+PB1 in Calu-3 Zellen bei einem PB1-Plasmidverhältnis von 1:1 (PB1HK zu PB1Cal)………… 105
  47. Abb. IV.9: Kontaktübertragungs-Studien in Meerschweinchen mit den Viren rCal-HAHK und Cal-(HA+PB1)HK…………………………………………………………………………………………….. 107
  48. Xu, C., Hu, W.-B., Xu, K., He, Y.-X., Wang, T.-Y., Chen, Z., Li, T.-X., Liu, J.-H., Buchy, P. & Sun, B. (2012). Amino acids 473V and 598P of PB1 from an avian-origin influenza A virus contribute to polymerase activity, especially in mammalian cells. The Journal of General Virology, 93(3), pp.531–40.
  49. Annual Meeting of the German Society of Virology, 14.-17. März 2012 in Essen, Deutschland
  50. Chen, W., Calvo, P. A., Malide, D., Gibbs, J., Schubert, U., Bacik, I., Basta, S., O'Neill, R., Schickli, J., Palese, P., Henklein, P., Bennink, J.R. & Yewdell, J. W. (2001). A novel influenza A virus mitochondrial protein that induces cell death. Nature Medicine, 7(12), pp. 1306–1312.
  51. Ison, M. G. (2011). Antivirals and resistance: Influenza virus. Current Opinion in Virology, 1, pp.563– 573.
  52. Das, K. (2012). Antivirals Targeting Influenza A Virus. Journal of Medicinal Chemistry, 55, pp.6263– 6277.
  53. Noda, T., Sagara, H., Yen, A., Takada, A., Kida, H., Cheng, R. H. & Kawaoka, Y. (2006). Architecture of ribonucleoprotein complexes in influenza A virus particles. Nature, 439(7075), pp.490–492.
  54. Conenello, G. M., Zamarin, D., Perrone, L. A., Tumpey, T. & Palese, P. (2007). A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence. PLoS Pathogens, 3(10), pp.1414–1421.
  55. Shinya, K., Ebina, M., Yamada, S., Ono, M., Kasai, N. & Kawaoka, Y. (2006). Avian flu: influenza virus receptors in the human airway. Nature, 440(7083), pp.435–436.
  56. Matrosovich, M. N., Gambaryan, A. S., Teneberg, S., Piskarev, V. E., Yamnikova, S. S., Lvov, D. K., Robertson, S. & Karlsson, K. A. (1997). Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. Virology, 233(1), pp.224–234.
  57. Sun, X., Shi, Y., Lu, X., He, J., Gao, F., Yan, J., Qi, J. & Gao, G. F. (2013). Bat-derived influenza hemagglutinin H17 does not bind canonical avian or human receptors and most likely uses a unique entry mechanism. Cell Reports, 3(3), pp.769–778.
  58. Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, pp.95–98.
  59. Abb. IV.5: Charakterisierung von Virusmischungen mittels Sanger-Sequenzierung……………… 100
  60. Rudneva, L. A., Timofeeva, T. A., Shilov, A. A., Kochergin-Nikitsky, K. S., Varich, N. L., Ilyushina, N. A., Gambaryan, A. S., Krylov, P. S. & Kaverin, N. V. (2007). Effect of gene constellation and postreassortment amino acid change on the phenotypic features of H5 influenza virus reassortants. Archives of Virology, 152(6), pp.1139–1145.
  61. De Wit, E., Spronken, M. I. J., Bestebroer, T. M., Rimmelzwaan, G. F., Osterhaus, A. D. M. E. & Fouchier, R. a M. (2004). Efficient generation and growth of influenza virus A/PR/8/34 from eight cDNA fragments. Virus Research, 103(1-2), pp.155–161.
  62. Webster, R. G., Bean, W. J., Gorman, O. T., Chambers, T. M. & Kawaoka, Y. (1992). Evolution and ecology of influenza A viruses. Microbiology and Molecular Biology Reviews, 56(1), pp.152–179.
  63. De Jong, M. D., Simmons, C. P., Thanh, T. T., Hien, V. M., Smith, G. J. D., Chau, T. N. B., Hoang, D. M., Chau, N. V. V., Khanh, T. H., Dong, V. C., Qui, P. T., Cam, B. V., Ha, D. Q., Guan, Y., Peiris, J. S. M., Chinh, N. T., Hien, T. T. & Farrar, J. (2006). Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nature Medicine, 12(10), pp.1203–7.
  64. Cox, N. J. & Subbarao, K. (2000). Global epidemiology of influenza: past and present. Annual Review of Medicine, 51, pp.407–421.
  65. Romanos, M. A. & Hay, A. J. (1984). Identification of the Influenza Virus Transcriptase by Affinity- Labeling with Pyridoxal 5'-Phosphate. Virology, 132, pp.110–117.
  66. Oxford, J. S. (2000). Influenza A pandemics of the 20th century with special reference to 1918: Virology, pathology and epidemiology. Reviews in Medical Virology, 10, pp.119-133
  67. Abb. IV.6: Kalibrierungskurve zur Ermittlung der Genauigkeit mit der anhand des mittleren Verhältnisses der Peak-Höhe für PB1HK der Anteil der Viren mit PB1HK quantifiziert werden kann……………………………………………………………………………………………………….. 102
  68. Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30(12), pp.2725– 2729.
  69. De la Luna, S., Martínez, C. & Ortín, J. (1989). Molecular cloning and sequencing of influenza virus A/Victoria/3/75 polymerase genes: sequence evolution and prediction of possible functional domains. Virus Research, 13(2), pp.143–155.
  70. Plant, E.P., Liu, T. M., Xie, H. & Ye, Z. (2012). Mutations to A/Puerto Rico/8/34 PB1 gene improves seasonal reassortant influenza A virus growth kinetics. Vaccine, 31, pp.207–212.
  71. Tong, S., Zhu, X., Li, Y., Shi, M., Zhang, J., Bourgeois, M., Yang, H., Chen, X., Recuenco, S., Gomez, J., Chen, L. M., Johnson, A., Tao, Y., Dreyfus, C., Yu, W., McBride, R., Carney, P. J., Gilbert, A. T., Chang, J., Guo, Z., Davis, C. T., Paulson, J. C., Stevens, J., Rupprecht, C. E., Holmes, E. C., Wilson, I. A. & Donis, R. O. (2013). New world bats harbor diverse influenza A viruses. PLoS Pathogens, 9(10), p.e1003657.
  72. Abb. I.5: Organisation des viralen RNA-abhängigen RNA-Polymerasekomplexes……………….. 27
  73. Kates, M., Allison, A. C., Tyrell, D. A. & James, A. T. (1962). Origin of lipids in influenza virus. Cold Spring Harb Symp Quant Biol, 27, pp.293–301.
  74. Zell, R., Krumbholz, A., Eitner, A., Krieg, R., Halbhuber, K.-J. & Wutzler, P. (2007). Prevalence of PB1- F2 of influenza A viruses. The Journal of General Virology, 88(Pt 2), pp536–546.
  75. De Wit, E., Bestebroer, T. M., Spronken, M. I. J., Rimmelzwaan, G. F., Osterhaus, A. D. M. E. & Fouchier, R. a M. (2007). Rapid sequencing of the non-coding regions of influenza A virus. Journal of Virological Methods, 139(1), pp.85–89.
  76. Skehel, J. J. & Wiley, D. C. (2000). Receptor Binding And Membrane Fusion In Virus Entry : The Influenza Hemagglutinin. Annu. Rev. Biochem., 69, pp.531–569.
  77. Rogers, G. N. & Paulson, J. C. (1983). Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology, 127(2), pp.361–373.
  78. Connor, R. J., Kawaoka, Y., Webster, R. G. & Paulson, J. C. (1994). Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology, 205, pp.17–23.
  79. Steinhauer, D. A. (1999). Role of Hemagglutinin Cleavage for the Pathogenicity of Influenza Virus. Virology, 258, pp.1–20.
  80. Tarendeau, F., Boudet, J., Guilligay, D., Mas, P. J., Bougault, C. M., Boulo, S., Baudin, F., Ruigrok, R. W. H., Daigle, N., Ellenberg, J., Cusack, S., Simorre, J. P. & Hart, D. J. (2007). Structure and nuclear import function of the C-terminal domain of influenza virus polymerase PB2 subunit. Nature Structural & Molecular Biology, 14(3), pp.229–233.
  81. Wendel I., Uhlendorff J., Klenk H.-D., Matrosovich M. (2009). " Substitutions in the PB1 gene of the 1968 pandemic influenza virus enhanced transcription efficiency in human cells. " Internationales Symposium des DFG Sonderforschungsbereichs 593, 24.-25. September 2009 in Marburg, Deutschland
  82. Desselberger, U., Racaniello, V. R., Zazra, J. J. & Palese, P. (1980). The 3' and 5'-terminal sequences of influenza A, B and C virus RNA segmentsare highly conserved and show partial inverted complementarity. Gene, 8, pp.315–328.
  83. Wendel I., Rubbenstroth D., Stäheli P., Klenk H.-D., Matrosovich M. (2012). " The avian-like PB1 gene of the 1968 pandemic influenza virus facilitates viral replication and transmission. " 3 rd International Influenza Meeting, 02.-04. September 2012 in Münster, Deutschland
  84. Resa-Infante, P. & Gabriel, G. (2013). The nuclear import machinery is a determinant of influenza virus host adaptation. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 35(1), pp.23–27.
  85. Wendel I., Rubbenstroth D., Stäheli P., Klenk H.-D., Matrosovich M. (2012). " The role of the avian-like PB1 gene in the emergence of the 1968 pandemic influenza virus. "
  86. Wendel I., Rubbenstroth D., Stäheli P., Kochs G., Stapleford K., Vignuzzi M., Klenk H.-D., Matrosovich M. (2014). " The role of the avian-origin PB1 gene segment in the emergence of the H3N2/1968 pandemic influenza virus. " EU Predemics WP3 Workshop, 6.-7. Februar 2014 in Rom, Italien
  87. Wendel I., Uhlendorff J., Klenk H.-D., Matrosovich M. (2011). " The role of the PB1 gene in the emergence of pandemic influenza viruses as analyzed by reverse genetics. " Young Scientist Workshop " Methods to study influenza virus " , 20.-23. September 2011 in Berlin, Deutschland
  88. Obayashi, E., Yoshida, H., Kawai, F., Shibayama, N., Kawaguchi, A., Nagata, K., Tame, J. R. H. & Park, S.-Y. (2008). The structural basis for an essential subunit interaction in influenza virus RNA polymerase. Nature, 454(7208), pp.1127–1131.
  89. Guilligay, D., Tarendeau, F., Resa-Infante, P., Coloma, R., Crepin, T., Sehr, P., Lewis, J., Ruigrok, R. W. H., Ortin, J., Hart, D. J. & Cusack, S. (2008). The structural basis for cap binding by influenza virus polymerase subunit PB2. Nature Structural & Molecular Biology, 15(5), pp.500–506.
  90. Imai, M., Herfst, S., Sorrell, E. M., Schrauwen, E. J. a, Linster, M., De Graaf, M., Fouchier, R. A. M. & Kawaoka, Y. (2013). Transmission of influenza A/H5N1 viruses in mammals. Virus Research, 178(1), pp.15–20.
  91. Wendel, I. (2008). Untersuchungen zur Wirkung von Mutationen im PB1-Protein bei der Adaptation aviärer Influenza A-Viren an den Menschen. unpublished
  92. Nath, S.T. & Nayak, D.P. (1990). Function of two discrete regions is required for nuclear localization of polymerase basic protein 1 of A/WSN/33 Influenza Virus (H1N1). Molecular and Cellular Biology, 10(8), pp.4139–4145.
  93. Wong, K. K. Y., Bull, R. A., Rockman, S., Scott, G., Stelzer-Braid, S. & Rawlinson, W. (2011). Correlation of Polymerase Replication Fidelity With Genetic Evolution of Influenza A/Fujian/411/02 ( H3N2 ) Viruses. Journal of Medical Virology, 83, pp.510–516.
  94. Wagner, R., Matrosovich, M. & Klenk, H.-D. (2002). Functional balance between haemagglutinin and neuraminidase in influenza virus infections. Reviews in Medical Virology, 12(3), pp.159–166.
  95. Pasricha, G., Mishra, A. C. & Chakrabarti, A. K. (2013). Comprehensive global amino acid sequence analysis of PB1F2 protein of influenza A H5N1 viruses and the influenza A virus subtypes responsible for the 20th-century pandemics. Influenza and Other Respiratory Viruses, 7(4), pp.497–505.
  96. Naffakh, N., Massin, P., Escriou, N., Crescenzo-Chaigne, B. & van der Werf, S. (2000). Genetic analysis of the compatibility between polymerase proteins from human and avian strains of influenza A viruses. The Journal of General Virology, 81(5), pp.1283–1291.
  97. Shinya, K., Watanabe, S., Ito, T., Kasai, N. & Kawaoka, Y. (2007). Adaptation of an H7N7 equine influenza A virus in mice. The Journal of General Virology, 88(2), 547–553.
  98. Scholtissek, C. (1991). Pigs as mixing-vessels for the creation of new pandemic influenza A viruses. Medical Principles and Practice, 2, pp.65–71.
  99. Taubenberger, J. K. & Morens, D. M. (2006). 1918 Influenza: the mother of all pandemics. Emerging Infectious Diseases, 12, pp.15–22.
  100. Taubenberger, J. K., Reid, A. H., Lourens, R. M., Wang, R., Jin, G. & Fanning, T. G. (2005). Characterization of the 1918 influenza virus polymerase genes. Nature, 437(7060), pp.889–893.
  101. Dias, A., Bouvier, D., Crépin, T., McCarthy, A. a, Hart, D. J., Baudin, F., Cusack, S. & Ruigrok, R. W. H. (2009). The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature, 458(7240), pp.914–918.
  102. Smith, G. J. D., Vijaykrishna, D., Bahl, J., Lycett, S. J., Worobey, M., Pybus, O. G., Ma, S. K., Cheung, C. L., Raghwani, J., Bhatt, S., Peiris, J. S. M., Guan, Y. & Rambaut, A. (2009). Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature, 459(7250), pp.1122–1125.
  103. Horimoto, T. & Kawaoka, Y. (2005). Influenza: lessons from past pandemics, warnings from current incidents. Nature Reviews. Microbiology, 3(8), pp.591–600.
  104. Worobey, M., Han, G.-Z. & Rambaut, A. (2014). A synchronized global sweep of the internal genes of modern avian influenza virus. Nature.
  105. González, S. & Ortín, J. (1999). Characterization of Influenza Virus PB1 Protein Binding to Viral RNA: Two Separate Regions of the Protein Contribute to the Interaction Domain. Journal of Virology, 73(1), pp.631–637.
  106. Zhou, N. N., Senne, D. A., Landgraf, J. S., Swenson, S. L., Erickson, G., Rossow, K., Liu, L., Yoon, K. J., Krauss, S. & Webster, R. G. (1999). Genetic reassortment of avian, swine, and human influenza A viruses in American pigs. Journal of Virology, 73(10), pp.8851–8856.
  107. Matrosovich, M., Tuzikov, A., Bovin, N., Gambaryan, A., Klimov, A., Castrucci, M. R., Donatelli, I. & Kawaoka, Y. (2000). Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. Journal of Virology, 74(18), pp.8502–8512.
  108. González, S. & Ortín, J. (1999). Distinct regions of influenza virus PB1 polymerase subunit recognize vRNA and cRNA templates. The EMBO Journal, 18(13), pp.3767–3775.
  109. Nobusawa, E. & Sato, K. (2006). Comparison of the Mutation Rates of Human Influenza A and B Viruses. Journal of Virology, 80(7), pp.3675–3678.
  110. Zamarin, D., Ortigoza, M. B. & Palese, P. (2006). Influenza A virus PB1-F2 protein contributes to viral pathogenesis in mice. Journal of Virology, 80(16), pp.7976–7983.
  111. Gibbs, J. S., Malide, D., Hornung, F., Bennink, J. R. & Yewdell, J. W. (2003). The Influenza A Virus PB1-F2 Protein Targets the Inner Mitochondrial Membrane via a Predicted Basic Amphipathic Helix That Disrupts Mitochondrial Function. Journal of Virology, 77(13), pp.7214–7224.
  112. Hoffmann, E., Neumann, G., Kawaoka, Y., Hobom, G. & Webster, R. G. (2000). A DNA transfection system for generation of influenza A virus from eight plasmids. Proceedings of the National Academy of Sciences of the United States of America, 97(11), pp.6108–6113.
  113. Hatta, M., Hatta, Y., Kim, J. H., Watanabe, S., Shinya, K., Nguyen, T., Lien, P. S., Li, Q. M. & Kawaoka, Y. (2007). Growth of H5N1 influenza A viruses in the upper respiratory tracts of mice. PLoS Pathogens, 3(10), pp.1374–1379.
  114. McAuley, J. L., Hornung, F., Boyd, K. L., Smith, A. M., McKeon, R., Bennink, J., Yewdell, J. W. & McCullers, J. A. (2007). Expression of the 1918 influenza A virus PB1-F2 enhances the pathogenesis of viral and secondary bacterial pneumonia. Cell Host & Microbe, 2(4), pp.240– 249.
  115. Pappas, C., Aguilar, P. V, Basler, C. F., Solórzano, A., Zeng, H., Perrone, L. A., Palese, P., Garcia- Sastre, A., Katz, J. M. & Tumpey, T. M. (2008). Single gene reassortants identify a critical role for PB1, HA, and NA in the high virulence of the 1918 pandemic influenza virus. Proceedings of the National Academy of Sciences of the United States of America, 105(8), pp.3064–3069.
  116. Hagen, M., Chung, T. D., Butcher, J. A. & Krystal, M. (1994). Recombinant influenza virus polymerase: requirement of both 5' and 3' viral ends for endonuclease activity. Journal of Virology, 68(3), pp.1509–1515.
  117. Chen, L.-M., Davis, C. T., Zhou, H., Cox, N. J. & Donis, R. O. (2008). Genetic compatibility and virulence of reassortants derived from contemporary avian H5N1 and human H3N2 influenza A viruses. PLoS Pathogens, 4(5), p.e1000072.
  118. Gorman, O. T., Bean, W. J., Kawaoka, Y., Donatelli, I., Guo, Y. & Webster, R. G. (1991). Evolution of influenza A virus nucleoprotein genes : implications for the origins of H1N1 human and classical swine viruses . Journal of Virology, 65(7), pp.3704–3714.
  119. Gorman, O. T., Donis, R. O., Kawaoka, Y. & Webster, R. G. (1990). Evolution of Influenza A Virus PB2 Genes : Implications for Evolution of the Ribonucleoprotein Complex and Origin of Human Influenza A Virus. Journal of Virology, 64(10), pp.4893–4902.
  120. Tarendeau, F., Crepin, T., Guilligay, D., Ruigrok, R. W. H., Cusack, S. & Hart, D. J. (2008). Host determinant residue lysine 627 lies on the surface of a discrete, folded domain of influenza virus polymerase PB2 subunit. PLoS Pathogens, 4(8), p.e1000136.
  121. Watanabe, T., Watanabe, S., Shinya, K., Kim, J. H., Hatta, M. & Kawaoka, Y. (2009). Viral RNA polymerase complex promotes optimal growth of 1918 virus in the lower respiratory tract of ferrets. Proceedings of the National Academy of Sciences of the United States of America, 106(2), pp.588–592.
  122. Van Hoeven, N., Pappas, C., Belser, J. A., Maines, T. R., Zeng, H., García-Sastre, A., Sasisekharan, R., Katz, J. M. & Tumpey, T. M. (2009). Human HA and polymerase subunit PB2 proteins confer transmission of an avian influenza virus through the air. Proceedings of the National Academy of Sciences of the United States of America, 106(9), pp.3366–3371.
  123. Hemerka, J. N., Wang, D., Weng, Y., Lu, W., Kaushik, R. S., Jin, J., Harmon, A. F. & Li, F. (2009). Detection and characterization of influenza A virus PA-PB2 interaction through a bimolecular fluorescence complementation assay. Journal of Virology, 83(8), pp.3944–3955.
  124. Sugiyama, K., Obayashi, E., Kawaguchi, A., Suzuki, Y., Tame, J. R. H., Nagata, K. & Park, S.-Y. (2009). Structural insight into the essential PB1-PB2 subunit contact of the influenza virus RNA polymerase. The EMBO Journal, 28(12), pp.1803–1811.
  125. Smith, G. J. D., Bahl, J., Vijaykrishna, D., Zhang, J., Poon, L. L. M., Chen, H., Webster, R. G., Peiris, J. S. M. & Guan, Y. (2009). Dating the emergence of pandemic influenza viruses. Proceedings of the National Academy of Sciences of the United States of America, 106(28), pp.11709–11712.
  126. Wise, H. M., Foeglein, A., Sun, J., Dalton, R. M., Patel, S., Howard, W., Anderson, E. C., Barclay, W. S. & Digard, P. (2009). A complicated message: Identification of a novel PB1-related protein translated from influenza A virus segment 2 mRNA. Journal of Virology, 83(16), pp.8021–8031.
  127. Morens, D. M., Taubenberger, J. K., & Fauci, A. S. (2009). The persistent legacy of the 1918 influenza virus. The New England Journal of Medicine, 361, pp.225–229.
  128. Hutchinson, E. C., Wise, H. M., Kudryavtseva, K., Curran, M. D. & Digard, P. (2009). Characterisation of influenza A viruses with mutations in segment 5 packaging signals. Vaccine, 27(45), pp.6270– 6275.
  129. Presti, R. M., Zhao, G., Beatty, W. L., Mihindukulasuriya, K. A., da Rosa, A. P. A. T., Popov, V. L., Tesh, R. B., Virgin, H. W. & Wang, D. (2009). Quaranfil, Johnston Atoll, and Lake Chad viruses are novel members of the family Orthomyxoviridae. Journal of Virology, 83(22), pp.11599– 11606.
  130. Mehle, A. & Doudna, J. A. (2009). Adaptive strategies of the influenza virus polymerase for replication in humans. Proceedings of the National Academy of Sciences of the United States of America, 106(50), 21312–21316.
  131. Taubenberger, J. K. & Morens, D. M. (2010). Influenza: the once and future pandemic. Public Health Reports, Suppl.3, 125, pp.16–26.
  132. Hai, R., Schmolke, M., Varga, Z. T., Manicassamy, B., Wang, T. T., Belser, J. A., Pearce, M. B., Garcia- Sastre, A., Tumpey, T. M. & Palese, P. (2010). PB1-F2 expression by the 2009 pandemic H1N1 influenza virus has minimal impact on virulence in animal models. Journal of Virology, 84(9), pp.4442–4450.
  133. Neumann, G., Noda, T. & Kawaoka, Y. (2009). Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature, 459(7249), pp.931–939.
  134. Kang, S., Yang, I. S., Lee, J.-Y., Park, Y., Oh, H.-B., Kang, C. & Kim, K. H. (2010). Epidemiologic study of human influenza virus infection in South Korea from 1999 to 2007: origin and evolution of A/Fujian/411/2002-like strains. Journal of Clinical Microbiology, 48(6), pp.2177–2185.
  135. Henkel, M., Mitzner, D., Henklein, P., Meyer-Almes, F.-J., Moroni, A., Difrancesco, M. L., Henkes, L. M., Kreim, M., Kast, S. M., Schubert, U. & Thiel, G. (2010). The proapoptotic influenza A virus protein PB1-F2 forms a nonselective ion channel. PloS One, 5(6), p.e11112.
  136. Stich, M., Manrubia, S. C. & Lázaro, E. (2010). Variable Mutation Rates as an Adaptive Strategy in Replicator Populations. PloS One, 5(6).
  137. Calder, L. J., Wasilewski, S., Berriman, J. A. & Rosenthal, P. B. (2010). Structural organization of a filamentous influenza A virus. Proceedings of the National Academy of Sciences of the United States of America, 107(23), pp.10685–10690.
  138. Taubenberger, J. K. & Kash, J. C. (2010). Influenza virus evolution, host adaptation, and pandemic formation. Cell Host & Microbe, 7(6), pp.440–451.
  139. Chen, C.-J., Chen, G.-W., Wang, C.-H., Huang, C.-H., Wang, Y.-C. & Shih, S.-R. (2010). Differential localization and function of PB1-F2 derived from different strains of influenza A virus. Journal of Virology, 84(19), pp.10051–10062.
  140. Virulence-associated substitution D222G in the hemagglutinin of 2009 pandemic influenza A(H1N1) virus affects receptor binding. Journal of Virology, 84(22), pp.11802–10813.
  141. Conenello, G. M., Tisoncik, J. R., Rosenzweig, E., Varga, Z. T., Palese, P. & Katze, M. G. (2011). A single N66S mutation in the PB1-F2 protein of influenza A virus increases virulence by inhibiting the early interferon response in vivo. Journal of Virology, 85(2), pp.652–662.
  142. Octaviani, C. P., Goto, H. & Kawaoka, Y. (2011). Reassortment between seasonal H1N1 and pandemic (H1N1) 2009 influenza viruses is restricted by limited compatibility among polymerase subunits. Journal of Virology, 85(16), pp.8449–8452.
  143. Schmolke, M., Manicassamy, B., Pena, L., Sutton, T., Hai, R., Varga, Z. T., Hale, B. G., Steel, J., Pérez, D. R. & García-Sastre, A. (2011). Differential contribution of PB1-F2 to the virulence of highly pathogenic H5N1 influenza A virus in mammalian and avian species. PLoS Pathogens, 7(8), p.e1002186.
  144. Morens, D. M., Taubenberger, J. K., Harvey, H. A. & Memoli, M. J. (2010). The 1918 influenza pandemic: Lessons for 2009 and the future. Critical Care Medicine, 38.
  145. Morens, D. M. & Taubenberger, J. K. (2011). Pandemic influenza: certain uncertainties. Reviews in Medical Virology, 21, pp.262–284.
  146. Mehle, A., Dugan, V. G., Taubenberger, J. K. & Doudna, J. A. (2012). Reassortment and mutation of the avian influenza virus polymerase PA subunit overcome species barriers. Journal of Virology, 86(3), pp.1750–1757.
  147. Noda, T., Sugita, Y., Aoyama, K., Hirase, A., Kawakami, E., Miyazawa, A., Sagara, H. & Kawaoka, Y. (2012). Three-dimensional analysis of ribonucleoprotein complexes in influenza A virus. Nature Communications, 3, p.639.
  148. Chen, G.-W., Chang, S.-C., Mok, C., Lo, Y.-L., Kung, Y.-N., Huang, J.-H., Shih, Y.-H., Wang, J.-Y., Chiang, C., Chen, C.-J. & Shih, S.-R. (2006). Genomic signatures of human versus avian influenza A viruses. Emerging Infectious Diseases, 12(9), pp.1353–1360.
  149. Tong, S., Li, Y., Rivailler, P., Conrardy, C., Castillo, D. a A., Chen, L.-M., Recuenco, S., Ellison, J. A., Davis, C. T., York, I. A., Turmelle, A. S., Moran, D., Rogers, S., Shi, M., Tao, Y., Weil, M. R., Tang, K., Rowe, L. A., Sammons, S., Xu, X., Frace, M., Lindblade, K. A., Cox, N. J., Anderson, L. J., Rupprecht, C. E. & Donis, R. O. (2012). A distinct lineage of influenza A virus from bats. Proceedings of the National Academy of Sciences of the United States of America, 109(11), pp.4269–4274.
  150. Chou, Y., Vafabakhsh, R., Doğanay, S., Gao, Q., Ha, T. & Palese, P. (2012). One influenza virus particle packages eight unique viral RNAs as shown by FISH analysis. Proceedings of the National Academy of Sciences of the United States of America, 109(23), pp.9101–9106.
  151. Jagger, B. W., Wise, H. M., Kash, J. C., Walters, K., Wills, N. M., Xiao, Y.-L., Dunfee, R. L., Schwartzman, L. M., Ozinsky, A., Bell, G. L., Dalton, R. M., Lo, A., Efstathiou, S., Atkins, J. F., Firth, A. E., Taubenberger, J. K. & Digard, P. (2012). An overlapping protein-coding region in influenza A virus segment 3 modulates the host response. Science, 337(6091), pp.199–204.
  152. Muramoto, Y., Noda, T., Kawakami, E., Akkina, R. & Kawaoka, Y. (2013). Identification of novel influenza A virus proteins translated from PA mRNA. Journal of Virology, 87(5), pp.2455–2462.
  153. Cobbin, J. C. a, Verity, E. E., Gilbertson, B. P., Rockman, S. P. & Brown, L. E. (2013). The source of the PB1 gene in influenza vaccine reassortants selectively alters the hemagglutinin content of the resulting seed virus. Journal of Virology, 87(10), pp.5577–5585.
  154. Tumpey, T. M., Garcia-Sastre, A., Taubenberger, J. K., Palese, P., Swayne, D. E. & Basler, C. F. (2004). Pathogenicity and immunogenicity of influenza viruses with genes from the 1918 pandemic virus. Proceedings of the National Academy of Sciences of the United States of America, 101(9), pp.3166–3171.
  155. Ramanunninair, M., Le, J., Onodera, S., Fulvini, A. A., Pokorny, B. A., Silverman, J., Devis, R., Arroyo, J. M., He, Y., Boyne, A., Bera, J., Halpin, R., Hine, E., Spiro, D. J. & Bucher, D. (2013). Molecular signature of high yield (growth) influenza a virus reassortants prepared as candidate vaccine seeds. PloS One, 8(6), p.e65955.
  156. Shelton, H., Roberts, K. L., Molesti, E., Temperton, N. & Barclay, W. S. (2013). Mutations in haemagglutinin that affect receptor binding and pH stability increase replication of a PR8 influenza virus with H5 HA in the upper respiratory tract of ferrets and may contribute to transmissibility. The Journal of General Virology, 94(6), pp.1220–1229.
  157. Essere, B., Yver, M., Gavazzi, C., Terrier, O., Isel, C., Fournier, E., Giroux, F., Textoris, J., Julien, T., Socratous, C., Rosa-Calatrava, M., Lina, B., Marquet, R. & Moules, V. (2013). Critical role of segment-specific packaging signals in genetic reassortment of influenza A viruses. Proceedings of the National Academy of Sciences of the United States of America, 110(40), p.E3840–8.
  158. Gavazzi, C., Yver, M., Isel, C., Smyth, R. P., Rosa-Calatrava, M., Lina, B.,Moules, V. & Marquet, R. (2013). A functional sequence-specific interaction between influenza A virus genomic RNA segments. Proceedings of the National Academy of Sciences of the United States of America, 110(41), pp.16604–16609.
  159. York, A. & Fodor, E. (2013). Biogenesis, assembly, and export of viral messenger ribonucleoproteins in the influenza A virus infected cell. RNA Biology, 10(8), pp.1274–1282.
  160. Matrosovich, M. N., Matrosovich, T. Y., Gray, T., Roberts, N. A. & Klenk, H.-D. (2004). Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proceedings of the National Academy of Sciences of the United States of America, 101(13), pp.4620–4624.
  161. Sun, W., Li, J., Han, P., Yang, Y., Kang, X., Li, Y., Li, J., Zhang, Y., Wu, X., Jiang, T., Qin, C., Hu, Y. & Zhu, Q. (2014). U4 at the 3' UTR of PB1 Segment of H5N1 Influenza Virus Promotes RNA Polymerase Activity and Contributes to Viral Pathogenicity. PloS One, 9(3), p.e93366.
  162. Schrauwen, E. J. A., de Graaf, M., Herfst, S., Rimmelzwaan, G. F., Osterhaus, A. D. M. E. & Fouchier, R. A. M. (2014). Determinants of virulence of influenza A virus. European Journal of Clinical Microbiology & Infectious Diseases: Official Publication of the European Society of Clinical Microbiology, 33(4), pp.479–490.
  163. Poch, O., Sauvaget, I., Delarue, M. & Tordo, N. (1989). Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO Journal, 8(12), pp.3867–3874.
  164. PB1-F2 , an Influenza A Virus-Encoded Proapoptotic Mitochondrial Protein , Creates Variably Sized Pores in Planar Lipid Membranes. Journal of Virology, 78(12), pp.6304–6312.
  165. R Core Team (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.
  166. Digard, P., Blok, V. C. & Inglis, S. C. (1989). Complex formation between influenza virus polymerase proteins expressed in Xenopus oocytes. Virology, 171(1), pp.162–169.
  167. Poole, E., Elton, D., Medcalf, L. & Digard, P. (2004). Functional domains of the influenza A virus PB2 protein: identification of NP-and PB1-binding sites. Virology, 321(1), pp.120–133.
  168. Reperant, L. A., Kuiken, T. & Osterhaus, A. D. M. E. (2012). Adaptive pathways of zoonotic influenza viruses: from exposure to establishment in humans. Vaccine, 30(30), pp.4419–4434.
  169. Sorrell, E. M., Schrauwen, E. J. a, Linster, M., De Graaf, M., Herfst, S. & Fouchier, R. a M. (2011). Predicting " airborne " influenza viruses: (trans-) mission impossible? Current Opinion in Virology, 1(6), pp.635–642.
  170. Coleman, J. R. (2007). The PB1-F2 protein of Influenza A virus: increasing pathogenicity by disrupting alveolar macrophages. Virology Journal, 4, 9.
  171. Zamarin, D., García-Sastre, A., Xiao, X., Wang, R. & Palese, P. (2005). Influenza virus PB1-F2 protein induces cell death through mitochondrial ANT3 and VDAC1. PLoS Pathogens, 1(1), p.e4.
  172. Imai, M., Watanabe, T., Hatta, M., Das, S. C., Ozawa, M., Shinya, K., Zhong, G., Hanson, A., Katsura, H., Watanabe, S., Li, C., Kawakami, E., Yamada, S., Kiso, M., Suzuki, Y., Maher, E. A., Neumann, G. & Kawaoka, Y. (2012). Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature.
  173. Isakov, O., Borderia, A. V., Golan, D., Hamenahem, A., Celniker, G., Yotte, L., Blanc, H., Vignuzzi, M. & Shomron, M. (2014). Deep sequencing analysis of viral infection and evolution allows rapid and detailed characterization of viral mutant spectrum. unpublished
  174. Jiang, H., Zhang, S., Wang, Q., Wang, J., Geng, L. & Toyoda, T. (2010). Influenza virus genome C4 promoter/origin attenuates its transcription and replication activity by the low polymerase recognition activity. Virology, 408(2), pp.190–196.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten