Publikationsserver der Universitätsbibliothek Marburg

Titel:Annonacin, ein natürlicher Komplex-I Inhibitor, erhöht die Tau-Phosphorylierung im Gehirn von FTDP-17 transgenen Mäusen
Autor:Respondek, Gesine
Weitere Beteiligte: Oertel, W. H. (Prof. Dr. Dr.)
Veröffentlicht:2014
URI:https://archiv.ub.uni-marburg.de/diss/z2014/0431
URN: urn:nbn:de:hebis:04-z2014-04316
DOI: https://doi.org/10.17192/z2014.0431
DDC: Medizin
Titel (trans.):Annonacin, a natural lipophilic mitochondrial complex I inhibitor, increases phosphorylation of tau in the brain of FTDP-17 transgenic mice
Publikationsdatum:2014-05-20
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Neurodegeneration, Mikritubuli-assoziiertes Protein Tau, Neurotoxin, Tauopathie, Neurodegeneration, Microtubule-associated protein tau, Tauopathy, Environmental neurotoxin

Zusammenfassung:
Tauopathien sind eine Gruppe von neurodegenerativen Erkrankungen, die durch die Akkumulation von hyperphosphoryliertem Tau, einem Mikrotubuli-assoziierten Protein, gekennzeichnet sind. Sie stellen in Hinblick auf ihre Klinik und Ätiologie ein heterogenes Krankheitsbild dar. Die genauen Mechanismen, die zu der Entstehung der Erkrankungen führen, sind noch ungeklärt. Eine Tauopathie, die als vorwiegend umweltbedingt gilt, kommt auf der karibischen Inselgruppe Guadeloupe vor und konnte Einblicke in die Entstehung von Tau-Pathologie zugrunde liegenden Pathomechanismen liefern. Es gibt Hinweise, dass die Entstehung dieser Tauopathie mit dem Konsum der Früchte und Blätter des dort beheimateten Baumes Annona muricata und dem enthaltenen Toxin Annonacin in Zusammenhang steht (Caparros-Lefebvre und Elbaz et al., 1999; Champy et al., 2005; Lannuzel et al., 2007). Annonacin ist ein Inhibitor von Komplex-I der mitochondrialen Atmungskette, der experimentell in vitro und in vivo zu neuronalem Untergang und Tau-Pathologie führt (Lannuzel et al., 2003; Champy et al., 2004; Escobar-Khondiker et al., 2007). Auf der anderen Seite gibt es hereditäre Tauopathien, wie die Frontotemporalen Demenzen mit Parkinsonismus und Kopplung an das Chromosom 17 (FTDP-17). Verschiedene Mutationen im MAPT Gen, die meist durch ein autosomal-dominantes Muster vererbt werden, führen bei dieser Gruppe zur Entstehung der typischen Tau-Pathologie. Die bislang durchgeführten Untersuchungen konnten nicht klären, ob Annonacin die Hyperphosphorylierung des Tau-Proteins, wie sie in Tauopathien anzutreffen ist, reproduziert und inwieweit eine genetische Veränderung des Tau-Proteins diesen Effekt begünstigt. In der vorliegenden Studie bedienten wir uns zur Lösung dieser Fragestellung des Komplex-1-Inhibitors Annonacin und eines transgenen Mausmodelles, das humanes Tau mit der R406W-Mutation überexprimiert.

Bibliographie / References

  1. Williams DR, Holton JL, Strand K, Revesz T, Lees AJ (2007). Pure akinesia with gait freezing: A third clinical phenotype of progressive supranuclear palsy. Movement Disorders, 22 (15): 2235–2241.
  2. Minden A, Karin M (1997). Regulation and function of the JNK subgroup of MAP kinases.
  3. Steele JC, Caparros-Lefebvre D, Lees AJ, Sacks OW (2002). Progressive supranuclear palsy and its relation to pacific foci of the parkinsonism-dementia complex and Guadeloupean parkinsonism. Parkinsonism & Related Disorders, 9 (1): 39-54. Review.
  4. Schrag A, Ben-Shlomo Y, Quinn NP (1999). Prevalence of progressive supranuclear palsy and multiple system atrophy: a cross-sectional study. Lancet, 354 (9192): 1771–1775.
  5. DG, Mann D, Lang AE, Bergeron C, Bigio EH, Litvan I, Bhatia KP, Dickson D, Wood NW, Hutton M (2001). Corticobasal degeneration and progressive supranuclear palsy share a common tau haplotype. Neurology, 56 (12): 1702-1706.
  6. Kompoliti K, Goetz CG, Boeve BF, Maraganore DM, Ahlskog JE, Marsden CD, Bhatia KP, Greene PE, Przedborski S, Seal EC, Burns RS, Hauser RA, Gauger LL, Factor SA, Molho ES, Riley DE (1998). Clinical presentation and pharmacological therapy in corticobasal degeneration. Archives of Neurology, 55 (7): 957-961.
  7. Vermersch P, Robitaille Y, Bernier L, Wattez A, Gauvreau D, Delacourte A (1994). Biochemical mapping of neurofibrillary degeneration in a case of progressive supranuclear palsy: evidence for general cortical involvement. Acta Neuropathologica, 87 (6): 572-577.
  8. Stefansson H, Helgason A, Thorleifsson G, Steinthorsdottir V, Masson G, Barnard J, Baker A, Jonasdottir A, Ingason A, Gudnadottir VG, Desnica N, Hicks A, Gylfason A, Gudbjartsson DF, Jonsdottir GM, Sainz J, Agnarsson K, Birgisdottir B, Ghosh S, Olafsdottir A, Cazier JB, Kristjansson K, Frigge ML, Thorgeirsson TE, Gulcher JR, Kong A, Stefansson K (2005). A common inversion under selection in Europeans. Nature Genetics, 37 (2): 129-37.
  9. Williams D.R., de Silva R., Paviour DC, Pittman A, Watt HC, Kilford L, Holton JL, Revesz T, Lees AJ (2005). Characteristics of two distinct clinical phenotypes in pathologically proven progressive supranuclear palsy: Richardson's syndrome and PSP-parkinsonism. Brain, 128 (6): 1247–1258.
  10. Stamelou M, Silva R, Arias-Carrión O, Boura E, Höllerhage M, Oertel WH, Müller U, Höglinger GU (2010). Rational therapeutic approaches to progressive supranuclear palsy. Brain, 133 (6):1578–1590.
  11. Sundar PD, Yu CE, Sieh W, Steinbart E, Garruto RM, Oyanagi K, Craig UK, Bird TD, Wijsman EM, Galasko DR, Schellenberg GD (2007). Two sites in the MAPT region confer genetic risk for Guam ALS/PDC and dementia. Human Molecular Genetics, 16 (3): 295-306.
  12. Knowles RB, Chin J, Ruff CT, Hyman BT (1999). Demonstration by fluorescence resonance energy transfer of a close association between activated MAP kinase and neurofibrillary tangles: implications for MAP kinase activation in Alzheimer disease. Journal of Neuropathology & Experimental Neurology, 58 (10): 1090-1098.
  13. Murrell JR, Spillantini MG, Zolo P, Guazzelli M, Smith MJ, Hasegawa M, Redi F, Crowther RA, Pietrini P, Ghetti B, Goedert M (1999). Tau gene mutation G389R causes a tauopathy with abundant pick body-like inclusions and axonal deposits. Journal of Neuropathology & Experimental Neurology, 58 (12): 1207-1226.
  14. Phenotypic variation in frontotemporal dementia and parkinsonism linked to chromosome 17.
  15. Tsuboi Y, Baker M, Hutton M, Uitti RJ, Rascol O, Delisle MB, Soulages X, Murrell JR, Ghetti B, Yasuda M, Komure O, Kuno S, Arima K, Sunohara N, Kobayashi T, Mizuno Y, Wszolek ZK (2002). Clinical and genetic studies of families with the tau N279K mutation (FTDP-17).
  16. Early-onset, rapidly progressive familial tauopathy with R406W mutation. Neurology, 58 (5): 811-813.
  17. Swieten J, Mann D, Lynch T, Heutink P (1998). Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17. Nature, 393 (6686): 702-705.
  18. Messing L, Decker JM, Joseph M, Mandelkow E, Mandelkow EM (2012). Cascade of tau toxicity in inducible hippocampal brain slices and prevention by aggregation inhibitors.
  19. Perry G, Roder H, Nunomura A Takeda A, Friedlich AL, Zhu X, Raina AK, Holbrook N, Siedlak SL, Harris PL, Smith MA (1999). Activation of neuronal extracellular receptor kinase (ERK) in
  20. Sengupta A, Wu Q, Grundke-Iqbal I, Iqbal K, Singh TJ (1997). Potentiation of GSK-3-catalyzed Alzheimerlike phosphorylation of human tau by cdk5. Molecular and Cellular Biochemistry, 167 (1-2): 99–105.
  21. aggregation is toxic to cells but can be reversed by inhibitor drugs. Journal of Biological Chemistry, 281 (2):1205-1214.
  22. Alzheimer disease links oxidative stress to abnormal phosphorylation. Neuroreport, 10 (11): 2411–2415
  23. Tseng HC, Zhou Y, Shen Y, Tsai LH (2002). A survey of Cdk5 activator p35 and p25 levels in Alzheimer's disease brains. FEBS Letters, 523 (1-3): 58-62.
  24. Frau Dr. Christel Depienne ohne sonstige Hilfe selbst durchgeführt und bei der Abfassung der Arbeit keine anderen als in dieser Dissertation angeführten Hilfsmittel benutzt habe.
  25. Patrick GN, Zuckerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai LH (1999). Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature, 402 (6762): 615- 622.
  26. Kosik K, Orecchio L, Bakalis S, Neve R (1989). Developmentally regulated expression of specific tau sequences. Neuron, 2 (4):1389-1397.
  27. Distribution of active glycogen synthase kinase 3beta (GSK-3beta) in brains staged for Alzheimer disease neurofibrillary changes. Journal of Neuropathology and Experimental Neurology, 58 (9): 1010–1019.
  28. Togasaki DM, Tanner CM (2000). Epidemiologic aspects. Advances in Neurology, 82: 53-59.
  29. Spillantini MG, Bird TD, Ghetti B (1998). Frontotemporal dementia and Parkinsonism linked to chromosome 17: a new group of tauopathies. Brain Pathology, 8 (2): 387-402.
  30. FTDP-17) with a missense mutation of S305N closely resembling Pick's disease. Journal of Neurology, 250 (8): 990-992.
  31. Ishiguro K, Shiratsuchi A, Sato S, Omori A, Arioka M, Kobayashi S, Uchida T, Imahori K (1993). Glycogen synthase kinase 3b is identical to tau protein kinase I generating several epitopes of paired helical filaments. FEBS Letters, 325 (3): 167–172.
  32. Meinem Betreuer Herrn Prof. Dr. G. U. Höglinger gilt für die Bereitstellung des Themas und die stets hilfsbereite und wissenschaftlich herausragende Unterstützung bei der Umsetzung ein ganz besonderer Dank. Ich hätte mir keinen besseren Betreuer wünschen können.
  33. Ich habe bisher an keinem in-und ausländischen Medizinischen Fachbereich ein Gesuch um Zulassung zur Promotion eingereicht noch die vorliegende oder eine andere Arbeit als Dissertation vorgelegt.
  34. Köpke E, Tung YC, Shaikh S, Alonso AC, Iqbal K, Grundke-Iqbal I (1993). Microtubule- associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. Journal of Biological Chemistry, 268 (32): 24374-24384.
  35. Su B, Karin M (1996). Mitogen-activated protein kinase cascades and regulation of gene expression. Current Opinion in Immunology, 8 (3): 402–411.
  36. Ishizu H, Aoki K, Ishikawa A, Onodera O, Kuwano R, Nishizawa M (2008). Mutational analysis in early-onset familial dementia in the Japanese population. The role of PSEN1 and MAPT R406W mutations. Dementia and Geriatric Cognitive Disorders, 26 (1): 43-49.
  37. Van Swieten JC, Stevens M, Rosso SM, Rizzu P, Joosse M, de Koning I, Kamphorst W, Ravid R, Spillantini MG, Niermeijer, Heutink P (1999). Phenotypic variation in hereditary frontotemporal dementia with tau mutations. Annals of Neurology, 46 (4): 617–626.
  38. Ingram E, Spillantini M (2002). Tau gene mutations: dissecting the pathogenesis of FTDP-17.
  39. Spillantini MG, Van Swieten JC, Goedert M (2000). Tau gene mutations in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). Neurogenetics, 2 (4): 193-205.
  40. Komori T (1999). Tau-positive glial inclusions in progressive supranuclear palsy, corticobasal degeneration and Pick's disease. Brain Pathology, 9 (4):663-79.
  41. Myers AJ, Pittman AM, Zhao AS, Rohrer K, Kaleem M, Marlowe L, Lees A, Leung D, McKeith IG, Perry RH, Morris CM, Trojanowski JQ, Clark C, Karlawish J, Arnold S, Forman MS, Van Deerlin V, de Silva R, Hardy J (2007). The MAPT H1c risk haplotype is associated with 72
  42. Mocanu MM, Nissen A, Eckermann K, Khlistunova I, Biernat J, Drexler D, Petrova O, Schönig K, Bujard H, Mandelkow E, Zhou L, Rune G, Mandelkow EM (2008). The potential for betastructure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous Tau in inducible mouse models of tauopathy.
  43. Passant U, Ostojic J, Froelich Fabre S, Gustafson L, Lannfelt L, Larsson EM, Nilsson K, Rosen I, Elfgren C (2004). Familial presenile dementia with bitemporal atrophy. Dementia and Geriatric Cognitive Disorders, 17 (4): 287-292.
  44. Swerdlow RH, Golbe LI, Parks JK, Cassarino DS, Binder DR, Grawey AE, Litvan I, Bennett JP Jr, Wooten GF, Parker WD (2000). Mitochondrial dysfunction in cybrid lines expressing mitochondrial genes from patients with progressive supranuclear palsy. Journal of Neurochemistry, 75 (4):1681-1684.
  45. Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif ((306)VQIVYK(311)) forming beta structure. Proceedings of the National Acadamy of Sciences USA, 97 (10): 5129-5134.
  46. Planel E, Tatebayashi Y, Miyasaka T, Liu L, Wang L, Herman M, Yu WH, Luchsinger JA, Wadzinski B, Duff KE, Takashima A (2007). Insulin dysfunction induces in vivo tau hyperphosphorylation through distinct mechanisms. Journal of Neuroscience, 27 (50): 13635– 13648.
  47. Brittinger C, Oertel WH, Höglinger GU (2009). In vivo evidence for cerebral depletion in high- 76 energy phosphates in progressive supranuclear palsy. Journal of Cerebral Blood Flow & Metabolism, 29 (4): 861-870.
  48. Vogelsberg-Ragaglia V, Bruce J, Richter-Landsberg C, Zhang B, Hong M, Trojanowski JQ, Lee VM-Y (2000). Distinct FTDP-17 missense mutations in tau produce tau aggregates and other pathological phenotypes in transfected CHO cells. Molecular Biology of the Cell, 11 (12): 4093– 4104.
  49. Sengupta A, Novak M, Grundke-Iqbal I, Iqbal K (2006). Regulation of phosphorylation of tau by cyclin-dependent kinase 5 and glycogen synthase kinase-3 at substrate level. FEBS Letters, 580 (25): 5925-5933.
  50. Ihara Y (2001). Molecular analysis of mutant and wild-Type tau deposited in the brain affected by the FTDP-17 R406W mutation. American Journal of Pathology, 158 (2), 373–379.
  51. Varani G (1999). Structure of tau exon 10 splicing regulatory element RNA and destabilization by mutations of frontotemporal dementia and parkinsonism linked to chromosome 17.
  52. Iqbal K, Liu F, Gong C-X, Alonso AC, Grundke-Iqbal I (2009). Mechanisms of tau-induced neurodegeneration. Acta Neuropatholica, 118 (1): 53–69.
  53. Winslow AR, Chen CW, Corrochano S, Acevedo-Arozena A, Gordon DE, Peden AA, Lichtenberg M, Menzies FM, Ravikumar B, Imarisio S, Brown S, O'Kane CJ, Rubinsztein DC (2010). α-Synuclein impairs macroautophagy: implications for Parkinson's disease. Journal of Cell Biology, 190 (6): 1023-1037.
  54. Su B, Wang X, Drew KL, Perry G, Smith MA, Zhu X (2008). Physiological regulation of tau phosphorylation during hibernation. Journal of Neurochemistry, 105 (6): 2098-2108.
  55. Mullane K, Williams M (2013). Alzheimer's therapeutics: Continued clinical failures question the validity of the amyloid hypothesis—but what lies beyond? Biochemical Pharmacology, 85 (39); 289–305.
  56. Pei JJ, Grundke-Iqbal I, Iqbal K, Bogdanovic N, Winblad B, Cowburn RF (1998). Accumulation of cyclin-dependent kinase 5 (cdk5) in neurons with early stages of Alzheimer's disease neurofibrillary degeneration. Brain Research, 797 (2): 267–277.
  57. Schapira, AHV (2010). Complex I: Inhibitors, inhibition and neurodegeneration. Experimental Neurology, 224 (2): 331-35.
  58. Muñoz-Montano JR, Moreno FJ, Avila J, Diaz-Nido J (1997). Lithium inhibits Alzheimers disease-like tau protein phosphorylation in neurons. FEBS Letters, 411 (2-3): 183–188.
  59. Sun L, Liu SY, Zhou XW, Wang XC, Liu R, Wang Q, Wang JZ (2003). Inhibition of protein phosphatase 2A-and protein phosphatase 1-induced tau hyperphosphorylation and impairment of spatial memory retention in rats. Neuroscience, 118 (4): 1175–1182.
  60. Avila J, Guardia-Laguarta C, Clarimón J, Lleó A, Gómez-Isla T (2009). A novel GSK-3beta inhibitor reduces Alzheimer´s pathology and rescues neuronal loss in vivo. Neurobiology of Disease, 35 (3): 359-367.
  61. Kobayashi K, Kidani T, Ujike H, Hayashi M, Ishihara T, Miyazu K, Kuroda S, Koshino Y (2003). Another phenotype of frontotemporal dementia and parkinsonism linked to chromosome-
  62. Plattner F, Angelo M, Giese KP (2006). The roles of cyclin-dependent kinase 5 and glycogen synthase kinase 3 in tau hyperphosphorylation. Journal of Biological Chemistry, 281(35):25457- 2565.
  63. Vandebroek T, Vanhelmont T, Terwel D, Borghgraef P, Lemaire K, Snauwaert J, Wera S, Van Leuven F, Winderickx J (2005). Identification and isolation of a hyperphosphorylated, conformationally changed intermediate of human protein tau expressed in yeast. Biochemistry, 44 (34): 11466-11475.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten